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ON A CUBIC NONLINEAR EQUATION

MODEL ARISING IN SHALLOW WATER

THEORY

OSAMA SALAMEH ALKHAZALEH

The University of Texas at Arlington

Supervising Professor: Dr. Yue Liu

Abstract

The shallow water waves theory produces numerous integrable equations with cubic non-

linearity as asymptotic models. We began our work by formally deriving a model equation

for the free surface elevation η with higher-order terms from shallow water in the Euler

equation for an incompressible fluid with the simplest bottom and surface conditions.

This model equation is truncated at the order O(ε3, εµ) and contains higher-order terms,

which are useful for deriving a class of unidirectional wave equations including cubic

nonlinear terms.

Next, we derived an equation with cubic nonlinearity as the asymptotic method from

the classical shallow-water theory by employing suitable scalings, appropriate asymptotic

expansions truncating, and a particular Kodama transformation to expand η in terms of

u and its derivatives. This equation is relates to several different crucial shallow water
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equations, including the CH, mCH, and Novikov types.

Last, we analyzed a special case of our approximate equation called mCH-Novikov

equation by applying the method of characteristics by using conserved quantities to arrive

at a Riccati-type differential inequality. This proved that the wave-breaking phenomenon

of this equation is the curvature blow-up.
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Chapter 1

INTRODUCTION

1.1 Developments, Motivation, and Goals

In addition to the critical behavior of boundaries, the Euler equations of fluid dynamics

are embodied in the theory of water waves. Simplified mathematical models have been

presented as suitable estimates in many specialized physical contexts given the complex-

ity and problems inherent in the analytical and experimental investigation of the entire

system. This dissertation follows the same research path. We examine the shallow-water

(or long-wave) approximations of the oscillatory gravitation water wave system currently

in place. Double asymptotic expansions are commonly used to approximate the governing

equations formally in the following two fundamental dimensionless positive parameters:

the amplitude parameter ε ∶= a

h0
, and the shallowness parameter µ ∶= h

2
0

λ2
, (1.1)

where a, h0 and λ are the typical amplitude of the wave, the depth of the water, and the

wavelength, respectively.

The shallow water (or long-wave) regime corresponds to the following assumptions: µ≪ 1

(µ to be small). Further connecting ε with µ allows for the derivation of model equations
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in specific asymptotic regimes.

The Korteweg–de Vries (KdV) equation [1] is considered one of the most well-known

and basic long-wave asymptotic models that permit actual nonlinear behavior. The wave

amplitude is presumed to be small but finite: ε = O(µ) in the KdV modeling, reflecting

the nonlinear effect. This scaling is then used to construct the Benjamin-Bona-Mahony

(BBM) type equations [2], which are a set of asymptotically equivalent equations for

general initial data. Like all physically relevant waves, both the KdV equation and the

BBM class have smooth soliton and global solutions; consider, for instance, [3, 4]. How-

ever, due to the significant dispersive impact that regularizes the progressively nonlinear

steepening, some other basic nonlinear phenomena such as wave-breaking and surface sin-

gularities, are excluded from the KdV model. This emphasizes the necessity for stronger

nonlinear effects in model equations to properly characterize single wave occurrences for

larger amplitude waves.

Regimes that include relatively high nonlinearities are defined by larger values of ε,

such as the so-called Camassa–Holm (CH) scaling for shallow water waves of moderate

amplitude

µ≪ 1, ε = O(µ 1
2 ). (1.2)

Considering this, a two-parameter family of approximation equations [5] is developed

using this optimization. This includes the well-known Camassa–Holm equations

mt + umx + 2uxm = 0, m = u − uxx,
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and the Degasperis–Procesi (DP) equation

mt + umx + 3uxm = 0, m = u − uxx,

where u is the horizontal component of the velocity field at some specific depth, and

m is the so-called momentum density. The CH equation was initially conceived of as a

bi-Hamiltonian equation in [6], and the DP equation was first developed in the analysis

of integral equations in [7]. Later, the CH equation was introduced [8] in the context of

water waves. Like the KdV equation, the CH and DP equations are completely integrable.

In contrast to KdV, both CH and DP can allow solutions with some degree of singularity,

such as peaking waves [9, 10, 11, 12, 13] and breaking waves [7, 8, 14, 15].

Discovery of the CH and DP equations has prompted researchers to seek additional

generalization models with fascinating traits and applications. Because these two equa-

tions are both quadratic nonlinear, it makes sense to ask what form of singularity can be

generated when non-linearity grows stronger and the hyperbolic attribute thus becomes

more prevalent. This entails accounting for greater amplitude waves in the context of

asymptotic modeling. Following ideas similar to those presented in [5], Quirchmayr [16]

analyzed a shallow-water regime for waves of large amplitude by replacing the CH scaling

(1.2) by ε = O(µ1/4). Truncating at the order of O(ε6, µ3/2), such a scaling produces a

model equation for the free surface elevation η with nonlinearity up to the seventh order.

Relating the horizontal velocity u with η, taking advantage of the freedom of evaluating

u at a certain depth of the water, and omitting several power nonlinear terms allows a

cubic nonlinear equation for u to be obtained. For such a model, a blow-up criterion can

be formulated, which remains in terms of the gradient catastrophe.
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Recent works examining a new type of singularity formation for cubic nonlinear models

are one of the motives for this study. Namely, this refers to the curvature blow-up, in which

the second derivative uxx of solution becomes unbounded in finite time while the solution

u and its slope ux stay bounded, is one of the motives for this study. The modified

Camassa–Holm (mCH) equation [17, 18], and the generalized modified Camassa–Holm

(gmCH) equation [9, 19], provide examples. Nevertheless, these equations have properties

of conservation of energy and momentum persistence, allowing u and ux to be controlled.

However, the presence of higher-order nonlocal nonlinearity causes the larger derivative

to blow up. To that end, we would like to perform a modeling with Quirchmayr’s scaling

[16] to derive cubic nonlinear equations that explain the curvature blow-up phenomenon.

It is noteworthy that the mCH, gmCH, Novikov [20], and other higher-order nonlinear

descendants of the CH equation are derived in the context of integrable systems. Another

purpose of this research is to suggest a hydrodynamic approach for obtaining some of

those cubic nonlinear models, including the mCH and Novikov equations. Regarding

our modeling, we also highlight that, in contrast to [16], we prefer our model equations

to include all nonlinear elements at the correct truncation order, which might make a

rigorous argument for their hydrodynamic relevance to the entire water wave problem.

In general, we expect cubic nonlinearity to arise at the order of O(ε2µ), leaving the O(µ2)

terms as higher order terms and result in a scaling requirement of ε = O(µ1/2). As a result,

rather of choosing ε = O(µ1/4) as in [16], we impose the following

µ≪ 1, ε = O(µ 2
5 ). (1.3)

For waves of moderately large amplitude, this corresponds to a shallow-water regime. We

develop an equation for the scaled surface elevation η in the same way as was done for
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the CH equation.

2(ηx + ηt) +
1

3
µηxxx + 3εηηx −

3

4
ε2η2ηx +

3

8
ε3η3ηx + εµ(23

12
ηxηxx +

5

6
ηηxxx)

+ 115

192
ε4η4ηx + ε2µ(− 5

16
ηηxηxx −

3

4
η2ηxxx +

21

16
η3x) = 0 +O(ε5, µ2).

(1.4)

A comparable surface equation was found in [16] with a greater amplitude scaling of

ε = O(µ1/4). A cubic nonlinear equation for u is then obtained by connecting the horizontal

velocity u with elevation η.

Unlike [16], we use the so-called Kodama transformation [21] to adapt the idea of [22] to

expand η in terms of u and its derivatives. The expansion has the following structure in

particular:

η ∼ u + εA + µB + εµC + µ2D + ε2E + ε3K + ε2µG + εµ2H,

where

A ∶= λ1u2, B ∶= λ2uxx, E ∶= λ3u3, K = λ0u4, C ∶= λ4u2x + λ5uuxx,

D ∶= λ6uxxxx, G ∶= λ7uu2x + λ8u2uxx, H ∶= λ9uxuxxx + λ10uuxxxx + λ11u2xx.

Dullin et al. [23] employed this type of transformation to derive shallow wave model

under the impact of surface tension, which was previously described by Kodama in [21].

A further splitting of uxxt, combined with an equation for ut, yields one more degree of

freedom, ν, as (3.4) and (3.5) show. The equations are intended to produce a specific

form that imposes the same number of constraints on these parameters, leading to exact

parameter values in the resulting model equations. Crucially, this allows us to obtain the

CH-mCH-Novikov equation
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mt + 3uux − +
k1ε2

4
((u2 − βµu2x)m)x +

k2ε2

4
(u2mx + 3uuxm) = 0 +O(ε5, µ2), (1.5)

where m = u − βµuxx, β = − 5

6(σ − 3) , k2 = −
3 (10k1σ − 10k1 − 13σ + 39)

10(4σ − 3) , and k1 satisfies

800k21 (86σ2 − 398σ + 645) + 30k1 (10768σ3 − 62120σ2 + 188109σ − 233883)

+4000k31(σ − 3) + 3 (90496σ4 − 557360σ3 + 2242656σ2 − 8124759σ + 9843417) = 0

Mathematically, under suitable scaling the quadratic terms in (1.5) can be dropped in

a formal scaling limit, leaving (1.5) as the mCH-Novikov equation

mt + k1((u2 − u2x)m)x + k2(u2mx + 3uuxm) = 0, (1.6)

where k1 and k2 satisfy conditions given above.

As previously stated, our second goal is to study the formations of singularities due to

spatial nonlinear effects and to build initial data that result in the finite time curvature

blow-up using cubic nonlinear models. To accomplish this, we concentrate our efforts

on equation (1.6), which contains only cubic nonlinearities, and consider the following

Cauchy problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

mt + k1 [(u2 − u2x)m]x + k2 (u2mx + 3uuxm) = 0,

u(0, x) = u0(x),
t > 0, x ∈ S. (1.7)

Furthermore, we allow ourselves to consider a general range of model parameters for k1 and

k2 than that given before. In the blow-up analysis, the two groups of cubic nonlinearities
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in (4.3) appear to play quite different roles. When k1 = 0, (4.3) becomes the Novikov

equation

mt + k2(u2mx + 3uuxm) = 0, (1.8)

Then, when the initial momentum density m0 may not change sign, the solution exists

globally for all time [24]. When the Novikov nonlinearity is absent (k2 = 0 i.e., the mCH

equation), it has been demonstrated [17, 18, 25] that the curvature can still blow up in

finite time even if m0 does not change sign. This raises the obvious of how the interaction

of these two groups of cubic nonlinearities affects the singularity formation mechanism.

As Brandolese et al. [26, 27] demonstrated, it is also worth noting that many quadratic

nonlinear CH-type equations have such a strong non-diffusive character that excessively

localized information about the data is enough to cause solutions to blow up in finite

time. The nonlinear nonlocal effects of the equations are over-dominated by the local

nonlinearities of the equations, which leads to this phenomenon. As studied in [17, 9],

this hyperbolic feature appears to be partially counter balanced by the stronger nonlocal

impacts due to the higher nonlinearity of the equations. Consequently, it would be fasci-

nating to investigate how the original data’s local structures may affect the evolution of

solutions to equation (4.3), particularly the formation of singularity. Because the equation

contains both mCH and Novikov forms of nonlinearity, a relaxed local-in-space blow-up

criterion in the spirit of [17, 9] is a reasonable to expect for this. However, as previously

mentioned, the two types of nonlinearities do not appear to work well together for causing

blow-ups, making the analysis somewhat subtle.

The proper blow-up quantity to examine at is identified using an improved Beale–Kato

–Majda type blow-up criterion (cf. Lemma (4.2.4)). Following the dynamics of quantity

along the features reveals precise local and nonlocal interactions between the solution and

its slope, as Lemma (4.2.6) showed. The nonlocal convolution is controlled by combining
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the two conservation laws. This enables deduction of the key monotonicity property of u,

ux and m along with the characteristics, which leads to a Ricatti dynamics for m. This

finding applies to a wide variety of k1 and k2 parameter values.

