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Chapter 1 
 
Introduction 

 
“I just invent. Then I wait until man comes around to needing what I've invented.”  

― Buckminster Fuller 
 

This dissertation represents an attempt to relate some fundamental statistical problems using the notions 
of information, entropy, and evidence. The dissertation is presented in the format of article-based 
dissertation including 3 papers.   

The first paper is entitled “Information Loss due to the Compression of Sample Data from Discrete 
Distributions”. It is a study about the information lost when a real-valued statistic T(X!, … , X") is used to 
summarize the sample data 𝐱 = (x!, … , x") of a random sample 𝐗 = (X!, … , X") from a discrete random 
variable X with a one-dimensional parameter θ. The process where the data sample X is compressed to the 
summary statistic T(X) is irreversible and always involves some information loss. For instance, if T(𝐗) = X,, 
the original measurements x cannot be reconstructed from 𝐱-, and some information about 𝐱 is lost. 
Nonetheless, such data compression is frequently used to make inferences about, for example, the true 
mean µ of X.  

In general, the first paper presents a decomposition on the total information available about 𝐗 in 𝐱 and 
give various expressions for the Shannon information lost by compressing 𝐱 to T(𝐱). The focus is on 
sufficient statistics for the parameter θ, which are used to develop a general formula independent of θ for 
this lost information as well as for an associated entropy that depends only on T. This approach would also 
work for non-sufficient statistics, but the lost information and associated entropy would involve θ.  

The second paper is entitled “New Concepts in Information Theory with Applications in Data Analysis”. 
The previous paper involved an examination of Shannon information and entropy for discrete random 
variables. The second paper then continues the study and develops new concepts of information and 
entropy. In particular, a new type of information called gambler’s information is introduced, which views 
events prospectively, as compared with Shannon information, which views them retrospectively. The 
Shannon information of an event is defined as the negative log to the base 2 of the probability p for the 
event. Based on this definition, an observer obtains more information if an unlikely event occurs than if a 
likely one does.   

Shannon information may not be the appropriate information for modeling some decisions. The Shannon 
information of an event is not obtained until the event actually occurs and causes a level of surprise 
appropriate to the likelihood of it occurring. On the other hand, gambler’s information stems from the 
probability of the event and not its occurrence. The notion of outer entropy is also defined in which the log 
in Shannon (or inner) entropy is placed outside the expectation to provide simpler calculations and often 
intuitive results. As applications of these new concepts, they are used instead of Shannon information and 
inner entropy in the framework of paper 1 and then also used to provide intuitive measures of evidence 
for the parameter values of a discrete random variable. 

The third paper is entitled “Comparison and Extension of Measures of Evidence in Hypothesis Testing”. 
A principal goal of statistics is to obtain evidence from data for comparing alternative decisions. For 
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example, one may need to decide whether a population mean µ satisfies µ ≤ µ# as opposed to µ > µ# for 
some specified µ#. There are numerous attempts to define evidence in statistics. This paper considers the 
likelihood ratio, confidence distributions, the Bayesian posterior odds ratio, and P-value as measures of 
evidence. Moreover, a new definition of P-value utilizing the maximum likelihood estimator is proposed 
that in the limit obtains the frequentist probability that a null hypothesis is true without reference to error 
or test statistics. 

The dissertation is organized as follows. Chapter 2 includes the study on information loss due to the 
compression of sample data from discrete distributions. In Chapter 3, new concepts in information theory 
are presented. In Chapter 4, various measures of evidence, including a new P-value, are presented and 
compared. General conclusions are offered in Chapter 5.  
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Chapter 2 
 

Information Loss due to the Compression of Sample 
Data from Discrete Distributions  
Maryam Moghimi*1,2, H.W. Corley1,2 

  1  Center on Stochastic Modeling, Optimization, and Statistics (COSMOS), The University of Texas at    Arlington, 
Arlington, TX, USA 

   2  The authors contributed equally to this paper.  
  * Correspondence: maryam.moghimi@uta.edu; +1-214-971-0904 (M.M.), corley@uta.edu; Tel.: +1-817-272-3092 

(H.C.)  

Abstract: In this paper we study the information lost when a real-valued statistic T(X!, … , X") is used to 
summarize the sample data 𝐱 = (x!, … , x") of a random sample 𝐗 = (X!, … , X") from a discrete random 
variable X with a one-dimensional parameter θ. We compare the probability that the random sample 𝐗 
yields 𝐱 to the probability that the compressed sample T(𝐗) yields T(𝐱). The former probability measures 
the total information about 𝐱, while the latter measures the compressed information about 𝐱, both of which 
are expressed here as Shannon information. The difference is the information lost about 𝐗 by its 
compression to T(𝐗). We focus on sufficient statistics for the parameter θ and develop a general formula 
independent of θ for this lost information as well as for an associated entropy that depends only on T. Our 
approach would also work for non-sufficient statistics, but the lost information and associated entropy 
would involve θ. Examples are presented for some standard discrete distributions.  

Keywords: discrete distributions, Shannon information, lost information, sampling, data reduction, data 
compression, entropy, sufficient statistics, likelihood 

1. Introduction  

We consider the data sample 𝐱 = (x!, … , x") from a random sample 𝐗 = (X!, … , X") for a discrete random 
variable X with sample space S	and one-dimensional parameter θ. Here a statistic T(𝐗) is a real-valued 
function of the random sample but not a function of any parameter θ associated with X, though θ may fixed 
at an arbitrary value. The data sample 𝐗 is compressed to the summary statistic T(𝐗), which could be used 
to characterize 𝐗 or to estimate θ. Such data compression is an irreversible process [1] and always involves 
some information loss. For instance, if T(𝐗) = X,, the original measurements 𝐱 cannot be reconstructed from 
x-, and some information about 𝐱 is lost. Nonetheless, such data compression is frequently used to make 
inferences about, for example, the true mean µ of X. Our information-theoretic approach to data 
compression generalizes the observation in [2] that a binomial random variable loses all the information 
about the order of successes in the associated sequence of Bernoulli trials.  

For any real-valued statistic T and the given sample data 𝐱, we decompose the total information about 𝐗 
available in 𝐱 into the sum of (a) the information available in the compressed data T(𝐱) = 𝐱- and (b) the 
information lost in the compression. When T is a sufficient statistic for θ this lost information is independent 
of θ. Moreover, by taking the expected value of this lost information over all possible data sets, we define 
an associated entropy measure that depends on T but neither 𝐱 nor θ. Our approach also works for non-
sufficient statistics, but the lost information and associated entropy would then involve θ, and so θ must 
be estimated to computing these quantities. 
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The paper is organized as follows. In Section 2, we present the necessary definitions, notation, and 
preliminary results. In Section 3, we decompose the total information available about 𝐗 in 𝐱 and give 
various expressions for the Shannon information lost by compressing 𝐱 to T(𝐱). In Section 4, we develop 
an entropy measure associated with this lost information. In Section 5, we present examples of our results 
for some standard discrete distributions and several statistics sufficient for θ. Conclusions are offered in 
Section 6. 

2.  Preliminaries  

The following definitions, notation, and results are used here. Further details can be found in [3,4] and 
elsewhere. An important class of statistics is first defined. 

Definition 2.1 (Sufficient Statistic). A statistic T(𝐗) is a sufficient statistic (SS) for the parameter θ if the 
probability 

P[𝐗 = 𝐱|T(𝐗) = T(𝐱)] (1) 
is independent of θ. 

Note that P instead of P$ is used in (1) since this probability is independent of θ. Also observe that (1) is not 
a joint conditional distribution for 𝐗 since its n condition changes with 𝐱. This observation becomes significant 
in Section 4. The fact that (1) does not involve θ is used to prove the Fisher Factorization Theorem (FFT), 
which is the usual method for determining if a statistic is an SS for θ. We use the notation f(𝐱|θ) to denote the 
joint pmf of 𝐗 evaluated at the variable 𝐱 for a fixed value of θ. 

Result 2.2 (Fisher Factorization Theorem). The real-valued statistic T(𝐗) is sufficient for θ if and only if 
there exist functions g: R! ⟶R! and h: S" ⟶R! such that for any sample data 𝐱 and for all values of θ the 
joint pmf f(𝐱|θ) of 𝐗 can be factored as  

f(𝐱|θ) = g[T(𝐱)|θ] × h(𝐱) (2) 

for real-valued, nonnegative functions g on R!	and h on S". The function h does not depend on θ, while g 
does depend on 𝐱 but only through T(𝐱). 

We focus on a sufficient statistic T for θ in Section 3, where we need the notion of a partition [5] as defined 
next. 

Definition 2.3 (Partition). Let S be the denumerable sample space of the discrete random variable X, and 
thus let S" be the denumerable sample space of the random sample 𝐗. For any statistic T: S" ⟶R!, let τ% be 
the denumerable set τ% = {t|∃𝐱 ∈ S" for which t = T(𝐱)}, which is the range of T. Then T partitions the 
sample space S" into the mutually exclusive and collectively exhaustive partition sets A& =
{𝐱 ∈ S"|T(𝐱) = t}, ∀t ∈ τ%. 

Figure 2.1 below illustrates the situation. 
Figure 2.1 

 
We also need the well-known likelihood function.  
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Definition 2.4 (Likelihood Function). Let 𝐱 be sample data from a random sample 𝐗 from a discrete 
random variable X with sample space S and real-valued parameter θ, and let f(𝐱|θ) denote the joint pmf of 
the random sample 𝐗. For any sample data 𝐱, the likelihood function of θ is defined as 

L(θ|𝐱) = f(𝐱|θ). (3) 

The likelihood function in (3) is a function of the variable θ for given data 𝐱. However, the joint pmf f(𝐱|θ) 
as a function of 𝐱 for fixed θ is frequently called the likelihood function as well. In this case we also write the 
joint pmf as L(𝐱|θ). We distinguish the two cases since L(θ|𝐱) is not a statistic but L(𝐱|θ) is one that 
incorporates all available information about 𝐗. Moreover, L(𝐱|θ) is an SS for θ [4] and uniquely determines 
an associated SS called the likelihood kernel to be used in subsequent examples.  

Definition 2.5 (Likelihood kernel). Let S be the sample space of 𝐗. For fixed θ, suppose that L(𝐱|θ) can be 
factored as  

L(𝐱|θ) = K(𝐱|θ) × R(𝐱), 	∀𝐱 ∈ S", (4) 

where K: S" ⟶R! and R: S" ⟶R! have the following properties:  
(a) every nonnumerical factor of K(𝐱|θ) contains θ;  
(b) R(𝐱) does not contain θ;  
(c) for ∀𝐱 ∈ S", both K(𝐱|θ) ≥ 0 and R(𝐱) ≥ 0; and  
(d)	K(𝐱|θ) is not divisible by any positive number except 1.  

Then K(𝐱|θ) is defined as the likelihood kernel of L(𝐱|θ) and R(𝐱) as the residue of L(𝐱|θ).  
Theorem 2.6. The likelihood kernel K(𝐱|θ) has the following properties.  

(i) K(𝐱|θ) uniquely exists.  
(ii) K(𝐱|θ) is an SS for θ.  

(iii) For any θ!	and θ', the likelihood ratio ()𝐱*θ!+
()𝐱*θ'+

 equals ,)𝐱*θ!+
	,)𝐱*θ'+

. 

Proof. To prove (i), for fixed θ we first show that the likelihood kernel K(𝐱|θ) of Definition 2.5 exists by 
construction. Since the formula for L(θ|𝐱) = f(𝐱|θ) must explicitly contain θ, the parameter θ cannot appear 
only in the range of 𝐱. Hence L(𝐱|θ) as a function of 𝐱 can be factored into K(𝐱|θ) × R(𝐱) satisfying (a) and 
(b) of Definition 2.5, where K(𝐱|θ) ≥ 0, ∀𝐱 ∈ S", and the numerical factor of K(𝐱|θ) is either +1 or −1. Then 
R(𝐱) ≥ 0, 	∀𝐱 ∈ S", since K(𝐱|θ) ≥ 0, 	∀𝐱 ∈ S", and K(𝐱|θ) × R(𝐱) = f(𝐱|θ) ≥ 0. Thus (c) is satisfied. Finally, 
the only positive integer that evenly divides +1 or −1 is 1, so (d) holds. It follows that the likelihood kernel 
K(𝐱|θ) and its associated R(𝐱) in Definition 2.5 are well defined and exist.  

We next show that K(𝐱|θ) as constructed above is unique. Let K!(𝐱|θ) with residue R!(𝐱) and K'(𝐱|θ) 
with R'(𝐱) both satisfy Definition 2.5. Thus for j = 1,2, 	R.(𝐱) does not contain θ while every nonnumerical 
factor of K.(𝐱|θ) does contain θ. It follows that K!(𝐱|θ) ≥ 0 and K'(𝐱|θ) ≥ 0 must be identical or else be a 
positive multiple of one another. Assume that K'(𝐱|θ) = λK!(𝐱|θ) for some λ > 0. If λ ≠ 1, K'(𝐱|θ) is 
divisible by a positive number other than 1 to avoid (d). Thus, K(𝐱|θ) is unique. 

To prove (ii) we show that this unique K(𝐱|θ) is an SS for θ. For L(θ|𝐱) = f(𝐱|θ), let g[z] = z and h(𝐱) =
R(𝐱) in (2). Then L(θ|𝐱) = f(𝐱|θ) = g[K(𝐱|θ)] × h(𝐱) =	K(𝐱|θ) × R(𝐱). Thus K(𝐱|θ) is an SS by the FFT of 
Result 2.2.  

Finally, (iii) follows immediately from Definition 2.5 and the fact that L(𝐱|θ') ≠ 0 for 𝐱 ∈ S". ■ 
We next discuss the notion of information to be used here. Actually, probability itself is a measure of 

information in the sense that it captures the surprise level of an event. An observer obtains more information, 
i.e., surprise, if an unlikely event occurs than if a likely one does. Instead of probability, however, we use the 
additive measure known as Shannon information [6, 7] defined as follows. 

Definition 2.7 (Shannon Information). Let 𝐱 be sample data for the random sample 𝐗 from the discrete 
random variable X with a one-dimensional parameter θ, and let f(𝐱|θ) be the joint pmf of 𝐗 at 𝐱. The Shannon 
information obtained from the sample data 𝐱 is defined as  
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I(𝐱|θ) = − log 	f(𝐱|θ), (5) 

where the units of I(𝐱|θ) is bits if the base of the logarithm is 2, which is to be used here. 
The expected information over ∀𝐱 ∈ S" will also be used. 
Definition 2.8 (Entropy). Under the conditions of Definition 2.7, the entropy H(𝐗|θ) is defined as the 

expected value of I(𝐗|θ); i.e, 
H(𝐗|θ) =Xf(𝐱|θ)I(𝐱|θ)

𝐱

. (6) 

Since entropy is the expected information over all possible random samples, it measures the available 
information about 𝐗 better than would a single data set 𝐱, which might not be typical [8]. We next give a 
method to obtain the information loss about 𝐗 that occurs when a data set 𝐱 is compressed to T(𝐱). In our 
approach, we focus on a sufficient statistic T so there will be no θ in (5) for the lost information below. 
However, our approach is applicable to a non-sufficient statistic as well if θ is estimated from the data.  

3. Information Decomposition under Data Compression by a Real-Valued Statistic 

We now develop a procedure to determine how much information about 𝐗 contained in a data set 𝐱 is 
lost when the data is compressed to T(𝐱) by the sufficient statistic T. Consider the joint conditional 
probability 

which is identified with the probabilistic information lost about the event 𝐗 = 𝐱 by the data compression 
of 𝐱 to T(𝐱). The notation P$ refers to the fact that the discrete probability (7) in general involves the 
parameter θ. We next express (7) using the definition of conditional probability to obtain the basis of our 
development. Result 3.1 is given in [3, p. 273] and proved below to illustrate the reasoning.     

Result 3.1. Let 𝐱 be sample data for a random sample 𝐗 from a discrete random variable X with sample 
space S and real-valued parameter θ, and let T(𝐗) be any real-valued statistic. Then 

P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)] =
P$[𝐗 = 𝐱]

P$[T(𝐗) = T(𝐱)]. (8) 

Proof. Using the definition of conditional probability, rewrite (7) as  

P$[𝐗 = 𝐱; T(𝐗) = T(𝐱)]
P$[T(𝐗) = T(𝐱)] . (9) 

But T(𝐗) = T(𝐱) whenever 𝐗 = 𝐱, so (8) follows.  ■ 
Observe that if T is an SS for θ, the right side of (8) is independent of θ and hence so is the left. 

Now taking the negative logarithm of (8) and rearranging terms gives    

− log P$[𝐗 = 𝐱] = − log P$[T(𝐗) = T(𝐱)] − log P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)].   (10) 

 From (8) note that P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)] ≥ P$[𝐗 = 𝐱] since P$[T(𝐗) = T(𝐱)] ≤ 1, so 
− log P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)] ≤ − log P$[𝐗 = 𝐱]. Similarly, − log P$[T(𝐗) = T(𝐱)] ≤ − log P$[𝐗 = 𝐱]. These 
facts suggest that the left side of (10) is the total Shannon information in bits about 𝐗 contained in the sample 
data 𝐱. On the right side of (10), the term − log P$[T(𝐗) = T(𝐱)] is considered the information about 𝐗 
contained in the compressed data summary T(𝐱), and the term − log P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)] is identified as 
the information about 𝐗 that has been lost as the result of the data compression by T(𝐱).  

