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ABSTRACT 

 
FUNCTIONAL GENOMICS REVEALS THE MECHANISMS AND EVOLUTION OF EXTREME 

PHYSIOLOGICAL ADAPTATIONS IN SNAKES 

 

Blair W. Perry, PhD 

 

The University of Texas at Arlington, 2021 

 

Supervising Professor: Todd A. Castoe, PhD 

 

Understanding the processes underlying the evolution and functional basis of novel adaptations has long 

been a central goal of biology, and recent advances in genomic sequencing and related technologies have 

enabled unprecedented opportunities to investigate these processes in non-traditional model organisms. 

Focusing primarily on snakes and other reptiles, this dissertation uses an array of integrative functional 

genomics approaches to better understand the processes by which vertebrate signaling pathways and 

molecules can be co-opted and modified to achieve unique functions. Specifically, I identify conserved 

vertebrate regulatory pathways that together facilitate unique regenerative organ growth capacity in snakes, 

and similarly characterize a suite of signaling pathways and cellular processes that have been co-opted for 

the maintenance and function of a novel organ system, the snake venom gland. Further, I use an integrative 

functional genomics dataset to build the first comprehensive model for snake venom gene regulation and 

evolution. Finally, I use comparative functional genomic analyses of multiple non-mammalian vertebrate 

lineages to highlight unique features and evolutionary implications of microchromosomes. Collectively, 

the diverse work presented in this dissertation provides insight into the evolution and regulation of novel 

physiological adaptations in vertebrates, and showcases the value of applying integrative functional 

genomics approaches to study unique adaptations outside of traditional model systems.   
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Chapter 1 

INTRODUCTION 

The impressive diversity of adaptations found across the tree of life represent numerous evolutionary 

solutions to a largely shared set of challenges (i.e., to survive, obtain nutrients, and reproduce). By studying 

the genomic basis and evolution of unique adaptations otherwise absent in traditional model systems (i.e., 

Drosophila and mouse), we can gain new perspectives into the processes and constraints of vertebrate 

genome biology and the evolution of novelty. Within the last decade, the increasing feasibility and 

affordability of genomic sequencing and related techniques has resulted in an accumulation of high-quality 

genomic resources (i.e., high-quality reference genome assemblies and annotations) for non-traditional 

model organisms. Notably, such resources unlock the ability to use a variety of functional genomics 

techniques to study the genomic basis of adaptation in non-traditional model organisms that have previously 

been limited to only model organisms. These advances therefore enable unprecedented opportunities to 

study the genomic basis and evolution of unique adaptations from diverse lineages and to broaden our 

understanding of both fundamental features and idiosyncratic complexities of genome biology and 

evolution.  

This dissertation focuses on leveraging functional genomics techniques in non-traditional model organisms 

(primarily snakes and other reptiles) to better understand the molecular basis of novel physiological 

adaptations and the processes by which vertebrate signaling pathways and molecules can be co-opted and 

modified to achieve unique functions. This work spans multiple biological scales, ranging from broad 

regulatory pathways underlying complex physiological phenotypes (Chapters 2, 3, and 4), to specific 

regulatory mechanisms driving the evolution of novel genes and organ systems (Chapter 5), to unique 

features of non-mammalian vertebrate genome structure, function, and evolution (Chapter 6).  
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The first two chapters of this dissertation (Chapters 2 and 3) use comparative studies of differential gene 

expression and protein abundance across multiple tissues and snake lineages to identify conserved 

vertebrate regulatory pathways that underlie the unique and extreme capacity for regenerative organ growth 

in snakes. These studies culminate in a detailed model of regeneration signaling in snakes and identify 

particular stress response mechanisms that likely facilitate, and even enable, such high-magnitude 

regenerative responses. Chapter 4 uses similar methodology (i.e., analyses of differential gene expression) 

to dissect cellular processes and regulatory pathways associated with the maintenance and function of the 

snake venom gland. This study provides an important understanding of the physiological context of snake 

venom production that has been historically overlooked in the literature despite a long-enduring interest in 

snake venom systems. Based on this same system, Chapter 5 represents a more comprehensive study to 

identify the mechanisms of venom gene regulation, and their evolutionary origins, through the generation 

and analysis of a large integrative functional genomics dataset. Results of this study provide broad insight 

into how regulatory networks can be co-opted through diverse genomic mechanisms to produce novel 

polygenic traits. Lastly, Chapter 6 uses comparative studies of genome structure and organization across 

multiple vertebrate lineages to identify unique features of microchromosomes that may have broad and 

important ramifications for genome structure, function, and evolution in non-mammalian vertebrates.  

This dissertation collectively provides a diverse suite of examples for how the application of functional 

genomics techniques previously reserved only for traditional model systems can broaden our understanding 

of genome biology and evolution when used to interrogate unique and extreme adaptations in non-

traditional model systems. The resources generated herein and the broad implications of these studies 

provide key foundations for understanding vertebrate biology and functional diversity, and inspire 

extensions of this work in snakes and other non-traditional model systems. 

  



 

9 

Chapter 2 

GROWTH AND STRESS RESPONSE MECHANISMS UNDERLYING POST-FEEDING 

REGENERATIVE ORGAN GROWTH IN THE BURMESE PYTHON 

Audra L. Andrewa*, Blair W. Perrya*, Daren C. Carda, Drew R. Schielda, Robert P. Reggierob, Suzanne 

McGaughc, Amit Choudharyd,e, Stephen M. Secorf, and Todd A. Castoea 

* Authors contributed equally 

aDepartment of Biology & Amphibian and Reptile Diversity Research Center, 501 S. Nedderman Drive, 

University of Texas at Arlington, Arlington, TX 76019 USA 

bDepartment of Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab 

Emirates 

cDepartment of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108 USA 

dHarvard Medical School, Renal Division, Brigham and Woman’s Hospital, Cambridge, MA 02142 USA 

eCenter for the Science of Therapeutics, Broad Institute, Cambridge, MA, 02142 USA 

fDepartment of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA 

 

 

 



 

10 

Abstract 

Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus 

bivittatus) have identified thousands of genes that are significantly differentially regulated during this 

process. However, substantial gaps remain in our understanding of coherent mechanisms and specific 

growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we 

addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small 

intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), 

and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory 

molecules across these organ systems. Identified enriched canonical pathways and upstream regulators 

indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways 

and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, 

PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially 

regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-

protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase 

receptors, and transmembrane receptors, both within individual organs and across separate tissues. 

Downstream transcription factors MYC and SREBF are induced in all tissues. These results suggest that 

largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-

level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates 

this pathway may be particularly important in mediating cellular stress during such extreme regenerative 

growth.  
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Introduction  

Multiple species of snakes have evolved the ability to massively downregulate metabolic and physiological 

functions during extended periods of fasting, including the atrophy of organs such as the heart, liver, kidney, 

and intestine. Upon feeding, the size and function of these organs, along with oxidative metabolism, is 

massively upregulated to accommodate digestion (Ott and Secor, 2007; Secor, 2008; Secor and Diamond, 

1998, 2000). Of the snake species that experience these large fluctuations in physiology, the Burmese 

python (Python bivittatus) is the most well-studied (Andrew et al., 2015). Within 48 hours of feeding, 

Burmese pythons can undergo up to a 44-fold increase in metabolic rate and >100-fold increases in plasma 

triglyceride content (Secor and Diamond, 1997, 1998). Organ-specific changes also occur, including 40-

100% increases in the mass of the heart, liver, pancreas, kidneys, and small intestine (Cox and Secor, 2008; 

Lignot et al., 2005; Secor, 2008; Secor and Diamond, 1995; Secor and White, 2010). This extreme organ 

regenerative growth and atrophy is unparalleled across vertebrates, and studies indicate that this organ 

growth is driven by multiple cellular processes, including cellular hypertrophy in the heart and mixtures of 

hypertrophy and hyperplasia in the kidney, liver, and small intestine (Andrew et al., 2015; Helmstetter et 

al., 2009; Riquelme et al., 2011; Secor and Diamond, 1998). Organ growth peaks around 1-2 days post-

feeding (DPF), and by 10-14DPF, organ form and function, as well as gene expression patterns, have 

completely reversed back to fasted levels (Andrew et al., 2015; Castoe et al., 2013; Cox and Secor, 2008; 

Lignot et al., 2005; Secor, 2008; Secor and Diamond, 1995; Secor and Ott, 2007).  

Previous studies have examined aspects of this post-feeding response using morphological and 

physiological assays (Cox and Secor, 2008; Secor, 2003, 2008; Secor and Diamond, 1998; Secor et al., 

2002; Wall et al., 2011), analyses of gene expression (Andrew et al., 2015; Castoe et al., 2013), and 

combinations of the two (Andrew et al., 2015; Wall et al., 2011). Together, these studies have demonstrated 

that transcriptional responses following feeding are extremely rapid and massive, both in the magnitude of 

expression changes and in the number of genes with significant differential expression. Genes important in 
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a number of developmental, metabolic, proliferative, apoptotic, and growth processes have been shown to 

be involved in these major shifts in organ form and function (Andrew et al., 2015; Castoe et al., 2013; 

Riquelme et al., 2011). Previous studies have shown that mammalian cells respond to the growth signals in 

post-fed python serum, which likely indicates a conserved response to core signaling molecules (Riquelme 

et al., 2011; Secor et al., 2014). We therefore hypothesize that a relatively small number of core molecular 

regulatory molecules and signaling pathways may underlie these responses. However, the identification of 

a core set of upstream regulatory molecules and mechanisms has been hindered by the large number of 

genes that are significantly differentially expressed during this response, making manual interpretation of 

this gene expression data difficult. Additionally, the lack of comparable replicated sampling across multiple 

organs has further prevented meaningful across-organ comparisons of changes in gene expression in 

previous studies (Castoe et al., 2013). Accordingly, major gaps remain in our understanding of the specific 

mechanisms and growth pathways that are responsible for driving these extreme shifts in Burmese python 

organ size and function, as well as how these mechanisms may vary across different organ systems. 

Our previous study of the Burmese python feeding response addressed some gaps through the use of 

increased replicates and more frequent time point sampling for one organ, the small intestine (Andrew et 

al., 2015). We identified over 1,700 genes that were significantly differentially expressed during post-

feeding regeneration in the small intestine with many of these genes being functionally linked to cellular 

processes such as WNT signaling, cell cycling, and apoptosis. This study also linked changes in gene 

expression with functional and phenotypic shifts by comparing RNAseq data with physiological and 

histological data. This detailed analysis was only conducted on the small intestine, however, and failed to 

address any upper-level signaling mechanisms and pathways. 

Here, we leverage fully replicated organ-specific time courses detailing gene-level responses to infer 

canonical pathways and regulatory molecules driving post-feeding organ growth in the Burmese python. 

We examined gene expression across four major organ systems – the heart, liver, kidney, and small 
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intestine. We combined increased replicated sampling with statistical inferences of pathway activation and 

regulatory molecule prediction to identify the mechanistic drivers of cross-tissue, post-feeding organ 

regeneration. Despite highly organ-specific gene expression responses associated with organ regenerative 

growth, we found evidence for high degrees of overlap in predicted pathways and regulatory molecules 

underlying these growth processes between organs. Pathways predicted to be involved in regulating this 

physiological response include LXR/RXR activation, PI3K/AKT, and mTOR signaling. Interestingly, we 

also found strong and consistent evidence for the involvement of NRF2-mediated oxidative stress response 

and other stress-response pathways in this extreme example of rapid organ growth. Our results suggest that 

post-feeding, regenerative organ growth in the Burmese python may stem from small numbers of key 

effector molecules mediating a core set of growth and stress-response pathways, which in turn activate 

diverse, tissue-specific signaling cascades.  

Materials and Methods 

Feeding experiments 

Burmese pythons were obtained from commercial breeders. All animal care and tissue sampling was 

conducted using protocols approved by the University of Alabama Institutional Animal Care and Use 

Committee (14-06-0075). Burmese pythons were sampled at three physiological states: fasted (30 days 

since last meal), 1 day post-feeding (1DPF) and 4DPF, with the meal consumed equaling at least 25% of 

their body mass. Previous studies have shown that organ masses and functional phenotypes climax between 

1 and 3 DPF (Andrew et al., 2015; Secor, 2008; Secor and Diamond, 1995; Secor and Ott, 2007) and that 

phenotypes begin to decline by 4DPF (Cox and Secor, 2008; Secor, 2008; Secor and Diamond, 1995, 1998). 

We therefore chose sampling time points here to capture gene expression patters during the period before 

phenotypes climax (1DPF) and early in their regression (4DPF). Snakes were humanely euthanized by 

severing the spinal cord immediately behind the head, and organs were immediately extracted, snap frozen 
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in liquid nitrogen, and stored at -80°C. Between three and five biological replicates (i.e., animals) were 

sampled for each time point.   

Transcriptome library generation 

Total RNA was extracted from ~50mg of snap-frozen tissue using Trizol Reagent (Invitrogen), followed 

by mechanical cell disruption using a TissueLyzer for 10 minutes at 20 strokes/minute, and precipitation of 

RNA using isopropanol. Individual Illumina mRNAseq libraries were constructed using either the Illumina 

TruSeq RNAseq kit or the NEB Next RNAseq kit, both of which included poly-A selection, RNA 

fragmentation, cDNA synthesis, and indexed Illumina adapter ligation. Completed RNAseq libraries were 

quantified on a BioAnalyzer (Agilent), pooled in equal molar ratios in various multiplex arrangements, and 

sequenced on either an Illumina GAIIx or Illumina HiSeq2000 (Supp. Table S1).   

Quantifying and visualizing gene expression 

Raw demultiplexed Illumina RNAseq reads were quality filtered and trimmed with Trimmomatic v. 0.32 

(Bolger et al., 2014). In instances where the same library was sequenced in multiple different runs, reads 

were combined and mapped for each individual and time point. Mapping of reads to the reference 

transcriptome of the Burmese python (Castoe et al., 2013) was conducted using BWA v. 0.6.1 (Li and 

Durbin, 2011) with the following parameters: mismatch penalty=2, gap open penalty=3, and alignment 

score minimum=20. Expression was determined using SAMtools v. 0.1.19 (Li et al., 2009) by counting the 

number of unique gene reads that mapped to an annotated transcript, while excluding reads that mapped to 

multiple positions. New RNAseq data for various time points and replicates was analyzed together with 

previously published data from other individuals and replicates (Andrew et al., 2015; Castoe et al., 2013). 

Newly-generated sequencing data were archived on the NCBI Short Read Archive (NCBI: SRP051827). 

Raw expression counts were normalized using TMM normalization in edgeR (Robinson et al., 2010) and 

all statistical analyses of gene expression were conducted using normalized data. We identified genes that 

were significantly differentially expressed between time points using two approaches. First, we estimated 
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significant changes in gene expression between pairs of time points using pairwise exact tests for the 

binomial distribution calculated in edgeR, integrating both common and tagwise dispersion (Robinson et 

al., 2010). Second, to accommodate the time-series nature of the experimental design, we also conducted 

step-wise regression analysis of gene expression in maSigPro (Conesa et al., 2006). Regression analysis 

enabled the detection of genes with significant patterns of differential expression across all three time 

points. Gene expression heatmaps were generated in R and clustered with the package vegan (Dixon, 2003), 

with gene clustering calculated using average linkage hierarchical clustering based on a Bray-Curtis 

dissimilarity matrix. We used the program STEM (Ernst and Bar-Joseph, 2006) to identify and visualize 

significant expression profiles for all genes in our RNAseq data.  

Assigning homology for functional analyses 

To facilitate the use of various pathway activation and regulatory molecule predictions, we annotated the 

full Burmese python transcript set (Castoe et al., 2013) with orthologous human gene Ensembl (Aken et al., 

2016) identifiers. Reciprocal tblastx was first conducted between Anolis carolinensis and Burmese python, 

and Anolis gene IDs identified as orthologous to python genes were converted to human Ensembl identifiers 

using homology tables from Ensembl’s Biomart (Cunningham et al., 2015). The same process of reciprocal 

best blast using tblastx was performed between Burmese python and Gallus gallus, followed by conversion 

of chicken Ensembl identifiers to human Ensembl identifiers using homology tables from Ensembl’s 

Biomart (Cunningham et al., 2015). We also performed reciprocal best blast of the python with Homo 

sapiens. Finally, we used one-way tblastx with anolis, chicken, and human to annotate python genes that 

were not assigned an ortholog from reciprocal best blast. Using this annotation approach, we were able to 

assign human Ensembl IDs to 22,393 of 25,385 total python reference transcripts.  

Pathway and upstream regulatory molecule analysis 

To infer the involvement of upstream regulatory molecules and pathways, we performed Core Analysis in 

Ingenuity Pathway Analysis (IPA; Qiagen), using default parameters. IPA uses gene identifiers and the 
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fold-change value for each differentially expressed gene to identify enrichment patterns for Canonical 

Pathway Analysis (CPA) and Upstream Regulatory Molecule Analysis (URMA), and to infer the activation 

direction (activated versus inhibited) between particular time points. These two analyses both use observed 

gene expression data to infer unobserved features (e.g., activation state of key signaling molecules), but 

differ fundamentally in how they use expression data to make inferences. CPA predicts the involvement 

and activation/inhibition of canonical pathways based on observed evidence from gene expression data, 

specifically for genes that participate as higher-level regulatory molecules within a given pathway; analysis 

of observed gene expression data incorporates information from the Ingenuity Knowledge Base (including 

genes known to be involved within a given pathway) to provide both a statistical value of enrichment and 

a prediction of the biological involvement for the pathway as a whole (i.e. activated or inhibited; IPA 

documentation, Qiagen). In contrast, URMA uses observed changes in gene expression specifically for 

genes at lower levels within pathways (e.g., low level effectors) to predict activation or inhibition of 

regulatory molecules upstream of these genes (Krämer et al., 2013). Due to differences in these approaches, 

together these two methods provide a well-rounded set of comparable inferences for dissecting molecular 

mechanisms (Fig. 1). 

For IPA analyses, we used only genes identified as significant in pairwise differential expression analyses 

between time intervals (per organ), and we input fold changes per gene averaged across biological 

replicates, along with our estimate of the orthologous human Ensembl ID for each gene. Pathways important 

to cross-tissue physiological responses were isolated using the IPA CPA (included with Core Analysis), 

with a right-tailed Fisher’s exact test p-value of less than 0.01. We examined only those pathways that were 

significant, based on a predicted activation z-score, in at least one of the four organs for at least one of the 

post-feeding time points. For IPA analyses, the z-score is used to determine the statistical significance of 

the number of activated and inhibited predictions, and the sign of the value indicates the overall activation 

state (i.e., positive versus negative activation). We used a p-value cutoff of 0.01 for the CPA in IPA to 

reduce potentially spurious inferences. Upstream regulators and hypotheses for global signaling molecules 
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were identified using URMA in IPA, with a Fisher’s exact test overlap p-value threshold of 0.05. Pathway 

network figures were modified manually from predicted network figures generated in IPA. For analysis of 

specific pathways (mTOR signaling and NRF2-mediated oxidative stress response), we also determined 

the number of genes involved in each pathway that were assigned python orthologs by our orthology 

analyses, and how many of these genes were expressed at some level in our dataset (Supp. Table S2). 

Results 

Trends in gene expression across organs 

We used our expression data to examine the degree to which different organ systems ‘turn on’ upon feeding 

and then experience ‘regression’ towards pre-feeding patterns of expression at 4DPF. We found that for 

each organ, the majority of differentially expressed genes showed immediate up- or downregulation from 

fasting to 1DPF. Interestingly, each of the four organs examined appeared to experience regression towards 

fasting levels of expression by 4DPF to widely different extents, indicating that each organ may have its 

own unique temporal program of growth followed by atrophy. Across organs, the heart appeared to shift 

towards regression the fastest. Other organs experienced reversals of fasted to 1DPF expression shifts to 

varying degrees by 4DPF, ranging from the moderately paced small intestine and kidney, to the slow-paced 

liver (Table 1). STEM analysis further supported these temporal patterns of up-regulation and regression 

across organs (Supp. Fig. S1).  

Regression analysis across time points, which tends to be conservative, identified hundreds of genes that 

were significantly differentially expressed across all three time points with 722 genes in the heart, 750 genes 

in the kidney, 711 genes in the liver, and 1,284 genes in the small intestine. Of the 2,922 total genes 

differentially expressed across all four organs, 21% are unique to the heart, 16% are unique to the kidney, 

15% are unique to the liver, and 32% are unique to the small intestine (Fig. 2). Only a single gene was 

identified as significant in all four organs across all time points: coagulation factor X (F10). 
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To further dissect patterns of expression change following feeding, we conducted pairwise analyses of gene 

expression between time points for each organ. In the heart, pairwise analyses identified 436 significantly 

differentially expressed genes between fasted and 1DPF (208 upregulated and 228 downregulated; Table 

1), and 76 genes were significantly differentially expressed between 1DPF and 4DPF (36 upregulated and 

40 downregulated). In the kidney, 344 genes were significantly differentially expressed between the fasted 

state and 1DPF (244 upregulated and 100 downregulated), while only 8 genes were significantly 

differentially expressed from 1DPF to 4DPF (5 upregulated and 3 downregulated). In contrast to the heart, 

we found many genes (147) significantly differentially expressed between fasted and 4DPF in the kidney. 

In the liver, 461 genes were differentially expressed within 1DPF (335 upregulated and 126 

downregulated), while only 41 genes were significantly differentially expressed from 1DPF to 4DPF (29 

upregulated and 12 downregulated). With 371 genes significantly differentially expressed between fasted 

and 4DPF, among all four organs, the liver was the least ‘reset’ to the fasting condition by 4DPF. Finally, 

the small intestine showed higher levels of differential expression than the other three organs. Within 1DPF, 

2,313 genes were significantly differentially expressed (1,271 upregulated and 1,042 downregulated). From 

1DPF to 4DPF, 268 genes were upregulated and 146 genes were downregulated, and 892 genes were 

differentially expressed between fasted and 4DPF (Table 1). 

Genes and pathways implicated in differential gene expression in individual tissues  

To move beyond gene-specific responses and towards deciphering the mechanisms that may underlie 

growth responses across different organs, we identified pathways that were significantly activated/repressed 

between fasting and 1DPF (Fig. 3). We found consistent evidence that the NRF2 stress-response pathway 

is activated in all tissues, except in the heart, where there was insufficient data to determine the direction 

of activation. We also found relatively consistent evidence for activation of the related growth pathways 

mTOR and PI3K/AKT across organs, although this inference was most significant in the heart and small 

intestine. We also inferred the involvement of the related pathways: LXR/RXR, LPS/IL-1-mediated 

inhibition of RXR function, PPAR/RXR, and PPAR signaling in multiple organs; the direction of 
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stimulation of these pathways was both variable across organs and inconclusive in some organs. Substantial 

involvement of cytoskeletal pathways, including Actin cytoskeleton signaling and Actin nucleation by 

ARP-WASP complex, was also inferred across organs and positive in the kidney and small intestine, yet 

negative or inconclusive for the heart and liver, respectively.  

In addition to pathway activation/repression patterns shared across organs, a number of pathways showed 

substantial organ-specific directionality of response. Examples of this pattern include the growth-related 

AMPK signaling pathway (which was activated in the heart, repressed in the kidney and small intestine, 

and ambiguous in the liver), ERK5 signaling (activated in the heart and repressed in the small intestine), 

and Integrin signaling (stimulated in the heart and repressed in the small intestine). Lastly, a number of 

pathways appeared to be organ-specific, including p38 MAPK and ERK5 signaling in the heart and 14-3-

3-mediated signaling in the small intestine (Fig. 3). 

Upstream regulatory molecule analysis of 1DPF responses 

Our inferences of upstream regulatory molecules (URMs) between the fasted and 1 DPF time points 

supported many of the same molecular mechanisms underlying organ growth identified via CPA, such as 

stress response, growth, and lipid signaling pathways. We explored URM predictions for all classes of 

URMs except biological drugs, chemicals, and microRNAs. We found that many predicted URMs were 

shared among organs, with 51 shared among all four organs. Predicted URMs also showed substantial 

organ-specific patterns, with a large number of URMs uniquely predicted for each organ. The heart showed 

the largest number of unique URM predictions (269), while only 123, 167, and 137 unique URMs were 

predicted in the kidney, liver, and small intestine, respectively (Fig. 4A). 

To identify regulators with broadly relevant patterns across multiple organs, we focused on URMs predicted 

significantly in at least three organs and with moderate to high activation z-score (z > |1.5|) in at least one 

organ. A subset of the URMs meeting these criteria is shown in Fig. 4B, and the full set is shown in 

Additional file 1, Fig. S2. Many of these URM predictions coincided directly with predicted canonical 
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pathways. NFE2L2 and ATF4, key regulators within the NRF2-mediated oxidative stress response 

pathway, were predicted to be strongly activated in the small intestine, liver, and kidney, consistent with 

the canonical pathway analysis predictions of activation of the overall NRF2 pathway in these three organs. 

We also predicted involvement of NFkB and NFkBIA, two key regulators within the NFkB signaling 

response pathway – this inflammatory response pathway is thought to be inhibited by activation of the 

NRF2-mediated oxidative stress response pathway (Cuadrado et al., 2014; Wardyn et al., 2015). NFkB was 

predicted to be inhibited in the liver and heart, weakly activated in the kidney, and absent in the small 

intestine, while NFkBIA was predicted to be inhibited in the liver, weakly activated in the heart and kidney, 

and again absent in the small intestine. Activation of the growth pathways mTOR and PI3K/AKT were 

additionally supported by activation of predicted regulators such as mTORC1 and RAF1, respectively, and 

the inhibition of PTEN. Lipid signaling pathways such as LXR/RXR signaling, LPS/IL-1-mediated 

inhibition of RXR function, PPAR/RXR, and PPAR signaling were supported by several predicted URMs 

such as PXR ligand, NR1H3, NR1I2, NR1I3, SREBF1, SREBF2, PPARA, PPARG, RXRA, PPARGC1A, 

and PPARGC1B (Fig. 4). These URMs were consistently predicted as activated in the small intestine, liver, 

and kidney and either absent or predicted as inhibited in the heart. 

It is notable that while the inferences of activation directions of lipid signaling pathways across organs were 

largely ambiguous and sometimes inconsistent in our CPA (Fig. 3), the associated URMs display a 

consistent trend of predicted activation in the small intestine, liver, and kidney, and either predicted 

inhibition or absence in the heart (Fig. 4). Additionally, several URMs, particularly for the mTOR pathway, 

were predicted as inconsistent or even contradictory to the results of CPA or our experimental data. For 

example, while mTORC1 is predicted as significantly activated in the small intestine by URMA, this 

molecule is downregulated in our experimental data (see Discussion for details). Additionally, the mTOR 

protein that is involved in forming both of the main complexes of the mTOR signaling pathway (mTORC1 

and mTORC2) is predicted to be strongly inhibited in the small intestine and weakly inhibited in the kidney 
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and heart. Both of these URM predictions appear to contradict the positive activation of the mTOR signaling 

pathway inferred for the small intestine and heart as inferred from the CPA.  

In addition to URMs involved in key predicted canonical pathways, upstream regulatory analysis predicted 

several other notable URMs with strong activation or informative trends across organs. Insulin and INSR 

were both predicted as strongly activated regulators in the kidney, liver, and small intestine, suggesting a 

possible role of insulin receptor signaling in facilitating this regenerative response, which is also consistent 

with activation of the mTOR pathway. Myc, a regulator within the ERK5 and p38 MAPK signaling 

pathways, was predicted as activated in all four organs, although strongest in the liver. Several regulators 

within the MAPK signaling pathway were also predicted in URMA, with ATF4 and ATF6 predicted as 

activated in the kidney, liver, and small intestine, and ERK predicted as activated in the kidney and inhibited 

in the heart and liver. These URMs suggest the involvement of the ERK and MAPK signaling pathways in 

this response, even though CPA predictions for these two pathways were not substantially strong (Figs. 3 

& 4). 

Detailed dissection of NRF2 and mTOR pathway responses to feeding 

We were particularly interested in our findings that the NRF2 stress response and the mTOR growth 

pathways appear to be involved in post-feeding growth in multiple organs. To investigate these inferences 

further, we fully dissected evidence from our gene expression data for activation of these pathways by 

visualizing observed and inferred evidence for activation of these pathways in the context of IPA-generated 

pathway maps (Figs. 5-6; Supp. Figs. S3-S6). Specifically, we generated pathway predictions that integrate 

both observed shifts in gene expression from our data (from fasting - 1DPF), and estimates of 

activation/inhibition of molecules downstream of these observed genes that are inferred based on canonical 

signaling patterns in these pathways. Relevant to our power to detect pathway-wide signals of activity, we 

were able to associate over 70% of human genes within the mTOR and NRF2 pathways with python 
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orthologs that were expressed at some level in our dataset (Supp. Table S2); thus, we expect that our power 

and degree of resolution of pathway activation for these particular pathways is quite good.  

Pathways maps for mTOR responsiveness between fasted and 1DPF show both common and divergent 

patterns of pathway activation among organs (Figs. 5; Supp. Fig. S3). The heart (Fig. 5A) and kidney (Supp. 

Fig. S3) both show similar patterns of mTOR activation, including the activation of both the mTORC1 and 

mTORC2 complexes. Major differences in mTOR activation between these two organs includes strong 

evidence for downregulation of AMPK and the eIF4 complex in the heart, yet, no direct and/or clear 

evidence for up- or downregulation of these complexes in the kidney. In the small intestine, the mTOR 

pathway was inferred to be strongly downregulated, as is AKT; AMPK and the eIF4 complex showed 

mixed signs of activation (both positive and negative; Fig. 5B). It is also notable that different organs 

showed different levels of internal consistency in the integration of results with the known functionality 

within the mTOR pathway. For example, the heart and kidney have either zero or one pathway connection 

in which gene expression results contradict the direction of activation of the pathway (pink arrows in Figs. 

5A and Supp. Fig. S3) – for the kidney this disagreement occurs in the relationship between RSK and 

inhibition of TSC1 (Supp. Fig. S3). In the small intestine, eight such disagreements occur (Fig. 5B), and 

most of these occur at the steps immediately above or below activation of mTORC1 and mTORC2 

complexes. The liver was the only organ that contained no signal for the activation or repression of mTOR 

pathway (i.e., no differentially expressed genes in this pathway were observed). It should be noted that 

inferences for mTOR activation from CPA are at times contradictory to those identified via URMA (Figs. 

3-5; Supp. Fig. S3). While predictions based on the pathway maps indicate downregulation of mTOR in 

the small intestine, the z-score suggests slight upregulation of this pathway during regenerative growth in 

this tissue. URMA predicts inhibition of the mTOR molecule in the heart, kidney, and small intestine, while 

mTORC1 activation is predicted in both the kidney and small intestine, and undefined in the heart. Thus, 

while mTOR involvement in organ regenerative growth is clear across organs, the relationships between 

pathway scores, molecule-level inferences, and URMs are complex.  
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Pathway maps for the NRF2-mediated oxidative stress response between fasted and 1DPF indicate 

consistent activation of this pathway in the kidney, liver, and small intestine (Fig. 6; Supp. Figs. S4-S6). In 

addition to predicted responses inferred from CPA (Figs. 2 & 5; Supp. Figs. S4-S6), multiple observed 

genes in our dataset downstream of NRF2 are upregulated in these three organs, including thioredoxin 

(TXN), glutathione s-transferase mu 1 (GST), and peroxiredoxin 1 (PRDX1), providing confirmatory 

evidence of NRF2 activation. The response of this pathway in the heart is, however, less clear (see Supp. 

Fig. S4). In the heart, NRF2 responses were predicted based on the observed fold-change values of only 

four genes, and predictions suggest inhibition of this pathway in the heart (Supp. Fig. S4) although the 

direction (activation versus inhibition) was not statistically significant (Fig. 3). It is also notable that we 

observed differences in the inferred consistency of integrated gene expression results and 

activation/inhibition inferences across organs (Fig. 6; Supp. Figs. S4-S6): in the heart, only two 

inconsistencies are observed while the kidney, liver, and intestine have one, two, or four inconsistencies, 

respectively. Inferences from URMA for the activation of NRF2 are highly consistent with activation 

inferences from CPA, including significant URM activation predicted for NFE2L1 in the liver and intestine 

and significant activation of NFE2L2 in kidney, liver, and small intestine (Fig. 4). In contrast, upstream 

regulators of this pathway were not predicted to be significantly activated or inhibited in the heart, 

inconsistent with the predictions given in the pathway figure (Figs. 4; Supp. Fig. S4). 

Expression response between 1 and 4 DPF 

In comparison to expression between fasting and 1DPF, the IPA analyses conducted on genes differentially 

expressed between 1DPF and 4DPF across organs predicted a substantially smaller number of pathways as 

significantly enriched, the majority of which were predicted with ambiguous directions of activation. This 

is likely due to the substantially smaller number of significantly differentially expressed genes identified in 

all organs between 1DPF and 4DPF, which is expected because 4DPF represents a sampling time 

intermediate between the peaking of organ growth and the regression of these phenotypes. This time 

interval (1DPF - 4DPF) aimed to capture the early stages of organs shifting expression towards organ 
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atrophy and towards a reversion to the fasted state, and we expected to observe partial reversals in pathways 

predicted to be active between fasted and 1DPF, and perhaps additional new pathways involved in apoptosis 

and atrophy. However, we found few consistent or clear patterns of interpretable pathway involvement 

between the 1DPF and 4DPF time points (Supp. Fig. S7). Pathways predicted for this time interval include 

various pathways related to biosynthesis and stress response, such as unfolded protein response. We also 

inferred inconsistent involvement of these pathways across organs, and none were predicted with a direction 

of activation (Supp.  Fig. S7). Only one pathway, mitotic roles of polo-like kinase, was predicted as 

significant and with a direction of activation between 1DPF and 4DPF, and was predicted only in the small 

intestine. While we did infer a single lipid signaling pathway that also was indicated by CPA predictions 

from the fasted to 1DPF interval (LPS/IL-1 mediated inhibition of RXR function), the lack of predicted 

directions of activation and unclear involvement across organs prevents informative interpretation of the 

activity of this pathway between 1DPF and 4DPF. Collectively, these results suggest that the 4DPF time 

point may not be sufficient to capture shifts in gene expression that elucidate the mechanisms involved in 

the early stages of regression of organ phenotypes. 

Discussion 

A detailed understanding of the molecular mechanisms capable of driving regenerative growth in 

vertebrates may provide important insights into the treatment of diverse human diseases. Because 

traditional vertebrate model systems offer limited insight into natural organ regenerative processes, non-

traditional model systems, including snakes in general and Burmese pythons in particular, hold great 

potential for providing unique insights into vertebrate regenerative organ growth processes. In this study 

we have found that multiple integrated growth pathways, in addition to multiple stress-response pathways, 

appear to underlie the coordinated organ regenerative process in Burmese pythons upon feeding. Despite 

distinct patterns of gene expression associated with growth for each organ, pathway and upstream 

regulatory molecule analyses reveal substantial similarities in pathways associated with post-feeding, 
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extreme-growth responses across multiple organs. Specifically, we found evidence for a consistent 

interactive role of three major types of pathways underlying growth responses in python organs following 

feeding, including the related growth pathways mTOR and PI3K/AKT, lipid-signaling pathways such as 

PPAR and LXR/RXR, and stress-response/cell-protective pathways including NRF2.   

mTOR and other growth pathways underlying organ growth 

Across the four organs examined, we found evidence for the involvement of the mTOR signaling pathway 

as a key integrator of growth signals underlying post-feeding regenerative organ growth. This pathway 

integrates processes for the use of energy and nutrients to regulate growth and homeostasis (Laplante and 

Sabatini, 2012). mTOR interacts with multiple other pathways, including PI3K/AKT, several lipid 

metabolism and signaling pathways (Laplante and Sabatini, 2009, 2012), and the NRF2-mediated oxidative 

stress response (Lee et al., 2012; Okouchi et al., 2006) – all of which are also active in multiple organs 

during growth (Figs. 3-5). mTOR complex 1 (mTORC1) is the most well-characterized of the two mTOR 

complexes and integrates signaling from growth factors, energy status, oxygen, and amino acids to promote 

cell growth when activated (Laplante and Sabatini, 2009). The TSC1/2 complex transmits upstream signals 

from growth factor and insulin signaling to modulate the activity of mTORC1 and its interaction with other 

pathways including PI3K/AKT (Laplante and Sabatini, 2009, 2012; LoPiccolo et al., 2008). The effector 

kinases of these external pathways inactivate the TSC complex through phosphorylation, thus, indirectly 

activating mTORC1 (Laplante and Sabatini, 2009, 2012). AKT can also directly activate mTORC1 through 

phosphorylation of an mTORC1 inhibitor. In a low energy state, AMPK inhibits mTORC1 by 

phosphorylating regulatory associated protein of mTORC1 (RAPTOR) (Laplante and Sabatini, 2009, 

2012). mTORC2 signaling is less well-understood, but is known to respond to growth factors through PI3K 

signaling (Laplante and Sabatini, 2012).  