We also offer an alternative technique that does not rely on the application of conservation

laws. Instead, using the sign preservation of the momentum density m, the nonlocal terms

can be proved to have good signs as long as the initial momentum density does not change

sign. The local terms, then, must be examined. It has been determined that as long as

the local oscillation ∣ux/u∣ is moderate, a Ricatti type inequality can be obtained. Fast

oscillations are already ruled out by the sign condition on m. With carefully chosen data,

a further refined analysis of the evolution of ux/u can be performed, demonstrating that

minor oscillations will continue along with the features, thus closing the argument.
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1.2 Background

1.2.1 Camassa-Holm Equation (CH)

Camassa and Holm [8] proposed a new equation (CH) for shallow water waves in 1993:

mt + umx + 2uxm = 0, (1.9)

where m = u − uxx, u is the horizontal component of the velocity field at a specific depth,

and m is the so-called momentum density.

The CH scaling

µ≪ 1, ε = O(µ 1
2 ), (1.10)

in [5] is used to derive this equation. The CH equation describes the motion of the

unidirectional waves traveling over an underlying shear flow [28] and shallow water waves

over a flat bottom [5, 29, 8, 30, 6]. It additionally appears in the models of propagation

of axially symmetric waves in cylindrical hyperelastic rods [31, 32].

For a large class of initial data, the CH equation is an integrable and may be solved

using the inverse scattering method [33, 34]. ]. Both the CH and KdV equation have

share many properties, such as that they possess bi-Hamiltonian structures, admit soliton

solutions and a Lax-pair, and are completely integrable. Unlike the KdV equation, how-

ever, the CH equation has received a considerable amount of attention from researchers

due to its remarkable mathematical characteristics.

One of the most remarkable wave phenomena in nature is wave-breaking. The weakly

nonlinear KdV equation is a simple model that does not possess wave-breaking phenomena

[4, 35] because it demands a complete nonlinear transition [36]. However, the CH equation

(quadratic nonlinear) can be used to represent the phenomenon of wave breaking in which

the solution remains bound while the slope grows infinite in finite time [37, 38, 39, 40, 41].
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Following wave breaking, the solutions can be continued as global weak solutions [42].

Another interesting mathematical feature of the CH equation is its peakons or peaked

solitary waves. They are a type of global weak solution that is smooth except at the

crest and is preserved under collisions with other wave-like solitons [11, 43, 44, 45]. The

stability of these peakons has been demonstrated [46, 43, 32]. The CH equation contains

both single-peakon and multi-peakon solutions [47].

Moreover, The CH equation has other remarkable properties: a variety of interesting

geometric formulations, well-posedness, and infinity of conservation laws. Since the CH

model exhibits all these properties and more, it has been given special attention in shallow

water wave theory.

1.2.2 Modified Camassa-Holm Equation (mCH)

The discovery of the quadratic nonlinear CH equations in turn motivates the search for

generalization equations with cubic or higher-order nonlinearities. The modified Camassa-

Holm (mCH) equation is one of the most significant of these generalizations. The mCH

equation (also called FORQ equation [48, 49]) was proposed by several researchers, includ-

ing Fokas [50], Fuchssteiner [51], Olver and Rosenau [52], and Qiao [53] and is typically

written as

mt + ((u2 − u2x)m)x = 0, (1.11)

where u and m are the velocity and the potential density, respectively [53]. This equation

was derived by applying the general method of tri-Hamiltonian duality to the bi Hamil-

tonian representation of the modified Korteweg-deVries (mKdV) equation [51, 52]. The

equation is formally integrable and can be rewritten as the bi-Hamiltonian form and the

Lax pair [52]. Consequently, the inverse scattering transform approach can be used to

solve it [53].
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In addition, the mCH equation has new aspects such as blow up and wave breaking, that

are not present in the CH equation. Another important distinction from the CH equation

is in addition to peakons; the mCH equation admits weak kink solutions and cusp soli-

tons [54, 55]. The authors [18] showed that when the scaling limit equation of the mCH

equation is paired with the first-order term ux, the short-pulse equation is satisfied. The

stability of these peakons has been demonstrated [56].

1.2.3 Novikov Equation

The Novikov equation is considered a cubic generalization of the CH equation, which

was derived by Vladimir Novikov [20, 57] using the symmetry classification of integrable

equations. It takes the following form

mt + k2(u2mx + 3uuxm) = 0, (1.12)

where u is the horizontal velocity and m is the so-called momentum density.

The Novikov equation is known to be integrable because it possesses the Lax pair [20].

Novikov was able to isolate equation (1.12) and deduce its symmetries using the pertur-

bative symmetry approach [57]. This gives the conditions for a PDE to reveal an infinite

number of symmetries. A matrix Lax pair representation to the Novikov equation was

discovered by Hone and Wang [58]. Using the Liouville transformation, (1.12) is identical

to the first equation in the Sawada-Kotera hierarchy’s negative flow [59].

Using the scattering theory, authors in [60] explicitly obtained multi-peakons of the

Novikov equation. The Cauchy problem for the Novikov equation proved to be locally

well-posedness in the Sobolev space Hs(R) with s > 3
2 [61]. For the periodic case, it is

11



local well-posedness in Sobolev space Hs(R) with s > 5
2 [62].

The Novikov equation as CH and mCH equations enjoys many interesting mathe-

matical features such as admitting a bi-Hamiltonian structure [58], its infinite conserved

quantities, peakon solutions, and its wave breaking phenomenon [7, 9, 20].
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Chapter 2

DERIVATION OF THE FREE SURFACE

EQUATION

2.1 Introduction

In this section, we briefly discuss fundamental and essential concepts in water wave prop-

agation, including non-dimensionalization, scaling, and asymptotic expansions.

It is convenient and typical for the applied mathematical to introduce nondimension-

alized quantities to analyze the asymptotic behavior of the solutions to a differential

equation particularly a water waves equations. The nondimensionalization is the partial

or full removal of physical dimensions from an equation involving physical quantities by a

suitable substitution of variables [63]. After a suitable nondimensionalization, this method

simplifies and parameterizes problems based on the typical scales anticipated on the phys-

ical grounds of flow, such as a typical depth of the water h0, the typical wavelength λ,

and the typical amplitude of the wave a. These scales are used to form fundamental and

independent positive dimensionless parameters like the amplitude parameter ε = a
h0

, and

the shallowness parameter µ ∶= h20
λ2 .

It is additionally very useful to scale the variables for the small parameters thrown up

by the non-dimensionalization. The role that the wave’s amplitude plays in the formula-

tion of the water wave drives the necessity of scaling.
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To obtain valuable and related solutions in these cases, we are required to apply asymp-

totic techniques.

Definition 1. [64] A sequence of functions φn, n ∈ N is an asymptotic sequence as x→ 0

if for each n, we have:

φn+1 = o(φn), as x→ 0.

We call φn asymptotic sequence. If φn is an asymptotic sequence and f is a function, we

write:

f(x) ∼
∞

∑
n=0

anφn(x), as x→ 0, (2.1)

if for each N we have:

f(x) −
N

∑
n=0

anφn(x) as x→ 0.

We call (2.1) the asymptotic expansion of f with respect to φn as x→ 0

Remark 1. The notation φn+1 = o(φn), as x→ 0 in definition (1) means:

lim
x→0

∣φn+1(x)
φn(x)

∣ = 0.

We can perform asymptotic expansion to achieve an approximate solution to an equa-

tion with a small parameter. This method is attractive for nonlinear equations, particu-

larly so if there are no clear strategies to solve them.

2.2 The Derivation

The main goal of this section is to formally derive of model equation (1.4) from the Euler

equations for the free surface. Compared with the model equation derived in [29], which

is truncated at the order O(ε3, εµ), the new model (1.4) contains additional higher order
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terms that are useful for deriving a class of unidirectional wave equations including cubic

nonlinear terms.

Consider the two-dimensional incompressibility flows in the domain {(x, z) ∶ 0 < z <

h(x, t)} with a parametrization of the shape of the free surface h = h(x, t). In this scenario,

the horizontal and vertical directions are represented by x and z, respectively. The system

under study is the Euler equations with the irrotational condition in the form of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + uux +wuz = −1
ρPx,

wt + uwx +wwz = −1
ρPz − g,

ux +wz = 0,

uz −wx = 0,

where the pressure is written as P (t, x, z) = pa + ρg(h0 − z) + p(t, x, z), where pa is the

constant atmospheric pressure, and p is a pressure variable measuring the hydrostatic

pressure distribution. In addition, we pose the “no-flow” condition on the flat bed, i.e.,

w∣z=0 = 0. On the surface z = h0 + η, the dynamic condition P = pa and the kinematic

condition yield

p = ρgη and w = ηt + uηx.

Next we nondimensionalize the system using the following scaling,

x→ λx, z → h0z, η → aη, t→ λ√
gh0

t, u→
√
gh0u, w →

√
µgh0w, p→ ρgh0p.

Recalling (1.1), we further assume that u,w, and p are proportional to the wave amplitude,

that is, u → εu, w → εw, p → εp. To examine the problem in an appropriate far field,
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we follow the approach employing the far field variable with the right-going wave:

ξ = ε1/2(x − t), τ = ε3/2t. (2.2)

We also transform w →√
ε to keep mass conservation. Therefore, the governing equations

are seen as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−uξ + ε(uτ + uuξ +wuz) = −pξ in 0 < z < 1 + εη,

εµ{−wξ + ε(wτ + uwξ +wwz)} = −pz in 0 < z < 1 + εη,

uξ +wz = 0 in 0 < z < 1 + εη,

uz − εµwξ = 0 in 0 < z < 1 + εη,

p = η on z = 1 + εη,

w = −ηξ + ε(ητ + uηξ) on z = 1 + εη,

w = 0 on z = 0.

(2.3)

On the boundary, we use Taylor expansion: f(1 + εη) = ∑∞
n=0

(εη)n

n! f
(n)(1). It turns out

the equation on the fixed domain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−uξ + ε(uτ + uuξ +wuz) = −pξ in 0 < z < 1,

εµ{−wξ + ε(wτ + uwξ +wwz)} = −pz in 0 < z < 1,

uξ +wz = 0 in 0 < z < 1,

uz − εµwξ = 0 in 0 < z < 1,

p + εηpz + ε2η2

2 pzz + ε3η3

6 pzzz = η on z = 1,

w + εηwz + ε2η2

2 wzz + ε3η3

6 wzzz = −ηξ + εητ + εηξ(u + εηuz + ε2η2

2 uzz + ε3η3

6 uzzz) on z = 1,

w = 0 on z = 0.

(2.4)
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A double asymptotic expansion is then introduced to seek a solution of the system for-

mally,

q ∼
∞

∑
n=0

∞

∑
m=0

εnµmqnm as ε→ 0, µ→ 0,

where q will be taken to be the functions u, w, p and η, and all functions qnm satisfy

the far field conditions qnm → 0 as ∣ξ∣ → ∞ for every n, m = 0,1,2,3, ... Substituting the

asymptotic expansions of u, w, p, η into (2.4), we check all the coefficients at every order

O(εiµj) (i, j = 0,1,2,3, ...).

For example at O(1) we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−u00,ξ = −p00,ξ in 0 < z < 1,

0 = p00,z in 0 < z < 1,

u00,ξ +w00,z = 0 in 0 < z < 1,

u00,z = 0 in 0 < z < 1,

p00 = η00, w00 = −η00,ξ on z = 1,

w00 = 0 on z = 0.

(2.5)

From the fourth equation in (2.5) it follows that u00 is independent of z. Thanks to the

third equation in (2.5) and the boundary condition of w on z = 0, we get

w00 = w00∣z=0 + ∫
z

0
w00,z′dz

′ = −zu00,ξ,

which along with the boundary condition on z = 1 implies u00,ξ(τ, ξ) = η00,ξ(τ, ξ). There-

fore

u00(τ, ξ) = η00(τ, ξ), w00 = −zη00,ξ,

Therefore, this has been made of the far field conditions u00, η00 → 0 as ∣ξ∣ → ∞. On the
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other hand, from the second equation in (2.5), it follows that

p00 = p00∣z=1 + ∫
z

1
p00,z′ dz

′ = η00.

At O(ε1µ0) = O(ε) we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−u10,ξ + u00,τ + u00u00,ξ = −p10,ξ in 0 < z < 1,

0 = p10,z in 0 < z < 1,

u10,ξ +w10,z = 0 in 0 < z < 1,

u10,z = 0 in 0 < z < 1,

p10 + p00,zη00 = η10 on z = 1,

w10 + η00w00,z = −η10,ξ + η00,τ + u00η00,ξ on z = 1,

w10 = 0 on z = 0.