In particular, this lost information represents a combinatorial loss in the sense that multiple 𝐱’s may give 
the same value T(𝐱) = t as depicted in Figure 2.1 above. In other words, the lost information 
− log P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)] is a measure of the knowledge unavailable about the data sample 𝐱	 when only 

P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)], (7) 
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the compressed data summary T(𝐱) is known and not 𝐱 itself. For a sufficient statistic T(𝐗) for θ, this lost 
information is independent of θ. It is a characteristic of T(𝐗) for the given data sample 𝐱. 

In terms of Figure 2.1 above, the situation may be described as follows. On the left is the sample space 
S" ⊆ R" over which probabilities on 𝐗 are computed. On the right is the range τ% ⊆ R! of T over which the 
probability of T(𝐗) are computed. T compresses the data sample 𝐱 into T(𝐱), where multiple 𝐱’s may give 
the same T(𝐱) = t. In Figure 2.1 the distinct data samples 𝐱!,	𝐱', and 𝐱1 are all compressed into the same 
value t!. But knowing that T(𝐱) = t! for some data sample 𝐱 does not provide sufficient information to know 
unequivocally, for example, that 𝐱 = 𝐱!. Information is lost in the compression. One can also say that the total 
information − log P$[𝐗 = 𝐱] deriving from the left side of Figure 2.1 is compressed to − log P$[T(𝐗) = T(𝐱)] 
deriving from the right. The reduction of information from the left to the right side is precisely the lost 
information − log P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)]. For fixed t, it is lost due to the ambiguity as to which data sample 
on the left actually gave t when only t is known. There is no ambiguity when T is one-to-one.  

The general decomposition of information in (10) is next summarized in Definition 3.2, where T does not 
need to be sufficient for θ. 

Definition 3.2 (𝐈𝐭𝐨𝐭𝐚𝐥, 𝐈𝐜𝐨𝐦𝐩, 𝐈𝐥𝐨𝐬𝐭). Let 𝐱 be sample data for a random sample 𝐗 from a discrete random 
variable X with sample space S and real-valued parameter θ. For any real-valued statistic T(𝐗), the Shannon 
information about 𝐗 obtained from the sample data 𝐱 can be decomposed as  

I&:&;<(𝐱|θ) = I=:>?(𝐱|θ, T) + I<:@&(𝐱|θ, T), (11) 

where 
I&:&;<(𝐱|θ) = − log P$[𝐗 = 𝐱], (12) 

I=:>?(𝐱|θ, T) = − log P$[T(𝐗) = T(𝐱)], (13) 
and 

I<:@&(𝐱|θ, T) = − log P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)]. (14) 

Both Result 3.1 and Definition 3.2 are valid for any real-valued statistic for 𝐗. The notation I&:&;<(𝐱|θ) 
indicates that I&:&;< is a function of the sample data 𝐱 for a fixed but arbitrary parameter value θ. Similarly, both 
I=:>?(𝐱|θ, T) and I<:@&(𝐱|θ, T) are functions of 𝐱 for fixed θ and T. However, in this paper we focus on sufficient 
statistics, which provide a simpler expression for I<:@&(𝐱|θ, T) that does not involve θ. For a sufficient statistic 
T for θ, we use the notation I<:@&(𝐱|T) for the lost information, though I&:&;<(𝐱|θ) and I=:>?(𝐱|θ, T) still require 
θ. The next result is an application of the FFT of Result 2.2.  

Theorem 3.3 (Lost Information for an SS). Let 𝐱 be sample data for a random sample 𝐗 from a discrete 
random variable X with sample space S and real-valued parameter θ. Let T be an SS for θ, f(𝐱|θ) be the joint 
pmf of 𝐗, and f(𝐱|θ) = g[T(𝐱)|θ] × h(𝐱) as in Result 2.2. Then for all 𝐱 ∈ S" 

I<:@&(𝐱|T) = − log
h(𝐱)

∑ h(𝐲)𝐲BC!(𝐱)
, (15) 

where A%(𝐱) is defined in Definition 2.3 for t = T(𝐱).   
Proof. Let 𝐱 ∈ S". Then f(𝐱|θ) > 0 since 𝐱 is a realization of 𝐗. Since T is an SS, we write (7) without θ. 

Then it suffices to establish that  

P[𝐗 = 𝐱|T(𝐗) = T(𝐱)] =
h(𝐱)

∑ h(𝐲)𝐲BC!(𝐱)
, (16) 

from which (15) immediately follows. Rewrite (8) as            

P[𝐗 = 𝐱|T(𝐗) = T(𝐱)] =
P$[𝐗 = 𝐱]

P$[T(𝐗) = T(𝐱)] =
f(𝐱|θ)

∑ f(𝐲|θ)𝐲BC!(𝐱)
, (17) 
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so from (17) and (2), then  

P[𝐗 = 𝐱|T(𝐗) = T(𝐱)] =
g[T(𝐱)|θ] × h(𝐱)

∑ g[T(𝐲)|θ] × h(𝐲)𝐲BC!(𝐱)
. (18) 

But T(𝐲) = T(𝐱), ∀𝐲 ∈ A%(𝐱) in (18), so  

P[𝐗 = 𝐱|T(𝐗) = T(𝐱)] =
g[T(𝐱)|θ] × h(𝐱)

g[T(𝐱)|θ] × ∑ h(𝐲)𝐲BC!(𝐱)
, ∀𝐱 ∈ S". (19) 

Since f(𝐱|θ) > 0 and hence g[T(𝐱)|θ] ≠ 0, this term can be canceled on the right side of (19) to yield (16). 
Taking −log of (16) completes the proof. ■ 

Now consider Theorem 3.3 when each A& is a singleton in (16), i.e., when T is a one-to-one function. In 
this extreme case, P[𝐗 = 𝐱|T(𝐗) = T(𝐱)] = 1 since ∑ h(𝐲)𝐲∈C!(𝐱) = h(𝐱) in the denominator of the right side 
of (16).  Thus I<:@&(𝐱|T) = 0 from which I=:>?(𝐱|θ, T) = I&:&;<(𝐱|θ) for all 𝐱 in S". Thus the special case of a 
one-to-one T justifies the identification of the lost information as I<:@&(𝐱|θ, T) = − log P$[𝐗 = 𝐱|T(𝐗) = T(𝐱)]. 
In other words, for all data samples 𝐱, 𝐲 ∈ S", if 𝐱 ≠ 𝐲 whenever T(𝐱) ≠ T(𝐲), then P[𝐗 = 𝐱|T(𝐗) = T(𝐱)] is 
not diminished by the compression of the singleton A%(𝐱) to the number T(𝐱).  

More generally, it is also true that I<:@&(𝐱|θ, T) = 0 when T is one-to-one but not sufficient for θ. In this 
case, write P$[𝐗 = 𝐱|T(𝐗) = T(𝐱)] = G%[𝐗J𝐱]

G%[%(𝐗)J%(𝐱)]
= L(𝐱|$)

∑ L(𝐲|$)𝐲'(!(𝐱)
. But since T is one-to-one, ∑ f(𝐲|θ)𝐲BC!(𝐱) =

f(𝐱|θ), P$[𝐗 = 𝐱|T(𝐗) = T(𝐱)] = 1, and again I<:@&(𝐱|θ, T) = 0.  
Now consider the other extreme case where T(𝐱) = c is constant on S". Then P$[𝐗 = 𝐱|T(𝐗) = c] =
G%[𝐗J𝐱]

G%[%(𝐗)J=]
. But P$[T(𝐗) = c] = 1, so P$[𝐗 = 𝐱|T(𝐗) = c] = P$[𝐗 = 𝐱] and I<:@&(𝐱|θ, T) = I&:&;<(𝐱|θ, T) on S". In 

this case, I=:>?(𝐱|θ, T) = 0 because the event T(𝐱) = c gives no information about 𝐱. 
Next, in the following corollary we show that (16) can be simplified when T is the likelihood function. 
Corollary 3.4 (Information Loss for Likelihood Function). Under the assumptions of Theorem 3.3, if 

T(𝐱) = L(𝐱|θ), then 

I<:@&(𝐱|L) = − log
1

^A()𝐱*θ+^
, (20) 

where ^A()𝐱*θ+^ is the cardinality of the partition set A& for t = L(𝐱|θ). 
Proof. For T(𝐱) = L(𝐱|θ) = f(𝐱|θ) in (2), let g be the identity function and h(𝐱) = 1. Then substituting 

h(𝐱) = 1 into (16) gives the denominator ∑ 1𝐲BC
)*𝐱+θ, = ^A()𝐱*θ+^ to yield (20). ■ 

We next state a reproductive property of a statistic TO that is a one-to-one function of a sufficient statistic T 
for θ. 

Theorem 3.5. If there is a one-to-one function between a sufficient statistic T for θ and an arbitrary real-
valued statistic TO on S", the following hold. 

(i)			TO is also an SS. 
(ii)		T and TO partition the sample space S into the same partition sets. 
(iii)	I<:@&(𝐱|T) = I<:@&(𝐱|TO), ∀𝐱 ∈ S". 

Proof. To prove (i), let u be a real-valued one-to-one function of TO such that  

T(𝐱) = u[TO(𝐱)]. (21) 

Since T is an SS, by equation (2) there are real-valued functions g on R! and h on S" for which 

f(𝐱|θ) = g[T(𝐱)|θ] × h(𝐱).  (22) 

By substituting T(𝐱) from (21) in (22), we get 
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f(𝐱|θ) = g(u[TO(𝐱)]|θ) × h(𝐱),  (23) 

which can be rewritten as  

f(𝐱|θ) = (g ∘ u)[TO(𝐱)|θ] × h(𝐱).  (24) 

Since TO in (24) satisfies the condition of Result 2.2 for gO = g ∘ u, TO is an SS.  
To prove (ii), we use Definition 2.3. Let T partition the sample space S" into the mutually exclusive and 

collectively exhaustive sets A& = {𝐱|T(𝐱) = t}, ∀t ∈ τ%. By equation (21) we can also write A& as 

A& = {𝐱|u[TO(𝐱)] = t}, ∀t ∈ τ%.  (25) 

Since u is a one-to-one function, it has an inverse uP!. Letting uP!(t) = tO, we apply uP! to the right side of (25) 
and get 

A& = {𝐱|TO(𝐱) = tO}, ∀t′ ∈ u(τT). (26) 

But u(τ%) = 	 τ%-	and the cardinalities |τ%| = |τ%-|, so the right side of (26) is A&- and  

A& = A&- .  (27) 

Finally, to get (iii) we use Theorem 3.3 to calculate information lost over two statistics T and TO. Since h(𝐱) 
is the same in (22) and (24) and since equation (27) holds, we sum h(𝐱) over the same sets in the denominator 
of equation (16) for both T and TO to give  

I<:@&(𝐱|T) = I<:@&(𝐱|TO)  (28) 
and complete the proof. ■ 

We next compare the information loss of the sufficient statistic L(𝐱|θ) to other sufficient statistics. For the 
sufficient statistic K(𝐱|θ), a lemma is needed.  

Lemma 3.6. Let 𝐱 be any data sample for a random sample 𝐗 from the discrete random variable X with 
real-valued parameter θ. Then K(𝐱|θ) is a function of L(𝐱|θ) and τ( ≥ τ,.   

Proof. From [3, p. 280], K(𝐱|θ) is a function of L(𝐱|θ) if and only if K(𝐱|θ) = K(𝐲|θ) whenever L(𝐱|θ) =
L(𝐲|θ). For all data samples 𝐱 and 𝐲, we thus prove that if L(𝐱|θ) = L(𝐲|θ), then K(𝐱|θ) = K(𝐲|θ). Thus 
suppose that L(𝐱|θ) = L(𝐲|θ). By Definition 2.5 we can decompose L(𝐱|θ) and L(𝐲|θ) into K(𝐱|θ)R(𝐱) and 
K(𝐲|θ)R(𝐲), respectively. Note that K(𝐲|θ) ≠ 0. Otherwise L(𝐲|θ) = 0 in contradiction to 𝐲 being sample data 
with a nonzero probability of occurring. Write  

K(𝐱|θ)
K(𝐲|θ) =

R(𝐲)
R(𝐱).  (29) 

Suppose that K(𝐱|θ) ≠ K(𝐲|θ) so that ,(𝐱|$)
,(𝐲|$)

= Q(𝐲)
Q(𝐱)

≠ 1 in (29). From Definition 2.5, every nonnumerical factor 

of K(𝐱|θ) and K(𝐲|θ) contains θ, and neither K(𝐱|θ) nor K(𝐲|θ) is divisible by any positive number except the 
number 1. Hence, since Q(𝐲)

Q(𝐱)
 does not contain θ, the nonnumerical factors of K(𝐱|θ) and K(𝐲|θ) must cancel in 

(29) and the remaining numerical factors could not be identical. Thus at least one of these factors would be 
divisible by a positive number other than 1 in contradiction to Definition 2.5. It now follows that K(𝐱|θ) =
K(𝐲|θ), so K(𝐱|θ) is some function u of L(𝐱|θ).	Finally, τ( ≥ τ, since this function u is surjective from S" onto 
its image u(S"). ■ 

Lemma 3.7. Under the conditions of Lemma 3.6, the sufficient statistics L and K satisfy  

I=:>?(𝐱|θ, L) ≥ I=:>?(𝐱|θ, K), ∀𝐱 ∈ S".  (30) 

Proof. Let 𝐱 ∈ S" and suppose that 𝐲	 ∈ 	A((𝐱). Then L(𝐲|θ) = L(𝐱|θ), so it follows from Lemma 3.6 that 
K(𝐲|θ) = K(𝐱|θ) and thus 𝐲	 ∈ 	A,(𝐱). Hence A((𝐱) ⊆ A,(𝐱), and so  
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											P$[L(𝐗|θ) = L(𝐱|θ)] = X f(𝐱|θ)
𝐲BC)(𝐱)

≤ X f(𝐱|θ)
𝐲BC/(𝐱)

= P$[K(𝐗|θ) = K(𝐱|θ)], ∀𝐱 ∈ S" (31) 

Taking the Shannon information of both sides of the inequality in (31) and using (13) gives (30). ■  
Theorem 3.8. Let 𝐱 be sample data for a random sample 𝐗 from a discrete random variable X with the 

real-valued parameter θ. Then for all 𝐱 ∈ S", 

I<:@&(𝐱|L) ≤ I<:@&(𝐱|K). (32) 

Proof. Let 𝐱 ∈ S". Note that I&:&;<(𝐱|θ) in (12) does not depend on the arbitrary sufficient statistic T of (11). 
Hence  

I#$#%&(𝐱|θ) = Icomp(𝐱|θ, L)+ Ilost(𝐱|L) = Icomp(𝐱|θ,K)+ Ilost(𝐱|K). (33) 

Then (32) follows immediately from (30) and (33). ■  
As a consequence of Theorem 3.5, Theorem 3.8 has an immediate corollary. 
Corollary 3.9. Under the conditions of Theorem 3.8, let T be a sufficient statistic for θ for which there is a 

one-to-one function between T and K. Then for all 𝐱 ∈ S",  

I<:@&(𝐱|L) ≤ I<:@&(𝐱|T). 
(34) 

Corollary 3.9 raises the question whether (34) holds for all sufficient statistics 𝐓 for 𝛉 or even for all real-
valued statistics 𝐓. It is conjectured that the first conclusion is false and hence is the second, but the question 
remains open. It is conceivable that notion of a minimal sufficient statistic [3] is relevant. Regardless, the 
proofs of Lemma 3.7 and Theorem 3.8 illustrate the fact that the relation between the lost information for two 
statistics 𝐓 and 𝐓O is determined by the relation between their partition sets 𝐀𝐭 = {𝐱|𝐓(𝐱) = 𝐭} and 𝐁𝐭- =
{𝐱|𝐓O(𝐱) = 𝐭O}. For example, if for every 𝐀𝐭 there exists a 𝐁𝐭- for which 𝐀𝐭 ⊂ 𝐁𝐭-, then the partition of 𝐒𝐧 by 
the 𝐁𝐭- of 𝐓O is said to be coarser than the partition by the 𝐀𝐭 of 𝐓. In that case, 𝐈𝐥𝐨𝐬𝐭(𝐱|𝛉, 𝐓) ≤ 𝐈𝐥𝐨𝐬𝐭(𝐱|𝛉, 𝐓O) 
because each 𝐱 ∈ 𝐒𝐧 has more 𝐲 ∈ 𝐒𝐧 with 𝐓O(𝐲) = 𝐓O(𝐱) than there are with 𝐓(𝐲) = 𝐓(𝐱). In words, 𝐓O(𝐲) =
𝐭O is at least as ambiguous as 𝐓(𝐲) = 𝐭 in determining the data sample giving the value of the respective 
statistics.   

 
4. Entropic Loss for an SS 

For a sufficient statistic T for θ we now propose an entropy measure to characterize T by the expected 
lost information incurred by compressing the random sample 𝐗 into T(𝐗). This expectation is taken over 
all possible data sets 𝐱. This nonstandard entropy measure is called entropic loss, and it depends on neither 
a particular data set 𝐱 nor the value of θ. Before defining this measure, we need to determine the appropriate 
pmf to use in taking an expectation. The following results are used.  

Result 4.1. Under the assumptions of Theorem 3.3, for any data sample let t = T(𝐱) and consider the 
partition set A&. Then 

XP[𝐗 = 𝐱	|	T(𝐗) = t] = 1.
𝐱∈C0

  (35) 

Proof. Summing (16) over 𝐱 ∈ A& yields    

XP[𝐗 = 𝐱	|	T(𝐗) = t] =
∑ h(𝐱)𝐱BC!(𝐱)

∑ h(𝐲)𝐲BC!(𝐱)
= 1.

