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Figure 1-1 Single direction bending approach for making 3D geometries. a Trilayer structure made of a 

temperature-responsive polymer sandwiched by glassy polymers patterned with open stripes as hinges. 

Reversible swelling of the middle layer induces a bending configuration toward the patterned edges16. b 

Reversible formation of bent structures through solvent assisted stress formation in a thin epoxy film with a 

cross-link gradient along its thickness24 .......................................................................................................... 6 

Figure 1-2 Formation of a target 3D structure by controlled lateral (in-plane) differential growth in a 2D 

sheet. a Schematic demonstration of a non-uniform growth in a thin plate. b Release of internal stresses 

through out-of-plane deformation, which results in the formation of a programmed 3D structure. ................ 7 

Figure 1-3 lateral differential growth-induced 3D shaping in living organisms. Non-uniform cell growth on the 

brain’s surface causes wrinkle formation52. b Anisotropic muscle expansion (growth) responsible for the 

complex undulatory swimming motion in batoid fishes2. c Schematic demonstration of non-uniform growth 

induced tissue folding as a fundamental process that shapes epithelia into complex 3D organs53. ................. 8 

Figure 2-1 Programming of phototunable hydrogels to create 3D structures. a Digital light 4D printing process. 

The hydrogels are encoded with a growth function (or target metric) Ω using digital light projection 

grayscale lithography. The created 3D structures undergo a reversible shape transition at volume phase 

transition temperature Tc (~32.5 °C). T is temperature. The insets illustrate the polymer networks of the 

hydrogels at the early (short light exposure time tex) and late (long tex) stages of photo-polymerization, 

where gray, blue, and green structures represent pNIPAm, BIS, and PEGDA, respectively. b, c Areal 

shrinking (b) and swelling (c) ratios of dual- (red circles), BIS- (blue open circles), and PEGDA (green 

open circles)-crosslinked pNIPAm hydrogels as a function of tex. A35 and A25 are the areas of hydrogels at 

25 °C and 35 °C, respectively. A0 is the area of as-prepared hydrogels. Error bars: s.d. of three independent 

measurements. d Areal swelling rates Δ(AT/A0)/Δt of dual-crosslinked pNIPAm hydrogels as a function 

of tex. AT is the area of hydrogels. t is time .................................................................................................. 21 

Figure 2-2 Areal swelling and shrinking ratios of pNIPAm hydrogels crosslinked with single crosslinkers (BIS 

and PEGDA). a Areal swelling and shrinking ratios (AT/A0) of pNIPAm hydrogels crosslinked with BIS 

as a function of light exposure time.  The hydrogels were prepared with BIS of 1.0 to 10.0 mol% of NIPAm 

in precursor solutions (as indicated in the legend).  b Areal swelling and shrinking ratios (AT/A0) of 

pNIPAm hydrogels crosslinked with PEGDA as a function of light exposure time.  The hydrogels were 

prepared with PEGDA of 0.25 to 5.0 mol% of NIPAm in precursor solutions (as indicated in the legend).  

The open and closed circles represent the swelling and shrinking ratios, respectively.  The black, purple, 

red, blue, green, and orange circles represent AT/A0 of pNIPAm hydrogels crosslinked with crosslinkers 

(BIS and PEGDA) of 0.25, 0.5, 1.0, 2.0, 5.0, and 10.0 mol% of NIPAm in precursor solutions, respectively, 

as indicated in the legends.  The results show that assuming the same kinetics of polymerization of NIPAm 
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monomers with BIS and PEGDA, pNIPAm hydrogels crosslinked with long-chain crosslinkers (PEGDA) 

are formed at a lower monomer conversion (thus, lower network density at the gel point) than those 

crosslinked with short-chain crosslinkers (BIS). ........................................................................................... 22 

Figure 2-3 Measurements of the gel points of pNIPAm hydrogels crosslinked with single crosslinkers (BIS and 

PEGDA). a tan𝛿 of pNIPAm hydrogels crosslinked with BIS as a function of frequency.  The black, red, 

and blue circles represent tan𝛿 of pNIPAm hydrogels prepared by light exposure times of 8, 12, and 16 s, 

respectively.  b tan𝛿 of pNIPAm hydrogels crosslinked with PEGDA as a function of frequency.  The 

black, red, and blue circles represent tan𝛿 of pNIPAm hydrogels prepared by light exposure times of 2, 3, 

and 4 s, respectively.  At the gel point, tan𝛿 = 𝐺′′/𝐺′ has a constant value over the frequency sweep, where 

𝐺′ and 𝐺′′ are the shear storage modulus and shear loss modulus, respectively42-43.  The measurements show 

that the prepolymer solutions with BIS and PEGDA form gels with light exposure times of around 8 s and 

less than 2 s, respectively. ............................................................................................................................. 23 

Figure 2-4 Areal shrinking and swelling ratios of pNIPAm hydrogels crosslinked with both BIS and PEGDA. 

a Areal shrinking ratio (A35/A0) of pNIPAm hydrogels crosslinked with both BIS and PEGDA as a function 

of light exposure time. b Areal swelling ratio (A25/A0) of pNIPAm hydrogels crosslinked with both BIS and 

PEGDA as a function of light exposure time.  The hydrogels were prepared with precursor solutions of 

NIPAm (0.2 g), BIS (0.5 mol% of NIPAm), PEGDA (0.25 mol% of NIPAm), and PBPO (0.3 mol% of 

NIPAm) in 1 mL aqueous solution (1:3 ratio of water and acetone by volume).  The precursor solutions 

contain the same amount of BIS, PEGDA, and PBPO but 50 wt% of NIPAm in the precursor solutions used 

in Figure 2-1b, c.  Error bars: s.d. of three independent measurements. ....................................................... 24 

Figure 2-5 Density of pNIPAm hydrogels. a The density of pNIPAm hydrogels crosslinked with BIS and PEGDA 

by different light exposure times was measured.  The density of the pNIPAm hydrogels increases with light 

exposure time.  The density was calculated using their dry mass and the volume of as-prepared hydrogels 

after washing with acetone and IPA. b Areal shrinking ratio (A35/A0) as a function of density.  A35/A0 

increases with the density of the hydrogels, showing that the degree of shrinking decreases with the density 

of the hydrogels. c Areal swelling ratio (A25/A0) as a function of density.  A25/A0 decreases with the density 

of the hydrogels, showing that the degree of swelling decreases with the density of the hydrogels. ............ 25 

Figure 2-6 Shape-morphing 3D structures with axisymmetric metrics. a–c 3D structures with constant Gaussian 

curvature 𝐾 at the shrunk state (right) and the corresponding structures at the swelled state (left): spherical 

cap (a), saddle (b), and cone (c) shapes.  d–f Reconstructed 3D images with 𝐾 of experimental (left) and 

theoretical (right) shapes of the spherical cap (d), saddle (e), and cone (f) structures in a–c.  g  used to 

form the structures in a–c: red line (spherical cap), blue line (saddle), and green line (cone).  h 

Experimental (solid circles) and theoretical (dashed line) values of 𝛽 with different 𝛼 in  for cone 

structures.  i, j Enneper’s minimal surfaces with 𝑛′ wrinkles: 𝑛′ = 4 (i) and 6 (j).  The structure reversibly 

transforms between prescribed 3D shapes at the swelled (left) and shrunk (right) states as shown in j.  k  
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used to form the Enneper’s minimal surfaces with 𝑛′ wrinkles in i, j and Figure 2-7:  with 𝑛′ = 3 (red 

line), 𝑛′ = 4 (blue line), and 𝑛′ = 6 (green line).  l Experimentally constructed 3D structure with a smooth 

gradient in 𝐾 (left) and reconstructed 3D images with 𝐾 of the experimental (middle) and theoretical (right) 

structures.  is the base angle of the structures.  m  with different 𝛼 used to form the structures in l and 

Figure 2-8:  with 𝛼 = 0 (red line), 𝛼 = 0.5 (blue line), 𝛼 = 0.75 (green line), and 𝛼 = 0.9 (orange line).  n 

Experimental (solid circles) and theoretical (dashed line) values of  of the structures formed with  in m 

as a function of 𝛼.  Scale bars, 5 mm (left), 2 mm (right) in a–c; 2 mm in i; 5 mm (left), 2 mm (right) in j; 2 

mm in l. ......................................................................................................................................................... 32 

Figure 2-7 Enneper’s minimal surfaces with a different number of wrinkles. Experimentally created Enneper’s 

minimal surfaces with  𝑛′ = 3 (a), 𝑛′ = 4 (b), and 𝑛′ = 6 (c) at the shrunk state (middle).  The images on 

the left side show the corresponding 3D structures at the swelled state.  The images on the right side show 

the theoretical shapes of Enneper’s minimal surfaces with 𝑛′ = 3, 𝑛′ = 4, and 𝑛′ = 6.  Scale bars, 5 mm 

(left); 2 mm (right). ....................................................................................................................................... 34 

Figure 2-8 Prediction and creation of 3D structures with a smooth gradient in Gaussian curvature K. (a–d) 

The 3D structures were created with 𝑟 = 𝑐1 + (𝑟/𝑅′)2 − 1, where 𝑅′ = 𝑎𝑅, with 𝛼 = 0 and 𝑎 = 0.94  

(a), 𝛼 = 0.5 and 𝑎 = 0.53 (b), 𝛼 = 0.75 and 𝑎 = 0.22 (c), which is also shown in Figure 2-6l, and 𝛼 = 0.9 

and 𝑎 = 0.022 (d) (Figure 2-6m). Scale bars, 5 mm (left); 2 mm (right).  (e–h) Reconstructed 3D images 

with K of experimentally created (left) and theoretically predicted (right) 3D structures shown in a–d.  The 

3D images of the theoretically predicted 3D structures were constructed as described in Section 2.4.2.3.  

The theoretical model predicts 3D shapes with a smooth gradient in 𝐾, which decreases from the maximum 

value to 0 with 𝑟, as shown in e– h.  As compared in e–h, the experimental structures agree with the 

theoretical models. ........................................................................................................................................ 36 

Figure 2-9 Nonaxisymmetric 3D structures with morphological diversity. a–c, Hybrid 3D structures with radially 

(a, b) and azimuthally (c) combined .  d  used to create the 3D structures in c: 1 (red line), 2 (blue 

line).  e, f 3D structures with alternating 𝐾 > 0 and 𝐾 < 0 and 4 (e) and 6 (f) nodes along .  g, h 

Theoretically calculated Gaussian curvature 𝐾 of the structures with 4 (g) and 6 (h) nodes shown in e, f at 

the swelled (left) and shrunk (right) states.  i  used to form the structures in e, f.  The red line, black line, 

and dashed black lines indicate  at 𝜃 = 0 and (𝑙π)/𝐿 (maximum ), 𝜃 = (2𝑙 − 1)π/(2𝐿) (minimum ), 

and 𝜃 between the maximum and minimum of , where 𝑙 and 𝐿 are constants.  𝑙 is a positive integer.  j 

Elongated elliptical saddle structure with an aspect ratio of 2 (𝑏 = 0.5).  k Spherical cap with 6 legs (𝑏 =

0.5, 𝐿 = 3).  l Saddle-like structure with 6 legs (𝑏 = 0.5, 𝐿 = 3).  Scale bars, 2 mm in a–c; 5 mm (left), 2 

mm (right) in e, f; 2 mm in j–l. ..................................................................................................................... 38 

Figure 2-10 Hybrid 3D structures with radially combined target metrics. (a)  (red) used to form the hybrid 3D 

structure shown in Figure 2-9a.   radially combines 1 ( for a spherical cap shown in Figure 2-6a) at 

0 < 𝑟/𝑅 < 0.43 and 2 ( for a saddle shape shown in Figure 2-6b) at 0.43 < 𝑟/𝑅 < 0.56.  The black 
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dashed lines show the projection of 1 and 2.  (b)  that radially combines 1 ( for a saddle shape 

shown in Figure 2-6b) at 0 < 𝑟/𝑅 < 0.43 and 2 ( for a spherical cap shown in Figure 2-6a) at 0.43 <

𝑟/𝑅 < 0.56.  The radially combined  were used to form the hybrid 3D structure shown in d.  (c)  that 

radially combines  1 ( for a spherical cap shown in Figure 2-6a) at 0 < 𝑟/𝑅 < 0.5 and 2 ( for a cone 

shape with 𝛼 = 0.775 shown in Figure 2-6c) at 0.5 < 𝑟/𝑅 < 1.0.  The radially combined  were used to 

form the hybrid 3D structure shown in Figure 2-9b.   (d) Hybrid 3D structure generated with  in b.  The 

hybrid structure combines the saddle shape with 𝐾 < 0 and the spherical cap shape with 𝐾 > 0 in the center 

and outer regions, respectively.  Scale bar, 2 mm. ........................................................................................ 39 

Figure 2-11 Hybrid 3D structures with azimuthally combined target metrics. (a) Hybrid 3D structure created 

with  that azimuthally combines 1 and 2 shown in Figure 2-9d without L.  1 and 2 are shown in 

Figure 2-6m, which have with  = 0 and  = 0.9, respectively.  The sharp discontinuities in  induce 

stress accumulation and thus shape distortion.  (b) Hybrid 3D structure created with  that azimuthally 

combines 1 and 2 (Figure 2-9d) with L = 1 − 2𝜃/∆𝜃 + 2 with ∆𝜃 = 5 at the interfaces.   

that combines 1 and 2 using L with ∆𝜃 = 5 induces shape distortion, because of sharp changes at the 

interfaces.  (c) Hybrid 3D structure created with  that azimuthally combines 1 and 2 shown in Figure 

2-9d without L but with space 𝜃 = 5 at the interfaces of 1 and 2.  The hybrid structure shows the 

key signatures of the structures induced by 1 and 2 along the 𝜃 direction (Figure 2-8a, d).  1 yields a 

spherical cap-like shape (Figure 2-8a), whereas 2 yields a shape that combines a spherical cap-like shape 

in the center and a cone-like shape with a large vertex angle in the edge (Figure 2-8d).  Scale bars, 2 mm. 40 

Figure 2-12 3D structures with continuously varying morphologies along the  direction. ................................ 42 

Figure 2-13 Elongated elliptical saddle structures. The elongated elliptical saddle structures were created by 

transforming axisymmetric  for an saddle shape into a nonaxisymmetric form 𝑟,  = 𝑐(𝑟/(𝑎𝑅)), 

where 𝑎 = 𝑏/1 + 𝑏2 − 1sin2𝜃.  The major and minor axes of the ellipse are 𝑅 and 𝑏𝑅 (0 < 𝑏 < 1) or 𝑏𝑅 

and 𝑅 (𝑏 > 1), respectively.  The elongated elliptical saddle structures were formed with 𝑏 = 0.5 (a), 𝑏 = 

0.75 (b), 𝑏 = 0.9 (c), and 𝑏 = 1.0 (d), respectively.  The structure with 𝑏 = 0.5 in a is also shown in Figure 

2-9j.  Scale bars, 2 mm. ................................................................................................................................. 42 

Figure 2-14 Spherical caps with a targeted number of legs (nodes). The spherical caps with a targeted number of 

legs (nodes) were created by transforming axisymmetric (𝑟) for a spherical cap into a nonaxisymmetric 

form 𝑟,  = 𝑐(𝑟/(𝑎𝑅)), where 𝑎 = 𝑏/1 + 𝑏2 − 1sin2𝐿𝜃.  The transformed 𝑟,  has the period of 

𝜋/𝐿 along the 𝜃 direction and thus induces a 3D structure with 2𝐿 nodes (legs).  𝑏 defines the ratio of the 

inner diameter to the outer diameter of the structure (and thus the length of the legs).  The spherical caps 

with 2 (a), 4 (b), and 6 (c) legs were formed using 𝑟,  with 𝑏 = 0.5 and 𝐿 = 1, 2, and 3, respectively.  

Scale bars, 2 mm. .......................................................................................................................................... 43 

Figure 2-15 Multimodular 3D structures. a–e Examples of multimodular 3D structures with 4 modules with (a–d) 

and without (e) directional control.  The modules were programmed to deform in the directions indicated 
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by the white arrows.  f–j Strategies to control the orientation of the modules in the corresponding structures 

in a–e.  The color maps illustrate  used to create the structures.  The small and large circles with white 

dashed lines indicate the parallel and perpendicular transitional components, respectively.  k Reconstructed 

3D image of a stingray model with 𝐾.  l Modular design of a stingray-inspired 3D structure in m.  The 

modules for the body and the pectoral fins were designed based on the 𝐾 map in k and Figure 2-17.  m, n 

Stingray-inspired 3D structures with oscillatory flapping motions.  The white arrows indicate the direction 

of the motions.  Scale bars, 4 mm in a–e; 2 mm in m; 4 mm in n. ............................................................... 45 

Figure 2-16 Multimodular 3D structures with the same target metric but different conformations. (a–c) 

Multimodular structures that consist of a modular component with 𝐾 > 0 (spherical cap with 𝑅 = 10 mm in 

Equation 12 in Section 2.4.2.2) in the center and two smaller components with 𝐾 > 0 (spherical caps with 

𝑅 = 5 and 2.5 mm in Equation 12 in Section 2.4.2.2) on the left and right sides.  The three structures in a, 

b, and c were formed with the same growth function but have different conformations, as the modules can 

randomly select a direction of deformation (upward or downward) with respect to neighboring modules.  

Scale bars, 2 mm.  (d, e) Multimodular structures that consist of a module with 𝐾 < 0 in the center and two 

modules with 𝐾 > 0 on the left and right sides.  The two structures shown in d and e were formed with the 

same growth function but have different conformations, as the modules can randomly adopt an orientation 

with respect to neighboring modules.  Scale bars, 4 mm. ............................................................................. 46 

Figure 2-17 Design of stingray-inspired 3D structures. a, Reconstructed 3D image and rendering of a stingray.  

The 3D image was reconstructed based on the 3D morphology of stingrays in literature21, 52.  b, 

Reconstructed 3D image of the stingray model with squared mean curvature 𝐻2.  c, Top-view of the 

reconstructed 3D image of the stingray model with 𝐾 (Figure 2-15k). ......................................................... 49 

Figure 2-18 Stingray-inspired 3D structure without linkers. The stingray-inspired 3D structure was constructed 

with the same modules for the body and the pectoral fins used in the structure in Figure 2-15m but without 

linkers.  Although they maintain the designed shape (𝐾 < 0), the pectoral fin structures are randomly 

oriented with respect to the body without linkers.  Scale bar, 2 mm. ............................................................ 49 

Figure 2-19 Dynamic behavior of growth-induced 3D structures. a Shape evolution of a spherical cap during 

cooling.  b 𝐴𝑇/𝐴0 of homogeneous hydrogels formed with different 𝑡ex as a function of cooling time 𝑡.  