(2.6)

From the fourth equation in (2.6), we know that u10 is independent to z, that is, u10 =

u10(τ, ξ). Thanks to the third equation in (2.6) and the boundary conditions of w on

z = 0, we get

w10 = w10∣z=0 + ∫
z

0
w10,z′dz

′ = −zu10,ξ. (2.7)

Hence, from the third equation in (2.6) and (2.7) and the boundary conditions of w on

z = 1, we obtain that

u10,ξ = η10,ξ − η00,τ − (u00η00)ξ and w10 = z(η00,τ + 2η00η00,ξ − η10,ξ). (2.8)

Thanks to the second equation in (2.6) , we deduce that

p10,ξ = η10,ξ = u10,ξ + η00,τ + (u00η00)ξ. (2.9)
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Taking account of the first equation in (2.6) and (2.8), it must be

−p10,ξ = −u10,ξ + η00,τ + η00η00,ξ,

which along with (2.9) and (2.8) implies

2η00,τ + 3η00η00,ξ = 0.

Similarly, at the orders O(ε0µ1), O(ε2µ0), O(ε1µ1), O(ε3µ0), O(ε4µ0) and O(ε2µ1),

the relation between pij, ηij, uij, wij and their τ -derivatives in these orders can be ob-

tained; see [65]. Here we focus on the O(ε3µ1)-order.

For the O(ε3µ1)-order approximation when 0 < z < 1, the following system is obtained

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−p31,ξ = −u31,ξ + u21,τ + (u00u21 + u10u11 + u20u01)ξ

+w00u21,z +w10u11,z,

−p31,z = −w20,ξ +w10,τ + u00w10,ξ + u10w00,ξ + (w00w10)z,

u31,ξ +w31,z = 0,

u31,z −w20,ξ = 0.

(2.10)

The boundary condition on z = 0 is w31 = 0, and on z = 1, the conditions read

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η31 = p31 + η21p00,z + η00p21,z + η11p10,z + η10p11,z + η20p01,z + η01p20,z,

w31 + η21w00,z + η00w21,z + η11w10,z + η10w11,z + η20w01,z + η01w20,z − η21,τ + η200
2 w11,zz

= −η31,ξ + u21η00,ξ + u00η21,ξ + u20η01,ξ + u01η20,ξ + u10η11,ξ + u11η10,ξ + η00η00,ξu11,z.
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Next, we plug w20,ξ, w00,ξ and w10, which can easily be obtained from [65], into the

second equation in (2.10). It takes the form of

p31,z = − zu20,ξξ + zu10,ξτ + zu00u10,ξξ + zu10η00,ξξ − (w00w10)z.

Taking the ξ derivative of the above and integrating in z on [1, z], we know

p31,ξ =∫
z

1
p31,z′ξdz

′ + p31,ξ ∣z=1

=z
2 − 1

2
( − u20,ξξξ + u10,ξξτ + (u00u10,ξξ)ξ + (u10η00,ξξ)ξ) + (w00w10)ξ ∣z=1

− (w00w10)ξ + (η00( −w10,ξ +w00,τ + u00w00,ξ +w00w00,z))
ξ
∣z=1

− (η10w00,ξ)ξ ∣z=1 + η31,ξ.

(2.11)

On the other hand, we have u21,z = w10,ξ and u11,z = w00,ξ from [65]. Then the first

equation in (2.10) becomes

−p31,ξ = − u31,ξ + u21,τ + (u00u21 + u10u11 + u20u01)ξ + (w00w10)ξ. (2.12)

Combining (2.11) with (2.12), it leads to

0 = − u31,ξ + u21,τ + (u00u21 + u10u11 + u20u01)ξ + η31,ξ + (η10η00,ξξ)ξ

+ (w00w10)ξ ∣z=1 + (u10,ξξη00 − η00,ξτη00 − η200η00,ξξ + η00η200,ξ)
ξ

+ z
2 − 1

2
( − u20,ξξξ + u10,ξξτ + (u00u10,ξξ)ξ + (u10η00,ξξ)ξ).

(2.13)

Now we will simplify equation (2.13). Because the fourth equation in (2.10) gives that

u31,ξ = −
z2

2
u20,ξξξ + ∂ξΦ31(τ, ξ).
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for some Φ31(τ, ξ) independent of z, the third equation in (2.10) and the boundary con-

dition on {z = 0} for w31 yield that

w31 = w31∣z=0 + ∫
z

0
w31,z′ dz

′ = −∫
z

0
u31,ξ dz

′ = z
3

6
u20,ξξξ − z∂ξΦ31(τ, ξ).

Hence, combining with the boundary condition for w31 on z = 1, we have

1

6
u20,ξξξ − ∂ξΦ31(τ, ξ) = −η31,ξ + η21,τ +H4,ξ ∣z=1 −

η200
2
η00,ξξξ − η00η00,ξη00,ξξ,

where H4 ∶= u00η21 + u21η00 + u20η01 + u01η20 + u11η10 + u10η11. Therefore Φ31(τ, ξ) satisfies

∂ξΦ31(τ, ξ) = η31,ξ − η21,τ +
1

6
u20,ξξξ −H4,ξ ∣z=1 +

η200
2
η00,ξξξ + η00η00,ξη00,ξξ.

This in turn implies that

u31,ξ = η31,ξ − η21,τ − (z
2

2
− 1

6
)u20,ξξξ −H4,ξ ∣z=1 +

η200
2
η00,ξξξ + η00η00,ξη00,ξξ.

It then follows from (2.13) that

0 = 2η21,τ +
1

3
u20,ξξξ + (η00η21)ξ − (η00,ξτη00)ξ + (η00η200,ξ)ξ + (w00w10)ξ ∣z=1

+H4,ξ ∣z=1 +
2

3
(η00u10,ξξ)ξ +

1

2
(η10η00,ξξ)ξ −

7

8
(η200η00,ξξ)ξ −

1

3
u10,ξξτ

− (u00∫ η11,τ dξ)
ξ

− (u00H2∣z=1)ξ + (u10φ11)ξ − ∫ η11,ττ dξ −H2,τ ∣z=1

+ (u20η01)ξ −
η200
2
η00,ξξξ − η00η00,ξη00,ξξ,

(2.14)

where H2 ∶= u00η11 + u11η00 + u10η01 + u01η10 and φ11 ∶= 1
3η00,ξξ − 1

2η00η01 + η11.

To obtain an equation for η only, we substitute u10, u11, u20, and u21 into (2.14) to get
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that

H4,ξ ∣z=1+(u20η01)ξ − (u00∫ η11,τ dξ)
ξ

− (u00H2∣z=1)ξ +
2

3
(η00u10,ξξ)ξ

= (2η00η21 + 3η01η20 + η10η11)ξ − (η00η10η01)ξ +
1

4
(η300η01)ξ −

1

2
(η00,ξξη10)ξ

+ (φ11η10)ξ −
1

4
(η200η11)ξ − 2(η00∫ η11,τ dξ)

ξ

+ 1

3
(u10,ξξη00)ξ − 2(H2∣z=1η00)ξ.

Similarly, we have

2(η10φ11)ξ −
1

4
(η200φ11)ξ

= 2

3
(η00,ξξη10)ξ − (η00η01η10)ξ + 2(η11η10)ξ −

1

12
(η200η00,ξξ)ξ +

1

8
(η01η300)ξ −

1

4
(η11η200)ξ.

From [65], it is easy to see that

−2(η00∫ η11,τ dξ)
ξ

= 3(η200η11 + η00η10η01)ξ −
3

4
(η300η01)ξ +

1

3
(η00η10,ξξ)ξ +

13

24
(η00η200,ξ)ξ +

5

6
(η200η00,ξξ)ξ.

and

∫ η11,ττ dξ = −
3

2
(η00η11,τ + η00,τη11 + (η10η01)τ) +

3

8
(η200η01)τ −

1

6
η10,ξξτ

− 13

24
η00,ξη00,ξτ −

5

12
(η00η00,ξξ)τ .

Hence, we have

∫ η11,ττ dξ +H2,τ ∣z=1

=3

4
(η300η01)ξ −

1

12
η00η10,ξξξ +

13

16
(η200,ξη00)ξ −

3

2
(η00η10η01)ξ +

39

32
(η200η00,ξξ)ξ

− 11

96
(η00,ξξη200)ξ −

3

8
η200η00,ξξξ −

1

6
η10,ξξτ −

1

12
η10η00,ξξξ −

3

4
(η200η11)ξ.

22



Then, (2.14) becomes

0 = 2η21,τ +
1

3
η20,ξξξ + 3(η00η21 + η01η20 + η10η11)ξ −

3

4
(η200η11 + 2η01η10η00)ξ

+ 3

8
(η300η01)ξ +

5

6
(η10η00,ξξξ + η00η10,ξξξ) +

23

12
(η00,ξη10,ξξ + η00,ξξη10,ξ)

+ 21

16
(η300,ξ) −

5

16
(η00η00,ξη00,ξξ) −

3

4
(η200η00,ξξξ).

(2.15)

The asymptotic expansion introduced earlier shows

η ∶= η00 + εη10 + ε2η20 + ε3η30 + µη01 + εµη11 + ε2µη21 +O(ε4, µ2).

Recall the ηij equations obtained from [65], which are given by

2η00,τ + 3η00η00,ξ = 0,

2η01,τ + 3(η00η01)ξ +
1

3
η00,ξξξ = 0,

2η10,τ + 3(η00η10)ξ −
1

4
(η300)ξ = 0,

2η20,τ + 3(η00η20)ξ +
3

2
(η210)ξ −

3

4
(η200η10)ξ −

3

8
(η400)ξ = 0,

2η30,τ + 3(η00η30 + η10η20)ξ −
3

4
(η200η20 + η00η210)ξ −

3

8
(η300η10)ξ +

115

192
(η500)ξ = 0,

2η11,τ + 3(η00η11 + η10η01)ξ −
3

4
(η200η01)ξ +

1

3
η10,ξξξ −

23

24
(η200,ξ)ξ −

5

6
(η00η00,ξξ)ξ = 0.

From (2.15) we obtain

2ητ + 3ηηξ +
1

3
µηξξξ −

3

4
εη2ηξ +

3

8
ε2η3ηξ +

115

192
ε3η4ηξ + αη5ηξ + εµ(

23

12
ηξηξξ +

5

6
ηηξξξ)

+ ε2µ( − 5

16
ηηξηξξ −

3

4
η2ηξξξ +

21

16
η3ξ) = 0 +O(ε5, ε3µ,µ2), (2.16)

where α is some constant we do not specify here.
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Recall the original transformation x = ε− 1
2 ξ + ε− 3

2 τ, t = ε− 3
2 τ , namely,

∂

∂ξ
= ε− 1

2∂x,
∂

∂τ
= ε− 3

2 (∂x + ∂t). (2.17)

The equation (2.16) transforms to

2(ηx + ηt) +
1

3
µηxxx + 3εηηx + ε2A1η

2ηx + ε3A2η
3ηx + εµ(A3ηxηxx +A4ηηxxx)

+A8ε
4η4ηx + ε2µ(A5ηηxηxx +A6η

2ηxxx +A7η
3
x) = 0 +O(ε5, ε3µ,µ2).

(2.18)

where A1 = −3
4 , A2 = 3

8 , A3 = 23
12 , A4 = 5

6 , A5 = − 5
16 , A6 = −3

4 , A7 = 21
16 , A8 = 115

192 .

Remark 2. It is noted that the high-order terms O(ε5, µ2) in (2.16) only depend on the

function η and its ξ derivative. By the scaling invariance in (2.18), O(ε5, µ2) would not

generate any lower order terms in (2.18) under the transformation in (2.17).
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Chapter 3

DERIVATION OF MODEL EQUATIONS WITH

CUBIC NONLINEAR TERMS

3.1 Introduction

In this chapter, we derive the model equations to incorporate cubic nonlinearities of var-

ious types, including the CH, mCH, and Novikov types, as demonstrated in (1.5).

In comparison to [16], we intend for our model equations to include all of the nonlinear

terms in the appropriate truncation order, reasonably allowing for a precise explanation

of their hydrodynamic relevance to the entire water wave problem. Since the cubic non-

linearity is expected to arise on the order of O(ε2µ), leaving the O(µ2) terms as higher

order terms, a scaling requirement ε = O(µ1/2) is naturally imposed. Therefore, we choose

µ≪ 1, ε = O(µ 2
5 ), (3.1)

which corresponds to a shallow-water regime for waves of mildly large amplitude. Then,

we derive an equation for the scaled surface elevation η (1.4).