𝐱∈C0

  (36) 

to give (35). ■ 
Result 4.2. Under the assumptions of Theorem 3.3, 
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X P[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)]
𝐱∈Z1

= |τ%|.  (37) 

Proof. We perform the sum on the left of (37) by first summing over 𝐱 ∈ A& for fixed t and then summing 
over each t ∈ τ% to give 

X P[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)]
𝐱∈Z1

= X X P[𝐗 = 𝐱	|	T(𝐗) = t]
𝐱∈C0&∈[!

,  (38) 

The inner series on the right side of (38) sums to one by Result 4.1. Hence the outer sum yields |τ%| for 
τ% = {t|∃𝐱 ∈ S" for which t = T(𝐱)}. ■ 

From (37) it follows that the left side of (37) is not a probability distribution on S" unless |τ%| = 1. 
Moreover, P[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)] is not a conditional probability distribution even if |τ%| = 1 since the 
condition T(𝐗) = T(𝐱) varies with 𝐱. However, we use Result 4.2 to normalize P[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)] and 
obtain the appropriate pmf for calculating the expectation of I<:@&(𝐗|T).  

Definition 4.3 (Entropic Loss). Under the assumptions of Theorem 3.3, the entropic loss resulting from 
the data compression by T is defined as 

H<:@&(𝐗, T) =
−1
|τ%|

X P[𝐗 = 𝐱|T(𝐗) = T(𝐱)] log P[𝐗 = 𝐱|T(𝐗) = T(𝐱)]
𝐱∈Z1

,  (39) 

which from (15) and (16) can be rewritten as  

H<:@&(𝐗, T) =
−1
|τ%|

X
h(𝐱)

∑ h(𝐲)𝐲BC!(𝐱)
log

h(𝐱)
∑ h(𝐲)𝐲BC!(𝐱)𝐱∈Z1

.  (40) 

Note that (39) and (40) are independent of both 𝐱 and θ. Also, as noted in Section 3 for I<:@&(𝐱|T), if each 
A%(𝐱) is a singleton in (40), then H<:@&(𝐗, T) = 0. We now compute H<:@&(𝐗, T) for the sufficient statistic T(𝐗) =
L(𝐗|θ).  

Theorem 4.4 (Entropic Loss for Likelihood Function). Under the assumptions of Theorem 3.3, the 
entropic loss resulting from data compression by T(𝐱) = L(𝐱|θ) is  

H<:@&(𝐗, L) =
−1
|τ(|

X log
1
|A&|&∈[)

.  (41) 

Proof. From (20) write  

H<:@&(𝐗, L) =
−1
|τ(|

X
1

|A((𝐱)|
log

1
|A((𝐱)|𝐱∈Z1

.  (42) 

We decompose the sum over 𝐱 ∈ S" in (42) to consecutive sums over 𝐱 ∈ A& and then t ∈ τ% to get   

H<:@&(𝐗, L) =
−1
|τ(|

X X
1
|A&|

log
1
|A&|𝐱∈C0&∈[)

=
−1
|τ(|

X
|A&|
|A&|

log
1
|A&|&∈[)

.  (43) 

Equation (41) now follows from (43). ■ 
Since H<:@&(𝐗, T) has been defined only for a sufficient statistic T for θ and is independent of θ, as well as 

the data sample 𝐱. H<:@&(𝐗, T) could thus be used to compare sufficient statistics. In particular, if the 
sufficient statistics T!(𝐗) and T'(𝐗) are considered as estimators for θ, then entropic loss could serve as a 
metric for regarding, say, T! as a better estimator for θ than T' if H<:@&(𝐗, T!) < H<:@&(𝐗, T').  

Result 4.5. If there is a one-to-one function between two sufficient statistics T and TO for θ, then they have 
the same entropic loss for a random sample 𝐗; i.e., 

H<:@&(𝐗, T) = H<:@&(𝐗, T′). (44) 
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Proof. For all 𝐱 ∈ S", I<:@&(𝐱|T) = I<:@&(𝐱|TO)	from Theorem 3.5, so  

− log
h(𝐱)

∑ h(𝐲)𝐲BC!(𝐱)
= − log

h(𝐱)
∑ h(𝐲)𝐲BC!-(𝐱)

,  (45) 

from which 

h(𝐱)
∑ h(𝐲)𝐲BC!(𝐱)

=
h(𝐱)

∑ h(𝐲)𝐲BC!-(𝐱)
.  (46) 

Thus from (45) and (46) 

h(𝐱)
∑ h(𝐲)𝐲BC!(𝐱)

log
h(𝐱)

∑ h(𝐲)𝐲BC!(𝐱)
=

h(𝐱)
∑ h(𝐲)𝐲BC!-(𝐱)

log
h(𝐱)

∑ h(𝐲)𝐲BC!-(𝐱)
.  (47) 

Now summing (47) over 𝐱 ∈ S" yields 

X
h(𝐱)

∑ h(𝐲)𝐲BC!(𝐱)
log

h(𝐱)
∑ h(𝐲)𝐲BC!(𝐱)𝐱∈Z1

= X
h(𝐱)

∑ h(𝐲)𝐲B%-(𝐱)
log

h(𝐱)
∑ h(𝐲)𝐲BC!-(𝐱)𝐱∈Z1

	.  (48) 

But from Theorem 3.5, |τ%| = |τ%-|. Thus dividing the left side of (48) by −|τ%| and the right side by −|τ%-| 
yields (44). ■ 

Given (32), it might be anticipated that 

H<:@&(𝐗, L) ≤ H<:@&(𝐗, K). 
(49) 

 

However, we conjecture that (49) is not always true, but we have no counterexample. If this conjecture is true, 
then L(𝐱|θ) would not in general have the minimum entropic loss among sufficient statistics for θ. 

5. Examples and Computational Issues 

In this section we present examples involving the discrete Poisson, binomial, and geometric distributions 
[9]. For each distribution, three sufficient statistics for some parameter θ are analyzed. Thus the right side 
of (8) is independent of θ, as well as the information I<:@&(𝐱|T) conveyed by the data sample 𝐱 about 𝐗. Even 
for sufficient statistics, calculating the information quantities of this paper may present computational 
issues, some of which are discussed in this section. Our examples are therefore simple in order to focus on 
the definitions and results of Sections 3 and 4. 

Example 5.1 (Poisson Distribution). Consider the random sample 𝐗 = (X!, … , X") with the data sample 
𝐱 = (x!, … , x") from a Poisson random variable X. We consider three sufficient statistics for the parameter 
θ > 0. These sufficient statistics are T!(𝐗) = ∑ X\,"

\J!  the likelihood kernel T'(𝐗) = K(𝐗|θ) for fixed but 
arbitrary θ and the likelihood function T1(𝐗) = L(𝐗|θ) for fixed but arbitrary θ. In particular, we use T!(𝐗) 
as a surrogate for T!O(𝐗) = 	

∑ ]2
1
234
"

. Neither T!(𝐗) or T!O(𝐗) involves θ and can thus be used either to 

characterize 𝐗 or to estimate θ. Moreover, since there is an obvious one-to-one function relating ∑ ]2
1
234
"

 and 
∑ X\"
\J! , Theorems 3.5 and 4.5 establish that I<:@&(𝐱|T!O) = I<:@&(𝐱|T!) and H<:@&(𝐗, T!O) = 	H<:@&(𝐗, T!), 

respectively. We consider T!(𝐗) because it is also Poisson, whereas T!O(𝐗) is not since ∑ ]2
1
234
"

 is not necessarily 
a nonnegative integer. In contrast to T!(𝐗), both T'(𝐗) and T1(𝐗) contain θ and can only be used to 
characterize 𝐗. For each of these three sufficient statistics we develop an expression for I<:@&(𝐱|T) and 
describe how to obtain a numerical value. We then illustrate previous results with simple data and present 
computational results in Table 5.1.  
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Case 1: Let T!(𝐗) = ∑ X\."
\J!  Observe that T!(𝐗) is a sufficient statistic for θ from Result 2.2 since 

f(𝐱|θ) = P$[𝐗 = 𝐱] = $∑ 62
1
234 	^71%

∏ `2!1
234

 can be factored in (2) into the functions g[T!(𝐱)|θ] = θ∑ `2
1
234 	eP"$ and h(𝐱) =

!
∏ `2!1
234

. Next recall that the statistic ∑ X\"
\J!  has a Poisson distribution with parameter nθ	[9]. Thus 

P$[∑ X\"
\J! = ∑ x\"

\J! ] = ("$)∑ 62
1
234 	^71%

)∑ `21
234 +!

, and so (8) becomes  

P[𝐗 = 𝐱|∑ X\"
\J! = ∑ x\"

\J! ] =
1

n∑ `21
234

m
∑ x\"
\J!

x!, … , x"
n, (50) 

where the multinomial coefficient o∑ `2
1
234

`4,…,`1
p = (∑ `2)

1
234 !

∏ `2!1
234

. It follows from (50) and (10) that            

I<:@&(𝐱|T!) = − log m
∑ x\"
\J!

x!, … , x"
n +	(log n)Xx\

"

\J!

, (51) 

which is also I<:@&(𝐱|T!O). 
For a data sample (x!, … , x"), the evaluation of I<:@&(𝐱|T!) in (51) involves computing factorials. For 

realistic data, the principal limitation in calculating them by direct multiplication is their magnitude. See 
[11] for a discussion. However, (51) can be approximated using either the well-known Stirling formula or 
the more accurate Ramanujan approximation [12]. The online multinomial coefficient calculator [13] can 
evaluate multinomial coefficients for both x\ and n less than approximately 50 if any x\ = 0 is removed from 
o∑ `2

1
234

`4,…,`1
p. Such deletions do not affect the calculation since 0! = 1.  

As a numerical example, consider a data sample 𝐱 of size n = 34 from a Poisson random variable X with 
θ = 3. On the average, T!(𝐗) = ∑ X\ ="

\J! nθ = 102, so we take ∑ x\ ="
\J! 102 for the data sample 𝐱 =

(4, 7, 1, 3, 4, 2, 5, 0, 1, 2, 3, 6, 8, 0, 1, 2, 4, 9, 0, 2, 3, 1, 4, 2, 0, 1, 5, 6, 2, 7, 0, 1, 4, 2). Then the calculator at [13] gives 
that o∑ `2

1
234

`4,…,`1
p ≈ 1.574	 × 10123 in (50). Moreover, (log n)∑ x\"

\J! =	518.915. Hence from (51), I<:@&(𝐱|T!) =
I<:@&(𝐱|T!′) ≈ 	109.667 bits of Shannon information. This value corresponds to 13.708 bytes at 8 bits per byte 
or to 0.013 kilobytes (KB) at 1024 bytes per kilobyte [14]. It thus follows from the discussion at the beginning 
of this example that   

I<:@&(𝐱|T!) = I<:@&(𝐱|T!′) ≈ 	0.013 KB. (52) 

Case 2: Let T'(𝐗) = K(𝐗|θ) for fixed but arbitrary θ > 0. For a data sample (x!, … , x") write  

L(𝐱|θ) = f(𝐱|θ) =
θ∑ `2

1
234 	eP"$

∏ x\!"
\J!

, (53) 

from which 
K(𝐱|θ) = θ∑ `2

1
234 	eP"$ (54) 

and R(𝐱) = !
∏ `2!1
234

 in (4). Note that for all fixed θ > 0 except θ = 1, there is an obvious one-to-one function 

between T!(𝐱) = ∑ x\"
\J!  and (54). Hence in the numerical example of Case 1, I<:@&{𝐱|K(𝐱|θ)} = I<:@&(𝐱|T!) ≈

	0.013 KB from Theorem 3.5 for all θ > 0 except θ = 1. For θ = 1, K(𝐱|θ) = 	eP" and is constant with respect 
to any data sample 𝐱. Thus I=:>?(𝐱|1, K) = 0 and I<:@&{𝐱|K(𝐱|1)} = I&:&;<(𝐱|1, K). It follows that K(𝐱|1) 
provides no information about 𝐗. 

Case 3: Let T1(𝐗) = L(𝐗|θ) for fixed but arbitrary θ > 0. We attempt to obtain I<:@&{𝐱|L(𝐱|θ)} for a data 
sample 𝐱 = (x!, … , x") by determining ^A()𝐱*θ+^ and using (20). From (53), note that for all fixed θ > 0 except 
θ = 1, 𝐲 ∈ A()𝐱*θ+ if and only if 

θ∑ c2
1
234 	

∏ y\!"
\J!

=	
θ∑ `2

1
234 	

∏ x\!"
\J!

. 
(55) 
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Thus for any fixed θ satisfying θ > 0 and θ ≠ 1, 𝐲 ∈ A()𝐱*θ+ if both ∑ y\"
\J! = ∑ x\"

\J!  and ∏ y\!"
\J! = ∏ x\!"

\J! . 
However, for some θ > 0 and θ ≠ 1, it is possible that 𝐲 ∈ A()𝐱*θ+ when neither ∑ y\"

\J! = ∑ x\"
\J!  nor ∏ y\!"

\J! =
∏ x\!"
\J! . For example, let θ = 2, 𝐱 = (4,1,1,0), and 𝐲 = (3,2,0,0). Then ∑ x\"

\J! = 6, ∑ y\"
\J! =5, ∏ x\!"

\J! = 24, 
and ∏ y\!"

\J! = 12. However, (55) is satisfied.  
Such complications suggest that an efficient implicit enumeration of the 𝐲 satisfying (55) would be required 

to obtain ̂ A()𝐱*θ+^ for calculating I<:@&{𝐱|L(𝐱|θ)} from (20). Using such an algorithm, a conventional computer 
could probably compute I<:@&{𝐱|L(𝐱|θ)} for the numerical data and value of θ in Case 1 since there is now a 
250 petabyte, 200 petaflop conventional computer [15]. Substantially larger problems, if not already tractable, 
will likely be so in the foreseeable future on quantum computers. Recently the milestone of quantum 
supremacy was achieved where the various possible combinations of a certain randomly generated output 
were obtained in 110 seconds, whereas this task would have taken the above conventional supercomputer 
10,000 years [16]. Regardless, for the data of Case 1, we have the upper bound I<:@&{𝐱|L(𝐱|θ)} ≤ 	0.013 KB 
from (32).   

We present some simple further simple computational results for the Poisson example distribution to 
illustrate relationships among T!, T', T1. Table 5.1 below summarizes the results for sample data (x!, x', x1) 
with ∑ x\1

\J! ≤ 2. In particular, a complete enumeration of A()𝐱*θ+ gives I<:@&{𝐱|L(𝐱|θ)} from (20). 
 

Table 5.1. Poisson Example 
𝐱 = (x!, x', x1) T!(𝐱) I<:@&(𝐱|T!) T'(𝐱) I<:@&(𝐱|T') T1(𝐱) I<:@&(𝐱|T1) 

(0,0,0) 0 0 eP1$ 0 eP1$ 0 
(0,0,1) 

1 log 3 θeP1$ log 3 θeP1$ log 3 (0,1,0) 
(1,0,0) 
(1,1,0) 

2 log
9
2 θ'eP1$ log

9
2 θ'eP1$ log 3 (1,0,1) 

(0,1,1) 
(2,0,0) 

2 log 9 θ'eP1$ log 9 θ'eP1$

2  log 3 (0,2,0) 
(0,0,2) 
 

Example 5.2 (Binomial Distribution). Consider a random sample 𝐗 = (X!, … , X") from a binomial 
random variable X with parameters m and θ, where θ is the probability of success on any of the m Bernoulli 
trials associated with the X\, i = 1,… , n. Let m be fixed, so the only parameter is θ. Moreover, the sample 
space of the underlying random variable X is now finite. 

Case 1: T!(𝐗) = ∑ X\"
\J! . Again ∑ X\"

\J!  is an SS for θ. From [9], ∑ X\"
\J!  has a binomial distribution with 

parameter θ for fixed nm. Hence 

P$ �XX\

"

\J!

=Xx\

"

\J!

� = θ∑ `2
1
234 	θ>"P∑ `2

1
234 m

mn
∑ x\"
\J!

n (56) 

and 

P$[𝐗 = 𝐱] = θ∑ `2
1
234 	θ>"P∑ `2

1
234 ��

m
x\
�

"

\J!

. (57) 

From (1), dividing (57) by (56) gives 

P[𝐗 = 𝐱|∑ X\"
\J! = t] =

∏ o>`2p
"
\J!

{>"& }
. (58) 
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By taking the −log of (58) gives the lost information as 

I<:@&(𝐱|T!) = − log
∏ o>`2p
"
\J!

{>"& }
= −Xlog �

m
x\
�

"

\J!

+ log o
mn
t p. 

(59) 

Case 2: T'(𝐗) = K(𝐗|θ). In this case we use (16) as in Example 5.1. Write 

L(𝐱|θ) = f(𝐱|θ) = θ∑ `2
1
234 	(1 − θ)>"P∑ `2

1
234 ��

m
x\
�

"

\J!

, (60) 

from which K(𝐱|θ) = θ∑ `2
1
234 	(1 − θ)>"P∑ `2

1
234  and R(𝐱) = ∏ o>`2p

"
\J!  in (4). To factor the right side of (60) as 

in (2), let g be the identity function and h(𝐱) = ∏ o>`2p
"
\J! . Hence,  

I<:@&(𝐱|T') = − log
∏ o>`2p
"
\J!

