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Abstract  

 
LIUTEX ANALYSIS BY POD AND DMD IN TURBULENT FLOW 

AFTER/ IN MICRO VORTEX GENERATOR 

Xuan My Trieu, Ph.D. 

The University of Texas at Arlington, 2021 

Supervising Professor: Chaoqun Liu  

Although vortex has been studied more than one hundred year, we still have not had 

universally accepted definition. A few well-known vortex identification methods are introduced 

𝑄, ∆,  𝜆2, 𝜆𝑐𝑖 criteria to identify coherent vortex structures the last three decades. A new Omega 

vortex identification method, which is defined as a ratio of the vorticity tensor norm squared 

over the sum of the vorticity tensor norm squared and deformation norm squared, was proposed 

in 2016. Two year later, the new vortex vector named Liutex (previously called Rotex) was 

proposed by Liu et al. with direction of local rotation axis (an eigenvector of velocity gradient 

tensor) and angular speed (magnitude of Liutex vector) while other identification methods could 

not give direction of rotation axis.  

Micro-Vortex Generator (MVG) is a common device for turbulent flow separation control. 

In this paper, in order to better understand the mechanism of flow control by MVG, the flow data 

set obtained by an implicit implemented large eddy simulation (ILES) with fifth order WENO 

spatial discretization at Ma = 2.5 and Reθ = 5760 is analyzed in details by a proper orthogonal 

decomposition (POD) method.  
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  In this dissertation, the POD method with 120 snapshots using both velocity (𝑢, 𝑣, 𝑤) 

and Liutex vector (𝐿𝑥,  𝐿𝑦,  𝐿𝑧) directly as inputs is applied to analyze the vortex structure behind 

MVG. From the present study, the first a few POD modes are suitable for the explanation of the 

vortex structures after MVG. In addition, for the first time, the data loaded directly from Liutex 

vector instead of velocity are organized as the snapshot matrix and a correlation between the 

absolute strength of rotation (Liutex) and the cumulative rotation strength (Liutex magnitude) of 

rotation is discovered. The present result clearly shows the POD modes paring, which is a typical 

sign of Kevin- Helmholtz (K-H) instability. Furthermore, the mechanism of vortex ring generation 

caused by the K-H type instability is also presented.  

 

 

 

 

 

 

 

 

 

 



3 

 

Chapter 1 

Introduction 

Vortex exists everywhere in nature, but there is not yet a generally accepted definition 

for vortex. After the concept of vorticity filament was proposed by Helmholtz in 1858 [1], some 

people misunderstood the concept of vorticity and vortex. They believed that vortex is a vorticity 

tube and vorticity could be used to calculate the vortex’s rotation. It is easy to find a counter 

example to confute such idea. Vorticity is different than zero in laminar flow, but there is no 

rotational motion because of dominant shear part. Therefore, vorticity cannot be used to 

calculate the rotation of a vortex and vortex is not vorticity tube. In their study about vorticity, 

Liu and his researchers found that vorticity includes a rotational part named Rotex/Liutex and a 

non-rotational part named anti-symmetric shear (S), namely 𝜔 = ∇ × V = R + S [2, 3]. 

Moreover, they defined vorticity gradient tensor by two parts: a rotational part (R) and a non-

rotational part (NR), which is defined by ∇V = R + NR [3]. 𝑄, ∆, 𝜆2, 𝜆𝑐𝑖 criteria are a few well-

known vortex identification methods to identify coherent vortex structure, which have been 

developed during the last three decades. Liu and his researchers are members of the Vortex and 

Turbulence Research Team at University of Texas at Arlington, which focused on the expansion 

of a new generation of vortex identification method since 2014. As a result of their meticulous 

efforts, a new vortex identification method called Omega (𝛺) announced by Liu et.al [4] in 2016.  

Modified normalized Rortex/vortex identification method, 𝛺̃𝑅 was proposed by Liu and 

Liu [5] to improve and solve bulging phenomenon on iso-surfaces of the normalized 

Rortex/vortex identification method (𝛺𝑅) by Dong et al. [6]. Furthermore, 𝛺̃𝑅 still maintained all 

advantages of the original 𝛺𝑅 method. First, in the other vortex identification methods, we have 

to pick different threshold for each time step to properly capture vortex structure; on the other 
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hand, 𝛺̃𝑅 = 0.52 is quite robust to clearly visualize the vortex structures. Second, 𝛺̃𝑅 is a 

normalized function with a range of 0 to 1, which is useful to do the correlation analysis in 

statistics. Third, 𝛺̃𝑅 can capture both strong and weak vortices simultaneously. However, all of 

the second generation of vortex identification methods described above such as 𝑄, ∆, 𝜆2, 𝜆𝑐𝑖 

criteria are scalar-based, strongly threshold-dependent and contaminated by shear. 

Liutex (previously called Rortex) was proposed by Liu et al. [2] to present the local rigid 

rotational part (scalar, vector and tensor form) without shear contamination. Liutex is a novel 

mathematical vector definition pioneering the representation of the absolute rigid rotational 

strength of the fluid motion in vortex science and defined as R⃗⃗ = Rr , where 𝑅 is magnitude of 

Liutex vector (the rigid body angular speed) and r  is an eigenvector of velocity gradient tensor 

(local rotation axis) [7]. Wang et al. [8] derived an explicit formula to calculate the magnitude of 

Liutex:     R = ω⃗⃗ ∙ r − √(ω⃗⃗ ∙ r )2 − 4λci
2 , 

where 𝜔⃗⃗  is the local vorticity vector, 𝑟  a real eigenvector of velocity gradient tensor (local rotation 

axis), 𝜆𝑐𝑖 an imaginary part of the complex eigenvalue of velocity gradient tensor,  ω⃗⃗ ∙ r  the 

magnitude of vorticity projected in the direction of r . 

Kelvin-Helmholtz instability (KHI) originally studied by Hermann von Helmholtz in 1868 

and Lord Kelvin in 1871. KHI is an instability at the interface between two parallel streams with 

different velocities and densities, but they are discontinuous at the interface between two fluids 

with the heavier fluid at the bottom and the lighter fluid at the top. We can easily find the KHI 

every place in the nature such as the wind blowing over water, motion of interstellar clouds and 

quantized vortices in quantum fluids. 
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Micro vortex generator (MVG) is a low-passive control device commonly used in aviation 

applications such as reducing drag, alleviating separation in turbulent flow, enhancing the quality 

of the velocity profile after shock wave and boundary layer interaction (SWBLI), etc. [9]. The other 

benefits of MVG include simple design, easy implementation, low cost and robust performance. 

Therefore, aerospace engineering researchers are interested in micro vortex generators (MVGs) 

hoping to alleviate the harmful effects by SWBLI.  

Lumley introduced the proper orthogonal decomposition (POD) to study turbulent flow 

field in 1967 [10]. The POD was proposed independently by Kosambi (1943), Loeve (1945), 

Karhunen (1946), Pougachev (1953), and Obukhov (1954) (See Berkooz et al. in 1993 [11]). Proper 

orthogonal decomposition (POD), which is also known as the Karhunen-Loeve decomposition 

(KLD) [12], principal component analysis (PCA) after restricting to finite dimensions and 

truncating a few terms later [13], and the Hotelling transform [14]. The main goals of POD 

method are a common and efficient reduction by projecting the high dimensional space into the 

lower one and extraction by exposing appropriated structure hidden in data [15].  POD is also 

considered a great model of continuous second order processes. After applying the POD method, 

the user can keep the first few POD modes, which contain the most energy to analyze the data. 

Powerful computers were required for finding POD modes; thus, the POD method became 

popular only in the middle of 20th century after the necessary computing power became more 

affordable. There are various applications of the POD method such as: image processing, signal 

analysis, data compression, modal analysis and modal order reduction. Liang et al. [16] 

summarized the POD method, proved the equivalent and showed the connection of three POD 

methods: KLD, PCA and singular value decomposition (SVD) in 2001. Wu et al. [17] explained that 
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there are two interpretations of POD. The first interpretation regards POD as the Karhunen-Loeve 

Decomposition (KLD). The second interpretation consists of the following three closely connected 

methods; KLD, the principal component analysis (PCA), and the singular value decomposition 

(SVD). In their research, the authors did apply some useful theorems to provide detailed proofs 

that both KLD and SVD are equivalent to PCA; and that the POD method is equivalent to all three 

methods (KLD, SVD, PCA). In article [18], Taira et al. did a great model analysis of the POD method 

in 2017. In their study, the application of POD to complex flow field was discussed using three 

related key approaches: the spatial POD method, the snapshot POD method and the SVD. Their 

research mentioned the advantages of POD including easy computation in both spatial and 

snapshot methods and elimination from the data of noise, which usually manifests as high-order 

POD modes. POD was used in the research of Kerschen et al. [19] for discovering several different 

useful applications that are beneficial in structural dynamics and ordering not only linear but also 

nonlinear systems reduction. On the other hand, Brevis et al. [20], for the flow visualization image 

pre-processing and post-processing, used POD to analyze coherent structures. In their study, the 

cost of POD in two-dimensional shallow flow in a cylinder is not very high and the characterization 

of coherent structure is not excessively complicated. A highly cited study of POD applied to 

internal combustion (IC) engine flows was done by Chen et al. [21] in 2012. The research 

explained clearly that the properties of POD and suggested some useful application for IC engine 

flows. Instead of using several POD modes to analyze the data, the authors only utilized mode 1 

to accurately approximate the ensemble average and to determine the cyclic changes in 

Reynolds-averaged Navier–Stokes ensemble average. Richer and his research group also used 

POD method to examine the wake-dynamic coherence vortex structure of circular cylinder in 
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2018 [22]. In their study, the first six POD modes were used to study dynamic systems. Three 

pairs of POD modes were found in the paper. The slow-drift effect faintly modulated the first pair 

of POD modes. Besides, they also proposed the important model with a substantial influence on 

Reynolds stress to show how energy is transferred among different POD modes. The 

experimental study differences between streaky and non-streaky activities in overloaded channel 

flow with micro-bubbles using POD method was completed by Zhao, et at. [23] in 2019. The 

authors found that there was a significant strengthening of non-streaky turbulence and a decline 

of streaky ones. The other main purpose of applying POD method was to examine kinetic energy 

and analyze the coherent streak structure in turbulent flow field. 

Schmid et al. introduced the dynamic mode decomposition (DMD) by using numerical and 

experimental data to extract dynamic mode and in 2010 [24]. He did determine the method on 

various flows such as: plane channel flow, on two-dimensional cavity flow, from wake flow 

behind a flexible membrane to the jet passing through two cylinder’s flow. The primary goal of 

DMD in this study was used as the dimensional reduction method. He also proved DMD was a 

robust and consistent method. The utility of dynamic mode decomposition in Abu and Hyung’ 

research is to analyze self-sustained oscillations in turbulent cavity flow at  𝑅𝑒𝐷 =

3000 𝑎𝑛𝑑 12000, with upstream turbulent of  𝑅𝑒𝜃 = 670 𝑎𝑛𝑑 300, respectively in 2011[25].  In 

the study, DMD algorithm was used to extract the wide range of structures. The viscous boundary 

layer was denoted by the thick incoming boundary layer structures while the cavity dynamics 

were represented by the thin incoming boundary layer which showed a leading peak in the 

spectrum. Number of scientists who are interesting in studying coherent structure is increasing 

in the recent decade. They tried to understand the complex and multi-scaled nature of turbulent 
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flows. Jorn Sesterhenn and Amir Shahirpour are a great example. They introduced the 

characteristic dynamic mode decomposition to approximate coherent structures with a reduced 

order model in space and time which included three topics: coherent structure, model, 

decomposition, and model reduction in 2019 [ 26].  

After Babinsky et al. [27] conducted experiments on several different kind of microamps 

at Mach 2.5 in 2009, many scholars believed that the velocity profiles were getting fuller 

expressively as shown in figure 3 and boundary-layer thickness was reduced in comparison to the 

case with no microamps, which made the flow harder to be separated after putting MVG. The 

result of this study was confirmed by several researchers such as the Ghosh et al. [28] in 2010, 

Lee et al. [29] in 2012 and Wang et al. [30] in 2012. 

 

 

 

However, the numerical simulation results for supersonic micro vortex generator at 𝑀𝑎 =

 2.5 and 𝑅𝑒𝜃 = 1440 of Li and Liu [31] revealed a quite new mechanism to compare with 

Babinsky’s experimental result in 2011 [32]. Their first conclusion is that momentum deficit on 

streamwise direction behind MVG brought low-momentum from the bottom fluid up to the top 

Figure 2. 1 Average velocity profile from Babinsky et al. [18] 
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and high-momentum from the top descended to the bottom. Moreover, low and high-

momentum went opposite direction which generated shear layer instability (K-H type instability). 

Then, shear layer formed K-H rings, which destroy the shock and reduce the separation bubble 

size. Their second conclusion is that the mechanism of vortex ring generation should be K-H type 

instability. A year later, Lu et al. [33] confirmed their conclusions through their MVG on high-

speed flow experiment. Yan et al. [34, 35] also acknowledged that the mechanism of vortex ring 

generation should be K-H type instability. In several studies of Sun et al. about MVG [36], their 

results are also supporting Li and Liu theories.  

The purpose of this research is to further check if the theory, that the vortex structure 

behind MVG is generated by K-H type instability, is correct or not.  Moreover, POD method is 

applied to compare the results from loading data directly from Liutex vector (𝐿𝑥, 𝐿𝑦, 𝐿𝑧) and 

loading from velocity (𝑢, 𝑣, 𝑤) by using 𝛺̃𝑅 method and Liutex iso-surface. Besides, DMD method 

is also used to analyze on the mechanism of separation reduction by MVG through shock vortex 

interaction by loading data directly from Liutex vector (𝐿𝑥, 𝐿𝑦, 𝐿𝑧). 

The dissertation is arranged as follows. Case set up and code validation are introduced in 

chapter 2. Chapter 3 provides vortex identification methods such as: 𝑄, ∆, 𝜆𝑐𝑖 criterion, 𝜆2 

criterion, Omega, Liutex. Chapter 4 is mainly discussion on POD analysis of coherent structure in 

turbulent flow after MVG and coherent structure in the wake of MVG. DMD is described in 

chapter 5. The conclusions are made in the last section. 
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Chapter 2 
Case Description and Code Validation 

 

2.1 Governing equation 

 

The data of flow field is obtained by an implicit implemented large eddy simulation. The 

governing equations are the nondimensional compressible Navier-Stokes equations in 

conservative form which read 

𝜕𝑄⃗ 

𝜕𝑡
+

𝜕𝐸⃗ 

𝜕𝑥
+
𝜕𝐹 

𝜕𝑦
+
𝜕𝐺 

𝜕𝑧
=

𝜕𝐸⃗ 𝑣

𝜕𝑥
+
𝜕𝐹 𝑣

𝜕𝑦
+
𝜕𝐺 𝑣

𝜕𝑧
                                     (25) 

where 

𝑄⃗ =

[
 
 
 
 
𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝑒 ]
 
 
 
 

, 𝐸⃗ =

[
 
 
 
 

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝑤

(𝑒 + 𝑝)𝑢]
 
 
 
 

, 𝐹 =

[
 
 
 
 

𝜌𝑣
𝜌𝑣𝑢

𝜌𝑣2 + 𝑝
𝜌𝑣𝑤

(𝑒 + 𝑝)𝑣]
 
 
 
 

, 𝐹 =

[
 
 
 
 

𝜌𝑤
𝜌𝑤𝑢
𝜌𝑤𝑣

𝜌𝑤2 + 𝑝
(𝑒 + 𝑝)𝑤]

 
 
 
 

, 

𝐸⃗ 𝑣 =
1

𝑅𝑒

[
 
 
 
 

0
𝜏𝑥𝑥
𝜏𝑥𝑦
𝜏𝑥𝑧

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 +𝑤𝜏𝑥𝑧 + 𝑞𝑥]
 
 
 
 

, 𝐹 𝑣 =
1

𝑅𝑒

[
 
 
 
 

0
𝜏𝑦𝑥
𝜏𝑦𝑦
𝜏𝑦𝑧

𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 +𝑤𝜏𝑦𝑧 + 𝑞𝑦]
 
 
 
 

,  

𝐺 𝑣 =
1

𝑅𝑒

[
 
 
 
 

0
𝜏𝑧𝑥
𝜏𝑧𝑦
𝜏𝑧𝑧

𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 +𝑤𝜏𝑧𝑧 + 𝑞𝑧]
 
 
 
 

, 

𝑒 =
𝑝

𝛾−1
+

1

2
𝜌(𝑢2 + 𝑣2 +𝑤2), 𝑞𝑥 =

𝜇

(𝛾−1)𝑀∞
2 𝑃𝑟

𝜕𝑇

𝜕𝑥
, 𝑞𝑦 =

𝜇

(𝛾−1)𝑀∞
2 𝑃𝑟

𝜕𝑇

𝜕𝑦
, 𝑞𝑧 =

𝜇

(𝛾−1)𝑀∞
2 𝑃𝑟

𝜕𝑇

𝜕𝑧
, 𝑝 =

1

𝛾𝑀∞
2 𝜌𝑇, 𝑃𝑟 = 0.72, 
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𝜏 = 𝜇

[
 
 
 
 
4

3

𝜕𝑢

𝜕𝑥
−
2

3
(
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
)

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

4

3

𝜕𝑣

𝜕𝑦
−
2

3
(
𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑧
)

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦

4

3

𝜕𝑤

𝜕𝑧
−

2

3
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
)]
 
 
 
 

.          (26) 

The viscous coefficient is calculated by Sutherland’s law: 

𝜇 = 𝑇3/2
1+𝐶

𝑇+𝐶
, 𝐶 =

110.4

𝑇∞
.                                             (27) 

The nondimensionalization of variables is given as follows: 

 𝑥 =
𝑥̃

𝐿
, 𝑦 =

𝑦̃

𝐿
, 𝑧 =

𝑧

𝐿
, 𝑢 =

𝑢̃

𝑈∞
, 𝑣 =

𝑣̃

𝑉∞
, 𝑤 =

𝑤̃

𝑊∞
, 𝑇 =

𝑇̃

𝑇∞
, 𝜇 =

𝜇̃

𝜇∞
, 𝑘 =

𝑘̃

𝑘∞
, 𝜌 =

𝜌̃

𝜌∞
, 𝑝 =

𝑝̃

𝜌∞𝑈∞
2  (28) 

where the variables with the symbol “~” represents the dimensional version. 

