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ABSTRACT

OPTION PRICING WITH INVESTMENT STRATEGY UNDER STOCHASTIC

INTEREST RATES

Niloofar Ghorbani, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Prof. Andrzej Korzeniowski

Equity options are the most common types of financial derivatives that give

an investor the right but not the obligation to buy or sell shares of stock at a given

price in the future for a premium (option price) paid at present. The Classical Black-

Scholes Formula solved a longstanding mathematical problem of finding no arbitrage

option price by means of stochastic Ito calculus based on Geometric Brownian Motion

dynamics of the stock price and a fixed interest rate over the option time horizon.

We extend the Black-Scholes Model by adding a component of investor’s buying and

selling strategies for Call and Put Option, in addition to relaxing the interest rate

from fixed to evolving randomly, whereby reflecting the actual market environment.

We first present a solution to an open problem regarding Call Option price under

linear investment hedging for stochastic interest rate modeled by Cox-Ingersol-Ross

process, via a Monte-Carlo simulation method. Next, we extend Put and Call Option

pricing under linear investment strategy from the Black-Scholes setting to Hull-White

interest rate model. Finally, based on our findings, we derive suitable modifications

for practical implementation which inherently reflect the discrete nature of market

transactions.
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CHAPTER 1

Introduction

This thesis is concerned with the effect of investment strategy on reducing the

loss sustained by Option writer when building the Call or Put Option models, to

lower the Option price of the classical Black-Scholes models.

In recent years, thanks to steady growth of financial derivatives market, various

generalizations of the classical Option pricing model were developed. Namely, a

combination of stochastic interest rates along with dynamic investing strategies in

the underlying security prior to Option expiration has been proposed for the purpose

of hedging the investment risks. It turned out that selling a security proportionally

to its dropping price for Put Option and buying the security proportionally to its

rising price for Call Option (both under European Black -Scholes Model) resulted in

lower Option price as shown by Wang and Wang [24] [25]. Zhang et al. [28] extended

the result for Call Option to stochastic interest rates following the Vasicek model and

asked whether Call Option price can be established for stochastic interest rates under

the Cox-Ingersoll-Ross (CIR) model [4]. An extensive background and the literature

on the subject can be found in [28].

The main obstacle in solving the problem for CIR is the fact that the closed

form solution to the stochastic differential equation (SDE ) is no longer available (in

general), unlike in Vasicek interest rate given explicitly by the gaussian process.

In chapter 2 we present an effective way for calculating Call Option price in

the case of randomly evolving interest rates for the Cox-Ingersoll-Ross model. The
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method uses Monte Carlo simulation of interest rates path integrals, which is readily

carried out thanks to the Ornstein-Uhlenbeck OU process representation [6].

In chapter 3 we obtained the closed form of the Put and Call Option price for

the linear investment strategy under the Hull-White stochastic interest rates [11]. In

particular, a protective put option can serve as an insurance policy against losses for

the stock holder. Since the option price associated with trading of the underlying

security is based on continuous stock trading (impossible to implement!), a feasible

discrete variant is in order. Recently Li et al. [12] proposed a discretized method for

the Call Option under the classical Black-Scholes with linear investment strategy.

Chapter 4 is concerned with a feasible market implementation for our Hull-White

pricing model which in the special case covers the Vasicek model.

In chapter 5 we outline research that include potential extensions to Jump-

diffusion processes for Options under investment strategies, monograph [10].

In this thesis we study the Option pricing models in financial derivatives market.

The random assets are stochastic processes, i.e., families (Xt)t∈I of random variables

indexed by a time interval I. For fundamental background, Brownian motion, Ito

stochastic calculus, classical Black-Scholes Option pricing models we refer to the

monograph [1].

1.1 Brownian Motion

The standard Brownian motion is a stochastic process (Bt)t∈R+ such that

• B0 = 0 almost surely,

• The sample trajectories t→ Bt are continuous, with probability 1
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• For any finite sequence of times t0 < t1 < · · · < tn, the increments

Bt1 −Bt0 , Bt2 −Bt1 , · · ·, Btn −Btn−1 (1.1)

are mutually independent random variables.

• For any given times 0 ≤ s < t, Bt−Bs has the Gaussian distribution N (0, t−s)

with mean zero and variance t− s.

Martingale Property Standard Brownian motion is martingale wit respect to the

filtration Ft, i.e.,

E [Bt | Fs] = Bs, 0 ≤ s < t. (1.2)

1.2 Stochastic Integral

[1]-[5] The stochastic integral with respect to Brownian motion (Bt)t∈R+ of any

simple predictable process (ut)t∈R+ of the form

ut :=
n∑
i=1

Fi1(ti−1,ti](t), t ∈ R+, (1.3)

where Fi is an Fti−1
-measurable random variable for i = 1, 2, · · ·, n, and 0 = t0 < t1 <

· · · < tn−1 < tn = T .

The next proposition extends the construction of the stochastic integral from simple

predictable processes to square-integrable (Ft)t∈[0,T ]-adapted processes (ut)t∈R+ for

which the value of ut at time t can only depend on information contained in the

Brownian path up to time t.

Proposition 1.2.1. The stochastic integral with respect to Brownian motion (Bt)t∈R+

extends to all adapted processes (ut)t∈R+ such that

‖u‖2
L2(Ω×[0,T ]) := E

[∫ T

0

| ut |2 dt
]
<∞, (1.4)

3



with the Ito isometry

‖
∫ T

0

utdBt ‖2
L2(Ω):= E

[(∫ T

0

utdBt

)2
]

= E

[∫ T

0

| ut |2 dt
]
. (1.5)

1.3 Ito Formula

For any Ito process (Xt)t∈R+ of the form

Xt = X0 +

∫ t

0

νsds+

∫ t

0

usdBs, t ∈ R+ (1.6)

or in differential notation

dXt = νtdt+ utdBt, (1.7)

where (ut)t∈R+ and (νt)t∈R+ are square-integrable adapted processes, we have

f (t,Xt) =f (0, X0) +

∫ t

0

∂f

∂s
(s,Xs) ds+

∫ t

0

νs
∂f

∂x
(s,Xs) ds+

∫ t

0

us
∂f

∂x
(s,Xs) dBs

+
1

2

∫ t

0

p us p2
∂2f

∂x2
(s,Xs) ds.

(1.8)

or in differential notation,

df (t,Xt) =
∂f

∂t
(t,Xt) dt+ νt

∂f

∂x
(t,Xt) dt+ ut

∂f

∂x
(t,Xt) dBt

+
1

2
p ut p2

∂2f

∂x2
(t,Xt) dt.

(1.9)

1.4 European Call Options

A Call option with strike price K and the expiration time T is the right (but

not an obligation) to buy 1 share of stock at the price K, called the strike price,

at the future time T . Buying an option comes at a price C and the problem is to

determine what C should be in the absence of arbitrage. Options return profit h(ST )

only when the stock price ST at time T exceeds the strike price K, in which case the

option holder will gain

h(ST ) = max[ST −K, 0] > 0 (1.10)
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1.5 European Put Options

A Put Option with strike price K and the expiration time T is the right (but

not an obligation) to sell 1 share of stock at the price K, called the strike price, at

the future time T . Options return profit h(ST ) only when the strike price K exceeds

the stock price ST at time T , in which case the option holder will gain

h(ST ) = max[K − ST , 0] > 0 (1.11)

1.6 Black-Scholes Option Pricing Formula

The seminal work of Black and Scholes [1] found an Option pricing formula for

the period prior to the Option expiration time. A basis for their model is the generally

accepted absence of arbitrage. An arbitrage is a risk-free profit making scheme which

takes advantage of the inefficiencies in financial markets resulted from securities

valuation based upon Present-Future frame of reference. We include a sample of

extensive literature on the subject of classical option pricing such as monographs,

textbooks, and research articles ([1]-[4], [7], [16]-[22]) in the References. Turning to

recently emerging new field of option pricing with investment strategies there are

only a few published research articles ([6], [12]-[15], [24]- [26], [28]).