∑ ∏ o>c2p
"
\J!𝐲∈C/8𝐱9θ:

, (61) 

and (61) yields  

I<:@&(𝐱|T') = −Xlog �
m
x\
�

"

\J!

+ log X ��
m
y\
�

"

\J!𝐲∈C/8𝐱9θ:

, (62) 

where 

A,(𝐱|θ) = �𝐲 ∈ Sn|θ∑ c2
1
234 	(1 − θ)>"P∑ c2

1
234 = θ∑ `2

1
234 	(1 − θ)>"P∑ `2

1
234 �. (63) 

From (63), for any fixed θ satisfying 0 < θ < 1 and θ ≠ 1/2, it can easily be shown that 𝐲 ∈ A,)𝐱*θ+ if and only 
if ∑ y\"

\J! = ∑ x\"
\J! . Thus in general, for a given 𝐱 and fixed θ, determining A,)𝐱*θ+ in Case 2 would require 

an enumeration of the 𝐲 satisfying (63) to compute (62). We perform such an enumeration below for a simple 
example. 

Case 3: T1(𝐗) = L(𝐗|θ). For a data sample 𝐱 = (x!, … , x") we now have 

L(𝐱|θ) = (
θ	

1 − θ)
∑ `2
1
234 (1 − θ);1	��

m
x\
�

"

\J!

 (64) 

with g be the identity function and h(𝐱) = 1 in (2). For fixed θ satisfying 0 < θ < 1 and θ ≠ 1/2, we obtain 
that 𝐲 ∈ A()𝐱*θ+ if and only if 

	(
θ	

1 − θ)
∑ c2
1
234 		��

m
y\
�

"

\J!

= (
θ	

1 − θ)
∑ `2
1
234 		��

m
x\
�

"

\J!

. (65) 

As in Case 3 of Example 5.1, developing an algorithm to use (65) and determine ^A()𝐱*θ+^ for calculating 
I<:@&{𝐱|L(𝐱|θ)} from (20) is beyond the scope of this paper. 

As a simple example, consider the experiment of flipping a possibly biased coin twice (m = 2). The total 
number of heads follows a binomial distribution with the parameter θ, which is the probability of getting a 
head on any flip. By doing this experiment three times we generate the random variables X!, X', X1 with 
possible values 0, 1, 2. Table 5.2 shows all the possibilities and the lost information for the statistics. The small 
size of this example allows the computation of I<:@& in Cases 2 and 3 via total enumeration.  
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Table 5.2. Binomial Example 

 
Now using (40), we give in Table 5.3 the entropic losses of Example 5.2 for T!, T', T1. Note that H<:@&(𝐗, T) 

is the same for the sum T! and the likelihood kernel T', which are related by a one-to-one function. Hence 
Result 4.5 is corroborated. Also observe that H<:@&(𝐗, T) is smallest for the likelihood function T1.  
 

Table 5.3. Entropic loss over different statistics for a binomial distribution 
 
 

 
 

 

Example 5.3 (Geometric Distribution). Consider a random sample 𝐗 = (X!, … , X") with sample data 𝐱 =
(x!, … , x") from a geometric random variable X, where the parameter θ is the probability of success on any 
of the series of independent Bernoulli trials for which X is the trial number on which the first success is 
obtained. It readily follows from [5] that  

𝐱 = (x!, x', x1) T!(𝐱) I<:@&(𝐱|T!) T'(𝐱) I<:@&(𝐱|T') T1(𝐱) I<:@&(𝐱|T1) 
(0,0,0) 0 0 (1 − θ)! 0 (1 − θ)! 0 

(0,0,1) 

1 log 3 (1 − θ)"θ# log 3 2(1 − θ)"θ# log 3 (0,1,0) 

(1,0,0) 

(1,1,0) 

2 log
15
4  (1 − θ)$θ% log

15
4  4(1 − θ)$θ% log 3 (1,0,1) 

(0,1,1) 

(2,0,0) 

2 log 15 (1 − θ)$θ% log 15 (1 − θ)$θ% log 3 (0,2,0) 

(0,0,2) 

 
(1,1,1) 

3 log
5
2 (1 − θ)&θ& log

5
2 8(1 − θ)&θ& 0 

(2,1,0) 

3 log 10 (1 − θ)&θ& log 10 2(1 − θ)&θ& log 6 

(2,0,1) 

(1,0,2) 

(1,2,0) 

(0,1,2) 

(0,2,1) 

(2,1,1) 

4 log
15
4  (1 − θ)%θ$ log

15
4  4(1 − θ)%θ$ log 3 (1,2,1) 

(1,1,2) 

(2,2,0) 

4 log 15 (1 − θ)%θ$ log 15 (1 − θ)%θ$ log 3 (2,0,2) 

(0,2,2) 

(2,2,1) 

5 log 3 (1 − θ)#θ" log 3 2(1 − θ)#θ" log 3 (2,1,2) 

(1,2,2) 

(2,2,2) 6 0 θ! 0 θ! 0 

H<:@&(𝐗, T!) H<:@&(𝐗, T') H<:@&(𝐗, T1) 

1.4722 1.4722 1.2095 
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P[𝐗 = 𝐱] = θ"(1 − θ)∑ `2
1
234 P". (66) 

Case 1: T!(𝐗) = ∑ X\"
\J! . For fixed n, ∑ X\"

\J!  has a negative binomial distribution with parameter θ. Hence,  

P �XX\

"

\J!

=Xx\

"

\J!

� = m
∑ x\"
\J! − 1
n − 1 nθ"(1 − θ)∑ `2

1
234 P". (67) 

Thus T!(𝐗) = ∑ X\"
\J!  is an SS for θ since it satisfies (2) with g[T!(𝐱)|θ] = θ"(1 − θ)%4(𝐱)P" and h(x!, … , x") =

o∑ `21
234 P!
"P! p. Moreover, substitution of (66) and (67) into (8) gives  

P �𝐗 = 𝐱|XX\

"

\J!

=Xx\

"

\J!

� =
1

o∑ `21
234 P!
"P! p

. (68) 

Then from (14) and (68) we obtain that  

I<:@&(𝐱|T!) = log m
∑ x\"
\J! − 1
n − 1 n. (69) 

Case 2: T'(𝐗) = K(𝐗|θ). From (66), for all 𝐱 ∈ S", R(𝐱) = 1 and  

 K(𝐱|θ) = L(𝐱|θ) = o $
!P$

p
"
(1 − θ)∑ `2

1
234 . (70) 

Thus for 0< θ < 1, there is an obvious one-to-one function between T!(𝐱) = ∑ x\"
\J!  and T'(𝐱) = K(𝐱|θ) in 

(70). Thus from Theorem 3.5, I<:@&(𝐱|T') = I<:@&(𝐱|T!) as given in (69).  

Case 3: T1(𝐗) = L(𝐗|θ). Since K(𝐗|θ) = L(𝐗|θ) from (70), then 

I<:@&(𝐱|T1) = logm
∑ x\"
\J! − 1
n − 1 n (71) 

from (69). However, there is an alternate derivation of (71). For 0 < θ < 1 it follows from (70) that then 𝐲 ∈
A()𝐱*θ+ if and only if 

Xy\

"

\J!

=Xx\

"

\J!

.	 (72) 

But for fixed positive integers x!, … , x" we have from [17] that the number of solutions ^A()𝐱*θ+^ to (72) in 
positive integers y!, … , y" is  

/
∑ xin
i=1 − 1
n − 1 4. (73) 

Thus (71) follows for L(𝐗|θ) from (73) and (20), so I<:@&(𝐱|T!) = I<:@&(𝐱|T') = I<:@&(𝐱|T1) from Theorem 3.5. 
As a numerical illustration, let the random variable X denote the number of flips of a possibly biased coin 

until a head is obtained. Then X has a geometric distribution with the parameter θ as the probability of getting 
a head on any flip. Suppose this experiment is performed three times yielding the possible sample data 𝐱 =
(x!, x', x1) shown in Table 5.4. I<:@&(𝐱|T) is then calculated for each of the sufficient statistics for θ of Example 
5.3. Observe that the individual statistics depend on θ while the lost information does not. Moreover, 
I<:@&(𝐱|T!) = I<:@&(𝐱|T') = I<:@&(𝐱|T1) for all the sample data as established analytically above. 
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Table 5.4. Geometric Example 
𝐱 = (x!, x', x1) T!(𝐱) I<:@&(𝐱|T!) T'(𝐱) I<:@&(𝐱|T') T1(𝐱) I<:@&(𝐱|T1) 

(1,1,1) 3 0 θ1 0 θ1 0 
(2,1,1) 

4 log 3 θ1(1 − θ) log 3 θ1(1 − θ) log 3 (1,2,1) 
(1,1,2) 
(2,2,1) 

5 log 6 θ1(1 − θ)' log 6 θ1(1 − θ)' log 6 (2,1,2) 
(1,2,2) 
(2,2,2) 6 log 10 θ1(1 − θ)1 log 10 θ1(1 − θ)1 log 10 

6. Conclusion  

In this paper, the Shannon information obtained from a random sample 𝐗 for a discrete random variable 
X with a single parameter θ was decomposed into two components: (i) the compressed information 
obtained by the value of a real-valued statistic T(𝐗) for the sample data 𝐱 and (ii) the information lost by 
using this statistic to characterize 𝐗. We focused on this lost information caused by multiple data sets 
having the same value of the statistic. This possibility is typical of data analysis, where the data uniquely 
determines the value of the statistic, but a value of the statistic does not uniquely determine the data 
yielding it. In other words, we answered the question: how much Shannon information is lost about a data 
sample when only the value of a sufficient statistic is known but not the original data. We also defined the 
entropic loss associated with a sufficient statistic T under consideration as the expected lost information 
over all possible samples to give a metric dependent only on T. Our approach is applicable to any T, but 
we focused on sufficient statistics for θ for simplicity. Applications of our results were computationally 
intensive. 
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Abstract: In this paper we present new concepts of information and entropy for discrete distributions. In 
particular, we define a new type of information. The well-known Shannon information, also called 
surprisal, measures the surprise that would be gained retrospectively by an observer after the occurrence of 
an event. A low probability of occurrence gives much surprise and hence Shannon information. On the other 
hand, the new gambler’s information uses the probability of an event prospectively as information to decide 
whether to bet on the event’s occurrence. Higher probability gives more information. We also define the 
notion of outer entropy in which the log in Shannon (or inner) entropy is placed outside the expectation to 
yield to provide simpler calculations and some intuitive results. We then apply gambler’s information and 
inner entropy the gambler’s information lost when a statistic is used to characterize a random sample. 
Finally, we apply outer entropy and propose two new metrics that provide evidence whether one estimate 
of the parameter θ for a random variable X from a random sample 𝐗 may be considered better than 
another. Examples are presented. 

Keywords: Information, entropy, discrete distribution, evidence, data analysis 

1. Introduction  

  Our previous study of the information loss due to data compression for a random sample [1] motivated 
an examination of the notions of Shannon information and entropy [2] for discrete random variables. The 
Shannon information of an event is defined as the negative log to the base 2 of the probability p for the 
event, while Shannon entropy is the expected value of Shannon information. The general properties of 
Shannon information and Shannon entropy can be found in [3, 4, 5, 6], for example. It should be noted that 
probability itself is a measure of information in the sense that an event with a small probability of occurrence 
is surprising. In other words, an observer obtains more information, sometimes called surprisal [7, p. 150], if 
an unlikely event occurs than if a likely one does. Since Shannon information involves a logarithm of the 
probability, it also measures surprise but is additive as opposed to probability itself. [2]  

Shannon information may not be the appropriate information for modeling some decisions. To address this 
issue, we introduce here a new type of information called gambler’s information, which views events 
prospectively, as compared with Shannon information, which views them retrospectively. The Shannon 
information of an event is not obtained until the event actually occurs and causes a level of surprise 
appropriate to the likelihood of it occurring. On the other hand, gambler’s information derives from the 
probability of the event and not its occurrence. We also define a new entropy measure called outer entropy 
and designate Shannon entropy as inner entropy to avoid confusion. Outer entropy is easier to calculate 
but has similar characteristics to inner entropy. For instance, outer entropy, like inner entropy, is a measure 
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of diversity [6]. We then use our new definitions to provide intuitive measures of evidence for discrete 
random. 

The paper is organized as follows. In Section 2, we present definitions, notation, and preliminary results. 
In Section 3, we find the gambler’s information and outer entropy for some standard discrete distributions. 
In Section 4, we state some results for these new concepts and reformulate the results of [1] in terms of 
gambler’s information and outer entropy as an application. We also introduce new evidence functions for 
the parameter of a discrete distribution, state some properties, and give examples. Conclusions are offered 
in Section 5. 

2. Preliminaries  

The following definitions, notation, and results are used here. Further details can be found in [2, 4, 6], for 
example. In this paper, we consider a discrete one-dimensional random variable X with a sample space S 
and one-dimensional parameter θ. The pmf for a discrete random variable X is denoted by f(x|θ) for a fixed 
but arbitrary value of θ. 

 Two types of information are first defined. 
Definition 2.1 (Shannon Information). Let X be a discrete one-dimensional random variable with pmf f(x). 

Then the Shannon information associated with x ∈ S is defined as 
 

I(x|θ) = − log 	f(x|θ),        (2.1) 
 

where the units of I(x) is bits if the base of the logarithm is 2.   
Shannon information is an additive measure for an observer’s level of surprise about the occurrence of x. 

Indeed, Shannon information is also called surprisal since a small value of f(x|θ) gives more information 
about x than a high one. In (2.1) Shannon information is a monotonically decreasing function of the probability 
p = 	f(x|θ). It measures the surprise that would be incurred after the occurrence of x. In other words, the 
associated information may be construed as retrospective. However, information may be desired 
prospectively. For example, a gambler often wants to bet on an event with a high probability of occurrence. 
Hence, Shannon information is not be appropriate as a criterion for modeling some decisions. The following 
definition addresses this issue. Unless otherwise stated, the log function will have base 2. 

 Definition 2.2 (Gambler’s Information). Let X be a discrete one-dimensional random variable with pmf 
f(x). For x ∈ S the associated gambler’s is defined as 

 

Ih(x|θ)| = − log[1 − f(x|θ)].     (2.2) 
 

While Shannon is an additive information measure of the surprise level associated with f(x) for x ∈ S, 
gambler’s information increases with the likelihood of an event as opposed to the likelihood of an event. 
We also call it certitude. Gambler’s information, or certitude, is a monotonically increasing function of 
f(x|θ) and additive in g(x|θ) = 1 − f(x|θ). Other definitions for information have been proposed. For 
example, Vigo [8, 9] has defined a measure of representational information. Further details on different 
types of information can be found in [10-15]. 

We develop some new types of entropy and compare them to Shannon entropy [1-6]. We use the notation 
f(x|θ) to denote that the parameter θ has given value for the variable x. 

Definition 2.3 (Shannon Inner Entropy). Let X be a discrete one-dimensional random variable with pmf 
f(x) and sample space S. The inner entropy Hi(θ) of X with respect to Shannon information is defined as 

 

Hi(θ) =Xf(x|θ)I(x|θ)
`∈Z

,     (2.3) 

or equivalently,   
Hi(θ) = E[I(X|θ)] = E[− log f(X|θ)].     (2.4) 
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Equations (2.3) and (2.4) simply give the expected Shannon information over S, i.e., the usual Shannon 
entropy [1-6]. However, there are difficulties using inner entropy. The principal one is that calculation of 
inner entropy is often difficult with log f(x\) inside the summation of (2.3). To address this issue, we propose 
a new type of entropy with similar properties which can lead to some intuitive results. 

Definition 2.4 (Shannon Outer Entropy). Let X be a discrete one-dimensional random variable with pmf 
f(x|θ) and sample space S. The Shannon outer entropy Hj(θ) with respect to Shannon information is 
defined as 

Hj(θ) = − logX[f(x|θ)]'
`∈Z

.     (2.5) 
 

Note that the Shannon outer entropy of X is the Shannon information of the expected value of the pmf 
f(x|θ) of X. It is only a function of a fixed but arbitrary value of θ. Thus 

 

Hj(θ) = I�E{f(X|θ)}� = − log E[f(X|θ)].     (2.6) 
 

By comparing Definitions 2.3 and 2.4, we note that outer entropy in (2.6) results from the interchange of 
information and expected value for inner entropy in (2.4). 

Other alternatives to Shannon entropy include the diversity index [15, 16], which is the probability that 
two data points in a sample have the same value. In contrast, ∑ [f(x|θ)]'`∈Z  in (2.5) is interpreted as the 
expected value of the pmf of X leading to Shannon information. The diversity index is known as the 
Simpson index in ecology and the Herfindahl index in economics [17, 18]. DeDeo [19] discusses issues 
associated with using the diversity as a measure of uncertainty. In addition, Renyi entropy [20, 21] 
generalizes Shannon entropy, as does Tsallis entropy [22, 23]. Less popular alternatives of entropy can be 
found in [24]. A comparison different measures of entropy is given in [4, 22].  