The black, red, blue, green, orange, purple, and navy circles represent 𝐴𝑇/𝐴0 of the hydrogels formed with 

𝑡ex of 8, 12, 16, 24, 36, 52, and 64 s, respectively.  c 𝐴𝑇/𝐴0 in b as a function of 𝑡ex at different 𝑡 

(dynamic calibration curves).  The black, red, blue, green, orange, and purple circles represent 𝐴𝑇/𝐴0 at 𝑡 

of 0, 20, 25, 30, 35, and 40 min, respectively.  d Dynamic growth function (or target metric) 𝑡 of the 

spherical cap at 𝑡 = 0 to 40 min.  The black, red, blue, green, orange, and purple line represent 𝑡 at 𝑡 of 0, 

20, 25, 30, 35, and 40 min, respectively.  e 𝑡 for the shapes of the spherical cap in a at 25, 30, 32, and 35 

min.  f Experimentally measured 𝐾sc (𝐾 of the spherical cap-like shape in the center) (black circles) and 

theoretically calculated 𝐾sc (red circles) as a function of 𝑡.  g Experimentally measured 𝜌/𝑅str (location of 
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the shape transition) (black circles) and theoretically calculated 𝜌/𝑅str (red circles) as a function of 𝑡.  h 

Experimentally measured number of the wrinkles (black circles) as a function of time.  The red circles 

represent 𝑛 obtained from the fit of  =  𝑐/[1 + (𝑟/(𝑎𝑅))2]2 + [1 + (𝑟/𝑅)𝑛]2 − 1 to 𝑡 as described in 

the main text and Figure 2-25.  i Replicated structures of the dynamic shapes of the spherical cap in a at 20, 

25, 30, 32, and 35 min.  j Normalized 𝑡 used to create the structures shown in i.  The blue, green, 

magenta, and orange lines represent 𝑡 at 25, 30, 32, and 35 min, respectively.  Scale bars, 5 mm in a; 2 

mm in i. ......................................................................................................................................................... 51 

Figure 2-20 Time-dependent areal swelling and shrinking ratios as a function of light exposure time at 

different times during cooling. The areal swelling and shrinking ratios as a function of light exposure time 

𝑡ex at different times 𝑡 during cooling were constructed using Figure 2-19b.  𝐴𝑇/𝐴0(𝑡ex) changes from an 

increasing function of 𝑡ex (shrunk state) to a decreasing function of 𝑡ex (swelled state) with time.  The 

transition of 𝐴𝑇/𝐴0(𝑡ex) reflects how the spherical cap in Figure 2-19a transforms from a shape with 𝐾 > 

0 at the shrunk state to a shape 𝐾 < 0 at the swelled state. ........................................................................... 53 

Figure 2-21 Dynamic growth functions (target metrics) for a spherical cap structure at different times during 

cooling. The dynamic growth functions (or target metrics) 𝑡 of the spherical cap at different times during 

cooling (Figure 2-19a) were constructed from  for a spherical cap structure (Figure 2-6g) using the 

dynamic calibration curves (Figure 2-20).  𝑡 changes from a decreasing function of 𝑟/𝑅 to an increasing 

function, reflecting the transformation of the spherical cap shape (𝐾 > 0) at the shrunk state to the saddle-

like shape (𝐾 < 0) at the swelled state. ......................................................................................................... 54 

Figure 2-22 Normalized dynamic 𝒕 t of the spherical cap structure at t= 0 to 40 min. ...................................... 55 

Figure 2-23 Dynamic shapes of the spherical cap structure. a, Dynamic shapes of the spherical cap structure 

shown in Figure 2-19a at 25, 30, 32, 35, and 37 min.  The location of the shape transition between the 

spherical cap-like shape (𝐾 > 0) and the wrinkles (𝐾 < 0) 𝜌/𝑅str was obtained by measuring 𝜌tr and 𝑅s 

as shown in the structure at 25 min: 𝜌/𝑅str = 𝜌tr/𝑅s.  Scale bar, 2 mm.  b, 𝑡 for the spherical cap at 25, 

30, 32, 35, and 37 min.  The location of the minimum (𝑟/𝑅)min, indicated by the dashed lines in the 

graphs, shifts from the edge toward the center with time. ............................................................................. 56 

Figure 2-24 Radius of the spherical cap structure as a function of time. The radius 𝑅s of the dynamic shapes of 

the spherical cap structure shown in Fig 5a was measured as a function time (black circles) as shown in 

Figure 2-23a.  The theoretically calculated 𝑅s (red circles) was obtained from 𝑡 (Figure 2-19d, e, Figure 

2-21) using Equation 8 in Section 2.4.2. ....................................................................................................... 57 
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(𝑟/𝑅)𝑛]2 − 1 to 𝑡 (shown in Figure 2-19d, e and Figure 2-21), where the first and second terms in  
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Shape-changing materials that can adopt programmable 3-dimensional (3D) shapes offer 

promise for a wide range of applications. Form the formation of the leaves and flowers to the 

shaping of complex organs, the analogues of such shape-morphing 3D surfaces are abundant in 

nature. However, since the formation of such surfaces in biological systems is fundamentally 

different from that of human-made materials, replicating their complex morphologies, movements, 

and thereby functions remains a challenge. Inspired by living organisms, we introduce an 

approach, called digital light 4D printing (DL4P), that encodes thermosensitive 2D hydrogels with 

a specific pattern of network density and thus temperature-induced growth (expansion and 

contraction) to create 3D structures with programmed shapes and motions. 3D self-shaping 

happens readily upon the introduction of the programmed 2D hydrogels into water medium, where 

programmed non-uniform in-plane growth defines a new metric tensor (target metric) for the 

surface, which causes a controlled out-of-plane buckling and results in a specific three-dimensional 

shape. A theoretical platform was introduced for axisymmetric 3D shapes, predicting how a target 

metric translates to a 3D shape and vice versa. We next introduced modular-based design rules for 

making complex 3D structures and addressed control of the direction of deformation in non-
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Euclidean systems. By controlling the spatial rates of shape transformations, we created 3D 

structures with complex programmed sequential motions similar to living organisms. To broaden 

the application of our method beyond soft-materials, we established a thermal/chemical shape 

stabilization process to achieve robust air-stable 3D surfaces in the ambient environment. Unlike 

traditional layer-by-layer additive manufacturing, our controlled out-of-plane deformation 

mechanism allows the creation of 3D structures in a short amount of time from a single layer 

material. The digital patterning used in this method offers simultaneous printing of 2D materials 

encoded with custom-designed metrics, rendering it scalable for creating diverse 3D shapes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ........................................................................................................................................... iii 

LIST OF FIGURES ....................................................................................................................................................... v 

ABSTRACT .................................................................................................................................................................. 1 

1 CHAPTER 1 ....................................................................................................................................................... 5 

1.1 INTRODUCTION ................................................................................................................................................ 5 

1.2 OVERVIEW OF THE CHAPTERS ........................................................................................................................ 10 

2 CHAPTER 2 ..................................................................................................................................................... 16 

2.1 BIOINSPIRED 3D STRUCTURES WITH PROGRAMMABLE MORPHOLOGIES ................................. 16 

2.2 ABSTRACT ..................................................................................................................................................... 17 

2.3 INTRODUCTION .............................................................................................................................................. 18 

2.4 RESULTS ........................................................................................................................................................ 21 

2.4.1 Hydrogels with phototunable material properties ................................................................................ 21 

2.4.2 Mathematical theory for 3D shaping ................................................................................................... 25 

2.4.2.1 Theoretical model for axisymmetric 3D structures .................................................................... 27 

2.4.2.2 Determination of the growth function () for a target 3D structure .......................................... 28 

2.4.2.3 Prediction of a 3D shape from a growth function () ................................................................ 29 

2.4.3 Shape-morphing 3D structures with axisymmetric metrics ................................................................. 30 

2.4.4 Design rules for creating complex 3D structures ................................................................................. 37 

2.4.5 Multimodular 3D structures ................................................................................................................. 44 

2.4.6 Dynamic behavior of growth-induced 3D structures ........................................................................... 50 

2.4.7 Dynamic 3D structures with programmed sequential motions ............................................................ 60 

2.5 CONCLUSION.................................................................................................................................................. 65 

2.6 MATERIALS AND METHODS ........................................................................................................................... 66 

2.6.1 Preparation of precursor solutions ....................................................................................................... 66 

2.6.2 Creation of shape-morphing 3D structures .......................................................................................... 66 

2.6.3 Measurement of areal swelling and shrinking ratios ........................................................................... 68 

2.6.4 Measurements of mechanical properties and gel points ...................................................................... 68 

2.6.5 Reconstruction of 3D images and Gaussian curvatures ....................................................................... 69 

2.7 REFERENCES .............................................................................................................................................. 70 

3 CHAPTER 3 ..................................................................................................................................................... 74 

3.1 DIGITAL LIGHT 4D PRINTING OF ROBUST SOLID COMPOSITES ....................................................................... 74 



 

4 

3.2 ABSTRACT ..................................................................................................................................................... 75 

3.3 INTRODUCTION .............................................................................................................................................. 76 

3.4 RESULTS ........................................................................................................................................................ 79 

3.4.1 Digital Light 4D Processing of composite structures .......................................................................... 79 

3.4.2 Geometrical limitation and shape Accuracy ........................................................................................ 80 

3.4.3 Solidification process........................................................................................................................... 81 

3.4.4 Mechanical Properties of structures at different states ........................................................................ 85 

3.4.5 Solid structures with diverse metrics ................................................................................................... 88 

3.4.6 Multi-Material Printing ........................................................................................................................ 96 

3.5 CONCLUSION................................................................................................................................................ 101 

3.6 MATERIALS AND METHODS ......................................................................................................................... 102 

3.6.1 Preparation of pure and composite precursor solutions ..................................................................... 102 

3.6.2 General and multi-material printing procedure .................................................................................. 102 

3.6.3 Stabilizing the programed flat structures after printing ..................................................................... 104 

3.6.4 Growth Calibration ............................................................................................................................ 104 

3.6.5 Printing primary shapes with constant Gaussian curvatures .............................................................. 104 

3.6.6 Measuring 3D morphology accuracy ................................................................................................. 105 

3.6.7 The dynamic mechanical properties .................................................................................................. 105 

3.6.8 Solidification procedure..................................................................................................................... 106 

3.6.9 Tensile and hardness analysis of solid structures............................................................................... 106 

3.6.10     3D reconstruction .............................................................................................................................. 107 

3.7 REFERENCES ................................................................................................................................................ 107 

4 CHAPTER 4 ................................................................................................................................................... 111 

4.1 CONCLUSION................................................................................................................................................ 111 

 

 

 

 

 

 

 



 

5 

1 CHAPTER 1 

1.1 INTRODUCTION  

Shape-changing materials with the ability to adopt programmable 3-dimensional (3D) 

shapes and motions, known as 4D printing, offer promise for a wide range of applications 

including, smart textiles1, soft robotic2-4, actuators5-6, shape-changing sensors7, microfluidic 

valves8-9,  optical systems 10-11, artificial muscles12-13, and metrics for bio-separation13. Controlled 

deformation of thin plates, into programmed 3D surfaces, as a form of 4D printing14, has shown a 

great potential for the design of complex geometries, hard to achieve with other methods. 15-17 

Such methods potentially offer the scalability of the traditional forming processes with the 

customizability of additive manufacturing with great potential for the creation of complex 

structures and even motions.   

The most straightforward 3D shaping method is based on generating a bending configuration 

in a planar surface by forming a bilayer cantilever made of layers with different growth (expansion/ 

contraction) rates18-19 (Figure 1-1a) or directions20-22 or inducing a growth gradient along the 

thickness of a thin sheet23-24. These configurations can be generally implemented to make smoothly 

bent surfaces with uniform curvature or to create hinges for origami-like structures. Most of the 

current approaches use swellable hydrogels19-20, 25-29, shape-memory polymers30-31, and liquid 

crystalline elastomers32-34 fabricated using photopatterning19, 24, 26-28, self-folding19, 24, 35-36, and 

three-dimensional (3D) printing20, 31. These shape morphing thin sheets have been used in many 

applications, including soft robotic2-4, actuators5-6, shape-changing sensors7, microfluidic valves8-

9,  optical systems10-11, artificial muscles12-13, and metrics for bio-separation13.  
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Figure 1-1 Single direction bending approach for making 3D geometries. a Trilayer structure 

made of a temperature-responsive polymer sandwiched by glassy polymers patterned with open 

stripes as hinges. Reversible swelling of the middle layer induces a bending configuration toward 

the patterned edges16. b Reversible formation of bent structures through solvent assisted stress 

formation in a thin epoxy film with a cross-link gradient along its thickness24 

 

 Although such bending approaches lead to the formation of surfaces with constant and 

single curvatures (e.g., cylinders and hinges), they fail to make shapes with continuous curvature 

change (e.g., cone) or doubly curved 3D shapes (e.g., a cap). Limited 3D geometries attainable by 

these methods have made researchers seek for alternative ways that can offer a broader range of 

3D shapes. 

One of the most effective methods in this regard is to use thin plates that undergo controlled 

lateral (in-plane) differential growth (swelling/shrinkage), termed non-Euclidean plates37.  In this 

approach, controlled in-plane differential growth (swelling/shrinkage) in thin plates (2D surfaces) 

causes out-of-plane deformation and forms a 3D surface25-26, 37. Here, the controlled non-uniform 

growth defines new equilibrium distances between points on the 2D surface, leading to a controlled 
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pattern of internal strain. Since bending energy is more sensitive to thickness (𝐸B~𝑡h
3, where 𝑡h 

is the thickness of a plane) compared to in-plane stretching (𝐸S~𝑡h), the thinner the surface is, the 

more costly in-plane strains are compared to bending. Therefore, as 𝑡h → 0, the surface 

configuration tends to adopt out-of-plane bending configuration, resulting in the self-formation of 

a pre-defined 3D structure (Figure 1-2) (see Section 2.4.2 for more details).  

 

 

Figure 1-2 Formation of a target 3D structure by controlled lateral (in-plane) differential 

growth in a 2D sheet. a Schematic demonstration of a non-uniform growth in a thin plate. b 

Release of internal stresses through out-of-plane deformation, which results in the formation of a 

programmed 3D structure.  

 

By relying on controlled mechanical instability, this approach creates 3D structures with 

double curvature geometries38-39, often seen in natural bodies, such as flowers, skin, or leaves26, 40.  

In contrast to the man-made forming processes, living organisms undergo such mechanical 

instabilities by creating a controllable distribution of residual stresses under no external 

confinement to perform various biological processes, including morphogenesis, intricate motions, 



 

8 

and adaptation to environments25-26, 29, 40-51 (Figure 1-3).  Therefore, by controlling this mechanism, 

we can turn it into a powerful design and shaping strategy to make self-forming 3D surfaces with 

complex functionalities. 

 

Figure 1-3 lateral differential growth-induced 3D shaping in living organisms. Non-uniform 

cell growth on the brain’s surface causes wrinkle formation52. b Anisotropic muscle expansion 

(growth) responsible for the complex undulatory swimming motion in batoid fishes2. c 

Schematic demonstration of non-uniform growth induced tissue folding as a fundamental process 

that shapes epithelia into complex 3D organs53. 

 

By controlling the pattern of lateral growth to make non-Euclidean plates, one can make 3D 

structures that can mimic not only the complex shape of living organisms but also their 

continuously deforming motions.54-55  The physics of non-Euclidean plates is gradually being 

uncovered, but there are still many open questions. For example, despite the demonstration of 3D 

shaping for simple geometries,25-26, 56 3D structures with complex morphologies have been mostly 
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unachievable 51, 57-58. Furthermore, the dynamic growth-induced 3D motions of non-Euclidean 

plates have remained largely unexplored25-26.  Furthermore, most of the efforts so far have been 

focused on the theoretical and experimental aspects of 3D shape formation at equilibrium states25-

26, 56-58, while the  dynamic progression of intermediate shapes between equilibrium states has been 

unexplored. 

 Aside from theoretical challenges to design and predict the 3D shaping of non-Euclidean 

surfaces59-60, there has been a lack of a physical system (both material and fabrication method) 

capable of creating 2D materials encoded with a precise and continuous pattern of in-plane growth.  

Current fabrication methods such as injection molding25 or conventional multi-step lithography26-

27 fail to fabricate structures with continuous and precise growth patterns resulting in poor shape 

control and limited complexity and accuracy in forming 3D shapes. Moreover, the formation of 

non-Euclidean surfaces has been mostly limited to soft materials20, 26, 61-62, or pneumatic devices 

63-64 with low mechanical properties, further limiting its potential applications.  

In this work, we introduce an approach, called digital light 4D printing (DL4P), that 

encodes thermosensitive 2D hydrogels with a specific pattern of network density and thus 

temperature-induced growth (expansion and contraction) to make 3D structures with programmed 

shapes and motions.  
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1.2 OVERVIEW OF THE CHAPTERS 

In the second chapter of this study, we used the DL4P method to encode 2D polymers with 

specific growth patterns () through spatial and temporal control of photo-polymerization and 

crosslinking reactions via digital light projection grayscale lithography65. We developed a photo-

polymerizable prepolymer solution of poly(N-isopropylacrylamide), a hydrogel with temperature-

induced hydrophilic/hydrophobic transition in water. We showed that the use of two types of 

crosslinkers with different molecular weights increases the range of polymer’s tunability during 

photopolymerization. We used light exposure time to control the polymerization and crosslinking 

reactions of the prepolymer and thus modulate the subsequent expansion and contraction of the 

created polymer in a water medium. The grayscale light pattern during polymerization defines the 

local network and cross-linking densities of the hydrogel, which results in controlled expansion 

and contraction and allows 3D-shape formation at both swelled and shrunk states for the first 

time65. Also, controlling density provides control over the growth (swelling/shrinking) rate, 

resulting in the ability to program growth-induced 3D motions.   

Single-step digital photo-printing enabled us to use a modular approach for creating 

complex 3D structures with diverse geometries and motions26.  We addressed the fundamental 

problem of the direction control of deformation associated with non-Euclidean surfaces by 

introducing the concept of transition components.  

Our study revealed that the non-uniform rates of swelling and shrinking throughout the 

hydrogel surface determine the progressive shape-change of it while interchanging between 

different equilibrium states. To study the progressive shape-change of the 3D surfaces, we 

introduced the concept of dynamic target metric by studying the relationship between the photo-
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polymerization light exposure and the local rate of growth in the hydrogel to predict the dynamic 

configuration of the structures during the temperature change. These findings helped us to design 

dynamic 3D structures with complex motions, including ray-inspired 3D structures with 

programmed motions.    

In the third chapter, we introduce a stabilization process to create robust solid 3D structures 

from 3D hydrogels in the shrunk state. Although 3D forming relies on the controlled 3D buckling 

of 2D hydrogels in water, we achieved robust air-stable 3D solid structures by stabilizing the 3D 

shape of the hydrogels formed the shrunk state.  

The absence of the moving parts eases the specific rheological ink requirements and makes 

this method adaptable to a variety of inks with different properties. Building on this capability, we 

printed composite 3D structures by introducing a wide range of reinforcing phases to the 

prepolymer solution to make composite structures with tunable mechanical properties similar to 

the engineering polymers. We also developed a multi-material approach to construct 3D structures 

with specific material patterns that enable the creation of 3D shapes with point-by-point material 

control.  
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2.2 ABSTRACT 

Living organisms use spatially controlled expansion and contraction of soft tissues to 

achieve complex three-dimensional (3D) morphologies and movements and thereby functions. 

However, replicating such features in man-made materials remains a challenge. Here we report an 

approach that encodes 2D hydrogels with spatially and temporally controlled growth (expansion 

and contraction) to create 3D structures with programmed morphologies and motions. This 

approach uses temperature-responsive hydrogels with locally programmable degrees and rates of 

swelling and shrinking. This method simultaneously prints multiple 3D structures with custom 

designs from a single precursor in a one-step process within 60 s. We suggest simple yet versatile 

design rules for creating complex 3D structures and a theoretical model for predicting their 

motions. We reveal that the spatially nonuniform rates of swelling and shrinking of growth-

induced 3D structures determine their dynamic shape changes. We demonstrate shape-morphing 

3D structures with diverse morphologies, including bioinspired structures with programmed 

sequential motions. 
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2.3 INTRODUCTION 

Nature has inspired researchers to develop shape-morphing materials that can replicate the 

functions of native soft tissues1-2.  Such materials have applications in soft robotics, programmable 

matter, bioinspired engineering, and biomimetic manufacturing1-12.  Existing approaches use 

swellable hydrogels3-8, 13, shape-memory polymers14-15, and liquid crystalline elastomers16-18 with 

fabrication methods, such as photopatterning4, 6-8, 11, self-folding7, 11, 19-20, and three-dimensional 

(3D) printing5, 15.  These approaches have been used to build various self-shaping 3D structures, 

including those with complex 3D morphologies of living organisms4-5, but reproducing their 

movements has not been fully achieved1-2, 21.                