Given the stock price process

Su = Ste

(
µ−σ

2

2

)
(u−t)+σ(Xu−Xt), 0 6 t 6 u 6 T, (1.12)

Black-Scholes Call option price C(t) at time t, reads

Ct = E
[
e−r(T−t)max [ZT −K, 0]

]

= StN

((
r+σ2

2

)
(T−t)+ln(StK )
σ
√
T−t

)

−Ke−r(T−t)N


(
r − σ2

2

)
(T − t) + ln

(
St
K

)
σ
√
T − t

 (1.13)
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where

Zu = Ste

(
r−σ

2

2

)
(u−t)+σ(Wu−Wt) (1.14)

with EZu = Ste
r(u−t), W (·) = standard Brownian motion, K = strike price, T − t

= expiration time in years, r = risk free return rate and N(z) =
∫ z
−∞

1√
2π
e−

x2

2 dx =

cumulative standard normal distribution ∼ N (0, 1).
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CHAPTER 2

Adaptive Risk Hedging for Call Options under Cox-Ingersoll-Ross

Interest Rates

2.1 Introduction

This chapter is concerned with the derivation of the Call Option price for the

linear investment under CIR interest rate. A key benefit of CIR process is that in

some economies the interest rates always stay positive, and consequently the Vasicek

model is not applicable due to allowing the interest rates to become negative. In

what follows we adopt the model setup and notation from [28]. European Call Option

under the linear investment strategy triggers stock buying whenever the stock price

exceeds the strike price. The investment fraction is defined by:

Q(S) =


0 S ≤ K

β
αK

(S −K) K ≤ S ≤ (1 + α)K

β S ≥ (1 + α)K

(2.1)

where

S is stock price.

Q(S) is the stock investment proportion, which is equal to the value of the

stock investment divided by A, where A is the entire investment amount.

K is strike price of the Option.

7



α is the investment strategy index, indicating the stock investment occurs

during the period in which the stock price increases from K to (1 + α)K.

β is the maximum value of the stock investment proportion.

It was found in [28] that the Call Option value VT based on the linear investment

with parameters α, β, strike price K, and the terminal stock price ST reads as follows:

VT =


0 ST ≤ K(
1 + β

α

)
(ST −K)− βST

α
ln
(
ST
K

)
K ≤ ST ≤ (1 + α)K

ST −K −
βST
α

ln(1 + α) +Kβ ST ≥ (1 + α)K

(2.2)

We will use the above formula for the stock price that satisfies SDE with drift

depending on the random interest rate, whose SDE follows CIR.

2.2 The Market Model

Consider the stock price St dynamics

dSt = rtStdt+ σ1StdW1,t, S(0) = S0 > 0, 0 ≤ t ≤ T. (2.3)

By Ito lemma, the stock price at time T can be expressed as

ST = S0e

∫ T
0

(
r0−

σ21
2

)
ds+

∫ T
0 σ1dW1,t

. (2.4)

Furthermore, consider the interest rate rt dynamics known as Cox-Ingersoll-Ross

model

drt = a (b− rt) dt+ σ2

√
rtdW2,t, r(0) = r0 > 0, 0 ≤ t ≤ T (2.5)

where W1,t and W2,t are independent Brownian motions on the probability space(
Ω,F , {Ft}t>0 , P

)
adapted to the filtration Ft.

8



The definition and lemma below are standard.

Definition 2.1.1. [2] [20] A numeraire is any strictly positive Ft-adapted stochastic

process Nt that can be taken as a unit of reference when pricing an asset Xt as follows

X̂t =
Xt

Nt

. (2.6)

Lemma 2.1.1. [2] [20] Assume there exists a numeraire N and the corresponding

probability measure QN . Then the price of any traded asset (without intermediate

payments) X relative to N is a martingale under QN

EQN

[
XT

NT

|Ft
]

=
Xt

Nt

, 0 6 t 6 T. (2.7)

In this section we consider the money market account Bt = e
∫ t
0 rsds with the

stochastic interest rate rt as numeraire. The measure associated with this numeraire

is a risk-neutral measure denoted by Q and by the lemma reads

EQ

[
XT

BT

|Ft
]

=
Xt

Bt

, 0 6 t 6 T. (2.8)

The derivative price is then obtained by calculating the conditional expectation

of its terminal payoff

H0 = EQ

[
e−

∫ T
0 rsdsHT |F0

]
(2.9)

where HT is the derivative’s payoff at time T . The filtration F0 does not have an

effect on calculation of the expectation and Formula (2.9) can be written as

H0 = EQ

[
e−

∫ T
0 rsdsHT

]
. (2.10)

Indeed, the option price C at initial time discounted by the money market account

numeraire under the risk-neutral measure is represented by

9



C = EQ

[
e−

∫ T
0 rsdsVT

]
(2.11)

where VT is the Call Option payoff at maturity time

VT = h (ST ) = h

(
S0e

∫ T
0

(
rs−

σ21
2

)
ds+

∫ T
0 σ1dW1,t

)
(2.12)

with

h(x) = max [x−K, 0] > 0, (2.13)

and VT previously defined by (2.2).

2.3 CIR Model via Ornstein-Uhlenbeck Process

Cox-Ingersoll-Ross (1985) introduced a square-root term in the diffusion co-

efficient of the Vasicek model which brings a solution to the positivity problem

encountered in Vasicek model. It is well-known that in general there is no closed-form

solution to the CIR model Equation (2.5). However, it turns out that in some cases

one can obtain the closed form solution in terms of the Ornstein- Uhlenbeck (OU )

process. For the sake of completeness, we state and verify this fact in the following

lemma.

Lemma 2.2.1. [9] Consider the n-dimensional OU process

dX i
t = −αX i

tdt+ σdW i
t (2.14)

where W i
t are n independent Brownian motions, i = 1, ..., n. Let

Yt =
n∑
i=1

(
X i
t

)2
. (2.15)

Note that

d
(
X i
t

)2
= 2X i

tdX
i
t + 2d

〈
X i
〉
t

=
(
−2α

(
X i
t

)2
+ σ2

)
dt+ 2σX i

tdW
i
t

10



Thus

dYt = d

(
n∑
i=1

(
X i
t

)2

)
=

n∑
i=1

d
(
X i
t

)2

=
(
−2αYt + nσ2

)
dt+ 2σ

n∑
i=1

X i
tdW

i
t ,

where the second step follows from the independence of the Brownian motions.

Next note that the process

Zt =

∫ t

0

n∑
i=1

X i
udW

i
u

is a martingale with quadratic variation

〈Z〉t =

∫ t

0

n∑
i=1

(
X i
u

)2
du =

∫ t

0

Yudu.

Consequently, by Levy’s characterization theorem, the process

W̃t =

∫ t

0

1√
Yu

n∑
i=1

X i
udW

i
u

is a Brownian motion. Therefore

dYt =
(
−2αYt + nσ2

)
dt+ 2σ

√
YtdW̃t

whereas

drt = a (b− rt) dt+ σ2

√
rtdW2,t.

Direct comparison (Yt ≡ rt) yields

a = 2α, b = nσ2

a
= nσ2

2α
and σ2 = 2σ.

11



To solve (3.14) multiply by Xte
αt to get

d
(
X i
te
αt
)

= eαtdX i
t + αeαtX i

tdt = σeαtdW i
t

which upon integration from 0 to t gives

X i
t = e−αtX i

t(0) +

∫ t

0

σe−α(t−s)dW i
s . (2.16)

Notice that (2.15)-(2.16) imply rt has non-central chi square distribution.

The parameter a corresponds to the speed of adjustment to the mean b, and σ2

is the short rate volatility. The drift a(b− r) is exactly the same as in Vasicek model,

however, the volatility in CIR model is
√
rtσ2 as opposed to σ2 for Vasicek. The drift

ensures mean reversion of the interest rate towards the long run value b, with the

speed of adjustment governed by the strictly positive parameter a. To ensure that

interest rate rt stays positive for all t we must assume 2ab > σ2
2 in equation (2.5)

which in turn requires n > 3 in (2.15).

It is worth noting that in the Vasicek model Zhang et al. [28] utilized a zero-

coupon bond as numeraire, which lead to the Option price under the forward measure.

This approach entails to drift change in the SDE for the interest rate. This method,

when applied to the CIR model, would require extension of our Lemma to OU

process with variable drift, and ultimately would have introduced more complexity

to the closed-form representation of the interest rate. As a result, our representation

was derived under the risk-neutral measure, which is more suitable for Monte Carlo

simulation.

2.4 Call Option Price under CIR Model

Stock price ST under CIR model reads (2.4). We represent the ST in terms of

R, C and Z

12



ST = S0e
∫ T
0 rsds−

∫ T
0

σ21
2
ds+

∫ T
0 σ1dW1,t (2.17)

ST = S0e
R+C+Z (2.18)

where

R =

∫ T

0

rsds

C =−
∫ T

0

σ2
1

2
ds

Z =

∫ T

0

σ1dW1,t ∼ N
(
0, σ2

1T
)

with independent random variables R, Z.

Remark 2.3.1. Even though rt has known non-central chi-square distribution

(by (2.15), Y ≡ r ), the distribution of its integral
∫ t

0
rsds is unknown (unlike gaussian

with known mean and variance in the Vasicek case) and thus not suitable for direct

calculations. Nevertheless, the path integral
∫ t

0
rsds leads to straightforward Monte

Carlo simulation, thanks to squared OU process representation of rt.