We now relate inner and outer entropy. First note from [6] that Hi(θ) ≥ 0. 
Lemma 2.5. Let X be a discrete one-dimensional random variable with pmf f(x) and sample space S. Then 
 

Hj(θ) ≥ 0.     (2.7) 
 

Proof. For all x ∈ S, f(x) is between 0 and 1 and ∑ f(x|θ)`∈Z = 1. Hence, 0 ≤ ∑ [f(x|θ)]'`∈Z ≤ 1, and –log 
∑ [f(x|θ)]'`∈Z ≥ 0. ■ 

We next use a well-known inequality to compare the inner and outer entropy.  
Theorem 2.6 (Jensen’s Inequality) [6]. If f is a convex function and X is any random variable, then 

E[f(X)] ≥ f(E[X]),     (2.8) 
 

where equality holds either if X has a single value or if f is linear. 
Theorem 2.7. For any discrete random variable X with fixed θ, 
 

Hi(θ) ≥ Hj(θ).     (2.9) 
 

Proof. Since g(y) = − log(y),	then g(y) is a convex function of y on the convex set (0,1]. Letting	y = f(x|θ) 
gives  

E[− log f(X|θ)] ≥ − log E[f(X|θ)]       (2.10) 
from (2.9), so (2.10) follows. ■ 

Outer entropy can obviously be extended to the bivariate case with the multivariate case, with joint and 
conditional outer entropy analogs to those of inner entropy. Instead, we define further entropies using the 
gambler’s information in (2.4) and (2.6).  

Definition 2.9 (Gambler’s Inner and Outer Entropy). Let X be a discrete one-dimensional random 
variable with pmf f(x|θ) and sample space S. Then gambler’s inner entropy Hi

h(θ) with respect to gambler’s 
information is defined as  

Hi
h(θ) = E[Ih(X|θ)] = −Xf(x|θ) log{1 − f(x|θ)}

`∈Z

.       (2.11) 

Similarly, the gambler’s outer entropy Hj
h(X) with respect to gambler’s information is defined as 
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Hj
h(θ) = Ih[E(X|θ)] = − log �1 −X[f(x|θ)]'

`∈Z

�.      (2.12) 

In Section 4, we use (2.12) to define a new measure of evidence for the parameter θ of X. 

3. Examples  

We now present examples of the definitions of Section 2 for some standard discrete distributions. In each 
example, formulas for both the standard Shannon inner entropy of Shannon and the new Shannon outer 
entropy are given.  

3.1 Uniform Distribution. Let X be uniformly distributed with S = {1, 2, … , N}. Then 
 

f(x|N) = �
1
N 							x = 1, 2, … , N

	0														otherwise.
            (3.1) 

 

Shannon Inner Entropy. The inner entropy is easily calculated from (2.3) to be 

Hi(N) =X−
1
N log �

1
N�

k

`J!

= logN,   (3.2) 

Shannon Outer Entropy. Similarly, from (2.5) 

Hj(N) = − logX�
1
N�

'k

`J!

= logN.      (3.3) 

Equations (3.2) and (3.3) show that Hi(X) = Hj(X) for a discrete uniform distribution, which gives the 
equality case in (2.9). Note that both the entropy of both (3.2) and (3.3) increases linearly with N. Despite the 
increase in average Shannon information, however, a rational gambler would be increasingly unlikely to bet 
on the occurrence of any particular value of X. 

Gambler’s Inner Entropy. From (2.11) we get  
 

Hi
h(N) = −X

1
N log{1 −

1
N}

k

\J!

=	− log{1 −
1
N}. 

    (3.4) 

 

Gambler’s Outer Entropy.  Also, by equation (2.12) the gambler’s outer entropy is 
 

Hj
h (N) = − log �1 −X�

1
N�

'k

\J!

� = − log{1 −
1
N}.	 

    (3.5) 

From equations (3.4) and (3.5), for a uniform discrete random variable, the gambler’s inner and outer 
entropies are identical as was the case for the Shannon inner and outer entropies. In this case, however, both 
the Shannon inner and outer entropies approach 0 as N gets large. In other words, as N increased a rational 
gambler could use either gambler’s inner or outer entropy as increasing evidence against betting on the 
occurrence of any particular value of X as N increased. 

3.2 Bernoulli Distribution. Let X have a Bernoulli distribution with pmf 

f(x|p) = �
p																		for	x = 1

	q = 1 − p		for	x = 0.
     (3.6) 

 

Shannon Inner Entropy.  From (2.3) 
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Hi(p) = −p log p − (1 − p) log(1 − p).	    (3.7) 
 

Shannon Outer Entropy. Similarly, from (2.5)  
 

Hj(p) = − log[p' + (1 − p)'].     (3.8) 

As an example, consider the Bernoulli experiment of tossing a coin with a known probability p of 
obtaining heads. Figure 3.1 below shows the Shannon inner and outer entropies have the same pattern as 
p changes.  

 
Figure 3.1 depicts the fact that the maximum of both the Shannon inner and outer entropy occurs at the 
p = !

'
. From (3.7)  

Hi �
1
2� = −

1
2 log

1
2 −

1
2 log

1
2 = − log

1
2 = 1	bit,     (3.9) 

and from (3.8)  

Hj �
1
2� = − log �

1
2

'

+ �1 −
1
2�

'

� = 1	bit.        (3.10) 

Moreover, the inner and outer entropy achieve a maximum value when the coin is fair.  
 

Gambler’s Inner Entropy. From (2.12) 

Hi
h(p) = −[p log(1 − p) + (1 − p) log p]       (3.11) 

 

Gambler’s Outer Entropy. Similarly, from (2.13) 
 

Hj
h(p) = − log{2p − 2p'}.      (3.12) 

In Example 3.1, it was noted that is an inverse relationship between Shannon and gambler’s entropies for 
the uniform distribution. Figure 3.2 plots gambler’s entropies against p for a Bernoulli distribution. A similar 
inverse relationship is evident for the Bernoulli distribution by comparing Figures 3.1 with Figure 3.2 
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3.3 Geometric Distribution. Let X have a geometric distribution with pmf 

g(x|p) = p(1 − p)`P!,  x = 1, 2, …. , (3.13) 

where the parameter p is the probability of success for each of the associated Bernoulli trials. 

Shannon Inner Entropy. In this case the Shannon inner entropy has the closed form [25]  

Hi(p) =
−p log p − (1 − p) log(1 − p)

p .        (3.14) 

Shannon Outer Entropy. From (2.5) we have  

H#(p) = − log*[p(1 − p)$%&]'
(

$)&

= − log .p'*(1− p)'$%'
(

$)&

/.        (3.15) 

Factoring (1 − p)P' out of the series in (3.15) and summing the resulting geometric series gives 

Hj(p) = − log
p

2 − p.        (3.16) 

Note that the outer entropy of (3.16) as a more concise closed form in comparison to (3.15). 

Gambler’s Inner Entropy. From equation (2.11), the gambler’s inner entropy is 

Hi
h(p) = −Xp(1 − p)`P! log{1 − p(1 − p)`P!},

l

`J!

        (3.17) 

which has no obvious closed form.  

Gambler’s Outer Entropy. By equation (2.12) the gambler’s outer entropy is 

Hj
h (p) = − logX{1 − [p(1 − p)`P!]'}

l

`J!

,        (3.18) 

which can be simplified to   

Hj
h (p) = − log

2 − 2p
2 − p 	.      (3.19) 

Again, the outer entropy of (3.19) has a closed form as opposed to (3.18). 

3.4 Poisson Distribution. Now let X have a Poisson distribution with parameter λ > 0 and pmf 



32 
 

f(x|λ) =
λ`	ePm

x! , for	x = 0,1, …	.        (3.20) 

Shannon Inner Entropy. The Shannon inner entropy is given in [26] as 

Hi(λ) = λ[1 − log(λ)] + ePmX
λ` log(x!)

x!

l

`J#

, 

for which there is apparently no closed form. 

       (3.21) 

Shannon Outer Entropy. From (2.5) 

Hj(λ) = − logXm
ePmλ`

x! n
'l

`J#

.        (3.22) 

Thus 

Hj(λ) = −log �eP'mX(
λ`

x!)
'

l

`J#

�.        (3.23) 

The series in (3.23) is given [27], from which 

Hj(λ) = 2λ log e − log I#(2λ),        (3.24) 

where I# is a modified Bessel function of the first kind. Again, the notion of outer entropy yields a closed form 
in (3.24) as opposed to the inner entropy of (3.21). 

Gambler’s Inner Entropy. From (2.11) the gambler’s inner entropy is 
 

Hi
h(λ) = −X

ePmλ`

x! log �1 −
ePmλ`

x! �
l

`J#

. (3.25) 
 

Gambler’s Outer Entropy. From (2.12) the gambler’s outer entropy is 
 

Hj
h(λ) = − log �1 −Xm

ePmλ`

x! n
'l

`J#

�, (3.26) 

which simplifies as in (3.24) to  

Table 3.1 summarize the results of this section, also it provides a basic vision of calculation difficulties 
on inner and outer entropy. 

Table 3.1. Summary of Different Entropies for Some Important Discrete Distributions 

Hj
h(λ) = − log�1 − eP'mI#(2λ)�.        (3.27) 

Distribution           pmf 																									H( 													H) 																						H(
* 													H)

*  

Uniform 1
N 					x = 1, 2,… , N 																						logN 									logN 												− log{1 −

1
N} 					− log{1 −

1
N} 

Bernoulli @
p													x = 1

	1 − p					x = 0
 −p log p − (1 − p) log(1 − p) − log[1 − 2p + 2p+] −[p log(1 − p) + (1 − p) log p] 			− log{2p − 2p+} 

Geometric 
p(1 − p),-. 
for x = 1, 2,… 

−p log p − (1 − p) log(1 − p)
p  − log

p
2 − p −F p(1 − p),-. ∗

log{1 − p(1 − p),-.}

/

,0.

 						− log
2 − 2p
2 − p  

Poisson f(x) =
λ,	e-1

x! , 
for	x = 0,1,… 

λ[1 − log(λ)] + e-1F
λ, log(x!)

x!

/

,02

 2λ log e − log I2(2λ) −F
e-1λ,

x! log{1 −
e-1λ,

x! }
/

,02

 − logM1 − e-+1I2(2λ)N 
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4. Applications  

In this section we develop some theorems and present some applications of the proposed new outer 
entropies and gambler’s information. In particular, we use gambler’s information to measure the amount 
of information loss due to data compression instead of using Shannon information as in [1]. We also use 
outer entropy to define a new measure of evidence about a single parameter of a discrete random variable. 

4.1. Gambler’s Information Approximation 

We now use the well-known Maclaurin series to estimate gambler’s information. The first order 
approximation of Maclaurin series [28] to be used is stated as Result 4.1.  

Result 4.1. For sufficiently small 0 < p < 1, 

− ln(1 − p) = 	X
p"

n

l

"J!

≈ p. (4.1) 

However, we change the left-hand side of (4.1) to bits, i.e., from the base e ≈ 2.71828 to the base 2 used 
in the definition of gambler’s information. Information defined for the natural logarithm has units of in 
nats (also called nits or nepits) instead of bits. To transform the units of (4.1) from nats to bits we can change 
the base of the natural log in (4.1) using the formula log' c =

<" =
<" '

 [29]. Then one nat is !
<" '

= 1.44 bits to two 
decimal places. 

We now apply (4.1) with p = f(x|θ), the pdf of the discrete random variable X with one-dimensional 
parameter of interest θ. Then from (2.2) the left-hand side of (4.1) is the gambler’s information in nats 
associated with any x ∈ S. In other words,  

Ih(x|θ) ≈ f(x|θ)	nats. (4.2) 

Equation (4.2) is a good approximation for x ≤ 0.3, after which the nonlinear terms become relevant. This 
fact is illustrated in the expanded part of Figure 4.1. For f(x) = p = 0.3 the gambler’s information in nats is 
0.357. In this case, the percentage change between the actual information at p = 0.3 and the estimate 0.3 is 
0 12(304.6)04.6
0 12(304.6)

× 100, or 15.9%. Thus the difference in the actual gambler’s information in nats and the 

approximation from (4.1) is less than 15.9% of the actual value for 0 < p < 0.3. In comparison, for 0 < p < 0.2 
the percentage change is less than 9.1%. For p = 0.4 this change goes up to 21.7%, and for p = 0.5 the 
percentage change is 27.9%. 
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4.2. Information Loss 

We now apply gambler’s information instead of Shannon information, together with the approximation of 
Section 4.1, to the results of [1] concerning the information lost when a sufficient statistic is used to 
characterize a random sample. Consider the data sample 𝐱 = (x!, … , x") from a random sample 𝐗 =
(X!, … , X") for a discrete random variable X with sample space S, pmf h(x), and one-dimensional parameter 
θ. For a data sample 𝐱 = (x!, … , x") let the joint pmf of 𝐗 be f(𝐱|θ) = ∏ h(x\|θ)"

\J! . This data sample is 
compressed to a real-valued summary statistic T(𝐗), which may be used to characterize 𝐗 or to estimate θ. 
Such data compression is an irreversible process [30] and always involves some information loss. In [1], we 
developed a procedure to determine how much of the information about 𝐗 contained in a data set 𝐱 is lost 
when the data is compressed to a sufficient statistic T(𝐱). This lost information represents a combinatorial 
loss in the sense that multiple 𝐱’s may give the same value T(𝐱) = t. In other words, the lost information 
− log P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)] is a measure of the knowledge unavailable about the data sample 𝐱 when only 
the compressed data summary T(𝐱) is known and not 𝐱 itself. 

In contrast to using log to the base 2 in equation (2.2) above, in this section gambler’s information will be in 
nats instead of bits. In other words, Ih(x|θ) = − ln[1 − f(x|θ)] now so that approximation (4.1) is not 
− log[1 − f(x|θ)] ≈ 1.44	f(x|θ) but rather − ln[1 − f(x|θ)] ≈ f(x|θ). We therefore avoid the constant factor 1.44 
in our equations. 

The general decomposition of information of [1] is summarized in Definition 4.2, where T does not need 
to be sufficient for θ.  

Definition 4.2 (	𝐈𝐭𝐨𝐭𝐚𝐥, 𝐈𝐜𝐨𝐦𝐩, 𝐈𝐥𝐨𝐬𝐭	). Let 𝐱 be sample data for a random sample 𝐗 from a discrete random 
variable X as described above, let P$ be an appropriate probability function involving the parameter θ, and 
let T(𝐗) be any real-valued statistic. The Shannon information about 𝐗 obtained from the sample data 𝐱 can 
be decomposed as  

I&:&;<(𝐱|θ) = I=:>?(𝐱|θ, T) + I<:@&(𝐱|θ, T), (4.3) 
where  

I&:&;<(𝐱|θ) = − log P$[𝐗 = 𝐱], 
 

(4.4) 

I=:>?(𝐱|θ, T) = − log P$[T(𝐗) = T(𝐱)], (4.5) 

and 
I<:@&(𝐱|θ, T) = − log P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)]. (4.6) 

In Definition 4.2 the information loss and information decomposition is in bits of Shannon information 
since the logarithm base is 2. We now derive the gambler’s information decomposition for a specific data 
set. We start with total information. Since the probability associated with total information is P$[𝐗 = 𝐱], we 
define the gambler’s total information using the natural logarithm in (2.2) as 

I&:&;<
h (𝐱|θ) = − ln{1 − P$[𝐗 = 𝐱]} = − ln[ 1 − f(𝐱|θ)]. (4.7) 

Note that f(𝐱) = ∏ h(x\),"
\J!  where 0 < h(x\) < 1, for a sample space S with cardinality ‖S‖ > 1. For such a 

sample space, it follows that as the sample size increases, then f(𝐱) decreases until it is small enough for 
approximation (4.1) to apply. For example, n = 25 and h(x\) = 	0.9, i = 1… ,25,	give an unrealistically high 
joint probability of f(𝐱) ≈ 0.073 on the right side of (4.1) for 0.074 on the left to illustrate the practical validity 
of the approximation. Thus for a sufficiently large sample size, we can write (4.7) in nats as  

I&:&;<
h (𝐱|θ) ≈ P$[𝐗 = 𝐱] = 	f(𝐱|θ)]. (4.8) 
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This approximation can be used for total gambler’s information but not for the compressed and lost 
information since it is shown in [1] that P$[T(𝐗) = T(𝐱)] > P$[𝐗 = 𝐱] and P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)] > P$[𝐗 = 𝐱]. 
However, from Figure 4.1 if P$[T(𝐗) = T(𝐱)] and P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)] are less than 0.3 we can use (4.2) to 
write 

I=:>?
h (𝐱|θ, T) = − ln{1 − P$[T(𝐗) = T(𝐱)]} ≈ P$[T(𝐗) = T(𝐱)] (4.9) 

and  

I<:@&
h (𝐱|θ, T) = − ln{1 − P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)]} ≈ P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)],	  (4.10) 

also in nats. It is shown in (1) that  

P$[𝐗 = 𝐱] = P$[T(𝐗) = T(𝐱)] × P$[𝐗 = 𝐱	|	T(𝐗) = T(𝐱)].  (4.11) 

But now from (4.8) - (4.10), for sufficiently small enough probabilities, we can substitute for probability terms 
in (4.11) for the corresponded approximate gambler’s information in nats to give the approximate 
decomposition  

I&:&;<
h (𝐱|θ) ≈ I=:>?

h (𝐱|θ, T) × I<:@&
h (𝐱|θ, T).  (4.12) 

By comparing (4.12) to (4.3), it is seen that in the probability range of approximation (4.2), Shannon is 
decomposed additively while gambler’s information is decomposed multiplicatively. 

Note further that taking the negative log to the base 2 of (4.8) gives 

− log I&:&;<
h (𝐱|θ) ≈ − log P$[𝐗 = 𝐱].  (4.13) 

But the right-hand side of (4.13) is the Shannon information for f(𝐱). Hence, for a sufficiently large sample 
size, then 

− log I&:&;<
h (𝐱|θ) ≈ I(𝐱|θ),  (4.14) 

where I&:&;<
h (𝐱|θ) is in nats, and I(𝐱|θ) is in bits. 