Using the following coordinate transformation, 

𝜉 = 𝜉(𝑥, 𝑦, 𝑧), 

𝜂 = 𝜂(𝑥, 𝑦, 𝑧), 

𝜁 = 𝜁(𝑥, 𝑦, 𝑧), 

the governing equations are transformed to the equations in the computational space as 

𝜕𝑄⃗̂ 

𝜕𝑡
+
𝜕𝐸⃗̂ 

𝜕𝑥
+
𝜕𝐹̂ 

𝜕𝑦
+
𝜕𝐺̂ 

𝜕𝑧
=
𝜕𝐸⃗̂ 𝑣
𝜕𝑥

+
𝜕𝐹̂ 𝑣
𝜕𝑦

+
𝜕𝐺̂ 𝑣
𝜕𝑧

 

where 

𝑄⃗̂ = 𝐽−1, 

𝐸⃗̂ = 𝐽−1(𝜉𝑥𝐸⃗ + 𝜉𝑦𝐹 + 𝜉𝑧𝐺 ), 
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𝐹̂ = 𝐽−1(𝜂𝑥𝐸⃗ + 𝜂𝑦𝐹 + 𝜂𝑧𝐺 ), 

𝐺̂ = 𝐽−1(𝜁𝑥𝐸⃗ + 𝜁𝑦𝐹 + 𝜁𝑧𝐺 ), 

𝐸⃗̂ 𝑣 = 𝐽
−1(𝜉𝑥𝐸⃗ 𝑣 + 𝜉𝑦𝐹 𝑣 + 𝜉𝑧𝐺 𝑣), 

𝐹̂ 𝑣 = 𝐽−1(𝜂𝑥𝐸⃗ 𝑣 + 𝜂𝑦𝐹 𝑣 + 𝜂𝑧𝐺 𝑣), 

𝐺̂ 𝑣 = 𝐽
−1(𝜁𝑥𝐸⃗ 𝑣 + 𝜁𝑦𝐹 𝑣 + 𝜁𝑧𝐺 𝑣), 

𝐽−1 =
𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜂

𝜕𝑧

𝜕𝜁
+
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜁

𝜕𝑧

𝜕𝜉
+
𝜕𝑥

𝜕𝜁

𝜕𝑦

𝜕𝜉

𝜕𝑧

𝜕𝜂
−
𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜁

𝜕𝑧

𝜕𝜂
−
𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜉

𝜕𝑧

𝜕𝜁
−
𝜕𝑥

𝜕𝜁

𝜕𝑦

𝜕𝜂

𝜕𝑧

𝜕𝜉
              

2.2 Numerical Methods 

 

We use the fifth order bandwidth-optimized WENO scheme and the implicitly LES method 

to solve the form of the Navier-Stokes equations at Mach=2.5 and 𝑅𝑒 = 5760. 

One dimensional hyperbolic equation can be written as: 

𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝑥
= 0, 

The semi-discretized equation can be written as: 

(
𝜕𝑢

𝜕𝑡
)
𝑗
= −

ℎ
𝑗+
1
2

∆𝑥
+

ℎ
𝑗−
1
2

∆𝑥
 

 

ℎ1
+′ =

1

3
𝑓𝑗−2 −

7

6
𝑓𝑗−1 +

11

6
𝑓𝑗 , 
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ℎ2
+′ = −

1

6
𝑓𝑗−1 +

1

3
𝑓𝑗 +

5

6
𝑓𝑗+1, 

ℎ3
+′ =

1

3
𝑓𝑗 +

5

6
𝑓𝑗+1 −

1

6
𝑓𝑗+2 

Where the superscript “+” is the positive flux after flux splitting, 

The final non-linear weight scheme is: 

ℎ
𝑗+
1
2

+ = 𝑤1ℎ1
+′ + 𝑤2ℎ2

+′ +𝑤3ℎ3
+′, 

Where 𝑤𝑖: the WENO weights, 𝐼𝑆𝑖: the smoothness indicators 

𝑤𝑖 =
𝑏𝑖

𝑏1 + 𝑏2 + 𝑏3
, 𝑏𝑖 =

𝑎𝑖
(𝐼𝑆𝑖 + 𝜀)

2
, (𝑎1, 𝑎2, 𝑎3) = (0.1,0.6,0.3), 

𝐼𝑆1 =
13

12
(𝑓𝑗−2 − 2𝑓𝑗−1 + 𝑓𝑗)

2 +
1

4
(𝑓𝑗−2 − 4𝑓𝑗−1 + 3𝑓𝑗)

2, 

𝐼𝑆2 =
13

12
(𝑓𝑗−1 − 2𝑓𝑗 + 𝑓𝑗+1)

2 +
1

4
(𝑓𝑗−1 − 4𝑓𝑗+1)

2, 

𝐼𝑆3 =
13

12
(𝑓𝑗 − 2𝑓𝑗+1 + 𝑓𝑗+2)

2 +
1

4
(3𝑓𝑗 − 4𝑓𝑗+1 + 𝑓𝑗+2)

2. 

The scheme for the negative flux ℎ
𝑗+

1

2

−  has the similar form to ℎ
𝑗+

1

2

+  at point 𝑥
𝑗+

1

2

. 

For spatial discretization, the fifth-order bandwidth-optimized WENO scheme is used for 

the convective terms and the traditional fourth-order central scheme is utilized for the viscous 

terms. The explicit third-order TVD type Runge-Kutta scheme is adopted for the time integration. 

In the wall boundary, the adiabatic, zero-gradient of pressure and nonslipping condition is 

enforced. In the upper boundary, fixed-value condition with the free parameters is used. The 
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mirror-symmetry condition is used in the spanwise direction. The outflow boundary condition is 

specified as a kind of characteristic-based condition.  

𝑢(1) = 𝑢𝑛 + ∆𝑡𝐿(𝑢𝑛), 

𝑢(2) =
3

4
𝑢𝑛 +

1

4
𝑢(1) +

1

4
∆𝑡𝐿(𝑢(1)), 

𝑢𝑛+1 =
3

4
𝑢𝑛 +

1

4
𝑢(2) +

2

3
∆𝑡𝐿(𝑢(2)), 

Where 𝐿 is the differential operator which denotes the spatial derivatives, 

𝐿(𝑢) = −
𝜕𝐸(𝑢)

𝜕𝑥
−
𝜕𝐹(𝑢)

𝜕𝑦
−
𝜕𝐺(𝑢)

𝜕𝑧
+
𝜕𝐸𝑣(𝑢)

𝜕𝑥
+
𝜕𝐹𝑣(𝑢)

𝜕𝑦
+
𝜕𝐺𝑣(𝑢)

𝜕𝑧
. 

2.3 Case setup and code validation 

 

The geometry of MVG is shown in figure 2.1 and the geometric parameters are specified 

following the experimental research performed by Babinsky et al. [27], with ℎ = 4, 𝑐 = 7.2ℎ, 𝛼 =

24°, 𝑠 = 7.5ℎ, where ℎ is the height of MVG, 𝑐 is the chord length and 𝑠 is the distance between 

MVG. In this study 𝑧 = 0 is the corner. Furthermore, the trailing edge declining angle  70° is con 

sidered to control the flow. For the mechanism of the vortex ring generation, a micro vortex 

generator at 𝑀𝑎 = 2.5 and 𝑅𝑒𝜃 = 5760 is used. To solve the Navier-Stokes equations, in this 

research a large eddy simulation method with fifth order bandwidth-optimized WENO scheme 

[32] is applied. Figure 2.2 shows the schematic of a half grid system which is divided by three 

regions: fore-region, MVG region and ramp region. For the high resolution and the smooth 

transformation, there is a grid transition buffer lying between the two regions. Because the grid 

distribution is symmetric, there is only half of the gird system displayed. The grid system 
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𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑤𝑖𝑠𝑒 × 𝑛𝑠𝑝𝑎𝑛𝑤𝑖𝑠𝑒 × 𝑛𝑛𝑜𝑟𝑚𝑎𝑙 = 1600 × 192 × 137 is chosen to be the grid of the system 

and 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 be the spanwise, normal and streamwise direction respectively. In the wake 

region, uniform mesh is used along the streamwise and spanwise directions and non-uniform 

mesh is used along the normal direction. The grid and the geometry generation detailed 

explanation is in the previous researches [31, 37], so that they are not mentioned in this paper.  

 

Figure 2. 2 The geometry of micro vortex generator 

 

 

Figure 2. 3 The schematic of the half grid system 
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Figure 2.4 The configuration of the computational domain 

Figure 2. 5 Wake vortices structure behind MVG (a) the schlieren on the central plane given by 

our LES result (b) the NPLS image of Wang et al. [38] 

Figure 2. 4 The configuration of the computational domain 
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The group of researchers at University of Texas at Arlington developed the LESUTA code 

to adopt in this study. The schlieren of turbulent compression ramp flow with MVG on the central 

plane depend on the LES result is showed in figure below. Wang et al [38] proposed the NPLS 

image of wake structures behind MVG in 2012 that shows in figure 2.4 NPLS suggests a new flow 

visualization bases on Rayleigh-scattering which contained from the supersonic flow at 𝑀𝑎 = 2.7 

and 𝑅𝑒𝜃 = 5845.  

Table 2. 1 Initial and reference parameters of the turbulent flow 

𝑀∞ 𝑅𝑒𝜃 𝑇∞ 𝑇𝑤 ℎ 𝛿 𝑈∞ 𝑇 
2.5 5760 288.15 𝐾 300 𝐾 4 𝑚𝑚 9.44 𝑚𝑚 850 𝑚/𝑠 4.76 × 10−6𝑠 

 

The parameters in table 2.1 are defined as: 

𝑀∞= Mach number 

𝑅𝑒𝜃= Reynolds number based on momentum thickness 

𝑇∞= free stream temperature 

𝑇𝑤= wall temperature 

ℎ= height of micro vortex generator 

𝛿= local thickness of the turbulent boundary layer 

𝑈∞= the freestream velocity 

 

2.4 Kelvin-Helmholtz instability  

 

Kelvin-Helmholtz instability was initially researched by Hermann von Helmholtz (1868) 

and Lord Kelvin (1871) [39]. K-H instability occurs when the high-speed zone (on the top) is 

descending to the bottom, while the low-speed zone (on the bottom) is ascending. Furthermore, 

they are going in opposite directions generating the shear layer as shown in figures 2.5 (a) and 

(b). The shear layer keeps rolling until it forms a pair of rotations as shown in figures 2.5 (c) and 
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(d). After becoming a pair, that pair of rotations keeps rolling together eventually mixing and 

becoming one rotation. However, it still has a pair of cores inside the rotation as shown in figures 

2.5(e) and (f). Thus, pairing of vortices in two dimensions is the sign of K-H instability. On the 

other hand, in 3-D the K-H instability resemble rings circling around streamwise and spanwise on 

streamwise direction as shown in figure 2.6[40]. This instability occurs among others as well in 

the cloud, on the way of water and on Jupiter.  

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure 2. 6 Numerical simulation in 2 dimensions on K-H instability. 

 

Figure 2. 7 Numerical simulation in 3-D on K-H type instability (iso-surface of 𝛺̃𝑅 = 0.52) 

 

Figure 2. 8 Kelvin-Helmholtz instability occurring on the cloud (source: Wikipedia) 
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Figure 2. 9 Kelvin-Helmholtz instability occurring on the wave of water (source: Wikipedia) 

Figure 2. 10 Kelvin-Helmholtz instability occurring on the Jupiter (source: Wikipedia) 

 

As shown in Figs. 2.10 and 2.11, images of vortex structure in MVG wake subzone show 

evidently that the head shape of K-H vortices is arc-shaped. It also illustrates that there are vortex 

rings generated by MVG attributable to K-H type instability. The vorticities are decomposed along 

the streamwise and spanwise; moreover, Kelvin-Helmholtz vortices lie on the top and circle 

around streamwise and spanwise vortices along the 𝑍-direction (𝑍-direction is the streamwise 

direction). Kelvin-Helmholtz vortices are getting larger downstream than upstream are reflected 

by the growth of vortex pair spacing which is the same as the result of Sun’s studies which is 

showed in figure 2.12 [36, 40]. 
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                         Top View                                                                                 Side view 

Figure 2. 11 Subzone of vortex structures (iso-surface of 𝛺̃𝑅 = 0.52) in MVG wake 

 

               Top view                                                                          Side view 

Figure 2. 12 Subzone of vortex structures (iso-surface of Liutex =0.05) in MVG wake 

       

Figure 2. 13 Distribution of streamwise and spanwise vorticity from our LES (left) and from 
experiment by Sun et al. (right 
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2.5 Micro vortex generator (MVG) 

 

There were several MVG studies in supersonic flow field advocating MVG as a powerful 

device to reduce the harmful separation by removing the shock [33, 35]. The original function of 

MVG was to improve performance of high lift wing flap configurations [33] which is showed in 

figure 2.13. Indeed, there have been several successful experiments in finding positive effects of 

applying MVG. Vortex generator (VG) can delay successfully flow separation in aviation 

applications with a height that is about 10-50% of boundary layer thickness. However, MVG is 

superior over VG in reducing flow separation in turbulent flow due to untoward pressure gradient 

[41] and shock-induced separation [42] with a height that is approximately 20 − 40% of the 

boundary layer thickness. McCormick et al. [43] was the first in making an experimental 

comparison between MVG and passive cavity in a relatively low speed flow at 𝑀𝑎𝑐ℎ 1.56 −

1.65 𝑖𝑛 1993. The authors found that MVG is available device, which can suppress SWBLI and 

improve downstream boundary layer of the shock.  

Figure 2. 14 An array of vortex generators on the aircraft wing for shock buffeting control 

(picture taken on B737-800, operated by Transavia airlines, flying from Barcelona to 

Amsterdam) 
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Chapter 3 
Vortex Identification Methods 

 

The velocity gradient tensor which is given velocity field 𝑣 is defined as 

G ≡ ∇𝑣 

And it can be written by two parts: symmetric and antisymmetric parts 

𝐺 = 𝑆 + 𝛺 

Where 𝑆 is called the strain rate tensor, 

𝛺 is called the angular rotation rate tensor, 

𝑆 =
1

2
[𝐺 + 𝐺𝑇] 

Ω =
1

2
[𝐺 − 𝐺T] 

The trajectory of the neighboring fluid particle is determined by solving the deferential 

equation:  

𝑑𝑦

𝑑𝑡
= 𝐺𝑦 

Given the initial condition 𝑦(0) = 𝑦0.The solution of this linear system of first-order 

ordinary differential equations (ODEs) is given by eigen decomposition: 

𝐺𝑉 = 𝑉⋀ = ⋀𝑉 

𝐺𝑣⃑ = 𝜆𝑣⃑ 
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𝐺 = 𝑉⋀𝑉−1 

𝑣⃑ = [𝑣1⃗⃗⃗⃗⃑, 𝑣2⃗⃗⃗⃗⃑, 𝑣3⃗⃗⃗⃗⃑] 

⋀ = [
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] 

𝑑𝑦

𝑑𝑡
= 𝐺𝑦 = 𝑉⋀𝑉−1𝑦 

𝑉−1
𝑑𝑦

𝑑𝑡
= ⋀𝑉−1𝑦 

𝑑(𝑉−1𝑦)

𝑑𝑡
= ⋀(𝑉−1𝑦) 

𝑦̅ = 𝑉−1𝑦 

=> 𝑦 = 𝑦̅𝑉 

𝑑𝑦̅

𝑑𝑡
= ⋀𝑦 = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] [
𝑦̅1
𝑦̅2
𝑦̅3

] 

𝑑𝑦̅1

𝑑𝑡
= 𝜆1𝑦̅1, 

𝑑𝑦̅2

𝑑𝑡
= 𝜆2𝑦̅2, 

𝑑𝑦̅3

𝑑𝑡
= 𝜆3𝑦̅3 

𝑦(𝑡) = 𝑣1 𝑒
𝜆1𝑡𝑐1 + 𝑣2 𝑒

𝜆2𝑡𝑐2 + 𝑣3 𝑒
𝜆3𝑡𝑐3 

Where 𝐺 𝑖𝑠 𝑎 3 × 3 matrix and 𝑐1, 𝑐2, 𝑐3 are constants, 

The first option is if three eigen values are real, the point is a node. The second option is 

that we have one real eigen value and other two are the complex eigen values which are complex 
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conjugates, in which case the point is called a focus, and the neighboring trajectories are closed 

or spiraling streamlines indicating a vortex. 

𝑉𝑐 = 𝑦0 => 𝑐 = 𝑉−1𝑦0 

General solution: 

𝑦(𝑡) = 𝑉𝑒𝑥𝑝(⋀𝑡)𝑐 = 𝑉𝑒𝑥𝑝(⋀𝑡)𝑉−1𝑦0 

The characteristic equation det(𝐺 − 𝜆𝐼) = 0 

𝜆3 + 𝑃𝜆2 + 𝑄𝜆 + 𝑅 = 0 (1) 

𝑃 = −𝑡𝑟𝐺 = −∇.𝑣 

𝑄 =
1

2
([𝑡𝑟𝐺]2 − 𝑡𝑟(𝐺2)) =

1

2
([𝑡𝑟𝐺]2 + ‖𝛺‖2 − ‖𝑆‖2) 

𝑅 = −𝑑𝑒𝑡𝐺 =
1

3
(−𝑃3 + 3𝑃𝑄 − 𝑡𝑟(𝐺3)) 

All norms are taken as Frobenius norm ‖𝐴‖ = [∑ 𝐴𝑖𝑗
2

𝑖,𝑗 ]
1

2. 

3.1 Q criterion 

The 𝑄 criterion is one of the most popular vortex identification method proposed by Hunt 

[44]. 𝑄 is defined as the residual of the vorticity tensor norm squared subtract from the strain-

rate tensor norm squared. 

𝑄 =
1

2
(‖𝐵‖𝐹

2 − ‖𝐴‖𝐹
2) =

1

2
(‖𝛺‖2 − ‖𝑆‖2) 

Where 𝐴 is the symmetric part of the velocity gradient tensor, 

𝐵 is the antisymmetric part of the velocity gradient tensor, 
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𝐴 =
1

2
(∇𝑣 + ∇𝑣𝑇) =

[
 
 
 
 
 
 

𝜕𝑢

𝜕𝑥

1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)

1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)

1

2
(
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
)

𝜕𝑣

𝜕𝑦

1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
)

1

2
(
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
)

1

2
(
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
)

𝜕𝑤

𝜕𝑧 ]
 
 
 
 
 
 

 

𝐵 =
1

2
(∇𝑣 − ∇𝑣𝑇) =

[
 
 
 
 
 
 0

1

2
(
𝜕𝑢

𝜕𝑦
−
𝜕𝑣

𝜕𝑥
)

1

2
(
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
)

1

2
(
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) 0

1

2
(
𝜕𝑣

𝜕𝑧
−
𝜕𝑤

𝜕𝑦
)

1

2
(
𝜕𝑤

𝜕𝑥
−
𝜕𝑢

𝜕𝑧
)

1

2
(
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
) 0

]
 
 
 
 
 
 

 

We use Frobenius norm ‖. ‖𝐹
2  to represent. A region with 𝑄 > 0 can be thought as a vortex 

and a second condition, which requires the pressure in the vortical region to be lower than the 

ambient pressure, is often omitted. However, a threshold 𝑄𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 have to be a positive number 

that is used to define the region with 𝑄 > 𝑄𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 as a vortex in practice. If 𝑄𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is too 

small positive number that will create more noise. 

3.2 ∆ criterion 

 

Chong’s critical point theory is defined a vortex core to be the region where ∇𝑣 has 

complex eigen values [45]. In a non-rotating reference frame translating with a fluid particle, the 

instantaneous streamline patter which applied Taylor series expansion of local velocity to a linear 

order is governed by the eigenvalues of ∇𝑣. For both compressible and incompressible flows, 

these streamlines are closed or spiraling if tow of the eigenvalues form a complex conjugate pair. 