Next, we expand η in terms of u along with its derivatives using the so-called Kodama

transformation [21]. In particular, the expansion takes the following form

η ∼ u + εA + µB + εµC + µ2D + ε2E + ε3K + ε2µG + εµ2H.
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The Kodama transformation takes a given shallow water elevation equation and trans-

forms it into an equation of the same form but with different coefficients. These equations

are asymptotically identical, meaning that, when the small parameters approach 0, their

solutions converge to the same form. In other words, it is a transformation commonly

employed to transform higher-order nonlinear differential equations to their asymptoti-

cally equal forms [66]. Indeed, many authors [23, 67, 68] have used and generalized this

transformation.

A cubic nonlinear equation for u is constructed by connecting the horizontal velocity

u with η using the freedom of evaluating u at a specific water depth and omitting some

nonlinear power terms. In particular, this allows us to obtain CH-mCH-Novikov equation.

3.2 The Derivation

Having derived the equation of the free surface η in Chapter (2), this section focuses on

the derivation of the model equations that incorporate cubic nonlinearities of multiple

kinds, including the CH, mCH, and Novikov types, as given in (1.5).

As the introduction indicates, we assume µ ≪ 1 and work in the regime where

ε = O(µ 2
5 ), which we refer to as the shallow-water regime for waves of mildly large am-

plitude. Since we expect our final model equations to be cubic nonlinear, a higher-order

approximation (in ε and µ) is necessary. Thus, it is natural to post the Kodama trans-

formation of the form

η = u + εA + µB + εµC + µ2D + ε2E + ε3K + ε2µG + εµ2H,

where A,B,C,D,E,H,K, and G are parameters related to u and its derivatives but

independent of ε and µ. This creates a certain degree of freedom in the expansion that

may later be optimized. For example, to obtain the CH-type terms, as described in [29],
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it is possible to choose A = λ1u2, B = λ2uxx, and K = λ0u4, where λ0, λ1 and λ2 are some

constants to be determined later. As a result, (3.2) becomes

η = u + λ1εu2 + λ2µuxx + εµC + µ2D + ε2E + λ0ε4u4 + ε2µG + εµ2H.

To proceed, we plug the Kodama transformation (3.2) into (2.18). The resulting equation

will consists of u-terms. Collecting at each order, we have

O0(1) ∶= 2(ux + ut),

O0(ε) ∶= 4λ1ε(uux + uut) + 3εuux,

O0(ε2) ∶= 2ε2(Ex +Et) + 9λ1ε
2u2ux +A1ε

2u2ux,

O0(ε3) ∶= 3ε3(uE)x + 6λ21ε
3u3ux +A1λ1ε

3(u4)x +A2ε
3u3ux + 2λ0ε

3((u4)x + (u4)t),

O0(ε4) ∶= ε4 (λ0 + λ1 +A1λ
2
1 +A2λ1 +

A8

5
) (u5)x +A1ε

4(u2E)x,

O0(µ) ∶= 2λ2µ(uxxx + uxxt) +
1

3
µuxxx,

O0(µ2) ∶= 2µ2(Dx +Dt) +
λ2
3
µ2uxxxxx,

O0(εµ) ∶= 2εµ(Cx +Ct) + (2λ1 + 3λ2 +A3)εµuxuxx + (2

3
λ1 + 3λ2 +A4) εµuuxxx,

O0(ε2µ) ∶=
1

3
ε2µExxx + 2ε2µ(Gx +Gt) + 3ε2µ(uC)x + 3λ2λ1ε

2µ(u2uxx)x + λ2A1ε
2µ(u2uxx)x

+ 2λ1A3ε
2µ(uu2x)x +A4λ1ε

2µu2uxxx + λ1A4ε
2µu(u2)xxx

+A5ε
2µuuxuxx +A6ε

2µu2uxxx +A7ε
2µu3x,

O0(εµ2) ∶= 1

3
εµ2Cxxx + 2εµ2(Hx +Ht) + 3εµ2(uD)x + 3λ22εµ

2uxxuxxx

+A3λ2εµ
2(uxuxxx)x +A4λ2εµ

2uxxuxxx +A4λ2εµ
2uuxxxxx,

O0(ε2µ2) ∶= 1

3
ε2µ2Gxxx + 3λ1ε

2µ2(u2D)x + 3λ2ε
2µ2(uxxC)x + 3ε2µ2(Hu)x

+ λ22A1ε
2µ2(uu2xx)x +A1ε

2µ2(u2D)x +A3ε
2µ2(uxCx)x + 2A3λ1λ2ε

2µ2(uuxuxxx)x

27



+A4ε
2µ2Cuxxx +A4λ1λ2ε

2µ2u2uxxxxx +A4λ1λ2ε
2µ2uxx(u2)xxx +A4ε

2µ2uCxxx

+A5λ2ε
2µ2uuxuxxxx +A5λ2ε

2µ2uxu
2
xx +A5λ2ε

2µ2uuxxuxxx

+A6λ2ε
2µ2u2uxxxxx + 2A6λ2ε

2µ2uuxxuxxx + 3A7λ2ε
2µ2u2xuxxx.

This yields the following equation

ut + ux +
1

2
[O0(ε) +O0(ε2) +O0(ε3) +O0(µ2) +O0(µ) +O0(εµ) +O0(εµ2)] = 0 +O(ε3µ, ε2µ2, µ3).

Here, the subscript in O0 is included solely to emphasize that the terms may change at

each step.

The next step is to eliminate the t derivative using the equation itself. As before, we

expand the time derivatives, namely

ut = − ux − 2λ1ε(uux + uut) −
3

2
εuux

− 1

2
[O0(ε2) +O0(ε3) +O0(µ2) +O0(µ) +O0(εµ) +O0(εµ2)] +O(ε3µ, ε2µ2, µ3).

(3.2)

To have the whole ε2µ2-order terms, we must take µ2 and εµ2-order terms back even

though, at the end, they are ignored as high-order. Next, we present this procedure in

greater detail.

Step 1. At order ε, we substitute (3.2) into 1
2O0(ε), we get

2λ1ε(uux + uut) +
3

2
εuux =

3

2
εuux −

4

3
λ21ε

2((u3)x + (u3)t) − λ1ε2(u3)x (3.3)

− λ1εu[O0(ε2) +O0(ε3) +O0(µ) +O0(εµ) +O0(µ2) +O0(εµ2)].

This expansion generates higher order terms. It leads to the following terms in asymptotic

order
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O1(ε) ∶=
3

2
εuux, O1(ε2) ∶=

1

2
O0(ε2) −

4

3
λ21ε

2((u3)x + (u3)t) − λ1ε2(u3)x,

O1(ε3) ∶=
1

2
O0(ε3) − λ1εuO0(ε2), O1(ε4) ∶=

1

2
O0(ε4) − λ1εuO0(ε3),

O1(εµ) ∶=
1

2
O0(εµ) − λ1εuO0(µ), O1(µ) ∶=

1

2
O0(µ),

O1(µ2) ∶= 1

2
O0(µ2), O1(ε2µ) ∶=

1

2
O0(ε2µ) − λ1εuO0(εµ),

O1(εµ2) ∶= 1
2O0(εµ2) − λ1εuO0(µ2), O1(ε2µ2) ∶= 1

2O0(ε2µ2) − λ1εuO0(εµ2).

Step 2. For O1(ε2) term, we can choose E = λ3u3. Then we expand the time derivatives

as

ut = −ux − 2λ1ε(uux + uut) −
3

2
εuux −

1

2
[O0(µ) +O0(µ2) +O0(ε2)] +O(ε2, εµ).

Hence the O1(ε2)-order term takes the following form,

O1(ε2) = (1

2
λ1 +

A1

6
) ε2(u3)x − (6λ3 − 8λ21)λ1ε3u2(uux + uut) − (9

2
λ3 − 6λ21) ε3u3ux

− (3

2
λ3 − 2λ21) ε2u2[O0(ε2) +O0(µ) +O0(µ2)].

We now denote If(u) to be the coefficient of f(u) in the equation. Then coefficient of

u2ux is given by Iu2ux ∶=
3

2
λ1 +

A1

2
. The following terms in asymptotic order take the form

O2(µ) ∶= O1(µ), O2(ε2) ∶= (3

2
λ1 +

A1

2
) ε2u2ux, O2(εµ) ∶= O1(εµ),

O2(ε3) ∶= O1(ε3) − (6λ3 − 8λ21)λ1ε3u2(uux + uut) − (9

2
λ3 − 6λ21) ε3u3ux,

O2(ε4) ∶= O1(ε4) − (3

2
λ3 − 2λ21) ε2u2O0(ε2), O2(µ2) ∶= O1(µ2),

O2(ε2µ) ∶= O1(ε2µ) − (3

2
λ3 − 2λ21) ε2u2O0(µ),
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O2(εµ2) ∶= O1(εµ2), O2(ε2µ2) ∶= O1(ε2µ2) − (3

2
λ3 − 2λ21) ε2u2O0(µ2).

Now the equation has the form of

ut + ux +O1(ε) +O2(ε2) +O2(µ) +O2(εµ) +O2(ε2µ) +O2(ε4) = 0 +O(ε3µ,µ3),

and the expression for ut is given by

ut = − ux −
3

2
εuux − (1

2
λ1 +

A1

6
)ε2(u3)x −

1

2
O0(µ) −

1

2
O0(εµ) + λ1εuO0(µ)

− 1

2
O0(ε2µ) + λ1εuO0(εµ) + (3

2
λ3 − 2λ21)ε2u2O0(µ) +O(ε2, µ2).

(3.4)

Step 3. We now consider O2(µ) term. Here, another parameter is required. To this end,

splitting the time derivative λ2µuxxt, it appears that

λ2µuxxt = λ2(1 − ν)µuxxt + λ2νµuxxt, (3.5)

where ν is the new parameter which will be determined later. We remove the uxxt term

by eliminating the t derivatives using (3.4). Thereby, we have

λ2νµuxxt = −λ2νµuxxx −
3

2
λ2νεµ(uux)xx + λ2νµ(Fε2 + Fµ + Fεµ + Fε2µ)xx +O(ε3µ, εµ3),

where we define

Fε2 ∶= −(1

2
λ1 +

A1

6
) ε2(u3)x, Fµ ∶= −λ2µ(uxxx + uxxt) −

1

6
µuxxx,

Fεµ ∶= −
1

2
O0(εµ) + λ1uεO0(µ), Fε2µ ∶= −

1

2
O0(ε2µ) + λ1uεO0(εµ) + (3

2
λ3 − 2λ21) ε2u2O0(µ).

This way O2(µ) takes the form
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λ2µ(uxxx + uxxt) +
1

6
µuxxx = (λ2(1 − ν) +

1

6
)µuxxx + λ2(1 − ν)µuxxt −

3

2
νλ2εµ(3uxuxx + uuxxx)

+ λ2νµ(Fε2 + Fµ + Fεµ + Fε2µ)xx.

The coefficient of uxxt can be written as Iuxxt ∶= λ2(1 − ν).

This procedure leads to the following terms in asymptotic order:

O3(µ) ∶= (λ2(1 − ν) +
1

6
)µuxxx + λ2(1 − ν)µuxxt, O3(ε3) ∶= O2(ε3),

O3(εµ) ∶= O2(εµ) −
3

2
νλ2εµ(3uxuxx + uuxxx), O3(ε4) ∶= O2(ε4),

O3(ε2µ) ∶= O2(ε2µ) + λ2νµ(Fε2)xx, O3(µ2) ∶= O2(µ2) + λ2νµ(Fµ)xx,

O3(εµ2) ∶= O2(εµ2) + λ2νµ(Fεµ)xx, O3(ε2µ2) ∶= O2(ε2µ2) + λ2νµ(Fε2µ)xx.

Step 4. We now consider O3(εµ) term. Choose C = λ4u2x + λ5uuxx. From (3.4), the

expression for ut is given by

ut = −ux −
3

2
εuux −

1

2
(O0(µ) +O0(εµ)) + λ1uεO0(µ) +O(ε2µ,µ2, ε2).

This operation produces O3(εµ) of the form

εµ(Cx +Ct) − 2λ1λ2εµu(uxxx + uxxt) = −3λ4ε
2µux(uux)x −

3

2
λ5ε

2µuuxuxx − (3

2
λ5 − 3λ1λ2) ε2µu(uux)xx

− λ4εµux(O0(µ))x − λ5εµuxx
1

2
O0(µ) − (1

2
λ5 − λ1λ2) εµuO0(µ)xx

− λ4εµux(O0(εµ) + 2λ1uεO0(µ))x −
λ5
2
εµuxxO0(εµ)

+ λ5λ1uuxxε2µO0(µ) − (1

2
λ5 − λ1λ2) εµuO0(εµ)xx

+ (λ5 − 2λ1λ2)λ1ε2µu(uO0(µ))xx.
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The εµ-order term turns out to be

εµ [(3

2
λ2 +

1

2
A4 −

3

2
νλ2)uuxxx + (λ1 +

3

2
λ2 +

1

2
A3 −

9

2
νλ2)uxuxx] .