A promising approach in this regard is to use spatially controlled in-plane growth (expansion and 

contraction) of hydrogel sheets to form 3D structures via out-of-plane deformation (non-Euclidean 

plates)3-4.  Because bending is energetically less expensive than stretching in a thin sheet, the 

internal stresses developed by nonuniform in-plane growth are released by out-of-plane 

deformation3-4.  This approach defines 3D shapes with Gaussian curvatures22-23 and is uniquely 

capable of creating 3D structures with curved geometries, often seen in biological organisms but 

difficult to achieve by other methods4-5.  Living organisms, ranging from plants to marine 

invertebrates, use such approaches (e.g., differential growth) for fundamental biological processes, 

including morphogenesis, complex growth and movement, and adaptation to environments3-5, 13, 

24-34.  With the physical properties of hydrogels similar to those of soft tissues7, 12, 33, this approach 

thus has great potential for creating bioinspired 3D structures4.  In particular, the ability to spatially 

and temporally control the local in-plane growth could offer a new strategy to create dynamic 3D 

structures that can mimic the continuously deforming motions of living organisms.1-2   However, 
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dynamic growth-induced 3D motions of non-Euclidean plates remains largely unexplored3-4.  

Previous theoretical and experimental studies have mainly focused on the formation of 3D shapes 

at equilibrium states3-4, 35-37, but their dynamic behavior at metastable states during shape transition 

is not well understood.    Furthermore, the principle has been demonstrated for various 3D shapes,3-

4, 37 but achieving nonaxisymmetric 3D structures with complex morphologies remains to be 

further studied34-36.         

In this chapter, we introduce an approach named digital light 4D printing (DL4P) that creates 

dynamic 3D structures with programmed morphologies and motions (Figure 2-1a). This approach 

encodes temperature-responsive 2D hydrogels with spatially and temporally controlled growth 

(expansion and contraction) functions Ω, or target metrics, which transforms the hydrogels into 

prescribed 3D structures and programs their motions. Previous studies of differential growth-

induced 3D shaping have mostly formed single 3D shapes either at the swelled or the shrunk state3-

4, 38-39. In contrast, our temperature-responsive hydrogels with phototunable degrees and rates of 

swelling and shrinking allow us to define target 3D shapes at both the swelled and shrunk states. 

In particular, the ability to control the rates uniquely enables a new strategy for programming 

growth-induced 3D motions. This method simultaneously prints multiple 3D structures with 

custom design (using digital light projection grayscale lithography) from a single precursor 

solution in a one-step process within 60 s and is thus highly scalable. Taking advantage of our 

phototunable hydrogels and the flexible 2D printing method for 3D material programming (e.g., 

without the need for multiple physical masks or nozzles), we established simple yet versatile 

design rules and the concept of modularity for creating complex 3D structures with diverse 

morphologies 4, including ray-inspired structures with programmed motions. To investigate the 
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dynamic growth-induced motions, we introduced a concept of dynamic target metrics and 

developed a dynamic theoretical model based on the concept. Our experimental and theoretical 

studies reveal that the spatially nonuniform rates of swelling and shrinking of growth-induced 3D 

structures determine their dynamic shape changes. Furthermore, the swelling and shrinking rates 

of our hydrogels are phototunable and thus locally programmable. The ability to spatially control 

the rates of shape changes allows us to fabricate dynamic 3D structures with programmed 

sequential motions, as previously demonstrated with photopatterned hydrogels responsive to 

different molecular inputs (e.g., DNA molecules with different sequences) and those with different 

thicknesses 40. Such ability is critical for implementing complex functions but challenging to attain 

with global external stimuli (e.g., temperature). This work introduces a 3D fabrication method with 

the advantages of traditional (scalable) and additive (customizable) manufacturing for fabricating 

soft devices with programmed 3D morphologies and motions. 
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Figure 2-1 Programming of phototunable hydrogels to create 3D structures. a Digital light 4D 

printing process. The hydrogels are encoded with a growth function (or target metric) Ω using 

digital light projection grayscale lithography. The created 3D structures undergo a reversible shape 

transition at volume phase transition temperature Tc (~32.5 °C). T is temperature. The insets 

illustrate the polymer networks of the hydrogels at the early (short light exposure time tex) and late 

(long tex) stages of photo-polymerization, where gray, blue, and green structures represent 

pNIPAm, BIS, and PEGDA, respectively. b, c Areal shrinking (b) and swelling (c) ratios of dual- 

(red circles), BIS- (blue open circles), and PEGDA (green open circles)-crosslinked pNIPAm 

hydrogels as a function of tex. A35 and A25 are the areas of hydrogels at 25 °C and 35 °C, 

respectively. A0 is the area of as-prepared hydrogels. Error bars: s.d. of three independent 

measurements. d Areal swelling rates Δ(AT/A0)/Δt of dual-crosslinked pNIPAm hydrogels as a 

function of tex. AT is the area of hydrogels. t is time 
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and shrinking) from a single precursor solution through photo-polymerization and crosslinking 

within 60 s (Figure 2-1). The modulation of the material properties is based on the temporal control 

of polymerization and crosslinking reactions using two types of crosslinkers with different lengths 

by light exposure time tex. The phototunability provides a flexible means to encode the hydrogels 

with spatially and temporally controlled growth (swelling and shrinking), which can be used to 

program the formation of 3D structures and their motions. 

The precursor solution consists of N-isopropylacrylamide (NIPAm), N,N-methylene 

bisacrylamide (BIS; short-chain crosslinker), and poly(ethylene glycol) diacrylate (PEGDA; long-

chain crosslinker).  For an equimolar concentration of crosslinkers, crosslinking with PEGDA 

forms gels faster than with BIS, due to longer distances between the crosslinking points of PEGDA 

(Figure 2-2, Figure 2-3) 41.  The BIS- and PEGDA-crosslinked hydrogels swell and shrink in 

different degrees (Figure 2-1b, c, Figure 2-2).  

 

Figure 2-2 Areal swelling and shrinking ratios of pNIPAm hydrogels crosslinked with single 

crosslinkers (BIS and PEGDA). a Areal swelling and shrinking ratios (AT/A0) of pNIPAm 

hydrogels crosslinked with BIS as a function of light exposure time.  The hydrogels were prepared 

with BIS of 1.0 to 10.0 mol% of NIPAm in precursor solutions (as indicated in the legend).  b 

Areal swelling and shrinking ratios (AT/A0) of pNIPAm hydrogels crosslinked with PEGDA as a 

function of light exposure time.  The hydrogels were prepared with PEGDA of 0.25 to 5.0 mol% 

of NIPAm in precursor solutions (as indicated in the legend).  The open and closed circles represent 

the swelling and shrinking ratios, respectively.  The black, purple, red, blue, green, and orange 
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circles represent AT/A0 of pNIPAm hydrogels crosslinked with crosslinkers (BIS and PEGDA) 

of 0.25, 0.5, 1.0, 2.0, 5.0, and 10.0 mol% of NIPAm in precursor solutions, respectively, as 

indicated in the legends.  The results show that assuming the same kinetics of polymerization of 

NIPAm monomers with BIS and PEGDA, pNIPAm hydrogels crosslinked with long-chain 

crosslinkers (PEGDA) are formed at a lower monomer conversion (thus, lower network density at 

the gel point) than those crosslinked with short-chain crosslinkers (BIS).    

 

 

 

 

 

 
Figure 2-3 Measurements of the gel points of pNIPAm hydrogels crosslinked with single 

crosslinkers (BIS and PEGDA). a tan 𝛿 of pNIPAm hydrogels crosslinked with BIS as a function 

of frequency.  The black, red, and blue circles represent tan 𝛿 of pNIPAm hydrogels prepared by 

light exposure times of 8, 12, and 16 s, respectively.  b tan 𝛿 of pNIPAm hydrogels crosslinked 

with PEGDA as a function of frequency.  The black, red, and blue circles represent tan 𝛿 of 

pNIPAm hydrogels prepared by light exposure times of 2, 3, and 4 s, respectively.  At the gel 

point, tan 𝛿 = 𝐺′′/𝐺′ has a constant value over the frequency sweep, where 𝐺′ and 𝐺′′ are the 

shear storage modulus and shear loss modulus, respectively42-43.  The measurements show that the 

prepolymer solutions with BIS and PEGDA form gels with light exposure times of around 8 s and 

less than 2 s, respectively. 
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crosslinking indeed increases the phototunable range of shrinking and swelling and the range of  

𝑡ex that can be used to tune the shrinking and swelling ratios (Figure 2-1b, c, Figure 2-4).   

 

Figure 2-4 Areal shrinking and swelling ratios of pNIPAm hydrogels crosslinked with both 

BIS and PEGDA. a Areal shrinking ratio (A35/A0) of pNIPAm hydrogels crosslinked with both 

BIS and PEGDA as a function of light exposure time. b Areal swelling ratio (A25/A0) of pNIPAm 

hydrogels crosslinked with both BIS and PEGDA as a function of light exposure time.  The 

hydrogels were prepared with precursor solutions of NIPAm (0.2 g), BIS (0.5 mol% of NIPAm), 

PEGDA (0.25 mol% of NIPAm), and PBPO (0.3 mol% of NIPAm) in 1 mL aqueous solution (1:3 

ratio of water and acetone by volume).  The precursor solutions contain the same amount of BIS, 

PEGDA, and PBPO but 50 wt% of NIPAm in the precursor solutions used in Figure 2-1b, c.  Error 

bars: s.d. of three independent measurements. 

 

 

More interestingly, the swelling and shrinking rates of our hydrogels are also phototunable 

(Figure 2-1d).  We reason that crosslinking with long-chain crosslinkers (PEGDA) forms a low 

density hydrogel framework at an early stage (low monomer conversion), whereas the conversion 

of monomers to polymers and their crosslinking via short-chain crosslinkers (BIS) continuously 

occurs within the hydrogel framework throughout the time course of photo-polymerization, 

increasing the density of the polymer networks (Figure 2-1a).  Moreover, crosslinking via PEGDA 

is expected to be suppressed at the late stage, because of diffusional limitations in high-density 

polymer networks41.  We verified this mechanism by measuring the density of the polymer 

networks as a function of 𝑡ex.  The density increases with 𝑡ex (Figure 2-5a).  The increase in the 
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density in turn reduces the degrees and rates of macroscopic swelling and shrinking (Figure 2-1b–

d, Figure 2-5b, c).  This mechanism differs from previous ones that control the crosslink density 

by light irradiation dose, which, for example, tunes only the swelling of pNIPAm hydrogels4.  In 

contrast to photoinduced controlled/living radical polymerization (photo-CRP), which precisely 

controls the molecular architecture of polymers, such as molecular weights and compositions,44-47 

our approach modulates only the overall density of polymer networks (rather than the molecular 

weight of individual polymer chains).       

 

Figure 2-5 Density of pNIPAm hydrogels. a The density of pNIPAm hydrogels crosslinked with 

BIS and PEGDA by different light exposure times was measured.  The density of the pNIPAm 

hydrogels increases with light exposure time.  The density was calculated using their dry mass and 

the volume of as-prepared hydrogels after washing with acetone and IPA. b Areal shrinking ratio 

(A35/A0) as a function of density.  A35/A0 increases with the density of the hydrogels, showing that 

the degree of shrinking decreases with the density of the hydrogels. c Areal swelling ratio (A25/A0) 

as a function of density.  A25/A0 decreases with the density of the hydrogels, showing that the 

degree of swelling decreases with the density of the hydrogels.  

 

 

2.4.2 Mathematical theory for 3D shaping 

Our theoretical model for making growth function, , required to make 3D shapes is based 

on the theory of differential geometry of surfaces22-23 and the concept of target metrics (non-

Euclidean plates)3, 48.  A differential growth (swelling or shrinking)-induced 3D shape (surface) 
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distances between points on the 3D shape (surface)3, 22-23, 48.  Because bending (𝐸B~𝑡h
3, where 𝑡h 

is the thickness of a sheet) is energetically less costly than stretching (𝐸S~𝑡h) in a thin sheet, the 

internal stresses developed by nonuniform in-plane growth are released by out-of-plane bending 

deformation (𝐸B < 𝐸S)3-4, 48.  As the thickness of the sheet decreases, the shape converges to the 

embedding of the lowest bending energy3-4, 48.   

We consider a 3D shape (suface) with a parameterization22-23 

𝐱(𝑢, 𝑣) = (𝑥1(𝑢, 𝑣), 𝑥2(𝑢, 𝑣), 𝑥3(𝑢, 𝑣) ) (1) 

where (𝑢, 𝑣) are points on the 2D plane.  The square of the element of arc length, or the distance 

between neighboring points, in the 3D surface is given by the first fundamental form (or the metric)  

𝑑𝑠2 = 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 (2) 

where 𝐸, 𝐹, and 𝐺 are the coefficients of the first fundamental form22-23.  We assume that a 

spatially-controlled in-plane growth (swelling or shrinking) of a 2D plane in a coordinate system 

(𝑢′, 𝑣′) can induce the formation of the 3D shape via out-of-plane deformation3, 48.  The square of 

the distance between points on the 2D plane before deformation is 

𝑑𝑙2 = 𝐠𝑑𝑢′𝑑𝑣′ (3) 

where 𝐠 is the metric (or first fundamental form) of the 2D plane before deformation48.  The 

spatially controlled growth determines new equilibrium distances between points on the 2D plane.  

The information of the new distances is contained in a new metric 𝐠̅.  To form the 3D shape with 

the growth, the new metric of the 2D plane should be the same as that of the 3D shape:       

𝑑𝑠2 = 𝐠̅𝑑𝑢′𝑑𝑣′ (4) 
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We define the new metric 𝐠̅ as the target metric3, 48.  If the target metric (or the 

parameterization) is isothermal (or conformal), which is the case of our material systems (𝐸 = 𝐺 

and 𝐹 = 0), we can write the target metric with scale function 𝜆    

𝐠̅ = 𝜆2𝐠 (5) 

We define  =  𝐠̅ as our target metric and 𝜆2 (or ) as our areal growth function22-23.   

contains all the information about how to encode a 2D plane with spatially controlled growth 

(swelling or shrinking) to form the target 3D shape.  According to Gauss’s theorema egregium, 

Gaussian curvature is then 

𝐾 = −(ln𝜆)/𝜆2 = −(ln)/(2) (6) 

where  is the Laplacian22-23.          

     

2.4.2.1 Theoretical model for axisymmetric 3D structures 

Things greatly simplify if there is an axis symmetry. We consider an axisymmetric 3D 

shape (surface of revolution) in a cylindrical coordinate system (𝜌, 𝜑, 𝑧), where the 𝑧 axis is the 

axis of symmetry (axis of rotation) and 𝑧 = 𝑓(𝜌).  Then, we get the square of the element of arc 

length on the 3D shape from Equation 2: 𝑑𝑠2 = (1 + 𝑓𝜌
2)𝑑𝜌2 + 𝜌2𝑑𝜑2, where 𝑓𝜌 = 𝑑𝑓/𝑑𝜌22-23.  

We assume that we can induce the 3D shape by encoding a 2D plane with  in a polar corodinate 

system (𝑟, ).  Then, we get the following equation from Equation 4:    

(1 + 𝑓𝜌
2)𝑑𝜌2 + 𝜌2𝑑𝜑2 = (𝑟)(𝑑𝑟2 + 𝑟2𝑑 2) (7) 
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The left side of Equation 7 represents the distance between two neighboring points on the 

3D shape, whereas the right side represents the distance between neighboring points on the 2D 

plane after growth (swelling or shrinking).  In other words, Equation 7 describes how the spatially-

controlled growth of the 2D plane (right side) induces the 3D shape (left side).  Because the growth 

is axisymmetric, we assume that the angle between neighboring points on the 2D plane does not 

change during growth and thus obtain 𝑑𝜑 = 𝑑 and 𝜌2𝑑𝜑2 = (𝑟)𝑟2𝑑 2
.  Then, Equation 7 

gives: 

𝜌2 = (𝑟)𝑟2 (8) 

(1 + 𝑓𝜌
2)𝑑𝜌2 = (𝑟)𝑑𝑟2 (9) 

For a given axisymmetric 3D shape, we can thus determine the relationship of 𝑟 

and 𝜌 and that of  and 𝜌.  For a given , we can predict the 3D shape that adopts  using 

Equations 8 and 9.           

2.4.2.2 Determination of the growth function () for a target 3D structure 

We determine  for a spherical cap.  A spherical cap with a radius of 𝑟0 is given by    

𝜌2 + (𝑧 − 𝑧0)2 = 𝑟0
2 (10) 

where 𝑧0 is a constant.  We can then get 𝜌 and  as a function of 𝑟 using Equations 8, 9, and 10   

𝜌 =
2𝑟0(𝑟/𝑅)

1 + (𝑟/𝑅)2
 

(11) 

 =
𝑐

(1 + (𝑟/𝑅)2)2
 (12) 
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where 𝑅 and 𝑐 = 4(𝑟0/𝑅)2 are constants.  We can obtain local Gaussian curvature 𝐾 = 1/𝑟0
2 =

4/(𝑐𝑅2) using Equations 6 and 12.   

We next determine  for a cone structure.  A cone with a vertex angle of 2𝛽 is given by 

𝑧 − 𝑧0 = 𝜌 cot 𝛽 (13) 

We then can get 𝜌 and  as a function of 𝑟 using Equations 8, 9, and 13    

𝜌 = 𝜌0 (
𝑟

𝑅
)


 
(14) 

where 𝑅 is a constant and exponent  = sin𝛽, and      

 = 𝑐 (
𝑟

R
)

2(−1)

 
(15) 

where 𝑐 = (𝜌0/𝑅)2.  We can obtain 𝐾 = 0 using Equations 6 and 15.   

For a saddle shape, we used  

 =
𝑐

(1 − (𝑟/𝑅)2)2
 (16) 

We can then obtain 𝐾 = −4/(𝑐𝑅2) using Equations 6 and 16.   

 

2.4.2.3 Prediction of a 3D shape from a growth function ()  

We demonstrate the prediction of 3D shapes using a growth function in the form   

(𝑟) = 𝑐 [1 + (
𝑟

𝑅′
)

2

]
−1

 
(17) 
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where 𝑅′ = 𝑎𝑅 and 𝑎 and  are constants.  The constant 𝑎 is included to make  with different 𝛼 

have the same maximum and minimum values (max and min) in 0 < 𝑟/𝑅 < 1.  We used the 

experimentally accessible maximum and minimum values of A35/A0 (Figure 2-1b) as max and 

min.  We predicted 3D shapes using Equations 8, 9, and 17 as a function of 𝜉 = 𝑟/𝑅          

𝑧(𝜉) =
2𝐹1

3(1 + 𝛼)𝜉
[
(1 + 𝛼)(𝑎2 + 𝜉2)

𝑎2(−1 + 𝛼)
]

3−𝛼
2

[2𝑎2 + (1 + 𝑎)𝜉2] 

√−
1

(𝑎2 + 𝜉2)3
[𝑎2𝑐2(−1 + 𝛼)𝜉2 (1 +

𝜉2

𝑎2
)

𝛼

(2𝑎2 + (1 + 𝛼)𝜉2)] 

(18) 

where 2𝐹1 is a hypergeometric function  2𝐹1 = [
3

2
,

3−𝛼

2
;

5

2
; −

2𝑎2+(1+𝛼)𝜉2

𝑎2(−1+𝛼)
].  We constructed the 

theoretical 3D shapes and 𝐾 as a function 𝜌, in which 𝜉 = 𝑟/𝑅 in Equation 18 was converted to 𝜌 

using Equation 8.  We used Mathematica (Wolfram) and MATLAB for the calculations.  We 

calculated the theoretical values of the base angle 𝛾 

𝑡𝑎𝑛(𝛾) =
(𝑎2 + 𝜉2)(1 + 𝜉2/𝑎2)(1−𝛼)/2

𝑐(𝑎2 + 𝛼𝜉2)
√−

𝑎2𝑐2(−1 + 𝛼)𝜉2(1 + 𝜉2/𝑎2)𝛼[2𝑎2 + (1 + 𝛼)𝜉2]

(𝑎2 + 𝜉2)3
 

(19) 

 

2.4.3 Shape-morphing 3D structures with axisymmetric metrics 

   To validate our DL4P approach and demonstrate its accuracy, we created well-defined 

geometric 3D structures with axisymmetric metrics (Figure 2-6a–k).  In contrast to previous 

studies, which mostly form 3D shapes at either the swelled or the shrunk state3-5, our approach can 

define the target 3D shapes at both the swelled ( > 1) and the shrunk ( < 1) states.  The 
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equilibrium 3D shape is selected from the competition between bending (𝐸B~𝑡h
3, where 𝑡h is the 

thickness of a sheet) and stretching (𝐸S~𝑡h) energies3, 48.  As the thickness decreases, the hydrogel 

sheet thus converges to the stretch-free configuration that fully follows the target metric48.  