4.3. Entropic Evidence 

Using the notation of Section 4.2 we propose in this section two new metrics involving outer entropy that 
provide evidence whether one estimate of the parameter θ for a random sample 𝐗 may be considered better 
than another according to the metrics. In the process, we give two new numerical point estimates for θ 
independent of a data sample. However, we first comment on the relation of statistical data to evidence. 
The attempt to decrease the uncertainty may be considered within a hierarchical framework [31] in which 
data is transformed into information and this information is transformed into evidence. This evidence is 
then used to test hypotheses and check assertions, and the original data is thereby transformed into 
knowledge. In other words, 

                                           data ⇒ information ⇒ evidence ⇒ knowledge.                                    (4.15) 

Within the context of (4.15) we now define the notion of entropic evidence about the parameter θ in terms 
of outer entropy.  

Definition 4.3 (Entropic Evidence). Let 𝐗 = (X!, … , X") be a random sample with joint pmf f(𝐱|θ) from a 
random variable X with sample space S. Then using (2.5) and (2.12), the Shannon entropic (SE) evidence 
about the parameter θ is defined as 

SE(θ) = Hj(θ) = − log �X[f(𝐱|θ)]'
𝐱∈Z1

�  (4.16) 

and the gambler’s entropic (GE) evidence about the parameter θ 
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GE(θ) = Hj
h (θ) = − log �1 − X[f(𝐱|θ)]'

𝐱∈Z1
�.  (4.17) 

Both SE(θ) and GE(θ) are obviously nonnegative. They can be used in a manner similar to the approach 
yielding a maximum likelihood estimator. A maximum likelihood estimator (MLE) is the statistic θ�(𝐱) in 
terms of the random data sample 𝐱 = (x!, … , x") that maximizes the joint probability f{𝐱|θ�(𝐱)} - i.e., the 
likelihood function – that the random sample 𝐗 takes the values of the observed data 𝐱. Equivalently, the 
MLE is obtained by maximizing log f(𝐱|θ) or minimizing the Shannon information given by − log f(𝐱|θ). 

Now write (4.16) as  
SE(θ) = Hj(θ) = − log f(̅θ)  (4.18) 

and (4.17) as  

GE(θ) = Hj
h(θ) = − log�1 − f(̅θ)�,  (4.19) 

where f(̅θ) is the expected value ∑ [f(𝐱|θ)]'𝐱∈Z1  of the pmf f(𝐱|θ) over 𝐱 = (x!, … , x"), which is a function 
only of θ. Note that (4.18) and (4.19) are almost identical to (2.1) and (2.2), respectively, with the function f 
replaced by f.̅ Using inner entropies would not give this simple analog despite inner and outer entropy 
have similar graphical characteristics as indicated in Figure 2.1. 

We propose that (4.18) and (4.19) are useful measures of evidence in estimating θ. In particular, from the 
discussion after Definition 4.3, the fact that an MLE θ� minimizes (2.1) suggests that minimizing (4.18) 
would give a useful numerical estimate θ∗ for θ with no dependence on the data sample. Moreover, it 
follows that a parameter value θ! for X with a smaller value of (4.18) may be considered better than a value 
θ' with a larger value of (4.18). Equivalently, a minimum Shannon entropic (MSE) estimate would maximize 
f(̅θ) over θ to give a numerical estimate θ∗ independent of a data sample. On the other hand, minimizing 
(4.19) would over θ to give an analogous minimum gambler’s entropic (MGE) estimate would be equivalent 
to minimizing f(̅θ) over θ to give a non-MSE numerical estimate θ∗ independent of a data sample. The 
analogy of the MSE to an MLE suggests that an MSE estimate would be a better estimator for θ than an MGE 
estimate. It should be noted that maximizing (4.19) is equivalent to minimizing (4.18).  

An example is now presented to illustrate the procedure for calculating the SE and GE evidence associated 
with the parameter for a binomial distribution.  

Example 4.4 (Binomial Distribution). Consider the experiment of flipping a possibly biased coin twice 
(m = 2). The total number of heads X in the experiment follows a binomial distribution with S = {0,1,2, } and 
the parameter θ being the probability of getting a head on any flip. By doing this experiment three times 
(n = 3) we generate the random sample 𝐗 =	(X!, X', X1). Table 4.1 shows all the possibilities and their 
average probabilities. 
 

Table 4.1. Binomial Distribution Average PMF Probabilities 

𝐱 = (x!, x', x1) f(𝐱) f'(𝐱) 

(0,0,0) (1 − θ)o (1 − θ)!' 
(0,0,1) 

2(1 − θ)pθ! 4(1 − θ)!#θ' (0,1,0) 
(1,0,0) 
(1,1,0) 

4(1 − θ)qθ' 16(1 − θ)rθq (1,0,1) 
(0,1,1) 
(2,0,0)   
(0,2,0) 



37 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

By summing over the last column of the Table 4.1, we calculate f(̅θ) = ∑ [f(x)]'`∈Z  as 

f(̅θ) = (1 − θ)!' + 12(1 − θ)!#θ' + 51(1 − θ)rθq + 88(1 − θ)oθo 

+51(1 − θ)qθr + 12(1 − θ)'θ!# + θ!'.  (4.20) 

Substituting f(̅θ) calculated in (4.20) into (4.18) and (4.19) gives the SE and GE evidence shown in Table 4.2 
for 5 different value of θ. Table 4.2 and equation (4.20) indicate that SE(θ) and GE(θ) are symmetric 
functions for the binomial distribution. This property is not true for nonsymmetric distributions such as 
the Poisson distribution. 

Table 4.2. Entropic Evidence for different θ 
θ SE(θ) GE(θ) 

0.2 2.884 0.210 
0.25 3.352 0.149 
0.5 4.245 0.078 
0.75 3.352 0.149 
0.8 2.884 0.210 

 
Figure 4.2 is a plot of SE(θ) and GE(θ) vs θ in which SE(θ) is minimized for θ = 0 or 1 with SE(θ) = 0. 

This value confirms that a certain head or a sure tail produces no surprise. This result also gives insight 
into a general MLE θ�(𝐱) of the parameter θ, which minimizes Shannon information as previously noted. 
By maximizing the joint pmf of a random sample 𝐗 over θ, the MLE θ�(𝐱) minimizes the surprise that the 
sample data would give. Similarly, GE(θ) is minimized by θ = 0.5 in Figure 4.2. In this case, a fair coin 
minimizes the certitude of a flip of the coin. We conclude that the choice of an MSE or MGE estimator 
depends on whether the goal of a data analyst is to suppress surprise or certitude or, respectively 
equivalent, whether to emphasize certitude or surprise. 

(0,0,2) (1 − θ)qθ' (1 − θ)rθq 

(1,1,1) 8(1 − θ)1θ1 64(1 − θ)oθo 
(2,1,0) 

2(1 − θ)1θ1 4(1 − θ)oθo 

(2,0,1) 
(1,0,2) 
(1,2,0) 
(0,1,2) 
(0,2,1) 
(2,1,1) 

4(1 − θ)'θq 16(1 − θ)qθr (1,2,1) 
(1,1,2) 
(2,2,0) 

(1 − θ)'θq (1 − θ)qθr (2,0,2) 
(0,2,2) 
(2,2,1) 

2(1 − θ)!θp 4(1 − θ)'θ!# (2,1,2) 
(1,2,2) 
(2,2,2) θo θ!' 
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5. Conclusions 

In this paper, we have considered only discrete random variables, but the results can be extended to 
continuous ones as well. We defined here a new measure of information called gambler’s information (or 
certitude) in contrast to Shannon information (or surprisal) for discrete random variables. Gambler’s 
information takes a prospective view of an event and measures the level of probabilistic certitude that it 
may occur. Gambler’s information is obtained before the event occurs. In effect, this level of certitude is the 
probability itself and increases for an increasing probability. On the other hand, Shannon information takes 
a retrospective view of an event and measures the level of surprise incurred if the event did occur. The 
surprisal associated with an event increases for a decreasing probability of the event. The choice of 
information type to use in a particular model depends on the retrospective or prospective nature of the 
model. 

We also defined a new type of entropy called outer entropy by moving the log function outside the 
expectation in contrast to Shannon entropy to facilitate both intuitive appeal and mathematical 
manipulation. Outer entropy can be defined using either Shannon or gambler’s information. For Shannon 
information, it becomes the negative log of the mean pmf value of a random variable. For gambler’s 
information, it becomes the negative log of 1 – (the mean pmf value).  An intriguing question is whether 
gambler’s information and outer entropy would be useful as thermodynamic tools since the use of inner 
entropy in physics predates Shannon and plays a major role in thermodynamics. 

In addition, we provided examples of the concepts introduced here and gave two applications. The first 
application determines the gambler’s information lost when a random data sample is characterized by a 
single statistic such as the mean of the underlying random variable. The second application uses outer 
entropy as a new metric for deciding between possible numerical parameter values for the underlying 
random variable.  
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Abstract. In this paper we present some measures for statistical evidence for testing hypotheses. These 
measures include both frequentist and Bayesian approaches. The likelihood ratio and confidence 
distribution first provide frequentist measures of evidence, where the confidence distribution is derived 
from the notion of confidence intervals. The Bayesian posterior distribution is then discussed. It is noted 
that a posterior distribution from a noninformative prior gives the standard frequentist P-value. We then 
define a novel P-value using the maximum likelihood estimator (MLE) and without using either Type I 
error or the assumption that null hypothesis is true. In fact, none of the approaches discussed here provide 
the probabilities of Type I or Type II error. However, an example for the confidence distribution illustrates 
how error rates can be approximated using simulation. 

Keywords: hypothesis testing, evidence, likelihood ratio, confidence distribution, odds ratio, P-value, 
frequentist approach, Bayesian approach, maximum likelihood estimator  

1. Introduction 

A principal goal of statistics is to obtain evidence from data for comparing alternative decisions. For 
example, statistical evidence may allow one to decide that a population mean µ satisfies µ ≤ µ# as opposed 
to µ > µ# for some specified µ#. Unfortunately, evidence is an ambiguous concept in statistics, though [1-
5], among others, have attempted to define it. However, in arguments about the likelihood principle, [6-12] 
have simply not defined evidence despite it being central to their arguments. Currently, the p-value 
[13,14,15], the likelihood ratio [4,16], the Bayes factor [17], and the posterior odds ratio [18] are the most 
frequently applied measures of evidence. Evans [2] suggested but did not pursue the idea that the evidence 
an event B gives about an event A is simply the difference between P(A|B) and P(A). Recently, Vieland [19, 
20] has proposed an axiomatic approach by considering evidence to be analogous to temperature in 
thermodynamics. In addition, related to evidence is the notion of belief considered in [2, 21, 22, 23], which 
includes the well-known Dempster-Shafer theory. In this paper, we discuss the likelihood ratio, the 
confidence distributions, the Bayesian posterior distribution, and the P-value as measures for statistical 
evidence with regard to hypothesis testing. We then propose a new P-value that is not related to 
significance levels and not defined under the assumption that the null hypothesis is true.  

The paper is organized as follows. In Section 2, we present some data science preliminaries to provide a 
metric used subsequently to compare the performance of the different measures of evidence. In Section 3, 
we review the likelihood ratio as a measure of comparative. In Section 4, we consider the confidence 
distribution as a measure of evidence. Confidence distributions are Bayesian-like yet frequentist probability 
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distributions derived from confidence intervals. Either the confidence that a null hypothesis is true can be 
used as evidence. Alternately, the ratio of the confidence distribution probabilities associated with the null 
and alternate hypotheses can be used as a measure of comparative evidence. 

In Section 5, the Bayesian posterior odds ratio is summarized as a measure of evidence. The posterior 
odds ratio for noninformative priors leads to the same ratio obtained in Sections 4 for normal distributions 
resulting from the application of the Central Limit Theorem. In Section 6, the standard P-value of a 
hypothesis test is discussed. Then a new definition for P-value is proposed without reference to significance 
levels and without the assumption that the null hypothesis is true.   

In Section 7, we present an example for some normally distributed samples by testing a hypothesis using 
confidence distributions. We simulate to determine values for the Type I and Type II errors of the test. 
Conclusions are offered in Section 8.  

2. Data Analysis Preliminaries    

In this section we summarize the metrics that will be subsequently used to measure the performance of our 
proposed evidence definitions in Section 7. We first define the confusion matrix, also known as the error 
matrix, which is a numerical table to visualize the performance of a method for choosing between two 
alternatives. [24, page 23] 

Definition 2.1 (Confusion Matrix). In classical hypothesis testing [25] for the two alternatives H# vs H!, the 
confusion matrix is the 2 by 2 matrix of Table 2.1. 

 
Table 2.1. Confusion Matrix 

Decision H# True H# False 
Do not Reject H# True Negatives False Negatives 

Reject H# False Positives True Positives 
 
The entries of Table 2.1 are described as follows in terms of a test for cancer to clarify the nonintuitive 
standard terminology. A positive test is a test result stating that the tested patient has cancer. A negative 
test states that the subject does not have cancer. 

True Positives (TP) - the number of cases correctly predicted to be positive. For example, the number of 
valid predictions that a person with a cancer has cancer. 

True Negatives (TN) – the number of cases correctly predicted to be negative. For example, the valid 
predictions that a person without cancer does not have cancer. 

False Positives (FP) - the number of cases incorrectly predicted to be positive. For example, the invalid 
predictions that a person without cancer (H# true) has cancer. (Type I error rate) 

False Negatives (FN) - the number of cases incorrectly predicted to be negative. For example, the invalid 
predictions that a person with cancer (H# false) does not have cancer. (Type II error rate) 

The general confusion matrix involves n multiple alternatives for n ≥ 2, but we only consider the case 
n = 2. Although such a small confusion matrix is an informative table, as its name suggests, it is not always 
easy to apply. Here we restrict our usage of confusion matrix to calculate the accuracy of our model. 

Definition 2.2 (Accuracy). Under the assumption of Definition 1 

where total population = TP + TN + FP + FN. 
Accuracy is a useful measure when the confusion matrix for a dataset is nearly symmetric in such a way 

that the number of false negatives and the number of false positives are roughly the same. If the numbers 

Accuracy = 	
TP + TN

Total	Population,  (2.1) 
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of false positives and false negatives differ significantly, other measure such as precision may need to be 
used. [26] 

3. Likelihood Ratio as a Measure of Evidence 

Probability measures uncertainty, and frequentist probabilities provide a measure of evidence based on 
the past frequencies yielding them. On the other hand, likelihood ratios can be said to measure comparative 
evidence. A pmf represents the uncertainty about the value of a random variable. The likelihood function 
gives the joint probability or pmf for an arbitrary random sample. Since the likelihood incorporates all 
available information about the underlying random variable X before any data is observed, it must include 
all available evidence when evaluated at observed data. We review below the use of the likelihood function 
in comparing the evidence associated with testing simple hypotheses involving different parameter values 
θ! and θ'. See [4, 10, 27, 28] for further details on the use of the likelihood function. 

Definition 3.1 (Likelihood Function). Let 𝐱 = (x!, … , x") be sample data from a random sample 𝐗 =
(X!, … , X") from a random variable X with sample space S and real-valued parameter θ, and let f(𝐱|θ) denote 
the joint pdf of the random sample 𝐗. For any sample data 𝐱, the likelihood function of θ is defined as 

where L(θ|𝐱) in (3.1) is a function of the variable θ for given data 𝐱. 
Note that the joint pdf f(𝐱|θ) as a function L(𝐱|θ) of 𝐱 for fixed θ may also be called the likelihood function 

as well. The two functions L(θ|𝐱) and L(𝐱|θ) may be called dual likelihood functions. In this paper, we restrict 
the likelihood function to Definition 3.1 and use it to compare two alternatives for the parameter θ of the 
discrete random variable X.  

Definition 3.2 (Likelihood Ratio). Under the assumptions of Definition 3.1, consider a test of the 
hypotheses H#:	θ = θ! vs H!:	θ = θ'. Then the likelihood ratio is defined as  

The likelihood ratio metric of (3.2) compares the probability of making the observations 𝐱 for the possible 
parameter value θ! with that for θ'. The parameter value yielding the largest L(θ|𝐱) is considered the more 
likely value much as in the notion of a maximum likelihood estimation [27, 28]. 

Example 3.3.  Let 𝐗 = (X!, … , X") denote a random sample with the exponential pdf as 

To test the hypothesis H#:			θ = θ! =
!
'
 vs H!:			θ = θ' = 1, we calculate  

For a data set as {1,3,5,3,2,2,0,1,3,0}, then n = 10 and ∑ x\"
\J! = 20, and the likelihood ratio is 21.51. For a 

decision criterion that we reject H# only if the likelihood ratio Λ(𝐱) < 0.5 in (3.2), then we fail to reject the 
null hypothesis. ■ 

It should be noted that the likelihood ratio test for two simple hypotheses forms a central part of Neyman-
Pearson statistical theory. However, Neyman-Pearson theory is aimed at finding good rules for choosing from 
a specified set of possible alternatives. It does not address the problem of interpreting statistical evidence. [4, 
p. 58]. 

 
 

L(θ|𝐱) = f(𝐱|θ),  (3.1) 

Λ(𝐱) =
L(θ!|𝐱)
L(θ'|𝐱)

=
f(𝐱|θ!)
f(𝐱|θ')

	.  (3.2) 

f(x|θ) = θeP$`,						0 < x < ∞.     (3.3) 

L(θ!|𝐱)
L(θ'|𝐱)

= (
1
2)

" exp ��
1
2�Xx\

"

\J!