CPA of gene expression in the first 24 hours after feeding indicate that involvement of the mTOR signaling 

pathway is significant in the small intestine (predicted activation), but insignificant in both the heart 
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(predicted activation) and kidney (activation state undetermined). The liver lacked evidence of involvement 

of the mTOR signaling pathway from CPA (Figs. 3-4). In URM analysis, the mTOR molecule itself was 

predicted to be downregulated in the heart, liver, and intestine with no presence in the kidney, which 

contrasts our CPA results (Figs. 3-4). However, URMA-predicted activation of the mTORC1 complex is 

supported in both the kidney and small intestine with undefined involvement in the heart, and the liver 

shows no signal for mTORC1 (Fig. 4). Interestingly, CPA indicate mTORC1 is downregulated in the small 

intestine at 0-1DPF (Fig. 6), yet this downregulated state of mTORC1 is based only on the downregulation 

of a single gene, G protein subunit beta 1 like (GNB1L), which IPA identifies as a subunit of the mTORC1 

complex. In contrast, AMPK signaling is predicted to be downregulated in the kidney and small intestine, 

indicative of elevated ATP levels and active mTORC1 (Laplante and Sabatini, 2009, 2012) (Fig.3). It is 

notable that nearly all genes in the mTOR pathway were associated with python orthologs that were 

observed as expressed across our dataset (see Supp. Table S2), which suggests that our inferences of non-

responsive genes within the mTOR pathway are biologically meaningful (e.g., true negatives), rather than 

representative of a lack of data. Thus, mTOR signaling in python tissues during regenerative organ growth 

may include non-canonical features compared to typical models of mTOR signaling that account for the 

partial responsiveness of genes and targets inferred from our CPA.  

Our results identify mTOR as a central regulator and integrator of a number of diverse growth signals that 

drive post-feeding regenerative organ growth in Burmese pythons. Insulin signaling represents a key-

regulating factor of the mTOR pathway (Laplante and Sabatini, 2009), and we found multiple lines of 

evidence indicating roles of insulin signaling in post-feeding growth responses. Specifically, 0-1DPF 

URMA inferred the activation of INSR and insulin, and the inhibition of INSIG1 and INSIG2, in the kidney, 

small intestine, and liver, and the inverse of these activation patterns in the heart. INSIG1 and INSIG2 are 

negative regulators of SCAP (Espenshade, 2006; Yang et al., 2002), which in turn regulates SREBP 

activity. Consistent with inferences of inhibition of INSIG1-2, URMA predicted the upregulation of 

SREBF1 and SREBF2, which provide evidence of an increase in sterol-regulatory element activity 
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coincident with organ growth (Espenshade, 2006; Yang et al., 2002) (Fig. 4). In addition to the interaction 

of insulin signaling and mTOR activity, we also found multiple lines of evidence for PI3K/AKT signaling 

that would interact with mTOR. Our URMA indicates significant downregulation of PTEN, an upstream 

regulator of the PI3K/AKT pathway, across all four organs, and CPA predicts activation of the PI3K/AKT 

signaling pathway in the small intestine and liver.  

Evidence from previous studies also support the role of mTOR, PI3K/AKT, and AMPK signaling 

mechanisms in python post-feeding growth, at least in the heart. Western blots of python cardiac tissue 

post-feeding support the inference of early activation of mTOR and PI3K/AKT pathways by demonstrating 

that phosphorylated AKT and MTOR proteins increase significantly in abundance between 12 and 24 hours 

post-feeding (Riquelme et al., 2011). These western blots also demonstrated phosphorylated AMPK protein 

was upregulated within 24 hours post-feeding, but lagging temporally behind the peak in phosphorylated 

MTOR and AKT (Riquelme et al., 2011)., consistent with the antagonistic relationship between AMPK and 

MTOR/AKT (Laplante and Sabatini, 2012). These independent lines of evidence for the roles of mTOR, 

PI3K/AKT, and AMPK signaling in python post-feeding organ growth confirm our inferences of the central 

roles of these pathways, and support the power of pathway and URM inferences for inferring signaling 

mechanisms.  

MAPK and related pathways also appear to be prominently involved in organ growth responses post-

feeding, which is sensible given their known interactions with multiple growth pathways, including 

PI3K/AKT signaling and mTOR (Aksamitiene et al., 2012; Pappalardo et al., 2016; Wong et al., 2016). 

Our data reveal the involvement of MAPK signaling most clearly in the heart, with significant enrichment 

and predicted inhibition of p38 MAPK signaling and significant activation of ERK5 signaling (Fig. 3). 

ERK5 is a member of the Mitogen-activated protein kinases (MAPKs) that is crucial to cell proliferation 

and activated in response to growth factors and oxidative stress (Gomez et al., 2016; Kato et al., 2000). 

MYC is a downstream transcription factor regulated by the MAPK pathway and ERK5 specifically (English 
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et al., 1998; Wang and Tournier, 2006), and an essential regulator of development and cell proliferation 

(Davis et al., 1993; Mateyak et al., 1997; Shao et al., 2013). Our URMA predict significant activation of 

MYC in all four organs, indicating a broad role of active MAPK signaling in post-feeding organ growth in 

the python.   

NRF2 – protective function and interaction with growth pathways 

One of the strongest and most consistent signals in the canonical pathway and upstream regulatory molecule 

analyses was the involvement of the NRF2-mediated oxidative stress response pathway. Commonly 

associated with anti-aging and longevity (Lewis et al., 2010, 2015; Sykiotis and Bohmann, 2008), injury 

repair, and mitigation of inflammation (Reddy et al., 2009), evidence for the central involvement of the 

NRF2-mediated oxidative stress response pathway in the small intestine, liver, and kidney begs the question 

of whether there is an important yet largely unappreciated role for stress-response signaling pathways in 

growth responses, and regenerative organ growth in particular.  

The NRF2 pathway was significantly upregulated in small intestine, kidney, and liver within the first day 

following feeding (Fig. 3), and the NRF2 transcription factor (NFE2L2) was one of the most significant 

and highest in magnitude URMs predicted in these three organs (p-values < 1.55e-10, z-scores > 3.0) (Fig. 

4). The 24 hour period following feeding in Burmese pythons involves unparalleled rates and magnitudes 

of organ growth, and also includes massive upregulation of metabolism – up to 44-fold increases in aerobic 

metabolism, which is among the highest fluctuation known for any vertebrate (Secor and Diamond, 1998)=. 

It is, therefore, sensible that activation of NRF2 is related to these major shifts in oxidative metabolism, 

and associated generation of reactive oxygen species (Secor, 2008; Secor and Diamond, 1995, 1997; Secor 

and Ott, 2007). An open question, however, is what broader role the activation of NRF2 may play in 

facilitating the extraordinary growth responses associated with feeding in pythons. For example, post-fed 

Burmese python blood plasma has been shown to convey resistance to apoptosis to mammalian cells, even 

with exposure to high fatty acid concentrations that would otherwise cause cell death (Riquelme et al., 



 

29 

2011; Secor et al., 2014); such cell-protective qualities may be related to signals that activate NRF2 and/or 

other stress-response pathways. Interestingly, in addition to cell-protective roles of NRF2, this pathway 

also contains multiple points of integration with various growth pathways, including those activated in 

python organ regenerative growth.  

The NRF2-mediated oxidative stress response pathway interacts with multiple pathways predicted in our 

canonical pathway analysis (Beyer and Werner, 2008; Braun et al., 2004; Hayes and Ashford, 2012; Kannan 

et al., 2013; Kensler et al., 2007; Shibata et al., 2010) (Figs. 3-4). The PI3K/AKT signaling pathway, 

predicted to be upregulated upon feeding in both the liver and small intestine, is essential for regulating the 

antioxidant functions of NRF2, and studies have shown that inhibition of this signaling pathway leads to 

attenuation of NRF2 activities (Papaiahgari et al., 2006; Wang et al., 2008). This interaction is evident when 

examining the role of NRF2 in the proliferation of cancer cells. Studies have shown that NRF2 is able to 

redirect glucose and glutamine into anabolic pathways through activation of PI3K/AKT signaling 

(Mitsuishi et al., 2012). The activated PI3K/AKT pathway leads to greater accumulation of NRF2 in the 

nucleus, which allows NRF2 to enhance metabolic activities as well as promote cell proliferation and 

cytoprotection (Mitsuishi et al., 2012). The PI3K/AKT signaling pathway activates mTOR activity in 

response to growth factors, and this and previous studies (Riquelme et al., 2011) have shown that 

PI3K/AKT and mTOR signaling are key growth pathways underlying organ regenerative growth in the 

Burmese python. Therefore, there appears to be strong and coordinated links between growth signaling (via 

PI3k/AKT and mTOR) and stress response signaling via NRF2 underlying organ growth in pythons 

following feeding. Like mTOR, a large majority of genes in the NRF2 pathway were associated with python 

orthologs and were observed as expressed across our dataset (Supp. Table S2), which indicates that our 

inferences of non-responsive genes within the NRF2 pathway are likely true negatives, rather than artifacts 

due to a lack of ortholog identification in the python. Accordingly, predicted but unobserved expression 

responses in the NRF2 pathway in pythons suggest that the absence of expected responses may represent 

novel or non-canonical aspects of python biology or of the organ regeneration response in pythons. 



 

30 

In addition to NRF2-mediated oxidative stress response, evidence for the involvement of other stress 

response signaling mechanisms in python post-feeding organ growth was also observed. EIF2 signaling, 

important in translational control and responsiveness to conditions of environmental stress (Boyce et al., 

2005; Wek et al., 2006), is strongly downregulated in the intestine, yet, absent in the other three organs 

(Fig. 3). Acute phase response signaling, which is involved in restoring homeostasis following 

inflammation or injury (Moshage, 1997), is predicted to be strongly downregulated in the liver and 

moderately upregulated (but non-significant in the heart; Fig. 3). The precise roles of these additional stress 

response mechanisms in regenerative organ growth in the python remains an open question, although there 

is strong and consistent signal for the involvement of multiple stress response pathways overall in python 

post-feeding organ growth. 

Role of lipid signaling in driving growth 

Previous studies have shown evidence that molecules responsible for triggering python post-feeding organ 

growth circulate in the blood of the Burmese python (Riquelme et al., 2011; Secor et al., 2001). Riquelme 

et al. demonstrated that post-feeding python plasma was capable of inducing cardiomyocyte growth in 

pythons and mice, and that fasted python plasma supplemented with three particular fatty acids successfully 

stimulated cardiomyocyte growth in mice (Riquelme et al., 2011). Because these fatty acids only facilitated 

a growth response in the presence of fasted Burmese python serum, it is likely that python plasma contains 

additional factors required for successful post-feeding regenerative growth and that fatty acids are only 

partially responsible for stimulating growth responses. In the heart, we found significant enrichment and 

predicted activation for the LXR/RXR activation pathway as well as predicted activation of this pathway 

(although insignificant enrichment with P > 0.01) in the small intestine (Fig. 3). LXR is a potent activator 

of the SREBP-1c gene (Raghow et al., 2008), and our data predict clear and significant activation of both 

SREBF1 and SREBF2 upon feeding in the kidney, liver, and small intestine with significant down-

regulation and undefined direction for SREBF1 and SREBF2 in the heart, respectively (Fig. 4). When 

activated, these proteins directly enhance genes important for the uptake and synthesis of various lipids. 
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SCAP, important for the activation of these SREB molecules, is also predicted to be strongly activated in 

the kidney, liver, and small intestine (Fig. 4) (Espenshade, 2006; Matsuda et al., 2001; Yang et al., 2002). 

We also examined PPAR signaling as a potential pathway for lipid signaling during this regenerative 

growth, given the central role of PPAR in mediating fatty acid signaling as well as its effects on gene 

expression (Schoonjans et al., 1996). PPAR has also been identified as an important regulator of cell 

survival during wound repair and regeneration (Gurtner et al., 2008). Although CPA did not detect 

significant PPAR signaling activation, URMA significantly predicted PPARA, PPARG, PPARGC1A, and 

PPARGC1b involvement across organs, typically inhibited in the heart and activated in the other three 

organs in 0-1DPF comparisons (Fig. 4). Given the variations in pathway and URM inferences between the 

heart and the other three organs, the question of whether fatty acids also play a similar stimulatory role in 

regenerative growth in the small intestine, liver, and kidney as they do in the heart remains. Our results do, 

however, argue for a poorly understood yet central role of lipid-signaling in these growth responses, and 

suggest that the unusually strong bioactivity of fatty acids may elicit growth through conserved canonical 

pathway signaling mechanisms. 

Early phases of organ regression following digestion 

Physiological studies have shown that python post-feeding organ growth peaks between 1DPF and 3DPF 

(Andrew et al., 2015; Secor, 2008; Secor and Diamond, 1995, 1998; Secor and Ott, 2007) and that 

phenotypes begin to decline by 4DPF (Cox and Secor, 2008; Secor, 2008; Secor and Diamond, 1995, 1998). 

Thus, as post-feeding growth phenotypes reverse from 1DPF to 4DPF, we expected to observe shifts 

towards the fasted state, such as the reversal or inhibition of growth-associated pathways. Relative to 

comparisons between fasting and 1DPF, comparisons between 1DPF and 4DPF yielded nearly an order of 

magnitude fewer significantly differentially expressed genes (Table 1). Accordingly, expression heatmaps 

(Fig. 2) and expression profile summaries (Supp. Fig. S1) show that expression profiles of many genes at 

4DPF tend to remain elevated (i.e., similar to levels at 1DPF), or exist at intermediate levels (between fasted 
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and 1DPF levels of expression). We did not observe any particularly informative trends in canonical 

pathways and upstream regulator molecule predictions (Supp. Fig. S7) associated with shifts in gene 

expression from 1DPF to 4DPF, and this result is not surprising given the relatively small number of genes 

that significantly change between these time points. Among the predicted pathways were several that are 

related to stress response and biosynthesis (Supp. Fig. S7), although a lack of predicted direction of 

activation prevents detailed interpretation of the involvement of nearly all pathways predicted between 

1DPF and 4DPF. The only pathway predicted as significant and with a direction of activation between 

1DPF and 4DPF was the mitotic roles of polo-like kinase pathway, which was activated in the small 

intestine (Supp. Fig. S7). It therefore remains an open question whether atrophy and other processes 

involved in reverting to the fasting state are controlled actively (via a new signal that stimulates the 

apoptotic and atrophy processes), passively (the signal(s) that stimulates the initial cascade of responses 

fades or stops), or some combination of the two mechanisms. Collectively, our results suggest that 

comparisons between the 1DPF to 4DPF time points may not be sufficient to predict the physiological 

mechanisms involved in phenotypic regression with adequate power. Further experiments, possibly with 

multiple later-stage time point sampling, may be required to address outstanding questions about how these 

growth phenotypes are reversed. 

Comparisons of python organ regeneration to other regenerative model systems 

Organ regeneration in snakes represents an extreme and unique phenotype among vertebrates. However, 

other examples of regenerative growth do exist among vertebrates, such as limb regeneration in salamanders 

(Brockes and Kumar, 2002), fin regeneration in fish (Poss et al., 2003), and regenerative heart growth in 

zebrafish (Jopling et al., 2010; Kikuchi, 2014) and prenatal mammals (Porrello et al., 2011). This raises the 

question of whether or not these regenerative responses share common mechanisms, and as we continue to 

better understand the mechanisms driving regenerative growth in snakes, such key comparisons can begin 

to be made. While none of these other vertebrate regenerative growth systems directly parallel regenerative 

organ growth in snakes, regeneration of heart tissue in zebrafish is the most analogous comparison, as it 
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occurs in adult organisms and represents regenerative growth of organ tissue specifically. Following injury 

or amputation of cardiac tissue, zebrafish hearts grow primarily by dedifferentiation and subsequent 

proliferation of cardiomyocytes (Jopling et al., 2010). Conversely, python hearts grow only by hypertrophy 

(Riquelme et al., 2011; Secor and Diamond, 1998), and therefore may be driven by largely different 

regenerative mechanisms. The python small intestine, liver, and kidney, however, do grow via by 

hypertrophy and hyperplasia (Andrew et al., 2015; Helmstetter et al., 2009; Riquelme et al., 2011; Secor 

and Diamond, 1998); while they represent different organ systems than the zebrafish heart, they may be 

driven by similar pathways that regulate cell proliferation in general. Indeed, there are parallels between 

zebrafish and python responses in the shared involvement of p38 MAPK signaling, a negative regulator of 

cardiomyocyte proliferation in zebrafish (Kikuchi, 2014) that we infer to be inhibited in the Burmese python 

heart between fasting and 1DPF (Fig. 3). Additionally the mitotic roles of polo-like kinase pathway, which 

was the only pathway we predicted as significant and with a direction of activation between 1DPF and 

4DPF (activated in the small intestine; Supp. Fig. S7) is also involved in zebrafish regenerative heart 

growth. Cell-cycle regulation by polo-like kinase 1 is an important component of cardiomyocyte 

proliferation in zebrafish (Jopling et al., 2010), and therefore may be playing a similar role in the python 

small intestine, although it is notable that it was not predicted as significant between fasting and 1DPF, 

when growth is presumably greatest in this organ (Andrew et al., 2015; Secor and Diamond, 1998). Other 

pathways involved in zebrafish regenerative growth, such as IGF signaling, FGF signaling, HIPPO 

signaling, and TGF-Beta signaling (Kikuchi, 2014), were not inferred as significant based on canonical 

pathway analyses of either post-feeding time interval in our study of the Burmese python. TGFB1 and IGF1 

growth factors were, however, inferred in our URMA analysis of the fasting to 1DPF interval (Supp. Fig. 

S2), suggesting that there may still be some involvement of these growth factors in the regulation of 

regenerative growth in the Burmese python. A key conclusion based on our study is that, to our knowledge, 

mTOR signaling and NRF2-mediated oxidative stress response pathways have not been implicated in 

zebrafish regenerative growth. Thus, regenerative organ growth in the Burmese python appears to remain 
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quite unique among vertebrates, both in the nature of the phenotype, and now in the molecular mechanisms 

underlying growth. 

Conclusions 

Multiple coordinated growth pathways appear to play an important role in facilitating regenerative organ 

growth in multiple tissues of the Burmese python, and the overlap of pathways across organs suggests 

common signaling molecules may drive this response – consistent with evidence that common factors 

circulating in the plasma of pythons are capable of eliciting growth (Riquelme et al., 2011; Secor et al., 

2001). Our analyses provide strong evidence for the involvement of particular growth and stress response 

pathways in post-feeding organ growth responses in multiple organs, although it is notable that our 

inferences of the activation versus inhibition of mechanisms was not always consistent across analyses 

(e.g., CPA versus URMA). As discussed above, such conflicting inferences could be due to the fundamental 

differences in CPA and URMA (e.g., Fig. 1), in that they are integrating very different sources of evidence, 

coupled with the possibility that the continuous nature of this response may survey various mechanisms 

during an inflection point of activity that can confound inferences of directionality. However, contradictory 

inferences of mechanistic activation may also suggest that some of these core signaling pathways function 

differentially in snakes, or that some molecules or pathways are signaling via non-canonical mechanisms. 

Experiments have demonstrated that exposure to Burmese python 2DPF blood serum elicits significant 

growth of rat cardiomyocytes (Riquelme et al., 2011), as well as increases in size and insulin production of 

human pancreatic beta cells (Secor et al., 2014). These findings suggest that even if regenerative organ 

growth in snakes is achieved in part by non-canonical pathway or regulator activity, core aspects of 

signaling underlying organ growth in pythons is conserved across vertebrates. Among the most intriguing 

results of this study is the consistent predicted activation of the NRF2-mediated oxidative stress response 

pathway, and NRF2-related signaling molecules, during regenerative organ growth. The integration of 

NRF2 signaling with other growth pathways, including mTOR, provide an exciting and novel mechanistic 
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hypothesis for how NRF2 and other stress-response pathways may play an important yet largely 

unappreciated role in regenerative growth responses in vertebrates. 

Abbreviations 

DPF: days post-feeding; IPA: Ingenuity Pathway Analysis; CPA: Canonical pathway analysis; URMA: 

Upstream regulatory analysis 

Acknowledgments 

We thank J. Castoe, R. Wostl, and D. Polanco for assistance with laboratory aspects of this work. Support 

was provided from startup funds from the University of Texas at Arlington to TAC, and grants from the 

University of Texas at Arlington Phi Sigma Society to ALA. Additional funding was provided by the 

National Science Foundation (IOB-0466139) to SMS. 

Data Availability 

New sequencing data are archived on the NCBI Short Read Archive (NCBI: SRP051827). Previously 

generated data are accessioned at NCBI: SRP051827. 

 

  



 

36 

Figures 

 

 

Figure 1. Conceptual overview of differences between Canonical Pathway Analysis (CPA) and 

Upstream Regulatory Molecule Analysis (URMA). Pairwise analyses on experimental gene expression 

data (A) identify significantly upregulated and downregulated genes (B). Significantly differentially 

expressed genes are then analyzed in two distinct IPA analyses (CPA and URMA) (C) Canonical Pathway 

Analysis predicts pathway activation based on overlap of gene expression data with molecules within the 

pathway. (D) Upstream Regulatory Molecule Analysis predicts activation of specific regulatory molecules 

based on downstream molecules in our gene expression dataset.  
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Figure 2. Summary of significantly differentially expressed genes for all four organs identified via 

regression analysis. (A) Venn diagram depicting the numbers of genes significantly differentially 

expressed across time points. Darker colors indicate a large number of genes and lighter colors indicate a 

smaller number of genes. (B) Heatmaps depicting all significantly differentially expressed genes across all 

time points in each organ. 722 genes were significantly differentially expressed in the heart. There were 

750 genes significantly differentially expressed in the kidney. 711 genes were significantly differentially 

expressed in the liver and 1,284 genes showed significant differential expression in the small intestine. 
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Figure 3. Canonical pathways predicted to be activated or inhibited from gene expression data. Each 

pathway shown is significantly enriched for our genes with a Fisher’s Exact test p-value less than 0.01 

(depicted with an asterisk). Pathways were shown only if they met our criteria for significance and had a 

predicted activation state in at least one organ. Z-scores of 0.000 indicate pathway predictions that lack a 

bias in the direction of gene regulation observed in our dataset. PPAR signaling (P<0.05) was also included. 
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Figure 4. Predicted upstream regulators from 

IPA analysis of gene expression changes from 

fasted to 1DPF. (A) Venn diagram of all upstream 

regulatory molecules analyzed. (B) Heatmap of 

predicted activation z-scores for selected classes of 

upstream regulatory molecules. Green indicates 

predicted activation, blue indicates predicted 

inhibition, white indicates the regulator is not 

predicted to function in that organ, and grey indicates 

that the upstream regulator is predicted to have 

significant involvement but the activation state 

cannot be determined based on the gene expression 

data. Regulators shown in this heatmap were filtered 

by three conditions: 1) were present in at least three 

of the four organs, 2) are significantly predicted (p-

value < 0.05), and 3) have activation z-scores greater 

than |1.5| in at least one organ. Biological drug, 

chemical, and microRNA categories were excluded 

from URM analyses. 
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Figure 5. Combined gene expression and predicted 

activation information for the mTOR pathway in the 

heart and small intestine. (A) Gene expression and 

predicted activity for the mTOR pathway in the heart. (B) 

Gene expression and predicted activity for the mTOR 

pathway in the small intestine. Differentially expressed 

genes identified in our RNAseq data set are highlighted 

in red (upregulated) and blue (downregulated) while 

predicted activation states are highlighted in orange 

(activation) and green (inhibition). (C) CPA and URMA 

results for pathways and upstream regulatory molecules 

involved in mTOR signaling and other relevant growth 

pathways. 
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Figure 6. IPA generated pathway prediction for the NRF2-mediated oxidative stress response in the 

small intestine. Predicted activation state of the pathway was estimated using genes identified as 

significantly differentially expressed from our RNAseq data set.  
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Table 1. Numbers of differentially expressed genes between pre- and post-feeding time points for the 

four organs studied. For each comparison, the numbers of up and downregulated genes were inferred 

using pairwise analysis with a Benjamini-Hochberg corrected p-value <0.05. 

 Fasted vs. 1DPF 1DPF vs. 4DPF Fasted vs. 4DPF 

 Up Down Up Down Up Down 
Heart 208 228 36 40 5 3 

Kidney 244 100 5 3 125 22 
Liver 335 126 29 12 295 76 

Small Intestine 1,271 1,042 268 146 547 345 
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Supplementary Methods 

Feeding Experiments 

The following information pertains to snakes that were sampled and sequenced for this study (see also 

Table S2.1, Andrew et al., 2015, and Castoe et al., 2013 for details regarding previously sequenced data 

incorporated in this study). Burmese pythons (Python molurus bivittatus) were purchased within 1-2 months 

of hatching from commercial vendors. All snakes included in this study originated from captive colonies, 

were phenotypically normal in coloration (i.e., no albino animals), and ranged in age from 9 months to 6 

years (mean = 1.9 years) and in mass from 406 to 5,776 grams (mean = 1,036 g). Snakes were housed 

individually in 12L plastic bins that slide into customized racks in the Central Animal Care Facility at the 

University of Alabama. Each bin featured a floor substrate of newspaper and contained a water bowl. All 

pythons were maintained on a light/dark cycle of 14 hours of light followed by 10 hours of dark. Room 

temperature was maintained at 26- 28°C and was constantly monitored by the Central Animal Care Facility. 

Prior to experimentation, pythons were fed weekly a meal of 1-2 rodents (adult mice or small rats) and 

water was provided ad libitum. Pythons were monitored daily by the Animal Care staff and personnel of 

the laboratory of Dr. Stephen Secor prior to and during experimentation. There were no interventions in 

snake care prior to or during experimentation. All experimentation and dissection was performed by Secor 

lab personnel. No special attention was given to selecting animals randomly from a research colony, 

however there was an attempt for matching in sexes (7 males: 6 females), so that there would be no bias 

due to sex in any treatment or the experiment overall. At the time of sampling, all animals were in good 

health and had not been subjected to any previous procedures or drug administration. Fasted snakes had 

been fasted for a minimum of 30 days prior to sampling. Snakes of the 1 and 4 days post-feeding treatments 

had been fasted for 30 days and then fed a rodent meal equal in mass to 25% of the snake body mass, and 

sampled 1 and 4 days after feeding, respectively. The mean mass of snakes in each treatment were: fasted 

(1,504 g), 1DPF (892 g), and 4DPF (593 g). At the time of sampling, snakes were sacrificed by humanely 

severing the spinal cord immediately behind the head; this provided the most efficient and rapid means to 
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obtain organ samples for storage and study without compromising physiological responses of interest. 

Organ tissues were immediately extracted, snap frozen in liquid nitrogen, and stored at -80°C. Feeding 

experiments and subsequent sampling of snakes were completed over a span of several years, with fasted 

snakes sampled in 2005 and 2009, and 1 and 4DPF snakes sampled in 2005 and 2006. There was no 

particular order to the sampling of tissues from animals. No adverse events occurred during animal care or 

experimentation, and thus no modifications to the experimental protocol were undertaken as a result.  

The Burmese python has become an outstanding animal model (compared to traditional mammal model 

systems) to explore the cellular and molecular mechanisms underlying regenerative organ growth and 

physiology, and therefore serves as an excellent replacement for exploring such systems in typical 

mammalian models. We made efforts to minimize the number of animals used overall in this study, as 

evident in the relatively small sample sizes for each treatment (3-6 individuals). Additionally, dissection of 

snakes included the removal and storage of all organs and other tissues (muscle, blood, etc.) so that 

subsequent studies can utilize these tissues to study this regenerative phenotype in other organ systems 

without the need for the sacrifice of additional animals. 
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Supplementary Figures 

 

 

Figure S1. STEM analysis of all genes differentially expressed across all time points (fasted – 4DPF). 

All significant expression profiles are shown with P-value and number of genes following that profile. 
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Figure S2. Heat maps depicting activation z-scores for classes of upstream regulator molecules 

significant between fasted and 1DPF. Green indicates predicted activation, blue indicates predicted 

inhibition, white indicates that the regulator is not predicted to function in that organ, and grey indicates 

that the upstream regulator is predicted to have significant involvement but the activation state cannot be 

determined based on the gene expression data. Regulators shown on the heat maps were filtered by 

activation z-scores greater than |1.5| in at least one tissue.  

  



 

47 

 

Figure S3. Combined gene expression and predicted activation information for the mTOR pathway 

in the kidney. Differentially expressed genes identified in our RNA-seq data are highlighted in red 

(upregulated) and blue (downregulated) while predicted activation states are highlighted in orange 

(activation) and green (inhibition).  
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Figure S4. Pathway prediction for the NRF2-mediated oxidative stress response in the heart. 

Predicted activation state of the pathway was estimated using genes identified as significantly differentially 

expressed form our RNA-seq data set.  

  



 

49 

 

Figure S5. Pathway prediction for the NRF2-mediated oxidative stress response in the kidney. 

Predicted activation state of the pathway was estimated using genes identified as significantly differentially 

expressed from our RNA-seq data set.  
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Figure S6. Pathway prediction for the NRF2-mediated oxidative stress response in the liver. Predicted 

activation state of the pathway was estimated using genes identified as significantly differentially expressed 

from our RNA-seq data set.  
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Figure S7. Pathway analysis of all genes significantly differentially expressed from 1DPF to 4DPF in 

the four organs. Bar graph showing significant canonical pathways (Fisher’s Exact test P<0.01) enriched 

for genes differentially expressed at these time points. Pathways were filtered to include those with at least 

one significant p-value in one of the four organs. Bars are colored based on the predicted activation Z-score 

for that pathway.  
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Supplementary Tables 

Table S1. Sequencing information for all included python samples. PE76 and PE120 stand for the 

sequence read type (e.g., Paired-end 76bp). The year provided represents the year in which the sample was 

sequenced.  

Tissue  
Timepoint 

Animal 
ID Instrument cDNA prep kit Year Sequence 

type 
Library 
Name 

Heart fasted AI6_1 GAIIx Illumina Truseq 2010 PE76 TC01 
Heart fasted AI6_2 GAIIx Illumina Truseq 2011 PE120 TC05 
Heart fasted AI11 GAIIx Illumina Truseq 2010 PE76 TC01 
Heart fasted AI8 HiSeq NEB Next 2013 SE50 pRNA-A 
Heart fasted U25 HiSeq NEB Next 2013 SE50 pRNA-B 
Heart 1DPF Z12 GAIIx Illumina Truseq 2010 PE76 TC01 
Heart 1DPF Z14_1 GAIIx Illumina Truseq 2010 PE76 TC01 
Heart 1DPF Z14_2 GAIIx Illumina Truseq 2011 PE120 TC05 
Heart 1DPF Z18 GAIIx Illumina Truseq 2010 PE76 TC01 
Heart 4DPF Y5_1 GAIIx Illumina Truseq 2010 PE76 TC01 
Heart 4DPF Y5_2 GAIIx Illumina Truseq 2011 PE120 TC05 
Heart 4DPF Y18 GAIIx Illumina Truseq 2010 PE76 TC01 
Heart 4DPF Y23 GAIIx Illumina Truseq 2010 PE76 TC01 

Kidney fasted AI8 HiSeq NEB Next 2013 SE50 pRNA-A 
Kidney fasted U25 HiSeq NEB Next 2013 SE50 pRNA-B 
Kidney fasted AI6_1 HiSeq Illumina Truseq 2011 SE50 s1 
Kidney fasted AI6_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Kidney fasted AI11_1 HiSeq Illumina Truseq 2011 SE50 s1 
Kidney fasted AI11_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Kidney fasted AJ6_1 HiSeq Illumina Truseq 2011 SE50 s1 
Kidney fasted AJ6_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Kidney fasted AJ6_3 GAIIx Illumina Truseq 2011 PE120 TC05 
Kidney 1DPF Z12_1 HiSeq Illumina Truseq 2011 SE50 s1 
Kidney 1DPF Z12_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Kidney 1DPF Z14_1 HiSeq Illumina Truseq 2011 SE50 s1 
Kidney 1DPF Z14_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Kidney 1DPF Z18_1 HiSeq Illumina Truseq 2011 SE50 s1 
Kidney 1DPF Z18_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Kidney 1DPF Z18_3 GAIIx Illumina Truseq 2011 PE120 TC05 
Kidney 1DPF V43 HiSeq NEB Next 2013 SE50 pRNA-B 
Kidney 1DPF Z14_3 HiSeq NEB Next 2013 SE50 pRNA-B 
Kidney 4DPF Y18_1 HiSeq NEB Next 2013 SE50 pRNA-B 
Kidney 4DPF Y24 HiSeq NEB Next 2013 SE50 pRNA-A 
Kidney 4DPF Y5_1 HiSeq Illumina Truseq 2011 SE50 s1 
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Kidney 4DPF Y5_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Kidney 4DPF Y5_3 GAIIx Illumina Truseq 2011 PE120 TC05 
Kidney 4DPF Y18_2 HiSeq Illumina Truseq 2011 SE50 s1 
Kidney 4DPF Y18_3 GAIIx Illumina Truseq 2011 PE120 SP03 
Kidney 4DPF Y23_1 HiSeq Illumina Truseq 2011 SE50 s1 
Kidney 4DPF Y23_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Liver fasted AI6_1 GAIIx Illumina Truseq 2010 PE76 TC01 
Liver fasted AI6_2 GAIIx Illumina Truseq 2011 PE120 TC05 
Liver fasted AI8 HiSeq NEB Next 2013 SE50 pRNA-A 
Liver fasted AI11 HiSeq NEB Next 2013 SE50 pRNA-B 
Liver fasted U25 HiSeq NEB Next 2013 SE50 pRNA-B 
Liver 1DPF V43 HiSeq NEB Next 2013 SE50 pRNA-B 
Liver 1DPF Z14 HiSeq NEB Next 2013 SE50 pRNA-A 
Liver 1DPF Z18 HiSeq NEB Next 2013 SE50 pRNA-B 
Liver 1DPF Z12_1 GAIIx Illumina Truseq 2010 PE76 TC01 
Liver 1DPF Z12_2 GAIIx Illumina Truseq 2011 PE120 TC05 
Liver 4DPF Y5_1 GAIIx Illumina Truseq 2010 PE76 TC01 
Liver 4DPF Y5_2 GAIIx Illumina Truseq 2011 PE120 TC05 
Liver 4DPF Y18 HiSeq NEB Next 2013 SE50 pRNA-B 
Liver 4DPF Y23 HiSeq NEB Next 2013 SE50 pRNA-B 
Liver 4DPF Y24 HiSeq NEB Next 2013 SE50 pRNA-A 

Small intestine fasted AI8 HiSeq NEB Next 2013 SE50 pRNA-A 
Small intestine fasted AI11 HiSeq NEB Next 2013 SE50 pRNA-B 
Small intestine fasted U25 HiSeq NEB Next 2013 SE50 pRNA-A 
Small intestine fasted AI6_1 HiSeq Illumina Truseq 2011 SE50 s1 
Small intestine fasted AI6_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Small intestine fasted AI11_1 HiSeq Illumina Truseq 2011 SE50 s1 
Small intestine fasted AI11_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Small intestine fasted AJ6_1 HiSeq Illumina Truseq 2011 SE50 s1 
Small intestine fasted AJ6_2 GAIIx Illumina Truseq 2011 PE120 TC05 
Small intestine fasted AJ6_3 GAIIx Illumina Truseq 2011 PE120 TC05 
Small intestine 1DPF Z12_1 HiSeq Illumina Truseq 2011 SE50 s1 
Small intestine 1DPF Z12_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Small intestine 1DPF Z14_1 HiSeq Illumina Truseq 2011 SE50 s1 
Small intestine 1DPF Z14_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Small intestine 1DPF Z14_3 GAIIx Illumina Truseq 2011 PE120 TC05 
Small intestine 1DPF Z18_1 HiSeq Illumina Truseq 2011 SE50 s1 
Small intestine 1DPF Z18_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Small intestine 1DPF V43 HiSeq NEB Next 2013 SE50 pRNA-B 
Small intestine 1DPF Z18_3 HiSeq NEB Next 2013 SE50 pRNA-B 
Small intestine 4DPF Y24 HiSeq NEB Next 2013 SE50 pRNA-B 
Small intestine 4DPF Y5_1 HiSeq Illumina Truseq 2011 SE50 s1 
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Small intestine 4DPF Y5_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Small intestine 4DPF Y18_1 HiSeq Illumina Truseq 2011 SE50 s1 
Small intestine 4DPF Y18_2 GAIIx Illumina Truseq 2011 PE120 SP03 
Small intestine 4DPF Y18_3 GAIIx Illumina Truseq 2011 PE120 TC05 
Small intestine 4DPF Y23_1 HiSeq Illumina Truseq 2011 SE50 s1 
Small intestine 4DPF Y23_2 GAIIx Illumina Truseq 2011 PE120 SP03 

 
 
 
 
Table S2. The number of genes involved in each pathway as defined by IPA, the number of genes in the 

pathway that were assigned python orthologs via tblastx, and the number of those python orthologs 

observed with a non-zero level of expression in our dataset. 