Theorem 2.3.1. Based on the notation established in (2.17)-(2.18), the explicit

form of VT reads

13



VT =



0,
R + Z ≤ ln

(
K
S0

)
+

σ2
1

2
T

(
1 +

β
α

)(
S0e

−σ
2
1
2
T+R+Z −K

)
− β

α
S0e

−σ
2
1
2
T+R+Z

(
lnS0 − σ2

1

2
T +R + Z − lnK

)
,

lnK
S0

+
σ2
1

2
T ≤ R + Z ≤ lnK(1+α)

S0
+

σ2
1

2
T

S0e
−σ

2
1
2
T+R+Z −K − β

α

(
S0e

−σ
2
1
2
T+R+Z

)
(ln(1 + α)) +Kβ,

R + Z > lnK(1+α)
S0

+
σ2
1

2
T

(2.19)

Even though the distribution of ST is unknown, (2.12) can still be calculated

by Monte Carlo simulation thanks to the path integral representation of ST .

2.5 Monte Carlo Simulation

2.5.1 Discretization

In order to do simulation and use the theorem (2.3.1) we need to simulate the

stock price ST as expressed by (2.17)-(2.18). The only part that requires attention is

the path integral R =
∫ t

0
dt. To calculate R we implement Riemann approximation

with the discretization on [0, T ] as follows:

rt =
n∑
i=1

(X i
t)

2
=

n∑
i=1

[
e−αtX i

t(0) +
∫ t

0
σe−α(t−s)dW i

s

]2

.

We have
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∫ T

0

rtdt =

∫ T

0

n∑
i=1

(
X i
t

)2
dt =

n∑
i=1

∫ T

0

(
X i
t

)2
dt

≈
n∑
i=1

 m∑
i=1

h

[
e−αtX i

t(0) +
l∑

k=1

σe−αhl−αhk
(
W i
hk −W i

h(k−1)

)]2


with m = T
h

for the time step size h.

2.6 Example

We illustrate our method by simulating the Black-Scholes European Call under

CIR interest rates for six months, one year and a two year Leap (T = 0.5, 1, 2). We

chose h = 0.01 and number of trials N = 10, 000, for accuracy of the Brownian

Motion approximation and simulation respectively. The results are listed in the Table

2.1.

Simulation Parameters:

• Investment Indexes α = 0.2 and β = 0.5.

• Stock volatility σ1 = 0.5.

• Interest rate volatility σ2 = 0.2.

• CIR model parameters a = 1, b = 0.02.

• The initial stock price S0 = 40.

• The strike price K = 45.

Table 2.1. Estimated value of Call Option price.

Terminal time T 0.5 1 2

Call Option price CT
CIR with Investment Strategy 2.25 2.26 2.22

CIR without Investment Strategy 3.42 3.32 3.27
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As expected, by Table 2.1, the Option price with investment under CIR is smaller

than the Option price without investment and shows that the Linear Investment

hedging lowers the investment risk for the Call Option holder.
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CHAPTER 3

Put Options with Linear Investment for Hull-White Interest Rates

3.1 Introduction

The gist of considering dynamic investment strategies, such as presented in

this chapter, is two-fold. Firstly, unlike in the classical Black-Scholes model where

the investor buys options and has no position in the underlying stock throughout

the option time horizon, the dynamic investment strategy requires the investor to

continuously trade the stock, whereby lowering the investor risk which is manifested

by the lower option price. Secondly, the interest rates are no longer constant and are

assumed stochastic.

This chapter is concerned with Put Option hedging by linear investment strategy

under the Hull-White stochastic interest rates model. European Put Option with the

linear investment strategy triggers stock selling whenever the stock price falls below

the strike price and stays in the range [(1− α)K,K]. Following [26] we state the

relevant facts regarding the hedging strategy. The investment fraction is defined by:

Q(S) =


β S ≤ (1− α)K

(1−β)
αK

[S − (1− α)K] + β (1− α)K ≤ S ≤ K

1 S ≥ K

(3.1)

where

S is stock price.
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Q(S) is the stock investment proportion, which is equal to the value of the

stock investment divided by A, where A is the entire investment amount.

K is strike price of the option.

α is the investment strategy index, indicating the stock investment occurs

during the period in which the stock price drops from K to (1− α)K.

β is the minimum value of the stock investment proportion.

It was found in [26] that the Put Option value VT based on the linear investment

with parameters α, β, strike price K reads as follows:

VT =



0 ST ≥ K

1−β
α

(
2α−1

2
K + (1− α)ST −

S2
T

2K

)
(1− α)K ≤ ST ≤ K

(K − βST )− (1−β)K(2−α)
2

ST ≤ (1− α)K

(3.2)

where ST is the terminal stock price.

We will use the above formula for the stock price that satisfies a stochastic

differential equation (SDE) with drift depending on the random interest rate, whose

SDE follows the Hull-White model.

3.2 The Market Model

The evolution of the stock price St satisfies the following SDE

dSt = µtStdt+ σ1StdW1,t (3.3)

with mean return µt, constant volatility σ1 and a standard Brownian motion W1,t.

The stock price dynamic under the risk-neutral measure is then as follows

dSt = rtStdt+ σ1StdW1,t (3.4)
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where rt is the interest rate.

By Ito formula the stock price at time T can be expressed as

ST = S0e

∫ T
0

(
rs−

σ21
2

)
ds+

∫ T
0 σ1dW1,t

(3.5)

where S0 is the initial stock price.

Wang et al. [26] proposed a put Option model based on a dynamic investment

strategy for the Black-Scholes Option pricing. In this chapter we extend their result

to the stochastic Hull-White interest rate model rt which satisfies the following SDE

drt = (θ(t)− art) dt+ σ2dW2,t (3.6)

with a and σ2 constants and W2,t standard Brownian motion independent from W1,t.

Remark 3.2.1. Special case of Hull-White model, θ(t) = ab, becomes the

Vasicek model.

In general, Calin [3], θ(t) satisfies the following equation

θ(t) = ∂tf(0, t) + af(0, t) +
σ2

2a
(1− e−2at) (3.7)

where f(0, t) is the yield curve determined by the bond price.

The solution to (3.4) reads

rt = r0e
−at + e−at

∫ t

0

θ(s)easds+ σ2e
−at
∫ t

0

easdW2,s. (3.8)

Note that the first two terms are deterministic and the last is a Wiener integral, thus

the process rt is normally distributed, with mean and variance

E[rt] = r0e
−at + e−at

∫ t

0

θ(s)easds

V ar[rt] =
σ2

2

2a
(1− e−2at).

(3.9)

Integrating (3.6) yields∫ t

0

rsds =
r0(1− e−at)

a
+

∫ t

0

e−as
∫ s

0

θ(u)eaududs+ σ2

∫ t

0

e−as
∫ s

0

eaudW2,u (3.10)
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when the interest rates are stochastic, the bond price is calculated by conditional

expectation

P (t, T ) = E
[
e−

∫ T
t rsds|Ft

]
(3.11)

where Ft denotes the information available in the market at time t.

Lemma 3.2.1. The Hull-White zero-coupon bond price is as follows

P (0, T ) = e
r0(e−aT−1)

a
−
∫ T

0
e−as

∫ s
0
θ(u)eaududs+

σ2
2

2a2

[
T + 1−e−2aT

2a
− 2

a

(
1− e−aT

)]
.

(3.12)

Proof: By (3.10)

P (0, T ) = E
[
e−

∫ T
0 rsds|F0

]
= e

r0(1−e−aT )
a e−

∫ T
0
e−as

∫ s
0
θ(u)eaududsE

[
e−σ2

∫ T
0
e−as

∫ s
0
eaudW2,uds|F0

]
(3.13)

The proof will be carried out in several steps.

Step 1: Set XT =
∫ T

0
e−as

∫ s
0
eaudW2,uds , then

E [XT ] =

∫ T

0

e−asE

[∫ s

0

eaudW2,u

]
ds = 0 (3.14)

since
∫ s

0
eaudW2,u is gaussian with mean 0 and variance e2as−1

2a
.