However, the actual metric adopted by experimental 3D structures differs from the target metric, 

because of a finite-thickness bending energy36, 48.  The structure at the shrunk state can thus yield 

a 3D shape closer to the theoretical configuration described by the target metric than one at the 

swelled state.  In addition, the use of hydrogels at the shrunk state is beneficial for practical 

applications, for example, because of their enhanced mechanical properties and the formation of 

target shapes under physiological conditions (𝑇 = 37 C) for potential biomedical applications49.  

We thus designed  for target shapes at the shrunk state.  
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Figure 2-6 Shape-morphing 3D structures with axisymmetric metrics. a–c 3D structures with 

constant Gaussian curvature 𝐾 at the shrunk state (right) and the corresponding structures at the 

swelled state (left): spherical cap (a), saddle (b), and cone (c) shapes.  d–f Reconstructed 3D 

images with 𝐾 of experimental (left) and theoretical (right) shapes of the spherical cap (d), saddle 

(e), and cone (f) structures in a–c.  g  used to form the structures in a–c: red line (spherical cap), 

blue line (saddle), and green line (cone).  h Experimental (solid circles) and theoretical (dashed 

line) values of 𝛽 with different 𝛼 in  for cone structures.  i, j Enneper’s minimal surfaces with 𝑛′ 

wrinkles: 𝑛′ = 4 (i) and 6 (j).  The structure reversibly transforms between prescribed 3D shapes 

at the swelled (left) and shrunk (right) states as shown in j.  k  used to form the Enneper’s minimal 

surfaces with 𝑛′ wrinkles in i, j and Figure 2-7:  with 𝑛′ = 3 (red line), 𝑛′ = 4 (blue line), and 

𝑛′ = 6 (green line).  l Experimentally constructed 3D structure with a smooth gradient in 𝐾 (left) 

and reconstructed 3D images with 𝐾 of the experimental (middle) and theoretical (right) structures. 

 is the base angle of the structures.  m  with different 𝛼 used to form the structures in l and 
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Figure 2-8:  with 𝛼 = 0 (red line), 𝛼 = 0.5 (blue line), 𝛼 = 0.75 (green line), and 𝛼 = 0.9 (orange 

line).  n Experimental (solid circles) and theoretical (dashed line) values of  of the structures 

formed with  in m as a function of 𝛼.  Scale bars, 5 mm (left), 2 mm (right) in a–c; 2 mm in i; 5 

mm (left), 2 mm (right) in j; 2 mm in l. 

 

  

We created spherical cap, saddle, and cone structures with constant Gaussian curvature 

𝐾 > 0, 𝐾 < 0, and 𝐾 = 0, respectively (Figure 2-6a–c, Section 2.4.2.2).  We used Equations 12, 

15 and 16 to experimentally create spherical cap, a truncated cone with a vertex angle of 2β and a 

saddle structures at the shrunk state (Figure 2-6a-c). We formed these structures by encoding 

hydrogels (400 m in thickness) with  shown in Figure 2-6g. Equations 10 and 13, were used to 

construct theoretical 3D structure and Gaussian curvature (K) of the cap and cone structures, 

respectively (Figure 2-6d,f), while we constructed a theoretical 3D structure with constant negative 

K (Figure 2-6e) by introducing two principle curvatures 𝑘1 = −𝑘2 = 2/(√𝑐𝑅)  into a flat surface 

using 3ds Max.  

  The resulting structures agree quantitatively with the theoretical structures, reflecting the 

accuracy of our approach (Figure 2-6d–f, Section 2.4.2.2).  For example, the experimentally 

measured 𝐾 of the spherical cap and saddle structures are 0.0464 mm-2 and -0.0727 mm-2, which 

match well with the theoretically calculated 𝐾 of 0.0468 mm-2 and -0.0722 mm-2, respectively.  

The cone structures constructed with different exponents 𝛼 in  have the programmed value of 

the vertex angle 𝛽 (𝛽 = sin−1𝛼) (Figure 2-6h).  We further verified our approach by creating 

Enneper’s minimal surfaces (Figure 2-6i, j) using (𝑟) = 𝑐[1 + (𝑟/𝑅)2(𝑛′−1)]2, where 𝑟 is a 

radial position and 𝑐, 𝑅, and 𝑛′ are constants (Figure 2-6k)4.   As expected, the growth functions 
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with different 𝑛′ induce Enneper’s surfaces with the targeted number of wrinkles 𝑛′ (Figure 2-6i–

k, Figure 2-7). 

 

Figure 2-7 Enneper’s minimal surfaces with a different number of wrinkles. Experimentally 

created Enneper’s minimal surfaces with  𝑛′ = 3 (a), 𝑛′ = 4 (b), and 𝑛′ = 6 (c) at the shrunk state 

(middle).  The images on the left side show the corresponding 3D structures at the swelled state.  

The images on the right side show the theoretical shapes of Enneper’s minimal surfaces with 𝑛′ = 

3, 𝑛′ = 4, and 𝑛′ = 6.  Scale bars, 5 mm (left); 2 mm (right). 

 

 

The created structures reversibly transform between prescribed 3D shapes at the swelled 

and shrunk states in response to temperature change (Figure 2-6a–c, j).  The 3D structures at the 

swelled state adopt new metrics, determined by the areal swelling ratios (Figure 2-1c) and the 

growth functions designed for the target shapes at the shrunk state.  Because of the inverse 

relationship between the areal swelling and shrinking ratios (Figure 2-1b, c), 3D shapes with 𝐾 >

0 (e.g., spherical cap in Figure 2-6a, right) at the shrunk state in general transform to 3D shapes 
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with 𝐾 < 0 at the swelled state (e.g., saddle-like shape in Figure 2-6a, left) and vice versa (Figure 

2-6b).       

In addition to determining  for a target 3D shape (Figure 2-6a, c), we can predict the 3D 

shape for a given  (Figure 2-6l).  To validate the predictive power of the model, we considered 

a growth function in the form (𝑟) = 𝑐[1 + (𝑟/𝑅′)2]−1, where 𝑅′ = 𝑎𝑅 and 𝑎 and  are 

constants (Figure 2-6l–n, Section 2.4.2.3).  The theoretical model predicts 3D shapes that consist 

of a spherical cap-like shape with a smooth gradient in 𝐾 in the central region and a cone-like 

shape (𝐾 = 0) in the outer region (Figure 2-6m).  The experimental structures agree well with the 

theoretical predictions (Figure 2-6l–n, Figure 2-8).  For example, the base angle  of the 

experimental structures decreases with 𝛼, following the predictions (Figure 2-6n).  We used 

Equation 19 to plot the theoretical values of 𝛾 as a function of 𝛼 and compared them with the 

experimentally obtained values in Figure 2-6n.   
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Figure 2-8 Prediction and creation of 3D structures with a smooth gradient in Gaussian 

curvature K. (a–d) The 3D structures were created with (𝑟) = 𝑐[1 + (𝑟/𝑅′)2]−1, where 𝑅′ =
𝑎𝑅, with 𝛼 = 0 and 𝑎 = 0.94  (a), 𝛼 = 0.5 and 𝑎 = 0.53 (b), 𝛼 = 0.75 and 𝑎 = 0.22 (c), which is 

also shown in Figure 2-6l, and 𝛼 = 0.9 and 𝑎 = 0.022 (d) (Figure 2-6m). Scale bars, 5 mm (left); 

2 mm (right).  (e–h) Reconstructed 3D images with K of experimentally created (left) and 

theoretically predicted (right) 3D structures shown in a–d.  The 3D images of the theoretically 

predicted 3D structures were constructed as described in Section 2.4.2.3.  The theoretical model 

predicts 3D shapes with a smooth gradient in 𝐾, which decreases from the maximum value to 0 

with 𝑟, as shown in e– h.  As compared in e–h, the experimental structures agree with the 

theoretical models. 

 

The examples in Figure 2-6 to Figure 2-8 illustrate the accuracy and sensitivity of our 

approach.  Small changes in  can induce substantial changes in the resulting 3D shapes (e.g., 

Figure 2-6i–k, Figure 2-7) 48.     
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2.4.4 Design rules for creating complex 3D structures 

We next sought to establish design rules for creating nonaxisymmetric 3D structures with 

diverse morphologies (Figure 2-9).  Our schemes involve the combination and transformation of 

target metrics and the concept of modularity.  As they are implemented in the metric space, these 

schemes require design rules for how to interface metrics4.   We thus introduced the concepts of 

linkers and transitional components at the interfaces of metrics.   
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Figure 2-9 Nonaxisymmetric 3D structures with morphological diversity. a–c, Hybrid 3D 

structures with radially (a, b) and azimuthally (c) combined .  d  used to create the 3D structures 

in c: 1 (red line), 2 (blue line).  e, f 3D structures with alternating 𝐾 > 0 and 𝐾 < 0 and 4 (e) 

and 6 (f) nodes along .  g, h Theoretically calculated Gaussian curvature 𝐾 of the structures with 

4 (g) and 6 (h) nodes shown in e, f at the swelled (left) and shrunk (right) states.  i  used to form 

the structures in e, f.  The red line, black line, and dashed black lines indicate  at 𝜃 = 0 and 

(𝑙π)/𝐿 (maximum ), 𝜃 = (2𝑙 − 1)π/(2𝐿) (minimum ), and 𝜃 between the maximum and 

minimum of , where 𝑙 and 𝐿 are constants.  𝑙 is a positive integer.  j Elongated elliptical saddle 

structure with an aspect ratio of 2 (𝑏 = 0.5).  k Spherical cap with 6 legs (𝑏 = 0.5, 𝐿 = 3).  l Saddle-

like structure with 6 legs (𝑏 = 0.5, 𝐿 = 3).  Scale bars, 2 mm in a–c; 5 mm (left), 2 mm (right) in 

e, f; 2 mm in j–l.    
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The radial and azimuthal combinations of growth functions yield hybrid 3D structures with 

alternating features of the functions along the 𝑟 (Figure 2-9a, b) and  (Figure 2-9c) directions, 

respectively.  For example, the radial combination of 1 for a spherical cap and 2 for a saddle 

shape induces a structure with 𝐾 > 0 and 𝐾 < 0 in the central and outer regions, respectively 

(Figure 2-9a, Figure 2-10).  

 

 

Figure 2-10 Hybrid 3D structures with radially combined target metrics. (a)  (red) used to 

form the hybrid 3D structure shown in Figure 2-9a.   radially combines 1 ( for a spherical 

cap shown in Figure 2-6a) at 0 < 𝑟/𝑅 < 0.43 and 2 ( for a saddle shape shown in Figure 2-6b) 

at 0.43 < 𝑟/𝑅 < 0.56.  The black dashed lines show the projection of 1 and 2.  (b)  that 

radially combines 1 ( for a saddle shape shown in Figure 2-6b) at 0 < 𝑟/𝑅 < 0.43 and 2 ( 

for a spherical cap shown in Figure 2-6a) at 0.43 < 𝑟/𝑅 < 0.56.  The radially combined  were 

used to form the hybrid 3D structure shown in d.  (c)  that radially combines  1 ( for a 

spherical cap shown in Figure 2-6a) at 0 < 𝑟/𝑅 < 0.5 and 2 ( for a cone shape with 𝛼 = 0.775 

shown in Figure 2-6c) at 0.5 < 𝑟/𝑅 < 1.0.  The radially combined  were used to form the hybrid 

3D structure shown in Figure 2-9b.   (d) Hybrid 3D structure generated with  in b.  The hybrid 

structure combines the saddle shape with 𝐾 < 0 and the spherical cap shape with 𝐾 > 0 in the 

center and outer regions, respectively.  Scale bar, 2 mm. 
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 Another example is a hybrid structure that combines a spherical cap and a cone (Figure 

2-9b).  The azimuthal combination of 1 (5 <  < 85 and 185 <  < 265) and 2 (95 <  < 

175 and 275 <  < 355) shown in Figure 2-9d yields a structure with alternating features of 1 

and 2 along  (Figure 2-9c).  We introduced a linear linker with a form L = (1 − 2)𝜃/∆𝜃 +

2 with ∆𝜃 =10 at the interfaces of 1 and 2 to make  continuous, as sharp discontinuities in 

 can cause stress accumulation and thereby shape distortion (e.g., hybrid  without linkers or 

linkers with 𝜃 =5, Figure 2-11).   

 

Figure 2-11 Hybrid 3D structures with azimuthally combined target metrics. (a) Hybrid 3D 

structure created with  that azimuthally combines 1 and 2 shown in Figure 2-9d without L.  

1 and 2 are shown in Figure 2-6m, which have with  = 0 and  = 0.9, respectively.  The 

sharp discontinuities in  induce stress accumulation and thus shape distortion.  (b) Hybrid 3D 

structure created with  that azimuthally combines 1 and 2 (Figure 2-9d) with L =
(1 − 2)(𝜃/∆𝜃) + 2 with ∆𝜃 = 5 at the interfaces.   that combines 1 and 2 using L 

with ∆𝜃 = 5 induces shape distortion, because of sharp changes at the interfaces.  (c) Hybrid 3D 

structure created with  that azimuthally combines 1 and 2 shown in Figure 2-9d without L 

but with space 𝜃 = 5 at the interfaces of 1 and 2.  The hybrid structure shows the key 

signatures of the structures induced by 1 and 2 along the 𝜃 direction (Figure 2-8a, d).  1 yields 

a spherical cap-like shape (Figure 2-8a), whereas 2 yields a shape that combines a spherical cap-

like shape in the center and a cone-like shape with a large vertex angle in the edge (Figure 2-8d).  

Scale bars, 2 mm. 
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Transforming axisymmetric  into a function of  in the form (𝑟, ) = 𝑐()(𝑟/

(𝑎()𝑅)) leads to nonaxisymmetric structures with varying morphologies along  (Figure 2-9e–

l).  𝑐() scales  along .  Therefore, transforming (𝑟) = 𝑐(𝑟/𝑅)2 + min for a modified excess 

cone (Figure 2-12)50-51 with 𝑐() = 𝑐0cos2(𝐿𝜃), where min and 𝐿 are  constants, forms a shape 

with alternating 𝐾 > 0 and 𝐾 < 0 and a programmed number of nodes 𝑛′ = 2𝐿 (Figure 2-9e–i, 

Figure 2-12).  The resulting structures with 4 (𝐿 = 2) and 6 (𝐿 = 3) nodes are shown in Figure 

2-9e, f, respectively.  The structures have the same number of nodes at the swelled and shrunk 

states (Figure 2-9e–h).  On the other hand, 𝑎() in (𝑟, ) = 𝑐(𝑟/(𝑎()𝑅)) scales  along 𝑟.  

This transformation defines the boundary of structures, while maintaining the functional form and 

thereby the shape along 𝑟.  Transforming  for a saddle shape with 𝑎() = 𝑏/

√1 + (𝑏2 − 1)sin2𝜃 thus forms an elongated elliptical saddle structure with an aspect ratio of 1/𝑏 

(0 < 𝑏 < 1) (Figure 2-9j, Figure 2-13); an elongated saddle structure with an aspect ratio of 2 

(𝑏 = 0.5) is shown in Figure 2-9j.  Interestingly, the directions of the principal curvatures at the 

center of the saddle structure align with the major and minor axes of the ellipse, suggesting that 

this configuration is an embedding of the lowest bending energy of the target metric.  Furthermore, 

adding periodicity into  with 𝑎() = 𝑏/√1 + (𝑏2 − 1)sin2𝐿 modulates the number of nodes 

𝑛′ = 2𝐿 along .  Using this transformation, we could form spherical cap and saddle-like structures 

with a targeted number of legs (Figure 2-9k, l, Figure 2-14).  The examples in Figure 2-9 show the 

versatility of our approach in creating diverse 3D morphologies.  These structures can be further 

used as a building block for multimodular 3D structures. 
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Figure 2-12 3D structures with continuously varying morphologies along the  direction. 

(a, b) 3D structures created with (𝑟, ) in Figure 2-9i with 𝐿 = 0 (a) and 𝐿 = 1 (b).  The structures 

on the left and right sides are at the swelled and shrunk states, respectively.  Scale bars, 5 mm 

(left); 2 mm (right).  (c, d) Corresponding Gaussian curvature 𝐾 maps of the structures with 𝐿 = 

0 (c) and 𝐿 = 1 (d) at the swelled and shrunk states.  Gaussian curvature 𝐾 is calculated from  in 

Figure 2-9i. 

 

 

Figure 2-13 Elongated elliptical saddle structures. The elongated elliptical saddle structures 

were created by transforming axisymmetric  for an saddle shape into a nonaxisymmetric form 

(𝑟, ) = 𝑐(𝑟/(𝑎()𝑅)), where 𝑎() = 𝑏/√1 + (𝑏2 − 1)sin2𝜃.  The major and minor axes of 

the ellipse are 𝑅 and 𝑏𝑅 (0 < 𝑏 < 1) or 𝑏𝑅 and 𝑅 (𝑏 > 1), respectively.  The elongated elliptical 

saddle structures were formed with 𝑏 = 0.5 (a), 𝑏 = 0.75 (b), 𝑏 = 0.9 (c), and 𝑏 = 1.0 (d), 

respectively.  The structure with 𝑏 = 0.5 in a is also shown in Figure 2-9j.  Scale bars, 2 mm. 
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Figure 2-14 Spherical caps with a targeted number of legs (nodes). The spherical caps with a 

targeted number of legs (nodes) were created by transforming axisymmetric (𝑟) for a spherical 

cap into a nonaxisymmetric form (𝑟, ) = 𝑐(𝑟/(𝑎()𝑅)), where 𝑎() = 𝑏/

√1 + (𝑏2 − 1)sin2𝐿𝜃.  The transformed (𝑟, ) has the period of 𝜋/𝐿 along the 𝜃 direction and 

thus induces a 3D structure with 2𝐿 nodes (legs).  𝑏 defines the ratio of the inner diameter to the 

outer diameter of the structure (and thus the length of the legs).  The spherical caps with 2 (a), 4 

(b), and 6 (c) legs were formed using (𝑟, ) with 𝑏 = 0.5 and 𝐿 = 1, 2, and 3, respectively.  Scale 

bars, 2 mm. 
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2.4.5 Multimodular 3D structures 

   The modular assembly of target metrics can create 3D structures with broad morphological 

and functional diversity (Figure 2-15, Figure 2-16)4.  However, there is an intrinsic problem in 

assembling modules in the metric space4.  Each module can randomly adopt the direction of 

deformation (e.g., upward or downward)4 or the orientation with respect to other modules due to 

the symmetric nature of metrics.  Thus, a multimodular  can in general form multiple different 

conformations presumably with the same elastic energy (as shown in previous work4 and Figure 

2-16).  To tackle this problem, we introduced the concept of transitional components, designed to 

control the direction of deformation and the orientation of modular components (Figure 2-15a–j).  