Pathway Organ Number of Genes 

Number of genes 
assigned an 

orthologous python 
gene 

Number of genes 
assigned an 

orthologous python 
gene and observed 

as expressed in 
dataset 

mTOR 

Heart  

199 172 

169 
Kidney 170 
Liver 167 
Small Int. 171 

NRF2 

Heart 

292 223 

220 
Kidney 222 
Liver 218 
Small Int. 220 
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Abstract 

Several snake species that feed infrequently in nature have evolved the ability to massively upregulate 

intestinal form and function with each meal. While fasting, these snakes downregulate intestinal form and 

function and upon feeding restore intestinal structure and function through major increases in cell growth 

and proliferation, metabolism, and upregulation of digestive function. Previous studies have identified 

changes in gene expression that underlie this regenerative growth of the python intestine, but the unique 

features that differentiate this extreme regenerative growth from non-regenerative post-feeding responses 

exhibited by snakes that feed more frequently remain unclear. Here, we leveraged variation in regenerative 

capacity across three snake species – two distantly-related lineages (Crotalus and Python) that experience 

regenerative growth, and one (Nerodia) that does not – to infer molecular mechanisms underlying intestinal 

regeneration using transcriptomic and proteomic approaches. Utilizing a comparative approach, we identify 

a suite of growth, stress response, and DNA damage response signaling pathways with inferred activity 

specifically in regenerating species, and propose a hypothesis model of interactivity between these 

pathways that may drive regenerative intestinal growth in snakes.  
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Introduction 

Snakes have emerged as a model system in which to study the regulation of intestinal form and function 

due to the extreme degree of intestinal modulation (5 to 10-fold) and regenerative growth that some heavy-

bodied, infrequently feeding species experience upon feeding after a prolonged fast. At the completion of 

digestion, these snakes exhibit intestinal atrophy through decreases in cell proliferation and increases in 

apoptosis of enterocytes, reductions in microvillus length, and downregulation of metabolism and digestive 

function (Ott and Secor, 2007; Secor, 2008; Secor and Diamond, 1998, 2000). Immediately following the 

ingestion of a meal, the intestine is rapidly restored, resulting in up to 100% increases in intestinal wet mass, 

5-fold increases in microvillus length, 44-fold increases in metabolic rate, and the upregulation of intestinal 

function within 24 hours (Ott and Secor, 2007; Secor, 2008; Secor and Diamond, 1998, 2000). This extreme 

regenerative response has been primarily studied in the Burmese Python (Python bivittatus) (Andrew et al., 

2015, 2017; Lignot et al., 2005; Secor, 2005; Secor and Diamond, 1997, 1998) but has also been identified 

in other infrequently feeding snake species including other python species and several rattlesnake and boa 

species (Menzel et al., 2012; Ott and Secor, 2007; Reif et al., 2015; Secor and Diamond, 2000; Secor et al., 

2001). In contrast, frequently feeding snakes do not regulate intestinal form and function to this degree and 

instead exhibit relatively narrow regulation (~ 2-fold) similar to that of most vertebrates, including humans 

(Cox and Secor, 2008; Lignot et al., 2005; Reif et al., 2015). This extreme regenerative phenotype appears 

to be highly correlated with feeding ecology rather than phylogeny: distantly related snake species with 

similar feeding ecologies possess comparable extreme regenerative capacity upon feeding, yet some closely 

related species with divergent feeding ecologies exhibit divergent phenotypes (extreme versus minimal 

intestinal remodeling) (Secor and Diamond, 1995; Secor and Ott, 2007). Notably, while examples of tissue 

and limb regeneration have been investigated in other vertebrates, and reptiles specifically (Brockes, 1997; 

Delorme et al., 2012; Jopling et al., 2010; Lozito and Tuan, 2017; Seifert et al., 2012; Vinarsky et al., 2005), 

post-feeding regenerative growth in snakes is unique given that it is not a response to tissue loss or damage 
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through injury (i.e., as in limb or tail regeneration), but instead occurs with every meal ingested following 

a period of prolonged fasting and in the absence of injury. 

Recent studies have revealed the apparent role of cellular growth, metabolic, lipid signaling, and stress 

response pathways during regenerative intestinal growth in the Burmese Python (Andrew et al., 2015, 2017; 

Riquelme et al., 2011), but have not compared these responses to other species. It is therefore unknown 

what distinguishes the regenerative response from the modest regulatory response associated with feeding, 

and thus a number of crucial questions about regenerative mechanisms remain. For example, is regeneration 

achieved through the activation of unique signaling pathways in infrequently feeding species, or instead 

through greater magnitude activity of “normal” post-feeding cellular responses associated with feeding? 

Do species with similar regenerative phenotypes achieve these responses through the same mechanisms, or 

have different species evolved different mechanistic solutions for intestinal regeneration? And, can we 

leverage the natural variation in regenerative phenotypes present across different snake species as a 

comparative framework for dissecting essential mechanisms underlying intestinal regeneration?  

This study begins to address these questions by incorporating an additional regenerating species that 

possesses the capacity for regenerative growth, the Prairie Rattlesnake (Crotalus viridis), as well as a non-

regenerating species, the Diamondback Watersnake (Nerodia rhombifer) with previous and new data from 

the Burmese Python. We use analyses of transcriptomic and proteomic data across fasted and post-feeding 

time points to comparatively dissect and characterize molecular responses associated with regenerative 

intestinal growth in these species of snakes. Our results demonstrate that the rattlesnake and python 

intestinal responses to feeding are characterized by an suite of growth and stress response signaling 

mechanisms, some of which appear to be unique to these two regenerating species, while others are shared 

with the non-regenerating watersnake species but likely active at different magnitudes in the two 

regenerative species. Based on our comparative analyses, we develop a hypothetical model to explain 

potential signaling networks that may underlie regenerative growth following feeding in the snake intestine. 
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Materials and Methods 

Feeding experiments 

Prairie Rattlesnakes (Crotalus viridis viridis; Colorado: 17HP0974 to SPM) and Diamondback 

Watersnakes (Nerodia rhombifer; Mississippi Scientific Collecting Permit for 2015; No. 0508152 – to 

SMS) were wild-caught under state collecting permits. Animal care and tissue sampling was conducted 

under protocols approved by the Institutional Animal Care and Use Committee at the University of Alabama 

(14-06-0075) and the University of Northern Colorado (1701D-SM-S-20). Individuals from both species 

were sampled at three time points to target three distinct physiological states: fasted (30 days since last 

meal), 1 day post-feeding (DPF), and 4 DPF. Watersnakes were fed catfish filets and rattlesnake were fed 

adult mice in order to approximate their natural primary prey type (fish and mammals, respectively). 

Consumed meals were equal in mass to 25% of individual snake body mass. Snakes were humanely 

euthanized by severing the spinal cord immediately posterior to the head. Intestinal tissue was immediately 

extracted, snap frozen in liquid nitrogen, and stored at -80°C. Between three and four individual animals 

per species were sampled for each time point. 

Transcriptomic data generation 

Transcriptomic data for C. viridis and N. rhombifer were generated for this study. Transcriptomic data for 

the Burmese Python (P. bivittatus) was generated previously using protocols described in (Andrew et al. 

2015; Andrew et al. 2017). Total RNA was extracted by placing ~50mg of snap-frozen tissue into 1mL of 

Trizol Reagent (Invitrogen), mechanically lysing cells using a TissueLyzer for 10 minutes at 20 

strokes/minute, and precipitating RNA from the aqueous phase using isopropanol. Individual Illumina 

mRNA-seq libraries were constructed using either a NEB Next RNAseq kit with poly-A selection, RNA 

fragmentation, cDNA synthesis, and indexed Illumina adapter ligation. RNAseq libraries were quantified 

using a BioAnalyzer (Agilent), pooled in equal molar ratios in various multiplex arrangements, and 

sequenced on an Illumina HiSeq 2500 using 100bp paired-end reads (Supp. Table. S1). Newly-generated 
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transcriptomic data for C. v. viridis and N. rhombifer is archived at the NCBI Short Read Archive (NCBI: 

SRP200900) as well as previously-generated transcriptomic data for P. bivittatus (NCBI: SRP051827). 

Identifying homologous genes between snakes and human 

Downstream pathway and regulatory molecule analyses require gene expression data with human gene 

identifiers. To identify homologous genes between the snake species and human and ultimately assign 

human gene identifiers to snake genes for downstream analysis, OrthoMCL (Li et al., 2003) was run via 

the Orthomcl-pipeline (https://github.com/apetkau/orthomcl-pipeline) using species-specific protein fasta 

files as input. In cases where multiple isoforms were annotated for a given gene, the protein sequence 

corresponding to the longest coding sequence was used. For resulting OrthoMCL homolog groups 

containing a single gene from each of the four species, the identifier of the human gene was assigned to 

each snake gene within the group. For groups containing a single human gene identifier but more than one 

orthologous gene in one or more snake species, the human gene identifier was assigned to all snake genes 

in the group. Lastly, for groups containing multiple human orthologs, each snake gene in the group was 

assigned the human identifier that produced the best one-way BLAST hit to that gene during the orthoMCL 

pipeline.  

Quantifying and visualizing gene expression 

Raw demultiplexed Illumina RNAseq reads were quality filtered and trimmed with Trimmomatic v. 0.32 

(Bolger et al., 2014). All reads were mapped using STAR v.2.5.3a (Dobin et al., 2013) in basic two pass 

mode with --outFilterMultimapNmax set to 1 to exclude reads that mapped to multiple positions. Reads for 

P. bivittatus and C. v. viridis were mapped to their respective genome assemblies (Castoe et al., 2013; 

Schield et al., 2019); as no genome assembly is currently available for N. rhombifer, these reads were 

mapped to genome of the closely-related eastern garter snake (Thamnophis sirtalis; Perry et al., 2018). Raw 

expression counts were determined using featureCounts v1.6.3 (Liao et al., 2013).  
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Count normalization and pairwise exact tests of differential expression between fasted versus 1DPF and 

1DPF versus 4DPF were performed using DEseq2 v. 1.12.4 (Love et al., 2014). As transcriptomic data for 

P. bivittatus included both single-end 50bp and paired-end 120bp reads, read type was included as a factor 

in DEseq2 pairwise comparisons to account for any potential batch effects. Independent hypothesis 

weighting was applied to pairwise test results using the IHW package (Ignatiadis et al., 2016) with 

baseMean as a covariate.  

The results of pairwise comparisons in each species were filtered to exclude genes that were not assigned 

a homologous gene identifier via OrthoMCL. We further filtered pairwise results to only include genes for 

which there was detectable expression (>= 1 raw expression count) in at least one time point in all three 

snake species.  

Heatmaps were generated using the pHeatmap package (Kolde, 2012) and alluvial plots of patterns of gene 

expression were generated using the ggalluvial package (Brunson, 2018) in R (R Core Team, 2014).  

Proteomic data generation and analysis 

Proteins were extracted using T-PER Tissue Protein Extraction Reagent (Thermo Fisher, 78510) from 

multiple fasted, 1 DPF, and 4DPF proximal small intestine tissue samples for the python and watersnake 

(Supp. Table. S4). Proteins were quantified using a BCA assay, purified, and digested with trypsin. The 

dried pellet was resuspended in 50 mM NH4CO3. Following Kamal et al. 2018 (Kamal et al. 2018), proteins 

were reduced and alkylated, then digested with Trypsin (MS Grade) at a 1:50 enzyme/protein concentration 

for 16 h at 37 °C. Formic acid (pH < 3) was added to the resulting peptides for acidifying the sample. A 

C18 desalting column (ThermoFisher Scientific, IL, USA) was used for desalting the samples. After drying 

by speed vacuum, peptides were dissolved in 0.1% formic acid, and stored at -20°C.  

 



 

62 

Digested peptides were analyzed by nano-LC-MS/MS using a Velos Pro Dual-Pressure Linear Ion Trap 

Mass Spectrometer (ThermoFisher Scientific, MA) coupled to an UltiMate 3000 UHPLC (ThermoFisher 

Scientific, MA). Peptides were loaded onto the analytical column and separated by reversed-phase 

chromatography using a 15-cm column (Acclaim PepMap RSLC) with an inner diameter of 75 μm and 

packed with 2 μm C18 particles (Thermo Fisher Scientific, MA). The peptide samples were eluted from the 

Nano column with multi-step gradients of 4-90% solvent B (A: 0.1% formic acid in water; B: 95% 

acetonitrile and 0.1% formic acid in water) over 70 min with a flow rate of 300 nL/min with a total run time 

of 90 min. The mass spectrometer was operated in positive ionization mode with nano spray voltage set at 

2.50 kV and source temperature at 275°C. The three precursor ions with the most intense signal in a full 

MS scan were consecutively isolated and fragmented to acquire their corresponding MS2 scans. Full MS 

scans were performed with 1 micro scan at resolution of 3000, and a mass range of m/z 350-1500. 

Normalized collision energy (NCE) was set at 35%. Fragment ion spectra produced via high-energy 

collision-induced dissociation (CID) was acquired in the Linear Ion Trap with a resolution of 0.05 FWHM 

(full-width half maximum) with an Ultra Zoom-Scan between m/z 50-2000. A maximum injection volume 

of 5 µl was used during data acquisition with partial injection mode. The mass spectrometer was controlled 

in a data-dependent mode that toggled automatically between MS and MS/MS acquisition. MS/MS data 

acquisition and processing were performed by XcaliburTM software (ThermoFisher Scientific, MA). 

Spectra were searched using Proteome Discoverer software (ver. 2.0, ThermoFisher Scientific) against 

species-specific protein databases generated from the genome of the Burmese Python (Castoe et al., 2013) 

and the genome of the garter snake, Thamnophis sirtalis (Perry et al., 2018), which was used as a reference 

set for the watersnake as it is the most closely-related snake species with a complete genome assembly and 

annotation. The considerations in SEQUEST searches for normal peptides were used with 

carbamidomethylation of cysteine as the static modification and oxidation of methionine as the dynamic 

modification. Trypsin was indicated as the proteolytic enzyme with two missed cleavages. Peptide and 
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fragment mass tolerance were set at ± 1.6 and 0.6 Da and precursor mass range of 350-5000 Da, and peptide 

charges were set excluding +1. SEQUEST results were filtered with the target PSM validator to improve 

the sensitivity and accuracy of the peptide identification. Using a decoy search strategy, target false 

discovery rates for peptide identification of all searches were < 1% with at least two peptides per proteins, 

and the results were strictly filtered by ΔCn (< 0.01), Xcorr (≥1.5) for peptides, and peptide spectral matches 

(PSMs) with high confidence (q-value of ≤ 0.05). Protein quantification was conducted using the total 

spectrum count of identified proteins. Additional criteria were applied to increase confidence that PSMs 

must be present in all three biological replicates samples. Protein identifiers from the rattlesnake and garter 

snake genomes were converted to orthologous python identifiers using reciprocal best BLASTp, followed 

by reciprocal best tBLASTx and, finally, stringent one-way BLASTp. Peptide spectrum matches (PSM) 

were normalized and analyzed using DEseq2 (Love et al. 2014) in R to identify proteins that exhibited 

significant changes in abundance between time points (Benjamini-Hochberg corrected p-value < 0.1). 

Differentially expressed proteins were characterized using GO term overrepresentation analysis against all 

protein coding genes using ClueGO (Bindea et al., 2009) and WebGestalt (Zhang et al., 2005).  

Inferences of canonical pathway and upstream regulatory molecule activity 

To infer canonical pathways and regulatory molecules that may be driving observed patterns of gene 

expression in these three species, and specifically those that may be driving regenerative growth, we 

employed a multi-level comparative approach to analyze particular subsets of differentially expressed genes 

(p < 0.05) using Core Analysis in Ingenuity Pathway Analysis software (Krämer et al., 2013). First, we 

used all differentially expressed genes from pairwise analyses as input. Second, to distinguish between 

mechanisms that are uniquely shared between regenerating species and those that are shared between all 

three species, we compared inferences generated from genes that were differentially expressed in both the 

python and rattlesnake to inferences generated from genes that were differentially expressed in all three 

species. To compare evidence of pathway and regulatory activity inferred from gene expression and protein 
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abundance, we also used Core Analysis in IPA to analyze proteins that demonstrated significant changes in 

abundance between Fasted and 4DPF (p < 0.1). Networks of overlapping genes between pathways was 

generated using the GGally (Schloerke et al., 2018) and network (Butts, 2008; Handcock et al., 2008) 

packages in R (Fig. 3.3). In these networks, pathways were connected if at least 50% of the genes underlying 

the prediction of one of the pathway overlap with the genes underlying the prediction of the other pathway. 

Pathways that did not exhibit this overlap with at least one additional pathway are shown as unconnected 

nodes. Networks were manually annotated to group pathways based on similar biological function.   

Results 

Rapid and massive changes in gene expression in regenerating species  

Between fasting and 1 day post-feeding (DPF), the regenerating python exhibits the largest number of 

differentially expressed (DE; p < 0.05) genes (2,559), followed by the regenerating rattlesnake (1,439); the 

number of DE genes in the non-regenerating watersnake is substantially smaller (793; Fig. 1). The python 

and rattlesnake shared 767 DE genes between fasted and 1DPF, 563 of which were uniquely DE in these 

two regenerating species. Pairwise comparisons of 1DPF and 4DPF revealed a considerably larger response 

in the python (1,595 DE genes) compared to that observed in both the rattlesnake (376) and watersnake 

(194) during this interval (Fig. 1C). Across all three species, many genes with significant up- or 

downregulation between fasting and 1DPF showed no differential expression between 1DPF and 4DPF 

(Fig. 1D). A smaller number of genes showed a change in direction of differential expression, continued 

differential expression in the same direction (i.e. upregulated Fasted vs. 1DPF and upregulated 1DPF vs. 

4DPF), or delayed regulation (i.e. not DE in Fasted vs. 1DPF, but DE in 1DPF vs. 4DPF; Fig. 2A).    

Conserved regulatory molecule and pathway activity in regenerating species  

To infer patterns of canonical pathway and regulatory molecule activity following feeding based on our 

transcriptomic data, we first performed Core Analysis in IPA (Qiagen) using all DE genes for each of the 
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three species and identified pathways and upstream regulatory molecules (URMs) that showed one of two 

patterns predicted to be informative for dissecting mechanisms of regenerative growth: 1) those with 

significant inferences of regulatory activity in only the two regenerating species (p < 0.05), and 2) those 

with significant inferences of activity in all three species (p < 0.05). IPA analyses of all DE genes between 

fasted and 1DPF inferred significant regulatory activity of pathways associated with cellular growth, 

proliferation, and metabolism signaling in all three species, including the PI3K/AKT Signaling, 

ERK/MAPK Signaling, PDGF Signaling, Insulin Receptor Signaling, and JAK/Stat Signaling pathways 

(Supp. Fig. 1A). Additionally, multiple pathways associated with cellular stress responses were inferred to 

regulate DE genes between fasted and 1DPF, including the NRF2-mediated Oxidative Stress Response 

pathway and pathways associated with endoplasmic reticulum stress and the Unfolded Protein Response 

(Supp. Fig. 1A). Fewer pathways were inferred to drive gene activity in the regenerating python and 

rattlesnake alone in this analysis (Supp. Fig. 1A), several of which are associated with DNA damage repair 

and tumor suppression. URMs associated with growth, metabolism, and stress response signaling, including 

nuclear factor erythroid 2 like 2 (NFE2L2), insulin receptor (INSR), sterol regulatory element binding 

transcription factor 1 and 2 (SREBF1/2), several peroxisome proliferator-activated receptor (PPAR) 

molecules, and x-box binding protein 1 (XBP1) were inferred to be significantly activated in all three 

species between fasted and 1DPF, while few URMs were significant only in the python and rattlesnake 

(Supp. Fig. 1B). Several pathways with inferred activity between fasted and 1DPF, including the Protein 

Ubiquitination Pathway, Aldosterone Signaling in Epithelial Cells, and Endoplasmic Reticulum Stress 

Pathway, were also inferred to be actively regulating genes in all three species during the later 1DPF versus 

4DPF interval (Supp. Fig. 1C). Additionally, multiple URMs including XBP1, activating transcription 

factor 4 (ATF4), and NFE2L2 were inferred to be inhibited or downregulated during this later time point 

compared to their inferred activation between fasted and 1DPF (Supp. Fig. 1D). 
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To further dissect regulatory mechanisms that may explain unique patterns of gene regulation in the two 

regenerating species, we performed separate IPA Core Analyses on targeted subsets of DE genes that were 

1) DE only in the python and rattlesnake and 2) DE in all three species. The resulting IPA inferences of 

pathway and regulatory molecule were categorized based on patterns of overlap between the analyses of 

these two gene sets: regulatory mechanisms inferred only from analyses of DE genes shared between all 

three species were considered “feeding” mechanisms, those inferred only from analyses of DE genes shared 

between the python and rattlesnake were considered “regeneration unique,” and mechanisms inferred from 

analyses of both gene sets were considered to be “shared” between the feeding and regenerative response 

(Fig. 2). “Feeding” pathways (Fig. 2A, “Feeding”) included many of the same growth and stress response 

pathways inferred in the above analyses based on all DE genes (Supp. Fig. 1). “Shared” pathways inferred 

from analyses of both gene sets indicate that some pathways may respond with greater magnitude and/or 

breadth (in terms of the number of DE genes being regulated) in regenerating species (Fig. 2A, “Shared”), 

including the NRF2-mediated Oxidative Stress Pathway, which was previously implicated in regenerative 

growth in studies of the Burmese Python (Andrew et al., 2017). “Regeneration unique” pathways included 

many pathways associated with DNA damage repair and tumor suppression, as well as several growth and 

metabolism pathways including the Insulin Receptor and Insulin-like Growth Factor 1 (IGF-1) Signaling 

pathways, ERK5 Signaling, and JAK/Stat Signaling (Fig. 2A, “Regen Unique”). Inferences of “shared” 

URMs (Fig. 2B, “Shared”) suggest that the two regenerating species respond to feeding by differentially 

expressing additional sets of genes potentially regulated by NFE2L2, XBP1, INSR, which are major 

regulators within the NRF2-mediated Oxidative Stress Response, Unfolded Protein Response, and Insulin 

Receptor Signaling pathways, respectively. This indicates that although these URMs show activity in all 

three species, they are potentially regulating a larger number of DE genes in species that show regenerative 

post-feeding responses (pythons and rattlesnakes), which are not DE in the non-regenerating watersnake. 

These URMs may therefore contribute to regeneration-specific signaling beyond a baseline level general 

feeding response signaling. “Regeneration unique” URMs included fibroblast growth factor 21 (FGF21), a 
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known regulator of growth and metabolism (Fisher and Maratos-Flier, 2016), and matrix metallopeptidase 

3 (MMP3), which is involved in the breakdown of the extracellular matrix during tissue remodeling and 

growth and has specifically been implicated in limb regeneration in newts (Vinarsky et al., 2005) (Fig. 2B). 

To assess the potential interaction among inferred canonical pathways, networks of pathways were 

constructed based on the overlap of genes underlying inferred pathway activity (Fig. 3). In these networks, 

a connection between two pathways indicates that at least 50% of the genes underlying the inferred activity 

of one pathway were also underlying the inference of the other pathway. The feeding response network, 

generated from “feeding” and “shared” pathways described above, features a large interconnected group of 

pathways associated with cellular growth, metabolism, and homeostasis (Fig. 3A). The NRF2-mediated 

oxidative stress response pathway and hypoxia signaling in the cardiovascular system pathway overlap with 

pathways within this growth-related cluster, suggesting the potential integration of growth and oxidative 

stress response signaling during the feeding response. Other stress response pathways did not show direct 

overlap with this group; these include the Unfolded Protein Response and Endoplasmic Reticulum Stress 

Pathway, which are connected with the growth-related group via the Protein Ubiquitination Pathway, 

Aldosterone Signaling in Epithelial Cells pathway, and Glucocorticoid Receptor Signaling pathway.  

The regenerative response network, generated from “regeneration unique” and “shared” pathways 

described above, also exhibited an interconnected group of growth-related pathways (Fig. 3B), although 

the pathways within this cluster were distinct from growth-related pathways in the feeding response 

network (Fig. 3A). In this regenerative response network, NRF2-mediated Oxidative Stress Response was 

again directly interconnected to this growth-related group, but here via the JAK/Stat signaling pathway. 

This network also features a group of cell junction signaling pathways and a group of DNA damage repair 

pathways, one of which (Role of BRCA1 in DNA Damage Response) connects directly with the growth-

related group via AMPK signaling, with other DNA damage response pathways forming a separate cluster 

of interconnected pathways (Fig. 3B).  
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Based on interconnected pathways inferred from DE genes unique to the python and rattlesnake and known 

biological interactions and consequences of these pathways, we developed a hypothesis network for how 

growth and stress response mechanisms drive regenerative growth in snakes (Fig. 3C). Key features of this 

model are the stimulation of regenerative growth through growth factor signaling via cell junction signaling 

as well as cell surface receptor signaling (e.g., Insulin receptor), and the interaction and coordination of 

multiple growth pathways with stress response and DNA Damage response pathways (Fig. 3C). 

Proteomic changes underlying regenerative growth  

For comparison with inferences based on RNAseq data, we generated quantitative shotgun proteomic data 

for an overlapping set of samples. We successfully quantified intestinal protein abundance for 857 and 637 

proteins for the python and watersnake, respectively. In both the python and watersnake, the number of 

proteins showing significant changes in abundance between time points (FDR < 0.1) was greatest between 

fasted and 4DPF (Fig. 4A). Of the 68 differentially abundant proteins in the watersnake, 53 were 

successfully matched to an orthologous python protein ID and were used in downstream characterization 

and analysis. The 12 differentially abundant proteins between fasted and 4DPF in the python and 

watersnake were enriched for GO terms relating to cell-cell adhesion and oxidation-reduction processes (p 

< 0.05; Supp. Fig. 3). GO term analysis of the 97 proteins differentially abundant only in the python revealed 

several significantly overrepresented terms relevant to regenerative growth, including RNA and unfolded 

protein binding, actin cytoskeleton regulation, and regulation of anatomical structure size and cellular 

component biogenesis (Fig. 4C). At each of the three sampled time points, a weak but significant positive 

correlation was found between RNA expression and protein abundance in the python and watersnake when 

excluding data points with low RNA expression or low protein abundance (p < 0.05; Supp. Fig. 8). In both 

species, the correlation between RNA and protein abundance was weakest at the fasted time points and 

strongest at 1DPF (Supp. Fig. 8).  
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IPA Core Analysis based on differentially abundant proteins between fasted and 4DPF was compared to 

pathway and URM activity predictions inferred from patterns of gene expression. Relatively few canonical 

pathways were inferred to have significant activity based on protein data alone (Supp. Fig. 4A), likely due 

to the small size of the input datasets. However, several pathways that were inferred to have significant 

regulatory activity in the python based on gene expression data were also inferred to be significant based 

on differential protein abundance, including the growth and metabolism-related VEGF signaling pathway. 

The NRF2-mediated oxidative stress response pathway was inferred to be significantly active in both 

protein and RNA-derived analysis in the python and watersnake (Supp. Fig. 4A). URM analysis showed 

more consistency between analyses based on protein and gene expression datasets (Fig. 4D). Many URMs 

inferred from gene expression to be activated between fasted and 1DPF in the python and watersnake 

showed similar activation patterns based on differential protein abundance, including URMs associated 

with key growth and stress response pathways such as NFE2L2, KRAS, PPARA and PPARG, and EGF 

(Fig. 4D).  

Discussion 

Interest in leveraging snakes to study the mechanisms underlying extremes of vertebrate organ regenerative 

growth, including intestinal regeneration, has steadily increased since the discovery of their extreme post-

feeding regenerative capacities over 20 years ago (Secor and Diamond, 1995). Recent molecular studies 

that have made progress in understanding the signaling mechanism underlying these responses have focused 

on the Burmese Python (Andrew et al., 2015, 2017), but have lacked a cross-species comparative context 

that might differentiate post-feeding regeneration responses from general feeding responses. Here, we 

provide the first multi-species comparison of post-feeding organ regenerative responses in snakes by 

analyzing the response of two species that do, and a third that does not, regenerate upon feeding. Our results 

indicate that the regenerating python and rattlesnake exhibit significant differential expression of thousands 

of genes following feeding, including a large number of shared genes that do not respond in the non-
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regenerating watersnake. Responsive genes in the two regenerating species show greater overlap with one 

another than they do with the non-regenerating watersnake, indicating that some mechanisms of 

regenerative growth responses are shared between these two regenerating species despite ~90 million years 

of divergence (Castoe et al., 2009; Kumar et al., 2017; Zheng and Wiens, 2016).  

Inferences of growth pathway activity between regenerating and non-regenerating snake 

species 

To investigate signaling mechanisms that may differentiate regeneration versus feeding responses, we 

separately inferred pathway and regulatory molecule activity for differentially expressed genes shared 

between all three species (i.e., those likely associated with a general feeding response) and genes 

differentially expressed only in the two regenerating species (i.e., those uniquely associated with the 

regenerative response). In these targeted analyses, we found evidence for largely non-overlapping sets of 

canonical pathways and regulatory molecules regulating the core DE genes of the general feeding response 

in all three species versus the DE genes shared between the python and rattlesnake, suggesting that 

regenerative growth in these two species involves unique regulatory activity otherwise not active in 

regulating the feeding response. Our inferences suggest that the general feeding response is largely 

comprised of a distinct set of pathways associated with cellular growth, metabolism, and homeostasis (Fig. 

2, “Feeding”), including PI3K/AKT signaling, which was previously suggested as a potential central 

regulator of regenerative growth in the Burmese Python (Andrew et al., 2017). In addition to growth 

signaling pathways, multiple stress-response pathways were inferred to be involved in the general feeding 

response, including the Unfolded Protein Response and Endoplasmic Reticulum Stress Pathways.  

The regenerative response involves a distinct set of growth and metabolism pathways (Fig. 2, “Regen 

unique”), including known regulators of vertebrate growth, tissue repair, and regeneration such as the IGF-

1 Signaling and Insulin Receptor Signaling pathways (Beyer and Werner, 2008; Desbois-Mouthon et al., 

2006). Insulin Receptor Signaling and associated downstream pathways have been implicated in reptile 
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longevity, growth, and stress response (Reding et al., 2016; Schwartz and Bronikowski, 2014, 2016), and 

have undergone rapid evolution in snakes (McGaugh et al., 2015). Insulin Receptor Signaling also interacts 

with stress response pathways that have been implicated by this and previous studies in the regenerative 

growth response (Andrew et al., 2017). Previous studies of the Burmese Python have demonstrated that the 

concentration of circulating insulin, one of the main initiators of the Insulin Receptor Signaling cascade, 

increases six-fold with 24 hours of feeding (Secor et al., 2001). Unique activity of Insulin Receptor 

Signaling is therefore a promising candidate for a high-level driver of regenerative growth in snakes.  

Our analyses also identified pathways and URMs that were inferred in analyses of distinct DE gene sets 

associated with both the feeding and regenerative responses (Fig. 2, “Shared”), suggesting that more broad 

and/or higher magnitude stimulation of these signaling pathways that otherwise exhibit a baseline level of 

activity during the feeding response may also contribute to the regenerative response. Notably, this group 

of overlapping regulatory mechanisms included the NRF2-mediated oxidative stress pathway, which was 

previously suggested to be involved in regenerative growth in the Burmese Python (Andrew et al., 2017). 

The NRF2 pathway overlaps with distinct growth pathways in both the regenerative and feeding response 

networks, suggesting the potential for direct integration of growth and stress signaling responses during 

both feeding and regenerative responses. NFE2L2, the primary regulatory molecule within the NRF2 

pathway, was also inferred as a major regulator in both the regenerative and feeding responses. 

Additionally, XBP1 and INSR, major regulatory molecules within the Unfolded Protein Response and 

Insulin Receptor Signaling pathways, respectively, were inferred as URMs in analyses of distinct DE gene 

sets associated with both the regenerative and feeding responses, indicating a potentially expanded 

regulatory role of these URMs during regenerative growth.  

Broadly, our results highlight shared patterns of signaling activity between divergent regenerating species 

and raise questions about the number of times this regenerative response may have evolved in snakes and 

the degree to which aspects of the regenerative response may be driven by shared ancestral regulatory 
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programs versus convergent evolution of regulatory programs in divergent snake lineages. While 

convergent evolution of complex signaling programs may seem unlikely, large-scale metabolic adaptation 

and convergent evolution has been demonstrated previously in snakes, and thus cannot be readily 

discounted as an explanation for the phylogenetic dispersion of regenerative growth phenotypes and the 

regulatory pathways that underlie these phenotypes (Castoe et al., 2008, 2009).  

Activation of stress response signaling during regeneration 

Oxidative and other cellular stresses are known to impair tissue repair and regeneration in vertebrates 

(Beyer and Werner, 2008; Schäfer and Werner, 2008; Sen and Roy, 2008), and links between regulation of 

stress-responses and regeneration are beginning to emerge in the literature (Puente et al., 2014; Rees et al., 

2001; Roesner et al., 2006). In rats, the transition from an oxygen-poor pre-natal environment to an oxygen-

rich post-natal environment corresponds with a cessation of regenerative capacity in heart tissue due to 

induced DNA damage inflicted by increased oxidative stress (Puente et al., 2014). Additionally, one of the 

most well studied vertebrate systems of tissue regeneration is the zebrafish, which inhabits a hypoxic 

aquatic environment and thus experiences a lesser degree of oxidative stress during regenerative growth 

(Puente et al., 2014; Rees et al., 2001; Roesner et al., 2006). A previous study focused on post-feeding 

organ regenerative response in the Burmese Python identified the NRF2-mediated oxidative stress response 

pathway as having the greatest upregulation in activity of all inferred pathways in the intestine, kidney, and 

liver (Andrew et al., 2017). 

. Given the rapid increases in metabolism (up to 44-fold; Secor and Diamond, 1998) and cell proliferation 

following feeding in regenerating snake species and previous evidence for a role of stress responses in 

python organ regeneration, it is logical that a coordinated and highly-activated armada of stress response 

pathways may play a role in the extreme regenerative growth observed in some snakes. 
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The NRF2-mediated oxidative stress response pathway was inferred to be a regulator in both the general 

feeding and regenerative responses. Thus, the NRF2 pathway is likely associated with feeding regardless 

of regeneration phenotype, but may play a more broad and highly stimulated role during regeneration in 

these two species. Mitigation of oxidative stress by NRF2 has been shown to play a vital role in liver tissue 

repair in mice by preventing insulin and insulin growth factor 1 (IGF-1) resistance that occurs via the 

phosphorylation of insulin receptor substrates by serine/threonine kinases that are activated by oxidative 

stress (Aguirre et al., 2002; Beyer and Werner, 2008; Kamata et al., 2005). In NRF2-deficient mice, insulin 

resistance prevents the insulin signaling pathway from properly activating PI3K/AKT and MAPK signaling 

pathways, two major pathways of growth and anti-apoptotic signaling, thus impairing tissue growth and 

repair (Beyer and Werner, 2008). Our results, together with the emerging role of NRF2 in regeneration, 

suggest that the action of NRF2 may play an important role in facilitating regenerative growth by permitting 

activity of growth mechanisms that otherwise negatively respond to oxidative stress.  