In at that instant flow, the usage of instantaneous streamline implies assuming the velocity field 

to be frozen at that instant in time. Determining whether the values are real or complex is an 
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important thing, which is governed by the discriminant of (1) the characteristic equation for the 

velocity gradient tensor ∇𝑣: 

∆= (𝑄̃ /3)3 + (𝑅̃ /2)2 

𝑄̃ = 𝑄 −
𝑃2

3
 

𝑅̃ = 𝑅 +
2𝑃3

27
− 𝑃𝑄/3 

If ∆≤ 0, we have three eigenvalues of ∇𝑣 is real. Otherwise, if ∆> 0, there is one real 

eigenvalue and two conjugate complex eigenvalues after that we have a point is inside a vortex. 

For incompressible flow, ∇. 𝑣 = −𝑃 = 0 => 𝑄̃ = 𝑄, 𝑅̃ = 𝑅 𝑎𝑛𝑑 ∆= (𝑄 /3)3 + (𝑅 /2)2 

If 𝑄 > 0 =>  ∆> 0, which means that the point with 𝑄 > 0 is inside a vortex. However, of 𝑄 <

0, since (𝑅 /2)2 𝑖𝑠 𝑎𝑙𝑤𝑎𝑦𝑠 > 0, it is possible that ∆> 0. Thus, a point 𝑄 < 0 is still possible to be 

inside a vortex, based on ∆ criterion. This implies the inconsistence between the 𝑄 and ∆ criteria. 

3.3 λci criterion 
𝜆𝑐𝑖𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 is extension of ∆ criterion. It reads, 

𝜆𝑐𝑖 > 𝜆𝑐𝑖,𝑡ℎ𝑟𝑒𝑠ℎ 

In theory, 𝜆𝑐𝑖,𝑡ℎ𝑟𝑒𝑠ℎ = 0; however, in practice, 𝜆𝑐𝑖,𝑡ℎ𝑟𝑒𝑠ℎ is some small positive number. 

According to Zhou [46], 𝜆𝑐𝑖 is called the swirling strength of the vortex because in a 

swirling flor the period of orbit of a fluid particle is 2𝜋/𝜆𝑐𝑖. 

𝑑𝑦

𝑑𝑡
= 𝐺𝑦 



28 

 

𝑦 = 𝑉𝑐 

𝐺𝑉 = 𝑉⋀ = ⋀𝑉 => 𝑉𝐺𝑉−1 = ⋀ 

𝐺 = 𝑉⋀𝑉−1 

𝑑𝑉𝑐

𝑑𝑡
= 𝐺𝑉𝑐 

𝑉
𝑑𝑐

𝑑𝑡
= 𝐺𝑉𝑐 

𝑑𝑐

𝑑𝑡
= 𝑉−1𝐺𝑉𝑐=⋀𝑐 

Where 𝐺 𝑖𝑠 𝑎 3 × 3 matrix and when 𝐺 has a real eigenpair (𝜆𝑟, 𝑉𝑟), complex conjugate eigen 

pairs (𝜆𝑐𝑟 ± 𝑖𝜆𝑐𝑖, 𝑉𝑐𝑟 ± 𝑖𝑉𝑐𝑖). 

𝐺 = [
| | |
𝑉𝑟 𝑉𝑟 + 𝑖𝑉𝑐𝑖 𝑉𝑐𝑟 − 𝑖𝑉𝑐𝑖
| | |

] [
𝜆𝑟 0 0
0 𝜆𝑐𝑟 + 𝑖𝜆𝑐𝑖 0
0 0 𝜆𝑐𝑟 − 𝑖𝜆𝑐𝑖

] [
| | |
𝑉𝑟 𝑉𝑟 + 𝑖𝑉𝑐𝑖 𝑉𝑐𝑟 − 𝑖𝑉𝑐𝑖
| | |

]

−1

 

𝐺 = [
| | |
𝑉𝑟 𝑉𝑐𝑟 𝑉𝑐𝑖
| | |

] [

𝜆𝑟 0 0
0 𝜆𝑐𝑟 𝜆𝑐𝑖
0 −𝜆𝑐𝑖 𝜆𝑐𝑟

] [
| | |
𝑉𝑟 𝑉𝑐𝑟 𝑉𝑐𝑖
| | |

]

−1

 

𝐺[𝑉⃗ 𝑟     𝑉⃗ 𝑐𝑟     𝑉⃗ 𝑐𝑖] = [𝑉⃗ 𝑟     𝑉⃗ 𝑐𝑟     𝑉⃗ 𝑐𝑖] [
𝜆𝑟 0 0
0 𝜆𝑐𝑟 𝜆𝑐𝑖
0 −𝜆𝑐𝑖 𝜆𝑐𝑟

] 

[𝐺𝑉⃗ 𝑟     𝐺𝑉⃗ 𝑐𝑟     𝐺𝑉⃗ 𝑐𝑖] = [𝑉⃗ 𝑟𝜆𝑟      𝑉⃗ 𝑐𝑟𝜆𝑐𝑟 − 𝑉⃗ 𝑐𝑖𝜆𝑐𝑖   𝑉⃗ 𝑐𝑟𝜆𝑐𝑖 + 𝑉⃗ 𝑐𝑖𝜆𝑐𝑟] 

𝐺𝑉⃗ 𝑟 = 𝜆𝑟𝑉⃗ 𝑟 

𝐺( 𝑉⃗ 𝑐𝑟 + 𝑖𝑉⃗ 𝑐𝑖) = (𝜆𝑐𝑟 + 𝑖𝜆𝑐𝑖)(𝑉⃗ 𝑐𝑟 + 𝑖𝑉⃗ 𝑐𝑖) 
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𝐺( 𝑉⃗ 𝑐𝑟 + 𝑖𝑉⃗ 𝑐𝑖) = 𝜆𝑐𝑟 𝑉⃗ 𝑐𝑟 + 𝑖𝜆𝑐𝑖𝑉⃗ 𝑐𝑖 +  𝑖𝜆𝑐𝑖𝑉⃗ 𝑐𝑟 − 𝜆𝑐𝑖𝑉⃗ 𝑐𝑖 

( 𝐺𝑉⃗ 𝑐𝑟 + 𝑖𝐺𝑉⃗ 𝑐𝑖) = (𝜆𝑐𝑟 𝑉⃗ 𝑐𝑟 − 𝜆𝑐𝑖𝑉⃗ 𝑐𝑖) + 𝑖(𝜆𝑐𝑖𝑉⃗ 𝑐𝑖 + 𝜆𝑐𝑖𝑉⃗ 𝑐𝑟) 

[
𝑐1̇
𝑐2̇
𝑐3̇

] = [
𝜆𝑟 0 0
0 𝜆𝑐𝑟 𝜆𝑐𝑖
0 −𝜆𝑐𝑖 𝜆𝑐𝑟

] [

𝑐1
𝑐2
𝑐3
] 

Which has the solution: 

𝑐1(𝑡) = 𝑐1𝜆𝑟 = 𝑐1(0)𝑒
𝜆𝑟𝑡 

[
𝑐2̇
𝑐3̇
] = [

𝜆𝑐𝑟 𝜆𝑐𝑖
−𝜆𝑐𝑖 𝜆𝑐𝑟

] [
𝑐2
𝑐3
] ↔ [

𝜆𝑐𝑟𝑐2  + 𝑐3𝜆𝑐𝑖
−𝜆𝑐𝑖𝑐2 + 𝑐3𝜆𝑐𝑟

] 

𝑐2(𝑡) = [𝑐2(0) cos(𝜆𝑐𝑖𝑡) + 𝑐3(0) sin(𝜆𝑐𝑖𝑡)] 𝑒
𝜆𝑐𝑟𝑡 

𝑐3(𝑡) = [𝑐3(0) cos(𝜆𝑐𝑖𝑡) − 𝑐2(0) sin(𝜆𝑐𝑖𝑡)] 𝑒
𝜆𝑐𝑟𝑡 

Where t is the time-like parameter and the constant 𝑐1(0), 𝑐2(0), 𝑐3(0) are determined 

by the initial conditions. 

3.4 λ2 criterion 

    λ2 < 0  

Where λ2 is defined to be the second-largest eigenvalue of 𝛺2 + 𝑆2 

This criterion is based on the notion that a local pressure minimum in plane fails to 

identify vortices under strong unsteady and viscous effects. By ignoring the unsteady and viscous 

effects, the symmetric part of gradient of the incompressible Navier-Stokes equation can be 

defined as  

𝐴2 + 𝐵2 = −∇(∇𝑝)/𝑝 
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Where 𝑝 is the pressure, 

To capture the region of local pressure minimum in a plane, Jeong and Hussain [47] define 

vortex core as a connected region with two negative eigenvalues of the tensor 𝐴2 + 𝐵2. If 

eigenvalues λ1 ≥ λ2 ≥ λ3 of tensor 𝐴2 + 𝐵2, it requires that λ2 < 0. In general, λ2 cannot be 

expressed as the eigenvalues of the velocity gradient tensor. If eigenvectors are orthonormal, λ2 

can be exclusively determined by the eigenvalues. 

3.5 Omega 

 

Before 𝛺–method is proposed, most of people have believed that the vorticity cannot be 

generated or destroyed within the interior of fluids, and it is transported inside the flow by 

advection and diffusion [4]. Because of the great value of the physical meaning and properties of 

vorticity in investigating vortices dominant flows, several researchers have tried to use vorticity 

magnitude to conclude coherent structures and identify vortex cores in turbulent flows. For the 

vortex identification, there are quite a few popular methods in the Eulerian frame for the last 

three decades, for example 𝑄 criterion by Hunt in 1988, the 𝜆2 criterion by Joeng and Hussan in 

1995 and the 𝜆𝑐𝑖 criterion by Zhou et al.in 1999, etc. Based on the ideas that vorticity overtakes 

deformation in vortex, a new vortex identification 𝛺– method called is introduced by Liu et al. [4] 

in 2016. 𝛺 is well-defined as a ratio of vorticity tensor norm squared over the sum of vorticity 

tensor norm squared and deformation in tensor norm squared. 

There are many advantages of 𝛺–method compared to other methods like 𝑄- criterion 

and 𝜆2-method [4]: 

1. The 𝛺–method is able to capture vortex well and it is very easy to perform. 
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2. The physical meaning of 𝛺–method is clear while the interpretation of the iso-surface 

values of 𝑄 and 𝜆2 are not clear.  

3. If 𝑄 and 𝜆2 iso-surface visualization required somehow arbitrary to capture the vortex 

structure, 𝛺 is quite universal and does not need much adjustment in different cases. Besides, if 

we choose iso-surface 𝛺 = 0.52 which can capture the vortices properly in all cases at different 

time steps. 

4. 𝛺–method can capture both strong and weak vortices well simultaneously while 

improper 𝑄 and 𝜆2 threshold just capture the strong vortices, and the weak ones are lost or the 

weak vortices are captured and the strong ones are smeared. 

5. 𝛺 = 0.52 is a quantity to approximately define the vortex boundary. 

The length and velocity must be used in the non-dimension form to calculate 𝛺. For the 

direct numerical simulation, Liu found the vorticity direction is quite different from the vortex 

rotation direction in general 3-D vortical flow. The idea of vorticity is splitting into two parts: a 

vortical part and non-vortical part. Besides, a parameter 𝛺 is introduced to represent the ratio of 

vortical vorticity over the whole vorticity inside a vortex core.  

𝛻 𝑉 =
1

2
(𝛻 𝑉 + 𝛻 𝑉𝑇) +

1

2
(𝛻 𝑉 − 𝛻 𝑉𝑇) = 𝐴 + 𝐵 

Where 𝐴 is symmetric and also represent deformation, 

 𝐵 is anti-symmetric and represent whole vorticity. 

The square of Frobenius norm of A and B is defined by: 

𝑎 = 𝑡𝑟𝑎𝑐𝑒(𝐴𝑇𝐴) =∑∑(𝐴𝑖𝑗)
2

3

𝑗=1

3

𝑖=1
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𝑏 = 𝑡𝑟𝑎𝑐𝑒(𝐵𝑇𝐵) =∑∑(𝐵𝑖𝑗)
2

3

𝑗=1

3

𝑖=1

 

 

𝛺 is defined as a ratio of the vorticity tensor norm squared over the sum of the vorticity 

tensor norm squared and deformation norm squared [4]: 

𝛺 =
‖𝐵‖𝐹

2

‖𝐴‖𝐹
2 + ‖𝐵‖𝐹

2 =
𝑏

𝑎 + 𝑏
 

 

Where 𝑎 = ‖𝐴‖𝐹
2 , 𝑏 = ‖𝐵‖𝐹

2 , ‖. ‖𝐹 is the Frobenius norm. 

 

In numerical computation, we have to add a small positive parameter 𝜀 to avoid non-

physical noises. 

𝛺 =
𝑏

𝑎 + 𝑏 + 𝜀
 

An estimate of ratio 𝛺 is introduced which shows vortex is formed when the vorticity is 

strong but deformation is weak: 

𝛺 =
𝑏

𝑎 + 𝑏
 

Where 𝑎, 𝑏 are positive numbers, 

However, in our group research we choose to add 𝜀 which is a small positive number to 

avoid division by zero in the denominator. Note that the length and velocity must be used in the 

nondimensional form to calculate 𝛺. If not, 𝜀 have to be a large number depending on the length 

and velocity dimension. First, the value of 𝛺 need to be between zero and one 0 ≤ 𝛺 ≤ 1. 
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Second, in terms of a 2D rigid-body vortex with a uniform angular velocity 𝜙, the velocity field is 

given as 𝑉 = (−𝜙𝑦,𝜙𝑥). If 𝑎 = 0, 𝛺 = 1 

𝛺 =
(𝛻 × 𝑉. 𝑅)2

‖𝛻 × 𝑉‖2
2. ‖𝑅‖2

2 ≈
𝑏

𝑎 + 𝑏
 

 

This means when vorticity is aligned with rotation, the deformation is small and vortex is 

really an area where projection of vorticity in the rotation axial is about the same. For Omega 

method, we have to use a parameter larger than 0.52. We always use 𝛺 = 0.51 or 𝛺 = 0.52 to 

fix the threshold. However, the Omega method is insensitive to moderate threshold change. This 

is one of the advantages of Omega method over other vortex identification method. For the LES 

case of shock and boundary layer interaction and the DNS case of flow transition, if we use 𝛺 =

0.52 − 0.6, vortex structure identified by the Omega method are very similar. In our research, 

we decide to use 𝛺 = 0.52  because it is reliable and it can present the periphery of vortices for 

many different cases. This conclusion has been confirmed by a lot of Omega users in practice. If 

we select 𝛺 = 0.52 is only empirical number for approximation of vortex boundaries and higher 

threshold, such as 𝛺 = 0.8 𝑜𝑟 0.9, ect., may be needed if the vortex cores will be tracked. 

However, the shape of vortex structures will be merely thinner or fatter with the moderate 

change of the threshold [6]. 

3.6 Liutex   

 

The new vortex vector named Rotex was proposed by Liu et al. [2] with direction of local 

rotation axis (an eigenvector of velocity gradient tensor) and angular speed (magnitude of Liutex 

vector) while other identification methods could not give direction of rotation axis. Liutex 
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represents the absolute rotational strength, which is unique and precise. The name, Rortex was 

changed to Liutex in December 2018 [2].  

R⃗⃗ = Rr                                                                                 

Where 𝑅: magnitude of Liutex vector (angular speed of rigid rotation), 

             r : an eigenvector of velocity gradient tensor (direction of the rigid rotation axis), 

For physics formula, definition of velocity gradient tensor is defined as: 

𝑑𝑣 = ∇𝑣 ∙ 𝑑𝑟                                                                     

For mathematic formula, definition of velocity gradient tensor is defined as: 

𝑑𝑣 =  𝛼. 𝑑𝑟                                                                       

From these equations above, we have: 

  𝑑𝑣 = ∇𝑣 . 𝑟 = 𝜆𝑟𝑟                                                                    

We use 𝑟, 𝜆𝑟  to substitute 𝑑𝑟, 𝛼 to highlight that are real eigenvector and real eigenvalue 

of the velocity gradient tensor. 

∇𝑣 . 𝑟 = 𝜆𝑟𝑟                                                                        

Where 𝑣 = [𝑢, 𝑣, 𝑤]𝑇 is the velocity vector, 

After getting direction of the rigid rotational axis, we will find the exact angular speed of 

the rigid rotation (called magnitude of Liutex). Choosing direction of the local rotation axis 𝑍 is 

the direction of Rortex/Liutex and the rotational strength of the local fluid rotation is the 

magnitude of Rortex/Liutex. Thus, 𝑋𝑌 plane will perpendicular to 𝑍 plan. Next, we will do 

transformation matrix from 𝑥𝑦𝑧 plane to 𝑋𝑌𝑍 plane by applying Transformation Matrix formula. 

If we pick 𝑢, 𝑣, 𝑤 and w be velocity components along 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 axes, then we will pick 

𝑈, 𝑉 𝑎𝑛𝑑 𝑊 be velocity components along the new 𝑋, 𝑌 𝑎𝑛𝑑 𝑍 axes. 
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∇𝒗⃗⃗ =

[
 
 
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧 ]
 
 
 
 
 
 

 

∇𝑽⃗⃗ =

[
 
 
 
 
 
𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑌
0

𝜕𝑉

𝜕𝑋

𝜕𝑉

𝜕𝑌
0

𝜕𝑊

𝜕𝑋

𝜕𝑊

𝜕𝑌

𝜕𝑊

𝜕𝑍 ]
 
 
 
 
 

 

Second, 𝑄 rotation is obtained to find the rotation strength.  