�.     (3.4) 
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4. The Confidence Distribution as a Measure of Evidence 

The concept of confidence was introduced by Neyman in his papers on confidence intervals [29], but the 
notion of a confidence distribution of a parameter θ originated with Cox [30]. The word “confidence” is 
conventionally used to indicate that the concept does not involve a probability on θ. In particular, a 95% 
confidence interval for an unknown parameter θ means the true value of the parameter is contained in the 
confidence interval for 95% of all possible data sets 𝐱. In other words, the notion of confidence has a 
frequentist interpretation with respect to the distribution of the random sample 𝐗 and hence the underlying 
random variable X. 

The confidence distribution, on the other hand, is a bridge between the Bayesian [31] and frequentist 
approaches in statistics. In particular, the confidence distribution provides a frequentist analog to a 
Bayesian posterior for θ. The confidence distribution function on the parameter space comprises all possible 
confidence levels for a confidence interval of the parameter. Thus Type I error is implicit in the definition. 
Moreover, a confidence distribution is a function of both the parameter and the random sample. A duality 
similar to that for the likelihood function plays an essential role in the following definition.  

Definition 4.1 (Confidence Distribution). Let 𝐱 be sample data for the random sample 𝐗 from the 
discrete random variable X with cdf F(x) and a one-dimensional parameter θ. The function Cs(θ, 𝐱) onto the 
interval [0,1] is called confidence distribution (CD) for the parameter θ if  

1. For each 𝐱 ∈ S", Cs(θ#, 𝐱) is a cumulative distribution function for θ. 
2. At the true parameter value θ = θ#, Cs(θ#, 𝐱) as a function of the random sample 𝐗 follows the 

uniform distribution U(0,1). 
Cs(θ#, 𝐱) is a cdf on X that gives the probability that θ ≤ θ#. It has an interpretation similar to that for a 

confidence interval on θ. The frequentist probability Cs(θ#, 𝐱) is the percentage of all possible data sets 𝐱 
for which θ is in an appropriate confidence interval involving θ# and 𝐱. Condition (2) of Definition 4.1 is 
analogous to the assumption that the null hypothesis is assumed true in the standard definition of P-value. 
It should be pointed out that the confidence distribution has alternative definitions [32, 33] including one 
involving the pivot statistics [34] of standard confidence intervals. Given a confidence distribution, we can 
define an associated confidence density that intuitively is a frequentist version for X of a Bayesian posterior 
density for the parameter θ. It supports the notion that confidence distributions bridge frequentist and 
Bayesian statistics. 

Definition 4.2 (Confidence Density). Under the condition of Definition 4.1, the derivative of C(θ, 𝐱) 
with respect to θ will be called the confidence density of θ. Hence, 

We focus on the one-sided hypothesis test H#:	θ ≤ θ# vs H!:	θ > θ# for the remainder of this paper. Most 
elementary expositions, e.g., [28] would consider the null hypothesis to be H#:	θ = θ#. In applications, an 
equality null is usually not appropriate. Indeed, rejecting such a null provides only when the data provides 
sufficient evidence that H!:	θ > θ#. Failing to reject thus is failing to reject that H#:	θ ≤ θ#. The equality null 
simply allows an exact determination of Type I error for the data rather than a lower bound on it.  

Definition 4.3 (Confidence Ratio). For the one-sided hypothesis test H#:	θ ≤ θ# vs H!:	θ > θ#, we define 
the confidence ratio as 

where Cs(θ#, 𝐱) is the frequentist probability. 
There is no Type I and Type II error calculations associated with confidence distributions since the error 

probabilities associated with elementary confidence intervals become the probability distribution on θ. The 
decision criterion for a hypothesis test can be based on Cs(θ#, 𝐱), which is the probability θ ≤ θ#, or on the 

cs(θ, 𝐱) =
∂Cs(θ, 𝐱)	

∂θ .      (4.1) 

CR(θ#, 𝐱) =
Cs(θ#, 𝐱)

1 − Cs(θ#, 𝐱)
,      (4.2) 
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confidence ratio (4.2). A simulation as in Section 7 can provide estimate of the errors involved. The 
confidence ratio can also be generalized for more general hypotheses. For example, we can compare the 
evidence for θ being in a region Ω! vs in a disjoint region Ω' by considering the confidence ratio 

Example 4.4 (CD and CR for Normal Distribution Mean). Let 𝐱 = (x!, … , x") be sample data from a 
random sample 𝐗 = (X!, … , X") from a normal random variable X with parameters µ and σ'. The confidence 
distribution for the mean µ of X is shown in [33] to be 

where 𝐱- is the sample mean, s𝐱 is the sample standard deviation, and F%174 is the cdf of Student’s t 
distribution with n − 1 degrees of freedom. For n > 30, however, it follows by the CLT that a good 
approximation of (4.4) is 

For the one-sided hypothesis testing on µ, as H#:	µ ≤ µ# vs H!:	µ > µ#, (4.5) gives 

Then from (4.2),  

Hence 

Example 4.5 (CD and CR for Normal Distribution Variance). Under the assumptions of Example 4.4, 
from [33] the confidence distribution for the variance of normal distribution is  

where Ft174<  is the cdf of χ"P!'  distribution. Thus Ct<(σ#', 𝐱) is a cdf on X that σ' ≤ σ#' and 

Hence, for one-sided hypothesis test H#:	σ' ≤ σ#' vs H!:	σ' > σ#', from (4.2) and (4.10) 

Numerical examples for Section 4, 5, and 6 will be presented in Section 7. 

CR(Ω!, Ω', 𝐱) =
∫ cs(θ, 𝐱)dθu4

∫ cs(θ, 𝐱)dθu<

.      (4.3) 

Cv(µ, 𝐱) = F%174(
µ − 𝐱-
s𝐱 √n⁄

)      (4.4) 

Cv(µ, 𝐱) = φm
µ − 𝐱-
s𝐱 √n⁄

n.      (4.5) 

Cv(µ#, 𝐱) = φm
µ# − 𝐱-
s𝐱 √n⁄

n.      (4.6) 

CR(µ#, 𝐱) =
Cv(µ#, 𝐱)

1 − Cv(µ#, 𝐱)
.      (4.7) 

CR(µ#, 𝐱) = 	
φ mµ# − 𝐱-

s𝐱 √n⁄ n

1 − φmµ# − 𝐱-
s𝐱 √n⁄ n

.      (4.8) 

Ct<(σ', 𝐱) = 1 − Ft174< m
(n − 1)S𝐱'

σ' n.      (4.9) 

Ct<(σ#', 𝐱) = 1 − Ft174< m
(n − 1)S𝐱'

σ#'
n.      (4.10) 

CR(σ#', 𝐱) = 	
1 − Ft174< ((n − 1)S𝐱

'

σ#'
)

Ft174< ((n − 1)S𝐱
'

σ#'
)
.      (4.11) 
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5. Bayesian Posterior Odds as a Measure of Evidence 

In this section, we apply the Bayesian approach to hypotheses testing problems, by calculating the 
posterior ratio over two alternative hypotheses. In general, Bayesian inference requires a different 
interpretation of probability since it uses a probability to describe the degree of belief about an unknown 
parameter and treats parameters as random variables. For the parameter θ, the distribution f(θ) that 
summarizes the information about θ prior to get sample information is the prior distribution.  

Consider a random data sample 𝐱 = (x!, … , x") from a random variable X with joint pdf f(𝐱|θ). Then the 
posterior pdf is  

where  

In other words, we update the prior distribution f(θ) with the sample data to get the posterior distribution 
f(θ|𝐱). The corresponding posterior cdf for θ is denoted F(θ|𝐱). To use the posterior distribution in the 
hypothesis testing, we can define the posterior odds ratio as follows. 

Definition 5.1 (Posterior Odds Ratio). Consider a random data sample 𝐱 = (x!, … , x") from a random 
variable X with posterior pdf f(θ|𝐱) and cdf F(θ|𝐱). For the one-sided hypothesis test H#:	θ ≤ θ# vs H!:	θ >
θ#, we define the posterior odds ratio as 

Equivalently, we can simply use F(θ#|𝐱) as the evidence that the null is true. The following example 
illustrates the use of (5.3) in the hypothesis testing problems. 

Example 5.2. Let 𝐱 = (x!, … , x") be a random data sample from the normal density with mean µ and 
variance 1, where µ is unknown. Assume the prior pdf for µ is normal with mean 0 and variance 1; that is, 

The joint pdf of the sample for fixed µ is  

From (5.1), (5.2), (5.4) and (5.5) it is shown in [18] that  

Therefore, the posterior of µ is distributed as No "𝐱w
"x!

, !
"x!

p. 
To test H#:	µ ≤ 0 vs H!:	µ > 0, suppose that we take a sample 𝐱 = (x!, … , x1!) with n = 31 and 𝐱- = 0.5 so 

the posterior of µ becomes N(0.484,0.031). Then the posterior odds ratio (5.3) becomes 

Hence, the odds ratio is 

f(θ|𝐱) =
f(θ)f(𝐱|θ)
f(𝐱) ,      (5.1) 

f(𝐱) = ° f(θ)f(𝐱|θ)dθ
l

Pl

.      (5.2) 

Ω(θ#, 𝐱) =
F(θ#|𝐱)

1 − F(θ#|𝐱)
	.      (5.3) 

f(µ) =
1
√2π

eP
!
'y

<
, −∞ < µ < ∞.      (5.4) 

f(𝐱|µ) =
1

(√2π)"
eP

!
'∑(`2Py)

<
.      (5.5) 

f(µ|𝐱) =
(n + 1)! '⁄

(2π)! '⁄ exp �−
1
2
(n + 1) �µ −

n𝐱-
n + 1�

'

�.      (5.6) 

P(µ ≤ 0|𝐗 = 𝐱) = ∅ �
0 − 0.484
√0.031

� = ∅(−2.748) = 0.003.      (5.7) 

Ω(0, 𝐱) =
∅(−2.748)

1 − ∅(−2.748) = 0.003.      (5.8) 
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In other words, the odds are 333.33 to 1 that H!: µ > 0 is true as opposed to H#:	µ ≤ 0. It appears beyond 
reasonable doubt that H# should be rejected. ■ 

In general, a result from the Bayesian approach does not necessarily agrees with one from frequentist 
approach. One reason is that there are no significance levels in the Bayesian approach though errors can 
certainly occur. In one situation, however, the results are remarkably similar. A noninformative prior is 
one for which f(θ) is constant over the parameter space, perhaps in limit. For example, f(θ) = !

;
 for 0 < θ <

a is a noninformative prior over a parameter space (0,∞) as a → ∞. A noninformative prior assumes that 
there is no information about the parameter before collecting data. When a noninformative prior is used, 
the posterior probability F(θ#|𝐱) is the P-value for the one-sided hypothesis test H#:	θ ≤ θ# vs H!:	θ > θ#. 
[31] 

For Example 5.2 with a noninformative prior, we obtain a No0.5, !
1!
p posterior for µ. In this case  

which is also the frequentist P-value. The posterior odds ratio is now Ω(0, 𝐱) = 0.0027. 

6. A New Definition of P-value as a Measure of Evidence 

The notion of P-value is a fundamental tool in statistical inference and has been widely used for reporting 
outcomes of hypothesis tests. For example, see Chavalarias et al. [35]. Yet in practice, P-value is often 
misinterpreted, misused, or miscommunicated. Moreover, there is no general definition that unequivocally 
reflects the available evidence for the null hypothesis since H# is assumed to hold in existing definitions. In 
this section we propose a new definition of P-value that gives different values in some cases from the 
existing definitions. It provides a simple intuitive interpretation of P-value. Our approach appears 
applicable to a wide range of hypothesis testing problems. However, we restrict ourselves here to the 
standard one-sided tests. Our definition yields an interpretation of P-value as both a cardinal and ordinal 
measure of the evidence.  

There are two standard ways of defining P-value for the general hypothesis test H#:	θ ∈ Θ# vs H!:	θ ∉ Θ# 
with a parameter space Θ# and test statistic T(𝐗) for a random sample 𝐗 = (X!, … , X") from a random 
variable X with parameter θ. Let 𝐱 = (x!, … , x") be observed. 

Definition 6.1 (Standard Definitions of P-value). Under the assumption H#:	θ ∈ Θ# is true:  
(1) [e.g., 36] 

(2) [e.g., 37] 

where R{ is the rejection region for a level of significance α. 
Equation (6.1) is usually interpreted as: under the assumption that H# is true, P-value is the probability 

that T(𝐗) is at least as extreme as its observed value T(𝐱). This interpretation can lead to the common 
misunderstanding that this definition of P-value is the probability that H# is true. On the other hand, under 
the assumption that H# is true, equation (6.2) is based on significant levels (Type I error probabilities) and 
can lead to the misunderstanding that P-value is only a measure of Type I error and not related to the 
likelihood that H# is true. Both definitions elicit the question: how can the assumption that H# is true 
produce evidence that H# is true? The answer is that P-value is actually the probability that H# is true if H# 
is assumed true. For a P-value of 0.05 there is thus a 0.95 probability, intuitively speaking, that H# is false 

F(0|𝐱) = ∅m
0 − 0.5
1 √31⁄

n = 0.0027,      (5.9) 

P − value1(𝐱)	= sup
$∈|=

	P{T(𝐗)	³	T(𝐱)|	θ}.      (6.1) 

P − value2(𝐱) 	= inf 	{α ∶ T(𝐱) 	∈ R{},      (6.2) 
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and yields a reductio ad absurdum. In other words, there is a 0.95 probability that the assumption is false 
and that H# should be rejected. For other issues with these definitions, see [38], for example.  

To address such issues, we propose a new definition below that involves the well-known maximum 
likelihood estimator (MLE) [27, 28] θ�(𝐗) of θ obtained as arg	max

	$		
	L(θ|𝐱) in terms of 𝐱, with the likelihood 

function L(θ|𝐱) as in (3.1). The MLE θ�(𝐱) maximizes the probability and minimizes the surprise of obtaining 
the data sample 𝐱.  

Definition 6.2 (P-value). Let 𝐱 = (x!, … , x") be observed random sample data for a random sample 𝐗 =
(X!, … , X") from a continuous random variable X with a real-valued parameter θ. In addition let f(𝐱|θ) be 
the joint pdf of 𝐗, and θ�(𝐗) denote the MLE for θ, and let Y = θ�(𝐗) with pdf f}(y|θ). Then for the hypothesis 
test H#:	θ ∈ Θ# vs H!:	θ ∉ Θ#, the novel P-value (NPV) for the null hypothesis H#:	θ ∈ Θ# at 𝐱 is defined as  

where the integration is over the possible values y of Y = θ�(𝐗). 

NPV(𝐱|Θ#) in (6.3) is not the frequentist probability that H#:	θ ∈ Θ# is true, but it is an approximation. The 
MLE is used as a substitute for θ, and the integration in (6.3) simply gives frequentist probability that Y =
	θ�(𝐗) ∈ Θ#. Since the distributions of MLEs are typically well known, an analytical or numerical integration 
in (6.3) is feasible. However, the result of the integration involves θ itself as seen in Result 6.3, so θ�(𝐱) is then 
used as a numerical approximation for θ after the integration. The reasoning is that the properties of the 
MLE mentioned above should make θ�(𝐱) a useful surrogate for θ. 

For the remainder of this paper we specialize (6.3) and consider only the hypothesis test H#:	θ ≤ θ# vs 
H!:	θ > θ# for the parameters µ and σ' of X. Under the assumption that X is a normal random variable, we 
rewrite NPV(𝐱|Θ#) as NPV(𝐱|θ#), and equation (6.3) gives the usual P-value when θ = µ but not when θ =
σ'. 

Result 6.3. Let X!, … , X" be a random sample from a random variable X~N(µ, σ') with unknown µ, and 
consider the one-sided hypothesis test H#:	µ ≤ µ# vs H!:	µ > µ#. Then 

when σ' is known, and 

when σ' is unknown, where F&("P!) is the cdf for Student’s t-distribution.  

Proof. To prove (6.4) recall that the MLE for µ is the sample mean X,	~N oµ, ~
<

"
p. The integral of (6.3) hence 

becomes 

Substituting 𝐱- for µ in (6.6) gives (6.4). Equation (6.5) then follows from the usual distribution theory [28] 
of hypothesis testing ■ 

The right sides of (6.4) and (6.5) are the standard P-values for the hypothesis test H#:	µ ≤ µ# vs H!:	µ > µ# 
from (6.1). We next consider hypothesis tests on variances. Recall [e.g., 28] that the MLE for the variance of 
a normal distribution is σ¼'(𝐗) = ∑ (]2P]�)<1

434
"

, and so "~�
<(𝐗)
~<

~χ'(n − 1). 
Result 6.4. Let X!, … , X" be a random sample from a random variable X~N(µ, σ') with unknown σ', and 

consider the one-sided hypothesis test H#:	σ' ≤ σ#' vs H!:	σ' > σ#'. Then 

NPV(𝐱|Θ#) = �° f}(y|θ)dy
|=

� |$	J	$�(𝐱)	,      (6.3) 

NPV(𝐱|µ#) = Φm
µ# − 𝐱-
σ √n⁄

	n      (6.4) 

NPV(𝐱|µ#) = F&("P!) m
µ# − 𝐱-
s √n⁄

	n     (6.5) 

P[X, ≤ µ#] = Φm
µ# − µ
σ √n⁄

	n.     (6.6) 
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Proof. Since the MLE σ¼'(𝐗) for σ' satisfies "~�
<(𝐗)
~<

~χ'(n − 1), then the integral of (6.3) becomes  

Substituting σ¼'(𝐱) for σ' in (6.8) gives (6.7). ■ 
The right side of (6.7) is not the standard P-value for the hypothesis test H#:	µ ≤ µ# vs H!:	µ > µ# from 

(6.1). The standard P-value from (6.1) is 1 − Ft<("P!) o
("P!)@<

~=<
	p, which is obtained when the probability 

P[S' ≥ s'] is computed with σ' = σ#' in (6.1). The standard P-value differs from (6.7) as well as from 
Ft<("P!) o

("P!)~=<

@<
	p, which is obtained using the unbiased S' instead of the biased MLE σ¼'(𝐗) in (6.3). 