The Unfolded Protein Response (UPR), which senses and mitigates endoplasmic reticulum (ER) stress, was 

an inferred regulator of the general feeding response and is likely involved in mitigating ER stress 

associated with the high degree of cell turnover, exposure to metabolites and toxins, and general secretory 

nature of digesting intestine tissue (Kaser et al., 2013). While the entire UPR pathway was not inferred to 

be a regulator of the regeneration, XBP1, a major regulatory molecule within the IRE1-XBP1 signaling 

cascade of the UPR (Smith et al., 2011), was inferred to be an active regulator in both feeding and 

regenerative responses. XBP1 has been identified as an important factor in preventing tumor formation 

during regeneration of intestinal epithelial tissue following injury in mice (Niederreiter et al., 2013), and 

the broad activation of XBP1 signaling may serve a similar role during regeneration in the python and 

rattlesnake, although further study would be necessary to confirm the role of this regulatory cascade in the 

regenerative response.  
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Our analyses suggest that pathways associated with DNA damage responses are uniquely involved in the 

regenerative response in the python and rattlesnake. This apparent involvement of a DNA damage response 

is likely to play a role in facilitating the high degree of cell proliferation required for rapid tissue growth. 

The involvement of these DNA damage response mechanisms, and particularly those associated with tumor 

suppression, are intriguing given that snakes, and reptiles in general, exhibit lower incidences of cancer 

than mammals (Effron et al., 1977). Future studies into the specific means by which snakes activate DNA 

damage responses during regenerative growth may provide new insight into tumor suppression mechanisms 

in vertebrates.   

Insight into the regulation of regeneration from proteomic analyses  

Our integrated analysis of transcriptomic and proteomic data provides complementary support for a number 

of key inferences regarding mechanisms and activation of signaling networks. Core Analyses in IPA based 

on shifts in protein abundance between fasted and 4DPF produced broadly similar inferences of URM 

signaling as did analyses of DE genes between fasted and 1DPF, including consistent activity of stress and 

growth URMs such as NFE2L2, KRAS, EGF, and others. The lag time between transcriptomic and 

proteomic responses, together with the rapid response time of regenerative phenotypes also suggests that 

other means of regulation, such as post-translational modification of proteins, are likely also important in 

directing signaling that underlies the regenerative response. Future work to explore the role of post-

translational modifications in the early phases of regenerative growth in snakes would provide an important 

dimension to our understanding of signaling that initiates regeneration. 

A model for the regulation of regenerative growth in snakes 

We generated a model for signaling underlying regenerative intestinal growth in snakes based on inferences 

of regulatory mechanisms from this study and documented interactions among these mechanisms in other 

vertebrates (Fig. 3C). In this model, growth signaling pathways are activated by circulating signal 

molecules, such as insulin or other growth factors, with some of these signals potentially integrated via cell 
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junction signaling in intestinal epithelial cells (Perez-Moreno et al., 2003). As growth signaling promotes 

cellular growth and proliferation, the buildup of reactive oxygen species and ER stress activate stress 

response pathways including NRF2-mediated oxidative stress response and the Unfolded Protein Response 

(Beyer and Werner, 2008; Kaser et al., 2013), which in turn act to mitigate stress and prevent the cessation 

of growth signaling (Beyer and Werner, 2008; Hirosumi et al., 2002). In response to initial and/or 

constitutive increases in cellular stress, DNA damage response pathways are also activated to ensure proper 

replication of cells and promote cell survival during proliferation (Barash et al., 2010; Puente et al., 2014). 

Although preliminary, this model provides a hypothesis that can be further tested with additional analyses 

and experiments, and as such, presents a valuable step toward understanding how extreme bouts of 

regeneration might be accomplished in vertebrates. 

Conclusions 

Major advances in genomics have enabled the development of new vertebrate model systems that have 

traditionally lacked genomic resources but possess interesting phenotypes. Snakes are an example of such 

a system, and new genomic resources now allow for intensive study of their extreme and medically relevant 

phenotypes, including regenerative growth following feeding (Castoe et al., 2013; Perry et al., 2018; Schield 

et al., 2019). By studying multiple species of snakes that do and do not experience regenerative growth 

upon feeding, we were able to begin to identify signaling mechanisms that may underlie extreme intestinal 

regeneration in snakes and distinguish these from mechanisms that are instead associated with a feeding 

response. Our findings highlight the value of employing a comparative approach to dissect a complex 

physiological response, and suggest that a combination of mechanisms uniquely activated in regenerating 

species and mechanisms shared with a typical feeding response, but regulating a greater number or distinct 

set of genes, may drive regenerative intestinal growth in snakes. We developed a hypothesis for how growth 

and stress response pathways might coordinate extreme intestinal regenerative growth while managing 

cellular stress and DNA damage associated with the extreme nature of this growth (e.g., 100% increases in 
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mass in 24 hours in pythons; Secor and Diamond, 1995). Our inference suggests that extreme regenerative 

growth in snake requires the coordination of stress response, DNA damage response, and pro-survival 

signaling in addition to growth signaling. Testing and validating the precise role of these pathways and 

interactions among them is a priority for future studies and may enable further insight into regenerative 

signaling mechanisms with therapeutic potential for treating human conditions ranging from digestive 

diseases to cancer. From an evolutionary perspective, our findings raise interesting questions regarding the 

evolution of the regenerative response among snakes and pose further questions about how this phenotype 

may have influenced (or been driven by) major features of snake ecology. Considering the diversity of 

snakes, our analyses also beg the question of how broadly the three study species characterize the dichotomy 

between those that undergo regeneration upon feeding and those that do not, and future studies 

incorporating a greater diversity of species will be valuable for testing the generalizability of our 

conclusions across different snake lineages.   
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Figures 

 

 

Figure 1. Divergent species that experience post-feeding regenerative growth exhibit similar gene 

expression responses. A) The Burmese Python and Prairie Rattlesnake both exhibit regenerative organ 

growth after feeding, despite being separate by roughly 90 million years of divergence. B-C) Venn diagrams 

of differentially expressed (DE) genes in the Burmese Python, Prairie Rattlesnake, and Diamondback 

Watersnake in pairwise comparisons between B) Fasted and 1DPF and C) 1DPF and 4DPF. D) Alluvial 

plots summarizing the number of upregulated (p < 0.05), downregulated (p < 0.05), and not differentially 

expressed (p > 0.05) genes for fasted vs. 1DPF and 1DPF vs. 4DPF pairwise comparisons in the Burmese 

Python, Prairie Rattlesnake, and Diamondback Watersnake. Ribbon width represents the number of genes 

exhibiting a specified pattern of expression across the two pairwise comparisons (i.e. upregulated in fasted 

vs. 1DPF and downregulated in 1DPF vs. 4DPF). Genes that were not DE in both pairwise comparisons are 

not shown.   
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Figure 2. Canonical pathway and upstream regulatory molecule activation inferences based on 

comparisons of fasted versus 1DPF RNAseq data. A) Canonical pathways enrichment of differentially 

expressed genes between fasted and 1DPF based on genes shared uniquely between the two regenerating 

species (“Regen,” left column) and genes shared between all three species (“All,” right column). Black 

outlines denote a p < 0.05. B) Predicted upstream regulatory molecule activity based on Regen and All gene 

sets. Cells with a black outline indicate significant enrichment and predicted activity (p < 0.05 and |z| > 1).  

  



 

79 

 

Figure 3. Overlapping canonical pathway predictions characterizing regenerative and feeding 

responses and a hypothesis model for regenerative growth in snakes. Networks showing the overlap in 

genes underlying canonical pathways with predicted activity from analyses of A) DE genes shared between 

all three species and B) DE genes shared between the python and rattlesnake but not the watersnake. A 

connection between two pathways indicates that at least 50% of the genes underlying the significant 

prediction of activity in one of the pathways also underlie the prediction of the other pathway, whereas 

pathways that are not connected to any others (circles with grey outlines) do not share > 50% of the genes 

underlying their prediction with any other pathway. Dotted circles represent manual annotation of pathways 

with similar functions. C) A hypothesis model for how the integration of growth and stress response 

signaling drive regenerative growth in snakes. 



 

80 

 

Figure 4. Proteomic comparison of python and watersnake intestine following feeding. A) Numbers 

of proteins that exhibited significant changes in abundance in pairwise comparisons. B) Venn diagram of 

proteins showing significant changes in abundance between fasted and 4DPF in the python and watersnake. 

C) GO term characterization of proteins with significant changes in abundance between fasted and 4DPF 

in the python only. Asterisks denote significant enrichment of a category (p < 0.05), and terms with likely 

involvement in regeneration phenotypes are bolded. D) Upstream regulatory molecule (URM) activity 

inferred from significant changes in protein abundance between fasted and 4DPF (p < 0.1), and significant 

DE genes between fasted and 1DPF (p < 0.05). Only URMs with significantly inferred activity in the python 

from both protein and RNA data are shown.  
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Supplementary Figures 

Supplementary Figure 1. Canonical pathway and upstream regulatory molecule activation inferences 

based on comparisons of all differentially expressed genes. A) Canonical pathways enrichment of 

differentially expressed genes between fasted and 1DPF. Black outlines denote a p < 0.05. B) Predicted 

upstream regulatory molecule activity between fasted and 1DPF. Cells with a black outline indicate 

significant enrichment and predicted activity (p < 0.05 and |z| > 1). C) Canonical pathways enrichment of 

differentially expressed genes between 1DPFand 4DPF. Black outlines denote a p < 0.05. D) Predicted 

upstream regulatory molecule activity between 1DPFand 4DPF. Cells with a black outline indicate 

significant enrichment and predicted activity (p < 0.05 and |z| > 1). For each heatmap, only 

pathways/regulatory molecules that are either significant in all three species or just the two regenerating 

species (python and rattlesnake) are shown.  
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Supplementary Figure 2. Canonical pathway and upstream regulatory molecule activation inferences 

based on comparisons of 1DPF versus 4DPF RNAseq data. A) Canonical pathways enrichment of 

differentially expressed genes between fasted and 1DPF based on genes shared uniquely between the the 

two regenerating species (“Regen,” left column) and genes shared between all three species (“All,” right 

column). Black outlines denote a p < 0.05. B) Predicted upstream regulatory molecule activity based on 

Regen and All gene sets. Cells with a black outline indicate significant enrichment and predicted activity 

(p < 0.05 and |z| > 1).  
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Supplementary Figure 3. GO term overrepresentation for the 12 proteins that exhibited significant 

changes in abundance between fasting and feeding in both the python and watersnake. A) Biological 

process. B) Cellular component. C) Molecular function. Boxes with black outline denote significant 

overrepresentation (FDR < 0.05). 
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Supplementary Figure 4. Canonical pathway and upstream regulatory molecule activation inferences 

based on proteomic data. Comparison of predicted activity of A) canonical pathways and B) upstream 

regulatory molecules based on proteins with significant changes in abundance between fasted and 4DPF 

and genes significantly differentially expressed between fasted vs. 1DPF and 1DPF vs. 4DPF, filtered to 

only show pathways and molecules that are significant from both protein and RNA data but only in python, 

or significant based on both protein and RNA data in both python and watersnake. Cells with a black outline 

indicate significant predicted activity (p < 0.05).  
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Supplementary Figure 5. Correlation of RNA and protein abundance in the python and watersnake. 

Grey R2 values, p-values, and trend lines correspond to all data points (grey and colored), while black values 

and trend lines correspond to only data points in which average log2 RNA and protein abundance are greater 

than 5 and 0, respectively (colored points).  
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Supplementary Tables 

Supplementary Table 1. Sample and sequencing information for rattlesnake and watersnake small 

intestine gene expression data generated for this study. 

 

Species Time point Animal 
ID Instrument cDNA Prep 

Kit SRA Accession 

Prairie Rattlesnake                   
(Crotalus viridis viridis) 

Fasted CV1 HiSeq NEB Next SAMN12003898 
Fasted CV2 HiSeq NEB Next SAMN12003899 

 Fasted CV4 HiSeq NEB Next SAMN12003900 
 Fasted CV7 HiSeq NEB Next SAMN12003901 
 1DPF CV3 HiSeq NEB Next SAMN12003902 
 1DPF CV6A HiSeq NEB Next SAMN12003903 
 1DPF CV8 HiSeq NEB Next SAMN12003904 
 4DPF CV9 HiSeq NEB Next SAMN12003905 
 4DPF CV10 HiSeq NEB Next SAMN12003906 
 4DPF CV11 HiSeq NEB Next SAMN12003907 
 4DPF CV12 HiSeq NEB Next SAMN12003908 

Diamondback Watersnake       
(Nerodia rhombifer) 

Fasted NR1316 HiSeq NEB Next SAMN12003909 
Fasted NR1317 HiSeq NEB Next SAMN12003910 

 Fasted NR1464 HiSeq NEB Next SAMN12003911 
 Fasted NR1416 HiSeq NEB Next SAMN12003912 
 1DPF NR1357 HiSeq NEB Next SAMN12003913 
 1DPF NR1436 HiSeq NEB Next SAMN12003914 
 1DPF NR1388 HiSeq NEB Next SAMN12003915 
 1DPF NR1331 HiSeq NEB Next SAMN12003916 
 4DPF NR1442 HiSeq NEB Next SAMN12003917 
 4DPF NR1354 HiSeq NEB Next SAMN12003918 
 4DPF NR1327 HiSeq NEB Next SAMN12003919 
 4DPF NR1324 HiSeq NEB Next SAMN12003920 

 
  



 

87 

Supplementary Table 2. Read mapping statistics for all samples used in the study. 

 
Species Time Point Sample 

ID 
Number Input 

Reads 
Number Uniquely 

Mapped Reads 
% Uniquely 

Mapped Reads 
Python Fasted U25  11,140,509   7,845,947  70.43% 

  AI6a  3,409,861   2,898,451  85.00% 
  AI6b  992,739   871,455  87.78% 
  AJ6a  5,154,838   4,529,326  87.87% 
  AJ6b  2,060,920   1,837,885  89.18% 
  AJ6c  2,643,193   2,414,192  91.34% 
 1DPF W20  2,043,673   1,960,430  95.93% 
  V43  5,656,165   4,193,004  74.13% 
  Z14a  4,085,590   3,680,246  90.08% 
  Z14b  1,678,087   1,527,872  91.05% 
  Z14c  2,401,791   2,183,797  90.92% 
 4DPF Y18a  3,560,391   3,107,561  87.28% 
  Y18b  1,364,726   1,203,620  88.19% 
  Y18c  2,216,650   1,949,233  87.94% 
  Y23a  2,971,652   2,551,637  85.87% 
  Y23b  1,145,443   1,001,545  87.44% 
  Y5a  3,689,468   3,256,951  88.28% 
  Y5b  1,449,679   1,292,496  89.16% 

Rattlesnake Fasted CV2  12,730,320   9,974,214  78.35% 
  CV4  11,271,037   8,782,204  77.92% 
  CV7  8,708,873   6,947,966  79.78% 
  CV1  1,915,910   1,071,479  55.93% 
 1DPF CV6A  8,556,459   7,335,838  85.73% 
  CV8  8,248,596   6,768,378  82.05% 
  CV3  3,010,519   1,273,622  42.31% 
 4DPF CV11  9,610,524   8,174,577  85.06% 
  CV12  8,926,893   7,465,208  83.63% 
  CV9  11,594,658   10,156,595  87.60% 
  CV10  2,318,138   1,607,507  69.34% 

Watersnake Fasted NR1316  9,885,620   6,590,139  66.66% 
  NR1317  9,239,753   6,384,714  69.10% 
  NR1416  6,598,368   4,319,166  65.46% 

  NR1464  11,832,553   7,814,975  66.05% 
 1DPF NR1331  6,486,641   3,561,965  54.91% 
  NR1357  10,446,473   7,218,437  69.10% 
  NR1388  9,144,085   5,465,528  59.77% 
  NR1436  7,363,598   5,135,712  69.74% 
 4DPF NR1324  5,338,747   3,349,379  62.74% 
  NR1327  19,008,775   8,448,405  44.44% 
  NR1354  5,420,532   3,474,894  64.11% 
  NR1442  8,042,516   5,501,847  68.41% 
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Supplementary Table 3. Relevant statistics pertaining to homolog assignment via OrthoMCL. The values 

in parentheses represent the number of groups containing a single human ID and multiple human IDs, 

respectively, in the homolog groups that were not full 1-to-1. See Supplementary Methods for additional 

details. 

 
Total input genes per species:  

Human  20,182   
Python  17,985   

Rattlesnake  17,480   
Garter snake  17,524   

   
Total OrthoMCL homolog groups per species: 

Human  17,464   
Python  16,721   

Rattlesnake  14,513   
Garter snake  15,623   

   
OrthoMCL homolog groups containing all species: 

Total 9,553  
Full 1-to-1  7,151   

Not full 1-to-1  2,402  (832; 1,570) 
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Supplementary Table 4. Python and watersnake small intestine samples used to generate label-free 

quantitative proteomics data for this study. See (Andrew et al. 2015; Andrew et al. 2017) for additional 

information on python tissues. 

Species Time point Animal ID 
Burmese Python (Python molurus bivittatus) Fasted AI6 

 Fasted AJ6 

 Fasted U25 

 1DPF V43 

 1DPF S6 

 1DPF W20 

 4DPF Y5 

 4DPF Y18 
Diamondback Watersnake (Nerodia rhombifer) Fasted NR1317 

 Fasted NR1464 

 Fasted NR1416 

 1DPF NR1436 

 1DPF NR1388 

 1DPF NR1331 

 4DPF NR1442 

 4DPF NR1354 

 4DPF NR1324 
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Abstract 

Despite the extensive body of research on snake venom, many facets of snake venom systems, such as the 

physiology and regulation of the venom gland itself, remain virtually unstudied. Here, we use time series 

gene expression analyses of the rattlesnake venom gland in comparison with several non-venom tissues to 

characterize physiological and cellular processes associated with venom production and to highlight key 

distinctions of venom gland cellular and physiological function. We find consistent evidence for activation 

of stress response pathways in the venom gland, suggesting that mitigation of cellular stress is a crucial 

component of venom production. Additionally, we demonstrate evidence for an unappreciated degree of 

cellular and secretory activity in the steady state venom gland relative to other secretory tissues and identify 

vacuolar ATPases as the likely mechanisms driving acidification of the venom gland lumen during venom 

production and storage.   

Introduction  

The snake venom gland is an intriguing yet poorly understood system that holds broad potential as a model 

for studying the evolution of novel organ function and regulatory architecture, cellular responses to extreme 

physiological demands, and the production and storage of potent biological toxins. The emerging interest 

and potential utility of this system is emphasized by the recent development of snake venom gland 

organoids, an unprecedented resource for the controlled study of snake venom regulation, production, and 

general snake venom gland physiology and function (Post et al., 2020). However, despite an extensive body 

of literature focused on the products of snake venom glands (i.e. venoms and their components), and to a 

lesser degree the genes underlying snake venoms, little is known about the physiological, cellular, and 

molecular functionality of snake venom glands and how these compare to other secretory systems. The lack 

of a systems-level understanding of snake venom gland biology presents a major impediment to progress 

towards a comprehensive understanding of venom system evolution and function.  
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Our current understanding of venom gland function and physiology indicates that the process of venom 

production is impressively dynamic. Following the depletion of stored venom (i.e. via a predatory bite or 

manual venom extraction), the snake venom gland exhibits rapid and high-magnitude upregulation of 

venom gene transcription, venom protein production and processing, and secretion of venom components 

into the gland lumen (Carneiro et al., 1991; Currier et al., 2012; Kochva et al., 1980; Mackessy, 1991). 

Aspects of this process have been described through microscopy, proteomic, and gene expression ((Currier 

et al., 2012; Kerchove et al., 2004, 2008a; Mackessy and Baxter, 2006; Yamanouye et al., 2000), including 

some broad characterization of non-venom gene expression (Rokyta et al., 2012; Schield et al., 2019). 

While these studies have provided insight into venom gland function, their focus has been on processes 

immediately associated with venom production (i.e. regulation of venom genes and secretion of venom 

components). Accordingly, a systems-level understanding of the cellular processes that comprise the 

physiological environment in which venom production occurs remains incompletely characterized. For 

example, the high demands of gene regulation, protein processing and venom protein production places 

extreme demands and stress on venom gland epithelial cells. This would necessitate the activation of 

cellular stress response mechanisms to facilitate successful venom production while preventing damage to 

protein products, cells or the venom gland tissue. It is therefore expected that the extreme demands placed 

on venom gland tissue during venom production are associated with similarly extreme cellular physiology 

to accommodate extreme cellular and physiological performance, yet this has not been examined in 

previous studies.   

In addition to unique physiology and functionality associated with the upregulation of venom production 

following venom depletion, the steady-state venom gland is tasked with housing an abundance of highly 

toxic venom components in a manner that protects the venom gland and surrounding tissue from the 

biological activity of venom components while keeping stored venom stable. Previous studies have shown 

that acidification of the venom bolus in the gland lumen inhibits venom enzymatic activity during storage 
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and thus plays an important role in self-protection against harmful effects of venom and stabilization of 

venom proteins (Mackessy and Baxter, 2006). It has been proposed that this acidification is driven by 

populations of mitochondria-rich cells with morphological and histochemical features similar to parietal 

cells in mammals, which are responsible for secretion of gastric acid (Mackessy and Baxter, 2006). 

However, the exact molecular mechanisms underlying venom gland acidification remain unexplored.  

In this study, we use gene expression data from multiple sampled timepoints from the venom gland of the 

Prairie Rattlesnake (Crotalus viridis) to facilitate the first detailed analysis of physiological and cellular 

pathways associated with the rapid and high-magnitude shifts in activity and function of the snake venom 

gland during venom production. These analyses include both broad characterization of regulatory pathways, 

molecules, and analysis of differentially expressed genes, as well as targeted dissection of cellular stress 

response mechanisms that may play an underappreciated role facilitating venom production. We also 

conduct comparisons of venom gland gene expression to that of multiple non-venom secretory tissues to 

highlight physiological and functional distinctiveness of the venom gland, including detailed analysis of 

molecular mechanisms driving venom gland lumen acidification.  

Materials and Methods 

Generation of mRNA-seq data  

Venom gland tissue samples were generated previously (Schield et al., 2019) 

. In brief, venom was manually expressed from one of the two venom glands of an adult male Prairie 

Rattlesnake, and the second venom gland was expressed 2 days later. One day later, the animal was 

humanely euthanized and venom gland tissues were dissected out and immediately snap frozen in liquid 

nitrogen. This process resulted in both a one day post-extraction (DPE) and three DPE venom gland tissue 

sample from the same animal. Unextracted venom gland, skin, pancreas, and stomach tissue was dissected 
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from an additional male individual and frozen in liquid nitrogen. Total RNA was extracted from all tissue 

samples using Trizol Reagent (Invitrogen) and isopropanol. Four and two technical replicates were 

extracted for each venom gland and body-tissue treatment, respectively. Illumina mRNAseq libraries 

generated using poly-A selection and sequenced at Novogene on an Illumina NovaSeq platform using 150 

bp paired-end reads.  

mRNA-seq processing and pairwise analysis 

Raw RNAseq data was quality-trimmed and filtered using Trimmomatic v0.33 (Bolger et al., 2014) and 

mapped to the Prairie Rattlesnake reference genome using STAR v2.5.2b (Dobin et al., 2013). Raw read 

counts were generated with featureCounts v1.6.3 (Liao et al., 2013). Count normalization and pairwise 

comparisons between unextracted and 1DPE venom gland, 1DPE and 3DPE venom gland, and body tissue 

and unextracted venom gland were conducted in DeSeq2 v1.26.0 (Love et al., 2014), and resulting p-values 

were corrected using independent hypothesis weighting (IHW) using baseMean from DeSeq2 as the 

covariate (Ignatiadis et al., 2016). Differentially expressed genes were defined as those with IHW p-value 

< 0.05.  

Inferences of regulatory pathway ad molecular activity and analysis of overrepresented 

functional groups 

Venom genes have been previously curated and annotated in the Prairie Rattlesnake reference genome 

(Schield et al., 2019), Annotated venom genes were excluded from subsequent analyses that focus on non-

venom gene regulation. Differentially expressed non-venom genes were then assigned an orthologous 

human gene identifier using orthology tables generated previously (Perry et al., 2018). To infer broad 

patterns of regulatory pathway and molecule activity, differentially expressed genes were then analyzed 

using Core Analysis in Ingenuity Pathway Analysis (IPA) (Krämer et al., 2013). In the Core Analysis 

results, the following categories of canonical pathways were excluded: cancer, cardiovascular signaling, 
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cellular immune response, disease-specific pathways, humoral immune response, Ingenuity Toxicity List 

Pathways, neurotransmitters and other nervous system signaling, pathogen-influenced signaling, and 

xenobiotic metabolism. Upstream regulatory molecule results were filtered by molecule type to include 

only genes, RNAs and proteins. Inferences of canonical pathway and upstream regulatory molecule activity 

with an overlap p-value < 0.05 and absolute activation z-score > 1 were considered significant. To 

characterize functional groups of differentially expressed genes further, gene ontology (GO) analyses were 

performed specifically on sets of genes upregulated in the unextracted venom gland relative to non-venom 

tissues, and for those upregulated in 1DPE relative to unextracted venom gland tissues. GO terms with 

significant overrepresentation in these gene sets were determined using the ClueGO plugin v2.5.6 (Bindea 

et al., 2009) for Cytoscape v3.7.2 (Shannon et al., 2003) using a right-sided hypergeometric test of 

enrichment with default p-value correction, using all genes that met DeSeq2 input cutoffs. Terms with a 

corrected p-value < 0.05 were considered significantly enriched. Networks of enriched GO terms were 

further manually characterized and grouped based on similarity of function, tissue, or cellular process.  

Mechanisms of venom gland acidification 

To investigate potential mechanisms driving venom gland acidification, we first compared gene expression 

for a set of candidate genes annotated with the “pH reduction” GO term (GO: 0045851) to identify genes 

with evidence of informative upregulation in the venom gland relative to other secretory tissues and/or 

during venom production.  

To validate inferences related to the roles of H+/K+ versus vacuolar ATPases in driving venom gland 

acidification, we performed Western immunoblot analyses and immunohistochemical staining of gastric 

and venom gland membranes. Stomach and venom gland tissues were dissected from an adult Prairie 

Rattlesnake, and epithelial cells were harvested after removal of connective tissue and fascia. Epithelial 

tissues were then minced on an ice-chilled glass plate prior to homogenization in 3 ml 10 mM PIPES/tris 
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buffer pH 7.4 with 2mM ethylenediaminetetraacetic acid (EDTA) and 2 mM ethylene glycol-bis(2-

aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA) at 1500 rpm on ice. The remaining muscle and 

connective tissue was then removed by centrifugation at 3K rpm for 10 min at 4 oC. The resulting 

supernatant was layered onto 42% sucrose (w/v) in PIPES/tris buffer and overlaid with 5% sucrose. The 

samples were then centrifuged at 25K rpm for 90 min. at 4 oC in an SW28 swing rotor in a Beckman L8-

70 ultracentrifuge. The membrane fraction, located at the interface of the 42 and 5% sucrose layers, was 

removed with a Pasteur pipette, transferred to a new centrifuge tube and topped with PIPES/tris buffer. 

Protein-containing membrane fractions were then pelleted by centrifuging at 34K rpm for 45 min at 4 oC. 

Following aspiration of the supernatant, the pellet was resuspended in tris/pipes buffer. Quantification of 

protein in membrane fractions was accomplished by a modified Lowry method utilizing the BCA Modified 

Lowry reagent from Promega (Madison, WI.). This material was then utilized (undiluted) for Western blots.  

Thirty µl of each undiluted sample were run on a 7.5% acrylamide SDS-tricine reducing gel and transferred 

onto nitrocellulose membranes as described previously (Smith and Mackessy, 2016). Non-specific binding 

was blocked by incubating membranes in 10 ml 5% nonfat milk in PBS-tween20 (20% w/v) for 30 min. 

The blots were then incubated in 10 ml blocking solution with 1:2000 (v/v) primary antibody for 1 hr at 

RT; ATPAL1 was at 5.0 µg/µl and αH56 was in 100% mouse serum. The polyclonal ATPAL1 (designed 

against a C-terminal epitope of the gastric H+/K+-ATPase) and αH56 (designed against the 56kDa subunit 

of the vacuolar H+-ATPase) antibodies were used to test for the presence of H+/K+ ATPases and vacuolar 

ATPases, respectively, in gastric and venom gland membrane preparations (Granger et al., 2002; Mercier 

et al., 1993). Subsequently, the blots were washed for 3 x 15 min in PBS-tween and placed in 10 ml blocking 

solution with 1:20K secondary antibody. Following incubation at RT for 1 hr, the blots were again washed, 

incubated in 10 ml Supersignal West Pico chemiluminescent substrate solution (Pierce, Rockville, IL.) for 

5 min at RT and exposed to high performance chemiluminescence film (Amersham International, 

Buckinghamshire, England).  
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Separately, main venom glands were fixed in 3.7% PBS-buffered formalin prior to being imbedded in 

paraffin wax and sectioned by microtome. The slides were dewaxed in xylene and rehydrated in an ethanol 

series, followed by PBS. To reduce background fluorescence during confocal microscopy, the antigen 

retrieval system (Dako Corp., Carpentaria, Ca.) was employed. The samples were then blocked with Dako 

Protein Block Serum and incubated overnight at 4 oC with 1:1000 mouse serum containing the αH56 

polyclonal antibody. After washing 3x in 100 mM phosphate buffer (PB) pH 7.4, the secondary antibody 

(anti-mouse IgG conjugated to tetramethylrhodamine isothiocyanate (TRITC) in PB) was added to the 

samples and incubated for 1 hr in the dark at RT. The slides were then washed 3x in PB and mounted with 

Dako mounting medium. The labeled venom gland section was then visualized using a Zeiss LSM 550 

confocal microscope with an excitation wavelength of 552 nm and long pass emission at 575 nm.  

Results 

Timing and variation in snake venom gene expression 

Because previous gene expression studies on venom glands have primarily focused specifically on 

expression of venom genes, we first analyzed patterns of venom gene expression to illustrate the degree of 

upregulation of venom gene production following venom depletion. At 1DPE, average expression of major 

venom genes is significantly upregulated (Fig. 1b) to the extent that venom gene expression dwarfs that of 

non-venom genes at a genome-wide scale (Fig. 1c). For nearly all of these venom genes, expression 

decreases between 1DPE and 3DPE, although expression remains elevated during this interval relative to 

the expression in unextracted venom gland for most venom genes (Fig 1b). In contrast, venom genes are 

not expressed at notable levels in the three sampled body tissues (Fig. 1b). 

Differential expression of all non-venom genes across time points 

To characterize the full cellular and physiological response of the venom gland during venom production, 

we focused on analyses of differentially expressed genes that are not known venom genes (Fig. 2). Between 
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the unextracted venom gland and 1 DPE venom gland samples, we identified 2,589 differentially expressed 

non-venom genes, roughly half of which are upregulated (1,322 genes). Comparatively few genes are 

differentially regulated between 1 and 3 DPE, with only 100 genes differentially expressed, 54 of which 

were upregulated (Fig. 2a). Given the small number of differentially expressed genes between 1 and 3DPE, 

we focused on the unextracted versus 1DPE and unextracted versus non-venom tissues gene sets in 

downstream functional inferences.  

Regulatory mechanisms associated with venom gland physiology during venom production  

To characterize molecular mechanisms involved in gland physiology during venom production, we 

performed Core Analysis in Ingenuity Pathway Analysis on the 2,589 genes that showed significant 

differential expression between unextracted and 1DPE venom gland tissue (Fig. 2a-c). Core Analysis 

separately infers relative changes in regulatory activity of both canonical pathways and upstream regulatory 

molecules (URMs) based on observed patterns of differential gene expression. We separately performed 

GO term overrepresentation analysis to identify functional categories of genes that were enriched in genes 

that were upregulated during venom production (Fig. 2d). Together, these analyses highlight three distinct 

categories of molecular regulatory activity in the venom gland during venom regulation (Fig. 2). 

All functional analyses of gene expression during venom production provide evidence for activation of 

stress response mechanisms (Fig. 2b-d). Four of the six canonical pathways inferred to have increased 

activity at 1DPE are stress response pathways. These include the endoplasmic reticulum stress response 

and unfolded protein response pathways, which are associated with mitigating cellular stress caused by 

misfolded proteins and high demands for protein processing, as well as two DNA damage checkpoint 

regulation pathways that act to prevent replication of cells that have accumulated significant DNA damage 

(Fig. 2b). Activation of stress response mechanisms is also emphasized in inferences of URM activity, in 

which endoplasmic reticulum to nucleus signaling 1 (ERN1, a.k.a. IRE1) and activating transcription factor 
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6 (ATF6), two of the three primary stress sensors that lead to activation of the unfolded protein response, 

are inferred to be activated (Fig. 2c). Further, x-box binding protein 1 (XBP1), a transcription factor 

activated by IRE1 in response to ER stress that subsequently upregulates genes associated with protein 

folding and degradation, is inferred to have the highest increase in activity among URMs between 

unextracted and 1DPE venom gland samples (Fig. 2c). Two additional stress related URMs are inferred as 

activated during venom production, including nuclear factor erythroid 2 like 2 (NFE2L2, a.k.a. NRF2), a 

high-level regulator of the NRF2 oxidative stress response pathway, and STIP1 homology and u-box 

containing protein 1 (STUB1), which targets misfolded proteins for degradation (Fig. 2c). Similarly, GO 

term analysis of significantly upregulated genes between unextracted and 1DPE show overrepresentation 

of several terms related to cellular stress responses, including “response to topologically incorrect protein” 

and terms related to the proteasome complex (Fig. 2d). 

Multiple pathways and URMs related to cellular growth and proliferation, cell cycle regulation and tumor 

suppression are also inferred to be activated during venom regulation (Fig. 2b,c). The PTEN signaling 

pathway, which negatively regulates cell growth and proliferation, increases significantly in activity at 

1DPE (Fig. 2b), along with URMs involved in regulation of cellular growth and proliferation, including 

insulin like growth factor 2 (IGF2), insulin receptor (INSR) and phosphoinositide-3-kinase regulatory 

subunit 1 (PIK3R1; Fig. 2c). Additional URMs with high estimated increases in activity during venom 

production include sterol regulatory element binding transcription factor 1 (SREBF1) and hydrocarboxylic 

acid receptor 2 (HCAR2), which are involved in lipid signaling and metabolism; ATPase copper 

transporting beta (ATP7B), IκB kinase, an upstream regulator within the Nf-κB signaling pathway; and 

transcription factor EB (TFEB), a regulator of lysosome biogenesis and pro-autophagy signaling, among 

others (Fig. 2c). 

We also find broad evidence of pathways, regulators and functional groups of genes associated with the 

pronounced secretory function of the venom gland during venom production. These include the RAN 
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signaling pathway, which is inferred to have the highest degree of activation at 1DPE (Fig. 2b) and is 

involved with nuclear transport of proteins and RNAs, as well as numerous enriched GO term categories 

associated with the processes of transcription, translation, protein transport, modification, and metabolism 

(Fig. 2d). 

Steady-state regulatory mechanisms that differentiate the venom gland from other tissues 

To characterize the physiological and regulatory distinctiveness of the venom gland at a steady state, we 

identified regulatory mechanisms and enriched categories of differentially expressed genes from 

comparisons between the unextracted venom gland and a group of other secretory organs (pancreas, skin, 

and stomach), and compared these to inferences of regulatory activity during venom production (Fig. 3). 

We identified 8,032 significantly differentially expressed genes, of which 3,134 are upregulated, in the 

unextracted venom gland tissue relative to body tissues (Fig. 3a). A total of 1,688 differentially expressed 

genes are identified both in pairwise comparisons of unextracted venom gland to body tissues and 

unextracted venom gland to 1DPE venom gland (Fig. 3a).  

This analysis showed evidence for high activity of cellular stress response mechanisms in the unextracted 

venom gland relative to non-venom secretory tissues (Fig. 3b-d). The unfolded protein response and 

endoplasmic reticulum stress pathways, both of which showed evidence of activation during venom 

production, are here inferred to be activated to a greater degree in the unextracted venom gland relative to 

body tissues (Fig. 3b), indicating that these pathways exhibit a high baseline activity in the steady-state 

venom gland and are further upregulated during venom production. Similar to inferences during venom 

production, XBP1 and ERN1 (IRE1) are inferred to be relatively active in the venom gland compared to 

non-venom body tissues, as well as eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3, a.k.a. 