∇𝑽⃗⃗ = 𝑸∇𝒗⃗⃗ 𝑸T =

[
 
 
 
 
 
𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑌
0

𝜕𝑉

𝜕𝑋

𝜕𝑉

𝜕𝑌
0

𝜕𝑊

𝜕𝑋

𝜕𝑊

𝜕𝑌

𝜕𝑊

𝜕𝑍 ]
 
 
 
 
 

with 𝑸T = 𝑸−1 and 𝑸 is rotation matrix 

𝑸 = [

𝑐𝑜𝑠𝜙 + 𝛾𝑥
2(1 − 𝑐𝑜𝑠𝜙) 𝛾𝑦𝛾𝑥(1 − 𝑐𝑜𝑠𝜙) + 𝛾𝑧𝑠𝑖𝑛𝜙 𝛾𝑧𝛾𝑥(1 − 𝑐𝑜𝑠𝜙) − 𝛾𝑦𝑠𝑖𝑛𝜙

𝛾𝑥𝛾𝑦(1 − 𝑐𝑜𝑠𝜙) − 𝛾𝑧𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 + 𝛾𝑦
2(1 − 𝑐𝑜𝑠𝜙) 𝛾𝑦𝛾𝑧(1 − 𝑐𝑜𝑠𝜙) + 𝛾𝑥𝑠𝑖𝑛𝜙

𝛾𝑥𝛾𝑦(1 − 𝑐𝑜𝑠𝜙) + 𝛾𝑧𝑠𝑖𝑛𝜙 𝛾𝑧𝛾𝑦(1 − 𝑐𝑜𝑠𝜙) − 𝛾𝑥𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 + 𝛾𝑧
2(1 − 𝑐𝑜𝑠𝜙)

] 

𝜙 = acos (𝑐) 

𝑐 = [
0
0
1
] ∙ 𝑟  

Once the local rotation axis 𝑍 is obtained, the rotation strength is determined in the 𝑋𝑌 

plane perpendicular to the local rotation axis 𝑍. This can be achieved by a second coordinate 

rotation in the XY plane. When the 𝑋𝑌𝑍-frame is rotated around the 𝑍 − 𝑎𝑥𝑖𝑠 by an angle θ, the 

velocity gradient tensor will become 

∇𝑽⃗⃗ 𝜃 = 𝑷∇𝑽⃗⃗ 𝑷
−1 
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[
 
 
 
 
𝜕𝑈

𝜕𝑋
|𝜃

𝜕𝑈

𝜕𝑌
|𝜃 0

𝜕𝑉

𝜕𝑋
|𝜃

𝜕𝑉

𝜕𝑌
|𝜃 0

𝜕𝑊

𝜕𝑋
|𝜃

𝜕𝑊

𝜕𝑌
|𝜃

𝜕𝑊

𝜕𝑍
|𝜃]
 
 
 
 

=[
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

]

[
 
 
 
 
𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑌
0

𝜕𝑉

𝜕𝑋

𝜕𝑉

𝜕𝑌
0

𝜕𝑊

𝜕𝑋

𝜕𝑊

𝜕𝑌

𝜕𝑊

𝜕𝑍 ]
 
 
 
 

[
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] 

[
 
 
 
 
 
𝜕𝑈

𝜕𝑋
|𝜃

𝜕𝑈

𝜕𝑌
|𝜃 0

𝜕𝑉

𝜕𝑋
|𝜃

𝜕𝑉

𝜕𝑌
|𝜃 0

𝜕𝑊

𝜕𝑋
|𝜃

𝜕𝑊

𝜕𝑌
|𝜃

𝜕𝑊

𝜕𝑍
|𝜃]
 
 
 
 
 

=

[
 
 
 
 
 
𝜕𝑈

𝜕𝑋
𝑐𝑜𝑠2 θ+

𝜕𝑈

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +

𝜕𝑉

𝜕𝑋
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +

𝜕𝑉

𝜕𝑌
𝑠𝑖𝑛2𝜃 −

𝜕𝑈

𝜕𝑋
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +

𝜕𝑈

𝜕𝑌
𝑐𝑜𝑠2𝜃 −

𝜕𝑉

𝜕𝑋
𝑠𝑖𝑛2𝜃 +

𝜕𝑉

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃   0

−
𝜕𝑈

𝜕𝑋
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 −

𝜕𝑈

𝜕𝑌
𝑠𝑖𝑛2𝜃 +

𝜕𝑉

𝜕𝑋
𝑐𝑜𝑠2𝜃 +

𝜕𝑉

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝜕𝑈

𝜕𝑋
𝑠𝑖𝑛2 θ−

𝜕𝑈

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 −

𝜕𝑉

𝜕𝑋
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +

𝜕𝑉

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠2𝜃  0

𝜕𝑊

𝜕𝑋
𝑐𝑜𝑠𝜃 +

𝜕𝑊

𝜕𝑌
𝑠𝑖𝑛𝜃 −

𝜕𝑊

𝜕𝑋
𝑠𝑖𝑛𝜃 +

𝜕𝑊

𝜕𝑌
𝑐𝑜𝑠𝜃 

𝜕𝑊

𝜕𝑍 ]
 
 
 
 
 

 

Where 𝑷 is the rotation matrix around the 𝑍 -axis and can be written as: 

𝑷 = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

], 𝑷−1 = 𝑷𝑇 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] 

So, we have 

𝜕𝑈

𝜕𝑌
|𝜃 = 𝛼𝑠𝑖 𝑛(2𝜃 + 𝜑) − 𝛽 

𝜕𝑉

𝜕𝑋
|𝜃 = 𝛼𝑠𝑖 𝑛(2𝜃 + 𝜑) + 𝛽 

𝜕𝑈

𝜕𝑋
|𝜃 = −𝛼 cos(2𝜃 + 𝜑) +

1

2
(
𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
) 

𝜕𝑉

𝜕𝑌
|𝜃 = 𝛼 cos(2𝜃 + 𝜑) +

1

2
(
𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
) 

Where 𝛼 =
1

2
√(

𝜕𝑉

𝜕𝑌
−
𝜕𝑈

𝜕𝑋
)
2
+ (

𝜕𝑉

𝜕𝑋
+
𝜕𝑈

𝜕𝑌
)
2
, and 𝛼 > 0 
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𝛽 =
1

2
(
𝜕𝑉

𝜕𝑋
−
𝜕𝑈

𝜕𝑌
) 

𝜑 =

{
 
 
 

 
 
 
𝑎𝑟𝑐𝑡𝑎𝑛(

𝜕𝑉
𝜕𝑋

+
𝜕𝑈
𝜕𝑌

𝜕𝑉
𝜕𝑌 −

𝜕𝑈
𝜕𝑋

),                              
𝜕𝑉

𝜕𝑌
−
𝜕𝑈

𝜕𝑋
≠ 0

𝜋

2
,                                 

𝜕𝑉

𝜕𝑌
−
𝜕𝑈

𝜕𝑋
= 0,

𝜕𝑉

𝜕𝑋
+
𝜕𝑈

𝜕𝑌
> 0

−
𝜋

2
,                             

𝜕𝑉

𝜕𝑌
−
𝜕𝑈

𝜕𝑋
= 0,

𝜕𝑉

𝜕𝑋
+
𝜕𝑈

𝜕𝑌
< 0

 

(Note: If  
𝜕𝑉

𝜕𝑌
−
𝜕𝑈

𝜕𝑋
= 0,

𝜕𝑉

𝜕𝑋
+
𝜕𝑈

𝜕𝑌
= 0, 

𝜕𝑉

𝜕𝑋
= 𝛽, 

𝜕𝑈

𝜕𝑌
= −𝛽 for any 𝜃, thus 𝜑 is not needed.) 

𝜕𝑈

𝜕𝑋
|𝜃 =

𝜕𝑈

𝜕𝑋
𝑐𝑜𝑠2 θ+

𝜕𝑈

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +

𝜕𝑉

𝜕𝑋
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +

𝜕𝑉

𝜕𝑌
𝑠𝑖𝑛2𝜃 

𝜕𝑈

𝜕𝑋
|𝜃 =

𝜕𝑈

𝜕𝑋
𝑐𝑜𝑠2 θ+

𝜕𝑈

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +

𝜕𝑉

𝜕𝑋
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +

𝜕𝑉

𝜕𝑌
(1 − 𝑐𝑜𝑠2𝜃) 

𝜕𝑈

𝜕𝑋
|𝜃 = −(−

𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
) 𝑐𝑜𝑠2 θ+

𝑠𝑖𝑛2θ

2
(
𝜕𝑉

𝜕𝑋
+
𝜕𝑈

𝜕𝑌
) +

𝜕𝑉

𝜕𝑌
 

𝜕𝑈

𝜕𝑋
|𝜃 = −(√𝐴2 + 𝐵2𝑐𝑜𝑠𝜑) 𝑐𝑜𝑠2 θ+

𝑠𝑖𝑛2θ

2
(√𝐴2 + 𝐵2𝑠𝑖𝑛𝜑) +

𝜕𝑉

𝜕𝑌
 

𝜕𝑈

𝜕𝑋
|𝜃 = −

1

2
√𝐴2 + 𝐵2(2𝑐𝑜𝑠2 θcos𝜑−sin2𝜃𝑠𝑖𝑛𝜑) +

𝜕𝑉

𝜕𝑌
 

𝜕𝑈

𝜕𝑋
|𝜃 = −

1

2
√𝐴2 + 𝐵2(2𝑐𝑜𝑠2 θcos𝜑−sin2𝜃𝑠𝑖𝑛𝜑 − cos𝜑 + cos𝜑) +

𝜕𝑉

𝜕𝑌
 

𝜕𝑈

𝜕𝑋
|𝜃 = −

1

2
√𝐴2 + 𝐵2((2𝑐𝑜𝑠2 θ − 1)cos𝜑−sin2𝜃𝑠𝑖𝑛𝜑 + cos𝜑) +

𝜕𝑉

𝜕𝑌
 

𝜕𝑈

𝜕𝑋
|𝜃 = −

1

2
√𝐴2 + 𝐵2(𝑐𝑜𝑠2𝜃 cos𝜑−sin2𝜃𝑠𝑖𝑛𝜑 + cos𝜑) +

𝜕𝑉

𝜕𝑌
 

𝜕𝑈

𝜕𝑋
|𝜃 = −

1

2
√𝐴2 + 𝐵2(cos (2𝜃 + 𝜑) + cos𝜑) +

𝜕𝑉

𝜕𝑌
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𝜕𝑈

𝜕𝑋
|𝜃 = −

1

2
√𝐴2 + 𝐵2 cos(2𝜃 + 𝜑) −

1

2
A +

𝜕𝑉

𝜕𝑌
 

𝜕𝑈

𝜕𝑋
|𝜃 = −

1

2
√𝐴2 + 𝐵2 cos(2𝜃 + 𝜑) −

1

2
(−

𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
) +

𝜕𝑉

𝜕𝑌
 

𝜕𝑈

𝜕𝑋
|𝜃 = −

1

2
√𝐴2 + 𝐵2 cos(2𝜃 + 𝜑) +

1

2
(
𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
) 

𝜕𝑈

𝜕𝑋
|𝜃 = −𝛼 cos(2𝜃 + 𝜑) +

1

2
(
𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
) 

 

𝜕𝑉

𝜕𝑌
|𝜃 =

𝜕𝑈

𝜕𝑋
𝑠𝑖𝑛2 θ−

𝜕𝑈

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 −

𝜕𝑉

𝜕𝑋
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +

𝜕𝑉

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠2𝜃 

𝜕𝑉

𝜕𝑌
|𝜃 =

𝜕𝑈

𝜕𝑋
(1 − 𝑐𝑜𝑠2 θ)−

𝜕𝑈

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 −

𝜕𝑉

𝜕𝑋
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +

𝜕𝑉

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠2𝜃 

𝜕𝑉

𝜕𝑌
|𝜃 = (−

𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
) 𝑐𝑜𝑠2 θ−

𝑠𝑖𝑛2θ

2
(
𝜕𝑉

𝜕𝑋
+
𝜕𝑈

𝜕𝑌
) +

𝜕𝑈

𝜕𝑋
 

𝜕𝑉

𝜕𝑌
|𝜃 = −(√𝐴2 + 𝐵2𝑐𝑜𝑠𝜑) 𝑐𝑜𝑠2 θ−

𝑠𝑖𝑛2θ

2
(√𝐴2 + 𝐵2𝑠𝑖𝑛𝜑) +

𝜕𝑈

𝜕𝑋
 

𝜕𝑈

𝜕𝑋
|𝜃 = −

1

2
√𝐴2 + 𝐵2(2𝑐𝑜𝑠2 θcos𝜑−sin2𝜃𝑠𝑖𝑛𝜑) +

𝜕𝑈

𝜕𝑋
 

𝜕𝑉

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2(2𝑐𝑜𝑠2 θcos𝜑−sin2𝜃𝑠𝑖𝑛𝜑 − cos𝜑 + cos𝜑) +

𝜕𝑈

𝜕𝑋
 

𝜕𝑉

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2((2𝑐𝑜𝑠2 θ − 1)cos𝜑−sin2𝜃𝑠𝑖𝑛𝜑 + cos𝜑) +

𝜕𝑈

𝜕𝑋
 

𝜕𝑉

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2(𝑐𝑜𝑠2𝜃 cos𝜑−sin2𝜃𝑠𝑖𝑛𝜑 + cos𝜑) +

𝜕𝑈

𝜕𝑋
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𝜕𝑉

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2(cos (2𝜃 + 𝜑) + cos𝜑) +

𝜕𝑈

𝜕𝑋
 

𝜕𝑉

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2 cos(2𝜃 + 𝜑) +

1

2
A +

𝜕𝑈

𝜕𝑋
 

𝜕𝑉

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2 cos(2𝜃 + 𝜑) +

1

2
(−

𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
) +

𝜕𝑈

𝜕𝑋
 

𝜕𝑉

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2 cos(2𝜃 + 𝜑) +

1

2
(
𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
) 

𝜕𝑉

𝜕𝑌
|𝜃 = 𝛼 cos(2𝜃 + 𝜑) +

1

2
(
𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
) 

 

𝜕𝑈

𝜕𝑌
|𝜃 = −

𝜕𝑈

𝜕𝑋
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +

𝜕𝑈

𝜕𝑌
𝑐𝑜𝑠2𝜃 −

𝜕𝑉

𝜕𝑋
𝑠𝑖𝑛2𝜃 +

𝜕𝑉

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 

𝜕𝑈

𝜕𝑌
|𝜃 = −

𝜕𝑈

𝜕𝑋
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 +

𝜕𝑈

𝜕𝑌
(1 − 𝑠𝑖𝑛2𝜃) −

𝜕𝑉

𝜕𝑋
𝑠𝑖𝑛2𝜃 +

𝜕𝑉

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 

𝜕𝑈

𝜕𝑌
|𝜃 = −(

𝜕𝑈

𝜕𝑌
+
𝜕𝑉

𝜕𝑋
) 𝑠𝑖𝑛2 θ+

𝑠𝑖𝑛2θ

2
(−

𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
) +

𝜕𝑈

𝜕𝑌
 

𝜕𝑈

𝜕𝑌
|𝜃 = −(√𝐴2 + 𝐵2𝑐𝑜𝑠𝜑) 𝑠𝑖𝑛2 θ−

𝑠𝑖𝑛2θ

2
(√𝐴2 + 𝐵2𝑐𝑜𝑠𝜑) +

𝜕𝑈

𝜕𝑌
 

𝜕𝑈

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2(2𝑐𝑜𝑠2 θcos𝜑−sin2𝜃𝑠𝑖𝑛𝜑) +

𝜕𝑈

𝜕𝑌
 

𝜕𝑈

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2(2𝑐𝑜𝑠2 θcos𝜑−sin2𝜃𝑠𝑖𝑛𝜑 − sin𝜑 + sin𝜑) +

𝜕𝑈

𝜕𝑌
 

𝜕𝑈

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2((−2𝑠𝑖𝑛2 θ + 1)sin𝜑−sin2𝜃𝑐𝑜𝑠𝜑 − 𝑠𝑖𝑛𝜑) +

𝜕𝑈

𝜕𝑌
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𝜕𝑈

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2(𝑠𝑖𝑛2𝜃 cos𝜑+cos2𝜃𝑠𝑖𝑛𝜑 − 𝑠𝑖𝑛𝜑) +

𝜕𝑈

𝜕𝑌
 

𝜕𝑈

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2(sin(2𝜃 + 𝜑) − 𝑠𝑖𝑛𝜑) +

𝜕𝑈

𝜕𝑌
 

𝜕𝑈

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2 sin(2𝜃 + 𝜑) −

1

2
B +

𝜕𝑈

𝜕𝑌
 

𝜕𝑈

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2 sin(2𝜃 + 𝜑) −

1

2
(
𝜕𝑈

𝜕𝑌
+
𝜕𝑉

𝜕𝑋
) +

𝜕𝑈

𝜕𝑌
 

𝜕𝑈

𝜕𝑌
|𝜃 =

1

2
√𝐴2 + 𝐵2 sin(2𝜃 + 𝜑) −

1

2
(
𝜕𝑉

𝜕𝑋
−
𝜕𝑈

𝜕𝑌
) 

𝜕𝑈

𝜕𝑌
|𝜃 = 𝛼 sin(2𝜃 + 𝜑) − 𝛽 

 

𝜕𝑉

𝜕𝑋
|𝜃 = −

𝜕𝑈

𝜕𝑋
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 −

𝜕𝑈

𝜕𝑌
𝑠𝑖𝑛2𝜃 +

𝜕𝑉

𝜕𝑋
𝑐𝑜𝑠2𝜃 +

𝜕𝑉

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 

𝜕𝑉

𝜕𝑋
|𝜃 = −

𝜕𝑈

𝜕𝑋
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 −

𝜕𝑈

𝜕𝑌
𝑠𝑖𝑛2𝜃 +

𝜕𝑉

𝜕𝑋
(1 − 𝑠𝑖𝑛2𝜃) +

𝜕𝑉

𝜕𝑌
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 

𝜕𝑉

𝜕𝑋
|𝜃 = −(

𝜕𝑈

𝜕𝑌
+
𝜕𝑉

𝜕𝑋
) 𝑠𝑖𝑛2 θ+

𝑠𝑖𝑛2θ

2
(−

𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
) +

𝜕𝑉

𝜕𝑋
 

𝜕𝑉

𝜕𝑋
|𝜃 = −(√𝐴2 + 𝐵2𝑠𝑖𝑛𝜑) 𝑠𝑖𝑛2 θ+

𝑠𝑖𝑛2θ

2
(√𝐴2 + 𝐵2𝑐𝑜𝑠𝜑) +

𝜕𝑉

𝜕𝑋
 

𝜕𝑉

𝜕𝑋
|𝜃 =

1

2
√𝐴2 + 𝐵2(−2𝑠𝑖𝑛2 θsin𝜑+sin2𝜃𝑐𝑜𝑠𝜑) +

𝜕𝑉

𝜕𝑋
 

𝜕𝑉

𝜕𝑋
|𝜃 =

1

2
√𝐴2 + 𝐵2(−2𝑠𝑖𝑛2 θsin𝜑+sin2𝜃𝑐𝑜𝑠𝜑 − sin𝜑 + sin𝜑) +

𝜕𝑉

𝜕𝑋
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𝜕𝑉

𝜕𝑋
|𝜃 =

1

2
√𝐴2 + 𝐵2((−2𝑠𝑖𝑛2 θ + 1)sin𝜑+sin2𝜃𝑐𝑜𝑠𝜑 − 𝑠𝑖𝑛𝜑) +

𝜕𝑉

𝜕𝑋
 

𝜕𝑉

𝜕𝑋
|𝜃 =

1

2
√𝐴2 + 𝐵2(𝑐𝑜𝑠2𝜃 sin𝜑+sin2𝜃𝑐𝑜𝑠𝜑 − 𝑠𝑖𝑛𝜑) +

𝜕𝑉

𝜕𝑋
 

𝜕𝑉

𝜕𝑋
|𝜃 =

1

2
√𝐴2 + 𝐵2(sin(2𝜃 + 𝜑) − 𝑠𝑖𝑛𝜑) +

𝜕𝑉

𝜕𝑋
 

𝜕𝑉

𝜕𝑋
|𝜃 =

1

2
√𝐴2 + 𝐵2 sin(2𝜃 + 𝜑) −

1

2
B +

𝜕𝑉

𝜕𝑋
 

𝜕𝑉

𝜕𝑋
|𝜃 =

1

2
√𝐴2 + 𝐵2 sin(2𝜃 + 𝜑) −

1

2
(
𝜕𝑈

𝜕𝑌
+
𝜕𝑉

𝜕𝑋
) +

𝜕𝑉

𝜕𝑋
 

𝜕𝑉

𝜕𝑋
|𝜃 =

1

2
√𝐴2 + 𝐵2 sin(2𝜃 + 𝜑) +

1

2
(
𝜕𝑉

𝜕𝑋
−
𝜕𝑈

𝜕𝑌
) 

𝜕𝑉

𝜕𝑋
|𝜃 = 𝛼 sin(2𝜃 + 𝜑) + 𝛽 

𝑔𝑍𝜃 = −
𝜕𝑉

𝜕𝑋
|𝜃
𝜕𝑈

𝜕𝑌
|𝜃 = 𝛽

2 − 𝛼2 sin2(2𝜃 + 𝜑) > 0 

In order to satisfy this condition for all 𝜃, we must require 𝛽2 > 𝛼2 

𝜕𝑈

𝜕𝑌
|𝜃 = 𝛼 sin(2𝜃 + 𝜑) − 𝛽 = 𝛼 − 𝛽 

𝜕𝑉

𝜕𝑋
|𝜃 =  𝛼 sin(2𝜃 + 𝜑) + 𝛽 = 𝛼 + 𝛽 

𝜕𝑈

𝜕𝑋
|𝜃 = − 𝛼 cos(2𝜃 + 𝜑) +

1

2
(
𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
) 

Finally, the rotational strength of Liutex is defined as: 
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R = {
2(𝛽 − 𝛼), 𝛽2 > 𝛼2

            0,         𝛽2 ≤ 𝛼2
 

Wang et al. [8] created an explicit formula to calculate the magnitude of Liutex: 

R = ω⃗⃗ . r − √(ω⃗⃗ . r )2 − 4λci
2 , 

Where √(ω⃗⃗ . r )2 − 4λci
2  is the pure shear part, 

 𝜔⃗⃗  is local vorticity vector, 

𝑟  is an eigenvector of velocity gradient tensor (local rotation axis), 

𝜆𝑐𝑖 is an imaginary part of the complex eigenvalue of velocity gradient tensor, 

ω⃗⃗ . r   is magnitude of vorticity in the direction of  r⃗⃗ , 

Therefore, the Liutex vector can be defined as: R⃗⃗ = Rr = {ω⃗⃗ . r − √(ω⃗⃗ . r )2 − 4λci
2 } 𝑟. 