Denote the coefficients of uuxxx and uxuxx by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Iuuxxx ∶= 3
2λ2 + 1

2A4 − 3
2νλ2,

Iuxuxx ∶= λ1 + 3
2λ2 + 1

2A3 − 9
2νλ2.

The terms in asymptotic order are

O4(µ2) ∶=O3(µ2), O4(ε3) ∶= O3(ε3), O4(ε4) ∶= O3(ε4),

O4(ε2µ) ∶=O3(ε2µ) − 3λ4ε
2µux(uux)x −

3

2
λ5ε

2µuuxuxx − (3

2
λ5 − 3λ1λ2) ε2µu(uux)xx,

O4(εµ2) ∶=O3(εµ2) − λ4εµux(O0(µ))x − λ5εµuxx
1

2
O0(µ) − (1

2
λ5 − λ1λ2) εµu(O0(µ))xx,

O4(ε2µ2) ∶=O3(ε2µ2) − λ4εµux(O0(εµ) + 2λ1εuO0(µ))x −
λ5
2
εµuxxO0(εµ) + λ5λ1ε2µuuxxO0(µ)

− (1

2
λ5 − λ1λ2) εµu(O0(εµ))xx + (λ5 − 2λ1λ2)λ1ε2µu(uO0(µ))xx.

Step 5. Next we consider ε3-order which has the form

O4(ε3) =
1

2
O0(ε3) − λ1εuO0(ε2) − (6λ3 − 8λ21)λ1ε3u2(uux + uut) − (9

2
λ3 − 6λ21) ε3u3ux

= (3

8
λ3 +

1

8
A2 +

1

4
λ1A1) ε3(u4)x + 2λ0ε

3((u4)x + (u4)t),

where we have replaced ut by −ux − 3
2εuux. The coefficient is denoted by

I(u4)x ∶=
3

8
λ3 +

1

8
A2 +

1

4
λ1A1.
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Also, at ε4-order we have

O5(ε4) ∶=
1

2
O0(ε4) − λ1εuO0(ε3) − (3

2
λ3 − 2λ21) ε2u2O0(ε2)−12λ0ε

4u4ux.

Since

O0(ε4) = ε4 (λ0 + λ1 +A1λ
2
1 +A2λ1 +

A8

5
+A1λ3) (u5)x,

we can simplify O5 as

O5(ε4) =
1

2
O0(ε4) − λ1εuO0(ε3) − (3

2
λ3 − 2λ21) ε2u2O0(ε2)−12λ0ε

4u4ux

= 1

2
( − 19λ0 + 5λ1 + 5A1λ

2
1 + 5A2λ1 +A8 + 5A1λ3)ε4u4ux

− λ1ε4(12λ3 + 6λ21 + 4A1λ1 +A2)u4ux − (3

2
λ3 − 2λ21)(9λ1 +A1)u4ux

= ε41

2
( − 19λ0 −

3

4
λ21 +

49

8
λ1 +

A8

5
− 3

2
λ3 + 24λ31 − 51λ1λ3)u4ux.

Then Iu4ux = −19λ0 − 3
4λ

2
1 + 49

8 λ1 +
A8

5 − 3
2λ3 + 24λ31 − 51λ1λ3 and the terms which involve µ

keep the same.

Step 6. Finally, we consider the ε2µ-order which has the form

O4(ε2µ) =
1

2
O0(ε2µ) − λ1εuO0(εµ) − u2 (

3

2
λ3 − 2λ21) ε2O0(µ) + λ2νµ(Fε2)xx

− 3λ4ε
2µux(uux)x −

3

2
λ5ε

2µuuxuxx − (3

2
λ5 − 3λ1λ2) ε2µu(uux)xx.

We choose G = λ7uu2x + λ8u2uxx to keep the scaling in the equation. From (3.4), the

expression for ut is given by ut = −ux−λ2µ(uxxx+uxxt)−
1

6
µuxxx. We eliminate ut by (3.4)

itself, namely

ut = −ux −
1

6
µuxxx +O(εµ). (3.6)
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Thereby, there appears the relation

ε2µ(Gx +Gt) = −
1

6
λ7ε

2µ2u2xuxxx −
1

3
λ7ε

2µ2uuxuxxxx −
1

6
λ8ε

2µ2u2uxxxxx −
1

3
λ8ε

2µ2uuxxuxxx.

Hence, 1
2O0(ε2µ) takes the form

1

2
O0(ε2µ) =

1

6
ε2µλ3(u3)xxx +

3

2
ε2µλ4(uu2x)x +

3

2
ε2µλ5(u2uxx)x +

3

2
λ2λ1ε

2µ(u2uxx)x

+ 1

2
ε2µλ2A1(u2uxx)x + ε2µλ1A3(uu2x)x +

1

2
A4λ1ε

2µu2uxxx +
1

2
ε2µλ1A4u(u2)xxx

+ 1

2
A5ε

2µuuxuxx +
1

2
A6ε

2µu2uxxx +
1

2
A7ε

2µu3x −
1

6
λ7ε

2µ2u2xuxxx

− 1

3
λ7ε

2µ2uuxuxxxx −
1

6
λ8ε

2µ2u2uxxxxx −
1

3
λ8ε

2µ2uuxxuxxx.

We now deal with −λ1uεO0(εµ). By definition C = λ4u2x + λ5uuxx and (3.6), it follows

that

−2λ1ε
2µu(Cx +Ct) = −ε2µ2 (−1

3
λ1λ4uuxuxxxx −

1

6
λ1λ5uuxxuxxx −

1

6
λ1λ5u

2uxxxxx) .

Then we know

−λ1uεO0(εµ) = − λ1ε2µ [(6

3
λ1 + 3λ2 +A3)uuxuxx + (2

3
λ1 + 3λ2 +A4)u2uxxx]

+ ε2µ2 (1

3
λ1λ4uuxuxxxx +

1

6
λ1λ5uuxxuxxx +

1

6
λ1λ5u

2uxxxxx) .

Similarly, we have

−(3

2
λ3 − 2λ21) ε2u2O0(µ) = −(1

2
λ3 −

2

3
λ21) ε2µu2uxxx − λ2 (

1

2
λ3 −

2

3
λ21) ε2µ2u2uxxxxx,

and λ2νµ(Fε2)xx = −λ2νε2µ(1
2λ1 +

A1

6 )(u3)xxx.
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Thus, we have

O5(ε2µ) ∶=
1

6
ε2µλ3(u3)xxx +

3

2
ε2µλ4(uu2x)x +

3

2
ε2µλ5(u2uxx)x +

3

2
λ2λ1ε

2µ(u2uxx)x

+ 1

2
ε2µλ2A1(u2uxx)x + ε2µλ1A3(uu2x)x +

1

2
A4λ1ε

2µu2uxxx +
1

2
ε2µλ1A4u(u2)xxx

+ 1

2
A5ε

2µuuxuxx +
1

2
A6ε

2µu2uxxx +
1

2
A7ε

2µu3x − λ1ε2µ(
6

3
λ1 + 3λ2 +A3)uuxuxx

− λ1ε2µ(2

3
λ1 + 3λ2 +A4)u2uxxx − (1

2
λ3 −

2

3
λ21) ε2µu2uxxx − λ2νε2µ(1

2
λ1 +

A1

6
) (u3)xxx

− 3λ4ε
2µux(uux)x −

3

2
λ5ε

2µuuxuxx − (3

2
λ5 − 3λ1λ2) ε2µu(uux)xx.

More precisely, we have

Iu2uxxx ∶=
3

2
(1 − ν)λ1λ2 +

A1

2
(1 − ν)λ2 +

1

2
A4λ1 +

1

2
A6,

Iuuxuxx ∶= 3λ3 − 3λ5 − 9(1 − ν)λ2λ1 +A1(1 − 3ν)λ2 + (A3 + 3A4)λ1 +
1

2
A5 − 2λ21,

Iu3x ∶=
1

2
A7 + λ3 − λ2ν(3λ1 +A1) −

3

2
λ4 +A3λ1.

In the asymptotic order, we have

O5(µ2) ∶= 1

2
O0(µ2) + λ2νµ(Fµ)xx,

O5(εµ2) ∶= 1

2
O0(εµ2) − λ1εuO0(µ2) + λ2νµ(Fεµ)xx

− λ4εµux(O0(µ))x − λ5εµuxx
1

2
O0(µ) − (1

2
λ5 − λ1λ2) εµuO0(µ)xx,

O5(ε2µ2) ∶= 1

2
O0(ε2µ2) − λ1εuO0(εµ2) − (3

2
λ3 − 2λ21) ε2u2(O0(µ2) + λ2νµ(Fε2µ)xx

− λ4εµux(O0(εµ) + 2λ1uεO0(µ))x −
λ5
2
εµuxxO0(εµ) + λ5λ1uuxxε2µO0(µ)

− (1

2
λ5 − λ1λ2) εµu(O0(εµ))xx + (λ5 − 2λ1λ2)λ1ε2µu(uO0(µ))xx

+ ε2µ2λ1 (
1

3
λ4uuxuxxxx +

1

6
λ5uuxxuxxx +

1

6
λ5u

2uxxxxx) − λ2 (
1

2
λ3 −

2

3
λ21) ε2µ2u2uxxxxx

− 1

6
λ7ε

2µ2u2xuxxx −
1

3
λ7ε

2µ2uuxuxxxx −
1

6
λ8ε

2µ2u2uxxxxx −
1

3
ε2µ2λ8uuxxuxxx.
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This procedure can be continued successively, and finally the coefficient of the terms

at the order of ε2µ2-order are obtained as

⎛
⎜⎜⎜⎜⎜⎜
⎝

−6 0 −4A1

0 0 −(30λ1 + 10A1)

0 −15
2 −(45λ1 + 15A1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ10

λ11

λ6

⎞
⎟⎟⎟⎟⎟⎟
⎠

+

⎛
⎜⎜⎜⎜⎜⎜
⎝

C2

C4

C5

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

Iuuxuxxxx − λ8

Iu2xuxxx + 6λ9 − λ8 − λ7

Iuxu2xx +
9
2λ9 − λ8 − 2λ7

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (3.7)

The special form of the CH-mCH-Novikov equation

The equation (1.5) requires specific values of the parameters in the Kodama transforma-

tion. These can be determined through the following procedure.

Note that the CH-type equation requires

Iuxxt = −β, Iuuxxx = −
σβ

2
, Iuxuxx = −σβ,

for some parameter β. It is determined that β = − 5

6(σ − 3) and λ1, λ2, ν are given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ2(1 − ν) = −β,

λ1 + 3
2(1 − 3ν)λ2 = −

σβ

2
− A3

2
.

(3.8)

On the other hand, equation (1.5) requires that

Iu2ux =
1

4
(3k1 + 4k2), Iu2uxxx = −

1

4
β(k1 + k2).
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Therefore

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3
2λ1 +

A1

2 = 1
4(3k1 + 4k2),

3
2(1 − ν)λ1λ2 +

A1

2 (1 − ν)λ2 + 1
2A4λ1 + 1

2A6 = −1
4β(k1 + k2),

(3.9)

where A1 = −3/4, A3 = 23/12, A4 = 5/6,A6 = −3/4. Combining this with (3.8) we have

λ1 =
−10k1 − 72σ + 171

60 − 80σ
, λ2 =

−20k1σ + 60k1 − 164σ2 + 649σ − 921

−480σ2 + 1800σ − 1080
,

k2 = −
3 (10k1σ − 10k1 − 13σ + 39)

10(4σ − 3) , ν = 20k1σ − 60k1 + 164σ2 − 1049σ + 1221

20k1σ − 60k1 + 164σ2 − 649σ + 921
, (3.10)

where k1 ∈ R is arbitrary. The coefficients of (u4)x and (u5)x must vanish for equation

(1.5) to emerge, and hence

Iu3ux =
3

8
λ3 +

1

8
A2 +

1

4
λ1A1 = 0,

Iu4ux = −19λ0 −
3

4
λ21 +

49

8
λ1 +

A8

5
− 3

2
λ3 + 24λ31 − 51λ1λ3 = 0,

where A2 = 3/8 and A8 = 115/192.