PERK), another high-level regulator within the unfolded protein response (Fig. 3c). Overrepresented GO 

terms include “response to endoplasmic reticulum stress” and other terms related to responses to misfolded 
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proteins (Fig. 3d), indicating a relatively high degree of endoplasmic reticulum stress in the unextracted 

venom gland relative to other secretory tissues. 

Several pathways and URMs involved in tumor suppression, cell cycle regulation, and regulation of cellular 

growth and proliferation are relatively highly active in the unextracted venom gland, and these are largely 

exclusive of regulatory mechanisms implicated in venom production. For example, while PTEN is inferred 

to be upregulated both in this analysis and during venom production, pathways including protein kinase A 

signaling, PPAR signaling and Wnt/β-catenin signaling pathways are uniquely activated in the unextracted 

venom gland (Fig. 3b). Further, while multiple URMs broadly involved in insulin-related growth signaling 

(i.e. IGF2, INSR, and PI3KR1) show evidence of activation during venom production, these URMs are not 

observed in the unextracted venom gland and instead two fibroblast growth factor (FGF) transcription 

factors show evidence of activation. Additional URMs with inferred activation in the unextracted venom 

gland include Ras-related protein Rab-1B (RAB1B), a regulator of intracellular vesicle transport between 

the ER and Golgi, which is also activated during venom production (Fig. 3c). 

Analyses of GO terms identified a substantially greater number of overrepresented terms in this analysis 

compared to those during venom production that were directly associated with secretory machinery of the 

venom gland, including many associated with the activity of the endoplasmic reticulum and Golgi, 

intracellular transport via vesicles, and protein folding, export, and metabolism (Fig. 2d, 3d). In contrast, 

fewer terms associated with regulation of transcription and translation are overrepresented in this set of 

genes upregulated in the unextracted venom gland relative to other secretory tissues (Fig. 2d, 3d).  

Detailed analysis of unfolded protein response activity in the snake venom gland 

Our analyses of the venom gland both in an unextracted and post-extracted state consistently infer activation 

of stress response mechanisms, and primarily those of the unfolded protein response (UPR; Figs. 2, 3). To 

better understand the activation of this pathway, we characterized all genes, URMs, and specific 
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components of the UPR pathway that are activated in the venom gland (Fig. 4). Pairwise comparisons 

between the unextracted venom gland and body tissues yielded the largest number of differentially 

expressed genes involved with the unfolded protein response pathway, the majority of which are 

upregulated in the venom gland relative to other secretory tissues (Fig 4a). A subset of these genes is further 

differentially expressed at 1DPE with the majority upregulated, and only three are differentially expressed 

between 1 and 3DPE (Fig 4a). Notably, all three of the primary high-level regulators of the UPR - PERK 

(EIF2AK3), IRE1 (ERN1), and ATF6 – are upregulated in the unextracted venom gland relative to other 

secretory tissues (Fig. 4a,b). These analyses also suggest activation of the NRF2 oxidative stress response 

pathway in unextracted and 1DPE venom gland tissue given the inferred activation of its primary regulator, 

NFE2L2 (Fig. 4).  

Consistent with the prevalence of overrepresented GO terms related to ER stress response and protein 

degradation, many genes involved in endoplasmic reticulum associated protein degradation (ERAD) are 

significantly upregulated in the venom gland (Fig. 4b). Additionally, both the inferred activation of SREBP 

transcription factor as a URM as well as the observed upregulation of its constituent genes (SREBF1 and 

SREBF2) indicate potential crosstalk between the UPR and lipid signaling mechanisms and pathways (such 

as PPAR signaling) that are separately inferred to exhibit unique patterns of activity in the venom gland 

(Fig. 4b). 

Candidate gene analysis of venom gland acidification 

While previous studies have demonstrated that acidification of the venom gland lumen plays an important 

role in venom storage, our initial analyses did not identify clear links to mechanisms associated with 

acidification beyond overrepresentation of the “phagosome acidification” term in analyses of the 

unextracted venom gland versus other secretory tissues (Fig. 3d). We performed additional post hoc 

characterization of 57 candidate genes annotated with the gene ontology term “pH reduction” 

(GO:0045851) to identify genes with potential roles in venom gland acidification. Of these candidate genes, 
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35 exhibited a detectable degree of expression in our gene expression dataset, 26 of these are significantly 

upregulated in the unextracted venom gland relative to non-venom body tissues, and six are upregulated 

between unextracted and 1DPE venom gland samples (Fig. 5a, Supp. Fig. 1). The majority of significantly 

upregulated genes are vacuolar-ATPases (V-ATPases), and ATP6V1C2 in particular shows the greatest 

degree of upregulation in the unextracted venom gland relative to other secretory tissues (Fig. 5a). Notably, 

all six candidate genes with significant upregulation during venom production are components of V-

ATPases (Fig. 5a, Supp. Fig. 1). In contrast, ATP4B, a major component of proton pumps driving gastric 

acid secretion, was not found to be upregulated in the venom gland relative to other secretory tissues, and 

instead shows high expression in the stomach only (Fig. 5a).  

Western blots and immunohistochemical staining on total proteins extracted from Prairie Rattlesnake 

gastric and venom gland membranes were used to validate inferences of a role of V-ATPases in driving 

venom gland acidification (Fig. 5 b-d). Western blots using polyclonal ATPAL1 antibody show a high 

prevalence of gastric H+/K+ ATPases in rattlesnake gastric membrane only, with no detectable presence in 

the venom gland (Fig. 5b). Conversely, Western blots using αH56 antibody show prevalence of V-ATPases 

in both gastric and venom gland tissues (Fig. 5c), consistent with gene expression data, and 

immunohistochemical staining demonstrates that V-ATPases are concentrated in mitochondria-rich cells in 

the venom gland secretory epithelium (Fig. 5d). 

Discussion 

This study provides new insight into the dynamic physiology of the snake venom gland and the molecular 

mechanisms associated with the secretory demands placed on this organ during venom production. We 

show that the depletion of venom in the rattlesnake venom gland is met with differential regulation of 

thousands of non-venom genes that orchestrate a complex suite of regulatory responses to support venom 

production, highlighting the complexity of this process. Our inferences provide the first detailed molecular 
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characterization of this response, including regulatory mechanisms driving secretory function and epithelial 

maintenance, and highlight a role of cellular stress response activation during venom production. 

Characterization of the unextracted venom gland gene expression programs compared to other secretory 

tissues suggests unique activation of additional signaling mechanisms associated with cell growth, survival, 

and extreme secretory capacity, as well as further evidence for stress response activation, in the venom 

gland. Our results also provide new evidence for mechanisms of venom lumen acidification that maintains 

venom toxins in an inactive form during storage prior to envenomation.  

Comparisons of gene expression between unextracted and 1 DPE venom gland tissues identified over 2,500 

non-venom genes that are differentially expressed within 24 hours of venom depletion (Fig. 2a), 

emphasizing that venom production entails a complex and highly regulated process necessitating the 

activation of a large coordinated gene expression response to facilitate production of a comparatively small 

number of venom components. These genes are inferred to drive peripheral physiological and cellular 

processes that are likely central to cellular and physiological shifts necessary to facilitate venom production, 

including the upregulation of regulatory pathways, molecules and genes involved in protein production, 

transport, and export. This response also includes suites of genes associated with cellular stress response, 

pro-survival and cell cycle regulation, and cellular growth and proliferation signaling (Fig. 2). In particular, 

the high number and magnitude of inferences related to stress response activation imply an important 

balance between upregulated cellular activity to replenish venom stores rapidly and the mitigation of 

resulting cellular stress to prevent DNA damage, apoptosis, and cellular dysfunction. Activated cell growth 

and proliferation signaling may also be indicative of epithelial cell turnover and general epithelial 

maintenance, which would further compound cellular stress during venom production. Collectively, these 

findings indicate that the extreme performance of the venom gland during venom production necessitates 

the activation of stress response mechanisms, and that cellular stress may be an important and unappreciated 

constraint in the evolution and function of venom systems.  
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Evidence for the extreme physiological regulation of the venom gland during venom production raise 

questions about what broad physiological and regulatory mechanisms may distinguish the snake venom 

gland from other body tissues and secretory organs. Similar to analyses of venom production, inferences of 

pathway and regulatory molecule activation in the unextracted, steady-state venom gland relative to other 

secretory tissues include mechanisms of cellular stress response, and primarily those related to the UPR 

(Fig. 3b-d). We also find evidence for the activation of a largely discreet set of pathways and molecules 

broadly involved in cellular growth and proliferation, lipid metabolism, and cell cycle regulation compared 

to those activated during venom production (Fig. 3b,c), suggesting that a distinct suites of regulatory 

pathways drive general epithelial maintenance during this steady state. The PTEN signaling pathway, which 

typically acts to negatively regulate cell proliferation, was inferred to be activated to a relatively high degree 

in both analyses of venom production and the comparison between venom and non-venom tissues, 

suggesting that regardless of the state of venom gland activity, cell proliferation is monitored and controlled 

more so than in other secretory tissues.  

Functional characterization of genes upregulated in the venom gland compared to other secretory tissues 

identified overrepresentation of terms related to cellular secretory function and machinery (i.e. related to 

endoplasmic reticulum, Golgi, vesicle transport, protein processing components or function) and responses 

to endoplasmic reticulum stress and unfolded proteins (Fig. 3d). Together with evidence of activated 

regulatory mechanisms, these findings appear to indicate a higher degree of cellular and secretory activity 

occurring in the unextracted venom gland than previously predicted (Mackessy and Baxter, 2006). 

Alternatively, evidence of heightened regulatory activity and cellular secretory function in the steady state 

venom gland may represent physiological adaptations of the gland to maintain a primed highly responsive 

steady state that facilitates venom production to respond rapidly to venom depletion.   

All of our analyses emphasize an important role of stress response mechanisms in the snake venom gland. 

Notably, the venom gland exhibits a high baseline level of activated stress response mechanisms compared 
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to other secretory tissues. This suggests that the storage of venom in the venom gland may induce elevated 

levels of cellular stress, and may additionally suggest that the venom gland ‘steady-state’ may actually 

involve active maintenance of venom stores via low constitutive levels of venom production, further 

evidenced by elevated venom gene expression in the unextracted gland (Fig. 1). While previous studies 

have found little evidence for turnover of venom components during storage prior to depletion (Kochva et 

al., 1982; De Lucca et al., 1974; Mackessy and Baxter, 2006; Rotenberg et al., 1971), and it is unclear to 

what extent observed mRNA expression corresponds to venom protein production, our results raise the 

possibility that a degree of venom production is constitutive and ongoing at all times.  

Previous studies have shown that acidification of the venom gland lumen inhibits venom activity and thus 

plays an important role in self-protection against the venom activity during storage (Mackessy and Baxter, 

2006). However, the mechanisms of venom gland acidification and how they relate to mechanisms of 

acidification in other tissues is unknown. In mammalian parietal cells, acidification is driven by hydrogen 

potassium ATPase proton pumps encoded by the genes ATP4A and ATP4B (Rabon and Reuben, 1990), 

which act to secrete hydrochloric acid into the stomach lumen. In the rattlesnake venom gland, ATP4B 

exhibited high expression in the stomach as expected, but low expression in venom gland tissues, pancreas, 

and skin (Fig. 5), suggesting that hydrogen potassium ATPase pumps are not involved in venom gland 

acidification. Instead, analysis of candidate genes involved in proton transmembrane transport identified 

significant upregulation of multiple V-ATPases (Fig. 5) that, while typically associated with acidification 

of secretory vesicles (Nishi and Forgac, 2002), drive luminal acidification in some tissues (Breton and 

Brown, 2007; Brown et al., 1988, 1992; Pamarthy et al., 2018). Western blots of rattlesnake stomach and 

venom gland membranes confirm the lack of gastric ATPases and abundance of V-ATPases in the venom 

gland, and immunohistochemical staining for V-ATPases indicate that V-ATPases are concentrated in 

mitochondria-rich cells present in the venom gland epithelium. Collectively, these findings strongly 

indicate a role of V-ATPases in the direct acidification of the venom gland lumen, and support previous 



 

107 

inferences that mitochondria-rich cells in the venom gland epithelium are the primary drivers of gland 

acidification. 

This study provides a valuable perspective on the complex nature of venom gland physiology in the Prairie 

Rattlesnake, and we expect that many aspects of our findings are likely applicable to snake venom gland 

physiology in general. However, the high degree of variation in venom phenotypes observed both among 

conspecific populations and between venomous snake species raises the question of whether there exists 

corresponding variation in specific aspects of venom gland physiology and function. Future studies that 

incorporate greater replication both within and across species will be vital to develop a comprehensive 

understanding of venom gland physiology, regulation, and evolution across the diversity of venomous 

snakes.   

Conclusion 

Snake venom systems have emerged as an important model for addressing a broad array of biological, 

evolutionary and biomedical questions. Our analyses of the underlying physiological regulation of venom 

gland function provide new insight into the extreme cellular “environment” in which venom production 

takes place, highlighting that the venom gland itself may be as interesting a model system as the venoms it 

produces. Evidence for the broad coordination of physiological and cellular programs that accompany 

venom storage and production illustrate the complexity of regulatory systems that have co-evolved to 

enable venom gland function. These findings raise intriguing questions about co-evolution of these 

pathways with venom itself, and whether variation in venom phenotypes across species corresponds with 

nuanced differences in venom gland physiology and function. Our findings also raise the question of 

whether particular signaling responses related to venom gland physiological regulation are also coupled to 

regulation of venom – a process that remains poorly understood (Kerchove et al., 2008a; Post et al., 2020; 

Schield et al., 2019; Yamanouye et al., 2000).  
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Our analyses of the physiological functions of snake venom glands consistently emphasize a central role of 

stress response pathways in mediating cell stress and enabling extreme cellular performance. Beyond the 

venom gland, snakes are important models for other extreme physiological responses, including exceptional 

physiological upregulation, metabolic fluctuation, and organ regenerative growth upon feeding (Andrew et 

al., 2017; Perry et al., 2019). Intriguingly, previous studies of molecular mechanisms underlying this post-

feeding regenerative growth in snakes have also suggested an important role of stress responses during 

extreme bouts of growth and regeneration, including those identified in this study (e.g., UPR, NRF2 

(Andrew et al., 2017; Perry et al., 2019)). This raises the question of whether stress response activation may 

play a broadly important role in the evolution of diverse physiological adaptations in snakes.   
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Figures 

 

 

Figure 1. Experimental design and venom gene expression. A) Overview of experimental design, 

highlighting the three pairwise comparisons used to characterize features of venom gland physiology. B) 

Expression of major venom genes across sampled timepoints and in non-venom tissues. C) Genome-wide 

view of gene expression in the rattlesnake venom gland at one day post-extraction (1DPE), with the red 

line indicating the ratio of expression between 1DPE venom gland and non-venom tissues. Major venom 

gene clusters (labeled) are easily distinguishable given their high magnitude of expression.  
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Figure 2. Functional characterization of gene expression in the venom gland during venom 

production. A) Gene expression heatmap of all genes showing significant differential expression between 

unextracted vs. 1DPE and 1DPE vs. 3DPE pairwise comparisons. The total number of differentially 

expressed (DE) genes, as well as the number up- and downregulated, in each comparison is shown above 

the heatmap. B) Inferences of activated canonical pathways based on differentially expressed genes 

between unextracted and 1DPE venom gland tissues. C) Inferences of activated upstream regulatory 

molecules (URMs) based on differentially expressed genes between unextracted and 1DPE venom gland 

tissues, with post-hoc categorization based on known activity of URMs. D) Significantly enriched GO terms 

of genes significantly upregulated at 1DPE. All terms shown are significantly enriched (p < 0.05), and node 

size is inversely proportional to enrichment p-value, with larger nodes having a lower p-value. Connected 

nodes indicate a high proportion of shared genes underlying term enrichment. E) Overview of proposed 

roles of stress response activation in facilitating venom production and epithelial maintenance in the venom 

gland. 
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Figure 3. Functional characterization of gene expression in the venom gland relative to other non-

venom secretory tissues. A) Venn diagram denoting shared and unique genes between all pairwise 

comparisons. B) Inferences of activated canonical pathways based on differentially expressed genes 

between non-venom tissues and the unextracted venom gland (green), with inferred activity in analyses of 

unextracted versus 1DPE venom gland tissues shown in grey if present. C) Top 25 inferences of activated 

URMs based on differentially expressed genes between non-venom tissues and the unextracted venom 

gland (green), with inferred activity in analyses of unextracted versus 1DPE venom gland tissues shown in 

grey if present. D) Significantly enriched GO terms of genes significantly upregulated in the unextracted 

venom gland relative to body tissues. All terms shown are significantly enriched (p < 0.05), and node size 

is inversely proportional to enrichment p-value, with larger nodes having a lower p-value. Connected nodes 

indicate a high proportion of shared genes underlying term enrichment.  
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Figure 4. Details of unfolded protein response activation in the venom gland. A) heatmap of inferred 

upstream regulatory molecule activity (top) and observed differential expression of genes involved in the 

unfolded protein response (bottom), B) Diagram of the unfolded protein response pathway overlaid with 

observed patterns of differential gene expression in the unextracted venom gland relative to other non-

venom tissues, with red indicating upregulation, blue indicating downregulation, and darker colors 

indicating a higher magnitude change in expression. 
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Figure 5. Vacuolar-ATPases are likely mechanisms driving venom gland acidification. A) gene 

expression heatmap of ATPase genes annotated with the “pH reduction” GO term, with circles on the right 

side indicating significant differential expression in the two focal pairwise comparisons. B-C) Western 

blots testing for the presence of B) gastric H+/K+ ATPases (cropped from a single gel and membrane) and 

C) vacuolar ATPases in rattlesnake stomach and venom gland membranes (cropped from a single 

gel/membrane), with rat gastric membranes used as a positive control (cropped from a separate 

gel/membrane). No manipulations beyond cropping were applied to raw images. D) Immunohistochemical 

staining showing an abundance of vacuolar-ATPases in mitochondria-rich cells in the venom gland 

epithelium (marked by arrows) at I) 20x, II) 40x, and III-IV) 100x resolution. 
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Supplementary Figures 

Supplementary Figure 1. Gene expression heatmap of full set of genes annotated with the “pH reduction” 

GO term, with circles on the right side indicating significant differential expression in the two focal pairwise 

comparisons. 
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Abstract 

Snake venom systems offer a valuable model for understanding the evolution of novel regulatory machinery 

that drives tissue-specific expression in a highly specialized organ, the venom gland. Here we use multiple 

functional genomics approaches in the first comprehensive characterization of regulatory mechanisms that 

coordinate the production of venom in the Prairie Rattlesnake (Crotalus viridis). We identify key regulatory 

sequences for major venom gene families and transcription factors and signaling cascades involved in 

venom regulation. We also detect topologically associated domains, CTCF loops, and features of chromatin 

architecture as mechanisms enabling venom gene families to be regulated independently of one another 

through family-specific transcription factors and regulatory architecture. Our findings further reveal diverse 

genomic processes that have led to the establishment of novel venom regulatory networks, including tandem 

duplication of genes and regulatory sequences, cis-regulatory sequence seeding by transposable elements, 

and diverse transcriptional regulatory proteins controlled by a master regulatory cascade. 
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Introduction 

Understanding processes that underlie the evolution of novel traits has been a long-standing challenge in 

biology (Wagner and Lynch, 2010). The evolution of novel traits often involves major changes in gene 

regulatory architecture which may involve the evolution of new regulatory sequences and the co-option or 

“rewiring” of existing networks and trans-activating factors, or a combination of these (Babu et al., 2004; 

Teichmann and Babu, 2004; Wagner and Lynch, 2010). Snake venom systems are an ideal model to 

understand how novel regulatory systems evolve and function (Casewell et al., 2012, 2013; Zancolli and 

Casewell, 2020) due to the tractable size of venom gene families that comprise venom and the direct 

relationships to phenotype and fitness (Holding et al., 2016; Rokyta et al., 2015). At the core of snake 

venom systems is a highly specialized secretory organ – the venom gland (Kochva et al., 1980; Mackessy, 

1991; Mackessy and Baxter, 2006; Perry et al., 2020). Within this gland, multiple venom gene families 

contribute proteins to a venom bolus that is injected during a bite (Mackessy, 2021). Despite an extensive 

body of literature on snake venoms, the mechanisms and evolution of snake venom gene regulation remain 

poorly understood. To date, studies have implicated various transcription factors and signaling pathways 

that may play a role in particular species and venom gene families, but no studies have identified 

comprehensive mechanisms that explain venom regulation (Hargreaves et al., 2014a, 2014b; Junqueira-de-

Azevedo et al., 2015; Kerchove et al., 2004, 2008b; Margres et al., 2021; Schield et al., 2019). Previous 

studies have identified a small number transcription factors with potential roles in the regulation of 

particular venom gene families, including AP-1, NF-kB, and Fox-, NF1- and GRHL-family members (Luna 

et al., 2009; Margres et al., 2021; Nakamura et al., 2014; Schield et al., 2019). Others have implicated the 

high-level regulatory involvement of alpha- and beta-adrenergic receptors and downstream signaling 

through the ERK/MAPK pathway in venom production based on stimulation of this pathway after venom 

depletion (Kerchove et al., 2008b; Yamanouye et al., 2000). While these studies identify some potential 

mechanisms, an integrated model for the regulation of venom, and the degree to which distinct venom gene 
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families are regulated by common mechanisms, has not been developed. Additionally, although it has been 

shown that venom gene expression is correlated with open chromatin near gene promoters (Margres et al., 

2021), the combined role of chromatin structure and enhancer-promoter architecture in regulating snake 

venom, as well as the evolutionary origins of these features, have not been investigated.  

To address the many outstanding questions about the regulation of snake venom systems, we leveraged a 

chromosome-level genome assembly for the Prairie Rattlesnake (Schield et al., 2019) together with analyses 

of RNA-sequencing (RNA-seq), Assay for Transposase-Accessible Chromatin using sequencing (ATAC-

seq), Chromatin Immunoprecipitation sequencing (ChIP-seq) for insulators (CTCF), open promoters 

(H3K4me3), and open enhancers (H3K27ac), and Hi-C chromatin contact data to discover regulatory 

interactions underlying venom gene expression. We use these data to reveal, for the first time, the 

fundamental architecture and evolution of snake venom regulatory systems. We identify conserved 

enhancer and promoter sequences within venom gene families, which we demonstrate to interact through 

the binding of a broad suite of transcription factors (TFs) to coordinate expression. We show that many of 

these TFs are controlled by ERK (extracellular receptor kinase) signaling, which suggests evolutionary co-

option of a conserved vertebrate regulatory network to coordinate venom expression. Our results highlight 

the roles of diverse evolutionary strategies including TF co-option, regulation of many TFs by a master 

regulator, tandem duplication, and regulation by sequences seeded by transposable elements that have 

collectively led to the rewiring of venom gene regulation. Our results further emphasize the role of 

chromatin state and three-dimensional conformation in directing the precise regulation of venom genes. 

These discoveries provide the first mechanistic and evolutionary characterization of the complex regulatory 

architecture underlying snake venom, and provide a valuable example of how multiple genomic processes 

can synergistically act to generate novel regulatory networks underlying a polygenic trait.  
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Results 

Massive upregulation of venom gene expression to replenish venom 

The secreted venom proteome of the Prairie Rattlesnake is dominated by snake venom serine proteases 

(SVSP), snake venom metalloproteinases (SVMP), phospholipase A2 (PLA2), and peptide myotoxins (Fig. 

1a), which all derive from tandemly-arrayed multi-copy gene families (Fig 1b; Saviola et al., 2015; Schield 

et al., 2019). In SVMP and PLA2 clusters, one or more non-venom paralogs (i.e., venom gene paralogs that 

do not contribute to venom activity; NVPs) are present at one end of the array (ADAM28 for SVMP, PLA2 

gIIe for PLA2; Fig. 1b). The myotoxin cluster has not been successfully assembled and annotated in the 

Prairie Rattlesnake, so myotoxins were excluded from this study. A smaller fraction of the Prairie 

Rattlesnake venom proteome is composed of additional proteins and peptides encoded by genes in small 

tandem arrays (i.e. 2 genes; “CRISPs” in Fig. 1b) or as individual genes (Saviola et al., 2015). For analyses, 

we grouped venom genes by SVMP, SVSP, PLA2, and a category of “other” venom genes that comprise 

the minor fraction of venom proteins (Fig. 1c). Venom genes were highly expressed in the venom gland, 

with vastly lower expression in non-venom gland tissues (Fig. 1c). Venom gene expression was massively 

upregulated in the venom gland following venom depletion, with major venom gene clusters readily 

distinguished at a genome-wide scale (Fig 1c-d).  

Identification of candidate transcription factors associated with venom regulation 

We identified candidate TFs likely to be important for venom regulation using three independent 

approaches (Fig. 2, Supp. Table S1). First, we identified 82 TFs with significantly upregulated gene 

expression between unextracted and one-day post-extraction (DPE) venom gland tissue (Fig. 2b, c). Of 

these 82 TFs, 46 were also expressed at higher levels in the venom gland compared to non-venom tissues 

(Supp. Table S1). We separately identified a second set of TFs that fall within or adjacent to super-enhancer 

(SE) regions identified using H3K27ac ChIP-seq data. SEs represent “regulatory hotspots” in the genome 

associated with genes critical to cell- and tissue-specific functions, including genes encoding TFs central to 
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tissue-specific function (Chapuy et al., 2013; Hnisz et al., 2013; Jia et al., 2019; Lovén et al., 2013; Whyte 

et al., 2013). We identified 504 SEs in the 1DPE venom gland (Supp. Fig. S1a) and 946 SE-associated 

genes, with 813 directly overlapping an SE and the remaining 133 adjacent to an SE. SE-associated genes 

were enriched for venom genes, genes involved in adrenergic receptor binding, and transcription factor 

activity (Supp. Fig. S1b, c). This approach identified 81 SE-associated TFs (Fig. 2b), 14 of which were 

identified above as upregulated during venom production (Fig. 2a, b). In a third approach, we used 

differential footprinting analysis of ATAC-seq data to identify 55 TFs with evidence for increased binding 

activity in the post-extraction versus pre-extraction venom gland (Fig. 2b; Supp. Fig. S1d). Of these 55 total 

TFs with evidence of increased binding in the 1DPE venom gland, 7 and 3 TFs were also identified in SE-

associated or upregulated candidate approaches, respectively, with a single TF (CAMP Responsive Element 

Modulator; CREM) identified by all three approaches (Fig. 2b). 

Candidate venom regulation TFs linked to adrenergic receptor signaling and ERK  

Our analysis identified candidate TFs which are consistent with previously hypothesized mechanisms 

regulating venom gene expression. Multiple SE-associated candidate TFs are involved in adrenergic 

receptor binding activity, and additional candidate TFs (e.g., FOS and JUN) are components of the AP-1 

transcription factor complex previously implicated in venom gene regulation (Fig. 2a; Luna et al., 2009). 

An additional SE-associated candidate TF (EHF) was previously shown to play a role in regulating venom 

PLA2 genes in Protobothrops (Nakamura et al., 2014). Other candidate TFs have been identified as potential 

regulators of venom genes in genomic studies, including FOX-family TFs, GRHL1, NFIA and NFIB, XBP1 

(Fig. 2a; Margres et al., 2021; Schield et al., 2019). Several of these TFs (i.e., EHF, GRHL1, JUN, multiple 

FOX-family TFs) showed increased binding activity during venom production, based on ATAC-seq 

footprinting (Fig. 2a).  

Direct interactions with ERK, the primary regulator of the ERK signaling pathway previously implicated 

in venom regulation (Kerchove et al., 2008b; Yamanouye et al., 2000), were identified for 27 candidate 
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TFs (Fig. 2a, c), and 32 additional TFs had known interactions with these 27 TFs (i.e., second-degree 

interactions with ERK; Fig. 2c). This was corroborated by KEGG pathway overrepresentation analysis of 

the full candidate TF set indicating overrepresentation of TFs involved in the ERK/MAPK signaling 

pathway (enrichment ratio = 2.6404, FDR = 0.025745; Supp. Table S2). 

Promoter chromatin state and venom expression 

We used H3K4me3 ChIP-seq data to investigate the relationships between gene expression and open 

promoters at 1DPE (Fig. 3; Supp. Fig. S1e-j). Open promoters were inferred if H3K4me3 ChIP-seq peaks 

were identified within ±1kb of transcription start sites (TSSs) or the bounds of promoter ATAC-seq peak 

regions for key venom genes (see Methods). Genome-wide, 38% of promoters were inferred to be open at 

1DPE, and genes with open promoters were more highly expressed (Supp. Fig. S1e); this result was also 

observed for venom genes when analyzed together (Supp. Fig. S1f). Within specific venom gene families, 

SVMPs and the combined group of “other” venom genes with open promoters were more highly expressed 

than those without (Supp. Fig. S1g,j; Mann-Whitney ∪ test, p < 0.05), and all PLA2 gene promoters 

overlapped with an H3K4me3 peak (Supp. Fig. S1i). SVSPs with open promoters did not show significantly 

higher expression than those without open promoters (Supp. Fig. S1h).  

Venom gene promoters contain suites of transcription factors linked to ERK 

To infer regulatory activity of our candidate TFs, we identified transcription factor binding sites (TFBS) 

for candidate TFs with enrichment in venom gene promoters compared to the promoters of non-venom 

genes and used RNA-seq and ATAC-seq footprint scores to weight the likely importance of specific 

transcription factors and TFBS. A total of 12, 11, and 7 TFBS were significantly enriched in SVMP, SVSP, 

and PLA2 promoters, respectively, compared to non-venom gene promoters. Several TFs were enriched in 

two of the three families (JUN, Creb3l2, TFAP4, Arnt); none were in all three (Supp. Fig. S2a). Promoter 

regions in each of the three venom gene families were alignable and exhibited substantial sequence 

similarity (Fig. 3d-f). Sequence similarity was highest for promoters of the most highly-expressed genes of 
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each family, while promoters of lowly-expressed genes tended to be more divergent. Inferences of TFBS 

positions in promoter alignments are highly consistent among gene family members, suggesting that TFBS 

are conserved among paralogs within venom gene clusters (Fig. 3d-f).  

Binding sites important for the regulation of a particular venom gene family were expected to be present, 

conserved, and show evidence of being bound by transcription factors in the promoter regions of highly-

expressed venom genes. Conversely, TFBS should be absent, altered, and/or inaccessible in the promoters 

of lowly-expressed genes of the same family. Based on this logic, we developed a “position score” using 

binding site conservation, ATAC-seq footprint scores, and gene expression to quantify the degree to which 

a given TFBS adhered to these patterns and may therefore be involved in the regulation of a given venom 

gene family (see Methods; Supp. Fig. S2b). TFBS with a position score equal to or greater than the mean 

of all position scores for a gene family were considered “high-scoring” (Fig. 3d-f); this threshold is 

intentionally inclusive of TFBS with moderate to strong evidence of involvement in venom gene regulation, 

while excluding TFBS with weak evidence of involvement. A total of 11, 9, and 6 TFs had one or more 

high-scoring binding sites in SVMP, SVSP, and PLA2 promoters, respectively. For all TFBS that were 

enriched and had high position scores in at least one venom gene family (“primary” TFBS hereafter), we 

then identified and scored any of these TFBS present, but not enriched, in the promoters of other venom 

gene families (Fig. 3g). Any newly-identified TFBS with a position score equal to or greater than the 

original mean score threshold for a given family was considered to have evidence of being bound, and we 

refer to these as “secondary” TFBS. The overlap of primary and secondary TFBS inferences produced four 

TFs showing evidence of involvement in the regulation of all three major venom gene families: FIGLA, 

TBX3, EHF, and ELF5 (Fig. 3g).  

We applied a similar approach to characterize secondary TFBS in the promoters of the “other” venom gene 

set. Because these genes do not occupy large multi-gene clusters with multiple highly- and lowly-expressed 

family members, the position score calculation was not applicable, and we instead weighted TFBS 
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inferences in their promoters by the 1DPE ATAC-seq footprint score (Fig. 3h). These analyses further 

suggested the importance of a number of candidate TFs, most notably ELF5 and TBX3 (Fig. 3h).  

Several high-scoring TFs across multiple venom gene families are involved in, or are regulated downstream 

of, the ERK signaling pathway. These include TBX3 and EHF, for which high-scoring primary and 

secondary TFBS were identified in promoters of all three major venom gene families. Others included 

ETS1, CREB3L2, JUN, and ATF4, all of which were associated with one or more venom gene families.  

To investigate the possibility that venom genes are regulated by a novel TF that would be missed using 

only our candidate approach, we analyzed regions of venom gene promoters with elevated ATAC-seq 

footprint scores for enrichment of de novo sequence motifs. No such sequences were identified (Supp. Table 

S5).   

Candidate TFBS in promoters of non-venom paralogs 

For all annotated non-venom paralogs for the three major venom gene families, we scanned promoter 

sequences for the presence of TFBS implicated in each corresponding venom gene family (Supp. Fig. 

S2c,d). Across the three families, only three TFBS were enriched in the promoters of both the venom and 

corresponding non-venom paralogs (ATF4 and ZBTB26 in SVSP and NFE2 in SVMP; Supp. Fig. S2d). 

EHF, which was inferred to be a “secondary” TFBS in PLA2 promoters, was enriched in PLA2 non-venom 

paralogs (Supp. Fig. S2d). A larger number of TFBS implicated in venom gene regulation were present in 

one or more non-venom paralogs of a given venom gene family despite not being enriched, and each group 

of non-venom paralogs were enriched for multiple TFBS not implicated in regulation of related venom 

genes (Supp. Fig. S2c). 

Roles of enhancers in regulating venom expression 

We used the Activity-by-Contact (ABC) model approach, which identifies putative enhancer regions and 

estimates their contribution to gene expression (Fulco et al., 2019) using contact information (Hi-C), 
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chromatin accessibility (ATAC-seq), histone modifications (H3K27ac ChIP-seq) to identify enhancer 

sequences involved in the regulation of venom genes. We inferred 7,059 putative enhancer regions (PERs) 

associated with 7,119 genes in the 3DPE venom gland, with an average of 1.75 PERs per gene. PERs were 

most commonly located in intergenic regions (62.8% of all PERs), and the median distance between PERs 

and associated genes was 14,693 bp. 

Venom genes were associated with a total of 56 PERs (“vPERs” hereafter; Fig. 4a-c), with many venom 

genes inferred to be regulated by one or more vPERs (Supp. Fig. S3a). A high proportion of vPERs were 

located in intergenic regions (72.5%), and vPERs tended to be located relatively close to target genes with 

a median distance of 4,896 bp (Supp. Fig. S3b). In the SVMP cluster, most genes with high expression were 

associated with a single vPER located ~4kb upstream of the TSS (SVMP 6, 7, 8, and 10), while SVMP 2 

and 5 each had two inferred PERs (Fig. 4a). SVMP 1 did not have any gene-specific vPERs and was instead 

inferred to be regulated by the same vPER as SVMP 2 (Fig. 4a). The two lowly-expressed NVPs in the 

SVMP region were not associated with any PERs in the post-extraction venom gland (Fig. 4a). vPERs in 

the SVSP cluster were more variable, with most SVSPs associated with multiple vPERs and a greater 

number of vPERs shared between multiple genes (Fig. 4b). All PLA2 vPERs showed evidence of regulating 

multiple genes, with a single vPER regulating both highly expressed PLA2 genes (PLA2 A1 and B1) (Fig. 

4c). This is the only enhancer in this region associated with the most highly expressed PLA2 gene, PLA2 

A1. All three enhancers in the PLA2 region also regulate the nearby non-venom paralog, PLA2gIIe (Fig. 

4c).  

We also identified 11 vPERs associated with 7 “other” venom genes (those not belonging to the three main 

venom gene families; Supp. Figs. S3c-i). Three of these “other” venom genes (Vespryn, LAAO3, and CTL) 

were inferred to have a vPER within an intron (Supp. Figs. S3d,e,g). Interestingly, these three genes are 

also the most highly expressed of these “other” venom genes (Fig. 1c,d). 
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Patterns of enhancer TFBS and links to ERK signaling 

Similar to promoters, vPERs in venom gene families exhibited sequence similarity (Supp. Figs. S4b-d). We 

therefore followed the approach used for promoter sequences to search vPER sequences for enrichment of 

candidate TFBS compared to non-venom PER sequences. Both SVMP and SVSP vPERs were enriched for 

TFBS of 35 candidate TFs, 14 of which are enriched in both families, while PLA2 vPERs are enriched for 

9 candidate TFs (Supp. Fig. S4). Similar to results for promoter regions, no single candidate TF was 

enriched in all three major venom gene families, although 21 of the 79 enriched TFs have TFBS in two of 

three families (Supp. Fig. S4). We also used position scores analogous to our inferences for promoter 

regions to identify primary TFBS with enrichment and evidence of binding in vPERs of specific venom 

families, then identified secondary TFBS for these TFs in other venom gene families (Fig. 4d,e; Supp. Figs. 