3.6.1 Normalized Rortex/vortex identification method (𝛺𝑅) 
 

Non-dimensional, normalized and case-independent ratio based on definition of Rotex is 

used in 𝛺𝑅 method. Based on the idea for Omega method, a new vortex identification criterion, 

named 𝛺𝑅, is proposed for the normalization of Rortex. 𝛺𝑅  is measures the relative rotation 

strength on the plane perpendicular to the local rotation axis. Besides, 𝛺𝑅  is a normalized 

function from 0 to 1[6]. 𝛺𝑅  is defined as the ratio of 𝛽 squared over the sum of 𝛽 squared and 𝛼 

squared and can be written as: 

𝛺𝑅 =
𝛽2

𝛼2 + 𝛽2 + 𝜀
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The small positive parameter 𝜀 is introduced in the denominator of 𝛺𝑅  to remove non-

physical noises. Besides, 𝜀 is empirically defined as a function of the maximum of the term 𝛽2 −

𝛼2 proposed as follows: 

𝜀 = 𝑏 × (𝛽2 − 𝛼2)𝑚𝑎𝑥  

Where 𝑏 is a positive number around 0.001~0.002. We pick 𝑏 = 0.001 for all the test cases and 

all-time steps in this paper. For each case, 𝑏 is a fixed parameter and the term (𝛽2 − 𝛼2)max can 

be easily obtained at each time step and adding 𝜀 to avoid diving by zero. We choose the iso-

surface of 𝛺𝑅 = 0.52 can be chosen to visualize vortex structures and to indicate the region 

where the vorticity overtakes the principle strain rate on the plane normal to local rotation axis.  

The new 𝛺𝑅 method has several advantages: 

• 𝛺𝑅 is able to measure the relation rotation strength on the plane perpendicular to local rotation 

axis. 

• 𝛺𝑅 is a normalized function from 0 to 1 and can be further used in statistic and correlation 

analysis as a physical quantity. 

• 𝛺𝑅 can separate the rotation vortices from shear layers, discontinuity structures and other non-

physical structures. 

• Compared with many vortex identification methods which require case-dependent thresholds 

to capture the vortex structure, 𝛺𝑅is quite robust and be always set as 0.52 to capture vortex 

structures in different cases and at different time steps. 

3.6.2 Modified normalized Rortex/vortex identification method ( 𝛺̃𝑅 , 𝛺𝑅) 
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Modified normalized Rortex/vortex identification method, 𝛺̃𝑅 was proposed by Liu and 

Liu [5] in 2019 to improve and solve bulging phenomenon on iso surfaces of the normalized 

Rortex/vortex identification method (𝛺𝑅) by Dong et al. [6] from 2018. Furthermore, 𝛺̃𝑅 still 

maintained all advantages of the original 𝛺𝑅 method. First, in the other vortex identification 

methods we have to pick different threshold for each time step to accurately capture vortex 

structure; on the other hand, 𝛺̃𝑅 = 0.52 clearly visualize vortex structures and it is quite robust. 

Second, 𝛺̃𝑅 is a normalized function with a range of 0 to 1, which is useful for calculating 

correlation analysis in statistics. Third, 𝛺̃𝑅 can capture precisely both strong and weak vortices 

simultaneously. However, by using 𝛺𝑅 vortex structure is shown not that smooth as respected 

and there is some problem on bulging phenomenon on the iso surfaces. A year later, a new 

method named modified normalized Rortex/vortex identification method was proposed by Liu 

and Liu [5] to solve bulging phenomenon problem. 

                                                   𝛺̃𝑅 =
𝛽2

𝛽2 + 𝛼2 + 𝜆𝑐𝑟
2 +

1
2
𝜆𝑟
2 + 𝜀

,                                                       

For all three methods, 𝛺, 𝛺𝑅 𝑎𝑛𝑑 𝛺̃𝑅 required a parameter greater than 0.5. Moreover, 

𝛺̃𝑅 = 0.52 was an empirical number that always worked well for most of the cases. 
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Chapter 4 
POD 

 
 

4.1 Eigenvalue Decomposition  

 

Before understanding POD and SVD, we have to review eigenvalues and eigenvectors of 

a matrix. 

𝐴𝑣 = 𝜆𝑣 

Where 𝐴 𝑖𝑠 𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 ∈ 𝐶𝑛𝑥𝑛, 

𝑣 ∶  𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 ∈ 𝐶𝑛 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎𝑛 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝐴, 

𝜆: 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟 ∈ 𝐶 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎𝑛 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴, 

If 𝑣 is an eigenvector of of matrix A, 𝛼𝑣 is also an eigenvector of matrix A with 𝛼 ∈ 𝐶. The 

eigenvectors getting from the computer programs are usually normalized, so they have unit 

magnitude. A spectrum of A is the set of all eigenvalue of A. The magnitude of eigenvalue will 

decide whether the operation A will increase or decrease the size of original vectors in particular 

direction. If we multiply A by 𝜆𝑛 and we pick n is a large number (𝑛 ∈ 𝑁), the result of vector 

from the compound operations can be showed by the eigenvector having the eigenvalue with 

the largest magnitude.  
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Figure 4. 1 Graphical Singular Value Decomposition [18]  

If A has n linearly independent eigenvalues 𝜆𝑗(𝑗 = 1,2,3… , 𝑛) 𝑎𝑛𝑑 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑣𝑗, 

𝐴𝑉 = 𝑉⋀ 

Where 𝑉 = [𝑣1𝑣2 𝑣3…𝑣𝑛] ∈ 𝐶
𝑛×𝑛𝑎𝑛𝑑 ⋀ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑛) ∈ 𝐶

𝑛×𝑛 

𝐴𝑉𝑉−1 = 𝑉⋀𝑉−1 

The eigenvalue decomposition to hold, 𝐴 needs to have a full set of n linearly independent 

eigenvectors. 

𝐴 = 𝐴𝐼 = 𝑉⋀𝑉−1 

For linear dynamic system: 

Let 𝑥(𝑡) ∈ 𝐶𝑛 with 𝑥(𝑡) = exp(𝐴𝑡) 𝑥(0) = 𝑉𝑒𝑥𝑝(⋀𝑡)𝑉−1𝑥(0)  

With 𝑥(0) is the initial condition. 

𝑥(𝑡) = 𝑒𝜆𝑡𝑣 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) 

𝜆𝑒𝜆𝑡𝑣 = 𝐴𝑒𝜆𝑡𝑣 
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𝐴𝑣 = 𝜆𝑣 

The real and imaginary parts of 𝜆𝑗 represent the growth rate and the frequency where 

the state variable evolves in the direction of eigenvector 𝑣𝑗. If we want to have the stable linear 

system, all eigenvalues need to be on the left-hand side of the complex plane, i.e., 𝑅𝑒(𝜆𝑗) ≤

0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗. 

4.2 Singular Value Decomposition 

 

The existence and theory of singular value decomposition [48] (SVD) was developed by 

several mathematicians, including Eugenio Beltrami (1835-1899), Camille Jordan (1838-1921), 

James Sylvester (1814-1897), Erhard Schmidt (1876-1959), and Hermann Weyl (1885-1955). 

Thanks to their contribution and due to developing of computer, SVD starts gaining its audients 

to become one of most powerful tools for minimizing the storage of data and transferring data. 

In linear algebra, the singular value decomposition is one of the most important factorizations 

that can reveal important properties of the matrix that otherwise could escape detection. SVD 

was proposed by Golub and Van Loan (1983) [49]. However, only in late of 20th century, the 

applications of the technique were used widespread as its algorithms could be developed for its 

efficient implementation. Besides, SVD is a powerful and numerically stable method of 

decomposing a data matrix. The SVD is a useful and efficient method for reducing dimension of 

matrix where it is possible to use the SVD to obtain optimal low-rank matrix approximations. 

People use the SVD to see how a rectangular matric or operator stretches or rotates a vector. 

Nowadays, applications of SVD are used in least squares data fitting, image compression, facial 
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recognition, principal component analysis, numerical rank of matrix and so on [50]. To know more 

details about proceeding with SVD, we have to understand some properties of arbitrary matrices. 

Theorem: Let 𝐴 be an 𝑚 × 𝑛 matrix. 

1. The Rank of 𝐴, denoted Rank (𝐴), is the number of linearly independent rows in A. 

2. The Nullity of 𝐴, denoted Nullity (𝐴), is 𝑛 − 𝑅𝑎𝑛𝑘(𝐴) and describes the largest set of 

linearly independent vectors 𝑣 in 𝑅𝑛 for which 𝐴𝑣 = 0. 

The Rank and Nullity of a matrix are playing such an important role to describe the 

behavior of the matrix. For instant, for the square matrix the matrix is invertible if and only if its 

Nullity is 0 and its Rank is the same as the size of the matrix. 

Theorem: The number of linearly independent rows of an 𝑚 × 𝑛 matrix 𝐴 is the same as the 

number of linearly independent columns of 𝐴. 

For the square matrices, the matrix 𝐴𝑡𝐴(𝑛 × 𝑛)𝑎𝑛𝑑 𝐴𝐴𝑡(𝑚 ×𝑚) 

Theorem: Let 𝐴 be an 𝑚 × 𝑛 matrix. 

The matrices 𝐴𝑡𝐴 𝑎𝑛𝑑 𝐴𝐴𝑡 are symmetric. 

1. Nullity (𝐴)= Nullity (𝐴𝑡𝐴 ) 

2. Rank (𝐴)= Rank (𝐴𝑡𝐴 ) 

3. The eigenvalue of 𝐴𝑡𝐴 are real and nonnegative. 

4. The nonzero eigenvalues of 𝐴𝐴𝑡 are the same as the nonzero eigenvalues of 𝐴𝑡𝐴. 

In our research, SVD is used as a powerful tool to help us to reduce dimension of matrix. 

SVD shows how the stretch and rotation of operation is. For example, let the set of vectors 𝑣𝑗 ∈
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 𝑅𝑛 of unit length that describe a sphere. Next, we multiply the unit vectors  𝑣𝑗 with a rectangular 

matrix 𝐴 ∈ 𝑅𝑚𝑥𝑛, then we will have an ellipse that represents by the unit vectors 𝑢𝑗and 

magnitudes 𝜎𝑗. We use the SVD to see how matrix A stretch in the directions of the axes of the 

ellipse. 

 

Figure 4. 2 Graphical representation of singular value decomposition transforming a unit 

radius sphere, described by right singular vectors 𝑣𝑗, to an ellipse (ellipsoid) with semiaxes 

characterized by the left singular vectors 𝑢𝑗 and magnitude captured by the singular values 

𝜎𝑗[18]. 

𝐴𝑣𝑗 = 𝜎𝑗𝑢𝑗 

Where 𝐴 ∈ 𝐶𝑚𝑥𝑛, 𝑣𝑗 ∈ 𝐶
𝑛 𝑎𝑛𝑑 𝑢𝑗 ∈ 𝐶

𝑚 ,  

In the matrix form, based on the above formula we have 

𝐴𝑉 = 𝑈∑ 

𝐴𝑉𝑉∗ = 𝑈∑𝑉∗ 

𝐴𝐼 = 𝑈∑𝑉∗ 

𝐴 = 𝑈∑𝑉∗ 



50 

 

Where 𝑉∗ = 𝑉−1 with “*” demotes the conjugate transpose. 

             𝑈 = [𝑢1 𝑢2 𝑢3  … 𝑢𝑚] ∈ 𝐶
𝑚×𝑚 𝑎𝑛𝑑 𝑈 is an 𝑚×𝑚 orthogonal matrix, 

𝑈∗𝑈 = 𝐼𝑚 

            𝑉 = [𝑣1𝑣2 𝑣3…𝑣𝑛] ∈ 𝐶
𝑛×𝑛 𝑎𝑛𝑑  𝑉 is an 𝑛 × 𝑛 orthogonal matrix, 

𝑉∗𝑉 = 𝐼𝑛 

Where 𝑈, 𝑉 are a unitary matrices, 

∑ ∈ 𝑅𝑚𝑥𝑛 is a diagonal matrix with 𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥ ⋯ ≥ 𝜎𝑟 ≥ 0 𝑤𝑖𝑡ℎ 𝑟 = min (𝑚, 𝑛) 

The column vectors 𝑢𝑗 𝑜𝑓 𝑈, 𝑣𝑗 𝑜𝑓 𝑉 are called the left and right singular vectors. The 

number of nonzero singular values is equal to the rank of the matrix A. The singular value 

decomposition plays an important role in numerical linear algebra. 

𝐴 = [
| | |
𝐴1 𝐴2… 𝐴𝑚
| | |

]

𝑛×𝑚

 

𝑈 = [
| | |
𝑢1 𝑢2… 𝑢𝑚
| | |

]

𝑚×𝑚

 

𝑉 = [
| | |
𝑣1 𝑣2… 𝑣𝑛
| | |

]

𝑛×𝑛
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∑ =

[
 
 
 
 
 
 
𝜎1 0 ⋯  0
 0  𝜎2 ⋯ 0
⋮ ⋮ ⋱    ⋮
  0 0 0  𝜎𝑛
0 0 0  0
⋮  ⋮ ⋮  ⋮
0 0 0  0 ]

 
 
 
 
 
 

𝑚×𝑛

 

𝐴 = 𝑈∑𝑉∗ 

𝐴 = [
| | |
𝑢1 𝑢2… 𝑢𝑚
| | |

]

𝑚×𝑚

[
 
 
 
 
 
 
𝜎1 0 ⋯  0
 0  𝜎2 ⋯ 0
⋮ ⋮ ⋱    ⋮
  0 0 0  𝜎𝑛
0 0 0  0
⋮  ⋮ ⋮  ⋮
0 0 0  0 ]

 
 
 
 
 
 

𝑚×𝑛

[
| | |
𝑣1 𝑣2… 𝑣𝑛
| | |

]

𝑛×𝑛

∗

 

𝐴 =∑𝜎𝑘𝑢𝑘𝑣𝑘
∗

𝑛

𝑘=1

 

𝐴 = 𝜎1𝑢1𝑣1
∗(𝑚𝑜𝑑𝑒1) + 𝜎2𝑢2𝑣2

∗(𝑚𝑜𝑑𝑒2) + 𝜎3𝑢3𝑣3
∗(𝑚𝑜𝑑𝑒3) + ⋯+ 𝜎𝑛𝑢𝑛𝑣𝑛

∗(𝑚𝑜𝑑𝑒 𝑛) 

𝐴 =

[
 
 
 
 
 
𝜎1𝑢11𝑣11 𝜎1𝑢11𝑣21 𝜎1𝑢11𝑣31
𝜎1𝑢21𝑣11 𝜎1𝑢21𝑣21 𝜎1𝑢21𝑣31

… 𝜎1𝑢11𝑣𝑛−11 𝜎1𝑢11𝑣𝑛1
… 𝜎1𝑢21𝑣𝑛−11 𝜎1𝑢21𝑣𝑛1

𝜎1𝑢31𝑣11 𝜎1𝑢31𝑣21 𝜎1𝑢31𝑣31
𝜎1𝑢41𝑣11 𝜎1𝑢41𝑣21 𝜎1𝑢41𝑣31

⋮ ⋮ ⋮
𝜎1𝑢𝑚1𝑣11 𝜎1𝑢𝑚1𝑣21 𝜎1𝑢𝑚1𝑣31

… 𝜎1𝑢31𝑣𝑛−11 𝜎1𝑢31𝑣𝑛1
… 𝜎1𝑢41𝑣𝑛−11 𝜎1𝑢41𝑣𝑛1
… ⋮ ⋮
… 𝜎1𝑢𝑚1𝑣𝑛−11 𝜎1𝑢𝑚1𝑣𝑛1]

 
 
 
 
 

 

+

[
 
 
 
 
 
𝜎2𝑢11𝑣11 𝜎2𝑢11𝑣21 𝜎2𝑢11𝑣31
𝜎2𝑢21𝑣11 𝜎2𝑢21𝑣21 𝜎2𝑢21𝑣31

… 𝜎2𝑢11𝑣𝑛−11 𝜎2𝑢11𝑣𝑛1
… 𝜎2𝑢21𝑣𝑛−11 𝜎2𝑢21𝑣𝑛1

𝜎2𝑢31𝑣11 𝜎2𝑢31𝑣21 𝜎2𝑢31𝑣31
𝜎2𝑢41𝑣11 𝜎2𝑢41𝑣21 𝜎2𝑢41𝑣31

⋮ ⋮ ⋮
𝜎2𝑢𝑚1𝑣11 𝜎2𝑢𝑚1𝑣21 𝜎2𝑢𝑚1𝑣31

… 𝜎2𝑢31𝑣𝑛−11 𝜎2𝑢31𝑣𝑛1
… 𝜎2𝑢41𝑣𝑛−11 𝜎2𝑢41𝑣𝑛1
… ⋮ ⋮
… 𝜎2𝑢𝑚1𝑣𝑛−11 𝜎2𝑢𝑚1𝑣𝑛1]
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+