Step 2: By product rule

d
(
Xs

∫ s
0
eaudW2,u

)
=
∫ s

0
eaudW2,udXs +Xsd

∫ s
0
eaudW2,u + dXsd

∫ s

0

eaudW2,u︸ ︷︷ ︸
0

= e−as
(∫ s

0

eaudW2,u

)2

ds+Xse
asdW2,s (3.15)

Integrating the above gives

XT

∫ T

0

easdW2,s =

∫ T

0

e−as
(∫ s

0

eaudW2,u

)2

ds+

∫ T

0

Xse
asdW2,s. (3.16)
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By taking the expectation and using the fact that the Wiener integral has zero mean,

we obtain

E

[
XT

∫ T

0

easdW2,s

]
=

∫ T

0

e−asE

[(∫ T

0

easdW2,s

)2
]
ds

=

∫ T

0

e−as
(
e2as − 1

2a

)
=

1

a2

(
eaT + e−aT

2
− 1

) (3.17)

Step 3: Applying Ito Lemma:

d
(
X2
T

)
= 2XTdXT + (dXT )2 = 2XT e

−aT
∫ T

0

easdW2,sdt (3.18)

then integrating and applying step 2, yields

E
[
X2
T

]
= 2

∫ T

0

e−asE

[
Xs

∫ s

0

eaudW2,u

]
ds =

2

a2

∫ T

0

(
1 + e−2as

2
− e−as

)
ds

=
1

a2

[
T +

1

2a

(
1− e−2aT

)
+

2

a

(
e−aT − 1

)] (3.19)

Step 4: Using a stochastic variant of Fubini’s theorem we interchange the

Riemann and the Wiener integrals as follows

XT =

∫ T

0

e−as
∫ s

0

eaudW2,uds =

∫ s

0

eau
∫ T

0

e−asdsdW2,u

=

∫ T

0

e−asds

∫ s

0

eaudW2,u =
1

a

(
1− e−aT

) ∫ s

0

eaudW2,u

(3.20)

which implies that XT is normally distributed with mean 0 and variance E[X2
T ]

computed in step 3. Therefore

E

[
e−σ2

∫ T
0
e−as

∫ s
0
eaudW2,uds

]
= E

[
eσ2XT

]
= e

(
σ2
2

2

)
V ar(XT )

= e

σ2
2

2a2

[
T + 1−e−2aT

2a
− 2

a

(
1− e−aT

)]
(3.21)

which gives rise to the formula (zero coupon bond price).
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3.3 Hull-White under T-forward Measure

The stochastic model for the bond price under Hull-White model is as follows

[13].

dP (t, T ) = rtP (t, T )dt+ ν(t, T )P (t, T )dWt

= rtP (t, T )dt− σ2

a

(
1− e−a(T−t))P (t, T )dWt

(3.22)

In order to simplify the calculation of option value under the stochastic interest rate,

we use the technique of changing the measure and numeraire. Following general

considerations in Brigo and Mercurio [2] the dynamic of Hull-White model under the

zero-coupon bond as numeraire can be obtained using the following.

Proposition 3.3.1. [2] Assume two numeraires B and P evolve under a

probability measure Q

dBt = (...) dt+ σBt dWt

dPt = (...) dt+ σPt dWt

(3.23)

Then the drift of process X under numeraire P is

µPt (xt) = µBt (Xt)− σt(Xt)

(
σBt
Bt

− σPt
Pt

)
(3.24)

and

dW P
t = dWt +

(
σBt
Bt

− σPt
Pt

)
dt. (3.25)

Note. By the Proposition for money market account dBt = rtBtdt and zero-

coupon bond dP (t, T ) = rtP (t, T )dt− σ
a

(
1− e−a(T−t))P (t, T )dW2,t, rt for Hull-White

model under T -forward measure QT satisfies the following SDE

drt =

(
θ(t)− art −

σ2
2

a

(
1− e−a(T−t))) dt+ σdW T

t (3.26)

where

dW T
t = dWt +

σ

a

(
1− e−a(T−t)) dt. (3.27)
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Now that we obtained the evolution of Hull-White under T -forward measure,

we solve (3.24) via multiplying by the integrating factor eat to get

d
(
rte

at
)

= eatθ(t)dt− eatσ
2
2

a

(
1− e−a(T−t)) dt+ eatσ2dW

T
2,t. (3.28)

Integrating from 0 to t yields

rt = r0e
−at − σ2

2

a

[
(eat − 1) e−aT

(
2eaT − eat − 1

)
2a

]
e−at

+ e−at
∫ t

0

θ(s)easds+ σ2

∫ t

0

e−a(t−s)dW T
2,s

(3.29)

By integrating over [0, T ] we obtain∫ T

0

rtdt = r0
1− e−aT

a
− σ2

2

a

[
e−2aT

(
(2aT − 3) e2aT + 4eaT − 1

)
2a2

]

+

∫ T

0

e−at
∫ t

0

θ(s)easdsdt+ σ2

∫ T

0

∫ t

0

e−a(t−s)dW T
2,udt.

(3.30)

3.4 Put Option Price

The Put Option price is expressed as a product of the expectation of VT under

the T -forward measure and the price of zero-coupon bond. Notice that by (3.3) stock

price ST is lognormally distributed and we denote its probability density by f(s) for

ST = s.

Theorem 3.4.1. (Put Option Price) The Put Option price at time 0 under

the Hull-White interest rate is given by

PT = P (0, T )

((
K − (1− β)K(2− α)

2

)
N [d1]− βeµT+ 1

2
σ2
TN [d2]

)
− P (0, T )

(
1− β
α

2α− 1

2
K [N (d3)−N (d1)]

)
− P (0, T )

(
1− β
α

(1− α)eµT+ 1
2
σ2
T [N (d4)−N (d2)]

)
+ P (0, T )

(
β − 1

2αK
eµT+ 1

2
σ2
T [N (d4)−N (d2)]

)
(3.31)

23



where

P (0, T ) = e
r0(e−aT−1)

a
−
∫ T

0
e−as

∫ s
0
θ(u)eaududs+

σ2
2

2a2

[
T + 1−e−2aT

2a
− 2

a

(
1− e−aT

)]
d1 = ln(1−α)K−µT

σT
d2 =

ln(1−α)K−µT−σ2
T

σT

d3 = lnK−µT
σT

d4 =
lnk−µT−σ2

T

σT

µT = lnS0−σ2
1

2
T+r0

1−e−aT
a
−σ2

2

a

[
e−2aT ((2aT−3)e2aT+4eaT−1)

2a2

]
+
∫ T

0
e−at

∫ t
0
θ(s)easdsdt

σ2
T = σ2

1T + σ2

a2

[
T − 21−e−aT

a
+ 1−e−2aT

2a

]
Proof.

ET [VT ] =

∫ (1−α)K

0

[
(K − βST )− (1− β)K(2− α)

2

]
f(ST )dST

+

∫ K

(1−α)K

1− β
α

[
2α− 1

2
K + (1− α)ST −

S2
T

2K

]
f(ST )dST

=

∫ (1−α)K

0

[
(K − βST )− (1− β)K(2− α)

2

]
f(ST )d(ST )

+

∫ K

(1−α)K

1− β
α

[
2α− 1

2
K + (1− α)ST

]
f(ST )dST

−
∫ K

(1−α)K

[
1− β
α

S2
T

2K

]
f(ST )dST

(3.32)

We split evaluating ET [VT ] into integrals I1, I2 and I3 as follows

I1 =

∫ (1−α)K

0

[
(K − βST )− (1− β)K(2− α)

2

]
f(ST )d(ST )

I2 =

∫ K

(1−α)K

1− β
α

[
2α− 1

2
K + (1− α)ST

]
f(ST )dST

I3 = −
∫ K

(1−α)K

[
1− β
α

S2
T

2K

]
f(ST )dST

(3.33)
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Set y = lnST , then f(ey)ey is the probability density function of lnST , and the mean

and variance under the T -forward measure can be expressed form (3.3) as follows

µT = ET [lnST ] = ET

[
lnS0 +

∫ T

0

(
rt −

σ2
1

2

)
dt+

∫ T

0

σ1dW
T
1,t

]
= lnS0 −

σ2
1

2
T + ET

[∫ T

0

rtdt

]
+ ET

[∫ T

0

σ1dW
T
1,t

]
︸ ︷︷ ︸

0

= lnS0 −
σ2

1

2
T + r0

1− e−aT

a
− σ2

2

a

[
e−2aT

(
(2aT − 3) e2aT + 4eaT − 1

)
2a2

]

+

∫ T

0

e−at
∫ t

0

θ(s)easdsdt

(3.34)

σ2
T = V arT [lnST ] = V arT

[
lnS0 +

∫ T

0

(
rt −

σ2
1

2

)
dt+

∫ T

0

σ1dW
T
1,t

]
= V arT [lnS0] + V arT

[∫ T

0

(
rt −

σ2
1

2

)
dt

]
+ V arT

[∫ T

0

σ1dW
T
1,t

]
= V arT

[∫
σ1dW

T
1,t

]
+ V arT

[∫ T

0

σ2e
−at
∫ t

0

easdW T
2,sdt

]
=

∫ T

0

σ2
1dt+ V arT

[
σ2

∫ T

0

∫ t

0

e−a(t−s)dW T
2,sdt

]
= σ2

1T +
σ2

a2

[
T − 2

1− e−aT

a
+

1− e−2aT

2a

]
.