S5-7). We identified a total of 14 primary and secondary TFBS in enhancers of all three venom gene 

families, including multiple ETS-family TFs (e.g., EHF and ELF5), three SOX family TFs (SOX9, SOX17 

and SOX18), FIGLA, and FOXP1 (Fig. 4d). Secondary TFBS in “other” venom genes included FOXP3 

and FOXL1, which were found in all PERs (although with low footprint scores in some cases; Fig. 4e). 

Many TFs identified as putatively binding to vPERs were also functionally linked to ERK signaling, 16 of 

which were also present in venom promoter regions, including ELF5, EHF, FIGLA, JUN, CREB3L2, and 

ATF5 (Supp. Fig. S8a). In summary, we identify a diverse set of TFs associated with vPERs, many of which 

appear important for regulating multiple venom gene families and are regulated by ERK signaling.  

De novo motif analysis identified two unannotated motifs that were enriched in regions with elevated 

ATAC-seq footprint scores in vPERs compared to non-venom gene PERs (Supp. Fig. S8b), although neither 

motif was present in all vPERs. Additionally, these motifs both exhibit similarity to other candidate TFBS, 

including GATA1, JUN, and TBX3 (Supp. Fig. S8c), and therefore do not likely represent distinct binding 

sites of a novel TF.     
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Venom gene enhancers are conserved across species 

Consistent with evidence that vPERs are relevant regulatory sequences, we found high-similarity hits to 

Prairie Rattlesnake vPER sequences in other venomous snake species, suggesting that vPER sequences are 

highly conserved (Fig. 4f-h). Many of these orthologous sequences exhibit substantial sequence similarity 

within pit vipers, including conservation of predicted TFBS among species spanning at least ~40 million 

years (MYs) of divergence (Kumar et al., 2017; Fig. 4h). We also identified similar sequences to the SVMP 

vPER in a cobra (Naja naja) and rear-fanged colubrid (Thamnophis sirtalis), suggesting conservation of 

this enhancer across ~70 MYs of divergence (Fig. 4f,h). Evaluating the conservation of vPERs associated 

with the SVSP cluster was not feasible because of the high-copy number of this vPER sequence in the 

rattlesnake and in other snake genomes, which we explore in detail below.  

vPERs are not associated with non-venom paralogs  

We surveyed the Prairie Rattlesnake genome, and non-venom paralogs specifically, for the presence of 

sequences similar to vPER regions for the three major venom gene families. For PLA2s and SVMPs, 

BLAST only returned hits to the immediate venom gene clusters, the majority of which were to other 

identified vPERs (Supp. Fig. S9a,c). In the SVMP region, one BLAST hit was upstream of SVMP 11 (Supp. 

Fig. S9a). This hit is located near the annotated non-venom SVMP paralogs adjacent to the SVMP cluster, 

although there is no evidence from our data that this acts as an enhancer to those genes in the venom gland. 

For PLA2 vPERs, BLAST identified a region spanning the third exon of the PLA2gIIe non-venom paralog 

with high similarity to the vPER inferred to regulate highly expressed venom PLA2s (PLA2A1 and PLA2B1; 

Supp. Fig. S9c). In stark contrast, SVSP vPER BLAST searches returned nearly 5,000 genome-wide hits 

(Supp. Fig. S10a).  

SVSP regulatory sequences are associated with transposable elements 

Motivated by the high frequency of SVSP vPER BLAST hits throughout the rattlesnake genome, we 

investigated links between SVSP vPER sequences and transposable elements (TEs) by comparing SVSP 
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vPER sequences to annotated TEs from C. viridis (Schield et al., 2019) and other snakes (Pasquesi et al., 

2018). Multiple SVSP vPER sequences shared high homology (>90%) with the consensus sequence of an 

annotated DNA transposon (DNA-hAT-Tip100, referred to hereafter as “Cv1-hAT-Tip100”). This TE 

sequence is significantly enriched for overlap with SVSP promoters and vPERs compared to the genomic 

background (one-tailed Fisher’s exact test; p < 0.05). Further, chromosome 10, which houses the SVSP 

venom cluster, exhibits the highest density of Cv1-hAT-Tip100 elements compared to all other 

chromosomes (Fig. 5a). Cv1-hAT-Tip100 elements are abundant within the SVSP array, with 8 of 11 SVSP 

promoters and 6 of 18 vPERs overlapping one or more Cv1-hAT-Tip100 elements (Fig. 5b). Additional 

Cv1-hAT-Tip100 elements occur in intergenic regions of the SVSP cluster. Sequence divergence estimates 

between genome-wide Cv1-hAT-Tip100 elements and those in the SVSP region indicate that these Cv1-

hAT-Tip100s were active/inserted within the last 75 MY (Supp. Fig. S10b). Using the genome-wide set of 

these TEs, we estimated the ancestral consensus sequence of the Cv1-hAT-Tip100 TE and scanned this 

consensus and individual Cv1-hAT-Tip100 elements in the SVSP region for the presence of candidate 

TFBS enriched in SVSP vPERs and promoters. Multiple TFBS that we predict are important for SVSP 

regulation are also present in the ancestral consensus Cv1-hAT-Tip100 sequence and are largely conserved 

in the SVSP region copies (Fig. 5c; Supp. Fig. S11). There are also multiple instances where a small number 

of single base substitutions from the consensus have apparently led to the gain/loss of new TFBS in SVSP 

Cv1-hAT-Tip100 elements implicated as regulatory sequences (Supp. Fig. S11a). Many of these TFBS 

within SVSP Cv1-hAT-Tip100 elements have high ATAC-seq footprint scores (i.e. > 3; Supp. Fig. S11b), 

suggesting that these TFBS are bound by TFs during venom production. Additionally, many TFBS are 

conserved in the Cv1-hAT-Tip100 copies that are not within SVSP regulatory elements (“Other” in Fig. 

5b, c), and 1DPE ATAC-seq footprint scores for these TFBS are in some cases similar to or higher than 

those in copies within SVSP vPERs and promoters (Fig. 5c; Supp. Fig. S11b).  
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Chromatin organization contributes to the precision of venom regulation 

To investigate the role of the three-dimensional organization of the genome in venom regulation, including 

topologically associated domain (TAD) structure and insulation by CTCF, we inferred TADs and chromatin 

loops using Hi-C data from 1DPE venom gland (Schield et al., 2019) and incorporated CTCF ChIP-seq 

data to investigate the role of CTCF binding and insulation in venom gene regions (Fig. 6). Our results 

indicate that only the PLA2 venom gene cluster falls entirely within a single TAD, with SVMP and SVSP 

clusters each spanning multiple adjacent TAD regions (Fig. 6b). The most highly expressed genes in the 

SVMP cluster (SVMP 7-10) occupy a single TAD, which also contains nearly all H3K27ac and H3K4me3 

ChIP-seq peaks in this region (Fig. 6b), suggesting regulatory isolation of highly-expressed genes (Fig. 6b). 

Additionally, no ATAC-seq peaks from the unextracted venom gland are identified within this TAD, 

despite peaks present in adjacent TAD regions (Fig. 6f). We observed a similar lack of unextracted ATAC-

seq peaks at the center of the TAD containing the PLA2 cluster (Fig. 6f). The most highly expressed SVSPs 

are also within a single TAD, along with several more lowly-expressed genes. Two other lowly-expressed 

SVSPs (SVSP 1 and 2) are in an adjacent TAD (Fig. 6). Unlike the SVMP and PLA2 regions, ATAC-seq 

peaks from the unextracted venom gland occur within this TAD, although at lower density than peaks at 

1DPE (Fig. 6b, f).  

We inferred chromatin loops in venom gene regions by combining Hi-C and CTCF ChIP-seq data (Fig. 6a-

d). Loop boundaries in the three main venom clusters generally did not correspond closely with TAD 

boundaries (Fig. 6a-d), and only the relatively small PLA2 cluster was contained within a CTCF-bound 

chromatin loop (Fig. 6d). There were numerous chromatin loops in the SVMP and SVSP regions, 

suggesting substructure in these clusters (Fig. 6d). We note, however, that the high TE content of the SVSP 

region may result in spurious loops due to mapping errors of Hi-C data. Evidence for bound CTCF was also 

frequent in major venom gene family regions despite not always occurring at either end of inferred 

chromatin loops, the pattern normally associated with the insulation of loops by CTCF (Fig. 6c, d). These 
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CTCF sites may indicate the presence of CTCF-bound loops not detected by our Hi-C data, or other 

regulatory roles of CTCF in these regions.  

The two lowly-expressed NVPs adjacent to the SVMP cluster are found to occupy a TAD that is distinct 

from highly-expressed SVMPs, and inferred chromatin loops suggest that they are excluded from the loop 

housing active SVMP genes (Fig. 6d, e). In contrast, the NVP in the PLA2 cluster (PLA2gIIE) resides within 

the same TAD, Super-Enhancer, and CTCF-bound loop, and shares enhancers with nearby venom PLA2s 

(Fig. 6d, e). Despite being considered a non-venom gene, this PLA2 NVP exhibits higher expression in the 

venom gland compared to non-venom tissues, consistent with being “linked” to venom PLA2 regulation, 

but is not upregulated during venom production (Supp. Fig. S12a). Hypotheses are illustrated for local 

chromatin structure of each venom cluster in Fig. 6g based on inferences from TAD, chromatin loop, CTCF 

binding, and gene expression datasets, and highlight that chromatin loops and in some case insulation by 

CTCF likely contribute to the isolation of highly-expressed venom genes from more lowly expressed venom 

genes and nearby non-venom paralogs.  

Discussion 

Considering the complexities of eukaryotic gene regulation, understanding how evolution can “rewire” 

novel regulatory networks underlying polygenic traits is challenging. While previous studies implicated 

several TFs and regulatory pathways that may be involved in the regulation of particular snake venom genes 

or families (Hargreaves et al., 2014b; Junqueira-de-Azevedo et al., 2015; Kerchove et al., 2004, 2008b; 

Margres et al., 2021; Schield et al., 2019; Yamanouye et al., 2000; Zancolli and Casewell, 2020), no 

mechanisms have been proposed to explain how venom systems are globally regulated, and how this global 

regulatory cascade interacts to precisely control the regulation of multiple venom gene families. Our 

findings reveal the integrated roles of high-level signaling by ERK, acting through a diverse suite of TFs 

that bind promoters and newly discovered enhancer sequences to regulate venom expression (Fig. 7). We 
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also provide new evidence for patterns of chromatin accessibility and genomic organization that direct the 

precise regulation of snake venom production. We further show that multiple distinct processes have 

contributed to the evolution of venom regulatory mechanisms in different gene families and highlight the 

regulatory complexity involved in the control of venom expression, including specific TF activity and 

features of chromatin organization that control precise venom regulation. We also provide new evidence 

that venom is globally regulated through the co-option of diverse and often gene-family-specific sets of 

transcription factors that are controlled by higher-level ERK signaling activity. This regulatory network 

appears to have originated through idiosyncratic evolution of TFBS in enhancers and promoters for TFs 

regulated by ERK signaling. Tandem duplication, compact regulatory structure, and the involvement of 

TEs seeding nascent regulatory sequences, also likely facilitated this process.  

A plausible a priori hypothesis for venom gene regulation is that a single TF, or a small number of shared 

TFs, regulate all venom genes, and a recent study in the Tiger Rattlesnake provided evidence in support of 

this hypothesis (Margres et al., 2021). However, our exhaustive candidate transcription factor analyses 

derived from complementary functional genomics datasets, together with de novo motif searches and 

integration of results from previous studies (Hargreaves et al., 2014b; Junqueira-de-Azevedo et al., 2015; 

Kerchove et al., 2004, 2008b; Margres et al., 2021; Schield et al., 2019; Yamanouye et al., 2000; Zancolli 

and Casewell, 2020) do not support this hypothesis. Instead, our findings support a model in which different 

venom gene families have evolved a combination of shared and unique regulatory connections to a common 

upstream signaling network that responds to venom depletion. Importantly, this overarching regulatory 

network encompasses many TFs previously speculated to be involved in venom regulation in different gene 

families and species, and thus for the first time presents a model that links preliminary findings from 

multiple studies with newly identified mechanisms to explain the global regulation of venom systems (Fig. 

7). Furthermore, many TFs that we identified (e.g., AP-1, GRHL1, NFIA, CREB3, and FOX family TFs) 

are “pioneer” TFs that regulate local chromatin accessibility and recruit histone modifying proteins, and 
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may therefore directly regulate chromatin structure and accessibility required for the expression of venom 

genes (Biddie et al., 2011; Fane et al., 2017; Jacobs et al., 2018; Khan and Margulies, 2019; Zaret and 

Carroll, 2011). Together, the suite of TFs we identify as being involved in venom regulation appear to 

encompass an important diversity of functional roles during venom gene regulation, including response to 

higher-level signaling, opening chromatin, recruiting other TFs and driving promoter-enhancer interactions 

(e.g., Grossman et al., 2018).  

Through the first identification of putative enhancer sequences involved in the regulation of venom genes, 

we show that regulatory sequences of venom genes are relatively compact and that enhancers typically 

occur close to (or within) the genes they regulate (see also Hargreaves et al., 2014a). Tandem duplication 

of these genes often appears to have included the duplication of nearby enhancer sequences (this is 

particularly apparent in the SVMP cluster; Fig. 4a), resulting in the propagation of duplicated genes that 

are “pre-wired” to contribute to the polygenic basis of venom. Accumulating evidence for high structural 

diversity in venom regions between populations and species (Dowell et al., 2016; Giorgianni et al., 2020) 

suggests that ectopic recombination and gene conversion may further re-shuffle regulatory regions within 

venom gene clusters. Related to this hypothesis, we discovered that enhancer sequences putatively 

regulating PLA2s are associated with, and perhaps derived from, exonic debris resulting from incomplete 

duplication of the non-venom paralog PLA2gIIe (Supp. Fig. S12b-e). A previous study showed conservation 

of exonic debris in the PLA2 region of rattlesnakes (Koludarov et al., 2020), further supporting a role of 

exon debris in PLA2 regulation.  

Prominent examples of regulatory rewiring (Ellison and Bachtrog, 2013; Lynch et al., 2015) have 

emphasized the roles of TEs in seeding regulatory elements, with recent studies reinforcing that TEs are 

often co‑opted for the regulation of host genes (Chuong et al., 2016, 2017; Feschotte, 2008). In the case of 

SVSPs, we show that a class of DNA transposons contributed sequences that appear to regulate an entire 

cluster of 11 venom genes, including both promoter and putative enhancer sequences. This suggests that 
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while TE seeding of TFBS has not driven the rewiring of venom gene regulation entirely, it has contributed 

substantially to the novel regulatory network of one of the largest venom gene families in vipers.  

Beyond those derived from TEs, our analyses reveal that most regulatory elements of venom genes are not 

enriched in non-venom paralogs, although presence of TFBS sequences in some non-venom paralog 

promoters suggests that the “raw material” for certain functional TFBS may have been present in these non-

venom paralogs while other TFBS likely evolved de novo and were further propagated by tandem 

duplications retaining compact cis-regulatory sequences. This presents a challenge for understanding how 

stochastic evolutionary changes could result in the evolution of many new TFBS in different venom gene 

families (Hargreaves et al., 2014a). However, the diverse set of TFs implicated in venom regulation in this 

study, and the broad overarching regulation of these and many other vertebrate TFs by ERK signaling, 

suggest that there is a broad sequence space across which de novo mutations have the potential to produce 

TFBS that can be targeted by ERK-controlled TFs. Together, the complement of gene structure, tandem 

duplication, TE seeding of regulatory elements, and the co-option of TFs linked by a shared regulatory 

regime make venom a prime example of how evolution can re-program regulatory networks for new 

polygenic traits. Overall, our findings suggest that in addition to the propagation of some functional cis-

regulatory regions from non-venom paralogs, the evolution of venom genes entailed the evolution of novel 

enhancer sequences, and new TFBS for both pioneer TFs and TFs regulated by ERK signaling. However, 

there is some evidence that a subset of non-venom paralogs may have already been partially responsive or 

‘pre-wired’ to ERK signaling (e.g., matrix metalloproteinases related to SVMPs; Arai et al., 2003).  

Our findings raise the question of whether venom evolution has favored a venom regulatory architecture 

capable of being fine-tuned by selection. Venom composition varies widely among snake species (Casewell 

et al., 2020) and populations (Jorge et al., 2015; Mackessy, 2010), and is hypothesized to be under intense 

selection pressures (Aird et al., 2017; Casewell et al., 2011; Juárez et al., 2008). Despite variation in venom 

composition among species, we discovered putative venom gene enhancer sequences that are largely 
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conserved within venom families and also show considerable conservation across distantly related snake 

species with common ancestry spanning tens of millions of years (Fig 4k; Supp Figs. S23-24). We postulate 

that venom regulatory systems have evolved as a multi-tiered, and therefore easily tunable, system in which 

conserved enhancers regulate the tissue specificity of venom gene expression, while promoter activation 

(mediated by both chromatin and TF binding) modulates the magnitude of expression of specific loci in 

response to selection without disrupting global venom regulation. As additional genomic resources for 

snakes become available, this hypothesis should be tested through comparative studies of venom gene 

regulatory sequences across diverse species.  

Regulation of gene expression in eukaryotes is dependent on many factors, including cis-regulatory 

sequences, the chromatin state of these sequences, and the three-dimensional loop structures that promote 

or restrict transcription (Cremer and Cremer, 2001; Cremer et al., 1993). We identified multiple TADs in 

venom gene clusters indicating a degree of isolation between and interaction within subsets of genes in the 

two large families (SVMP and SVSP), whereas the entire PLA2 cluster occupies the center of a large TAD 

and may be isolated from adjacent genes by a CTCF loop. No inferred CTCF-insulated loops spanned the 

SVMP and SVSP clusters, but we found evidence of chromatin loops and bound CTCF sites in these regions 

that likely play roles in directing enhancer-promoter activity. Consistent with this hypothesis, lowly-

expressed NVPs adjacent to the SVMP cluster appear physically isolated from SVMPs via a TAD boundary 

and chromatin loops. Meanwhile the PLA2 NVP is contained within a CTCF-loop along with venom PLA2s 

and exhibits higher expression in the venom gland than in non-venom tissues despite having no known 

function in secreted venom. Further, many other venom genes are isolated physically and, from a regulatory 

standpoint, isolated via chromatin loops during venom production.  

Key discoveries in this study frame the first comprehensive model for global and gene family-specific 

regulatory architecture underlying snake venom systems, and a compelling example for how multiple 

genomic processes may coalesce to establish a novel regulatory system for a polygenic trait. This new 
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resolution of an overarching regulatory network of venom regulation, together with recent advances in 

snake organoid systems (Post et al., 2020; Puschhof et al., 2021) together represent an important step 

towards establishing venom systems as models for investigating the origins and regulatory networks 

(Casewell et al., 2012, 2013; Post et al., 2020; Zancolli and Casewell, 2020). Understanding how genomic 

variation may percolate through regulatory networks to drive intraspecific variation in venom is highly 

relevant to snakebite treatment and use of venoms as therapeutics (Casewell et al., 2014). In light of the 

recent declaration by the World Health Organization of snakebite as a neglected tropical disease, estimated 

to be responsible for over 100,000 deaths worldwide each year (Gutiérrez et al., 2017; World Health 

Organization, 2019), our results provide a model for understanding regional and species-level variation in 

venoms. 

Methods 

Tissue sampling 

Venom was manually extracted from one of the paired venom glands of an adult male Prairie Rattlesnake 

(Crotalus viridis viridis) three days prior to sacrifice, and the other gland was subsequently extracted one 

day prior to sacrifice. This allowed for acquisition of venom gland and accessory gland tissue at two stages 

of post-extraction venom production (1 day post-extraction (DPE) and 3DPE) from the same individual. 

Venom gland, accessory gland, pancreas, skin, stomach, and small intestine tissue samples were dissected 

out and snap frozen in liquid nitrogen following humane sacrifice of the individual via deep anesthesia with 

Isoflurane followed by decapitation. To sample venom gland tissue at an “unextracted” steady state, one 

additional Prairie Rattlesnake was sacrificed with no prior extraction of venom, and venom gland tissues 

were collected and snap frozen. Both individual animals were collected from the same population in order 

to control for genetic background in subsequent analyses. All animals were housed and sampled at the 

University of Northern Colorado under approved and registered IACUC protocols. 
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Refining venom gene annotations  

During early exploratory analysis of ChIP-seq and ATAC-seq data described below, we noticed patterns of 

elevated read mapping density (i.e., ChIP-seq and ATAC-seq peaks) in several intergenic regions of the 

SVSP gene array that closely resembled patterns associated with annotated SVSP genes. Following the 

approach described in (Schield et al., 2019), we used FGENESH+ (Solovyev, 2004) and known guide 

protein sequences to identify two previously unannotated SVSP genes, which we include in analyses below. 

Following the naming convention of the nine originally annotated SVSPs, these new SVSP genes were 

named SVSP 10 and SVSP 11.  

RNA isolation, sequencing and analyses 

Total RNA was extracted from snap frozen tissues with Trizol reagent (Invitrogen). All tissues were 

subsampled to produce three technical replicates. Poly-A selected mRNA libraries were sequenced on an 

Illumina NovaSeq using 150bp paired-end reads. 

Raw RNA-seq reads were quality trimmed using default settings with Trimmomatic v0.39 (Bolger et al., 

2014). RNAseq reads were mapped to the annotated Crotalus viridis genome (NCBI: GCA_003400415.2) 

using STAR v2.7.3a (Dobin et al., 2013) and raw gene expression counts were estimated using 

featureCounts v1.6.3 (Liao et al., 2013). Count normalization and pairwise comparisons between time-

series venom gland tissues and between venom and non-venom tissues were conducted using DEseq2 

v1.30.1 (Love et al., 2014) in R (R Core Team, 2013), with independent hypothesis-weighting p-value 

correction via the IHW package v1.18.0 (Ignatiadis et al., 2016) using baseMean expression from DEseq2 

as the covariate. Annotated venom genes from the Crotalus viridis genome publication (Schield et al., 2019) 

 were considered to be relevant venom genes if they were found to be significantly upregulated in the venom 

gland (IHW p-value < 0.05) in pairwise comparisons of all post-extraction venom gland samples (1DPE 

and 3DPE) versus non-venom tissues. Venom genes were considered to be “highly-expressed” if their 
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average normalized expression at 1DPE exceeded 100,000 normalized counts. Gene expression heatmaps 

were generated with the pheatmap package v1.0.12 (github.com/raivokolde/pheatmap) in R, and genome-

wide visualization of venom to non-venom expression ratios was generated using circos v0.69-9 

(Krzywinski et al., 2009). Visualization of gene expression in the context of venom gene family arrays 

conducted using the gggenes package v0.4.1 (github.com/wilkox/gggenes) in R. 

Hi-C Sequencing and Analysis 

Hi-C data for a Crotalus viridis venom gland at one day post-extraction was generated previously (see 

Schield et al., 2019 for details; NCBI BioProject: PRJNA413201). Raw Illumina paired-end Hi-C reads 

were mapped to the rattlesnake reference genome using the Juicer pipeline (Durand et al., 2016a), and Hi-

C contact maps were generated using KR normalization at 10kb and 5kb resolution. Topologically-

associated chromatin domains (TADs) and sub-TADs were determined at 10kb resolution using rGMAP 

v1.3.1 (Yu et al., 2017) in R. Chromatin loops were identified using the HICCUPS algorithm in Juicer 

v1.9.9 (Durand et al., 2016a) with default settings. Hi-C contact heatmaps were generated using the Sushi 

package v1.28.0 (Phanstiel et al., 2014) in R.  

Chromatin Immunoprecipitation (ChIP) data generation and analysis 

ChIP-seq libraries were generated for post-extraction (1DPE) venom gland tissue by Active Motif 

(Carlsbad, CA) for bound CTCF and histone modifications H3K4me3 and H3K27ac. Basic ChIP-seq data 

processing was performed by Active Motif using their standard analysis pipeline. In brief, libraries were 

sequenced on an Illumina NextSeq 500 using 75-nt reads and mapped to the UTA_CroVir_3.0 genome 

assembly (GCA_003400415.2) using BWA v0.6.1 (Li and Durbin, 2009) with default settings. Reads that 

failed to pass Illumina’s purity filter, aligned with greater than 2 mismatches, were not uniquely mapped, 

or were identified as PCR duplicates were removed for all subsequent analyses. Aligned reads were 

extended in silico at the 3’ end using Active Motif’s in-house software, and fragment densities were 

determined for 32-nt bins across the genome. Intervals of enriched ChIP-seq fragment density were 
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determined using MACS2 v2.1.0 (Zhang et al., 2008). Super enhancers were determined by merging 

enriched H3K27ac intervals if their inner distance was equal to or less than 12,500 bp, and classifying 

merged regions with the top 5% strongest enrichment as super enhancers.  

To infer sites of bound CTCF and putative CTCF-bound chromatin loops, we used MEME v5.1.1 (Bailey 

et al., 2009) to reconstruct the Prairie Rattlesnake CTCF binding motif (Supp. Fig. S8d) from CTCF ChIP-

seq peak sequences. We then scanned all CTCF ChIP-seq peaks for this binding motif, and peaks with a 

binding motif were considered “verified” ChIP-seq peaks. We then used the pairtobed tool in bedtools 

v2.29.2 (Quinlan and Hall, 2010) to intersect chromatin loops with verified CTCF ChIP-seq peaks, and 

considered a chromatin loop to be CTCF-bound if a verified CTCF ChIP-seq peak was identified within 

10kb of both ends of the loop. 

ATAC-seq data generation and analysis 

ATAC-seq libraries were generated for unextracted venom gland, and post-extraction (3DPE) venom gland, 

and skin tissue by Active Motif (Carlsbad, CA). ATAC-seq library preparation, sequencing, and initial data 

processing were performed by Active Motif using their standard analysis pipeline. In brief, ATAC-seq 

libraries were sequenced on an Illumina NextSeq 500 using 42-bp paired-end reads. Reads were then 

mapped to the UTA_CroVir_3.0 genome assembly using BWA with default settings and the same quality 

filtering processed described above for ChIP-seq data. Intervals of enriched transposition events (i.e., 

ATAC-seq peaks) were determined using MACS2, during which paired reads were treated as separate, 

independent reads, and fragment densities were determined genome-wide using 32 bp bins. ATAC-seq data 

was normalized between samples by randomly down-sampling the number of tags to that of the sample 

with the fewest tags, which in this case was the unextracted sample with 55,337,325 tags. 

ATAC-seq footprinting analysis was conducted using TOBIAS v.0.12.4 (Bentsen et al., 2020). TOBIAS 

ATACorrect was run on both the unextracted and post-extraction venom gland samples using default 
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parameters and a file of blacklisted regions defined as any region in which enriched peaks of ATAC-seq 

read density were identified in both venom samples and skin samples (i.e., pile-ups of ATAC-seq reads 

likely to be spurious, or associated with constitutively and non-tissue-specific open chromatin). To calculate 

footprint scores, TOBIAS ScoreBigwig was run for unextracted and post-extraction venom gland samples 

using the bias-corrected output from ATACorrect and a shared peak intervals file comprised of all peaks 

present in both venom gland ATAC-seq samples, with overlapping peak regions first merged using bedtools 

merge. Differential footprinting analysis was then performed using TOBIAS BINDetect using the JASPAR 

2020 Core Vertebrates Non-Redundant TFBS motif database (Sandelin et al., 2004) and default parameters.  

ATAC-seq data, as well as ChIP-seq, RNA-seq, and Hi-C based inferences (chromatin loops, TADs), were 

visualized using Integrated Genomics Viewer v2.8.7 (Robinson et al., 2011). 

Identifying candidate transcription factors 

We constructed a candidate set of TFs with evidence for activity in the venom gland during venom 

production through independent analysis of gene expression, ChIP-seq, and ATAC-seq datasets. To first 

identify annotated TFs in the Prairie Rattlesnake genome, we downloaded Uniprot (UniProt Consortium, 

2019) gene lists that were annotated with one or more of the following gene ontology terms: DNA binding 

transcription factor activity, protein binding transcription factor activity, and transcription factor co-

regulatory activity. These gene lists were used to parse the Prairie Rattlesnake gene annotation for known 

TFs using previously published rattlesnake-to-human orthology tables (Perry et al., 2020). Resulting 

rattlesnake TFs were cross-referenced with the results of differential gene expression analyses described 

above to identify TFs with evidence of upregulation in the venom gland during venom production (i.e. 

higher expression at 1DPE compared to unextracted, IHW p-value < 0.05). Separately, we identified TF 

genes that are associated with super-enhancers (SEs), regions of elevated H3K27ac ChIP-seq read density 

(described above). A TF gene was considered to be SE-associated if it overlapped with an annotated SE 

region, or was the nearest gene to a SE that does not overlap with any annotated genes. Third, as described 
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above, differential binding analysis based on TFBS footprints in ATAC-seq data was used to identify TFs 

with evidence for increased binding in the post-extraction venom gland compared to unextracted. As this 

TFBS-based approach does not take into consideration the annotated location or expression of each TF 

gene, the full JASPAR 2020 Core Vertebrates Non-Redundant TFBS motif database was used for this 

analysis.  

Overlap between these three independently-derived candidate TF sets was assessed and visualized using 

the UpSetR v1.4.0 (Conway et al., 2017) package in R, and these lists were merged to form one master set 

of candidate TFs for subsequent analyses. To characterize candidate TFs, we used WebGestalt 2019 (Liao 

et al., 2019) to identify GO Terms and KEGG Pathways with overrepresentation in our candidate set 

compared to a background of all TFs annotated in the rattlesnake genome and default parameters. To assess 

known involvement of our candidate TFs with ERK, a central regulatory molecule within the ERK/MAPK 

signaling pathway previously implicated in venom gene regulation, we used StringDB v11.0 (Szklarczyk 

et al., 2019) to identify interactions between candidate TFs and ERK/MAPK1, filtering to include only 

interactions from curated databases or that were experimentally determined. Resulting interactions were 

visualized using Cytoscape v3.8.2 (Shannon et al., 2003). A custom binding site motif database for 

candidate TFs was then created by filtering the JASPAR 2020 Core Vertebrates Non-Redundant TFBS 

motif database to only include motifs corresponding to our candidate TFs. 

Identifying promoters and relevant promoter regions for manually-annotated venom genes. 

For all genes except those belonging to the venom families discussed below, the promoter region of a given 

gene was defined as 1kb upstream of the transcription start site (TSS) through the TSS. Genes within the 

SVMP, SVSP, and PLA2 venom gene clusters were originally annotated manually using FGENESH+ 

(Solovyev, 2004) and known guide protein sequences (see Schield et al., 2019). Because FGENESH+ does 

not take into account gene expression data, rather than identifying a TSS it instead attempts to identify a 

likely TATA box based on nucleotide sequence. Thus the “TSS” position labeled by FGENESH+ may not 
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actually represent the true TSS. In order to focus on a region most likely to represent the transcription start 

site and adjacent sequence for these genes, we defined promoter ATAC-seq peak (PAP) regions by taking 

1kb in either direction from the FGENESH+ TSS location (2kb region total) and identifying ATAC-seq 

peak regions that overlap with this window using bedtools intersect. In the event that more than one ATAC-

seq peak was found within a region, the most downstream peak (relative to the associated gene) was taken 

to be the PAP. Nucleotide sequences for promoters and PAPs were then extracted from the Prairie 

Rattlesnake genome using bedtools getfasta.  

Identification of putative enhancer regions (PERs) and PER-gene interactions.  

We used the Activity-by-Contact (ABC) model v0.2 (Fulco et al., 2019) to identify putative enhancer 

regions (PERs) and infer PER-gene regulatory interactions in the post-extraction venom gland. Candidate 

enhancer regions were first determined by filtering post-extraction ATAC-seq peaks to exclude regions 

identified as peaks in the two skin ATAC-seq samples and taking 250bp on either side of the peak summit 

(position with highest ATAC-seq read density) of these peaks unique to the post-extraction venom gland. 

Any overlapping peaks were merged into a single region. ABC was then run using an ABC score threshold 

of 0.05 and otherwise default parameters on these candidate enhancer regions using H3K27ac ChIP-seq 

density, ATAC-seq density, KR normalized Hi-C data at 5kb resolution, and average gene expression at 

1DPE. Venom PERs (vPERs) were defined as resulting PER regions inferred to interact with one or more 

annotated venom genes. Nucleotide sequences for PERs were then extracted from the Prairie Rattlesnake 

genome using bedtools getfasta. Enhancer-gene interactions were plotted using ggplot v3.3.3 (Wickham, 

2011) and ggforce v0.3.2 (https://github.com/thomasp85/ggforce/) packages in R. 

Transcription factor binding site (TFBS) prediction, enrichment analyses, and TFBS alignment  

Transcription factor binding site prediction and enrichment analyses were conducted using CIIIDER v0.9 

(Gearing et al., 2019) with the default deficit threshold of 0.15 and a gene coverage p-value cutoff of 0.05 

and using the custom motif database generated above for candidate TFBS. For TFBS enrichment analyses 
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in venom promoters/PAPs, sequences for a given family were used as the target sequences and compared 

to promoter sequences for all non-venom genes as a background. Similarly, for vPER TFBS enrichment 

analyses, all non-venom PERs were used as the background. For use in position score calculations 

(described below), Tobias ScoreBed was used to annotate TFBS with the mean post-extraction footprint 

score determined above. 

Venom promoter and vPER sequences were aligned using MAFFT v7.475 (Katoh and Standley, 2013) with 

flags –reorder, --adjustdirectionaccurately, --allowshift, --unalignlevel 0.8, --maxiterate 0, and –globalpair 

and visualized using the msa package v1.22.0 (Bodenhofer et al., 2015) in R. Locations of enriched TFBS 

identified in unaligned sequences via CIIIDER were then converted to their corresponding positions in the 

MAFFT-aligned sequences using a custom python script (See Data Availability). This custom python script 

also calculates a simple “consensus score” for each alignment, defined as the maximum percent of 

sequences with an identical nucleotide at a given position in the alignment not including alignment-

introduced gaps. TFBS alignments were visualized in R using ggplot2 v3.3.3 (Wickham, 2011). Overlap of 

enriched TFBS between venom gene families and promoters and enhancers was plotted using the 

ggVennDiagram v0.5.0 package (https://github.com/gaospecial/ggVennDiagram) in R.  

Position score calculations and primary/secondary TFBS analyses 

TFBS important for the regulation of a particular venom gene family are expected to be present, conserved, 

and have evidence of being bound by transcription factors in the promoter regions of highly-expressed 

venom genes, and absent, altered, and/or inaccessible in the promoters of lowly-expressed genes of the 

same family. Based this logic, we developed a “position score” that uses binding site conservation, ATAC-

seq footprint scores, and gene expression to quantify the degree that a given TFBS adheres to these patterns 

and may is likely to be important in the regulation of a given family. For a given set of sequences, for 

example SVMP vPER sequences, the position score of a particular TFBS at a particular position is 

calculated by taking the sum of the post-extraction footprint score x normalized gene expression at 1DPE 



 

142 

for all sequences containing that TFBS at that site, dividing that value by the sum of normalized gene 

expression at 1DPE for all sequences that do not possess that TFBS at that site, adding 1, and log 

transforming the resulting value (Supp. Fig. S2b). This results in a high score in instances where a TFBS is 

conserved at a given position with high footprint scores in highly expressed genes (i.e. important venom 

genes) and absent in lowly expressed genes (i.e. minor venom genes), low scores when a TFBS is present 

only in lowly expressed genes, and intermediate scores for situations in which TFBS are present and have 

a high footprint score in subsets of the highly-expressed genes or in both highly and lowly-expressed genes 

(Supp. Fig. S2b). For vPERs that are inferred to interact with multiple genes, the mean expression of these 

genes was used as the associated expression value for that sequence. In a given set of sequences, ‘high-

scoring’ TFBS were defined as those with a position score exceeding the mean of all TFBS position scores 

in that set of sequences.  