A saddle-like structure with 𝐾 < 0 (e.g., Figure 2-6b, Figure 2-9j) has the principle curvatures 

with the same sign along its parallel edges.  We thus postulated that modular components with 

𝐾 > 0 that share the parallel edges of a saddle-like structure (𝐾 < 0), or a parallel transitional 

component (e.g., small circles with dashed white lines in Figure 2-15f–i), would deform in the 

same direction as the parallel edges.  On the other hand, modular components with 𝐾 > 0 that 

share the perpendicular edges of a saddle-like structure (𝐾 < 0), or a perpendicular transitional 

component (e.g., large circles with dashed white lines in Figure 2-15f–i), would deform in the 

opposite directions.   
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Figure 2-15a–d show examples of multimodular structures with directional control, where 

the arrows indicate the programmed orientation of each module.  Placing the parallel and 

perpendicular transitional components between modules (indicated by the small and large circles 

Figure 2-15 Multimodular 3D structures. a–e Examples of multimodular 3D structures with 4 

modules with (a–d) and without (e) directional control.  The modules were programmed to 

deform in the directions indicated by the white arrows.  f–j Strategies to control the orientation of 

the modules in the corresponding structures in a–e.  The color maps illustrate  used to create 

the structures.  The small and large circles with white dashed lines indicate the parallel and 

perpendicular transitional components, respectively.  k Reconstructed 3D image of a stingray 

model with 𝐾.  l Modular design of a stingray-inspired 3D structure in m.  The modules for the 

body and the pectoral fins were designed based on the 𝐾 map in k and Figure 2-17.  m, n 

Stingray-inspired 3D structures with oscillatory flapping motions.  The white arrows indicate the 

direction of the motions.  Scale bars, 4 mm in a–e; 2 mm in m; 4 mm in n.   
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with white dashed lines in Figure 2-15f–i, respectively) led to the multimodular structures with 

designed morphologies (Figure 2-15a–d).  In contrast, the modules in a control structure without 

transitional components tend to deform in the same direction, implying slight variations in 

shrinkage through the thickness; the variations make a specific direction energetically favorable 

for all modules (Figure 2-15e, j). 

 

 

 

Figure 2-16 Multimodular 3D structures with the same target metric but different 

conformations. (a–c) Multimodular structures that consist of a modular component with 𝐾 > 0 

(spherical cap with 𝑅 = 10 mm in Equation 12 in Section 2.4.2.2) in the center and two smaller 

components with 𝐾 > 0 (spherical caps with 𝑅 = 5 and 2.5 mm in Equation 12 in Section 2.4.2.2) 

on the left and right sides.  The three structures in a, b, and c were formed with the same growth 

function but have different conformations, as the modules can randomly select a direction of 

deformation (upward or downward) with respect to neighboring modules.  Scale bars, 2 mm.  (d, 

e) Multimodular structures that consist of a module with 𝐾 < 0 in the center and two modules with 

𝐾 > 0 on the left and right sides.  The two structures shown in d and e were formed with the same 

growth function but have different conformations, as the modules can randomly adopt an 

orientation with respect to neighboring modules.  Scale bars, 4 mm. 
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The design rules established in this work (Figure 2-9, Figure 2-15) offer simple yet versatile 

ways to build complex 3D structures without the need for extensive computation.  To demonstrate 

this capability, we fabricated ray-inspired 3D structures that replicate the key morphological 

features of stingrays, including the pectoral fins with 𝐾 < 0 (Figure 2-15k–n)21, 52.  We designed 

multi-modular structures based on the reconstructed 3D images, 𝐾, and swimming motions of 

stingrays (Figure 2-15k, l, Figure 2-17)21, 52.  The growth functions for the body and the pectoral 

fins were designed and merged with linear linkers (Figure 2-15l), using the design rules shown in 

Figure 2-9, Figure 2-15a–j.  For example, the module for the body structure with the linkers was 

used as a transitional component that controls the orientation of the left and right pectoral fins with 

respect to the body and thus synchronizes their motions (Figure 2-18).  Furthermore, the ray-

inspired structures were designed to produce different types of oscillatory flapping motions in 

response to temperature cycles (between 31.5 C and 33.5 C), mimicking those of stingrays.  

We designed and fabricated stingray-inspired 3D structures (Figure 2-15m, n) based on the 

3D morphology and swimming motions of stingrays in literature21, 52.  We first reconstructed and 

rendered the 3D morphology of a stingray using a computer-aided 3D modeling and rendering tool 

(3ds Max, Autodesk) as shown in Figure 2-17a.  We then calculated 𝐾 and 𝐻2 from the 

reconstructed 3D image using MATLAB (Figure 2-15k, Figure 2-17b).  To fabricate the stingray-

inspired 3D structure (Figure 2-15m), we designed the modular components that mimic 𝐾 and the 

morphologies of the body and the pectoral fins of the stingray model (Figure 2-15k, l, Figure 2-17).  

For the body structure with 𝐾 > 0 (module 1), we designed body by transforming (𝑟) =

𝑐[1 + (𝑟/𝑅′)2]−1 with 𝛼 = 0.8 (𝐾 > 0; Figure 2-6l, m, Figure 2-8) to (𝑟, ) = (𝑟/(𝑎()𝑅)), 

where 𝑎() = 𝑏/√1 + (𝑏2 − 1)sin2𝜃 with 𝑏 = 0.5.  This transformation changes the 
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axisymmetric 3D structure (𝐾 > 0) into an elongated structure with an aspect ratio of 2 (𝑏 = 0.5).  

For the pectoral fins with 𝐾 < 0 (module 2), we designed fin by transforming (𝑟) =

𝑐[1 + (𝑟/𝑅′)2]−1 with 𝛼 = 1.5 (𝐾 < 0) to (𝑟, ) = (𝑟/(𝑎()𝑅)), where 𝑎() = 𝑏/

√1 + (𝑏2 − 1)sin2𝜃 with 𝑏 = 0.75.  (𝑟) = 𝑐[1 + (𝑟/𝑅′)2]−1 with 𝛼 > 1 induces a 3D 

structure with 𝐾 < 0, which is a negative analog to the structures with 𝐾 > 0 shown in Figure 2-6l 

and Figure 2-8.  To merge the pectoral fins with the body, we introduced linear linkers between 

body and fin, as described in Figure 2-9c and Figure 2-11.  The structure for the body (𝐾 > 0) 

along with the linkers functions as transitional components, which control the direction of 

deformation of the pectoral fins (𝐾 < 0) and their orientation with respect to the body and thus 

synchronize the motions of the left and right fins in response to temperature cycles.  Without proper 

linkers, the modular components can be randomly oriented (Figure 2-18).  We designed and 

fabricated the stingray-inspired 3D structure in Figure 2-15n as described above, using two 

modular components: (i) the body structure (𝐾 > 0) and (ii) the pectoral fin structures (𝐾 < 0).  

The motions of the ray-inspired structures (Figure 2-15m, n) were controlled by modulating 

temperature cycles between 31.5 C and 33.5 C in a temperature-controlled water bath.  For 

detailed observations of shape changes, we changed the temperature slowly.        
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Figure 2-17 Design of stingray-inspired 3D structures. a, Reconstructed 3D image and rendering 

of a stingray.  The 3D image was reconstructed based on the 3D morphology of stingrays in 

literature21, 52.  b, Reconstructed 3D image of the stingray model with squared mean curvature 𝐻2.  

c, Top-view of the reconstructed 3D image of the stingray model with 𝐾 (Figure 2-15k). 

 

 

 

 

Figure 2-18 Stingray-inspired 3D structure without linkers. The stingray-inspired 3D structure 

was constructed with the same modules for the body and the pectoral fins used in the structure in 

Figure 2-15m but without linkers.  Although they maintain the designed shape (𝐾 < 0), the 

pectoral fin structures are randomly oriented with respect to the body without linkers.  Scale bar, 

2 mm. 
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2.4.6 Dynamic behavior of growth-induced 3D structures 

We next explored how growth-induced 3D structures transform their shapes (Figure 2-19).  

To elucidate the underlying mechanism of the shape evolution, we introduced the concept of 

dynamic target metrics (Figure 2-19a–e).  To verify this concept, we used a spherical cap structure 

shown in Figure 2-6a as our model system.  Figure 2-19a shows the shape evolution of a spherical 

cap.  Despite its simple shapes at equilibrium (swelled and shrunk states), the structure undergoes 

complex shape transformations.  Our results reveal that the spatially nonuniform rates of swelling 

and shrinking of growth-induced 3D structures determine their dynamic shape changes as 

described below.     

To understand the dynamic behavior, we first measured 𝐴𝑇/𝐴0 of homogeneous hydrogels 

(i.e., hydrogel disks uniformly crosslinked by 𝑡ex) as a function of time 𝑡 during cooling (Figure 

2-19b).  The measurements indicate that the swelling rates decrease with 𝑡ex (as shown in Figure 

2-1d), reflecting the difference in the rate of diffusion of water through the hydrogels with different 

densities (supporting the mechanism in Figure 2-1).  The crossover of 𝐴𝑇/𝐴0 of hydrogels 

prepared with short and long 𝑡ex at around 30 to 35 min (indicated by the dashed black line in 

Figure 2-19b) implies how growth-induced structures transform between shapes with 𝐾 > 0 and 

𝐾 < 0 (e.g., Figure 2-6a–c, j, Figure 2-19a).   
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Figure 2-19 Dynamic behavior of growth-induced 3D structures. a Shape evolution of a 

spherical cap during cooling.  b 𝐴𝑇/𝐴0 of homogeneous hydrogels formed with different 𝑡ex as a 

function of cooling time 𝑡.  The black, red, blue, green, orange, purple, and navy circles represent 

𝐴𝑇/𝐴0 of the hydrogels formed with 𝑡ex of 8, 12, 16, 24, 36, 52, and 64 s, respectively.  c 𝐴𝑇/𝐴0 

in b as a function of 𝑡ex at different 𝑡 (dynamic calibration curves).  The black, red, blue, green, 
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orange, and purple circles represent 𝐴𝑇/𝐴0 at 𝑡 of 0, 20, 25, 30, 35, and 40 min, respectively.  d 

Dynamic growth function (or target metric) 𝑡 of the spherical cap at 𝑡 = 0 to 40 min.  The black, 

red, blue, green, orange, and purple line represent 𝑡 at 𝑡 of 0, 20, 25, 30, 35, and 40 min, 

respectively.  e 𝑡 for the shapes of the spherical cap in a at 25, 30, 32, and 35 min.  f 

Experimentally measured 𝐾sc (𝐾 of the spherical cap-like shape in the center) (black circles) and 

theoretically calculated 𝐾sc (red circles) as a function of 𝑡.  g Experimentally measured (𝜌/𝑅s)tr 

(location of the shape transition) (black circles) and theoretically calculated (𝜌/𝑅s)tr (red circles) 

as a function of 𝑡.  h Experimentally measured number of the wrinkles (black circles) as a function 

of time.  The red circles represent 𝑛 obtained from the fit of  =  𝑐/[1 + (𝑟/(𝑎𝑅))2]2 +
[1 + (𝑟/𝑅)𝑛]2 − 1 to 𝑡 as described in the main text and Figure 2-25.  i Replicated structures of 

the dynamic shapes of the spherical cap in a at 20, 25, 30, 32, and 35 min.  j Normalized 𝑡 used 

to create the structures shown in i.  The blue, green, magenta, and orange lines represent 𝑡 at 25, 

30, 32, and 35 min, respectively.  Scale bars, 5 mm in a; 2 mm in i.    

 

 

 

To quantitatively describe the shape evolution, we next constructed dynamic calibration 

curves (𝐴𝑇/𝐴0 as a function of 𝑡ex at times 𝑡) using 𝐴𝑇/𝐴0 shown in Figure 2-19b (Figure 2-19c, 

Figure 2-20), analogous to the static calibration curves (Figure 2-1b, c).  The dynamic calibration 

curves show how the local areas created with 𝑡ex in 3D structures swell (or shrink) with 𝑡.  

𝐴𝑇/𝐴0(𝑡ex) changes from the static calibration curve at the shrunk state (i.e., 𝐴𝑇/𝐴0(𝑡ex) at 𝑡 = 0 

min in Figure 2-19c) to the static calibration curve at the swelled state (Figure 2-20).  We can then 

determine how  for a 3D shape evolves with 𝑡 (dynamic growth function or target metric 𝑡) 

from  at 𝑡 = 0 min (i.e.,  at the shrunk state), using the dynamic calibration curve 𝐴𝑇/𝐴0(𝑡ex) 

at 𝑡.     
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Figure 2-20 Time-dependent areal swelling and shrinking ratios as a function of light 

exposure time at different times during cooling. The areal swelling and shrinking ratios as a 

function of light exposure time 𝑡ex at different times 𝑡 during cooling were constructed using 

Figure 2-19b.  𝐴𝑇/𝐴0(𝑡ex) changes from an increasing function of 𝑡ex (shrunk state) to a 

decreasing function of 𝑡ex (swelled state) with time.  The transition of 𝐴𝑇/𝐴0(𝑡ex) reflects how 

the spherical cap in Figure 2-19a transforms from a shape with 𝐾 > 0 at the shrunk state to a shape 

𝐾 < 0 at the swelled state. 

 

 

 

 

Having established the procedure to determine 𝑡, we applied the concept of dynamic 

target metrics to investigate the shape evolution of the spherical cap structure (Figure 2-19a).  We 

determined 𝑡 for the spherical cap (Figure 2-19d, e, Figure 2-21) from its static growth function 

(shown in Figure 2-6g), using the dynamic calibration curves (shown in Figure 2-19c, Figure 2-20).  
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𝑡 shows how the metric of the spherical cap changes with time and thus how the structure changes 

its shape (Figure 2-19d, e, Figure 2-21, Figure 2-22).   
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Figure 2-21 Dynamic growth functions (target metrics) for a spherical cap 

structure at different times during cooling. The dynamic growth functions (or target 

metrics) 𝑡 of the spherical cap at different times during cooling (Figure 2-19a) were 

constructed from  for a spherical cap structure (Figure 2-6g) using the dynamic 

calibration curves (Figure 2-20).  𝑡 changes from a decreasing function of 𝑟/𝑅 to an 

increasing function, reflecting the transformation of the spherical cap shape (𝐾 > 0) at 

the shrunk state to the saddle-like shape (𝐾 < 0) at the swelled state.   
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Figure 2-22 Normalized dynamic 𝒕 t of the spherical cap structure at t= 0 to 40 min.  

 

During this transition, 𝑡 undergoes complex transformations, forming hybrid elliptic and 

hyperbolic metrics (Figure 2-19d, e) and thus inducing hybrid 3D shapes (Figure 2-19a, Figure 

2-23).  The spatially nonuniform kinetics of swelling produces hybrid 𝑡 with a minimum at 

(𝑟/𝑅)min at 𝑡 of 20 to 40 min (as indicated by dashed black lines in Figure 2-19e and Figure 2-23).  

𝑡 at 𝑟/𝑅 < (𝑟/𝑅)min and 𝑟/𝑅 > (𝑟/𝑅)min represents the spherical cap-like shape in the center 

(𝐾 > 0) and the wrinkles in the edge (𝐾 < 0), respectively.  The functional form of 𝑡 (e.g., sharp 

change in the gradient of 𝑡 at 𝑟/𝑅 > (𝑟/𝑅)min) reflects how 𝑡 forms wrinkles, reminiscent of 

Enneper’s surfaces (Figure 2-6i–k, Figure 2-7).   
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Figure 2-23 Dynamic shapes of the spherical cap structure. a, Dynamic shapes of the spherical 

cap structure shown in Figure 2-19a at 25, 30, 32, 35, and 37 min.  The location of the shape 

transition between the spherical cap-like shape (𝐾 > 0) and the wrinkles (𝐾 < 0) (𝜌/𝑅s)tr was 

obtained by measuring 𝜌tr and 𝑅s as shown in the structure at 25 min: (𝜌/𝑅s)tr = 𝜌tr/𝑅s.  Scale 

bar, 2 mm.  b, 𝑡 for the spherical cap at 25, 30, 32, 35, and 37 min.  The location of the minimum 

(𝑟/𝑅)min, indicated by the dashed lines in the graphs, shifts from the edge toward the center with 

time. 

 

 

To demonstrate that 𝑡 predicts the dynamic shape change, we quantified the shape 

evolution of the spherical cap structure at 0 to 40 min and compared it with our theoretical model 
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(Figure 2-19f–h, Figure 2-23, Figure 2-24, Figure 2-25).  We characterized the dynamic shapes by 

Gaussian curvature of the spherical cap-like shape in the center 𝐾sc (Figure 2-19f), the location of 

the shape transition between the spherical cap-like shape (𝐾 > 0) and the wrinkles (𝐾 < 0) 

(𝜌/𝑅s)tr, where 𝜌 is the radial coordinate of the 3D structure and 𝑅s is the radius of the structure 

(Figure 2-19g, Figure 2-23, Figure 2-24), and the number and amplitude of wrinkles (Figure 2-19, 

Figure 2-25).  The experimentally measured 𝐾sc decreases with time and the spherical cap-like 

shape gradually disappears at around 40 min (𝐾 → 0), matching well with 𝐾sc obtained from 𝑡 

(Figure 2-19f).  The measured (𝜌/𝑅s)tr decreases with time (i.e., shifts toward the center of the 

structure), showing a good agreement with (𝜌/𝑅s)tr calculated from (𝑟/𝑅)min (using Equation 8 

in Section 2.4.2.1).  The shift of (𝜌/𝑅s)tr (or (𝑟/𝑅)min) results in the decrease in the region of the 

spherical cap-like shape and the increase in the region of the wrinkles.   

 

Figure 2-24 Radius of the spherical cap structure as a function of time. The radius 𝑅s of the 

dynamic shapes of the spherical cap structure shown in Fig 5a was measured as a function time 

(black circles) as shown in Figure 2-23a.  The theoretically calculated 𝑅s (red circles) was obtained 

from 𝑡 (Figure 2-19d, e, Figure 2-21) using Equation 8 in Section 2.4.2.  
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Figure 2-25 Experimentally measured number and amplitude of the wrinkles in the dynamic 

shapes of the spherical cap structure. a, Experimentally measured number of the wrinkles of the 

spherical cap structure shown in Figure 2-19a as a function of time.  b, Experimentally measured 

maximum amplitude of the wrinkles of the structure as a function of time.  c, Experimentally 

measured number of the wrinkles shown in a as a function of 𝑛.  The values of 𝑛 were obtained 

by fitting  =  𝑐/[1 + (𝑟/(𝑎𝑅))2]2 + [1 + (𝑟/𝑅)𝑛]2 − 1 to 𝑡 (shown in Figure 2-19d, e and 

Figure 2-21), where the first and second terms in  represent the spherical cap-like shape (a 

functional form of spherical caps in Figure 2-6g) and the wrinkles (a functional form of Enneper’s 

surfaces in Figure 2-6k), respectively, and 𝑐, 𝑎, and 𝑛 are constants.  As observed in Enneper’s 

surfaces (Figure 2-6i–k, Figure 2-7), the number of wrinkles in the structure increases with 𝑛.             