Then, we have

λ3 =
5k1 + 26σ − 78

20(4σ − 3) , (3.11)

and

λ0 =
1

114000(4σ − 3)3 (15k1 (73024σ2 − 470364σ + 804501) + 225k21(1028σ − 3579)

+ 18000k31 + 2732464σ3 − 18963756σ2 + 55497258σ − 60937623). (3.12)
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Also, for other terms, we require that

Iu3x = −
1

4
βk1, Iuuxuxx = −

1

4
β(4k1 + 3k2).

With this choice, the implication is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ3 − 3
2λ4 + 1

2A7 − λ2ν(3λ1 +A1) +A3λ1 = −1
4βk1,

3λ3 − 3λ5 − 9(1 − ν)λ2λ1 +A1(1 − 3ν)λ2 + (A3 + 3A4)λ1 + 1
2A5 − 2λ21 = −1

4β(4k1 + 3k2),

where A5 = 11/16, A7 = 21/16. Then we obtain

λ4 =
−18(117 − 10k1)2

(3 − 4σ)2 + 7839 − 670k1
3 − 4σ

− 1000k1
σ − 3

+ 14688

10800
, (3.13)

and

λ5 = −
−400k21(σ − 3) − 40k1(σ + 87)(4σ + 3) + σ(8σ(5898σ − 46907) + 705093) − 214443

2400(3 − 4σ)2(σ − 3) .

(3.14)

This way ν, λ1, λ2, λ3, λ4, λ5, and k2 are obtained in terms of k1.

Lastly, the coefficients of ε2µ2-order terms should satisfy that:

Iu2uxxxxx = Iuuxuxxxx = Iuuxxuxxx = 0, Iu2xuxxx =
k1
4
β2, Iuxu2xx = k1

1

2
β2.

Since the coefficient of the term u2uxxxxx needs to be zero, it requires that

−A4

2
λ1β −

A6

2
β − λ2λ3 +

4

3
λ21λ2 −

1

6
λ1λ5 = 0,

where β = − 5

6(σ − 3) and λi(i = 1,2,3) only depend on k1. This way the parameter k1
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should be a real root of the following equation

800k21 (86σ2 − 398σ + 645) + 30k1 (10768σ3 − 62120σ2 + 188109σ − 233883)

+4000k31(σ − 3) + 3 (90496σ4 − 557360σ3 + 2242656σ2 − 8124759σ + 9843417) = 0.

(3.15)

Notice that since the determinant of the matrix in (3.7) is nonzero, we can obtain λ6, λ10

and λ11 for any parameters λ7, λ8 and λ9.

In summary, if we take the Kodama transformation to be

η = u + λ1εu2 + λ2µuxx + εµ(λ4u2x + λ5uuxx) + ε2λ3u3 + ε3λ0u4 + µ2(λ6uxxxx)

+ ε2µ(λ7uu2x + λ8u2uxx) + εµ2(λ9uxuxxx + λ10uuxxxx + λ11u2xx),

where the parameters satisfy conditions (3.10)-(3.15) and λ7, λ8,and λ9 can be any real

numbers, then we arrive at:

mt + (1 + 3ε

2
u)ux −

1

4
µuxxx − εµσβ(uxuxx +

1

2
uuxxx) +

k1ε2

4
((u2 − βµu2x)m)x

+k2ε
2

4
(u2mx + 3uuxm) = 0.

(3.16)
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Chapter 4

BLOW-UP ANALYSIS

4.1 Introduction

Breaking waves phenomena are commonly observed in the ocean and near the shore. They

are essential for many reasons: they move sediment in shallow water, provide a source

of turbulent energy for mixing the ocean’s upper layers, and they improve the gas and

particle matter exchange between the air and the sea [69].

Given a partial differential equation and initial data (in other words, a Cauchy problem),

an essential and crucial question is proposed: is the equation well-posed? Although the

issue above is essential and fundamental, it is not necessarily simple or easy to answer. In

particular, the solution u of the mCH-Novikov equation belongs to C([0, T ];Hs). This

means that u(., x) ∈ C([0, T )) and u(t, .) ∈Hs, where Hs is a Sobolov space whereas T > 0

denotes the lifespan or what is sometimes called the solution’s maximal time of existence.

Generally, this depends on the initial data and the space.

The maximal time of existence adds a new element to our problem. If the equation is

well-posed and T = ∞, then we have a global well-posed equation. In turn, this means

that the solution exists for any t. However, if the equation is well-posed and T < ∞ , We

have a local well-posed equation, meaning that the solution exists as t < T . For the last

case, we say the problem’s solution u develops a finite time blow-up.

This is the case because the solution cannot exist for all t-values. Therefore, another
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basic question in the theory of nonlinear partial differential equations is when and how

the wave breaking phenomena can exist (solution form a singularity) and what its nature

is. Depending on the problem, the blow-up phenomenon might manifest differently. For

instance, it can occur when the problem’s solution becomes unbounded as t approaches

T . In greater detail, a blow-up in finite time occurs if T < ∞ and

lim sup
t→T

∥u(t, )∥ = ∞.

A blow-up may also occur in the following circumstances: assume that T < ∞, and we

will obtain another type of blow-up if

sup ∣u(t, x)∣ < ∞, and lim sup
t→T

(sup
x∈R

∣ux(t, x)∣) = ∞.

This type of blow-up is known as wave breaking, where ux becomes unbounded in finite

time while u stays bounded. From a geometrical standpoint, this indicates that, as t

approaches T , the tangent line to the curve x→ (x,u(t, x)) tends to become the perpen-

dicular line to the x-direction [70]. Finally, higher nonlinearity can even cause curvature

blow-up, which occurs when the second derivative of the solution becomes unbounded in

finite time while the solution and its gradient remain bounded [71].

4.2 Blow-Up

Using the method from Chapter (3), many shallow-water models can be derived when we

choose suitable parameters in the Kodama transformation and perform certain rescaling.

In particular, we can obtain the mCH-Novikov equation.

Consider the same form of Kodama transformation as before; choose σ = 1. Then, apply-
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ing scaling transformation

u→ ε

2
u, t→ (βµ) 1

2 t, x→ (βµ) 1
2x,

to equation (1.5) leads to

mt + ux −
3

5
uxxx + 2uxm + umx + k1((u2 − u2x)m)x + k2(u2mx + 3uuxm) = 0. (4.1)

If we further scale t→ δ2t and u→ δ−1u, then (4.1) takes the form of

δ−2mt + ux −
3

5
uxxx + δ−1(2uxm + umx) + k1δ−2((u2 − u2x)m)x + k2δ−2(u2mx + 3uuxm) = 0.

Rewriting it as

mt + δ2ux − δ2
3

5
uxxx + δ(2uxm + umx) + k1((u2 − u2x)m)x + k2(u2mx + 3uuxm) = 0, (4.2)

and taking δ → 0, we procure the mCH-Novikov equation

mt + k1[(u2 − u2x)m]x + k2(u2mx + 3uuxm) = 0.

In this chapter, we consider the periodic mCH-Novikov equation with cubic non-

linearity, which is derived with the asymptotic method from the classical shallow water

theory. The approximate model equation is obtained by introducing suitable scaling and

by truncating the asymptotic expansions of the unknowns to appropriate order along

with the Kodama transformation. When the parameters take different values in mCH-

Novikov equation, we get several different important shallow water equations, such as

mCH equation and Novikov equation. Our analysis applies the method of characteristics

and uses conserved quantities to arrive at a Riccati-type differential inequality. It is proven
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that the wave-breaking phenomenon of the mCH-Novikov equation is the curvature blow-

up.

Having derived the model equations in Chapter (2) and Chapter (3), we now turn our

attention to the blow-up analysis. In particular, as the introduction explains, we consider

the Cauchy problem for the periodic mCH-Novikov equation

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

mt + k1 [(u2 − u2x)m]x + k2 (u2mx + 3uuxm) = 0,

u(t,0) = u(t,1), u(0, x) = u0(x),
t > 0, x ∈ S, (4.3)

where k1, k2 ∈ R.

Lemma 4.2.1. Suppose that u0 ∈ Hs(S) with s > 5
2 . Assume u is the corresponding

solution to (4.3) with the initial data u0. Then

H1[u] = ∫
S
(u2 + u2x)dx = ∫

S
(u20 + u20,x)dx, (4.4)

and

H2[u] = ∫
S
(u4 + 2u2u2x −

1

3
u4x) dx = ∫

S
(u40 + 2u20u

2
0,x −

1

3
u40,x) dx. (4.5)

Proof. We rewrite (4.3) as the following equation

ut − utxx + k1((u2 − u2x)(u − uxx))x + k2(u2(ux − uxxx) + 3uux(u − uxx)) = 0. (4.6)

Multiplying equation (4.6) by u and integrating by parts, we have

∫
S
uutdx =

1

2

d

dt ∫S u
2dx,

∫
S
uutxxdx = −

1

2

d

dt ∫S u
2
xdx,
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k1∫
S
u((u2 − u2x)(u − uxx))xdx = −k1∫

S
(u3ux − u2uxuxx − uu3x + u3xuxxx)dx = 0,

k2∫
S
u(u2(ux − uxxx) + 3uux(u − uxx))) = k2∫

S
(4u3ux − u3uxxx − 3u2uxuxx)dx = 0.

Then we obtain

d

dt ∫S(u
2 + u2x)dx = 0. (4.7)

Similarly, we multiply equation (4.5) by ux and integrate by parts, then we get

∫
S
(u4 + 2u2u2x −

1

3
u4x) = 0. (4.8)

This completes the poof of lemmea (4.2.1).

Lemma (4.2.1) shows that the following two functionals are conserved quantities for

(4.3)

H1[u] = ∫
R
(u2 + u2x) dx, and H2[u] = ∫

S
(u4 + 2u2u2x −

1

3
u4x) dx. (4.9)

The local well-posedness theory can be obtained following the standard argument of [72]

with a slight modification.

Theorem 4.2.2. Let u0 ∈ Hs with s > 5
2 . Then there exists a time T > 0 such that the

Cauchy problem (4.3) has a unique strong solution u ∈ C([0, T ];Hs) ∩C1([0, T ];Hs−1).

4.2.1 Blow-Up Criterion

Similar to the other CH-type equations, (4.3) can be reformulated into a nonlocal trans-

port form. Therefore, from standard transport theory, a Beale–Kato–Majda type of blow-

up criterion is obtainable. A further refined analysis leads to the following lemma. The

proof of this result follows an idea similar to one proposed in [18], so we therefore omit it.

Lemma 4.2.3. Let u0 ∈ Hs with s > 5
2 and u be the corresponding solution to (4.3).
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Assume that T ∗
u0 > 0 is the maximum time of existence. Then

T ∗
u0 < ∞ ⇒ ∫

T ∗u0

0
∥k1mux(τ) + 2k2uux(τ)∥L∞ dτ = ∞. (4.10)

Remark 3. The blow-up criterion (4.10) implies that the lifespan T ∗
u0 does not depend

on the regularity index s of the initial data u0.

Furthermore, we prove the following wave-breaking criteria.

Lemma 4.2.4. Suppose that u0 ∈ Hs(S) with s > 5
2 . Then the corresponding solution u

to the Cauchy problem (4.3) blows up in finite time T ∗ > 0 if and only if

lim inf
t→T ∗

inf
x∈S

{k1m(t, x)ux(t, x) + 2k2u(t, x)ux(t, x)} = −∞. (4.11)

Proof. In view of Remark (3), it suffices to consider the case s = 3. Suppose that if

k1mux + k2uux is bounded from below on [0, T ∗
u0) × S. In other words, there exists a

constant M > 0 such that

(k1mux + 2k2uux) (t, x) ≥ −M on [0, T ∗
u0) × S. (4.12)

Multiplying (4.3) by m and integrating over S. Then integrating by parts, we have

1

2

d

dt ∫Sm
2 dx + ∫

S
(k1uxm + 2k2uux)m2 dx = 0. (4.13)

The initial condition implies that m0 ∈Hs−2 ⊂ Lq for any 2 ≤ q ≤ ∞. Similarly, we have

1

2

d

dt ∫Sm
2
x dx + k1∫

S
((u2 − u2x)m)

xx
mx dx + k2∫

S
(u2mx + 3uuxm)

x
mx dx = 0.
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Integrating by parts, the second term yields

k1∫
S
[(u2 − u2x)m]

xx
mx dx = ∫

S
(5k1uxm)m2

x dx − ∫
S
(2

3
k1uxm)m2dx.

Integrating by parts, the third term can be computed as

k2∫
S
(u2mx + 3uuxm)

x
mx = ∫

S
(4k2uux)m2

x dx − ∫
S
(6k2uux)m2dx − ∫

S
12k2umxm

2dx.