(3.35)

Moreover, we have

f (ey) ey =
1√

2πσT
e−

1
2

(y − µT )2

σ2
T

(3.36)

and therefore
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I1 =

∫ (1−α)K

0

(
(K − βST )− (1− β)K(2− α)

2

)
f(ST )dST

=

∫ (1−α)K

0

(
K − (1− β)K(2− α)

2

)
f(ST )dST − β

∫ (1−α)K

0

STf(ST )dST

=

∫ ln(1−α)K

−∞

(
K − (1− β)K(2− α)

2

)
f (ey) eydy − β

∫ ln(1−α)

−∞
eyf (ey) eydy

=

(
K − (1− β)K(2− α)

2

)
1√

2πσT

∫ ln(1−α)K

−∞
e
− 1

2

(y−µT )2

σ2
T dy

− β 1√
2πσT

∫ ln(1−α)K

−∞
eye
− 1

2

(y−µT )2

σ2
T dy

(3.37)

Setting z = y−µT
σT

gives

I1 =

(
K − (1− β)K(2− α)

2

)
1√
2π

∫ ln(1−α)K−µT
σT

−∞
e−

1
2
z2dz

− β 1√
2π

∫ ln(1−α)K−µT
σT

−∞
eµT+zσT e−

1
2
z2dz

=

(
K − (1− β)K(2− α)

2

)
1√
2π

∫ ln(1−α)K−µT
σT

−∞
e−

1
2
z2dz

− β 1√
2π

∫ ln(1−α)K−µT
σT

−∞
eµT+ 1

2
σ2
T e−

1
2

(z−σ2
T )dz

=

(
K − (1− β)K(2− α)

2

)
N

[
ln(1− α)K − µT

σT

]
− βeµT+ 1

2
σ2
TN

[
ln(1− α)K − µT − σ2

T

σT

]

(3.38)

where N(x) is the standard normal cumulative distribution function.
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I2 =

∫ K

(1−α)K

1− β
α

(
2α− 1

2
K + (1− α)ST

)
f(ST )dST

=

∫ K

(1−α)K

(
1− β
α

2α− 1

2
K

)
f(ST )dST +

1− β
α

(1− α)

∫ K

(1−α)K

STf(ST )dST

=
1− β
α

2α− 1

2
K

∫ lnK

ln(1−α)K

f (ey) eydy +
1− β
α

(1− α)

∫ lnK

ln(1−α)K

eyf (ey) eydy

=
1− β
α

2α− 1

2
K

1√
2πσT

∫ lnK

ln(1−α)K

e
− 1

2

(y−µT )2

σ2
T dy

+
1− β
α

(1− α)
1√

2πσT

∫ lnK

ln(1−α)K

eye
− 1

2

(y−µT )2

σ2
T dy

=
1− β
α

2α− 1

2
K

1√
2π

∫ lnK−µT
σT

ln(1−α)K−µT
σT

e−
1
2
z2dz

+
1− β
α

(1− α)
1√
2π

∫ lnK−µT
σT

ln(1−α)K−µT
σT

eµT+zσT e−
1
2
z2dz

=
1− β
α

2α− 1

2
K

[
N

(
lnK − µT

σT

)
−N

(
ln(1− α)K − µT

σT

)]
+

1− β
α

(1− α)eµt+
1
2
σ2
T

[
N

(
lnK − µT − σ2

T

σT

)
−N

(
ln(1− α)K − µT − σ2

T

σT

)]
(3.39)

and

I3 = −
∫ K

(1−α)K

[
1− β
α

S2
T

2K

]
f(ST )dST =

β − 1

2αK

∫ K

(1−α)K

S2
Tf(ST )dST

=
β − 1

2αK

∫ lnK

ln(1−α)K

e2yf (ey) dy =
β − 1

2αK

∫ lnK

ln(1−α)K

eyeyf (ey) dy

=
β − 1

2αK

1√
2πσT

∫ lnK

ln(1−α)K

eye
− 1

2

(y−µT )2

σ2
T dy

=
β − 1

2αK

1√
2π

∫ lnK−µT
σT

ln(1−α)K−µT
σT

eµT+zσT e−
1
2
z2dz

=
β − 1

2αK
eµT+ 1

2
σ2
T

[
N

(
lnK − µT − σ2

T

σT

)
−N

(
ln(1− α)K − µT − σ2

T

σT

)]
(3.40)
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Corollary. 3.4.1. (Put Option Price for Vasicek Model) Observe that

in the special case we recover the Put Option price for the Vasicek model when

θ(t) = ab.

3.5 Applications to Call Option

European Call Option under the linear investment strategy triggers stock buying

whenever the stock price exceeds the strike price. The investment fraction is defined by:

Q(S) =


0 S ≤ K

β
αK

(S −K) K ≤ S ≤ (1 + α)K

β S ≥ (1 + α)K

where

S is stock price.

Q(S) is the stock investment proportion, which is equal to the value of the

stock investment divided by A, where A is the entire investment amount.

K is strike price of the option.

α is the investment strategy index, indicating the stock investment occurs

during the period in which the stock price increases from K to (1 + α)K.

β is the maximum value of the stock investment proportion.

Zhang et al. [28] derived the Call Option price C ≡ CT based on the linear

investment for the Vasicek interest rate model and we extend their result to the

Hull-White model.

Theorem 3.5.1. The Call Option price with the linear investment strategy at

time 0 for the Hull-White model is given by
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CT =P (0, T )

(
1 +

β

α

(
1− µT + lnK − σ2

T

))
eµT+ 1

2
σ2
T [N (d1)−N (d2)]

− P (0, T )

(
1 +

β

α

)
K [N(d3)−N(d4)]

− P (0, T )
β

α

σT√
2π
eµT+ 1

2
σ2
T

(
e−

d22
2 − e−

d21
2

)
+ P (0, T )

(
1− β

α
ln(1 + α)

)
eµT+ 1

2
σ2
TN(−d1)

+ P (0, T )K(β − 1)N(−d3)

with P (0, T ), d1, d2, d3, d4, µT and σ2
T defined below

P (0, T ) = e
r0(e−aT−1)

a
−
∫ T

0
e−as

∫ s
0
θ(u)eaududs+

σ2
2

2a2

[
T + 1−e−2aT

2a
− 2

a

(
1− e−aT

)]

d1 =
ln(1+α)K−µT−σ2

T

σT
d2 =

lnK−µT−σ2
T

σT

d3 = ln(1+α)K−µT
σT

d4 = lnK−µT
σT

µT = lnS0 −
σ2

1

2
T + r0

1− e−aT

a
− σ2

2

a

[
e−2aT

(
(2aT − 3) e2aT + 4eaT − 1

)
2a2

]

+

∫ T

0

e−at
∫ t

0

θ(s)easdsdt

σ2
T =

σ2
2

a2

[
T − 2

1− e−aT

a
+

1− e−2aT

2a

]
+ σ2

1T

Proof: The formula for CT has been derived in Zhang et al. [28] for the Vasicek

model with explicit dependence on the bond price P (0, T ), µT and σ2
T . Since in the

Hull-White model the respective bond price P (0, T ), µT and σ2
T have been found in

(3.10), (3.32) and (3.33) respectively, and the derivation of the Call Option price CT

in Hull-White model is analogous to that of Vasicek model we omit the proof of the

formula CT .
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Corollary 3.5.1. (Call Option price for Vasicek Model). Observe that

in the special case we recover the Call Option price for the Vasicek model when

θ(t) = ab .
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CHAPTER 4

Market Implementation

To generalize the adaptive hedging European Option for practical application,

a discrete trading strategy for Call Option is derived by Meng Li et al. [12], and

the Option pricing formula is deducted based on the non-random interest rates.

We extended their strategy by considering a European Put Option, in the cases of

both non-random and random interest rates models. The Put Option price with

discrete investment strategy under the Vasicek model and the extended Vasicek model

(Hull-White) is derived.

4.1 Call Options

4.1.1 Discrete Trading Strategy

In order to make the linear investment strategy for Option pricing more adapt-

able to the real market, we work on discrete linear trading strategy. Adaptive risk

hedging European Call Option with discrete trading position was first introduced by

Li et al. [12].

4.1.2 Strategy Assumptions

The adaptive risk hedging for European Call Option is proposed based on the

following assumptions:

• The Call Option holder holds one Option contract and an initial Capital of

amount A = Q × K at the beginning of the Option period, where Q is the
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number of shares of stock for Option contract and K is the Call Option strike

price.