To compare the novel P-value to the previous evidence approaches considered, we note that confidence 
distributions usually give the standard P-value for the hypothesis test H#:	θ ≤ θ# vs H!:	θ > θ# by 
computing Cs(θ#, 𝐱), though [33] gives an example for which this is not true. Confidence distributions, 
though, are implicitly defined by the notion of significance and hence Type I error, which seems contrary 
to a direct measure of evidence. As for Bayesian posteriors, it was noted in Section 5 that the posterior 
probability that θ ≤ θ# equals the P-value if the prior distribution for θ is noninformative. The difficulty is 
that even a noninformative prior contains belief. Moreover, obtaining the usual P-values offers nothing 
new except reasoning that does not involve significance levels. The NPV approach has particular appeal 
since as the sample size increases, an MLE θ�(𝐱) converges in probability to θ. In other words, (6.4), (6.5), 
and (6.7) converge in probability to the frequentist probability that the respective null hypotheses are true 
and approach 1 as n approaches infinity. 

In the next section, we present an example using the odds ratios considered here. That is, we compare to 
obtain insight into error rates.  

7. Example 

In this example, we use the confidence ratio to exemplify how simulation can provide Type I and Type 
II errors and the accuracy defined in (2.1).  We first generate 1000 samples using Python.  Let i = 1,… ,1000, 
and for each i, let (X!

(\), … , X!##
(\)) be a random sample from the random variable X with the mean µ and 

variance σ', where µ and σ' is the same for all the 1000 samples. Then X,(\)~N(µ, ~
<

"
) by the CLT. We then 

test the hypothesis as H#:	µ ≤ µ# vs H!: µ > µ# and calculate the Type I and Type II errors. Finally, we use 
the confidence ratio in (4.8) and check if it is a good measure of evidence by calculating the accuracy. We 
could do this for all the measures of evidence presented here. 

Note that a perfect test would have zero false positives and zero false negatives. However, in statistics, 
we deal with uncertainty and can never know whether statistical conclusions are correct. In this example, 
we use known parameters µ = 0 and σ' = 1.  

• Testing over Population Mean 𝛍 

By specifying µ#, we can check if the null hypothesis is true or not. We consider two cases, each with two 
alternatives. In each case we used the R = 1 as a threshold CR - or equivalently for this example’s 
hypothesis on µ, the novel odds ratio (NOR) for the new P-value in (6.4) - to fill the confusion matrix as it 
explained on Definition 2.1. Then based on the confusion matrix, we calculate the accuracy, Type I and 
Type II errors. 

 
 

NPV(𝐱|σ#') = Ft<("P!) m
nσ#'

σ¼'(𝐱)	n.  (6.7) 

P[σ¼'(𝐗) ≤ σ#'] = P �
nσ¼'(𝐗)
σ' ≤

nσ#'

σ' � = Ft<("P!) m
nσ#'

σ' 	n.  (6.8) 
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o Case 1: 𝐇𝟎 is true and 𝛍 ≤ 𝛍𝟎.  

In the first case, we consider three different µ# as 0.01, 0.1 and 0.2. Since µ = 0, we expect to fail to reject 
the null hypothesis. The general confusion matrix for this case is shown in Table 7.1. Since the assumption 
of this case is that H# is true, we do not have any case which H# is false. 

Table 7.1. Case 1 General Confusion Matrix for the Mean of Normal Distribution 
Decision H# True H# False 

Do Not Reject H# # of cases where CR(µ#) > 1 out of 1000 0 
Reject H# # of cases where CR(µ#) ≤ 1 out of 1000 0 

Next based on Table 7.1 and the simulated data for the 1000 samples, we have the confusion matrix as 
Table 7.2.  

Table 7.2. Case 1 Confusion Matrix for the Mean of Normal Distribution on 1000 samples 

Decision H# True H# False µ# = 0.01 µ# = 0.1 µ# = 0.2 
Do Not Reject H# 508 825 982 0 

Reject H# 492 175 18 0 

Data in Table 7.2 has been classified by R = 1. However, R = 1 is not necessarily a good threshold. 
Jeffreys proposed the classification scheme shown in Table 7.3 to summarize conclusions for the Bayes 
factor in terms of discrete categories of evidential strength. [39, p. 432] 

Table 7.3. Evidence Categories for the Bayes Factor 
Bayes Factor Conclusion 

> 100 Extreme evidence for H! 

30 – 100 Very strong evidence for H! 

10 – 30 Strong evidence for H! 

3 – 10 Moderate evidence for H! 

1 – 3 Anecdotal evidence for H! 

1 No evidence 

1/3 – 1 Anecdotal evidence for H# 

1/3 – 1/10 Moderate evidence for H# 

1/10 – 1/30 Strong evidence for H# 

1/30 – 1/100 Very strong evidence for H# 

< 1/100 Extreme evidence for H# 

Here, we use the same classification and we calculate the accuracy and Type I and Type II errors in each of 
the classes. Table 7.4 shows the accuracy plus Type I and Type II errors for the case where µ# = 0.1 for each 
of the classes. 
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Table 7.4. Case 1 Performance Evaluation based on Different Ratio Thresholds 
Decision Criteria Accuracy Type I Error (α) Type II Error (β) 

R =
1
100 0.999 0.001 0.0 

R =
1
30 0.998 0.002 0.0 

𝐑 =
𝟏
𝟏𝟗 0.996 0.004 0.0 

R =
1
10 0.99 0.01 0.0 

R =
1
3 0.953 0.047 0.0 

R = 1 0.825 0.175 0.0 
R = 3 0.596 0.404 0.0 
R = 10 0.359 0.641 0.0 
R = 19 0.256 0.744 0.0 
R = 30 0.202 0.798 0.0 
R = 100 0.1 0.9 0.0 

 
In this case we check the evidence for H# since we already know that H# is true. Hence, we focus on the 

cases where R ≤ 1. Based on the table, you can check how changing R effects the accuracy. In addition to 
the thresholds of ratio proposed by Jeffreys, we added another ratio as R = !

!�
. In this case the accuracy is 

the calculated for the ratio #.#p
#.�p

= !
!�
. 

o Case 2: 𝐇𝟎 is False and 𝛍 > 𝛍𝟎.  

In this case we consider three different µ# as −0.01, −0.1 and −0.2. Since µ = 0, we expect to reject the 
null hypothesis. The general confusion matrix for this case has been shown on Table 7.5. Since in this case 
H# is false, we do not have any case for which H# is true. 

Table 7.5. Case 2 General Confusion Matrix for the Mean of Normal Distribution 
Decision H# True H# False 

Do Not Reject H# 0 # of cases where CR(µ#) > 1 out of 1000 
Reject H# 0 # of cases where CR(µ#) ≤ 1 out of 1000 

Based on Table 7.5 and the simulated data for the 1000 samples, we have the confusion matrix as Table 
7.6 where R = 1. Note that the data and samples are fixed for both cases. 

Table 7.6. Case 2 Confusion Matrix for the Mean of Normal Distribution on 1000 samples 

Decision H# True H# False 
µ# = −0.01 µ# = −0.1 µ# = −0.2 

Do Not Reject H# 0 445 160 31 
Reject H# 0 555 840 969 

We calculate the accuracy, Type I and Type II errors over the same classes used in the last case. Table 7.7 
below summarizes the results for µ# = −0.1. 
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Table 7.7. Case 1 Performance Evaluation based on Different Ratio Thresholds 
Decision Criteria Accuracy Type I Error (α) Type II Error (β) 

R =
1
100 0.101 0.0 0.899 

R =
1
30 0.217 0.0 0.783 

𝐑 =
𝟏
𝟏𝟗 0.291 0.0 0.709 

R =
1
10 0.401 0.0 0.599 

R =
1
3 0.643 0.0 0.357 

R = 1 0.84 0.0 0.16 
R = 3 0.952 0.0 0.048 
R = 10 0.987 0.0 0.013 
𝐑 = 𝟏𝟗 0.996 0.0 0.004 
R = 30 0.999 0.0 0.001 
R = 100 1 0.0 0.0 

 
In this case we check the evidence for H! since H# is false. Hence we focus on the cases where R ≥ 1. Table 

7.7 shows how changing R effects on the accuracy. In addition to the thresholds of ratio proposed by 
Jeffreys, again we added another ratio with R = 19. 

• Testing over Population Variance σ' 

We use the same random variable and the same sample data to test the hypothesis testing H#: σ' ≤ σ#' 
vs H!:	σ' > σ#'.  

o Case 1: 𝐇𝟎 is true and 𝛔𝟐 ≤ 𝛔𝟎𝟐.  

In the first case, we use three different values of σ#': 1.01, 1.1 and 1.2. Since σ' = 1 is known, we expect 
to fail to reject the null hypothesis. Table 7.8 below shows the general confusion matrix. Since the 
assumption is that H# is true, we do not have the occurrence of false H#. 

Table 7.8. Case 1 General Confusion Matrix for the Variance of Normal Distribution 
Decision H# True H# False 

Do Not Reject H# # of cases where R > 1 out of 1000 0 
Reject H# # of cases where R ≤ 1 out of 1000 0 

From Table 7.8 and the simulated data for the 1000 samples, for σ#' = 1.1 and R = 1, we have the 
confusion matrix in Table 7.9.  

Table 7.9. Case 1 Confusion Matrix for the Variance of Normal Distribution on 1000 samples 

Decision H# True H# False σ#' = 1.01 σ#' = 1.1 σ#' = 1.2 
Do Not Reject H# 535 777 917 0 

Reject H# 465 223 83 0 
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We calculate the accuracy, Type I and Type II errors for the classes used before. Table 7.10 below 
summarizes the results for σ#' = 1.1.  

Table 7.10. Case 1 Performance Evaluation based on Different Ratio Thresholds 
Decision Criteria Accuracy Type I Error (α) Type II Error (β) 

R =
1
100 1.0 0.0 0.0 

R =
1
30 1.0 0.0 0.0 

𝐑 =
𝟏
𝟏𝟗 0.998 0.002 0.0 

R =
1
10 0.99 0.01 0.0 

R =
1
3 0.929 0.071 0.0 

R = 1 0.777 0.223 0.0 
R = 3 0.495 0.505 0.0 
R = 10 0.252 0.748 0.0 
𝐑 = 𝟏𝟗 0.157 0.843 0.0 
R = 30 0.113 0.887 0.0 
R = 100 0.047 0.953 0.0 

In this case, we check the evidence for H# since we know that H# is true. Hence, we focus on the cases 
where R ≤ 1. The table shows how changing R effects on the accuracy. As before, we added ratio R = !

!�
.  

o Case 2: 𝐇𝟎 is False and 𝛔𝟐 > 𝛔𝟎𝟐.  

In this case we consider three different σ#': 0.99, 0.90 and 0.8. Since σ' = 1, we expect to reject the null 
hypothesis. Table 7.11 below shows the general confusion matrix for this case. Since the assumption is that 
H# is false, we do not have any case which H# is true. 

Table 7.11. Case 2 General Confusion Matrix for the Variance of Normal Distribution 
Decision H# True H# False 

Do Not Reject H# 0 # of cases where R > 1 out of 1000 
Reject H# 0 # of cases where R ≤ 1 out of 1000 

 Based on Table 7.11 and the simulated data for the 1000 samples, for σ#' = 	0.90 and R = 1, we have the 
confusion matrix as Table 7.12.  

Table 7.12. Case 2 Confusion Matrix for the Variance of Normal Distribution on 1000 samples 

Decision H# True H# False 
σ#' = 0.99 σ#' = 0.9 σ#' = 0.8 

Do Not Reject H# 0 473 243 69 
Reject H# 0 527 757 931 

We calculate the accuracy, Type I and Type II errors over the previous classes before. Table 7.13 below 
summarizes the results for σ#' = 0.9.  
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Table 7.13. Case 2 Performance Evaluation based on Different Ratio Thresholds 
Decision Criteria Accuracy Type I Error (α) Type II Error (β) 

R =
1
100 0.05 0.0 0.95 

R =
1
30 0.126 0.0 0.874 

𝐑 =
𝟏
𝟏𝟗 0.17 0.0 0.83 

R =
1
10 0.264 0.0 0.736 

R =
1
3 0.528 0.0 0.472 

R = 1 0.757 0.0 0.243 
R = 3 0.906 0.0 0.094 
R = 10 0.974 0.0 0.026 
𝐑 = 𝟏𝟗 0.985 0.0 0.015 
R = 30 0.992 0.0 0.008 
R = 100 1.0 0.0 0.0 

8. Conclusion 

In this paper, we presented some measures for statistical evidence with regard to hypothesis testing. We 
focused on the one-sided hypothesis test H#:	θ ≤ θ# vs H!:	θ > θ#. First, we reviewed the well-known 
likelihood ratio as a measure of evidence associated with testing simple hypotheses involving different 
parameter values θ! and θ'.  

Second, we considered the confidence distribution as a measure of evidence. Confidence distribution is 
a frequentist tool derived from confidence intervals. We used the confidence ratio to compare the relative 
evidence for null and alternative hypothesis.  

Third, we used the posterior odds ratio from Bayesian approach to calculate evidence. In this case, the 
ratio of posterior probability for the parameter being in region of null vs alternative hypothesis gives the 
evidence. We also noted that the posterior odds ratio for noninformative priors leads to the same ratio 
obtained by confidence distribution.  

Fourth, as the principal contribution of the paper, we proposed a novel P-value involving the MLE for 
the parameter of interest. We then discussed the benefits of the defined novel P-value as compared to the 
classic P-value. These included no assumption of H#	being	 true in its calculation, having no dependence on 
Type I error, and approximating the probability that H# is true. As n approaches infinity, the probability 
approaches 1 that the new P-value is the probability that H#is true. Interestingly, the classic and new P-
values were the same for testing the mean of a normal distribution but differed in testing the variance. 

Fifth, we showed that the errors and accuracy of an evidence-based test can be obtained by simulation. 
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Chapter 5 
 
General Conclusions 

 
This dissertation consists of three papers. It is a comprehensive study on the hierarchical framework in 

which data is transformed into information and this information is transformed into evidence. This 
evidence is then used to test hypotheses and check assertions. In other words, 

data ⇒ information ⇒ evidence. 

In the first paper, we studied the data and the information loss over the data compression. We focused 
on this lost information caused by multiple data sets having the same value of the statistic. This possibility 
is typical of data analysis. The data uniquely determines the value of the statistic, but a value of the statistic 
does not uniquely determine the data yielding it. In other words, we answered the question: how much 
Shannon information is lost about a data sample when only the value of a sufficient statistic is known but 
not the original data. We also defined the entropic loss associated with a sufficient statistic T under 
consideration as the expected lost information over all possible samples to give a metric dependent only 
on T. 

Next we pursued the transformation from data to information. We proposed a new measure of 
information called gambler’s information (or certitude) in contrast to Shannon information (or surprisal) 
for discrete random variables. We also explained that the choice of information type to use in a particular 
model depends on the retrospective or prospective nature of the model. Then we defined a new type of 
entropy called outer entropy by moving the log function outside the expectation in contrast to Shannon 
entropy to facilitate both intuitive results and mathematical manipulation.  

We provided two applications of these new concepts. The first application determines the gambler’s 
information lost when a random data sample is characterized by a single statistic such as the mean of the 
underlying random variable as was done in paper 1 for Shannon information.  The second application uses 
outer entropy as a new metric for deciding between possible numerical parameter values for the underlying 
random variable.  

In the third paper, we considered the next concept in the hierarchical framework above: evidence. Here 
we presented some measures for statistical evidence with regard to hypothesis testing. We began by 
reviewing the well-known likelihood ratio as a measure of evidence associated with testing simple 
hypotheses involving different parameter values θ! and θ'. Then we considered the confidence distribution 
as a measure of evidence. Confidence distribution is a frequentist tool generalized from confidence 
intervals. We used a confidence ratio to compare the evidence that the null hypothesis is true to the 
evidence that it is false. We next used the posterior odds ratio from Bayesian approach to calculate evidence. 
In this case, the ratio of posterior probability for the parameter being in region of null vs alternative 
hypothesis gives the evidence. We also noted the posterior odds ratio for noninformative priors leads to 
the same ratio obtained by confidence distribution. Finally, we used P-value as a measure of evidence, and 
we showed in the case of one-sided hypothesis testing for normal distribution, the P-value is equivalent to 
confidence. We then defined a novel P-value (NPV) independent of significance levels, error, and test 
statistics, as well as the assumption that H#	is true. This NPV functions essentially as a frequentist posterior 
probability and, in effect, bridges the gap between Bayesian and frequentist statistics. Examples were 
presented. 
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