 

 

Furthermore, our theoretical model describes how the number of the wrinkles decreases 

with time while their amplitude increases (as shown in Figure 2-19a and Figure 2-23).  To 

understand how the structure forms the wrinkles, we fitted  =  𝑐/[1 + (𝑟/(𝑎𝑅))2]2 +

[1 + (𝑟/𝑅)𝑛]2 − 1 to 𝑡, where the first and second terms in  represent the spherical cap-like 

shape (as shown in Figure 2-6g) and the wrinkles (a functional form of Enneper’s surfaces in 

Figure 2-6k), respectively, and 𝑐, 𝑎, and 𝑛 are constants.  The results show that 𝑛 decreases with 

time, suggesting that the decrease in 𝑛 results in the decrease in the number of the wrinkles and 

the increase in their amplitude (Figure 2-19h, Figure 2-25), as observed in Enneper’s surfaces with 

different 𝑛′ (Figure 2-6i–k, Figure 2-7)4, 37.  The dynamic 𝐾 maps theoretically calculated from 

𝑡 reflect the experimentally observed shape transformations (Figure 2-26).   
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Figure 2-26 Maps of normalized Gaussian curvature of the spherical cap structure at 

different times during cooling. The maps of normalized Gaussian curvature 𝑅2(𝑡)𝐾 of the 

spherical cap structure at different times (Figure 2-19a) were constructed from 𝑡 shown in Figure 

2-21.  The 𝐾 maps reflect the experimentally observed shape transformations shown in Figure 

2-19a as described in the main text.  𝑅(𝑡) is the time-dependent 𝑅 in the coordinate of 3D structures 

at the swelled and shrunk states (𝜌, 𝜑, 𝑧) calculated by Equation 8 in Section 2.4.2: 𝑅(𝑡)2 =
𝑡(𝑅)𝑅2.    

 

 

To further demonstrate that 𝑡 can predict the dynamic behavior of growth-induced 3D 

structures, we replicated the dynamic shapes of the spherical cap using 𝑡 (Figure 2-19i).  Because 

the full range of 𝑡 is not accessible by our material systems, we rescaled 𝑡 to the experimentally 

accessible range of  (Figure 2-19j).  The replicated structures reproduce the key signatures of the 

shape evolution, including the formation of wrinkles and their shape changes (e.g., increase in the 

amplitude of wrinkles, decrease in their number, and gradual disappearance of the spherical cap-

like shape in the center) (Figure 2-19i).  The discrepancy in the detailed shapes (e.g., enhanced 

wrinkles) is attributed to the use of normalized 𝑡.  Moreover, this approach that uses 𝑡 for 3D 

shaping provides new pathways for creating complex 3D structures.  This approach offers rich 

sources to design complex 3D shapes, difficult to access with current theories (e.g., wrinkle 

formation)35, and to understand how differential in-plane growth translates to 3D shapes.  

Manufacturing complex 3D structures, such as those shown in Figure 2-19i, is difficult and 

expensive to achieve by other methods.    
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2.4.7 Dynamic 3D structures with programmed sequential motions 

Another important finding is that the swelling and shrinking rates of our hydrogel systems 

are phototunable and thus locally programmable.  To demonstrate the ability to control the speed 

of shape change, we created saddle structures with an identical shape but different speeds of shape 

transformation (Figure 2-27a, b, Figure 2-28).   

 

Figure 2-27 Dynamic 3D structures with programmed sequential motions. a Fast and slowly 

transforming saddle structures at 𝑡 = 0 (left) and 30 min (right) during cooling.  𝐾c is 𝐾 in the 

center of structures.  b Theoretically calculated 𝐾 of the structures in a.  𝑅(𝑡)2𝐾 is normalized 𝐾 

using the time-dependent 𝑅 as described in Figure 2-26.  c Growth functions used to create the 

saddle structures with different speeds of shape transformation in a.  The red and blue lines 

represent fast and slow used to create the fast and slowly transforming structures in a, 

respectively.  d Ray-inspired 3D structure with programmed sequential motions.  The images show 

the structure at the equilibrium shrunk state and the dynamic structures at 0, 5, 10, 20, and 25 min 

during cooling of a temperature cycle (from left to right).  e Theoretically calculated dynamic 𝐾 

maps of the modules in the structures in d at the equilibrium shrunk state and at 0, 5, 10, 20, and 

25 min during cooling (from left to right).  Scale bars, 2 mm in a; 5 mm in d. 
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To create these structures, we designed fast and slow with the same functional form ( 

for a saddle shape shown in Figure 2-6g) but in different  ranges: slow/fast = C, where C is 

a constant and C > 1 (Figure 2-27c).  The growth (swelling and shrinking) rates decrease with 𝑡ex 

and thus with  (Figure 2-1d, Figure 2-29), but a 3D shape is determined by the relative growth 

(not by the absolute values of ).  We can therefore program the speed of shape transformation 

without changing 3D shapes by controlling the range of  (e.g., the maximum and minimum 

values of ) but maintaining the relative growth (e.g., (𝑟/𝑅)/min, where min is a constant).  

As designed, the structure with fast transforms its shape faster than the structure with slow 

(Figure 2-27a,b, Figure 2-28).  The dynamic 𝐾 maps theoretically calculated from the dynamic 

growth functions describe the experimentally observed shape transformations with different 

speeds (Figure 2-27b, Figure 2-28).  Within the structures (Figure 2-27a, b), due to the difference 

in the range of , the central regions (𝑟/𝑅~0; low range ) transform faster than the edge regions 

(𝑟/𝑅~0.4; high range ), also seen in the dynamic 𝐾 maps (Figure 2-27b, Figure 2-28).  The same 

trend is observed in the spherical cap structure (Figure 2-27a), in which the edge region (low 

range ) transforms faster than the central region (high range ) (Figure 2-26). 

      



 

62 

 

Figure 2-28 Saddle structures with different speeds of shape transformation. a, Dynamic 

shape evolution of saddle structures (𝐾 < 0) with high and low speeds of shape transformation 

during cooling.  The top (fast) and bottom (slow) structures were created with the growth functions 

in the low (red line) and high (blue line) ranges in Figure 2-27c, respectively.   The two structures 

have the same shape but different sizes because of the use of  in different ranges.  As designed, 

the top structure transforms its shape faster than the bottom structure.  For example, the top 

structure transforms from a shape with 𝐾c < 0 to a shape with 𝐾c > 0 around 25 min, whereas the 

bottom structure at around 30 to 35 min.  𝐾c is Gaussian curvature in the center of the structures.  

Scale bar, 2 mm.  b, Maps of normalized Gaussian curvature 𝑅2(𝑡)𝐾 of the structures in a.  The 

dynamic 𝐾 maps were constructed using 𝑡 for the saddle structures.   
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Figure 2-29 Areal swelling rates (speeds of shape change) as a function of .  The areal swelling 

rates (AT/A0)/t were calculated using the swelling rates of the hydrogels as a function of 𝑡ex 

(Figure 2-1d) and the static calibration curve at the shrunk state (Figure 2-1b).  As the swelling 

rate decreases with a value of , we can create structures with different speeds of shape change 

by programming the structures with different ranges of  (as shown in Figure 2-27a–c and Figure 

2-28).  

 

 

 

The ability to spatially control the rate of shape transformation allows us to create dynamic 

3D structures with programmed sequential motions, difficult to achieve with global external 

stimuli8.  As a demonstration, we fabricated a ray-inspired 3D structure with programmed 

sequential motions (Figure 2-27d, e,Figure 2-30, Figure 2-31).  The structure consists of modules 

for the body (𝐾 > 0), front wings (𝐾 < 0), and rear wings (𝐾 < 0) (Figure 2-30).  The front and 

rear wings were designed to transform fast and slowly, respectively, and thereby be sequentially 

actuated in response to temperature change (Figure 2-27d, e).  As designed, the front wings 

transform first from a shape with 𝐾c < 0 to 𝐾c > 0 (around 5 min), gradually lifting the rear wings, 

while the rear wings slowly transform (e.g., 𝐾c < 0 up to 10 min) and flap after 20 min (Figure 

2-27d).  Moreover, we can control the oscillatory motions (e.g., amplitude and frequency) by 

modulating temperature cycles (Figure 2-31).  The theoretically calculated dynamic 𝐾 maps for 

each module illustrate the experimentally observed sequential motions (Figure 2-27e).  
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Figure 2-30  used to fabricate a ray-inspired structure with programmed sequential 

motions.  shown in green, red, and blue lines were used for the modules for the body, the front 

wings, and the rear wings of the structure shown in Figure 2-27d, respectively. 

 

 
 

Figure 2-31 Control of the motions of the ray-inspired structure by modulating temperature 

cycles. The motions of the ray-inspired structure can be controlled by modulating temperature 

cycles.  The figures show 3 continuous cycles of the motions with 20 (a), 25 (b), and 30 (c) minute 

cooling times.  By controlling the temperature cycle (e.g., cooling and heating times), the 
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amplitude and frequency of the programmed motions can be controlled.  The amplitude of the 

motions increases with increasing cooling times.  The rear wings show a rapid snapping motion.  

This behavior is attributed to the transformation of stored elastic energy, resulted from the 

interactions of the rear wings and the surface, into the kinetic energy of the motions 24, 53.  Scale 

bars, 2 mm. 

 

2.5 CONCLUSION  

Living organisms often achieve 3D morphologies and movements by using spatially 

patterned and temporally controlled expansion and contraction of continuously deformable soft 

tissues.  Our approach that uses the spatially and temporally controlled growth for programming 

3D shapes and their motions, possibly with a large number of degrees of freedom, could thus create 

dynamic 3D structures that mimic the morphologies and motions of living organisms and thus, 

potentially, their functions.  The ability to program growth-induced 3D shapes and motions could 

potentially transform the way we design and fabricate soft engineering systems, such as soft robots, 

actuators, and artificial muscles.  The concept is applicable to other programmable materials.  The 

2D printing approach for 3D material programming represents a scalable and customizable 3D 

manufacturing technology, potentially integrable with biological systems1-2, 7, 21, 30 and existing 2D 

fabrication methods and devices for multifunctionalities and broader applications54. 
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2.6 MATERIALS AND METHODS 

2.6.1 Preparation of precursor solutions 

The precursor solutions for pNIPAm crosslinked with BIS and PEGDA were prepared by 

dissolving NIPAm (0.4 g), BIS (0.5 mol% of NIPAm), PEGDA with an average molecular weight 

(MW) of ~700 g mol-1 (0.125 mol% of NIPAm), and diphenyl(2,4,6-trimethylbenzoyl)phosphine 

oxide (PBPO) (0.15 mol% of NIPAm) in 1 mL aqueous solutions (1:3 ratio of water and acetone 

by volume).  The precursor solutions for pNIPAm crosslinked with BIS were prepared by 

dissolving NIPAm (0.2 g), BIS (0.25 to 5.0 mol% of NIPAm), and PBPO (0.3 mol% of NIPAm) 

in 1 mL aqueous solutions (1:3 ratio of water and acetone).  The precursor solutions for pNIPAm 

crosslinked with PEGDA were prepared by dissolving NIPAm (0.2 g), PEGDA (1.0 to 10.0 mol% 

of NIPAm), and PBPO (0.3 mol% of NIPAm) in 1 mL aqueous solutions (1:3 ratio of water and 

acetone).  All materials were purchased from Sigma-Aldrich and used as received.               

 

2.6.2 Creation of shape-morphing 3D structures 

Projection lithography cells were prepared by placing a polydimethylsiloxane (PDMS) 

spacer with a thickness of 400 m on a PDMS substrate.  After purging with nitrogen to reduce 

the effects of oxygen on photo-polymerization, the precursor solutions were introduced into the 

cells.  The cells were then covered with a glass coverslip (150 µm in thickness).  The precursor 

solutions were then programmed with growth functions (or target metrics)  by spatially and 

temporally controlled ultraviolet (UV) light (dynamic light projection grayscale lithography).      
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Shape-morphing 3D structures were created using DL4P.  2D structures that define the boundary 

of target structures were designed using 3ds Max (Autodesk).  Growth functions  designed for 

target 3D shapes were converted into 2D maps of light exposure times using the calibration curves 

of the areal swelling and shrinking ratios versus light exposure time (Figure 2-1b, c) with a custom-

made MATLAB (MathWorks) code.  The growth functions define local AT/ A0 of 2D structures.  

STL (stereolithography) files were generated that contains the information of the 2D maps of light 

exposure times.  The precursor solutions were polymerized and crosslinked by spatially and 

temporally controlled UV light using a digital light processing (DLP) projector (Vivitek D912HD) 

with the STL files (dynamic light projection lithography).  After polymerization and crosslinking, 

the 2D hydrogel structures were detached from the cell and immediately washed with acetone, 

isopropyl alcohol (IPA), and water for 3 times to remove unreacted monomers, crosslinkers, and 

photoinitiators, and suppress photo-polymerization and crosslinking reactions.  To achieve the 

target 3D shapes at the equilibrium swelled state, the hydrogel structures were immersed in water 

at 4 °C for 72 hours, while exchanging the water every 12 hours, and then at 25 °C for 2 hours in 

a temperature controlled water bath.  To induce the target 3D shapes at the equilibrium shrunk 

state, the temperature of the water was slowly increased to 35 °C.  Food color dyes were introduced 

into hydrogel structures for imaging.  Hydrogel structures without dyes are transparent at 

equilibrium states.     
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2.6.3 Measurement of areal swelling and shrinking ratios 

Homogeneous pNIPAm hydrogel disks with a diameter of 5 mm (i.e., hydrogel disks 

formed with constant ) were prepared by DL4P.  The hydrogel disks were uniformly exposed to 

UV light over the entire disks with light exposure times of 8 to 70 s.   The areas of the hydrogel 

disks at the swelled state A25 were measured at 25 °C.  The areas of the hydrogel disks at the shrunk 

state A35 were measured at 35 °C.  The areal swelling and shrinking ratios are defined as A35/ A0 

and A25/ A0, respectively, where A0 is the area of as-prepared hydrogel disks.  The hydrogel disks 

were used to generate the calibration curves of the areal swelling and shrinking ratios versus light 

exposure time (Figure 2-1b, c, Figure 2-2).  This process induces essentially no or little variation 

of swelling and shrinking through the thickness and thus does not induce bending of homogeneous 

hydrogel disks.                                      

 

2.6.4 Measurements of mechanical properties and gel points 

 The dynamic mechanical properties of hydrogels at the swelled state were measured using a 

rheometer (DHR-2, TA Instruments) with a 20-mm plate geometry.  Hydrogel disks with a 

diameter of 20 mm were used.  The shear storage modulus G′ and loss modulus G′′ were measured 

by frequency sweeps of 0.01 to 100 rad s-1 at an oscillatory strain of 1%.  The hydrogel disks with 

a storage shear modulus larger than 20 Pa were used for the measurements of the swelling and 

shrinking ratios (Figure 2-1b, c, Figure 2-2).   

The gel points of hydrogels crosslinked with single crosslinkers were measured by the 

method of Winter and Chambon (Figure 2-3)42-43.  Hydrogel disks with a diameter of 20 mm were 
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prepared with single crosslinkers (BIS and PEGDA; 1 mol% of NIPAm in precursor solutions) 

with different light exposure times (BIS-crosslinked hydrogels: 4, 8, 12, and 16 s; PEGDA-

crosslinked hydrogels: 1, 2, 3, and 4 s).  The hydrogel disks that form stable hydrogels after 

washing with acetone and IPA were used for the measurements.  G′ and G′′ were measured by 

frequency sweeps of 0.1 to 15 Hz at an oscillatory strain of 0.1% using the rheometer with a 20-

mm plate geometry.  To determine the gel points, tan 𝛿 = 𝐺′′/𝐺′ were plotted as a function of 

frequency.  At the gel point, tan 𝛿 = 𝐺′′/𝐺′ has a constant value over the frequency sweep (Figure 

2-3)42-43.   

 

2.6.5 Reconstruction of 3D images and Gaussian curvatures 

  The 3D images and Gaussian curvatures 𝐾 of experimentally created 3D structures were 

constructed based on the spin image 3D recognition method55.  2D images of the 3D structures 

were captured from different angles by taking images while rotating the structures.  3D images 

were then reconstructed from the 2D images and converted into STL files using 3ds Max.  The 

reconstructed 3D images with 𝐾 were constructed using MATLAB with the STL files (Figure 

2-6d–f, l, Figure 2-8).     
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3.2 ABSTRACT 

Printing shape evolving structures, known as four-dimensional (4D) printing, has opened up new 

opportunities in fabricating complex structures with different functionalities. Amongst a variety of 

4D printing technologies, thin elastic 2D plates that undergo lateral differential growth to make 

programmed 3D surfaces, termed non-Euclidean plates, promise access to a wide array of complex 

3D shapes while requiring only a single-layer patterning. However, this method has been mostly 

limited to soft materials and pneumatic devices, restricting its usage significantly. Here we use a 

light projection grayscale lithography to create non-Euclidean plates by encoding 2D hydrogels 

with a pattern of non-uniform lateral growth. While this approach relies on controlled 3D self-

shaping of 2D hydrogels in water, we achieved robust air-stable 3D structures using a 

thermal/chemical shape stabilization process. Using this process, we enhanced the modulus of the 

formed structures by 106 to 107 times, while preserving their 3D accuracy. Taking advantage of 

growth metrics continuity and freedom in the surfaces made by this approach, we showed the shape 

versatility and accuracy of the solid structures, by encoding the source 2D hydrogels with a wide 

range of known growth patterns. The absence of moving parts made us able to make composite 

structures by introducing reinforcing phases to the prepolymer solution, further increasing the 

mechanical controllability of the solid structures. We also introduced a sequential printing process 

to create multi-material 3D structures using different prepolymer solution to form distinct areas of 

structures. Finally, we demonstrated the programmable fabrication of solid 3D structures with non-

developable surface morphologies and specific material patterns, which can serve as a new way of 

customized manufacturing. 
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3.3 INTRODUCTION 

Shape-changing materials with the ability to adopt programmable 3-dimensional (3D) 

shapes and motions, known as 4D printing, offer promise for a wide range of applications 

including, smart textiles1, soft robotic2-4, actuators5-6, shape-changing sensors7, microfluidic 

valves8-9,  optical systems 10-11, artificial muscles12-13, and metrics for bio-separation13. Controlled 

deformation of thin plates, into programmed 3D surfaces, as a form of 4D printing14, have shown 

a great potential for the design of complex geometries, hard to achieve with other methods. 15-

17Such methods potentially offer the scalability of the traditional forming processes with the 

customizability of additive manufacturing. The most straightforward approach is creating a 

bending configuration in a planar surface by forming a bilayer structure made of materials with 

different growth (expansion/contraction) rates 18-19 or directions 20-22or inducing a growth gradient 

along the thickness of a thin sheet.23-24  While these approaches often lead to the formation of 

surfaces with constant and single curvatures, they fail to make shapes with continuous curvature 

change or doubly curved 3D shapes, significantly limiting the attainable geometries. Therefore, 

alternative methods offering access to a broader range of shapes has been in the center of attention 

in recent years, amongst which forming non-Euclidean plates is the most widely used25-27. In this 

approach, controlled in-plane differential growth (swelling/shrinkage) in a thin elastic plate causes 

out-of-plane deformation and forms a programmed 3D shape28. This method offers access to a 

broader array of shapes with non-zero mean and Gaussian curvatures, while it requires patterning 

of only a single material layer. However, so far, the formation of non-Euclidean surfaces has been 

mostly limited to soft materials20, 25-27 or pneumatic devices 29-30 with low mechanical properties, 

limiting the potential applications. 