TFBS that were enriched in a given set of sequences and had one or more TFBS sites with a high scoring 

position score were considered “primary” TFBS as they have the most evidence for being important to 

binding and regulation of that set of sequences. We then identified “secondary” TFBS in other families – 

TFBS that are present and high scoring in a particular sequence that were not inferred to be enriched in that 

set of sequences, but were identified as primary in one or more other sets of sequences. For example, if 

TFBSA is identified as primary in SVMP promoters (enriched in and has a position score > the mean of all 

enriched TFBS in SVMP promoters) but is not enriched in SVSP promoters, there may still be binding sites 

for TFBSA in SVSP promoters that could be opportunistically bound assuming that TFBSA is active during 

venom production. If TFBSA sites are identified in SVSP promoters and have position scores higher than 

the mean of primary TFBS in the SVSP promoters, it is considered a “secondary” TFBS.  

Because the position score method is not applicable to one-off venom genes (constituting the “other” 

category of venom genes reference throughout), we instead searched promoters and enhancers of these 
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genes for TFBS identified as primary in the promoters or enhancers of one or more of the three major venom 

gene families, and weighted identified TFBS by post-extraction footprint scores alone. 

Novel TFBS motif searches in venom regulatory sequences 

We used de novo motif identification analyses in elevated ATAC-seq footprint regions to identify any novel 

TFBS motifs that would not be otherwise detected by our candidate approach described above. We confined 

these searches to regions with evidence of being bound by a transcription factor by only searching regions 

with an average ATAC-seq footprint score greater than or equal to half of the “bound threshold” determined 

during the BINDetect step of the ATAC-seq footprint analysis described above (Bound threshold = 

4.97183; Half threshold = 2.485915). This cutoff was chosen in order to filter out regions of promoter and 

enhancer sequences with little to no evidence of being bound by a transcription factor, while being 

permissive to regions with intermediate evidence. These regions were generated by converting the bigwig 

file of post-extraction ATAC-seq footprint scores to a bedgraph file using bigWigToBedGraph (Kent et al., 

2010), filtering out regions with a footprint score less than the half threshold, and merging any remaining 

regions within 5bp of one another using bedtools merge. Bedtools intersect and getfasta were then used to 

select elevated footprint regions overlapping with putative enhancers or promoter regions and extract fasta 

sequences for each region.  

Novel motifs were identified and annotated using MEME v5.3.3 (Bailey and Elkan, 1994) and TomTom 

v5.3.3 (Gupta et al., 2007) within the online MEME-ChIP tool v5.3.3 (Machanick and Bailey, 2011). 

MEME was run in Differential Enrichment mode using a background of all elevated footprint regions in 

enhancers or promoters not associated with venom genes, a minimum and maximum motif width of 6 and 

15, respectively, the expectation of Zero or One Occurrence Per Sequence (zoops mode), and was set to 

identify at most 25 motifs. MEME motifs with an e-value < 0.05 were considered significant, and these 

motifs were compared to motifs in the JASPAR 2020 non-redundant vertebrate motif database using 

TomTom with default settings. MEME motifs not successfully annotated with TomTom (i.e., E-value > 1; 
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Gupta et al., 2007) were considered novel motifs. No novel motifs were enriched in venom promoters 

relative to non-venom gene promoters (Supp. Table S5).  

Position-weight matrices of novel motifs were converted from MEME to JASPAR motif format using the 

UniversalMotif v1.8.3 (Tremblay, 2020) package in R, and CIIIDER was used to scan all input sequences 

(i.e., elevated footprint regions within vPER regions) with default parameters. MEME motif sites were 

tallied for each regulatory sequence in R and plotted using ggplot2. To assess the degree to which MEME 

motifs were similar to candidate TFs specifically, we again used TomTom to compare MEME motifs with 

annotated TFBS, this time using our custom JASPAR database containing only candidate TFs identified 

above. 

Comparisons of venom regulatory sequences with those of non-venom paralogs.  

Non-venom paralog genes were identified previously (Schield et al., 2019). To assess whether any vPER 

sequences identified for the three major venom gene families were also present near a family’s non-venom 

paralogs, we used BLASTn to identify similar sequences genome-wide using as a query the sequence of 

the vPER(s) associated with the most highly expressed venom gene in each family. We then surveyed non-

venom paralogs and adjacent regions for significant vPER BLAST hits (e < 0.000001).  

To compare venom gene and non-venom paralog promoters, we scanned non-venom paralog promoters for 

candidate TFBS using CIIIDER with default settings and our custom candidate TF motif database, and 

filtered the results to include TFBS implicated in the regulation of the corresponding venom gene family 

(i.e. “primary” or “secondary” TFBS in the promoters a given venom gene family; see above). We also 

tested for enrichment of any candidate TFBS in non-venom paralog promoters for each family compared 

to a background of all promoters (excluding all venom gene and non-venom paralog promoters). 
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Identifying potential conserved vPER sequences in other venomous snake species. 

To investigate whether vPER sequences are conserved in other venomous snakes, we used BLASTn 

(Altschul et al., 1990) to search all snake nucleotide sequences on NCBI (via the online BLAST platform) 

and BLASTn in BLAST+ v2.6.0 to search a set of existing snake genome assemblies - Naja naja (NCBI: 

GCA_009733165.1, Suryamohan et al., 2020), Deinagkistrodon acutus (Yin et al., 2016), Thamnophis 

sirtalis (NCBI: GCA_001077635.2, Perry et al., 2018), Protobothrops flavoviridis (NCBI: 

GCA_003402635.1, Shibata et al., 2018), and Python bivittatus (NCBI: GCA_000186305.2, Castoe et al., 

2013). We used as the query sequence the vPER inferred to interact with the highest expressed gene(s) in 

the SVMP and PLA2 regions (SVSP was excluded from these analyses for reasons discussed below). The 

at most five best hits from each species with were selected based on e-value scores. Alignments were 

generated using MAFFT with parameters described above. For PLA2 vPER BLAST searches against all 

snake nucleotide sequences on NCBI, a subset of returned hits were small (i.e., covered less than 25% of 

the query sequence) and only hit to regions on the extremities of the query vPER sequence with no similarity 

to the center of the vPER sequence where functionally-relevant TFBS are inferred to be located; these 

sequences were manually removed from alignments. “Primary” TFBS for SVMP and PLA2 enhancers were 

scanned using CIIIDER with default parameters and visualized in R using ggplot2. An approximated 

phylogeny for lineages represented in these analyses was downloaded from TimeTree (Kumar et al., 2017). 

Analyses of transposable elements (TEs) associated with SVSP regulatory sequences. 

Given the fact that BLASTs of SVSP vPER sequences yielded a large number of hits throughout the Prairie 

Rattlesnake genome, we investigated this could be explained by an association between these sequences 

and transposable elements (TEs). Using TE annotations from (Schield et al. 2019), we used Giggle v0.6.3 

(Layer et al., 2018) to test whether SVSP regulatory regions (promoters and vPERs) were significantly 

enriched for overlap with any particular TE (one-tailed Fisher’s exact test; p < 0.05). This analysis identified 

a DNA/hAT-Tip100 element (Cv1-hAT-Tip100) that was enriched in the SVSP regulatory regions and 
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generally common on chromosome 10. A genome-wide consensus sequence for this element was generated 

using mafft by providing the DNA hAT-Tip100  consensus from the repeat element library as reference. 

This preliminary alignment was then manually curated by removing the DNA hAT-Tip100 reference, re-

aligning the genomic copies, and removing major regions with limited coverage by using the Gblocks server 

v0.91b (Talavera and Castresana, 2007). The final consensus sequence was derived by using the Unipro 

UGENE software (Rose et al., 2019). This consensus sequence was then used to calculate sequence 

divergence (pairwise-pi) for all Cv1-hAT-Tip100. For this calculation, we excluded alignment positions 

where the highest nucleotide frequency exceeded 0.7. Using these pairwise-pi values, we estimated TE age 

as pi ÷ 2 x 2.4 × 109 following (Pasquesi et al., 2018). For Cv1-hAT-Tip100 copies within the SVSP region, 

including those in regulatory and “other” intergenic sequences, we used CIIIDER to identify TFBS 

identified above as “primary” in SVSP promoters and/or enhancers. ATAC-seq footprint scores were 

calculated for TFBS sites using TOBIAS ScoreBed. These sequences and TFBS positions were then aligned 

using mafft and the custom python script described above, and plotted in R using ggplot2. Aligned TFBS 

positions were visualized using ggplot2 in R and inset detailed alignments were generated using Jalview 

v2.10.1 (Waterhouse et al., 2009). 

Identification of exonic debris in the PLA2 gene cluster. 

We used BLAST feature of ncbi-blast v.2.7.1+ suite (tblastx, e-value of 0.01, default restrictions on word 

count and gaps) to perform initial search of the exons against a pre-compiled database of exons previously 

successfully used to annotate PLA2GIIe family of genes in vertebrate animals (Koludarov et al., 2020). We 

then manually assessed each result and established exon boundaries using Geneious v11 

(https://www.geneious.com). 
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Data Availability 

Transcriptomic data for the Prairie Rattlesnake venom gland and body tissues are accessioned at the NCBI 

Sequence Read Archive (NCBI BioProject: PRJNA716163). Raw and processed ChIP-seq and ATAC-seq 

data are available at the NCBI Gene Expression Omnibus (NCBI: GSE169217). Previously-generated Hi-

C data are available on NCBI SRA (NCBI BioProject: PRJNA413201).     
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Figures 

 

Figure 1. Venom gene expression and structure in the Prairie Rattlesnake. A) Proportions of venom 

protein components in Prairie Rattlesnake venom (adapted from Schield et al., 2019). B) Structure of 

tandemly-duplicated venom gene families, with genes colored by 1DPE expression. C) Venom gene 

expression in unextracted (Unext), 1DPE, and 3DPE venom gland, and in body tissues (P: pancreas, Sk: 

skin, St: stomach). D) Venom gene expression visualized on the Prairie Rattlesnake genome, with red lines 

indicating the ratio of average venom gland expression compared to average body tissue expression. 
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Figure 2. Candidate transcription factors (TFs) underlying venom gene regulation. A) Candidate TFs 

involved in venom regulation, with the first three columns representing three approaches for TF 

identification, and the last three columns indicating TF membership in functional categories. B) Numbers 

of candidate TFs identified by analyses of gene expression (Upregulated), association with super-enhancers 

(SE-Associated), or differential ATAC-seq footprinting (Differentially Bound). Vertical bars showing the 

numbers of TFs identified uniquely or in a combination of analyses, as indicated by the dots below. 

Horizontal bar plots indicate the total number of TFs identified. C) Interactions between candidate TFs and 

ERK (MAPK1) based on StringDB. TFs with direct interactions with ERK are shown in blue, and TFs that 

interact with these are shown in white. Node sizes are scaled by the number of interactions with other TFs 

in the network. 
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Figure 3 (previous page). Chromatin and transcription factor binding site characteristics of venom 

gene promoter regions. A-C) Venom gene clusters with gene expression indicated by color (brighter 

colors are more highly expressed), with ChIP-seq and ATAC-seq data with peaks indicated in gray. D-F) 

Promoter alignments of major venom gene clusters with TFBS inferences in ATAC-seq peaks. Colored 

vertical bars on each promoter indicate presence of a TFBS for an enriched TF (bar size scaled by ATAC-

seq footprint score, and the TFBS orientation indicated by its position above or below the line). Alignment 

gaps shown by faded regions of center lines, and colored lines connecting TFBS bars indicate TFBS that 

span gaps. Vertical bar plots on each panel show TFBS position score, with mean gene family score 

indicated with dotted line. G) TFs associated with TFBS enriched in a venom gene family (“primary”) with 

a position score above the family median. “Secondary” TFBS are enriched in at least one other family, with 

binding site position scores above the median threshold. If multiple TFBS were identified per family, the 

maximum score is shown. H) Post-extraction ATAC-seq footprint scores for TFBS in the promoters of 

“other” venom genes. TFBS shown in red in G and H have known interactions with ERK signaling. 
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Figure 4 (previous page). Functional genomics data identify conserved venom gene enhancer 

sequences and associated transcription factor binding sites. A-C) Venom gene clusters with individual 

gene expression levels indicated by color per gene (brighter colors are more highly expressed), with ChIP-

seq (H3K27ac and H3K4me3) and ATAC-seq data with peaks indicated in gray. D) Primary and secondary 

TFBS in vPERs for the three major venom gene clusters (shown if present in >1 family). E) Secondary 

TFBS in vPERs of “other” venom genes (shown if present in >3 vPERs). TFBS shown in red in D and E 

have known interactions with ERK signaling. F-H) Alignment and conservation of PERs among species of 

venomous snakes for SVMP (F) and PLA2 (G) PERs. H) Tree indicating divergence of venomous snake 

lineages and conservation of SVMP and PLA2 PERs. 
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Figure 5. DNA transposons have re-wired SVMP venom cluster regulatory networks. A) Cv1-hAT-

Tip100 copies per chromosome in the Prairie Rattlesnake, normalized by chromosome length. B) SVSP 

gene array and vPER inferences, with Cv1-hAT-Tip100 copies shown as colored diamonds. C) Alignment 

of SVSP-local Cv1-hAT-Tip100 copies with the genome-wide consensus. TFBS enriched in SVSP 

promoters or enhancers are colored based on TF families. Faded regions represent alignment gaps.  
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Figure 6. Chromatin structure and organization associated with venom gene arrays. A) Hi-C 

interaction heatmap (10kb resolution) of 2Mb regions centered on venom gene arrays. Brighter colors 

indicate higher contact frequency. B) Topologically associated domains (TADs) across venom gene arrays. 

C) CTCF ChIP-seq density, with grey vertical lines indicating ChIP-seq peaks and diamonds indicating 

peaks centered on a verified CTCF binding sites. D) Chromatin loops inferred from Hi-C data that span 

venom gene arrays. Red loops indicate likely CTCF-CTCF bound loops, defined by the presence of a CTCF 

ChIP-seq peak centered around a CTCF motif within 10kb of chromatin loop ends. E) Venom array genes 

and inferred PER-promoter interactions. F) Simplified ChIP-seq and ATAC-seq data, with points indicating 

the presence of ChIP/ATAC-seq peaks and yellow bars indicating super-enhancers. G) Hypotheses for 

three-dimensional loop structures of venom gene regions. 
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Figure 7. Model of venom signaling and regulatory network. Hypothesis regulatory network that 

controls venom regulation based on findings presented herein. Red arrows indicate enhancer-promoter 

interactions.  

  



 

157 

Supplementary Figures  

Supplementary Figure S1. A) Rank-intensity plot of merged H3K27ac ChIP-seq peak regions used to 

define super-enhancers (regions with top 5% highest ChIP-seq intensity). B) Proportion of genes associated 

with (within or nearest-to) super-enhancers compared between the all annotated genes (‘All’) and venom 

genes (‘Venom’). C) Gene ontology overrepresentation analysis results of SE-associated genes compared 

to a background of all annotated genes in the Prairie Rattlesnake genome. All terms shown are significantly 

overrepresented in SE-associated genes (FDR < 0.05). D) Transcription factors inferred to have higher (red) 

and lower (blue) binding activity in the post-extraction venom gland based on ATAC-seq footprint quantity 

and strength (bottom left). Inset plot shows detail of transcription factors with higher activity during venom 

production. E-J) Comparisons of normalized gene expression at 1 day post-extraction (1DPE) between 

genes with and without an H3K4me4 ChIP-seq peak within 1kb of the promoter for E) all genes, F) all 

venom genes lumped together, G) SVMP, H) SVSP, I) PLA2, and J) other venom genes (*: p-value < 0.05, 

***: p-value < 0.001, NS: not significance; Student’s t-test). 
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Supplementary Figure S2 (previous page). A) Dots indicate enrichment in the promoter ATAC-seq peaks 

of a given venom gene family (p < 0.05), with color and size showing the significance score (-Log10(p-

value) multiplied by sign of log2 enrichment). B) Overview of Position Score basis and calculation. For 

TFBS that are conserved between two or more sequences in a multiple sequence alignment, the position 

score first weights the expression of associated genes by the ATAC-seq footprint score of that TFBS (i.e., 

strength of evidence that that site is bound by a TF), sums these weighted expression values for all genes 

with that TFBS at that site, and divides that value by the sum for all genes without that TFBS predicted at 

that site. This score is designed such that TFBS that are shared between highly expressed genes will be 

scored highly (TFBS A and B), those shared between only lowly expressed genes will be scored lowly 

(TFBS D), and those with intermediate patterns will have intermediate scores (TFBS C). C) TFBS with 

significant enrichment (p < 0.05) in the promoter regions of NVPs related to PLA2, SVMP, and SVSP 

venom genes. All TFBS are enriched, and the x-axis shows the percent of NVPs in each group with one or 

more of each TFBS. The total number of NVPs in each group is inset in the bottom right. D) For each NVP 

group, presence (TFBS in one or more NVP in group; empty points) and enrichment (filled points) is shown 

for primary and secondary TFBS identified in the corresponding venom gene group (see main text Fig. 4g).  
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Supplementary Figure S3: A) Comparison of the number of predicted enhancer regions (PERs) per gene 

for venom and non-venom genes. B) Density plot showing distances between PERs and associated genes 

for venom and non-venom genes, with median distance shown for each. C-I) vPER predictions for “other” 

venom genes in the Prairie Rattlesnake. vPER inferences are shown in the “ABC Enhancer-Gene 

Predictions” track; arcs begin at the promoter and end at the inferred vPER region (marked with a thicker 

purple bar). For ATAC-seq and ChIP-seq data, peak regions are marked with a bar underneath the read 

density plots. 
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Supplementary Figure S4: Significantly enriched TFBS in putative enhancer regions (vPERs) of the three 

major venom gene families. A) Dots indicate enrichment in the promoter ATAC-seq peaks of a given 

venom gene family (p < 0.05), with color and size showing the significance score (-Log10(p-value) 

multiplied by sign of log2 enrichment). B) Venn diagram of shared enriched TFBS between SVMP, SVSP, 

and PLA2 venom gene families. 

  



 

162 

 
 

Supplementary Figure S5: Aligned TFBS in SVMP putative enhancer regions (vPERS). Alignments of 

SVMP vPERs, with colored vertical bars on each sequence indicating presence of a TFBS for an enriched 

TF (bar size is scaled by the ATAC-seq footprint score for each TFBS, and the orientation of TFBS 

indicated by its position above (forward) or below (reverse) the center line). Faded regions of the center 

lines indicate gaps introduced during alignment of the underlying sequences. Bar plots at the top of each 

panel are position score for each TFBS, which incorporates the footprint score and expression of genes with 

and without a TFBS inferred at a given site, with the dotted line indicating the mean of all position scores 

per gene family. A score of alignment consensus is shown beneath vPER alignments. Average gene 

expression at 1DPE are shown to the right, with pink bars indicating averaged expression of multiple genes 

associated with a given vPER. TFBS are colored based on motif groups assigned by clustering TFBS with 

similar binding sites. 
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Supplementary	Figure	S6:	Aligned TFBS in SVSP putative enhancer regions (vPERS). Alignments of 

SVSP vPERs, with colored vertical bars on each sequence indicating presence of a TFBS for an enriched 

TF (bar size is scaled by the ATAC-seq footprint score for each TFBS, and the orientation of TFBS 

indicated by its position above (forward) or below (reverse) the center line). Faded regions of the center 

lines indicate gaps introduced during alignment of the underlying sequences. Bar plots at the top of each 

panel are position score for each TFBS, which incorporates the footprint score and expression of genes with 

and without a TFBS inferred at a given site, with the dotted line indicating the mean of all position scores 

per gene family. A score of alignment consensus is shown beneath vPER alignments. Average gene 

expression at 1DPE are shown to the right, with pink bars indicating averaged expression of multiple genes 

associated with a given vPER. TFBS are colored based on motif groups assigned by clustering TFBS with 

similar binding sites.  
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Supplementary Figure S7: Aligned TFBS in PLA2 putative enhancer regions (vPERS). Alignments of 

PLA2 vPERs, with colored vertical bars on each sequence indicating presence of a TFBS for an enriched 

TF (bar size is scaled by the ATAC-seq footprint score for each TFBS, and the orientation of TFBS 

indicated by its position above (forward) or below (reverse) the center line). Faded regions of the center 

lines indicate gaps introduced during alignment of the underlying sequences. Bar plots at the top of each 

panel are position score for each TFBS, which incorporates the footprint score and expression of genes with 

and without a TFBS inferred at a given site, with the dotted line indicating the mean of all position scores 

per gene family. A score of alignment consensus is shown beneath vPER alignments. Average gene 

expression at 1DPE are shown to the right, with pink bars indicating averaged expression of multiple genes 

associated with a given vPER. TFBS are colored based on motif groups assigned by clustering TFBS with 

similar binding sites. 
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Supplementary Figure S8: A) Overlap of Primary TFBS (enriched and with a position score > mean for 

a given family) between promoters and enhancers. The Venn diagram at top shows the overall total number 

of shared and unique primary TFBS across the three main venom gene families. The dot plot below shows 

details of which Primary TFBS in enhancers and promoters in the three main venom gene families. B-C) 

Overview of de novo motif analysis in putative venom enhancer regions (vPERs). B) Presence of the two 

potentially novel motifs identified as enriched in vPERs compared to non-venom PERs. Point size is scaled 

to reflect the number of motif sites identified within elevated ATAC-seq footprint regions in a given PER. 

C) Motif comparisons between the two potentially novel motifs and known TFBS from our candidate TF 

set. D) Comparison of the CTCF binding motif in humans (MA0139.1) and the CTCF binding motif for 

Prairie Rattlesnake inferred using CTCF ChIP-seq. 
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Supplementary Figure S9: Results of BLASTn searches of focal vPERs against the Prairie Rattlesnake 

genome. For A) SVMPs, B) SVSPs, and C) PLA2s, the vPER(s) associated with the most highly expressed 

gene (marked with red star) was searched back against the genome using BLASTn. BLAST hits with an e-

value < 0.000001 (red diamonds) are shown in the major venom array regions, and the number of hits 

outside of the focal region is shown next at the top of each panel. Local H3K27ac ChIP-seq (green), post-

extraction (dark brown) and unextracted (orange) ATAC-seq read density is shown below, with peak 

regions shown with vertical grey bars. 
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Supplementary Figure S10: A) Summary of significant vPER BLAST hits found on each chromosome 

for a representative vPER from major venom gene families. Bar plot showing the number of significant 

BLAST hits (e < 0.000001) to the Prairie Rattlesnake genome found when using the vPER associated with 

the highest expressed venom gene(s) in each family as the query sequence. Bars in red indicate the 

chromosome on which the query vPER sequence and venom cluster reside. B) Estimated age of Cv1-hAT-

Tip100 elements in the Prairie Rattlesnake genome. Estimated age of individual element copies based on 

pairwise divergence between each copy and the genome-wide consensus sequence, using the mutation rate 

of 2.24 x 109 following (Pasquesi et al., 2018). 
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Supplementary Figure S11 (previous page): A) Alignment of CV1-hAT-Tip100 elements in the SVSP 

venom gene region. Nucleotide alignment of CV1-hAT-Tip100 elements within the SVSP region and the 

genome-wide consensus (at top). Sequences with “Promoter” or “Enhancer” at the beginning of the 

identifier overlap with inferred SVSP promoter and enhancer regions, respectively, and those with “Other” 

do not overlap with any annotated regulatory sequences. Colored regions indicate the presence of candidate 

TFBS motifs that were inferred to be important for SVSP venom gene regulation. B) TFBS Alignment of 

Cv1-hAT-Tip100 elements in the SVSP region weighted by ATAC-seq footprint score. Inferred TFBS 

positions in Cv1-hAT-Tip100 elements that fall within the SVSP region and overlap with Promoters, 

Enhancers, or Other sequence in the region. The genome-wide consensus sequence is shown at the bottom 

and does not have a footprint score. 
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Supplementary Figure S12 (previous page): A) Gene expression heatmap of the PLA2 venom genes and 

related non-venom paralog PLA2gIIe. Relative expression is show (scaled by row) for each gene in 

Unextracted (Unext), 1 day post-extraction (ODPE), and 3 day post-extraction (TDPE) venom gland 

compared to three non-venom tissues: pancreas (Panc), Skin, and Stomach (Stom). On the left, check marks 

indicate genes that are significantly upregulated (p < 0.05) in pairwise comparisons of venom production 

(between unextracted and 1 day post-extraction venom gland) and between venom tissues (all) versus non-

venom tissues (all). B-E) PLA2 enhancers may be derived from incomplete duplication of their non-venom 

paralog, PLA2 gIIE. B) The PLA2 venom gene cluster and their non-venom paralog PLA2gIIE with 

interactions shown to putative venom enhancer regions (vPERs). The second and third exon of PLA2gIIE 

are marked with green bars, and the green dots in the PLA2gIIE Exon Debris row indicate exonic debris 

corresponding to these exon regions resulting from partial duplication of this gene. Below, significant Blast 

results to vPER 36 (marked with a star; the only vPER inferred to regulate both highly expressed PLA2s) 

correspond to the third exon of PLA2gIIE and multiple vPER regions. C,D) Active enhancer (H3K27ac) 

ChIP-seq and ATAC- seq from the post-extraction venom gland, with peaks shown as shaded rectangles. 

E) Nucleotide alignment of vPER36 and the third exon of PLA2gIIE show substantial sequence identity 

(positions highlighted in blue).  
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Supplementary Tables 

Supplementary Table S1. Candidate transcription factors (TFs) with potential involvement in venom 

gene regulation. TFs identified as upregulated during venom production (RNA-seq), associated with super-

enhancer regions (ChIP-seq), and/or positively differentially bound during venom production (ATAC-seq). 

Functional characterization of candidate TFs highlight those previously implicated in venom gene 

regulation, those involved in adrenoceptor signaling, and those with known interactions with ERK. 

Normalized gene expression counts across tissues, differential expression, and differential ATAC-seq 

footprinting analysis results are included for each candidate TF.  
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AEBP1 crovir-transcript-12782 √       
AEBP2 crovir-transcript-11366  √      
ARID4A crovir-transcript-6996 √       
ARNT crovir-transcript-12636  √      
ATF1 crovir-transcript-14479   √     
ATF2 crovir-transcript-8315 √    √ √  
ATF3 crovir-transcript-9649   √     
ATF4 crovir-transcript-12088  √   √ √  
ATF6B crovir-transcript-13131 √    √ √  
ATF7 crovir-transcript-14662   √     
ATF7IP crovir-transcript-12040 √       
ATRX crovir-transcript-10 √       
BHLHA15 crovir-transcript-320  √      
BOLA1 crovir-transcript-1197 √       
BOLA3 crovir-transcript-13007 √       
BUD31 crovir-transcript-144  √      
CAMTA1 crovir-transcript-1130 √       
CARHSP1 crovir-transcript-509 √       
CDC73 crovir-transcript-5698  √      
CEBPZ crovir-transcript-9446 √       
CIC crovir-transcript-724  √      
CREB3 crovir-transcript-12236 √ √   √ √  
CREB3L1 crovir-transcript-7444 √    √ √  
CREB3L2 crovir-transcript-12236 √ √  √ √ √  
CREB3L4 crovir-transcript-12594   √  √ √  
CREB5 crovir-transcript-2064   √  √   
CREBRF crovir-transcript-13972  √      
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CREM crovir-transcript-1813 √ √ √   √  
CSRNP2 crovir-transcript-14714  √      
DACH1 crovir-transcript-3243 √       
DDIT3 crovir-transcript-14617  √  √   √ 
EHF crovir-transcript-7549  √ √ √    
ELF2 crovir-transcript-4489   √     
ELF4 NA   √ √    
ELF5 crovir-transcript-7566   √ √    
ELK1 crovir-transcript-14740   √  √   
ELK3 crovir-transcript-11970   √     
ELK4 crovir-transcript-6293   √  √   
ERF crovir-transcript-709   √  √   
ERG crovir-transcript-3668   √ √    
ETS1 crovir-transcript-12725   √ √ √   
ETS2 crovir-transcript-3667 √  √  √   
ETV1 crovir-transcript-1984   √ √    
ETV2 crovir-transcript-811   √ √    
ETV5 crovir-transcript-10662   √     
ETV6 crovir-transcript-12831   √     
FEV crovir-transcript-7975   √     
FIGLA crovir-transcript-12994 √ √      
FLI1 crovir-transcript-12724   √     
FOS crovir-transcript-7192  √  √ √  √ 
FOSB crovir-transcript-1248  √ √     
FOSL1 NA   √     
JUND NA   √ √ √  √ 
FOSL2 crovir-transcript-9524   √     
FOXA2 crovir-transcript-5494   √ √    
FOXA3 crovir-transcript-1318   √ √    
FOXC1 NA   √     
FOXC2 crovir-transcript-11432   √ √    
FOXD2 crovir-transcript-6046   √     
FOXE1 crovir-transcript-15186   √     
FOXF1 crovir-transcript-11433   √ √    
FOXG1 crovir-transcript-7241   √     
FOXI1 crovir-transcript-14004   √     
FOXJ3 NA   √     
FOXK2 crovir-transcript-14093 √  √ √    
FOXL1 NA   √     
FOXL2 crovir-transcript-10736   √ √    
FOXO3 crovir-transcript-16138  √  √ √   
FOXO4 crovir-transcript-16138  √ √  √   
FOXO6 NA   √  √   
FOXP1 crovir-transcript-13360   √ √    
FOXP3 crovir-transcript-14882   √     
GATA1 crovir-transcript-14789 √    √   
GLIS2 crovir-transcript-1669 √ √      
GMEB1 crovir-transcript-919   √     
GMEB2 NA   √     
GPBP1 crovir-transcript-15800 √       
GRHL1 crovir-transcript-8758  √ √ √    
GRHL2 crovir-transcript-4926  √ √ √    
HCFC1 crovir-transcript-14873  √      
HDAC1 crovir-transcript-5542 √ √      
HDAC3 crovir-transcript-5542 √ √      
HES6 crovir-transcript-10728 √ √      
HIF3A crovir-transcript-16294 √ √      
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HIVEP1 crovir-transcript-5324 √       
HYAL2 crovir-transcript-13660 √       
IKZF5 crovir-transcript-10426 √ √      
IRX1 crovir-transcript-5471  √      
IRX2 crovir-transcript-5470  √      
JDP2 crovir-transcript-7235   √     
JUN crovir-transcript-6797  √ √ √ √  √ 
JUNB NA   √ √   √ 
KAT6A crovir-transcript-12928  √      
KDM5B crovir-transcript-6418  √      
KLF10 crovir-transcript-4917 √       
KLF11 crovir-transcript-6772  √   √   
KLF13 crovir-transcript-11070  √      
KLF16 crovir-transcript-6772  √      
KLF8 crovir-transcript-16156 √       
LITAF crovir-transcript-1631  √      
MAZ crovir-transcript-2964 √       
MBD1 crovir-transcript-14772 √ √      
MBNL3 crovir-transcript-16112  √      
MED30 crovir-transcript-4885 √ √      
MEIS1 crovir-transcript-8589  √      
MEIS2 crovir-transcript-7256 √       
MLLT3 crovir-transcript-15356 √       
MXD1 crovir-transcript-12992  √      
NCOA3 crovir-transcript-6549 √       
NFATC1 crovir-transcript-5268 √       
NFE2 crovir-transcript-14649 √       
NFIA crovir-transcript-5965  √  √    
NFIB crovir-transcript-15370  √  √    
NFXL1 crovir-transcript-4728  √      
NOC3L crovir-transcript-10347 √       
NOCT crovir-transcript-4490 √       
NOLC1 crovir-transcript-10213 √       
NR1H2 crovir-transcript-5260 √       
NR4A1 crovir-transcript-14451 √ √   √   
NR4A2 crovir-transcript-8197 √ √  √    
NR4A3 crovir-transcript-2319 √       
OVOL1 crovir-transcript-12399  √      
PHTF1 crovir-transcript-6359 √       
PITX1 crovir-transcript-13885 √       
PITX2 crovir-transcript-4420  √      
PLAG1 crovir-transcript-5094  √      
PPARD crovir-transcript-6233 √       
PPP1R13L crovir-transcript-1260  √      
PRDM2 crovir-transcript-11363  √      
PSMD9 crovir-transcript-16386 √       
PTTG1 crovir-transcript-14040 √    √   
PURA crovir-transcript-12918  √      
PURB crovir-transcript-12918  √      
RARA crovir-transcript-2559  √   √   
RBM14 crovir-transcript-12391 √       
RERE crovir-transcript-1029  √      
RFX2 crovir-transcript-10114 √       
RFX7 crovir-transcript-11031 √       
RFXAP crovir-transcript-3901 √       
RREB1 crovir-transcript-5349  √      
SALL2 crovir-transcript-3122 √       
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SALL3 crovir-transcript-5264 √       
SCML2 crovir-transcript-3515 √       
SFPQ crovir-transcript-669 √    √   
SKI crovir-transcript-2243 √       
SMAD9 crovir-transcript-3899 √       
SMARCA5 crovir-transcript-4474 √       
SOX17 crovir-transcript-5107 √       
SOX18 crovir-transcript-11609 √       
SOX9 crovir-transcript-14372  √      
SP1 crovir-transcript-15064  √   √   
SPDEF crovir-transcript-6220  √  √    
SREBF1 crovir-transcript-1605  √      
SSRP1 crovir-transcript-7902 √       
SUFU crovir-transcript-10545  √      
SUPT20H crovir-transcript-15280 √       
SUPT4H1 crovir-transcript-9971 √       
TAF1 crovir-transcript-16150 √       
TBX3 crovir-transcript-9066  √   √   
TCFL5 crovir-transcript-6673   √     
TERF2 crovir-transcript-16196  √      
TFAP2A crovir-transcript-5334  √      
TFAP4 crovir-transcript-1652  √      
TFCP2L1 crovir-transcript-8096  √      
TFDP1 crovir-transcript-3361   √     
TLE1 crovir-transcript-11392  √      
TOX4 crovir-transcript-2320 √       
TSC22D2 crovir-transcript-10819 √       
TSC22D3 crovir-transcript-16160  √      
TSC22D4 crovir-transcript-11156  √      
UHRF1 crovir-transcript-6698  √      
WWP2 crovir-transcript-16206 √       
XBP1 crovir-transcript-16464  √      
YEATS4 crovir-transcript-11866 √       
YY1 crovir-transcript-7062 √   √    
ZBTB26 crovir-transcript-1507  √      
ZBTB33 crovir-transcript-209   √     
ZBTB49 crovir-transcript-269 √       
ZBTB6 crovir-transcript-1506  √      
ZBTB7A NA   √     
ZC3H15 crovir-transcript-8369 √       
ZC3H3 crovir-transcript-7268 √       
ZFP36L1 crovir-transcript-7440  √      
ZGPAT crovir-transcript-1101 √       
ZNF217 crovir-transcript-6590  √      
ZNF341 crovir-transcript-6462  √      
ZNF451 crovir-transcript-8917 √       
ZNF462 crovir-transcript-15288  √      
ZNF511 crovir-transcript-6877  √      
ZNF512 crovir-transcript-9923 √       
ZNF574 crovir-transcript-710 √       
ZNF592 crovir-transcript-11170  √      
ZNF622 crovir-transcript-5422 √       
ZNF710 crovir-transcript-11397  √      
ZNF76 crovir-transcript-6234 √       
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Supplementary Table S2. KEGG Pathway overrepresentation analysis results for candidate transcription factors. Results of KEGG pathway 

overrepresentation analysis using candidate TFs as the target set and all other annotated TFs in the Prairie Rattlesnake as the background. Only 

pathways with significant overrepresentation (FDR < 0.05) are shown. 