In this way, we have

1

2

d

dt ∫Sm
2
x dx + ∫

S
(5k1uxm + 4k2uux)m2

x dx − ∫
S
(2

3
k1uxm + 6k2uux)m2dx − ∫

S
12k2umxm

2dx = 0.

So together with (4.13), we have

1

2

d

dt ∫S(m
2 +m2

x) dx = − ∫
S
(k1uxm + 2k2uux)m2 dx − ∫

S
(5k1uxm + 4k2uux)m2

x dx

+ ∫
S
(2

3
k1uxm + 6k2uux)m2dx + ∫

S
12k2umxm

2dx

=∫
S
(4k2uux −

1

3
k1uxm)m2 dx − ∫

S
(5k1uxm + 4k2uux)m2

x dx

− ∫
S

4k2uxm
3dx

≤ 5∫
S
M(m2 +m2

x) dx + ∫
S
k2uux (

14

3
m2 + 6m2

x) dx − ∫
S

4k2uxm
3dx

≤ 5∫
S
M(m2 +m2

x) dx + ∫
S
k2uux (

14

3
m2 + 6m2

x) dx

+ ∫
S

4k2(u2 − u2x)mmxdx

≤ 5∫
R
M(m2 +m2

x) dx + 6∣k2∣∥u∥L∞∥ux∥L∞∥m∥2H1 + 4∣k2∣∥u∥H1∥m∥L2∥m∥2H1 .

Therefore,

d

dt
∥m∥2H1 ≤ C∥m∥2H1 ,
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where C = C(u0,m0). Applying Gronwall’s inequality, it follows that

∥m(t)∥2H1 ≤ eCt∥m0∥2H1 ,

for t ∈ [0, T ∗
u0). From Lemma (4.2.3) this ensures that the solution does not blow up in

finite time.

On the other hand, if

lim inf
t↑T ∗u0

[inf
x∈S

(k1m(t, x)ux(t, x) + 2k2u(t, x)ux(t, x))] = −∞,

then either ux orm blows up in finite time. The proof of Lemma (4.2.4) is hence completed.

4.2.2 Dynamics along the Characteristics

We perform our blow-up analysis along the characteristics of equation (4.3). So, let us

define the characteristics associated with the mCH-Novikov equation (4.3) as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

qt(t, x) = [k1 (u2 − u2x) + k2u2] (t, q(t, x)),

q(0, x) = x,
x ∈ S, t ∈ [0, T ). (4.14)

Proposition 1. Suppose u0 ∈ Hs(S) with s > 5
2 , and let T > 0 be the maximal existence

time of the strong solution u to the corresponding initial value problem (4.3). Then (4.14)

has a unique solution q ∈ C1([0, T )×S,S) such that q(t, ⋅) is an increasing diffeomorphism

of S with

qx(t, x) = exp(2∫
t

0
(k1mux + k2uux) (s, q(s, x))ds) > 0, ∀ (t, x) ∈ [0, T ) × S. (4.15)
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Moreover, for all (t, x) ∈ [0, T ) × S it holds that

m(t, q(t, x)) =m0(x) exp(−∫
t

0
(2k1mux + 3k2uux)(s, q(s, x))ds) , (4.16)

where m0(x) =m(0, x).

A direct consequence of Proposition (1) is that the momentum density satisfies the

sign-persistence property.

Corollary 4.2.4.1. Suppose u0 ∈ Hs(S) with s > 5
2 . Let T > 0 be the maximal existence

time of the strong solution u to the corresponding initial value problem (4.3). If m0(x) > 0

for all x ∈ S, then m(t, x) > 0 for all (t, x) ∈ [0, T ) × S.

The following lemma play important roles in the blow-up phenomena. The proof

follows an idea similar to [73].

Lemma 4.2.5. Assume m0 ∈ Hs(S) with s > 5
2 ,m0 ≥ 0 for all x ∈ S. Let T > 0 be the

maximal existence time of the solution m(t, x) to the periodic problem (4.3) with the initial

data m0. Then

∣ux(t, x)∣ ≤ u(t, x).

Denote p(x) =
cosh((x − [x] − 1

2)
2 sinh(1

2)
, here [x] represents the largest integer part of x, wich

is the fundamental solution of 1−∂2x on the unit circle S = R/Z, that is (1−∂2x)−1f = p∗f,

where ∗ denotes the convolution product on S, defined by:

p ∗ f(t, x) = ∫
1

0
p(x − y)f(t, y)dy

= ∫
1

0

cosh((x − y) − [x − y] − 1
2)

2 sinh(1
2)

f(t, y)dy

= ∫
x

0

cosh(x − y − 1
2)

2 sinh(1
2)

f(t, y)dy + ∫
1

x

cosh((x − y + 1
2)

2 sinh(1
2)

f(t, y)dy.
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Define p+(x) =
ex−[x]−

1
2

4 sinh(1
2)

, p−(x) =
e−x+[x]+

1
2

4 sinh(1
2)

.

Then we have the relation

p = p+ + p−, px = p− − p+.

Now we compute the dynamics of a few important quantities along the characteristics

q(t, x0). Denote ′ the derivative ∂t + (k1(u2 − u2x) + k2u2)∂x along the characteristics, and

û(t) ∶= u(t, q(t, x0)), ûx(t) ∶= ux(t, q(t, x0)), m̂(t) ∶=m(t, q(t, x0)), M̂(t) ∶= (mux)(t, q(t, x0)).

Lemma 4.2.6. Let u0 ∈ Hs(S), s ≥ 3. Then u(t, x), ux(t, x), m(t, x) and (mux)(t, x)

satisfy the following integro-differential equations

û′(t) = −2

3
k1ûx

3 + (k1
3
+ k2

2
) [p+ ∗ (u − ux)3 − p− ∗ (u + ux)3] (t, q(t, x0)), (4.17)

ûx
′(t) = k1 (

1

3
û3 − ûûx2) +

k2û

2
(û2 − ûx2) (4.18)

− (k1
3
+ k2

2
) [p+ ∗ (u − ux)3 + p− ∗ (u + ux)3] (t, q(t, x0)),

m̂′(t) = −(2k1m̂ûx + 3k2ûûx)m̂, (4.19)

M̂ ′(t) = −2k1M̂
2 + m̂û

6
[(2k1 + 3k2)û2 − (6k1 + 21k2)ûx2] (4.20)

− (k1
3
+ k2

2
) m̂ [p+ ∗ (u − ux)3 + p− ∗ (u + ux)3] (t, q(t, x0)).

Proof. The proof of (4.19) is immediately obtaineble from the equation (4.3).

ut = −k1p ∗ [(u2 − u2x)m]
x
+ k2p ∗ (u2mx + 3uuxm) . (4.21)

The structure of the right-hand side of the above equation suggests that we may recall
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the results from [17] and [9]. First, from [17, (3.1)] we know that

p ∗ [(u2 − u2x)m]
x
= (u2 − u2x)ux +

2

3
u3x −

1

3
[p+ ∗ (u − ux)3 − p− ∗ (u + ux)3] .

From [9, (3.7)] we have

p ∗ (u2mx + 3uuxm) = u2ux −
1

2
[p+ ∗ (u − ux)3 − p− ∗ (u + ux)3] .

Plugging the above two into (4.21), we obtain (4.17).

The proof of (4.18) proceeds in the same way. Differentiating (4.21) we obtain

uxt = −k1p ∗ [(u2 − u2x)m]
xx
− k2p ∗ (u2mx + 3uuxm)

x
. (4.22)

From [17, (3.2)], it follows that

p ∗ [(u2 − u2x)m]
xx

= (u2 − u2x)uxx + (1

3
u3 − uu2x) −

1

3
[p+ ∗ (u − ux)3 + p− ∗ (u + ux)3] .

From [9, (3.8)], we know

p ∗ (u2mx + 3uuxm)
x
= u2uxx −

u

2
(u2 − u2x) −

1

2
[p+ ∗ (u − ux)3 + p− ∗ (u + ux)3] .

Therefore (4.18) is obtained by combining the above two equations.

Finally (4.20) can be derived from (4.18) and (4.19).

4.2.3 Choice of Data and Blow-Up: 2k1 + 3k2 ≠ 0

The blow-up criterion (4.11) together with the conservation law H1[u] indicates two

possible scenarios for the formation of singularity, namely the wave-breaking (∣ux∣ → ∞)

or curvature blow-up (∣m∣ → ∞). In this section, we seek data which leads to the second
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scenario.

Non-Sign-Changing Data

For this, we first utilize the sign-persistence property Corollary (4.2.4.1) to consider data

with positive momentum m0 ≥ 0, so that from the identities

u(t, x) = p ∗m(t, x), ux(t, x) = px ∗m(t, x),

we have

u(t, x) ≥ 0, u ± ux = 2p∓ ∗m ≥ 0. (4.23)

This allows us to control the convolution terms in Lemma (4.2.6).

The main result of this subsection is the following.

Theorem 4.2.7. Suppose that k1 < 0,and 2k1/3 < k2 ≤ −2k1/9. Let m0 ∈Hs(S) for s > 5/2

and m0 ≥ 0. Assume that there exists some point x0 ∈ S such that m0(x0) > 0 and

u0,x(x0) ≥ max

⎧⎪⎪⎨⎪⎪⎩

√
2k1 + 3k2

4k1
,

√
2k1 + 3k2
6k1 + 21k2

⎫⎪⎪⎬⎪⎪⎭
u0(x0). (4.24)

Then the corresponding solution u(t, x) blows up in finite time with an estimate of the

blow-up time T ∗ as

T ∗ ≤ − 1

2k1m0(x0)u0,x(x0)
.

Proof. From Corollary (4.2.4.1) we know that m(t, x) ≥ 0 and m̂ > 0. It then follows from

(4.2.5) that

u(t, x) ≥ ∣ux(t, x)∣ ≥ 0, û(t) > 0. (4.25)

Therefore ux does not blow up, and then Lemma (4.2.4) indicates that it suffices to

consider the quantity M(t, x) = (mux)(t, x).
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From the condition of the theorem, (4.25), and (4.20) it holds that

M̂ ′ = −2k1M̂
2 + m̂û

6
[(2k1 + 3k2)û2 − (6k1 + 21k2)ûx2]

− (k1
3
+ k2

2
) m̂ [p+ ∗ (u − ux)3 + p− ∗ (u + ux)3] (t, q(t, x0))

≥ −2k1M̂
2 + m̂û

6
[(2k1 + 3k2) − (6k1 + 21k2)

ûx
2

û2
] .

(4.26)

Since û, m̂ > 0, it is now clear that in order to arrive at a Riccati-type inequality M̂ ′ ≳ M̂2,

one would like to have (2k1 + 3k2) − (6k1 + 21k2)ûx2/û2 ≥ 0, that is,

ûx
2

û2
≥ 2k1 + 3k2

6k1 + 21k2
, (4.27)

which involves the competition between u and its derivative ux along the characteris-

tics. In particular, a finite-time blow-up of M̂ can be realized if the ration ∣ux/u∣ stays

reasonable big along the characteristics. A quick computation shows that

( ûx
û

)
′

= û
2 − ûx2
û2

[(k1
3
+ k2

2
) û2 − 2k1

3
ûx

2]

− 2k1 + 3k2
6û2

[(û + ûx)p+ ∗ (u − ux)3 + (û − ûx)p− ∗ (u + ux)3]

≥ û2 [(k1
3
+ k2

2
) − (k1 +

k2
2
)( ûx

û
)
2

+ 2k1
3

( ûx
û

)
4

]

= 2k1
3
û2 [( ûx

û
)
2

− 1] [( ûx
û

)
2

− 2k1 + 3k2
4k1

] .

(4.28)

From (4.24), we have chosen the initial data so that

( ûx
û

) (0) ≥ max

⎧⎪⎪⎨⎪⎪⎩

√
2k1 + 3k2

4k1
,

√
2k1 + 3k2
6k1 + 21k2

⎫⎪⎪⎬⎪⎪⎭
.

Recall from (4.25) that ∣ ûx
û

∣ ≤ 1. The assumptions on k1 and k2 ensure that the right-

hand side of the above is less than 1. Therefore,
ûx
û

increases initially, and a continuity
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argument implies that it increase for later time, and hence

( ûx
û

) (t) ≥ ( ûx
û

) (0) ≥ max

⎧⎪⎪⎨⎪⎪⎩

√
2k1 + 3k2

4k1
,

√
2k1 + 3k2
6k1 + 21k2

⎫⎪⎪⎬⎪⎪⎭
.