 

77 

Recently, we introduced an approach to create non-Euclidean plates by preparing 

temperature-responsive thin flat hydrogels, encoded with a spatially controlled network density 

and thus lateral growth (Ω). The non-uniform growth defines a new surface metric tensor , the 

“target metric”, which causes a controlled out-of-plane buckling and results in a specific three-

dimensional hydrogels with specific morphologies.28 

 To broaden the application of such 3D surfaces beyond aqueous environment, in this 

study, we describe a solidification strategy to form 3D solid surfaces by stabilizing the formed 3D 

hydrogels at ambient environment (Figure 3-1a,b). Due to the high-water content, solidification 

of hydrogels while preserving their shape has been a challenge. Specially for most non-Euclidean 

hydrogel systems, differential water content throughout the sample induces the non-uniform lateral 

growth which results to 3D shape formation. Therefore, water removal will collapse the 3D 

structure back to the flat state20, 26. However, uniquely to our material system, 3D configurations 

of the hydrogel develop in both swelled (T<TC) and shrunk (T>TC) states (TC ~32.5 °C) due to 

difference in cross-linking and network density, respectively (Figure 3-1c). Independency of the 

growth to the water content combined with overall low internal water of 3D structures at the shrunk 

state makes hydrogels easier to solidify while preserving the morphology. The fast processing 

combined with an on-demand 3D self-formation of non-Euclidean solid surfaces makes our 

approach ideal for scalable and customizable fabrication of hinge-free deployable, robust 3D 

structures with complex morphologies.  



 

78 

 

Figure 3-1 Digital Light 4D Processing of solid 3D structures. a Schematic illustration of the 

grayscale lithography. A 2D hydrogel is created from a liquid precursor while being encoded with 

growth function Ω through grayscale photo-lithography. The inset is the digitally made grayscale 

light pattern exposed to the precursor via a commercial projector. b Schematic illustration of the 

temperature-induced shape transformation of a 2D hydrogel to the target 3D shape in the water. 

The formed 3D structure is then stabilized to create robust solid structures in the ambient 

environment. c Experimental demonstration of a programmed 2D hydrogel transforming to the 

prescribed 3D shape at the swelled state upon immersion in water (T < Tc), where Tc is the volume 

phase transition temperature of the hydrogel (~32.5 °C). The 3D structure at the swelled state 

reversibly transforms to the target 3D shape at the shrunk state upon temperature increase (T > Tc). 

d Areal shrinking ratios (A35/A0) of dual-crosslinked pNIPAm hydrogels versus light exposure 

time for hydrogels made from precursors with different concentrations of solid particles. A35 is the 

area of the hydrogel at 35°C, and A0 is the area of the as-prepared hydrogel. Error bars: s.d. of 

three independent measurements.  
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3.4 RESULTS 

3.4.1 Digital Light 4D Processing of composite structures  

The programmable precursor solution consists of NIPAm monomer as the building block 

of the temperature-responsive network and two crosslinkers (PEGDA and BIS) with different 

molecular weights to increase the photo-tunable density and thus growth range over the wide range 

of light exposure time (Figure 3-1d).31 The absence of the moving parts eases the specific ink 

requirements and makes our method adaptable to variety of inks with different rheological 

properties. Building on this capability, we created composite hydrogels by introducing a wide 

range of reinforcing phases to the base precursor before printing.  

Extracting the relationship between the photo-polymerization exposure time and the 

hydrogel shrinkage is essential for encoding hydrogels with specific growth patterns Ω. To explore 

the impact of the reinforcing phase on the shrinkage of the hydrogels, we first studied the 

temperature-activated growth (shrinking) behavior of the hydrogels at temperatures over the 

volume phase transition temperature Tc (~32.5 °C), prepared from precursors with 0, 5, 10, and 

20 wt% silica particles as the reinforcing material (Figure 3-1d). As expected, the existence of a 

non-shrinkable phase in the hydrogel network increases the shrinking ratio (A35/A0) by occupying 

the free spaces between the polymer chains and hindering the network chain collapse.32 More 

importantly, the shrinkage limitation is more dominant for low-density hydrogels, made at short 

light exposure, due to the higher solid to polymer ratios, which causes a decrease in the attainable 

shrinking range with the increase in solid loading.  



 

80 

3.4.2 Geometrical limitation and shape Accuracy 

Primary shapes with constant positive (spherical cap), negative (saddle) and zero (truncated 

cone) gaussian curvatures K, were made by encoding Ωcap = Ωmax (1 + (r R⁄ )2)2⁄ , Ωsaddle =

Ωmin (1 − (r R⁄ )2)2⁄ , and Ωcone = Ωmin (r/R)2(α−1) growth patterns, written in terms of the 

circular coordinates on a flat, as-printed pure and composite gel sheets. Here, r/R is the normalized 

radial coordinate, α is a constant, and Ωmax and Ωmin are the maximum and the minimum shrinking 

ratios, respectively (Figure 3-2a,b). Since the non-uniform growth induced stretching and bending 

energies scale differently with the thickness (Es ∝ t and Eb ∝ t3)28, it is expected that the buckling 

configuration and thus out-of-plane deformation happens at specific geometries with R t⁄ >

(R t⁄ )c, where t is the thickness. To check the geometrical limitation of our system, we created 

spherical cap structures, with different lateral sizes and a fixed thickness (t≈400 μm). Our results 

show that printing sizes with (R t⁄ )c > 12.5 makes samples adopt bending-dominated 

configuration and form a perfect spherical cap, which is an embedding of the target metric at the 

stretch-free configuration (Figure 3-2c). To further understand the level of accuracy, we 

investigated the compliance of structures’ specific features with the theoretical calculations. For 

example, the vertex angles of the truncated cones made at different exponents α, show a good 

match to the programmed value of the deficit angle δ (δ  = 2π(1-α))31 (Figure 3-2d-f).  
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Figure 3-2 a Axis-symmetric growth pattern Ω used to form the primary shapes with constant 

positive (cap), negative (saddle) and zero (cone) Gaussian curvatures and an Enneper’s minimal 

surface with three nodes. b Primary shapes made from pure precursor (top) and a precursor with 5 

wt% silica (bottom) Scale bar is 2mm. c Experimental (solid circles) and theoretical (dashed line) 

values of spherical cap radius (rcap) printed with different printing radius R in Ω. Constant C is 

Ωmax/4. d Axis-symmetric growth pattern Ω with different α used to form cone structures with 

different deficit angles (δ). e Truncated cones with α=0.5,0.6 and 0.7 from a precursor with 5 wt% 

silica (bottom). Scale bar is 2mm. f Experimental (solid circles) and theoretical (dashed line) 

values of deficit angle δ with different α in Ω for cone structures. 

 

 

3.4.3 Solidification process 

The solidification process relies on the ability to form target 3D structures at the shrunk 

state.  As an example, we encoded a flat composite hydrogel (5% silica) with a growth pattern of 

Ω = Ωmin(1 + (r R⁄ )4)2 (Figure 3-2a), associated with an Enneper’s minimal surface with three 

nodes. 26, 31 Here, r/R is the normalized radial coordinate, and Ωmin is the minimum shrinking ratio. 
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The programmed flat hydrogel is then swelled in a water environment at T<TC  (Figure 3-3a) to 

be removed from unreacted monomers and oligomers. This step provides molecular free-space for 

the hydrogel chains to shrink freely at T<TC and form the target 3D shape at a shrunk state.  

 

Figure 3-3 Solidification process. a Formation of a solid structures. The top panel shows a 

composite hydrogel encoded with a growth pattern corresponding to an Enneper’s surface in 

swelled (T < TC) and shrunk (T < TC) states. The bottom panel shows the morphology of the 

hydrogels upon removal from water at different states. b Thermal/chemical process used to form 

a solid 3D structure from a swelled hydrogel (I). Slow temperature increase from room temperature 

to over Tc (~32.5C) to form target 3D shapes at the shrunk state (II). Increasing the temperature 

well beyond Tc to further exclude the internal water of the hydrogel in shrunk state (III). 

Introducing ions to the solution to achieve stable 3D shape before removal from water (IV). c 

Composite disks programmed to generate shapes with constant Gaussian curvature (K) at swelled 

(left panel), deswelled (middle panel), and solid (right panel) states. Reconstructed 3D images of 
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the solid structures with Gaussian curvature colormap (Scale bars, 2mm). d SEM surface image of 

the stabilized cap at solid state. 

 

Figure 3-3b shows the thermal/chemical process used to form a solid 3D structure from a 

hydrogel at a swelled state. The first step is to 3D form the target structures at a shrunk state by 

increasing the temperature of a swelled hydrogel over TC (~32.5C) (Figure 3-3a). A gradual 

temperature increase is required to avoid the formation of a dense skin layer, which prevents the 

exchange of water molecules between the hydrogel and the surrounding. While 3D structures at 

swelled state are not stable outside the aqueous environment ( I in Figure 3-3a) due to the necessity 

of water in forming the 3D morphology (Figure 3-4a), structures at shrunk state are 

thermodynamically free of water.33 However, the remaining structural water at the shrunk state 

(Figure 3-4b) can still deform the samples upon environmental exchange from water to the air (II 

in Figure 3-3a). To exclude this residual water, we raised the temperature of the samples well 

above the TC (~20 °C) to further increase the free energy of hydration33. However, even at the full 

exclusion of structural water, the remaining surface water can still deform the structure once it 

cools down to T<TC at air (III in Figure 3-3a). One can solve this problem by further increasing 

the temperature to keep the surface temperature higher than TC before blotting the surface water. 

However, this would be hard to achieve for big samples or samples with complex geometries. 

Therefore, we instead introduced the samples to a near-saturated ionic aqueous solution (~20 w/v 

saline water) to sharply decrease the TC and maintain the hydrogel at shrunk state even at room 

temperature.34 The samples were then safely transferred to the ambient environment and formed 

air-stable solid structures with the same shape accuracy of the original shapes at the shrunk state 

(IV in Figure 3-3a and Figure 3-4c).  Figure 3-3c shows cap, saddle, and cone structures at swelled, 
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shrunk, and solid states, respectively. To investigate the shape accuracy of the solid samples, we 

scanned and measured the Gaussian curvature profiles (K) (Figure 3-3d), which show excellent 

agreement with the expected constant curvature data for all three shapes. Also, the absence of 

texture discontinuity in the solid surfaces (Figure 3-3e), which is a result of the continuous forming 

process, eliminates the need for post-processing, thus further increases the overall fabrication 

speed. Shapes at both shrunk and solid states retained their programmed 3D configuration for 

months in water (T > TC) and ambient environment, respectively. To avoid shape distortion due to 

the water spillage or high humidity, we coated the solid samples with a protective-layers of PDMS 

and paint (Figure 3-4d).  

 

Figure 3-4 a-d)  3D structures of a sample encoded with Ωsaddle at swelled state (a), shrunk state 

(b), solid state (c), and coated solid (d). Left panels are the schematic illustration of the internal 

structure. Scale bar 2mm. 
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3.4.4 Mechanical Properties of structures at different states 

The absence of structural water significantly enhances the mechanical behavior of the solid 

structures compared to the hydrogels in both swelled and shrunk states. To understand the 

difference, we first study the mechanical behavior of the hydrogels in both swelled and shrunk 

states. The dynamic shear analysis shows that the hydrogels at shrunk state have higher and more 

consistent modulus (~2 kPa) compared to those in the swelled state (~0.05 to 0.5kPa), which 

attributes to their internal structure. While the modulus of the swelled hydrogels are mostly 

controlled by the degree of cross-linking 35 and thus the light exposure time during polymerization, 

the same hydrogels at shrunk state show higher and more similar modulus due to their dense and 

collapsed molecular structure (Figure 3-5a). On the other hand, solid structures show significantly 

higher modulus ~2 GPa (Figure 3-5b), which can be related to the plasticizing role of water 

molecules 36. The tensile behavior difference between the hydrogels in shrunk state and solid 

structures further indicates the role of water as a plasticizer in decreasing the glass transition 

temperature (Tg). The shrunk hydrogels show rubbery behavior (Tg << 32.5°C) (Figure 3-6)  with 

an elastic strain of ~ 500% (Figure 3-5c) while the solid samples mostly show fully brittle fracture 

(Tg >> 32.5°C) with the strain of < 5% (Figure 3-5b,d and Figure 3-7b). The solid samples, 

therefore, can withstand loads hundreds of times larger their own weights (Figure 3-5e). 
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Figure 3-5 Mechanical properties. a Dynamic oscillatory shear measurement of the hydrogels at 

swelled (hollow dots) and shrunk (solid dots) states. b Tensile behavior of the solid samples 

prepared with different light exposure times. c Elastomeric behavior demonstration of a hydrogel 

at shrunk state. The sample is prepared at 8 sec light exposure time. scale bar is 2cm. d Brittle 

fracture of a composite sample made from 5 wt% silica precursor at 20 sec light exposure time. e 

Experimental demonstration of a solid sample withstanding loads about hundred times its weigh. 

scale bar is 2mm. 
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Figure 3-6 a Thermal Gravimetric Analysis (TGA) of the solid sample form 50°C to 500 °C. b 

First derivative of the wight change in respect to temperature. c Differential Scanning 

Calorimetry of the solid structures showing Tg ~ 230 °C. 

 

 

We showed improvements in the hardness of the solid samples adding silica reinforcing 

phases to the precursor (Figure 3-7c). Since all solvents are removed throughout the deswelling 

and ultimately at the shape stabilization process, the final concentration of Silica in the composite 

samples are 14.75, 25.71, and 40.9 wt%. Unlike our method, the processability of precursors in 

other projection-based systems is often limited by the rheological behavior, making such high 

concentrations of reinforcing phases unachievable. 37 

 

Figure 3-7 a Air stabilized samples prepared at 8 sec, 20 sec, and 50 sec light exposure for tensile 

study. Scale bar is 5 mm. b Tensile behavior of the sample in Figure 3-5d. c Vickers hardness of 

the samples made from precursors with 0,5,10 and 20 wt% of silica 
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3.4.5 Solid structures with diverse metrics  

Our method can create solid 3D structures with various geometries. To validate the 

accuracy and precision of the patterned metrics, we encoded hydrogels with Ω =

Ωmax (1 + (r/aR)2)2⁄ + (1 + (r/R)n)2 − c, corresponding to Enneper’s minimal surface with n 

nodes and a cap-like center 31 (Figure 3-8 a). Including a cap-like geometry (K > 0) in the middle 

of an Enneper’s surface with (K < 0), reduces the portion of the metric governed by the Enneper’s 

metric (Figure 3-8a). Despite this reduced control and given subtle differences between Enneper’s 

part of the metric plotted in Figure 3-8a, the number of the wrinkles in the resulting structures 

agree quantitatively with the targeted number of nodes programmed through Ω 26 (Figure 3-8b). 

Such accuracy is strong proof of the precision of the metrics patterned by our method.   
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Figure 3-8 Creating diverse 3D geometries with high accuracy. a Axis-symmetric growth 

pattern Ω corresponding to Enneper’s minimal surface with n nodes and a cap like center. b Solid 

3D shapes created based on Ω in (A) with n=3, 4 and 5 from left to right, respectively. scale bar is 

2mm. c Growth pattern Ω (top) and 3D structure of a sample formed from a 10mmx25mm stripe 

encoded with a single direction Ω with cosine function. κx,P and κr,P are principle curvatures of 

point A (Positive Gaussian curvature) on the intersecting planes perpendicular to x and r axis, 

respectively. κx,N is the principle curvature of point B (Negative Gaussian curvature) on the plane 

perpendicular to r axis. scale bar is 2mm. d Experimental (solid dots) and theoretical (solid line) 

values of the gaussian curvature (K= κx .κr) as a function of x for structures formed with Ω in (c) 
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at L/w=2.5 with λ=L/3 and L/5. e The average κx,P for the structures formed with cosine, alternative 

arccosine and alternative linear Ω functions in Figure 3-10, Supporting Information. Error bars: 

s.d. of at least three independent measurements. f-i Schematic of turns and handedness (top) and 

the real images of the air stable helical structures (bottom) formed with cosine function with θ =
45 (f), alternative arccosine function at θ = 135 (g) , alternative linear function at θ = 135 (H), 

and cosine function with variant λ at θ = 135 (i). Scale bars are 2mm. 

 

 

The freedom of digitally made exposure masks offers the creation of geometric 3D 

structures with almost any metric. To show the adaptability of our method to make shapes beyond 

structures with axis-symmetric metrics, we created well-studied rolled sheets patterned with single 

direction lateral growth patterns (Figure 3-8c-i and Figure 3-9). So far, the implementation of such 

metrics has been limited to stripes with discrete regions where each region seeks to attain a 

different, discontinuous level of growth.38-41  The existence of such discontinuities in the 

boundaries between regions induces stresses in the ground state and prevents the continuous 

surface from obeying the target metric. On the contrary, implementing continuous smooth growth 

patterns in our method allows the formation of rolled configurations with the isometric immersion 

of the target metric, making the shapes more predictable, consistent, and accurate. To theoretically 

study the rolling deformation, we considered structures formed by single direction growth pattern 

Ω = (Ωmax − Ωmin)(Cos(2π m(x/L)) + 1) 2⁄ + Ωmin, where L is the length along the x-

direction, and L/m is the growth variation wavelength (Figure 3-8c). The sheets adopt an isometric 

embedding of the target metric by rolling around the x-axis, while each point follows the target 

Gaussian curvature (K), according to Gauss’s Theorema Egregium, Κ = −∇lnΩ/(2Ω) where 

K=κx.κr, and κx and κr are principle curvatures on planes perpendicular to x and r cylindrical axes, 

respectively (Figure 3-8 c and Figure 3-9a, Supporting Information). The experimental structures 
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agree well with the theoretical predictions (Figure 3-8d,e and Figure 3-9 b,c). For example, Figure 

3-8d shows the experimentally extracted K as a function of x for the structures made with m=3 

and 5, matching well with the predicted curvature function prescribed by the target metric. Such 

high accuracy suggests a precise control over curvature and, thus, the rolling radius only by 

controlling the Ω function wavelength. Furthermore, utilizing continuous growth functions offers 

high-level control over 3D morphology by taking advantage of function and direction modulations.  

 

 

Figure 3-9 a A sample made from a 10mmx25mm sheet programmed by cosine Ω function with 

m=5, showing the general features (Rolling axis, κx,P, κx,N, κy,P, κy,N) of a structure patterned with 

single direction metric variations. Scale bar is 2mm. b,c Reconstructed models with Gaussian 

curvature K colormap for samples formed from 10mmx25mm sheets programmed by cosine 

function metric with m=3 b ,and m=5 c.  
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To show the effect of growth function on the rolling behavior, we created sheets with single 

direction growth functions following cosine, alternative arccosine, and alternative linear functions 

with different wavelengths (Figure 3-8e and Figure 3-10). We investigated the impact of Ω 

variation function on the rolling curvature of the structures, by measuring the principal curvature 

of the points with lowest positive curvature (points with Ωmax) on planes perpendicular to the 

rolling direction, κx,P (Figure 3-8e). The results show higher rolling curvature for structures with 

linear, arccosine, and cosine target metrics, respectively (Figure 3-8e and Figure 3-10). In 

comparison, theoretical calculations suggest higher curvature for arccosine metric compared to 

linear metric. This discrepancy can be due to the limited 2D printing resolution for replicating the 

sharp Ω profile at the extremum points (Ωmax and Ωmin) of the arccosine function, which reduces 

the attainable curvature in samples made by this function.   
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Figure 3-10 a-c Single direction cosine a, alternating arccosine b and alternating linear c Ω 

functions. e-f Samples formed from 10mm x 25mm (top) and 25mmx25mm (bottom) sheets 

programmed by e cosine Ω function with m=5 (Left) and m=3 (Right), f alternating arccosine Ω  

function with m=5 (Left) and m=3 (Right), and g alternating linear  Ω  function with m=5 (Left) 

and m=3 (Right). Scale bar is 2mm.   