[
 
 
 
 
 
𝜎3𝑢11𝑣11 𝜎3𝑢11𝑣21 𝜎3𝑢11𝑣31
𝜎3𝑢21𝑣11 𝜎3𝑢21𝑣21 𝜎3𝑢21𝑣31

… 𝜎3𝑢11𝑣𝑛−11 𝜎3𝑢11𝑣𝑛1
… 𝜎3𝑢21𝑣𝑛−11 𝜎3𝑢21𝑣𝑛1

𝜎3𝑢31𝑣11 𝜎3𝑢31𝑣21 𝜎3𝑢31𝑣31
𝜎3𝑢41𝑣11 𝜎3𝑢41𝑣21 𝜎3𝑢41𝑣31

⋮ ⋮ ⋮
𝜎3𝑢𝑚1𝑣11 𝜎3𝑢𝑚1𝑣21 𝜎3𝑢𝑚1𝑣31

… 𝜎3𝑢31𝑣𝑛−11 𝜎3𝑢31𝑣𝑛1
… 𝜎3𝑢41𝑣𝑛−11 𝜎3𝑢41𝑣𝑛1
… ⋮ ⋮
… 𝜎3𝑢𝑚1𝑣𝑛−11 𝜎3𝑢𝑚1𝑣𝑛1]

 
 
 
 
 

 

… 

+

[
 
 
 
 
 
𝜎𝑟𝑢11𝑣11 𝜎𝑟𝑢11𝑣21 𝜎𝑟𝑢11𝑣31
𝜎𝑟𝑢21𝑣11 𝜎𝑟𝑢21𝑣21 𝜎𝑟𝑢21𝑣31

… 𝜎𝑟𝑢11𝑣𝑛−11 𝜎𝑟𝑢11𝑣𝑛1
… 𝜎𝑟𝑢21𝑣𝑛−11 𝜎𝑟𝑢21𝑣𝑛1

𝜎𝑟𝑢31𝑣11 𝜎𝑟𝑢31𝑣21 𝜎𝑟𝑢31𝑣31
𝜎𝑟𝑢41𝑣11 𝜎𝑟𝑢41𝑣21 𝜎𝑟𝑢41𝑣31

⋮ ⋮ ⋮
𝜎𝑟𝑢𝑚1𝑣11 𝜎𝑟𝑢𝑚1𝑣21 𝜎𝑟𝑢𝑚1𝑣31

… 𝜎𝑟𝑢31𝑣𝑛−11 𝜎𝑟𝑢31𝑣𝑛1
… 𝜎𝑟𝑢41𝑣𝑛−11 𝜎𝑟𝑢41𝑣𝑛1
… ⋮ ⋮
… 𝜎𝑟𝑢𝑚1𝑣𝑛−11 𝜎𝑟𝑢𝑚1𝑣𝑛1]

 
 
 
 
 

 

𝐴 ≈ [
| | |
𝑢1 𝑢2… 𝑢𝑟
| | |

]

𝑚×𝑟

[

𝜎1
0
⋮
0

0
𝜎2
⋮
0

…
…
⋱
0

0
0
⋮
𝜎𝑟

]

𝑟×𝑟

[
| | |
𝑣1 𝑣2… 𝑣𝑟
| | |

]

𝑟×𝑛

∗

 

𝐴 =∑𝜎𝑘𝑢𝑘𝑣𝑘
∗

𝑟

𝑘=1

 

𝐴 ≈ 𝜎1𝑢1𝑣1
∗(𝑚𝑜𝑑𝑒1) + 𝜎2𝑢2𝑣2

∗(𝑚𝑜𝑑𝑒2) + 𝜎3𝑢3𝑣3
∗(𝑚𝑜𝑑𝑒3) +⋯+ 𝜎𝑟𝑢𝑟𝑣𝑟

∗(𝑚𝑜𝑑𝑒 𝑟) 

𝐴 ≈

[
 
 
 
 
 
𝜎1𝑢11𝑣11 𝜎1𝑢11𝑣21 𝜎1𝑢11𝑣31
𝜎1𝑢21𝑣11 𝜎1𝑢21𝑣21 𝜎1𝑢21𝑣31

… 𝜎1𝑢11𝑣𝑟−11 𝜎1𝑢11𝑣𝑟1
… 𝜎1𝑢21𝑣𝑟−11 𝜎1𝑢21𝑣𝑟1

𝜎1𝑢31𝑣11 𝜎1𝑢31𝑣21 𝜎1𝑢31𝑣31
𝜎1𝑢41𝑣11 𝜎1𝑢41𝑣21 𝜎1𝑢41𝑣31

⋮ ⋮ ⋮
𝜎1𝑢𝑚1𝑣11 𝜎1𝑢𝑚1𝑣21 𝜎1𝑢𝑚1𝑣31

… 𝜎1𝑢31𝑣𝑟−11 𝜎1𝑢31𝑣𝑟1
… 𝜎1𝑢41𝑣𝑟−11 𝜎1𝑢41𝑣𝑟1
… ⋮ ⋮
… 𝜎1𝑢𝑚1𝑣𝑟−11 𝜎1𝑢𝑚1𝑣𝑟1]

 
 
 
 
 

 

+

[
 
 
 
 
 
𝜎2𝑢11𝑣11 𝜎2𝑢11𝑣21 𝜎2𝑢11𝑣31
𝜎2𝑢21𝑣11 𝜎2𝑢21𝑣21 𝜎2𝑢21𝑣31

… 𝜎2𝑢11𝑣𝑟−11 𝜎2𝑢11𝑣𝑟1
… 𝜎2𝑢21𝑣𝑟−11 𝜎2𝑢21𝑣𝑟1

𝜎2𝑢31𝑣11 𝜎2𝑢31𝑣21 𝜎2𝑢31𝑣31
𝜎2𝑢41𝑣11 𝜎2𝑢41𝑣21 𝜎2𝑢41𝑣31

⋮ ⋮ ⋮
𝜎2𝑢𝑚1𝑣11 𝜎2𝑢𝑚1𝑣21 𝜎2𝑢𝑚1𝑣31

… 𝜎2𝑢31𝑣𝑟−11 𝜎2𝑢31𝑣𝑟1
… 𝜎2𝑢41𝑣𝑟−11 𝜎2𝑢41𝑣𝑟1
… ⋮ ⋮
… 𝜎2𝑢𝑚1𝑣𝑟−11 𝜎2𝑢𝑚1𝑣𝑟1]
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+

[
 
 
 
 
 
𝜎3𝑢11𝑣11 𝜎3𝑢11𝑣21 𝜎3𝑢11𝑣31
𝜎3𝑢21𝑣11 𝜎3𝑢21𝑣21 𝜎3𝑢21𝑣31

… 𝜎3𝑢11𝑣𝑟−11 𝜎3𝑢11𝑣𝑟1
… 𝜎3𝑢21𝑣𝑟−11 𝜎3𝑢21𝑣𝑟1

𝜎3𝑢31𝑣11 𝜎3𝑢31𝑣21 𝜎3𝑢31𝑣31
𝜎3𝑢41𝑣11 𝜎3𝑢41𝑣21 𝜎3𝑢41𝑣31

⋮ ⋮ ⋮
𝜎3𝑢𝑚1𝑣11 𝜎3𝑢𝑚1𝑣21 𝜎3𝑢𝑚1𝑣31

… 𝜎3𝑢31𝑣𝑟−11 𝜎3𝑢31𝑣𝑟1
… 𝜎3𝑢41𝑣𝑟−11 𝜎3𝑢41𝑣𝑟1
… ⋮ ⋮
… 𝜎3𝑢𝑚1𝑣𝑟−11 𝜎3𝑢𝑚1𝑣𝑟1]

 
 
 
 
 

 

… 

+

[
 
 
 
 
 
𝜎𝑟𝑢11𝑣11 𝜎𝑟𝑢11𝑣21 𝜎𝑟𝑢11𝑣31
𝜎𝑟𝑢21𝑣11 𝜎𝑟𝑢21𝑣21 𝜎𝑟𝑢21𝑣31

… 𝜎𝑟𝑢11𝑣𝑟−11 𝜎𝑟𝑢11𝑣𝑟1
… 𝜎𝑟𝑢21𝑣𝑟−11 𝜎𝑟𝑢21𝑣𝑟1

𝜎𝑟𝑢31𝑣11 𝜎𝑟𝑢31𝑣21 𝜎𝑟𝑢31𝑣31
𝜎𝑟𝑢41𝑣11 𝜎𝑟𝑢41𝑣21 𝜎𝑟𝑢41𝑣31

⋮ ⋮ ⋮
𝜎𝑟𝑢𝑚1𝑣11 𝜎𝑟𝑢𝑚1𝑣21 𝜎𝑟𝑢𝑚1𝑣31

… 𝜎𝑟𝑢31𝑣𝑟−11 𝜎𝑟𝑢31𝑣𝑟1
… 𝜎𝑟𝑢41𝑣𝑟−11 𝜎𝑟𝑢41𝑣𝑟1
… ⋮ ⋮
… 𝜎𝑟𝑢𝑚1𝑣𝑟−11 𝜎𝑟𝑢𝑚1𝑣𝑟1]

 
 
 
 
 

 

𝐴 = 𝑈∑𝑉∗ 

𝐴∗𝐴 = (𝑈∑𝑉∗)∗𝑈∑𝑉∗ = 𝑉∑𝑈∗𝑈∑𝑉∗ = 𝑉∑𝐼∑𝑉∗ = 𝑉∑2𝑉∗ 

(𝐴∗𝐴)𝑉 = (𝑉∑2𝑉∗)𝑉 = 𝑉∑2 

𝐴𝐴∗ = 𝑈∑𝑉∗(𝑈∑𝑉∗)∗ = 𝑈∑𝑉∗𝑉∑𝑈∗ = 𝑈∑𝐼∑𝑈∗ = 𝑈∑2𝑈∗ 

𝐴𝐴∗𝑈 = (𝑈∑2𝑈∗)𝑈 = 𝑈∑2 

There are relations between eigenvalue and singular value decompositions 𝐴. Besides, 

the nonzero eigenvalues of 𝐴∗𝐴 𝑎𝑛𝑑 𝐴𝐴∗ are the square of the nonzero singular values of 𝐴. 

Thus, we can use the eigenvalue decomposition of 𝐴∗𝐴 𝑎𝑛𝑑 𝐴𝐴∗ to solve for singular vector and 

singular value of 𝐴 instead of using SVD. SVD is more efficient and powerful tool to decompose 

the large square matrix because of the runoff error on formula of 𝐴∗𝐴 𝑎𝑛𝑑 𝐴𝐴∗ to destroy 

applicable information. However, to decompose the smaller square matrix and to save the cost 

the eigenvalue decomposition of 𝐴∗𝐴 𝑎𝑛𝑑 𝐴𝐴∗ is the best choice for majority researchers.  
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4.3 POD method 

 

POD is a commonly used technique in data analysis including turbulent flow, that has 

become very popular as a result of the recent quick growth in computing power [19]. The sum of 

the product of corresponding temporal coefficient and its modes represents the fluctuation in 

the actual turbulent flow field 𝑞(𝜉, 𝑡)  without mean 𝑞̅(𝜉) over three dimensions [18]: 

             𝑥(𝑡) = 𝑞(𝜉, 𝑡) − 𝑞̅(𝜉) = ∑ 𝑎𝑗(𝑡)𝑗 𝜙𝑗(𝜉)  ∈ ℝ
𝑚 (𝑡 = 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛),                                  

Where 𝑎𝑗(𝑡) represents temporal coefficient of a set of orthogonal modes 𝜙𝑗(𝜉). Here, 

𝜙𝑗(𝜉) represents POD’s modes and 𝜉is the spatial vector. 

𝑥(𝑡) represents a snapshot at time 𝑡 

 Searching for the best basis vector to represent 𝑞(𝜉) is the priority goal of the POD 

method in the turbulent flow field. Finding eigenvectors 𝜙𝑗 and eigenvalues 𝜆𝑗 to solve this 

problem. 

                                𝑅𝜙𝑗 = 𝜆𝑗𝜙𝑗                     ( 𝑗 = 1,2 ,3, … , 𝑛)   

                                𝑅 = ∑ 𝑥(𝑡𝑖
𝑚
𝑖=1 )𝑥𝑇(𝑡𝑖) = 𝑋𝑋

𝑇 ∈ ℝ𝑚×𝑚   ,                                                                                   

where 𝑅 is the covariance matrix of vector 𝑥(𝑡), 

          𝑋 is a matrix form which is stacked of 𝑛 snapshots into a matrix, 

           𝑋 = [𝑥(𝑡1)  𝑥(𝑡2)  𝑥(𝑡3) …  𝑥(𝑡𝑛)] ∈ 𝑅
𝑚×𝑛,                                                                                      

          𝜙𝑗 ∈ ℝ
𝑚𝑎𝑛𝑑 𝜆𝑗( 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯𝜆𝑛 ≥ 0) are the eigenvectors and eigenvalues of 

covariance matrix of vector 𝑥(𝑡) respectably, 
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In this research, rectangular matrix 𝑋 will be decomposed directly with the singular-value-

decomposition (SVD) method to find left and right singular vectors. 

X = Φ⅀Ψ𝑇 

[
| | |
x1 x2… xn
| | |

]

m×n

 = [
| | |
𝜙1 𝜙2… 𝜙𝑚
| | |

]

𝑚×𝑚

[
 
 
 
 
 
 
𝜎1 0 ⋯  0
 0  𝜎2 ⋯ 0
⋮ ⋮ ⋱    ⋮

  0 0 0  𝜎𝑛
0 0 0  0
⋮   ⋮  ⋮   ⋮
0 0 0  0 ]

 
 
 
 
 
 

𝑚×𝑛

[
| | |
𝜓1 𝜓2… 𝜓𝑛
| | |

]

𝑛×𝑛

𝑇

 

Here, 𝑚 is a number of spatial points, 𝑛 is a number of snapshot (time step) (𝑚 ≫ 𝑛) 

Φ = [𝜙1 𝜙2 𝜙3  …𝜙𝑚] is an 𝑚 ×𝑚 orthogonal matrix and the matrix Φ contains the left 

singular vectors of 𝑋. 

Ψ = [𝜓1 𝜓2 𝜓3  …𝜓𝑛] is an 𝑛 × 𝑛 orthogonal matrix and matrix Ψ contains the right 

singular vectors of 𝑋. 

⅀ is an 𝑚 × 𝑛 diagonal matrix where all elements are zero except for the diagonal 

elements ⅀𝑖𝑖 = 𝜎𝑖 ≥ 0 𝑎𝑛𝑑 𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥ ⋯𝜎𝑛 ≥ 0 

𝑋 =∑𝜎𝑘𝜙𝑘𝜓𝑘
𝑇

𝑛

𝑘=1

 

𝑋 = 𝜎1𝜙1𝜓1
𝑇(𝑚𝑜𝑑𝑒1) + 𝜎2𝜙2𝜓2

𝑇(𝑚𝑜𝑑𝑒2) + 𝜎3𝜙3𝜓3
𝑇(𝑚𝑜𝑑𝑒3) + ⋯+ 𝜎𝑛𝜙𝑛𝜓𝑛

𝑇(𝑚𝑜𝑑𝑒 𝑛) 

XXT = (Φ⅀ΨT)(Φ⅀ΨT)T 

XXT = Φ⅀ΨTΨ⅀ΦT = Φ⅀2ΦT 

XXTΦ = Φ⅀2 
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XTX = (Φ⅀ΨT)T(Φ⅀ΨT) 

XTX = Ψ⅀ΦTΦ⅀ΨT = Ψ⅀2ΨT 

XTXΨ = Ψ⅀2 

Thus, we can conclude that the left and the right singular vectors of 𝑋 are also the 

orthogonal eigenvectors of 𝑋𝑋𝑇 , 𝑋𝑇𝑋. [18]. Thus, we just consider the singular value 

decomposition to get the modes. 

⅀2 =

[
 
 
 
 
 
 
𝜆1 0 ⋯  0
 0  𝜆2 ⋯ 0
⋮ ⋮ ⋱    ⋮

  0 0 0  𝜆𝑛
0 0 0  0
⋮   ⋮  ⋮   ⋮
0 0 0  0 ]

 
 
 
 
 
 

𝑚×𝑛

=

[
 
 
 
 
 
 
𝜎1
2 0 ⋯  0

 0 𝜎2
2 ⋯ 0

⋮ ⋮ ⋱    ⋮
  0 0 0  𝜎𝑛

2

0 0 0  0
⋮   ⋮  ⋮   ⋮
0 0 0  0 ]

 
 
 
 
 
 

=> 𝜎𝑖 = √𝜆𝑖

𝑚×𝑛

 

The relationship between the singular value and the eigenvalue is known as the singular 

value square is equal to the eigenvalue problem (𝛿𝑗
2 = 𝜆𝑗). That mean SVD apply directly on 

matrix 𝑋 to find the POD modes Φ. If singular values of POD are ordered from largest to smallest, 

then POD modes are also arranged from most to least important in capturing the cumulative 

energy of the turbulent flow field. The value of r below is determined by how many percentages 

of total cumulative energy that is used to reconstruct correctly the original structures. The new 

model can represent the flow field after determining r which is the approximate number of 

modes used for reconstruction. 

                                                    𝑞(𝜉, 𝑡) − 𝑞̅(𝜉) ≈ ∑ 𝑎𝑗
𝑟
𝑗=1 (𝑡)𝜙𝑗(𝜉)                                                                  
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𝑋 ≈ [
| | |
𝜙1 𝜙2… 𝜙𝑟
| | |

]

𝑚×𝑟

[

𝜎1 0 ⋯  0
 0  𝜎2 ⋯ 0
⋮ ⋮ ⋱    ⋮

  0 0 0  𝜎𝑟

]

𝑟×𝑟

[
| | |
𝜓1 𝜓2… 𝜓𝑛
| | |

]

𝑟×𝑛

𝑇

 𝑟 ≪ 𝑛 

The cumulative energy of snapshot: 

0 < ε(r) =
∑ σj

2r
j=1

∑ σj
2

 

n
j=1

< 1 

Where  ∑ 𝜎𝑗
2𝑟

𝑗=1  is the sum of r singular values square, and ∑ 𝜎𝑗
2

 

𝑛
𝑗=1 is the sum of all singular values 

square. Utility of POD’s singular values can use to determine the amount of r modes needed to 

express the flow field’s fluctuation. 