Gene Set Description Size of 
Gene Set 

Overlap 
Size 

Expected 
Overlap Size 

Enrichment 
Ratio p-value FDR Candidate TFs in Gene Set 

hsa05031 Amphetamine addiction 14 11 2.4211 4.5435 4.794E-07 5.800E-05 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;
FOS;FOSB;HDAC1;JUN 

hsa04915 Estrogen signaling pathway 20 12 3.4586 3.4696 1.192E-05 4.672E-04 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;
FOS;JUN;NCOA3;RARA;SP1 

hsa04925 Aldosterone synthesis and secretion 12 9 2.0752 4.3370 1.236E-05 4.672E-04 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;
NR4A1;NR4A2 

hsa04261 Adrenergic signaling in 
cardiomyocytes 10 8 1.7293 4.6261 1.880E-05 4.672E-04 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;

CREM 

hsa05034 Alcoholism 15 10 2.5940 3.8551 1.930E-05 4.672E-04 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;
FOSB;HDAC1;HDAC3 

hsa05030 Cocaine addiction 13 9 2.2481 4.0033 3.459E-05 6.976E-04 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;
FOSB;JUN 

hsa04926 Relaxin signaling pathway 14 9 2.4211 3.7174 8.342E-05 1.262E-03 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;
FOS;JUN 

hsa04927 Cortisol synthesis and secretion 14 9 2.4211 3.7174 8.342E-05 1.262E-03 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;
NR4A1;SP1 

hsa04911 Insulin secretion 9 7 1.5564 4.4976 9.518E-05 1.280E-03 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4 

hsa04728 Dopaminergic synapse 12 8 2.0752 3.8551 1.534E-04 1.856E-03 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;
FOS 

hsa04918 Thyroid hormone synthesis 10 7 1.7293 4.0478 2.734E-04 3.007E-03 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4 

hsa04725 Cholinergic synapse 8 6 1.3835 4.3370 4.629E-04 4.668E-03 ATF4;CREB3;CREB3L1;CREB3L2;CREB3L4;FOS 

hsa04151 PI3K-Akt signaling pathway 17 9 2.9398 3.0614 6.467E-04 6.020E-03 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;
FOXO3;NR4A1 

hsa04668 TNF signaling pathway 18 9 3.1128 2.8913 1.114E-03 9.625E-03 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;
FOS;JUN 

hsa04928 Parathyroid hormone synthesis, 
secretion and action 22 10 3.8045 2.6285 1.460E-03 1.178E-02 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;

FOS;NR4A2;SP1 
hsa04010 MAPK signaling pathway 20 9 3.4586 2.6022 2.852E-03 2.157E-02 ATF2;ATF4;DDIT3;ELK1;ELK4;FOS;JUN;NFATC1;NR4A1 

hsa04211 Longevity regulating pathway 17 8 2.9398 2.7212 3.571E-03 2.542E-02 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;
FOXO3 

hsa05163 Human cytomegalovirus infection 25 10 4.3233 2.3130 4.709E-03 3.165E-02 ATF2;ATF4;ATF6B;CREB3;CREB3L1;CREB3L2;CREB3L4;
ELK1;NFATC1;SP1 

hsa04024 cAMP signaling pathway 18 8 3.1128 2.5700 5.537E-03 3.526E-02 CREB3;CREB3L1;CREB3L2;CREB3L4;FOS;JUN;NFATC1;S
OX9 
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Supplementary Table S3. De novo motif search results for venom promoter sequences from MEME. No motifs identified by MEME are 

significantly enriched in venom promoter sequences relative to non-venom gene promoter sequences.  

 
MEME ID Sequence Width (bp) # Sites log likelihood ratio p-value E-value 
MEME-1 AWTCMTKT 8 7 61 5.20E-01 6.70E-01 
MEME-2 ATYCATGYMMDCRTW 15 12 149 1.00E-01 1.00E-01 
MEME-3 TTGYTTCTHWWWDTY 15 10 102 5.10E-01 6.50E-01 
MEME-4 AATCCT 6 14 81 1.50E-01 1.60E-01 
MEME-5 GWTGTA 6 7 53 4.90E-01 6.20E-01 
MEME-6 AGGAAATAA 9 4 47 7.70E-01 1.20E+00 
MEME-7 CTTCAGCWTH 10 4 39 8.90E-01 1.70E+00 
MEME-8 ATGGCTCT 8 2 22 5.20E-01 6.60E-01 
MEME-9 AGGTGTTT 8 2 23 6.60E-01 9.50E-01 
MEME-10 TTGATS 6 2 16 4.40E-01 5.30E-01 
MEME-11 WWRSNARNDRH 11 24 62 9.10E-01 1.80E+00 
MEME-12 GGAATGA 7 2 20 1.00E+00 4.00E+00 
MEME-13 ACAATA 6 2 18 1.00E+00 3.60E+00 
MEME-14 CAAACA 6 2 17 1.00E+00 3.90E+00 
MEME-15 ACTTCWG 7 5 37 1.00E+00 4.00E+00 
MEME-16 RSBTAAYK 8 3 24 9.60E-01 2.20E+00 
MEME-17 ANDKSWK 7 24 31 1.00E+00 3.40E+00 
MEME-18 GGRAYA 6 3 21 1.00E+00 3.80E+00 
MEME-19 TKTGCA 6 2 16 1.00E+00 4.00E+00 
MEME-20 YYDGDG 6 24 28 1.00E+00 2.00E+00 
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Abstract 

Microchromosomes are common yet poorly understood components of many vertebrate genomes. Recent 

studies have revealed that microchromosomes contain a high density of genes and possess other distinct 

characteristics compared to macrochromosomes. Whether distinctive characteristics of microchromosomes 

extend to features of genome structure and organization, however, remains an open question. Here we 

analyze Hi-C sequencing data from multiple vertebrate lineages and show that microchromosomes exhibit 

consistently high degrees of interchromosomal interaction (particularly with other microchromosomes), 

appear to be co-localized to a common central nuclear territory, and are comprised of a higher proportion 

of open chromatin than macrochromosomes. These findings highlight an unappreciated level of diversity 

in vertebrate genome structure and function, and raise important questions regarding the evolutionary 

origins and ramifications of microchromosomes and the genes that they house. 
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Introduction 

The three-dimensional (3D) organization and interactions of the genome play fundamental roles in gene 

regulation and genome function (Cremer and Cremer, 2001; Cremer et al., 1993). Advances in functional 

genomics approaches such as Hi-C sequencing (Lieberman-Aiden et al., 2009) have broadened our 

understanding of 3D genomic interactions and organization in the nucleus, including how chromatin loops 

coordinate the regulation of genes and how chromosomes form discrete chromosome territories within the 

nucleus (Bolzer et al., 2005; Cremer et al., 1993; Habermann et al., 2001). Most studies of 3D genome 

organization and structure have focused on mammalian genomes that are exclusively comprised of 

macrochromosomes (Cremer and Cremer, 2001; Cremer et al., 1993; Kurz et al., 1996). However, many 

non-mammalian vertebrates possess microchromosomes - nuclear chromosomes generally smaller than 30 

Mb in length - in addition to macrochromosomes (Axelsson et al., 2005; Burt, 2002; International Chicken 

Genome Sequencing Consortium, 2004; Ohno et al., 1969; Schield et al., 2019; Zhou and Gui, 2002). 

Microchromosome number is variable across vertebrates, ranging from 0 in macrochromosome-only 

lineages to greater than 40 in other lineages (Deakin and Ezaz, 2019; O’Connor et al., 2019). Vertebrate  

microchromosomes consistently exhibit many distinct features across lineages, including high gene density, 

low transposable element content, and high rates of recombination (Backström et al., 2010; International 

Chicken Genome Sequencing Consortium, 2004; Schield et al., 2019, 2020), and represent a functionally 

and evolutionarily unique fraction of the genomes of many vertebrates. However, it remains largely 

unknown how 3D genomic features manifest in nuclei of vertebrates containing both macro- and 

microchromosomes.  

Recent Hi-C studies of vertebrates with microchromosomes have provided increasing evidence for distinct 

features of microchromosome organization and function. A study of the Prairie Rattlesnake (Crotalus 

viridis) found that microchromosomes exhibit higher degrees of interaction with other chromosomes than 

expected based on chromosome size (Schield et al., 2019). A similar trend was observed in chicken 
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erythrocytes (Gallus gallus) (Fishman et al., 2018). This study also inferred AB compartments across the 

chicken genome, which broadly correspond to regions of open (A compartment) and closed (B 

compartment) chromatin (Lieberman-Aiden et al., 2009), and showed that microchromosomes exhibit a 

higher proportion of A compartment regions than macrochromosomes (Fishman et al., 2018). Together, 

these studies suggest that microchromosomes may be functionally and organizationally distinct compared 

to macrochromosomes. The extent to which these patterns represent universal characteristics of 

microchromosomes remains unexplored, and their evolutionary causes and ramifications largely 

unconsidered.  

Here, we use recently published chromosome-level genome assemblies and Hi-C datasets for 

representatives of multiple vertebrate lineages to infer patterns of 3D interaction and organization of 

genomes that possess both macro- and microchromosomes. Based on these data, we demonstrate that high 

interchromosomal interaction and enrichment for A compartment regions are likely ubiquitous features of 

vertebrate microchromosomes, and find support for previous suggestions that microchromosomes co-

inhabit the center of the nucleus. Collectively, these findings suggest that vertebrate genomes with 

microchromosomes may structurally, functionally, and evolutionarily operate in fundamentally distinct 

ways compared to macrochromosome-only genomes. This conclusion highlights the largely unexplored 

evolutionary relevance of the presence/absence of microchromosomes across vertebrate lineages, and the 

relevance of genes being encoded on microchromosomes. 

Results 

Our analyses of Hi-C data indicate that, for all species analyzed (Supp. Tables 1-2), interchromosomal 

contact frequency generally increases as chromosome size decreases (Fig. 1ai-ii). Microchromosomes 

therefore exhibit a higher degree of interchromosomal interaction, with all non-mammalian species 

exhibiting a significantly higher degree of interchromosomal interaction in microchromosomes than in 
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macrochromosomes (Fig. 1dii-iii). Interestingly, in the chicken, which possesses the smallest 

microchromosomes among all species we analyzed, there is an apparent inflection point in chromosome 

size at which interchromosomal activity begins to decrease as chromosome size continues to decrease (Fig. 

1di, Supp. Fig. 1). This pattern is apparent in all three chicken tissues analyzed, and less pronounced 

inflection points near the smallest microchromosomes in the Prairie Chicken (Fig. 1ei) and Sea Turtle (Fig. 

1fi). 

To further investigate patterns of interchromosomal contacts between macrochromosomes and 

microchromosomes, we compared empirical interchromosomal contact frequencies (ICFs) to ICFs 

predicted by a null model assuming uniform interactions between chromosomes, following (Zhang et al., 

2012). In all non-mammalian species, we find an excess of ICFs between microchromosome pairs and 

fewer than expected ICFs between macrochromosomes and microchromosomes (Fig. 1div-iiv). Hierarchical 

clustering of chromosomes based on observed over expected ICFs distinguishes macrochromosomes from 

microchromosomes in nearly all species and tissues, with a small number of exceptions in the rattlesnake 

(Fig. 1iv) and the three chicken tissues analyzed (Supp. Fig. 1).  

For all species possessing microchromosomes, we inferred AB compartments based on patterns of 

interchromosomal contact frequencies at 50 kb resolution between all chromosomes and binned measures 

of GC content. We find that microchromosomes in all species are comprised of a significantly higher 

proportion of A compartment regions compared to macrochromosomes, which are predominately 

comprised of B compartment regions (Fig. 2, Supp. Fig. 2). 

Genome-wide heatmaps of binned Hi-C contact frequency and 3D interpretations of interaction data both 

show evidence of well-defined chromosome territories for macrochromosomes (Fig. 3, Supp. Figs. 3-8). 

For microchromosomes, contact frequency heatmaps show elevated levels of intrachromosomal interaction 

(Supp. Fig. 3), and show an elevated degree of microchromosome-microchromosome interaction. 
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Furthermore, this high degree of microchromosome interaction results in a lack of obvious spatial 

distinction between microchromosomes in 3D interpretations of Hi-C interaction data, and independent 

microchromosome territories are not well defined (Fig. 3, Supp. Fig. 3-8). While 3D interpretations of Hi-

C data should not be directly interpreted as biologically accurate models of the nucleus, they do provide 

fairly robust inferences regarding the degree of isolation of chromosomes based on patterns of 2D 

interaction. Note that 3D models were not generated for the three chicken tissues due to the data for several 

microchromosomes being too sparse to generate intrachromosomal contact maps at necessary resolution.   

Discussion 

Using Hi-C contact data from diverse vertebrate lineages, we demonstrate that microchromosomes 

consistently exhibit an elevated degree of interchromosomal interactivity compared to that of 

macrochromosomes. This pattern of elevated inter-chromosomal interaction for microchromosomes is 

consistent with previous studies of single species (chicken (Fishman et al., 2018) and rattlesnake (Schield 

et al., 2019)), and our expanded sampling indicate that these patterns are likely remarkably consistent across 

diverse vertebrate lineages. We consistently find that the high magnitude of microchromosome interactivity 

is dominated by microchromosome-to-microchromosome interactions, and additionally show that 

microchromosomes are consistently enriched for, and in many cases comprised almost exclusively of, A 

compartment regions. These findings emphasize the unique structural and functional features of vertebrate 

microchromosomes, and raise interesting questions about the relationships between microchromosome 

structure and genome function and organization.  

Previous microscopy studies have suggested that bird microchromosomes inhabit the center of the nucleus 

with macrochromosomes arranged around them at the nuclear periphery (Berchtold et al., 2011; Habermann 

et al., 2001; Skinner et al., 2009). Similar studies have not yet, however, been conducted for other species 

with microchromosomes (i.e. fish, non-avian reptiles), and the degree to which this chromosomal 
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arrangement is conserved across vertebrates with microchromosomes remains unknown. Our findings of 

consistently elevated microchromosome-microchromosome interactions is consistent with a model in 

which microchromosomes are localized in the center of the nucleus across diverse vertebrate lineages. This 

arrangement of microchromosomes is also supported by our inference that microchromosomes are 

primarily comprised of A compartment (open chromatin) regions, which tend to be concentrated at the 

center of the nucleus (Kosak et al., 2007; Misteli, 2007). Taken together, our Hi-C based inferences and 

previous studies tentatively support a model of nuclear organization in which A-rich microchromosomes 

occupy the center of the nucleus, surrounded by A-rich regions of macrochromosomes that inhabit the 

nuclear periphery (Fig. 3g). Interestingly, somewhat analogous examples exist in insect chromosomes (e.g., 

Drosophila dot chromosome), in which these chromosomes with distinct compositional characteristics 

(heterochromatic, gene dense, transposon-rich) occupy distinct regions of the nucleus (Riddle and Elgin, 

2018), implying broad links between nuclear chromosome organization and chromosome composition, 

structure and function. Future studies that utilize 3D fluorescence in situ hybridization for multiple 

vertebrates with microchromosomes would be particularly valuable for testing our hypotheses for nuclear 

organization, and the degree to which it is conserved across species and cell types.  

Available evidence suggests that microchromosomes collectively exhibit features that are distinct from 

typical macrochromosomes, in that they are closely associated in the nucleus and interact more frequently 

with other microchromosomes than to macrochromosomes. This argues for the presence of a 

microchromosome-specific territory in the nucleus that features a higher degree of interchromosomal 

interaction than typically observed for macrochromosomes (Fig. 3f). However, the degree to which 

microchromosomes inhabit well-defined individual territories within this encompassing microchromosome 

territory remains an open question; it is possible that the lack of defined microchromosome territories in 

our 3D interpretations of Hi-C data may result from variable positioning of microchromosomes across 

sampled cells (i.e., a merged ‘average’ of relative position). It also remains an open question how such an 
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arrangement of microchromosomes may influence the formation and position of the nucleolus in the 

nucleus. Regardless, the high degree of interaction among microchromosomes raises the possibility of inter-

chromosomal regulatory interactions between microchromosomes, a phenomenon thought to be rare in 

macrochromosomes (Bashkirova and Lomvardas, 2019; Maass et al., 2019) that should be explore further 

in microchromosomes.  

While our findings show notably similar characteristics between microchromosomes of multiple vertebrate 

lineages, it is worth noting that our current sampling is remarkably sparse in the context of vertebrate 

diversity, and lacks representatives from several important lineages that also possess microchromosomes 

(i.e. fish) for which Hi-C contact information data is not currently available. While we do observe consistent 

patterns across many of the tissue and cell types sampled here (whole blood, venom gland, erythrocytes) 

that may represent common features of microchromosome biology and organization, we expect variation 

and exceptions to these patterns to exist in various cell types, tissues, and developmental stages within 

species. Indeed, we observed evidence of variation in interchromosomal contact patterns when various 

chicken cell types are compared, with some of these variations being particularly distinct in chicken 

embryonic fibroblast cells (Supp. Fig. 1). The degree to which patterns of microchromosome interaction 

and structure observed here are broadly present and/or consistent across the full diversity of vertebrate 

lineages, tissue, and cell types therefore remains an open question for future studies, as additional data for 

diverse vertebrates becomes available. 

A major consideration emphasized by our findings is how unique features of microchromosomes may affect 

the evolution of genes housed on microchromosomes. Unlike macrochromosomes, microchromosomes 

tend to share a common nuclear territory, and have high levels of interchromosomal interaction, and consist 

of mainly A compartment active chromatin. Intriguingly, despite this unusually high level of 

interchromosomal interaction, which may suggest functional interactions among microchromosomes, they 

segregate independently and consistently exhibit among the highest genome-wide recombination rates 
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(Backström et al., 2010; International Chicken Genome Sequencing Consortium, 2004; Schield et al., 

2019). This has profound implications for the evolution of genes on microchromosomes, and suggests that 

the rate and efficiency of selection, and the effects of drift, would be distinct on microchromosomes 

compared to macrochromosomes. For example, high recombination rates in microchromosomes would be 

very effective at breaking down linkage disequilibrium, breaking associations among selected alleles, and 

thereby increasing the efficacy of selection. These features suggest that microchromosomes possess ideal 

characteristics for housing genes underlying adaptation. Anecdotal support for this comes from the Prairie 

Rattlesnake genome, in which microchromosomes contain the majority of important venom genes, which 

are generally known to be under strong local selection (Casewell et al., 2013; Mackessy, 2010; Schield et 

al., 2019), although more extensive systematic studies of additional vertebrate lineages would be necessary 

to test hypotheses for the special relevance of microchromosomes in adaptation. Continued accumulation 

of chromosome-level genome resources for diverse vertebrates will provide new opportunities to test 

hypotheses related to the roles of microchromosomes in genome evolution, investigate the relevance of 

genes and gene families being located on microchromosomes, and elucidate the factors that drive shifts 

from macrochromosome-only systems to those containing both chromosome types.    

Methods 

Hi-C data were downloaded from the NCBI Sequence Read Archive for the Prairie Rattlesnake (Crotalus 

viridis), Burmese Python (Python bivittatus), Argentine Black and White Tegu (Salvator merianae), Green 

Sea Turtle (Chelonia mydas), Greater Prairie Chicken (Tympanuchus cupido), chicken (Gallus gallus), 

Rhesus Macaque (Macaca mulatta), Patski Mouse (Mus musculus x Mus spretus), and human (Homo 

sapiens). See Supplementary Table 1 for details. Hi-C reads for each species were mapped to genome 

assemblies and processed using the Juicer pipeline (Durand et al., 2016a). For each species, inter- and 

intrachromosomal contact matrices were extracted from the resulting Hi-C map using the dump command 

in Juicer Tools v1.9.9 at 50kb, 100kb, and 1mb resolutions using KR-normalization and only reads that 
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mapped with MAPQ > 30. The size at which a chromosome is designated a microchromosome is not well 

defined, and most previous studies have defined microchromosomes and macrochromosomes largely based 

on visual dichotomies apparent in chromosome squashes (ex. Habermann et al., 2001). In this study, avian 

microchromosomes were defined as chromosomes shorter than 30Mb. Visual inspection of linear 

chromosome length for non-avian reptiles revealed a more apparent natural break between larger and 

smaller chromosomes around 50Mb, and we therefore defined chromosomes shorter than this as 

microchromosomes. Downstream analyses of observed versus expected interchromosomal contact 

frequencies (described below) lend support to this breakpoint, as chromosomes defined herein as 

macrochromosomes and microchromosomes based on these criteria cluster strongly with others of the same 

type, with few exceptions (see Fig. 1).  

The sum of all interchromosomal contacts per chromosome was divided by chromosome length to produce 

a relative measure of interchromosomal contact density per chromosome, and the relationship between this 

normalized contact frequency and chromosome length was tested using linear regression in R (R Core 

Team, 2014). Differences between macrochromosome and microchromosome interchromosomal contact 

frequencies were tested using student’s t-tests. Observed contact frequencies were compared to the expected 

interchromosomal contact frequency for each chromosome pair assuming uniform interactions between 

chromosomes following (Zhang et al., 2012). The log2 ratio of observed over expected interchromosomal 

contact frequency was plotted as a heatmap in R using pheatmap v1.0.12 

(https://github.com/raivokolde/pheatmap). Heatmaps of Hi-C contact frequency were generated with 

Juicebox (Durand et al., 2016b).  

miniMDS (Rieber and Mahony, 2017) was used to generate 3D interpretations of Hi-C data using 1Mb 

resolution interchromosomal contact data and 50kb resolution intrachromosomal contact data. miniMDS 

was run using full partitioning with minimum partition size 0.08 and the default smoothing parameter. The 

resulting 3D models were visualized using Mayavi (Ramachandran and Varoquaux, 2011). Note that Hi-C 
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data for the three chicken tissues was too sparse to generate 50kb intrachromosomal contact maps for input 

into miniMDS, and therefore these samples were excluded from 3D modeling.  

Juicer Hi-C matrices were converted to the cooler format (Abdennur and Mirny 2020) at 50 kb resolution 

using hic2cool v0.8.3 (https://github.com/4dn-dcic/hic2cool) and normalized using ‘balance’ within the 

cooler CLI package v0.8.7 (Abdennur and Mirny, 2020). GC content was measured in 50 kb bins using the 

‘nuc’ program within bedtools v2.29.0 (Quinlan and Hall, 2010). AB compartments were determined with 

‘call-compartments’ within cooltools v0.3.2 (https://github.com/mirnylab/cooltools) using trans 

(interchromosomal) contacts and binned measures of GC content as the reference track. The proportion of 

A compartment regions per chromosome was calculated as the number of 50 kb bins determined to belong 

to the A compartment divided by the total number of bins representing the chromosome and plotted in R. 

A student’s t-test was used to test for enrichment of A compartments on microchromosomes. 
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Figures 

Figure 1. Microchromosomes exhibit elevated interchromosomal contact frequencies and interact 

preferentially with other microchromosomes. ai-ii) Sums of interchromosomal contact frequencies per 

chromosome normalized by chromosome length plotted over chromosome length. dii-iii) Comparisons of 

interchromosomal contact frequency normalized by chromosome length for macro and microchromosomes 

(*: p-value < 0.05, ***: p-value < 0.001, Student’s t-test). diii-iiii) Comparison of the proportion of 

interchromosomal contacts that involve a microchromosome for macrochromosomes and 

microchromosomes  (*** denotes p < 0.001, Student’s t-test). aii-cii, div-iiv) Heatmaps of the ratio of 

observed to expected interchromosomal contact frequency (ICF) between all chromosome pairs, with 

hierarchical clustering and chromosome type annotated above and to the left of each heatmap.  
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Figure 2. Microchromosomes are enriched for the A compartment. Bar plots indicate the proportion of 

50 kb bins for each chromosome that were determined to be A (red) and B (blue) compartment. In all 

species, microchromosomes exhibit a higher proportion of A compartment bins than macrochromosomes 

(boxplots on right; *** denotes p < 0.001, Student’s t-test).  
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Figure 3. Microchromosomes are likely co-localized in the 3D nucleus. a-e) 3D interpretations of Hi-C 

interaction data shown as 2D point density plots from three distinct orientations for all chromosomes, 

macrochromosomes only, and microchromosomes only. For macro and micro- only plots, different colors 

represent different chromosomes. Shown at the bottom are 3D interpretations of all chromosomes, with 

macrochromosomes in greyscale and microchromosomes in color. Additional orientations for each species 

are available in Supp. Figs. 4-8. f-g) cartoon representations of a nucleus illustrating the hypotheses that f) 

microchromosomes are centrally located in the nucleus and collectively inhabit a “microchromosome 

territory” and g) that of spatial organization of A and B compartments in a nucleus containing A-rich 

microchromosomes. 
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Supplementary Figures 

Supplementary Figure 1. Microchromosomes interactions in three chicken tissues. Patterns of 

interchromosomal interaction for chicken mature erythrocyte (CME), immature erythrocyte (IE), and 

embryonic fibroblast (CEF) cells. a.i-c.i) Sums of interchromosomal contact frequencies per chromosome 

normalized by chromosome length plotted over chromosome length. a.ii-c.ii) Comparisons of 

interchromosomal contact frequency normalized by chromosome length for macro and microchromosomes 

(*: p-value < 0.05, ***: p-value < 0.001, Student’s t-test). a.iii-c.iii) Comparison of the proportion of 

interchromosomal contacts that involve a microchromosome for macrochromosomes and 

microchromosomes (*** denotes p < 0.001, Student’s t-test). a.iv-c.iv) Heatmaps of the ratio of observed 

to expected interchromosomal contact frequency (ICF) between all chromosome pairs, with hierarchical 

clustering and chromosome type annotated above and to the left of each heatmap. 
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Supplementary Figure 2. Microchromosomes are enriched for the A compartment in all three 

chicken tissues. Bar plots indicate the proportion of 50 kb bins for each chromosome that were determined 

to be A (red) and B (blue) compartment. In all tissues, microchromosomes exhibit a higher proportion of A 

compartment bins than macrochromosomes (boxplots on right; *** denotes p < 0.001, Student’s t-test). 
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Supplementary Figure 3. Hi-C contact frequency heatmaps at 50kb resolution for all focal species 

possessing both macrochromosomes and microchromosomes. Darker red indicates higher contact 

frequency. Chromosome territories are evidenced by defined “blocks” of interaction frequency 

corresponding to chromosomes that indicate a high degree of self- interaction and lesser degree of 

interaction with other chromosomes. 
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Supplementary Figure 4. 3D interpretation of Prairie Chicken Hi-C interaction data is shown at three 

distinct orientations (left, center, and right columns), with plots of 2D point density of 3D chromosome 

models. A-C) 2D point density of all microchromosomes (red) and macrochromosomes (grey). D-F) 2D 

point density of macrochromosomes only, with each macrochromosome shown as a different color. G-I) 

2D point density of microchromosomes only, with each macrochromosome shown as a different color. J-

L) 3D models of all chromosomes, with macrochromosomes shown in greyscale and microchromosomes 

in color. 
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Supplementary Figure 5. 3D interpretation of Sea Turtle Hi-C interaction data is shown at three distinct 

orientations (left, center, and right columns), with plots of 2D point density of 3D chromosome models. A-

C) 2D point density of all microchromosomes (red) and macrochromosomes (grey). D-F) 2D point density 

of macrochromosomes only, with each macrochromosome shown as a different color. G-I) 2D point density 

of microchromosomes only, with each macrochromosome shown as a different color. J-L) 3D models of 

all chromosomes, with macrochromosomes shown in greyscale and microchromosomes in color. 
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Supplementary Figure 6. 3D interpretation of Rattlesnake Hi-C interaction data is shown at three distinct 

orientations (left, center, and right columns), with plots of 2D point density of 3D chromosome models. A-

C) 2D point density of all microchromosomes (red) and macrochromosomes (grey). D-F) 2D point density 

of macrochromosomes only, with each macrochromosome shown as a different color. G-I) 2D point density 

of microchromosomes only, with each macrochromosome shown as a different color. J-L) 3D models of 

all chromosomes, with macrochromosomes shown in greyscale and microchromosomes in color. 
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Supplementary Figure 7. 3D interpretation of Python Hi-C interaction data is shown at three distinct 

orientations (left, center, and right columns), with plots of 2D point density of 3D chromosome models. A-

C) 2D point density of all microchromosomes (red) and macrochromosomes (grey). D-F) 2D point density 

of macrochromosomes only, with each macrochromosome shown as a different color. G-I) 2D point density 

of microchromosomes only, with each macrochromosome shown as a different color. J-L) 3D models of 

all chromosomes, with macrochromosomes shown in greyscale and microchromosomes in color. 
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Supplementary Figure 8. 3D interpretation of Tegu Hi-C interaction data is shown at three distinct 

orientations (left, center, and right columns), with plots of 2D point density of 3D chromosome models. A-

C) 2D point density of all microchromosomes (red) and macrochromosomes (grey). D-F) 2D point density 

of macrochromosomes only, with each macrochromosome shown as a different color. G-I) 2D point density 

of microchromosomes only, with each macrochromosome shown as a different color. J-L) 3D models of 

all chromosomes, with macrochromosomes shown in greyscale and microchromosomes in color. 
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Supplementary Tables 

Supplementary Table 1. Hi-C datasets used in this study. 

Species Common Name Tissue Microchromosomes Source NCBI Accession 

Homo sapiens Human Retinal Epithelium No (Rao et al., 2014) GEO: GSE63525 
Mus musculus x Mus spretus Mouse (Patski cell line) Kidney No (Darrow et al., 2016) GEO: GSE71831 

Macaca mulatta Rhesus Macaque Fibroblast No (Darrow et al., 2016) GEO: GSE71831 

Gallus gallus Chicken Mature Erythrocytes Yes (Fishman et al., 2018) BioSample: SAMN06555414, 
SAMN06555414 

  Immature Erythrocytes Yes (Fishman et al. 2018) BioSample: SAMN10291560, 
SAMN10291559 

  Embryonic Fibroblasts Yes (Fishman et al. 2018) BioSample: SAMN06555417, 
SAMN06555416 

Tympanuchus cupido Greater Prairie Chicken Blood Yes (Dudchenko et al., 2017, 
2018; Johnson et al.) BioSample: SAMN10973758 

Chelonia mydas Green Sea Turtle Blood Yes (Dudchenko et al., 2017, 
2018; Wang et al., 2013) BioSample: SAMN10973717 

Salvator merianae Argentine Black and White Tegu Blood Yes (Dudchenko et al., 2017, 
2018; Roscito et al., 2018) BioSample: SAMN10973771 

Crotalus viridis Prairie Rattlesnake Venom gland Yes (Schield et al., 2019) BioSample: SAMN07738522 

Python bivittatus Burmese Python Blood Yes (Castoe et al., 2013; 
Dudchenko et al., 2017, 2018) BioSample: SAMN0973752 
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Supplementary Table 2. Hi-C mapping and contact statistics output from Juicer Hi-C analysis pipeline. 
 

Human 
(Retinal 

Epithelium) 

Mouse 
(Kidney) 

Macaque 
(Fibroblast) 

Chicken 
(Mature 

Erythrocytes) 

Chicken 
(Immature 

Erythrocytes) 

Chicken 
(Embryonic 
Fibroblasts) 

Prairie 
Chicken 
(Blood) 

Sea Turtle 
(Blood) 

Tegu 
(Blood) 

Rattlesnake 
(Venom 
Gland) 

Python 
(Blood) 

Sequenced Read 
Pairs 626,007,610 580,083,428 701,157,628 261,175,632 358,570,027 276,677,613 118,671,947 135,271,653 140,870,003 195,378,673 274,127,665 

Normal Paired 
(% Sequenced Reads) 

305,144,884 
(48.74%) 

379,398,498 
(65.40%) 

579,963,191 
(82.72%) 

173,992,150 
(66.62%) 

174,107,133 
(48.56%) 

217,640,966 
(78.66%) 

100,090,013 
(84.34%) 

49,344,486 
(36.48%) 

73,786,879 
(52.38%) 

124,506,379 
(63.73%) 

129,656,423 
(47.30%) 

Chimeric Paired 
(% Sequenced Reads) 

242,920,080 
(38.80%) 0 (0.00%) 81,842,940 

(11.67%) 
77,562,745 
(29.70%) 

146,084,058 
(40.74%) 

44,525,771 
(16.09%) 

10,283,192 
(8.67%) 

63,913,102 
(47.25%) 

56,100,941 
(39.82%) 

44,190,474 
(22.62%) 

123,903,833 
(45.20%) 

Chimeric Ambiguous 
(% Sequenced Reads) 

71,331,847 
(11.39%) 0 (0.00%) 18,541,357 

(2.64%) 
3,632,523 
(1.39%) 8,650,141 (2.41%) 2,650,906 (0.96%) 1,372,378 

(1.16%) 
18,123,962 
(13.40%) 

7,560,451 
(5.37%) 

18,225,522 
(9.33%) 

16,051,407 
(5.86%) 

Unmapped 
(% Sequenced Reads) 

6,610,799 
(1.06%) 

200,684,930 
(34.60%) 

20,810,140 
(2.97%) 

5,988,214 
(2.29%) 29,728,695 (8.29%) 11,859,970 (4.29%) 6,926,364 

(5.84%) 
3,890,103 
(2.88%) 

3,421,732 
(2.43%) 

8,456,298 
(4.33%) 

4,516,002 
(1.65%) 

Alignable 
(% Sequenced Reads) 

548,064,964 
(87.55%) 

379,398,498 
(65.40%) 

661,806,131 
(94.39%) 

251,554,895 
(96.32%) 

320,191,191 
(89.30%) 

262,166,737 
(94.76%) 

110,373,205 
(93.01%) 

113,257,588 
(83.73%) 

129,887,820 
(92.20%) 

168,696,853 
(86.34%) 

253,560,256 
(92.50%) 

Hi-C Contacts 
(% Sequenced Reads; 

% Unique Reads) 

395,343,162 
(63.15% / 
79.27%) 

194,327,529 
(33.50% / 
51.91%) 

407,127,169 
(58.06% / 
63.19%) 

202,114,957 
(77.39% / 
89.56%) 

240,961,183 
(67.20% / 80.68%) 

135,149,878 
(48.85% / 66.30%) 

98,041,793 
(82.62% / 
90.40%) 

74,709,784 
(55.23% / 
74.71%) 

98,990,997 
(70.27% / 
84.18%) 

74,918,770 
(38.35% / 
66.61%) 

192,482,126 
(70.22%; 
86.76%) 

Inter-chromosomal 
(% Sequenced Reads; 

% Unique Reads) 

66,570,270  
(10.63% / 
13.35%) 

36,578,807  
(6.31% / 
9.77%) 

86,740,307 
(12.37% / 
13.46%) 

72,419,139  
(27.73% / 
32.09%) 

67,550,997  
(18.84% / 22.62%) 

12,407,240  (4.48% 
/ 6.09%) 

34,532,138  
(29.10% / 
31.84%) 

28,883,745  
(21.35% / 
28.88%) 

32,069,488  
(22.77% / 
27.27%) 

5,809,147  
(2.97% / 
5.16%) 

59,111,119  
(21.56%; 
26.64%) 

Intra-chromosomal 
(% Sequenced Reads; 

% Unique Reads) 

328,772,892  
(52.52% / 
65.92%) 

157,748,722  
(27.19% / 
42.14%) 

320,386,862 
(45.69% / 
49.73%) 

129,695,818  
(49.66% / 
57.47%) 

173,410,186  
(48.36% / 58.06%) 

122,742,638  
(44.36% / 60.21%) 

63,509,655  
(53.52% / 
58.56%) 

45,826,039  
(33.88% / 
45.82%) 

66,921,509  
(47.51% / 
56.91%) 

69,109,623  
(35.37% / 
61.45%) 

133,371,007  
(48.65%; 
60.12%) 

Short Range (<20Kb) 
(% Sequenced Reads; 

% Unique Reads) 

113,928,677  
(18.20% / 
22.84%) 

40,521,898  
(6.99% / 
10.82%) 

95,758,183 
(13.66% / 
14.86%) 

29,548,271  
(11.31% / 
13.09%) 

43,758,213  
(12.20% / 14.65%) 

63,552,780  
(22.97% / 31.18%) 

20,021,749  
(16.87% / 
18.46%) 

17,276,086  
(12.77% / 
17.28%) 

20,976,086  
(14.89% / 
17.84%) 

54,160,982  
(27.72% / 
48.15%) 

36,099,196  
(13.17%; 
16.27%) 

Long Range (>20Kb) 
(% Sequenced Reads; 

% Unique Reads) 

214,843,996  
(34.32% / 
43.08%) 

117,226,658  
(20.21% / 
31.31%) 

224,628,009 
(32.04% / 
34.87%) 

100,147,540  
(38.34% / 
44.38%) 

129,651,970  
(36.16% / 43.41%) 

59,189,746  
(21.39% / 29.04%) 

43,487,829  
(36.65% / 
40.10%) 

28,549,941  
(21.11% / 
28.55%) 

45,945,389  
(32.62% / 
39.07%) 

14,948,351  
(7.65% / 
13.29%) 

97,271,750  
(35.48%; 
43.84%) 
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