• The Call Option holder should buy the underlying stock according to the price

changes subject to the discrete trading strategy.

• The potential loss sustained by the Option holder through adaptive trading is

not the responsibility of the Option writer.

• There are no transaction costs for buying the underlying stock.

4.1.3 Description of Discrete Trading Strategy

The Call Option contains a capital amount A initially. When the price of the

underlying stock goes up to (K+δ), δ> 0 the Option holder spends β0A to buy stocks.

The parameter β0 is a constant between 0 and 1, called the initial capital utilization

coefficient. The Option holder linearly adjusts the capital utilization to increase the

holding while the price continues to increase and hits a series of equally spaced points

Sn where {Sn : Sn = K + n∆, n = 1, 2, ..., N}, with ∆, a positive constant, the price

distance for two consecutive trading actions and N the total number of trades within

the option valid period.

The strategy parameters α (strategy index ) and β (maximum capital utiliza-

tion), both positive numbers, illustrate that the maximum amount of capital tradable

is βA when the price reaches (1 +α)(K + σ). The strategy assumes the option holder

will evenly (βA
N

) distribute the capital over each of the potential trades corresponding

to Sn, n = 1, 2, ..., N , by purchasing βA
NSn

shares of stocks.
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4.1.4 The Value Function V(S)

It was found in [11] that the Call Option value VT based on the discrete trading

strategy reads

VT =



0 ST < K

ST −K K ≤ ST < S1

ST − βSTK
N

m∑
n=1

1
K+n∆

+
(
βm
N
− 1
)
K Sm ≤ ST < Sm+1 ≤ SN

ST − βSTK
N

N∑
n=1

1
K+n∆

+ (β − 1)K SN 6 ST

(4.1)

with the investment parameters α, β, strike price K, and the terminal stock price ST .

The Call Option pricing formula is derived by [12] for the special case of interest rate

to be fixed based on the geometric fractional brownian motion stock price behavior,

and is comparable with classical B-S model. In what follows, we compute the Call

Option price under the discrete position strategy for the case of non-random, Vasicek

and Hull-White interest rate models.

4.1.5 Option Price under Fixed Interest Rates r

Suppose ST , the stock price dynamic under the risk-neutral measure be as

dSt = rStdt+ σ1StdW1,t, S(0) = S0 > 0 0 ≤ t ≤ T (4.2)

By Ito formula, the stock price at the maturity time T can be obtained and reads

ST = S0e
[(r− 1

2
σ2
1)t+σ1W1,T ] (4.3)

Based on the value function VT in (4.1), the Call Option price under risk-neutral

measure can be evaluated as

C = e−rTE[VT ] (4.4)
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where,

E[VT ] =

∫ S1

K

(ST −K) f(ST )dST

+

∫ Sm+1

Sm

[(
1− βK

N

m∑
n=1

1

K + n∆

)
ST +

(
βm

N
− 1

)
K

]
f(ST )dST

+

∫ +∞

SN

[(
1− βK

N

N∑
n=1

1

K + n∆

)
ST + (β − 1)K

]
f(ST )dST

(4.5)

with

I1 =

∫ S1

K

(ST −K) f(ST )dST

I2 =

∫ Sm+1

Sm

[(
1− βK

N

m∑
n=1

1

K + n∆

)
ST +

(
βm

N
− 1

)
K

]
f(ST )dST

I3 =

∫ +∞

SN

[(
1− βK

N

N∑
n=1

1

K + n∆

)
ST + (β − 1)K

]
f(ST )dST

(4.6)

calculating the three integrals I1, I2 and I3 with a similar method to the previous

chapters and using the probability density function of lnST , whose mean and variance

are as follows

µ = E [lnST ] = E

[
lnS0 +

(
r − 1

2
σ2

1

)
T + σ1W1,T

]
= lnS0 +

(
r − 1

2
σ2

1

)
T

(4.7)

σ2
1 = V ar

[
lnS0 +

(
r − 1

2
σ2

1

)
T + σ1W1,T

]
= σ2

1T

(4.8)

gives the Call Option price.
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I1 =

∫ S1

K

(ST −K) f(ST )dST

=

∫ lnS1

lnK

(ey −K) f (ey) eydy

=

∫ lnS1

lnK

(ey −K)
1√
2πσ

e−
1
2

(y−µ)2

σ2 dy

=

∫ lnS1

lnK

1√
2πσ

eye−
1
2

(y−µ)2

σ2 dy −K
∫ lnS1

lnK

1√
2πσ

e−
1
2

(y−µ)2

σ2 dy

=

∫ lnS1−µ
σ

lnK−µ
σ

1√
2π
eµ+σze−

1
2
z2dz −K

∫ lnS1−µ
σ

lnK−µ
σ

1√
2π
e−

1
2
z2dz

=
1√
2π

∫ lnS1−µ
σ

lnK−µ
σ

eµ+ 1
2
σ2e−

1
2

(z−σ)2dz −K 1√
2π

∫ lnS1−µ
σ

lnK−µ
σ

e−
1
2
z2dz

= eµ+ 1
2
σ2

[
N

(
lnS1 − µ− σ2

σ

)
−N

(
lnK − µ− σ2

σ

)]
−K

[
N

(
lnS1 − µ

σ

)
−N

(
lnK − µ

σ

)]
.

(4.9)

I2 =

∫ Sm+1

Sm

[(
1− βK

N

m∑
n=1

1

K + n∆

)
ST +

(
βm

N
− 1

)
K

]
f(ST )dST

=

∫ Sm+1

Sm

(
1− βK

N

m∑
n=1

1

K + n∆

)
STf(ST )dST +

∫ Sm+1

Sm

(
βm

N
− 1

)
Kf(ST )dST

=

(
1− βK

N

m∑
n=1

1

K + n∆

)∫ Sm+1

Sm

eyf (ey) eydy +

(
βm

N
− 1

)
K

∫ Sm+1

Sm

f(ey)eydy

=
1√
2πσ

(
1− βK

N

m∑
n=1

1

K + n∆

)∫ Sm+1

Sm

eye−
1
2

(y−µ)2

σ2 dy

+
1√
2πσ

(
βm

N
− 1

)
K

∫ Sm+1

Sm

e−
1
2

(y−µ)2

σ2 dy

=
1√
2π

(
1− βK

N

m∑
n=1

1

K + n∆

)∫ Sm+1−µ
σ

Sm−µ
σ

eµ+zσe−
1
2
z2dz +

1√
2π

(
βm

N
− 1

)
K

∫ Sm+1−µ
σ

Sm−µ
σ

e−
1
2
z2dz

= eµ+ 1
2
σ2

(
1− βK

N

m∑
n=1

1

K + n∆

)[
N

(
lnSm+1 − µ− σ1

σ

)
−N

(
lnSm − µ− σ2

σ

)]
+

(
βm

N
− 1

)
K

[
N

(
lnSm+1 − µ

σ

)
−N

(
lnSm − µ

σ

)]
.

(4.10)
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I3 =

∫ +∞

SN

[(
1− βK

N

N∑
n=1

1

K + n∆

)
ST + (β − 1)K

)
f(ST )dST

=

(
1− βK

N

N∑
n=1

1

K + n∆

)∫ +∞

lnSN

eyf (ey) eydy + (β − 1)K

∫ +∞

lnSN

f (ey) eydy

=

(
1− βK

N

N∑
n=1

1

K + n∆

)
1√
2πσ

∫ +∞

lnSN

eye−
1
2

(y−µ)2

σ2 dy

+ (β − 1)K
1√
2πσ

∫ +∞

lnSN

e−
1
2

(y−µ)2

σ2 dy

= eµ+ 1
2
σ2

(
1− βK

N

N∑
n=1

1

K + n∆

)[
N

(
µ+ σ2 − lnSN

σ

)]
+ (β − 1)KN

(
µ− lnSN

σ

)
.