𝑋 ≈∑𝜎𝑘𝜙𝑘𝜓𝑘
𝑇

𝑟

𝑘=1

 

𝑋 ≈ 𝜎1𝜙1𝜓1
𝑇(𝑚𝑜𝑑𝑒1) + 𝜎2𝜙2𝜓2

𝑇(𝑚𝑜𝑑𝑒2) + 𝜎3𝜙3𝜓3
𝑇(𝑚𝑜𝑑𝑒3) + ⋯+ 𝜎𝑟𝜙𝑟𝜓𝑟

𝑇(𝑚𝑜𝑑𝑒 𝑟) 

The temporal coefficient can be defined as: 

                                      𝑎𝑗(𝑡) = 〈𝑞(𝜉, 𝑡) − 𝑞̅(𝜉), 𝜙𝑗(𝜉)〉 = 〈𝑥(𝑡), 𝜙𝑗〉                                                  

Where 𝑎𝑗 is the time coefficient of each POD mode 𝜙𝑗 
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4.4 POD for coherent structure after the wake of MVG 

4.4.1 Discussion on vortex structure of MVG wake by using velocity as an input  

 

 

Figure 4. 3 Vortex Structure of 𝛺̃𝑅in (iso-surface of 𝛺̃𝑅 =0.52) in MVG wake 

 

 

 

 

 

Figure 4. 4 Vortex Structure of Liutex (iso-surface of Liutex=0.05) in MVG wake 

The grid size of the subzone is 200 × 110 × 71. The number of snapshots is 120. The 

physical time step is equal to 4.706 × 10−8 s and the time interval between two successive 

snapshots is equal to 250 physical time steps. The input variables are fluctuation velocity 

components which result in a 4686000 × 120 matrix. 
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Table 4. 1 Parameters of subzone 

 Start location End location 

x/h -1.99 2.40 

y/h 0 3.31 

z/h 3.31 9.37 

Figure 4. 5 Singular value of matrix X for 120 POD modes using velocity 

In figure 4.5, the singular value of matrix X is shown in descending order and there are 

three pairs of POD modes. Two POD modes with similar singular values as shown in Table 4.2 are 

paired together. Table 4.3 shows the sum of L-magnitudes of the first 6 POD modes using velocity 

(u,v,w) as the input. First pair is modes 1-2 with strong primary vortices. Second and third pairs 

are modes 3-4 and modes 5-6, which are secondary vortices generated by MVG. All three pairs 

are caused by robust shear layer which generate spanwise vortex rings through K-H type 
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instability (also called K-H modes). Moreover, the pairing of POD modes is a common case, which 

is a sign of K-H type instability as theorized by Li and Liu. 

Table 4. 2 Singular value of the first 6 POD modes using velocity (𝑢, 𝑣, 𝑤) as an input 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

Singular Value 980.2 939.7 838.7 818.6 637 639.5 

 

Table 4. 3 Sum of Cumulative Energy of the first 6 POD modes using velocity (𝑢, 𝑣, 𝑤) as an input 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

Cumulative 

Energy 

10 9.2 7.32 6.98 4.72 4.26 

 

 

Figure 4. 6 Cumulative Energy for 120 POD modes using velocity 
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Mode 1 contains 10% of total cumulative L-magnitudes, which is the highest L-magnitudes 

amount compared to the other POD modes. Figure 4.6 shows that the difference of cumulative 

L-magnitudes between two consecutives modes is decreasing, which indicates that low order 

modes have more L-magnitudes than high order modes. As shown in figure 4.7, the structure of 

mode 1 is smaller than the structure of mode 3 although the L-magnitude of mode 1 is higher 

than the one of mode 3. Moreover, mode 5 has higher L-magnitude than mode 6, but the 

structure of mode 5 is smaller than mode 6. Therefore, we can conclude the relative strength of 

rotation (𝛺̃𝑅) is not correlated with cumulative L-magnitudes.  

Mode 1 Mode2 

Mode 3 Mode 4 
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Mode 5 Mode 6 

Figure 4. 7 Vortex structures (iso-surface of 𝛺̃𝑅 = 0.52) of the first 6 POD modes in the MVG wake. 

Mode 1 Mode 2 

Mode 3 Mode 4 
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Mode 5 Mode 6 

Figure 4. 8 The streamwise  𝛺̃𝑅 vector distribution on the central plane 

 

From Figure 4.8 above, we can see clearly that modes 1-2-5-6 are mainly dominated by 

streamwise characteristics. However, mode 3-4 have characteristics of spanwise vortex 

structure. Here, x-, y-, z- axes are defined as the spanwise, normal and streamwise directions, 

respectively.  

Mode 1 Mode 2 
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Mode 3 Mode 4 

Mode 5 Mode 6 

Figure 4. 9 Vortex structures (iso-surface of Liutex=0.05) of the first sixth POD modes in the MVG 

wake  

By choosing iso-surfaces with a threshold Liutex=0.05, we can see the shape of the first 6 

POD modes. 𝛺̃𝑅 method is different from Liutex, because the former is contaminated by shear 

and the latter is not. As shown in figure 4.9, the structure of mode 5 is quite smaller than the 

structure of mode 6, but mode 5 has more L-magnitude than mode 6 as can be seen in Table 3. 

Thus, the absolute strength of rotation, or Liutex, is not correlated with cumulative L-magnitudes. 

Modes 1-2-5-6 are dominated by the fluctuation in the streamwise and mode 3-4 is strongly 

dominated by spanwise direction as can be seen in figure 4.10. 



65 

 

Mode 1 Mode 2 

Mode 3 Mode 4 

Mode 5 Mode 6 

Figure 4. 10 The distribution of z-component of Liutex velocity distribution on the central plane 

using velocity as an input 
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In the above study, both the Liutex and 𝛺̃𝑅 methods are used. The Liutex-Omega criterion 

uses the idea of the Omega method and Liutex to measure the relative rotation strength. So, it is 

not sensitive to the moderate change of threshold. Liutex is a measurement of the rigid rotation 

strength without shear and stretching contamination. However, it needs an appropriate 

threshold. The use of two methods depends on the specific cases. For the case where the strong 

vortices and weak vortices co-exist, it is recommended to apply modified 𝛺̃𝑅-criterion. 

Figure 4. 11 Time coefficient of the first sixth POD modes. 

 

Figure 4.11 shows times coefficient of the first six POD modes over 120 snapshots. Time 

coefficients of modes 1-2 and modes 3-4 have similar fluctuations. However, time coefficients of 

modes 5-6 has different fluctuations. Moreover, the period of modes 1-2 are larger than 

wavelength of modes 3-4 and modes 5-6.  

 When we use velocity (𝑢, 𝑣, 𝑤) as an input directly, there is no correlation between either 

the relative strength (𝛺̃𝑅) or absolute strength (Liutex) of rotation, and cumulative L-magnitudes. 

Now we will try to use 𝛺̃𝑅 and Liutex as an input directly. Since 𝛺̃𝑅 is just a scalar, not a vector, 

we then cannot load data directly from 𝛺̃𝑅. However, Liutex is a vector, so we use Liutex vector 
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(𝐿𝑥, 𝐿𝑦, 𝐿𝑧) as an input to check whether there is a correlation between Liutex and cumulative L-

magnitudes. 

4.4.2 Discussion on vortex structure of MVG wake by using Liutex vector (𝐿𝑥 ,  𝐿𝑦 ,  𝐿𝑧)  as an input 

directly 

 

Figure 4. 12 Vortex Structure of Liutex in MVG wake 

In this section, the POD method is performed by directly using Liutex vector as input. By 

definition, the magnitude of Liutex has the dimension of angular velocity. Therefore, as the 

singular values of POD using velocity stand for the kinetic energy of the turbulent flow field, the 

singular values of POD using Liutex vector represent angular kinetic energy which is closely 

related to rotation. The POD modes using velocity present the energy structures from the most 

dominant to the least dominant. But these obtained structures would not only contain the effect 

of rotation, but also shear and compression/stretching. By directly using Liutex vector as input, 

the POD modes would exclusively present the spatial structures of angular kinetic energy from 

the most dominant to the least dominant, correlated more closely to vortical motion. So, it 
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provides a new and different view to explore the dominant and coherent structures in the flow 

field.   

Table 4. 4 Parameters of subzone 

 Start location End location 

x/h -1.99 2.40 

y/h 0 3.31 

z/h 3.31 9.37 

The snapshot 𝑥𝑗 is defined as, 

𝑥𝑗 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐿𝑥571,1,35
(𝑗)  

⋮

𝐿𝑥770,1,35
(𝑗)

𝐿𝑥571,2,35
(𝑗)

⋮

𝐿𝑥770,2,35
(𝑗)

⋮

𝐿𝑥𝐼,𝐽,𝐾
(𝑗)

⋮

𝐿𝑥771,1,35
(𝑗)

⋮

𝐿𝑦𝐼,𝐽,𝐾
(𝑗)

⋮

𝐿𝑧𝐼,𝐽,𝐾
(𝑗)

⋮

𝐿𝑧770,110,105
(𝑗)

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  for 𝑗 = 1,… ,120  
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where 𝐿𝑥
(𝑗),  𝐿𝑦

(𝑗) and 𝐿𝑧
(𝑗) are fluctuation Liutex vector fields at 𝑡 = (1512 + 2𝑗)𝑇 and 𝑋 =

(𝑥1, 𝑥2, 𝑥3, . . , 𝑥120) ∈ 𝑅
𝑚×𝑛 (𝑚 = 4686000,  𝑛 = 120,  1𝑇 = 250). 

 

 

 

 

 

 

 

Figure 4. 13 Singular value of matrix X for 120 POD modes using Liutex vector (𝐿𝑥,  𝐿𝑦 ,  𝐿𝑧) 

 

From the singular value of matrix X above, there are two pairs of POD modes among the 

first sixth POD modes. Because of the significant difference between singular value of mode 1 

and mode 2 (as shown in Table 4.5), those two modes are not considered a pair. Modes 3-4 and 

modes 5-6 have instead similar singular values, which are then paired. Modes 3-4 has strong 

primary vortices and modes 5-6 are secondary vortices. Pairs 3 and 4 are caused by the shear 

layer instability, which generate spanwise vortex rings through K-H type instability or K-H modes. 

The pairing of POD modes is a common case, which is a sign of K-H type instability.  
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Table 4. 5 Singular value of the first 6 POD modes using Liutex vector directly (𝐿𝑥,  𝐿𝑦,  𝐿𝑧) as an 

input 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

Singular Value 2795 2535 2439 2314 2110 2037 

 

 

 

 

 

 

 

 

 

 

Figure 4. 14 Cumulative L-magnitudes of 120 POD modes using the Liutex vector (𝐿𝑥,  𝐿𝑦,  𝐿𝑧) 

 

Table 4. 6 Sum of L-magnitudes of the first 6 POD modes using Liutex vector (𝐿𝑥,  𝐿𝑦 ,  𝐿𝑧) directly 

as an input 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

L-magnitudes 4.629 3.809 3.523 3.17 2.64 2.46 

 

Mode 1 has the highest L-magnitudes out of all to 120 POD modes. The low order POD 

modes have higher L-magnitudes than high order ones. 
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Mode 1 Mode 2 

Mode 3 Mode 4 

Mode 5 Mode 6 

 Figure 4. 15 Vortex structures (iso-surface of Liutex =0.05) of the first 6 POD modes in the 

MVG wake using Liutex as an input. 
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 The shape of the first 6 POD modes was clearly delineated by loading data directly from 

Liutex vector and by choosing iso-surfaces with a threshold of Liutex = 0.05. The structures of low 

order modes are larger than the structures of high order modes, which means the mode’s 

amount of L-magnitude is positively correlated to its structure size. For example, mode 1 has the 

highest L-magnitude (about 4.629% total L-magnitudes) and also has the largest shape compared 

to modes 2-3-4-5-6. Mode 2 contains about 3.809% of the total L-magnitudes which has the 

shape bigger than mode 3-4-5-6. The shape of mode 3, which contains approximately 3.523 % of 

the total L-magnitudes, has larger shape than modes 4-5-6. As the POD mode gets higher, the 

total L-magnitudes of the POD modes are decreasing and the shape of the POD mode gets 

smaller.  Therefore, we can conclude that the absolute strength of rotation, or Liutex, is 

correlated with cumulative strength of rotation. The mode L-magnitude is closely correlated with 

the rotation strength if Liutex is used as the input data [51]. 

Mode 1 Mode 2 
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Mode 3 Mode 4 

Mode 5 Mode 6 

Figure 4. 16 The distribution of z component of Liutex on the central plane using Liutex as an 

input 

From figure above we can clearly observe that modes 1-2 are streamwise vortices while 

modes 3-4 and modes 5-6 have characteristics of spanwise vortex structure. Modes 3-4 and 

modes 5-6 display staggered array structure like vortex street rolled from K-H instability, which 

is caused by the fluctuation motion induced by vortex rings. These findings are similar to the ones 

shown in the book [18]. There are six-time coefficients of POD modes and two-time coefficients 

are demonstrated in pairs such as modes 1-2, modes 3-4 and modes 5-6. All the three pairs have 

different fluctuation as shown in figure 4.17. 
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Figure 4. 17 Time coefficient of the first sixth POD modes 

4.5 Liutex and proper orthogonal decomposition for coherence structure in the wake of micro 

vortex generator 
 

  

 

 

 

 

Figure 4. 18 Vortex Structure of Liutex in MVG wake  
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Table 4. 7 Parameters of subzone 

 Start location End location 

x/h -1.99 2.40 

y/h 0 3.31 

z/h 6.70 14.61 

 

 

 

 

 

 

 

Figure 4. 19 Singular value of matrix X for 120 POD modes using Liutex vector (𝐿𝑥,  𝐿𝑦 ,  𝐿𝑧) 

 

The singular value of matrix X in figure 4.19 is shown in descending order and there are 

clearly four pairs of POD modes. Two POD modes with similar singular values as shown in table 2 

are paired together. The first pair of POD modes is modes 1-2 with strong primary vortices. 

Second, third and fourth pairs of POD modes are modes 3-4, modes 5-6 and modes7-8, which are 
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secondary vortices generated by MVG. Pairing of the first 8 POD modes is obviously found, which 

is the sign of Kevin-Helmholtz instability. The observation of the mode pairing strongly supports 

the new mechanism of MVG for reduction of flow separation, which is the spanwise vortex ring 

generation by K-H instability. 

Table 4. 8 Singular value of the first 8 POD modes using Liutex vector directly (𝐿𝑥,  𝐿𝑦,  𝐿𝑧) as an 

input 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

Singular Value 2028 2024 1968 1943 1858 1848 1737 1704 

Table 4. 9 Sum of L-magnitudes of the first 8 POD modes using Liutex vector directly (𝐿𝑥,  𝐿𝑦 ,  𝐿𝑧) 

as an input 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

L-

magnitudes 

2.725 2.715 2.566 2.504 2.28 2.27 1.99 1.93 

 

 

 

 

 

 

 

Figure 4. 20 Cumulative L-magnitudes of 120 POD modes using the Liutex vector (𝐿𝑥,  𝐿𝑦,  𝐿𝑧) 
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In figure 4.20, mode 1 contains approximately 3% of total cumulative L-magnitudes, which 

is the highest L-magnitudes amount among all POD modes. The delta in percentage cumulative 

L-magnitudes between two consecutive POD modes is decreasing, which indicates that low order 

POD modes have more L-magnitudes than high order POD modes. The L-magnitudes of the first 

8 POD modes is showed as table 4.9. It is showed in figure 4.21 that modes 1-2 and modes 5-6 

are dominated by spanwise characteristics. Modes 3-4 and modes 7-8 are instead dominated by 

streamwise characteristics.  

Mode 1 Mode 2 

Mode 3 
Mode 4 
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Mode 5 Mode 6 

Mode 7 Mode 8 

Figure 4. 21 Vortex structures (iso-surface of Liutex =0.05) of the first eight POD modes in the 

MVG wake 

Mode 1 Mode 2 
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Mode 3 Mode 4 

Mode 5 Mode 6 

Mode 7 Mode 8 

Figure 4. 22 The distribution of z component of Liutex on the central plane using Liutex as an 

input 

In figure 4.22, modes 3-4-7-8 with characteristics of streamwise vortex structure have 

stronger vortex structures than modes 1-2-5-6, which are mainly dominated by spanwise vortex 

structures. Furthermore, modes 5-6 display staggered array structure like vortex street rolled 
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from K-H instability, which is caused by the fluctuation motion induced by vortex rings [9]. Figure 

4.23 is shown clearly four pairs of time coefficient of POD modes. Modes 1-2, modes 3-4, modes 

5-6 and modes 7-8 are paired in time coefficient. All four pairs of POD modes have different 

fluctuations. 

Figure 4. 23 Time coefficient of the first eight POD modes 
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Chapter 5 
DMD 

 
We collecting data for DMD architecture from a dynamic system: 

d

dt
x(t) = f(x(t), t; μ)                                                                                          (5.1)           

Where x(t) ∈ Rn is a vector representing the state of the dynamic system at time t, 

 μ contains parameter of system, 

 f(. ) Represents the dynamics, 

Continuous time dynamics from (5.1) may induce a corresponding discrete-time dynamic: 

                                       
xk+1−xk

∆t
≈  f(x(t), t; μ)                                                                                          (5.2)                              

                                xk+1 = f(x(t), t; μ) ∗ ∆t + ∆t = F(xk)                                                                   (5.3) 

In most cases, it seems impossible to construct the solution of the governing nonlinear 

development (5.1). Due to technology’s evolution, numerical solutions will help to solve that 

problem. We have f(x(t), t; μ) is unknown (5.1), so we use DMD framework to take equation-

free perspective.  The data measurement from this system is not used to estimate the dynamic 

but also to predict the future state. The DMD process is to build the locally representative linear 

dynamic system: 

                                                    
dx

dt
= 𝒜x                                                                                                      (5.4) 

Where 𝒜: the matrix in the continue time dynamics 

                                              𝒜 = ΦΩΦ−1                                                                                                      (5.5) 

From (5.4) +(5.5) 

                                        
dx

dt
= 𝒜x = ΦΩΦ−1x                                                                                         (5.6) 

                                                                    Φ−1  
dx

dt
= Φ−1ΦΩΦ−1 x                                                       (5.7) 

                                                                     Φ−1  
dx

dt
= ΩΦ−1 x                                                                 (5.8) 

                                                                      
d(Φ−1x)

dt
= ΩΦ−1 x                                                                   (5.9) 

We assume                                                h = Φ−1 x                                                                               (5.10) 

 From (5.9) + (5.10)            
dh

dt
= Ωh                                                                                         (5.11) 

From (5.11) we can get         hk = bke
ωkt                                                                      (5.12) 
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                   => h = beΩt = Φ−1 x                                                                      (5.13) 

                 => b = Φ−1 x (0)                                                                              (5.14) 

               => x = ΦeΩtb = ΦeΩtΦ−1 x(0)                                                      (5.15) 

            x(t) = ∑ Φk
n
k=1 eωktbk = Φe

Ωtb                                                                       (5.16) 

Where Φk:the eigenvectors of matrix 𝒜 

             ωk:  the eigenvalues of matrix 𝒜 

bk: the coefficient corresponding to coordinate of x(0) in eigenvector basis. 