 

 

Having established the procedure to create rolling structures, we applied the same concept 

to make solid cylindrical and conical helices with specific morphological characteristics. We made 

helix structures by rotating the function axis and thus the rolling axis to make an oblique angle, θ, 

with respect to the long axis of the sheet (Figure 3-8 f-i and Figure 3-11). Similar to the previous 

structures, alternation to the Ω, such as base function change, can lead to different rolling 

curvatures (κx,P) and thus different rolling radius (rx,P = 1/κx,P ) (Figure 3-8f-i and Figure 3-11). 

This control over rolling radius offers control over the number of turns N, and pitch p, in helical 

structures. For example, samples with cosine, arccosine, and linear functions show N of 1, ~1.2, 

and ~1.5, respectively. Furthermore, we were able to make a conical helix with gradually 
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decreasing rx,p by smoothly changing the wavelength of the growth function (Figure 3-8i and 

Figure 3-11d). The limited oxygen inhibition due to the presence of PDMS substrate at one side 

of the printing cell causes a slight variation in density and results in a minor growth (Ω) gradient 

through the thickness. Although this growth variation has a neglectable impact on the accuracy of 

the 3D structures, it fixes the direction of the out-of-plane deformation by inducing a slight bending 

towards the side with less Ω. Taking advantage of this fixed deformation direction, we created 

helical structures with defined handedness by changing the function direction θ. For example, 

samples with 0 < θ < 90 form right-handed helix (Figure 3-8f,i and Figure 3-11a,d) while 

samples with 90 < θ < 180 create left-handed helix (Figure 3-8g,h, and Figure 3-11b,c).  
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Figure 3-11 a-d base function (top panel) and Ω map (bottom panel) used to create helical 

structures with a cosine function metric at m=5 and θ=45. b arccosine function metric at m=5 and 

θ=135, c linear function metric at m=5 and θ=135, and d cosine function with varying wavelength 

metric at m=5 and θ=45. Scale bar is 2mm. 

 

To further show the customizability of our process, we printed mathematically defined 

shapes with arbitrary boundaries (Figure 3-12). Since the 3D formation happens through local 

(point-to-point) interactions that lead to out-of-plane deformation, any change in the boundary 

(Figure 3-12a) or introducing arbitrary holes (Figure 3-12b) would not substantially change the 

overall shape as long as it does not affect the self-supportiveness of the structure (Figure 3-12c). 
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Figure 3-12 Ω map (top) and image (bottom) of a solid helical sample made with arbitrary metric 

boundary of cosine function at m=5 and θ=45, b solid spherical cap with spiral internal hollow 

pattern, c solid spherical cap with spiral metric boundary. Scale bars is 2mm.   

 

 

 

3.4.6 Multi-Material Printing 

This method can build multi-material 3D structures.  Creating structures with a continuous 

texture of different materials is one of the key advantages of additive manufacturing, setting it 

apart from traditional methods.42 To show the similar control, we established a multi-step printing 

procedure, where different precursors form discrete parts of the samples. For example, we made 

primary shapes with constant positive and constant negative curvatures with material patterns of 

gold nano-composite and pure polymer (Figure 3-13a-d). In the first printing sequence, the gold 

nano-composite phases are printed using gold added precursor (0.05 g/L gold nano-particles). The 

rest of the shape is then made from pure precursor at the second step printing. To avoid growth 
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discontinuity and overexposure, the exposure mask of the second step needs to complete that of 

the first step to make a full, consistent metric (Figure 3-13a,b and Figure 3-14a). However, for 

high-resolution patterns such as line patterns with ~100 µm line width (Figure 3-13c,d and Figure 

3-14b), that is consisting of several phase boundaries, underexposure at the boundaries causes Ω 

discontinuity and the appearance of unintended boundary gaps. Therefore, full exposure masks 

were used in the second-step printing to maintain Ω accuracy and consistency. However, since the 

line patterns do not follow the target metric, they restrain the full deformation and slightly decrease 

the overall curvature of the shapes. 
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Figure 3-13 Multi-Material Printing. a,b Spherical cap a and saddle b with a checkered pattern of 

pure polymer and gold-composite regions. Top panel shows associated metrics for two step 

printing. Gold containing precursor is used to print composite parts at the 1st step. Pure precursor 

is used to print the rest of the structure at the 2nd step. Bottom panel shows the 3D formed structures 

at solid state. scale bar is 2mm. c,d Spherical cap c and saddle d with a line pattern of gold-

composite in a pure polymer background. Top panel shows associated metrics for two step 

printing. Gold containing precursor is used to print composite lines (~100 µm) at the 1st step. Pure 

precursor is used to print the rest of the structure at the 2nd step. Bottom panel shows the 3D formed 

structures at solid state. scale bar is 2mm. e Target 3D model of a propeller with double material 

pattern. f Extracted Gaussian curvature of the target model. g Target metrics for 1st step printing 

(left), and 2nd step printing (right). h Final 3D formed solid structure. scale bar is 2mm. 
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Figure 3-14 a,b Top view of the double material structures made by two step printing of  a the 

spherical cap (Left) and saddle (Right) structures with checker pattern of gold composite and 

pure polymer, b Spherical cap (Left) and saddle (Right) structures with squire mesh line pattern 

of gold composite and pure polymer. Scale bar is 2mm. 

 

 

As an example of the versatility and customizability of this method for making complex solid 

geometries with on-demand material profiles, we targeted a complex multi-material 3D shape with 

both negative and positive Gaussian curvatures. We chose a propeller with a four negatively curved 

(K < 0) blades and a cap-like (K > 0) center, to be made from gold nano-composite and pure 

polymer, respectively (Figure 3-13e). To design the growth pattern, we extracted the gaussian 

curvature of the model (Figure 3-13f) and replaced each component with a mathematically known 

metric. For the center component with K > 0, the metric function of a spherical cap  was used, 

while for the blades, a portion (~ π/3 ) of an elongated negative component with Ω(r R⁄ ) =

Ωmin (1 − (r c(θ)R⁄ )2)2⁄  where c(θ) = 𝑛 √1 + (n2 − 1)Sin2(θ)⁄  , and n =0.5  was used to 

match the curvature data (Figure 3-13g and Figure S11).  After designing the metrics, the blades 

were made at the first step printing using gold added precursor, while the middle was created from 

the pure precursor at the second printing step. We then used temperature cycling and stabilization 

process to from air-stable multi-material propeller with perfect shape accuracy (Figure 5H). We 
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used the same approach to make a stabilized solid helical structure with a material pattern of silica 

composite and pure polymer phase (Figure S12, Supporting Information).   

 

Figure 3-15 a 3D model of the elongated saddle used for propeller’s blade. Red lines show the 

used portion. b Ω map of the elongated saddle used for propeller’s blade. White lines show the 

used portion. Scale bar is 2mm. 

 

 

 

Figure 3-16 a Ω map of the 1st step printing using precursor with 5 wt% silica (top) and 2nd step 

printing using pure precursor (bottom) . b Resulted stabilized solid helical structure. Scale bar is 

2mm. 
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3.5 CONCLUSION  

Unlike traditional layer-by-layer additive manufacturing, our controlled out-of-plane 

deformation mechanism allows the creation of 3D structures in a short amount of time from a 

single layer material. The digital patterning used in this method offers simultaneous printing of 2D 

materials encoded with custom-designed metrics, rendering it scalable for creating diverse 3D 

shapes. High throughput fabrication and on-demand shape morphing combined with high 

mechanical properties, geometrical complexity, and multi-material printing capability offer a new 

strategy to address the issues and complement the current 3D manufacturing methods. 
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3.6 MATERIALS AND METHODS 

3.6.1 Preparation of pure and composite precursor solutions  

 0.4 g if N-Isopropylacrylamide (NIPAm) (97%), 5.4 g of N,N′-Methylenebisacrylamide 

(MBAm) (99%), 3.1 mg of Poly(ethylene glycol) diacrylate (PEGDA) with the molecular weight 

of 700 g/mol , and 1.84 of Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide were added to a 

1 mL solution of 1:3 volume ratio of water and acetone.  

AEROSIL® OX 50 Fumed Silica was added to the main precursor with 5,10, 20 wt% in 

powder form. For gold nano-particle synthesis, we added 50 ml of deionized water to 20 mg of 

chloroauric acid (HAuCl4.3H2O, 99.9%, Sigma Aldrich) in a round-bottom flask. After heating 

to boiling state, 1.2 ml of 50 mg/ml sodium citrate solution (Na3C6H5O7.2H2O, > 99%, Sigma 

Aldrich) were rapidly introduced into the flask with drastic stirring. The mixtures were 

continuously heated for a certain period until the appearance of a red color43. We then purified 

the solution by centrifuging the solution at 14000 rpm for 15 min for the total of three times. 

The aqueous solution of gold nano-particles with 0.05 mg of solid gold (40-60 nm) was used to 

the to make a precursor solution with gold concentration of ~0.05 mg/mL.  

 

3.6.2 General and multi-material printing procedure 

  Shape-morphing 3D structures were created using our previously established Digital 

Light 4D Printing (DL4P) method31. Dynamic light projection grayscale lithography31 was used 

to polymerize and cross-link the precursor solution into a 2D gel with a specific network density 
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pattern related to the calculated growth function (Ω).  Digital light processing (DLP) projector 

(Vivitek D912HD) was used to spatially and temporally control the ultraviolet (UV) light using 

the generated STL file. Projection lithography cells were composed of a polydimethylsiloxane 

(PDMS) spacer with the inner dimension of 57x32x0.4 mm sandwiched between a PDMS 

substrate and cover-glass. To avoid oxygen interference during polymerization, precursors were 

nitrogen bubbled for 1 minute before introducing to the cells. Samples cured through the grayscale 

gel lithography method using a commercial projector as the light source (Vivitek D912HD). 

Grayscale exposure performed by applying 25 consecutive exposures of 2 sec (exposure level of 

L=2544) to avoid overexposing surrounding XY pixels. Samples were made at 30 µm printing 

resolution with a total 1920x1080 available pixels. After required exposure, samples were 

detached from the PDMS side of the cell while attaching on the glass substrate and immediately 

washed with acetone, IPA, and water (0°C) 3 times to suppress the further reaction. To remove 

any unreacted monomer from the system, samples were detached from the glass substrate and 

stored at low temperature (4°C) (for maximum swelling) for three days while the water was being 

changed every 12 hours. 

Multilayer structures were made by printing a second layer over a primary layer. The 

first layer was printed using the main precursor. Next, the cover-glass (with the parts attached 

to it) was lifted, and the spacer was exchanged with a thicker (~40-50 um) spacer. The samples’ 

surfaces were then washed with IPA for three times while the first layer was attached to the 

cover-glass.  The second precursor was then introduced to the cell, and the cover-glass (with 

the first layer attached to it) was placed back to the same position. Finally, the second precursor 

solution was printed to make the second layer. 
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3.6.3 Stabilizing the programed flat structures after printing 

After printing step(s), samples were detached from the PDMS side of the cell while 

attaching on the glass substrate and immediately washed with acetone three times. The samples 

are then immediately dried using air. Samples can be stored for more than seven days in the 

ambient environment at this state.  

 

3.6.4 Growth Calibration 

To control the target metric (Ω) with light exposure, temperature-induced growth was 

calibrated for samples prepared by different exposure times. Growth ratio was defined as the area 

of the swelled (positive growth) or shrunk (negative growth) sample divided by the area of the as-

prepared samples. The area shrinking ratios were calculated as A35/A0, where A0 is the area of 

as-prepared hydrogel disks (Figure 1C). To measure the shrinking ratio, 5mm diameter digital 

masks were used for making samples with different exposure times. The areas of the as-prepared 

gels were measured just after printing, while the samples are still attached to the glass substrate. 

After being fully swelled at 4°C for three days, hydrogels were slowly heated over TC temperature 

(35°C) and kept for 12 hours to ensure most of the water was excluded.  

 

3.6.5 Printing primary shapes with constant Gaussian curvatures 

Axis-symmetric shapes of cap, saddle, and cone were printed using known metric functions 

of eq. (1), eq. (2) and eq. (3), respectively (Fig S.  
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Ω𝑐𝑎𝑝 =
Ωmax

(1 + (r R⁄ )2)2
 , 0 < r R⁄ < √√Ωmax Ωmin⁄ − 1 

(1) 

Ω𝑠𝑎𝑑𝑑𝑙𝑒 =
Ωmax

(1 − (r R⁄ )2)2
 , 0 < r R⁄ < √1 − √Ω𝑚𝑖𝑛 Ωmax⁄  

(2) 

Ωcone
i = Ωmin (

r

R
)

2(αi−1)

 
(3) 

Here Ωmax and Ωmin are maximum and minimum achievable Arial deswelling rates, respectively 

and r R⁄  is normalized printing cylindrical coordinate. The samples were printed using R=10mm.  

 

3.6.6 Measuring 3D morphology accuracy 

  Axis-symmetric shapes of cap and cone with different amounts of programmed radius and 

deficit angles () were made to study the 3D accuracy of the method with respect to the overall 

sample sizes. The cap samples were printed using eq. (1) at different R values of 3,5,7,9 and 10 

mm.  

Cone samples were made through eq. (3) at different α values of 0.5,0.6,0.7,0.8,0.9 and 

fixing R at 10 mm. The half-vertex angle (β) and angular deficit (δ) can be expressed as below 

 β = ArcSin(α) (4) 

 δ =  2π(1 − α) (5) 

 

3.6.7 The dynamic mechanical properties 

The dynamic mechanical properties of hydrogels at both swelled and deswelled states were 

measured at 25°C and 33°C, respectively, using a rheometer (DHR-2, TA Instruments) with a 20-
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mm plate geometry. Hydrogel disks with a diameter of 20 mm were used. The shear storage 

modulus G′ and loss modulus G″ were measured by frequency sweeps of 0.05–10 Hz at an 

oscillatory strain of 1%. 

 

3.6.8 Solidification procedure  

We created the 3D shapes in shrunk state by implementing the temperature ramp in Figure 

3-3b on swelled samples. Then we increased the water environment temperature of the 3D formed 

deswelled structures to 50oC (Figure 3-3b). After soaking the samples for one hour, we changed 

the medium to the near-saturated saline solution (~20 w/v) at 50oC. The samples were removed 

after 30 min of soaking in the saline solution and blotted and placed on an absorbent tissue to form 

the stable solid 3D structures.  

SEM Microscopy: Air stabilized samples were silver coated for 2 min using CrC-100 sputtering 

system. SEM images of the surface were taken at different magnifications using Hitachi S-3000N 

Variable Pressure SEM, under SE mode.  

Solid Coating: The solid samples where deep coated with PDMS (~70µm) and then sprayed with 

50 µm of paint.  

 

3.6.9 Tensile and hardness analysis of solid structures 

Tensile tests were performed on deswelled and air stabilized shape.  Tensile tests were 

performed according to the ASTM D638 standard, where the type V sample was used with the 
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overall printing size of 50x7.5x0.5 mm. A Microhardness test was performed on dried samples at 

a load of 0.1 KgF. The hardness in Vickers (HV) was calculated as follows: 

 
HV = 0.1891

F

d2
 

(6) 

3.6.10 3D reconstruction 

The 3D images and Gaussian curvatures K of experimentally created 3D structures were 

constructed based on the spin image 3D recognition method45. 3D images were then reconstructed 

using Autodesz 3Ds Max from the 2D images taken from different angles of the shape. The digital 

(STL) models were then exported to MATLAB to extract curvature data (Figure 3-9 b,c). 
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4 CHAPTER 4  

4.1 CONCLUSION  

Inspired by biological systems, we introduced a 2D material programming approach based 

on controlled lateral (in-plane) differential growth to create shape-morphing 3D surfaces with 

complex morphologies and motions. Our material system with phototunable swelling and 

shrinking behaviors uniquely allowed us to define target 3D shapes at both swelled and shrunk 

states.  The swelling and shrinking rates of our material systems are also phototunable and thus 

locally programmable.  More importantly, our experimental and theoretical studies revealed that 

the spatially nonuniform kinetics of 3D structures determines their dynamic shape evolution.  

Based on these results, we introduced the concept of dynamic target metrics that were used to 

predict the dynamic shape change of 3D structures.  These findings allowed us to design dynamic 

3D structures with programmed motions, critical for implementing complex functions but 

challenging to achieve via global external stimuli.  Furthermore, we demonstrate modular design 

principles to create non-axisymmetric 3D structures with broad morphological diversity.    

Next, by developing a thermal/chemical method, we stabilized the 3D morphologies of the 

target shapes formed in the shrunk state and achieved robust 3D solid structures. The creation of 

solid 3D surfaces significantly broadens the potential applications of this method as a 3D 

fabrication technique. We highlighted the versatility of our method by developing a sequential 

printing approach to make structures with patterns of multiple materials.   

 

  

  



 

112 

In summary: 

1. We developed a method to create temperature-responsive hydrogels with a continuous pattern 

of degrees and rates of growth (swelling and shrinking) from a single prepolymer solution through 

photo-polymerization. 

2. Our study reveals the mechanism of how the photo-polymerization process modulates the 

material properties of our temperature-responsive hydrogel systems with two types of crosslinkers 

with different lengths. 

3. In contrast to previous studies, which form single stable 3D shapes at either the swelled or the 

shrunk state, our material systems with phototunable swelling and shrinking behaviors made us 

able to define target 3D structures at both the swelled and the shrunk states.    

4. We developed a theoretical model for axisymmetric 3D shapes that can predict how a target 

metric translates to a 3D shape and vice versa. 

5. We established simple yet versatile design principles that allow us to create nonaxisymmetric 

3D structures with broad morphological diversity, including stingray-inspired 3D structures with 

programmed motions. 

6. We solved the challenge of the modular assembly, how to interface modular components 

controlling their direction of deformation and orientation, by introducing the concept of 

“transitional components” and “linkers.”  This concept allows us to design modular 3D structures 

with complex morphologies through controlled deformation and orientation of modular 

components.   
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7. We demonstrated that the spatially nonuniform growth rate of 3D structures determines their 

progressive 3D shape evolution during temperature change, thereby allowing for programming 

their motions. 

8. We developed the concept of dynamic target metrics that can be used to predict the dynamic 

shape change of 3D structures, important for the design of dynamic 3D structures (Fig. 4).  

9. We found that the swelling and shrinking rates of our material systems are phototunable and 

thus locally programmable.   

10. We demonstrated the ability to spatially control the rates of shape transformations by 

fabricating a ray-inspired 3D structure with programmed sequential motions.                

11. We developed a shape stabilization method to maintain the morphology of the target 3D 

hydrogels in the ambient environment and achieved robust 3D solid shapes with mechanical 

properties similar to engineering polymers. 

12. To show the versatility of our method in programming surfaces with various metrics, we 

created well-studied rolled sheets patterned with single direction lateral growth patterns. We 

demonstrated the advantages of continuous smooth growth patterns in creating structures with the 

isometric immersion of the target metric, making the shapes more predictable, consistent, and 

accurate. 

13- We further introduced a multi-material approach to construct 3D structures with specific 

material patterns that enable the creation of 3D shapes with point-by-point material 

customizability.  

Unlike traditional layer-by-layer additive manufacturing, our controlled out-of-plane 

deformation mechanism allows the creation of 3D structures in a short amount of time from a 
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single layer material. The digital patterning used in this method offers simultaneous printing of 2D 

materials encoded with custom-designed metrics, rendering it scalable for creating diverse 3D 

shapes. High throughput fabrication and on-demand shape morphing combined with high 

mechanical properties, geometrical complexity, and multi-material printing capability offers a new 

strategy to address the issues and complement the current 3D manufacturing methods. 

 

 

 

 