(4.11)

Thus, from formulas (4.4) to (4.11), the Option price under fixed interest rate can be

given by

C = e−rTE [VT ]

= e−rT eµ+ 1
2
σ2

[N (d1)− (d2)]

−Ke−rT [N (d3)−N (d4)]

+ e−rT eµ+ 1
2
σ2

(
1− βK

N

m∑
n=1

1

K + n∆

)
[N (d5)−N (d6)]

+ e−rT
(
βm

N
− 1

)
[N (d7)−N (d8)]

+ e−rT eµ+ 1
2
σ2

(
1− βK

N

N∑
n=1

1

K + n∆

)
[N (d9)]

+ e−rTK(β − 1)N (d10)

(4.12)

where,
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d1 =
lnS1 − µ− σ2

σ
d6 =

lnSm − µ− σ2

σ

d2 =
lnK − µ− σ2

σ
d7 =

lnSm+1 − µ
σ

d3 =
lnS1 − µ− σ2

σ
d8 =

lnSm − µ
σ

d4 =
lnK − µ

σ
d9 =

µ+ σ2 − lnSN
σ

d5 =
lnSm+1 − µ− σ2

σ
d10 =

µ− lnSN
σ

and

µ = lnS0 +

(
µ− 1

2
σ2

1

)
T

σ2 = σ2
1T

4.1.6 Option Price under Stochastic Interest Rates

4.1.6.1 Vasicek Interest Rates Model

Solution to the Vasicek interest rate model, is used to obtain the Call Option

price C according to the following formula

C = P (0, T )ET [VT ]

where

ST = S0e
∫ T
0 (rs− 1

2
σ2
1)ds+

∫ T
0 σ1dW1,t

and P (0, T ) is the price of the zero-coupon bond. Also the mean µT and Variance σ2
2

under the T -forward measure in the case of the Vasicek model has been obtained by

Zhang [28]. Thus the expectation of VT under the T -forward measure based on the

discrete dynamic strategy can be obtained similarly to (4.12) and is
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C = P (0, T )eµT+ 1
2
σ2
T [N (d1)− (d2)]

−KP (0, T ) [N (d3)−N (d4)]

+ P (0, T )eµT+ 1
2
σ2
T

(
1− βK

N

m∑
n=1

1

K + n∆

)
[N (d5)−N (d6)]

+ P (0, T )

(
βm

N
− 1

)
[N (d7)−N (d8)]

+ P (0, T )eµT+ 1
2
σ2
T

(
1− βK

N

N∑
n=1

1

K + n∆

)
N (d9)

+ P (0, T )K(β − 1)N (d10)

(4.13)

where,

d1 =
lnS1 − µT − σ2

T

σT
d6 =

lnSm − µT − σ2
T

σT

d2 =
lnK − µT − σ2

T

σT
d7 =

lnSm+1 − µT
σT

d3 =
lnS1 − µT − σ2

T

σT
d8 =

lnSm − µT
σT

d4 =
lnK − µT

σT
d9 =

µT + σ2
T − lnSN
σT

d5 =
lnSm+1 − µT − σ2

T

σT
d10 =

µT − lnSN
σT

and

µT = lnS0 −
σ2

1

2
T − r0

1− e−aT

a
+

(
θ

a
− σ2

2

a2

)[
T − 1− e−aT

a

]
+
σ2

2

2a

1− e−aT

a

σ2
T =

σ2
2

a2

[
T − 2

1− e−aT

a
+

1− e−2aT

2a

]
+ σ2

1T

with the zero-Coupon bond price as

P (0, T ) = exp

{[
1− e−aT

a
− T

](
θ

a
− σ2

2

2a2

)
−
σ2

2
1−e−aT

a

4a

}
e−r0

1−e−aT
a . (4.14)
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4.1.6.2 Hull-White Interest Rates Model

We derived the Option price under Hull-White interest rates model using the

solution to the Hull-White SDE obtained in chapter 3, (3.8). Since our derivation is

under T -forward measure, we need to consider the zero-coupon bond price P (0, T )

and the mean µT and Variance σ2
T for this model under the T -forward measure. The

Option price in this case reads (4.13), where

µT = lnS0 −
σ2

1

2
T + r0

1− e−aT

a
− σ2

2

a

[
e−2aT

(
(2aT − 3) e2aT + 4eaT − 1

)
2a2

]

+

∫ T

0

e−at
∫ t

0

θ(s)easdsdt

σ2
T =

σ2
2

a2

[
T − 2

1− e−aT

a
+

1− e−2aT

2a

]
+ σ2

1T

and the zero-coupon bond price is

P (0, T ) = e
r0(e−aT−1)

a
−
∫ T

0
e−as

∫ s
0
θ(u)eaududs+

σ2
2

2a2

[
T + 1−e−2aT

2a
− 2

a

(
1− e−aT

)]

4.2 Put Options

European Put Option with linear investment strategy triggers stock selling

whenever the stock price St falls below the strike price K and stays in the range

[(1− α)K,K].

4.2.1 Description of Discrete Trading Strategy

The Put Option contains a specified capital amount A and holding of Q initially.

When the stock price drops from K to (K − δ), δ > 0 the Option holder sells β0.A

proportion of stocks. Parameter β0 is called the initial capital utilization coefficient

which is a constant between 0 and 1. The Option holder linearly adjusts the capital
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utilization to decrease the holding if the price continues to fall until it reaches

(1− α) (K − δ) and the total capital spending reaches β.A with β < ... < β1 < β0.

The Option holder will only sell when the stock price hits a series of equally

spaced points Sn, where {Sn : Sn = K − n∆, n = 1, ..., N}, with ∆ a positive constant,

the price distance for two consecutive trading actions and N the totall number of

trades within the Option valid period. The strategy parameters α (investment index)

and β (minimum capital utilization), both positive numbers, illustrate the maximum

amount of capital tradable is β0.A when the price reaches (1 − α)(K − δ). The

strategy assumes the Option holder will evenly
(
βA
N

)
distribute the capital over each

of the potential trades corresponding to Sn, n = 1, 2, ..., N by selling βA
NSn

shares of

stocks.

4.2.2 The Value Function V (S)

In the classical European Options, the Option writer will sustain a loss of the

amount L as the stock price falls below K

L = Q (K − S) =
A

K
(K − S) . (4.15)

For the adaptive hedging Option purpose, the investor is required to sell a

proportion of underlying stock in order to hedge the risk. In a discrete position

strategy, the Option holder’s income R based on such transactions throughout the

Option valid period can be calculated as,

R =
βA

NSn
(Sn − S) (4.16)

when the stock price falls from Sn to S, with SN 6 Sm+1 < S < Sn.
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The Option holder makes a cumulative income R(S) as

R(S) =
m∑
n=1

βA

NSn
(Sn − S) (4.17)

Thus, the total loss taken by the Option writer can be obtained as

L(S) =
A

K
(K − S)−

m∑
n=1

βA

NSn
(Sn − S)

=
A

K
(K − S)− βA

N

m∑
n=1

(Sn − S)

Sn

=
A

K
(K − S)− βA

N

m∑
n=1

Sn
Sn

+
βAS

N

m∑
n=1

1

Sn

=A− AS

K
− βAm

N
+
βAS

N

m∑
n=1

1

K − n∆

=

(
1− βm

N

)
A− AS

K
+
βAS

N

m∑
n=1

1

K − n∆

(4.18)

however, for S 6 SN , the Option writer’s loss L is

L(S) = (1− β)A− AS

K
+
βAS

N

m∑
n=1

1

K − n∆
. (4.19)

Therefore, the following function represents the Option writer’s loss based on the

stock price S

L(S) =



(1− β)A− AS
K

+ βAS
N

m∑
n=1

1
K−n∆

S 6 SN(
1− βm

N

)
A− AS

K
+ βAS

N

m∑
n=1

1
K−n∆

SN ≤ Sm+1 < S ≤ Sm

A
K

(K − S) S1 < S 6 K

0 S > K

(4.20)

Consequently the intrinsic value function V (S) is derived by dividing the loss function
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by the number of shares of stock within the Option depending on the stock price

finishing price ST

V (ST ) =



(1− β)K − ST + βSTK
N

m∑
n=1

1
K−n∆

ST 6 SN(
1− βm

N

)
K − ST + βSTK

N

m∑
n=1

1
K−n∆

SN ≤ Sm+1 < ST ≤ Sm

(K − ST ) S1 < ST 6 K

0 ST > K

(4.21)

4.2.3 Option price under Fixed Interest Rates r

Considering the assumptions of section (4.5) and the intrinsic value function

V (ST ) in (4.21), the Put Option price under risk neutral measure is evaluated as

P = e−rTE [V (ST )] (4.22)

where,

E [V (ST )] =

∫ SN

0

[
(1− β)K − ST +

βSTK

N

m∑
n=1

1

K − n∆

]
f (ST ) dST

+

∫ Sm

sm+1

[(
1− βm

N

)
K − ST +

βSTK

N

m∑
n=1

1

K − n∆

]
f (ST ) dST

+

∫ K

S1

(K − ST )f (ST ) dST

(4.23)

calculating the three integrals I1, I2 and I3 similar to the previous chapters and using

the probability density function of lnST , whose mean and variance has been obtained

in (4.7) and (4.8) gives the Put Option price.
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I1 =