We have tk+1 = tk + ∆t 

xk+1 = Φe
Ωtk+1Φ−1 x(0)                                                                                   (5.17) 

       Φ−1xk+1 = Φ−1ΦeΩtk+1Φ−1 x(0)                                                           

       Φ−1xk+1 = eΩtk+1Φ−1 x(0)    

                                                  e−Ωtk+1Φ−1xk+1 = e
−Ωtk+1eΩtk+1Φ−1 x(0) 

                => e−Ωtk+1Φ−1xk+1 = Φ−1 x(0)                                                                (5.18) 

         xk = ΦeΩtkΦ−1 x(0)                                                                                   (5.19) 

       Φ−1xk = Φ
−1ΦeΩtkΦ−1 x(0) 

       Φ−1xk = e
ΩtkΦ−1 x(0) 

       e−ΩtkΦ−1xk = e−ΩtkeΩtkΦ−1 x(0) 

                =>  e−ΩtkΦ−1xk = Φ−1 x(0)                                                                     (5.20) 

From (5.16)             =>  xk+1 = ΦeΩ(tk+∆t)Φ−1 x(0)                                                                 (5.21) 

               => xk+1 = ΦeΩtkeΩ∆tΦ−1 x(0)      

From (5.17) +(5.19)      => e−Ωtk+1Φ−1xk+1 = e
−ΩtkΦ−1xk = Φ

−1 x(0)                                     (5.22) 

                     e−Ωtke−Ω∆tΦ−1xk+1 = e
−ΩtkΦ−1xk                                                        (5.23) 

                         eΩtke−Ωtke−Ω∆tΦ−1xk+1 = eΩtke−ΩtkΦ−1xk                                     

       e−Ω∆tΦ−1xk+1 = Φ
−1xk 

   eΩ∆te−Ω∆tΦ−1xk+1 = e
Ω∆tΦ−1xk 

  Φ−1xk+1 = eΩ∆tΦ−1xk 

  ΦΦ−1xk+1 = ΦeΩ∆tΦ−1xk 
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  xk+1 = Φe
Ω∆tΦ−1xk                                                                                        (5.24) 

From (5.5) we have          𝒜 = ΦΩΦ−1 

          => e𝒜∆t = ΦeΩ∆tΦ−1                                                                                                                        (5.25) 

From (5.24) +(5.25)           xk+1 = Φe
Ω∆tΦ−1xk = e

𝒜∆txk                                                              (5.26) 

We can use discrete time system to describe equation (5.4)  

                            xk+1 = Axk                                                                                                                  (5.27) 

Where A = e𝒜∆t 

We can use eigenvalue λk and eigenvector Фk of discrete time map A as the solution of 

this system: 

                              xk = ∑ Фjλj
kbj

r
j=1 = ΦΛkb                                                                                           (5.28) 

Where b: the coefficients of the initial condition x1 in eigenvector basis 

      =>  x1 = Φb                                                                                                                (5.29) 

       ‖xk+1 − Axk‖2                                                                                            (5.30) 

We will use two matrices with n-1 snapshots to minimize the error in equation (5.30) 

                         X = [
| | |
x1 x2… xm−1
| | |

]

m×(n−1)

                                                                                     (5.31) 

                         X′ = [
| | |
x2 x3… xm
| | |

]

m×(n−1)

                                                                                        (5.32) 

            Instead of solving the linear approximation from equation (5.27), we will use data matrices 

to solve the problem: 

                                 X′ ≈ AX                                                                                                                      (5.33) 

 Definition of Dynamic mode decomposition by Tu [52] 

Suppose we have a dynamic system (5.1) and two sets of data, 

                         X = [
| | |
x1 x2… xm−1
| | |

]

m×(n−1)

,                                                                                      (5.34) 
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                         X′ = [

| | |

x1
′ x2

′ … xm−1
′

| | |
]

m×(n−1)

  ,                                                                              (5.35) 

 So that xk
′ = F(xk) where F is the map in (5.3) corresponding to the evolution of (5.1) for 

time ∆t. DMD computes the leading eigen decomposition of the best-fit linear operator A relating 

the data X′ ≈ AX: 

   A = X′X+                                                                        (5.36) 

The DMD modes, also called dynamic modes, are the eigenvectors of A, and each DMD 

mode corresponds to a particular eigenvalue of A.  

First, we apply the singular value decomposition of X that we already proved preceding 

to find matrix U,⅀, V. 

                                 X ≈ U⅀V∗                           

Where U ∈ Cm×r: orthogonal matrix with U∗U = I       

             The left singular vectors U are POD modes 

             V ∈ Cn×r: orthogonal matrix with V∗V = I 

             ⅀ ∈ Cr×r: diagonal matrix with σ1 ≥ σ2 ≥ σ3 ≥ ⋯ ≥ σr ≥ 0  

             r: the rank of the reduced SVD approximation to X, r = min (m, n) 

            ∗∶ denotes the conjugate transpose 

 Second, we use equation (5.36) A = X′X+and equation (5.37) X ≈ U⅀V∗ to get matrix A 

     X+ = V⅀U∗                                                                                                           (5.38) 

                                         A = X′X+ = X′V⅀−1U∗                                                                                 (5.39) 

Where A is an m ×m matrix which is too large matrix to compute. However, we will use 

Ã is an r × r matrix which is the projection of the full matrix A onto POD modes: 

 From equation (5.33) X′ ≈ AX and equation (5.37) X ≈ U⅀V∗ 

                                            X′ ≈ AX ≈ AU⅀V∗                                                                                      (5.40) 

                                       X′V ≈ AU⅀V∗  V                                                                            

                                       X′V ≈ AU⅀I = AU⅀ 

                                       X′V⅀−1 ≈ AU⅀ = AU⅀⅀−1 

                                       X′V⅀−1 ≈ AU⅀ = AU⅀⅀−1 =  AUI = AU 

                                     U∗X′V⅀−1 ≈ U∗AU                                                                                             (5.41) 
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 We let Ã = U∗X′V⅀−1 

                                                        Ã = U∗AU                                                                                                (5.42) 

Where Ã(r × r)matrix is similar to matrix A(m ×m), so Ã has the same eigenvalue of A. 

 We know  xk+1 = Axk(5.27), so the matrix Ã will define as a low dimension linear mode 

of the dynamic system on POD coordinate: 

                                   x̃k+1 = Ãx̃k                                                                                                         (5.43) 

We can reconstruct easily the left singular vectors U of POD modes with high dimensional 

state: 

                                             xk = Ux̃k                                                                                                        (5.44) 

Third, we can find eigenvalue of Ã : 

         ÃW = WΛ                                                                                                  (5.45) 

W = [
| | |
w1 w2… wm
| | |

]

r×r

   , 

Where W is a matrix eigenvectore of Ã 

Λ = [

λ1 0   ⋯  0
0 λ1 … 0
⋮ ⋮    ⋱   ⋮
0 0 0 λr

]

r×r

, 

Where Λ is a diagonal matrix which contains all the eigenvalues λi of matrix A and matrix Ã  

i = {1,2 ,3… , r} 

We can Λ and 𝖶 to reconstruct the eigendecomposition of A. 

In particular, Λ,Φ  are eigenvalues and eigenvectors of A, respectively. 

                                Φ = X′V⅀−1W                                                                                                                (5.46) 

Φ = [
| | |
φ1 φ2… φm
| | |

]

m×r

 

Where φi are eigenvector of Φ, which are called DMD modes. 

The Matrix reconstruction for DMD: 

                               X ≈ ΦBC                                                   
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X ≈ [
| | |
φ1 φ2… φm
| | |

]

m×r

[

b1 0 ⋯  0
 0  b2 ⋯ 0
⋮ ⋮ ⋱    ⋮

  0 0 0  br

]

r×r [
 
 
 
1  λ1 λ1

2⋯  λ1
n−1

 1  λ2 λ2
2⋯ λ2

n−1

⋮ ⋮ ⋱    ⋮
  1  λr λr

2 λr
n−1 ]

 
 
 

r×n

 

Linear combination of DMD mode: 

                                                 AΦ = ΦΛ                                                                   

AΦΦ−1 = ΦΛΦ−1   

A = ΦΛΦ−1   

𝑥𝑘+1 = ΦΛΦ−1𝑥𝑘    

                                                             𝑥𝑘+1 = ΦΛΦ
−1ΦΛΦ−1𝑥𝑘−1     (Φ

−1Φ = ΦΦ−1 = I) 

𝑥𝑘+1 = ΦΛ2Φ−1𝑥𝑘−1 

𝑥𝑘+1 = ΦΛ2Φ−1ΦΛΦ−1𝑥𝑘−2 

𝑥𝑘+1 = ΦΛ3Φ−1𝑥𝑘−2 

      … 

𝑥𝑘+1 = ΦΛ
𝑘Φ−1𝑥1 

𝑥𝑘+1 = (ΦΛΦ
−1)𝑘𝑥1 

𝑥𝑘+1 = ΦΛ
𝑘Φ−1𝑥1 

𝑥𝑘+1 = ΦΛ
𝑘b 

Where 𝑏 = Φ−1𝑥1 is called the initial DMD amplitude, 𝑥1 is the first column of matrix 𝑋. 

𝑥𝑘+1 ≈∑φj𝜆𝑗
𝑘𝑏𝑗

𝑟

𝑘=1

 

𝑥𝑘+1 ≈ φ1𝜆1
𝑘𝑏1(𝑚𝑜𝑑𝑒1) + φ2𝜆2

𝑘𝑏2(𝑚𝑜𝑑𝑒2) + φ3𝜆3
𝑘𝑏3(𝑚𝑜𝑑𝑒3) + ⋯+ φr𝜆𝑟

𝑘𝑏𝑟(𝑚𝑜𝑑𝑒 𝑟) 

Where 𝜆𝑖 = 𝑒
𝜔𝑖 with 𝜔𝑖 is a complex frequency in terms of pulsation, 

Diagnostic from eigenvalues and eigenvectors of 𝐴: 
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a. We can predict the oscillation by plotting the real and imaginary part of eigenvalues 

of A with unit circle. Where the x-axis is the real part and y-axis is the imaginary part 

of eigenvalues 𝜆𝑖. 

• If the component is inside the unit circle: the mode decays. 

• If the component is on the unit circle: the mode does not decay and does 

not grow. 

• If the component is outside the unit circle: the mode is growing. 

b. Growth rate: 𝛼𝑖 = log(|𝜆𝑖|) 

c. Frequency: Each mode has a unit frequency 𝜔𝑖 =
𝑎𝑟𝑐(𝜆𝑖)

2𝜋
 

 

 

Figure 5. 1 DMD eigenvalues for all temporal modes in unit circle. 

 

DMD mode 1 0.999679006912093 + 
0.00000000000000i 
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DMD mode 2 0.979984567868930 + 
0.0654720878552602i 

DMD mode 3 0.979984567868930 - 
0.0654720878552602i 

DMD mode 4 0.954425053716561 + 
0.122952093628034i 

DMD mode 5 0.954425053716561 - 
0.122952093628034i 

DMD mode 6 0.955738474786543 + 
0.164612622909996i 

DMD mode 7 0.955738474786543 - 
0.164612622909996i 

DMD mode 8 0.945014806108991 + 
0.234660477042197i 

DMD mode 9 0.945014806108991 - 
0.234660477042197i 

DMD mode 10 0.924434019527715 + 
0.299782658670692i 

From the figure above, the unit circle is showed the real and imaginary part 

(𝑅𝑒(𝜆𝑖), 𝐼𝑚(𝜆𝑖)) of the first tenth eigenvalues. There is only mode 1 lying on the unit circle which 

shows it is kind of stable. The rest of the points lying inside the circle which show slow decay 

rates.   

Figure 5. 2 Amplitude and frequency in each DMD mode 
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The positive and negative frequencies are shown in figure. Since mode 1 just has the real 

value and no imaginary value, mode 1 has zero frequency. Modes 3, 5,7,9 have the negative 

frequency which are computed from the complex conjugate of modes 2,4,6,8. Modes 3,5,7,9 

have the same frequencies with modes 2,4,6,8, but they lie in opposite signs.  

Mode 1 Mode 2 

Mode 3 Mode 4 
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Mode 5 Mode 6 

Mode 7 Mode 8 

Mode 9 Mode 10 

Figure 5. 3 Vortex structures (iso-surface of Liutex=0.05) of the first tenth DMD modes using 

Liutex as an input. 

The DMD spatial modes are visualized by Liutex magnitudes which is showed in figures. 

Mode 1 has the smallest scale structure among the first ten modes and mode 10 has the largest 
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scale structure one. Structures of the mode are getting a little larger as the mode increasing. (The 

higher mode has larger scale structures than the lower one.) 
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Chapter 6 
Conclusion 

 

POD for coherent structure after the wake of MVG: 

In conclusion, the POD method is applied to compare the results from loading data 

directly from Liutex vector (𝐿𝑥, 𝐿𝑦, 𝐿𝑧) and loading from velocity (𝑢, 𝑣,𝑤) by using 𝛺̃𝑅 method and 

Liutex iso-surface show that there are pairs of the first 6 POD modes over 120 snapshots, which 

is a strong sign of K-H type instability. This supports Li and Liu’s theory discovered through 

numerical simulations that the mechanism of vortex ring generation should be K-H type 

instability and MVG generates vortex rings to destroy the shock. Although Babinsky’s theory (the 

velocity profile getting fuller after applying MVG found through experimental method) has been 

well-known and his result was reconfirmed by many researchers, the theory that vortex after 

MVG is generated by the K-H type instability may provide a new perspective for further research. 

They may be two sides of one fact. 

 Besides, there are several results shown in table below by using velocity (u, v, w) as an input and 

using Liutex vector (𝐿𝑥,  𝐿𝑦,  𝐿𝑧) as an input. The paring of the first 6 POD modes can be observed 

in both cases by the POD method and Liutex iso-surface.  

1) Traditional POD decomposition with velocity input may meet difficulties in the case of 

low energy because the modes are ranked by fluid energy.  

2) Since Liutex is a vector field featured to represent local fluid rotation, In the POD 

decomposition with Liutex input, the modes are ranked by the strength of fluid rotation. 

3) POD using Input of Liutex vector can clearly show the main vortex structure after MVG. 
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4) Ranked by Liutex strength, the paring in strong modes is not found (Modes 1-2 are not 

paired), but the spanwise modes are clearly paired. Modes 1-2 look like mixture of 

streamwise and spanwise vortices. 

5) Ranked by energy, the strong modes are all paired and dominant by streamwise vortices 

(Modes 1-2 in Figure 4.9). 

6) Ranked by Liutex strength, although the streamwise modes are still strong like modes 1-2 

which are dominant by the streamwise structure, the other modes like modes 3-4 and 5-6 

are all spanwise structure dominant (Figure 4.15) and clearly paired. 

Using Velocity (u, v, w) for 𝛺̃𝑅/ Liutex as an 

Input 

Using Liutex vector (𝐿𝑥,  𝐿𝑦 ,  𝐿𝑧) as an Input 

• Mode 1 has the highest L-magnitudes among 

other POD modes. 

• There are 3 pairs of POD modes: modes 1-2, 

modes 3-4 and modes 5-6. Moreover, pairing 

of POD modes is a common case, which is a 

sign of K-H type instability. 

• Modes 1-2-5-6 are dominated by streamwise 

direction. However, modes 3-4 are mainly 

dominated by spanwise direction. 

• There is no correlation between either the 

relative strength (𝛺̃𝑅) or absolute strength 

• Mode 1 has the highest L-magnitudes among 

other POD modes. 

• There are 2 pairs of POD modes: modes 3-4 

and modes 5-6. Moreover, pairing of POD 

modes is a common case, which is a sign of K-

H type instability. 

• Modes 1-2 are dominated by streamwise 

direction. However, modes 3-4-5-6 are 

strongly dominated by spanwise direction. 

• The absolute strength of rotation, or Liutex, is 

correlated with cumulative L-magnitudes (of 

rotation). 
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(Liutex) of rotation, and cumulative L-

magnitudes. 

 

POD for coherent structure in the wake of MVG: 

There are eight pairs of POD modes found in an area of 120 snapshots by using Liutex 

vector (𝐿𝑥,  𝐿𝑦,  𝐿𝑧) as an input, which is the sign of Kevin-Helmholtz instability. Mode 1 has the 

most energy compared to other POD modes. Modes 1-2 and modes 5-6 are mainly dominated by 

spanwise characteristics; on the other hand, modes 3-4 and modes 7-8 are dominated by 

streamwise characteristics. Pairing of POD modes strongly indicates the new mechanism of MVG 

for reduction of flow separation, which is due to the interaction between shocks and the 

spanwise vortex rings generated by K-H instability. 

Further research compares the frequency at the shock area closed to the wall with and 

without MVG by applying DMD method. Thus, the mechanism of MVG for separation reduction 

by Li and Liu [32] is reconfirmed.  
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APPENDIX 

MATLAB CODES for POD 

 
 

filename = 'snapshotMatrix.txt'; 
A=load(filename); 
save Asnapshots.mat A; 
A=importdata('Asnapshots.mat'); 
perWant=input('How many percents you want(e.g. 89% you should input 89): '); 
SumColumnA=sum(A,2); 
Mean=SumColumnA/size(A,2); 
 A_Without_Mean=zeros(size(A,1), size(A,2)); 
for i=1: size(A,2) 
    A_Without_Mean(:,i)=A(:,i)-Mean; 
end 
[Ur,Sr,Vr]=svd(A_Without_Mean,'econ'); 
s=diag(Sr); 
cumSa=cumsum(s); 
cumS = cumSa/cumSa(end)*100; 
cumSa2=cumsum(s.*s); 
cumS2 = cumSa2/cumSa2(end)*100; 
index=find(cumS>=perWant); 
index2=find(cumS2>=perWant); 
r=index(1); 

  
figure (1) 
plot(1:length(s),s,'bo','color', 'b') 
xlabel('Number of POD Modes','color', 'r','FontSize', 18) 
ylabel('Singular Value','color', 'r','FontSize', 18) 
figure(2) 
semilogy(1:length(s),s,'bo','color', 'b') 
xlabel('Mode number','color', 'r','FontSize', 18) 
ylabel('Singular value, log(\sigma_{j})','color', 'r','FontSize', 18) 
figure(3) 
plot(1:length(cumS2),cumS2,'ro','color', 'b') 
hold on 
plot(index2(1),cumS2(index2(1)),'d', 'markerfacecolor', [ 1, 0, 0 ] ); 
text(index2(1)+0.5,cumS2(index2(1)),['\leftarrow Tot. ' num2str(index2(1)) ': 

' num2str(cumS2(index2(1))) '%'] ); 
hold off 
figure(4) 
plot(1:length(cumS),cumS,'ro','color', 'b') 
hold on 
plot(index(1),cumS(index(1)),'d', 'markerfacecolor', [ 1, 0, 0 ] ); 
text(index(1)+0.5,cumS(index(1)),['\leftarrow Tot. ' num2str(index(1)) ': ' 

num2str(cumS(index(1))) '%'] ); 
title('Cumulative \sigma','color', 'r','FontSize', 20) 
xlabel('Number of POD Modes','color', 'r','FontSize', 18) 
ylabel('Cumulative \sigma','color', 'r','FontSize', 18) 
hold off 
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