∫ SN

0

[
(1− β)K − ST +

βSTK

N

m∑
n=1

1

K − n∆

]
f (ST ) dST

=

∫ SN

0

(1− β)Kf (ST ) dST −
∫ SN

0

(
1− βK

N

m∑
n=1

1

K − n∆

)
STf (ST ) dST

=(1− β)K

∫ lnSN

−∞
f (ey) eydy −

(
1− βK

N

m∑
n=1

1

K − n∆

)∫ lnSN

−∞
eyf (ey) eydy

=(1− β)K
1√
2πσ

∫ lnSN

−∞
e−

1
2

(y−µ)2

σ2 dy −

(
1− βK

N

m∑
n=1

1

K − n∆

)
1√
2πσ

∫ lnSN

−∞
eye−

1
2

(y−µ)2

σ2 dy

=(1− β)K
1√
2π

∫ lnSN−µ
σ

−∞
e−

1
2
z2dz −

(
1− βK

N

m∑
n=1

1

K − n∆

)
1√
2π

∫ lnSN−µ
σ

−∞
eµ+zσe−

1
2
z2dz

=(1− β)K
1√
2π

∫ lnSN−µ
σ

−∞
e−

1
2
z2dz −

(
1− βK

N

m∑
n=1

1

K − n∆

)
1√
2π

∫ lnSN−µ
σ

−∞
eµ+ 1

2
σ2

e−
1
2

(z−σ)2dz

=(1− β)KN

(
lnSN − µ

σ

)
−

(
1− βK

N

m∑
n=1

1

K − n∆

)
N

(
lnSN − µ− σ2

σ

)
(4.24)

and

I2 =

∫ Sm

sm+1

[(
1− βm

N

)
K − ST +

βSTK

N

m∑
n=1

1

K − n∆

]
f (ST ) dST

=

(
1− βm

N

)
K

∫ Sm

sm+1

f (ey) eydy −

(
1− βK

N

m∑
n=1

1

K − n∆

)∫ Sm

sm+1

eyf (ey) eydy

=

(
1− βm

N

)
K

1√
2πσ

∫ Sm

sm+1

e−
1
2

(y−µ)2

σ2 dy −

(
1− βK

N

m∑
n=1

1

K − n∆

)
1√
2πσ

∫ Sm

sm+1

eye−
1
2

(y−µ)2

σ2 dy

=

(
1− βm

N

)
K

1√
2π

∫ Sm−µ
σ

Sm+1−µ
σ

e−
1
2
z2dz −

(
1− βK

N

m∑
n=1

1

K − n∆

)
1√
2π

∫ Sm−µ
σ

Sm+1−µ
σ

eµ+ 1
2
σ2

e−
1
2

(z−σ)2dz

=

(
1− βm

N

)
K

[
N

(
lnSm − µ

σ

)
−N

(
lnSm+1 − µ

σ

)]
−

(
1− βK

N

m∑
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1

K − n∆

)[
N

(
lnSm − µ− σ2

σ

)
−N

(
lnSm+1 − µ− σ2

σ
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(4.25)
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similarly,

I3 =

∫ K

S1

(K − ST )f (ST ) dST

=K

∫ lnK

lnS1

f (ey) eydy −
∫ lnK

lnS1

eyf (ey) eydy

=K
1√
2πσ

∫ lnK

lnS1

e
(y−µ)2

σ2 dy − 1√
2πσ

∫ lnK

lnS1

eye
(y−µ)2

σ2 dy

=K

[
N

(
lnK − µ

σ

)
−N

(
lnS1 − µ

σ

)]
− eµ+ 1

2
σ2

[
N

(
lnK − µ− σ2

σ

)
−N

(
lnS1 − µ− σ2

σ

)]
(4.26)

4.2.4 Option price under Stochastic Interest Rates

4.2.4.1 Vasicek Interest Rates Model

The price of Put Option P with the underlying stock price dynamic and interest

rate following the Vasicek model reads

P = P (0, T )ET [VT ] (4.27)

where P (0, T ) is the zero-coupon bond price in (4.14) and µT , σ2
T the mean and

variance under T -forward measure. Thus,

P =P (0, T )ET [VT ]

=P (0, T )K(1− β)N (d1)

−P (0, T )

(
1− βK

N

m∑
n=1

1

K − n∆

)
N (d2)

+P (0, T )

(
1− βm

N

)
K [N (d3)−N (d4)]

−P (0, T )

(
1− βK

N

m∑
n=1

1

K − n∆

)
[N (d5)−N (d6)]

+P (0, T )K [N (d7)−N (d8)]

−P (0, T )eµ+ 1
2
σ2

[N (d9)−N (d10)]

(4.28)

44



where,

d1 =
lnSN − µT

σT
d6 =

lnSm+1 − µT − σ2
T

σT

d2 =
lnSN − µT − σ2

T

σT
d7 =

lnK − µT
σT

d3 =
lnSm − µT

σT
d8 =

lnS1 − µT
σT

d4 =
lnSm+1 − µT

σT
d9 =

lnK − µT + σ2
T

σT

d5 =
lnSm − µT − σ2

T

σT
d10 =

lnS1 −muT − σ2
T

σT
and

µT = lnS0 −
σ2

1

2
T − r0

1− e−aT

a
+

(
θ

a
− σ2

2

a2

)[
T − 1− e−aT

a

]
+
σ2

2

2a

1− e−aT

a

σ2
T =

σ2
2

a2

[
T − 2

1− e−aT

a
+

1− e−2aT

2a

]
+ σ2

1T

4.2.4.2 Hull-White Interest Rates Model

The Put Option price under the extended Vasicek, Hull-White model reads

(4.28) where the mean µT and σ2
T for this model under T -forward measure are as

µT = lnS0 −
σ2

1

2
T + r0

1− e−aT

a
− σ2

2

a

[
e−2aT

(
(2aT − 3) e2aT + 4eaT − 1

)
2a2

]

+

∫ T

0

e−at
∫ t

0

θ(s)easdsdt

σ2
T =

σ2
2

a2

[
T − 2

1− e−aT

a
+

1− e−2aT

2a

]
+ σ2

1T

where the zero-coupon bond price is

P (0, T ) = e
r0(e−aT−1)

a
−
∫ T

0
e−as

∫ s
0
θ(u)eaududs+

σ2
2

2a2

[
T + 1−e−2aT

2a
− 2

a

(
1− e−aT

)]
.
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CHAPTER 5

Conclusions and Future Research

In this study we first presented an effective way for calculating Call Option

price in the case of randomly evolving interest rates for the Cox-Ingersoll-Ross model.

The method uses Monte Carlo simulation of interest rates path integrals, which is

readily carried out thanks to OU process representation.

Furthermore, we obtained the closed form of the Put and Call Option price

for the linear investment strategy under the Hull-White stochastic interest rates. In

particular, a protective put option can serve as an insurance policy against losses for

the stock holder.

Since the option price associated with trading of the underlying security is

based on continuous stock trading (impossible to implement!), a feasible discrete

variant is in order. Recently Li et al. [12] proposed a discretized method for the Call

Option under the classical Black-Scholes with linear investment strategy. A feasible

market implementation for our Hull-White pricing model was presented in chapter 4.

Our approach can be extended to any other stochastic interest rate model with

suitable solution representation (e.g. some transformation of Brownian Motion) of its

underlying SDE.

A natural extension of our work is Option pricing based on dynamic investment

strategy under Jump-diffusion processes, which typically fits market data better than

the simple diffusion processes. The classical Black-Scholes model [1] is a log-normal

diffusion process, i.e., the log-return is normally distributed. However, in the real

market due to the presence of jumps on stock prices, perfect hedging by diffusion
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processes is impossible. Merton in [17] introduced the Jump-diffusion model for

Option pricing when the underlying asset returns are discontinuous. In the way that

the basic building block of diffusion models is Brownian motion, the jump processes

starting point is Poisson process.

Poisson Processes share some important properties with Brownian motions,

namely, Martingale property. Ito formulas and Lemmas has been derived for Jump

processes. Also, analogous to obtaining a Brownian motion without drift from a

Brownian motion with drift using Girsanov’s theorem, we can change the measure

for Possion and compound Poisson processes. For the fundamental definitions and

theorems on the subject of Jump diffusion models, see [22].

As far as future research is concerned, we intend to focus on extending our

results from chapters 2-3 to Jump-diffusions as those processes provide a better fit to

market data than continuous diffusions. Another aspect worth exploring amounts to

developing non-linear investment strategies which could incorporate investor’s risk

aversion via relevant utility functions, e.g., concave for risk avoiding or convex for risk

seeking. Unlike the linear investment strategy, derivation of closed form solutions will

present a clear challenge due to evaluation of expected values for non-linear functional

of Jump-diffusions.
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