In particular, we have:

ûx
2

û2
≥ 2k1 + 3k2

6k1 + 21k2
. (4.29)

Plugging this into (4.26) it yields that M̂ ′(t) ≥ −2k1M̂2, and thus M̂(t) blows up in

finite time with an estimate of the blow-up time T ∗ as

T ∗ ≤ − 1

2k1M̂(0)
= − 1

2k1m0(x0)u0,x(x0)
,

completing the proof of the theorem.

Remark 4. Note that in the conditions of Theorem (4.2.7) we require that
2k1
3

< k2 ≤

−2k1
9

The second inequality is needed in (4.29). The first inequality is also required since

from the sign condition on m we know that ∣ux∣ ≤ u, and therefore in (4.24) we need

2k1 + 3k2
4k1

< 1.

Remark 5. Using a similar argument one can prove the finite time blow-up for data such

that m0 ≤ 0, m0(x0) < 0 and

u0,x(x0) ≤ max

⎧⎪⎪⎨⎪⎪⎩

√
2k1 + 3k2

4k1
,

√
2k1 + 3k2
6k1 + 21k2

⎫⎪⎪⎬⎪⎪⎭
u0(x0).

Recall from Lemma (4.2.4) that when m does not change sign, the true blow-up

quantity is k1mux. In the setting of Theorem (4.2.7) and Remark (5) where k1 < 0, we

seek data that leads to mux → +∞. Thus using a similar argument we can handle the

case when k1 > 0, as indicated in the following corollary.
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Corollary 4.2.7.1. Suppose that k1 > 0, and −2k1/9 ≤ k2 < 2k1/3. Let m0 ∈ Hs(S) for

s > 5/2 and m0 ≥ 0. Assume that there exists some point x0 ∈ S such that m0(x0) > 0 and

u0,x(x0) ≤ −max

⎧⎪⎪⎨⎪⎪⎩

√
2k1 + 3k2

4k1
,

√
2k1 + 3k2
6k1 + 21k2

⎫⎪⎪⎬⎪⎪⎭
u0(x0). (4.30)

Then the corresponding solution u(t, x) blows up in finite time with an estimate of the

blow-up time T ∗ as

T ∗ ≤ − 1

2k1m0(x0)u0,x(x0)
.

Proof. We still consider the dynamics of M̂ and look to have M̂ → −∞ in finite time.

M̂ ′ = −2k1M̂
2 + m̂û

6
[(2k1 + 3k2)û2 − (6k1 + 21k2)ûx2]

− (k1
3
+ k2

2
) m̂ [p+ ∗ (u − ux)3 + p− ∗ (u + ux)3] (t, q(t, x0))

≤ −2k1M̂
2 + m̂û

6
[(2k1 + 3k2)û2 − (6k1 + 21k2)ûx2] .

(4.31)

Now the goal is to have (2k1 + 3k2)û2 − (6k1 + 21k2)ûx2 ≤ 0, that is,

ûx
2

û2
≥ 2k1 + 3k2

6k1 + 21k2
, (4.32)

and this again leads to considering ûx/û. From (4.28) we have

( ûx
û

)
′

= û
2 − ûx2
û2

[(k1
3
+ k2

2
) û2 − 2k1

3
ûx

2]

− 2k1 + 3k2
6û2

[(û + ûx)p+ ∗ (u − ux)3 + (û − ûx)p− ∗ (u + ux)3]

≤ û
2 − ûx2
û2

[(k1
3
+ k2

2
) û2 − 2k1

3
ûx

2] .

(4.33)

54



Therefore we know that when (4.30) is satisfied, ûx/û decreases, and thus

ûx
2

û2
≥ max{2k1 + 3k2

4k1
,

2k1 + 3k2
6k1 + 21k2

} .

This way we obtain the desired Riccati inequality for M̂

M̂ ′(t) ≤ −2k1M̂
2,

which implies that M̂(t) → −∞ as t→ T ∗ where T ∗ ≤ − 1

2k1m0(x0)u0,x(x0)
.

General Data

Next we consider a general momentum density m0 and look for the blow-up data. In this

case we follow the standard procedure of utilizing the conservation laws H1[u]. This will

be the key to obtain the convolution estimate.

1

3
∥ux∥4L4 = ∫

S
(u4 + 2u2u2x)dx −H2[u0] ≤ 2∥u∥2L∞H1[u0] −H2[u0] ≤

e + 1

e − 1
H2

1 [u0] −H2[u0].

Therefore, the convolution estimates follow as

∣p± ∗ (u ∓ ux)3∣ ≤ ∥p±∥L∞ ∥(u ∓ ux)3∥L1 ≤
e

1
2

2 sinh 1
2

(∥u∥3L3 + ∥ux∥3L3)

≤ e

(e − 1)
⎛
⎝
( e + 1

2(e − 1))
1
2

H
3
2
1 [u0] + (3(e + 1)

e − 1
H2

1 [u0] −H2[u0])
1
2

H1[u0]
⎞
⎠
=∶ A.

(4.34)

The blow-up result in this section is the following.

Theorem 4.2.8. Suppose k1, k2 < 0. Let m0 ∈ Hs(S) with s > 5/2. Assume that there
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exists an x0 ∈ S such that

m0(x0) > 0, u0(x0) > 0, u0,x(x0) ≥ 3
√
A1,

u0(x0)u20,x(x0) ≥
2k1 + 3k2

3(2k1 + k2)
A2,

(4.35)

where

A1 =
2k1 + 3k2

2k1
A, A2 = 2A + ( e + 1

2(e − 1)H1[u0])
3/2

,

and A is given in (4.34). Then the solution u(t, x) blows up in finite time with an estimate

of the blow-up time T ∗ as

T ∗ ≤ − 1

2k1m0(x0)u0,x(x0)
.

Proof. Plugging (4.34) in (4.17) and (4.18) we obtain that

û′ ≥ −2

3
k1ûx

3 + 2k1 + 3k2
3

A,

ûx
′ ≥ −(k1 +

k2
2
) ûûx2 +

2k1 + 3k2
6

⎡⎢⎢⎢⎢⎣
2A + ( e + 1

2(e − 1)H1[u0])
3/2⎤⎥⎥⎥⎥⎦

.

Hence we know that û is increasing when ûx
3 ≥ A1, and ûx is increasing when

−(k1 +
k2
2
) ûûx2 ≥ −

2k1 + 3k2
6

A2.

From the assumption (4.35) we know that the above two conditions are satisfied initially.

Hence a continuity argument yields that over the time of existence of solutions, û and ûx

are both increasing. In particular,

û(t) ≥ u0(x0) > 0, ûx(t) ≥ u0,x(x0) > 0. (4.36)
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Recall that m̂ satisfies m̂′ = ûx(−2k1m̂2 − 3k2m̂û). From (4.35) and (4.36) we see that m̂′

increases initially. Then a continuity argument ensures that m̂ increases (and hence is

positive) over the time of existence. Therefore

m̂′ = ûx(−2k1m̂
2 − 3k2m̂û) ≥ −2k1ûxm̂

2 ≥ −2k1u0,x(x0)m̂2.

Hence m̂(t) (and thus M̂ since ûx(t) ≥ u0,x(x0) > 0) blows up to +∞ in finite time with

an estimate on the blow-up time T ∗ as

T ∗ ≤ − 1

2k1m0(x0)u0,x(x0)
,

which completes the proof of the theorem.

Similarly for positive k1 and k2 we have

Corollary 4.2.8.1. Suppose k1, k2 > 0. Let m0 ∈ Hs(S) with s > 5/2. Assume that there

exists an x0 ∈ S such that

m0(x0) > 0, u0(x0) > 0, u0,x(x0) ≤ − 3
√
A1,

u0(x0)u20,x(x0) ≥
2k1 + 3k2

3(2k1 + k2)
A2.

(4.37)

Then the solution u(t, x) blows up in finite time with an estimate of the blow-up time T ∗

as

T ∗ ≤ − 1

2k1m0(x0)u0,x(x0)
.
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4.2.4 Choice of Data and Blow-Up: 2k1 + 3k2 = 0

In the previous section, we require that 2k1 + 3k2 ≠ 0. In fact when 2k1 + 3k2 = 0, the

dynamics in Lemma (4.2.6) can be simplified as

û′ = −2

3
k1ûx

3,

ûx
′ = −(k1 +

k2
2
) ûûx2 = −

2

3
k1ûûx

2,

m̂′ = −(2k1m̂ûx + 3k2ûûx)m̂ = −2k1m̂ûx(m̂ − û),

M̂ ′ = −2k1M̂
2 + 4

3
k1ûûxM̂ = −2k1ûxM̂ (m̂ − 2

3
û) .

(4.38)

In particular, the convolution terms all vanish and the dynamics is completely local.

However, the dynamics of M̂ does not immediately lead to a Riccati type inequality.

Instead, it involves the competition between û and m̂.

The case when k1 < 0

Note from (4.38) that when k1 < 0,

sign(û′) = sign(ûx), sign(ûx′) = sign(û). (4.39)

Using this we first derive the following theorem which requires m to be non-sign-changing.

Theorem 4.2.9. Suppose that k1 < 0, 2k1 + 3k2 = 0. Let m0 ∈Hs(S) for s > 5/2. Assume

that

(a) m0 ≥ 0 and there exists some point x0 ∈ S such that

m0(x0) > 0, u0,x(x0) > 0, m0(x0) ≥
4

3
u0(x0), or (4.40)

58



(b) m0 ≤ 0 and there exists some point x0 ∈ S such that

m0(x0) < 0, u0,x(x0) < 0, m0(x0) ≥
4

3
u0(x0). (4.41)

Then the corresponding solution u(t, x) blows up in finite time with an estimate of the

blow-up time T ∗ as

T ∗ ≤ − 1

k1m0(x0)u0,x(x0)
.

Proof. Because k1 < 0, the goal is to show that M̂ → +∞ in finite time.

(a) Since now m ≥ 0, m̂ > 0 and k1 < 0, we know from (4.39) that û > 0 and hence

ûx
′ > 0. So ûx(t) > 0 if ûx(0) > 0. Then the last equation in (4.38) suggests that in order

to derive a Riccati type inequality for M̂ , one would like to have m̂ − 2
3 û ≥ εm̂, for some

ε > 0, that is,

m̂

û
≥ 2

3(1 − ε) . (4.42)

Now we can check the dynamics of m̂/û.

(m̂
û
)
′

= −2k1m̂ûx
û2

(m̂û − û2 − 1

3
ûx

2) ≥ −2k1m̂ûx
û2

(m̂û − 4

3
û2) , (4.43)

where we have used ∣ux∣ ≤ u to obtain the last inequality.

Therefore m̂/û increases when m̂ ≥ 4
3 û. So when m̂(0) ≥ 4

3 û(0) we have

m̂

û
(t) ≥ m̂

û
(0) ≥ 4

3
,

indicating that we may take ε = 1
2 in (4.42). Thus from the last equation in (4.38) we

have

M̂ ′ ≥ −k1M̂2,
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leading to M̂(t) → +∞ as t→ T ∗ where T ∗ satisfies

T ∗ ≤ − 1

k1m0(x0)u0,x(x0)
,

proving part (a).

(b) Similarly as in (a), we can deduce from (4.41) that

m̂(t) < 0, û(t) ≤ û(0) < 0, ûx(t) ≤ ûx(0) < 0. (4.44)

To obtain a Riccati type inequality for M̂ , it suffices to ask that m̂ − 2
3 û ≤ εm̂, for some

ε > 0, which leads to (4.42) again.

Following the dynamics of m̂/û and keeping track of the signs as in (4.44) it follows

that (4.43) still holds. Hence the rest of the argument goes the same way as in (a).

The case when k1 > 0

In this case it follows from (4.38) that

sign(û′) = −sign(ûx), sign(ûx′) = −sign(û). (4.45)

The corresponding blow-up results are as follows.

Theorem 4.2.10. Suppose that k1 > 0, 2k1+3k2 = 0. Let m0 ∈Hs(S) for s > 1/2. Assume

that

(a) m0 ≥ 0 and there exists some point x0 ∈ S such that

m0(x0) > 0, u0,x(x0) < 0, m0(x0) ≥
4

3
u0(x0), (4.46)

or
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(b) m0 ≤ 0 and there exists some point x0 ∈ S such that

m0(x0) < 0, u0,x(x0) > 0, m0(x0) ≤
4

3
u0(x0), (4.47)

Then the corresponding solution u(t, x) blows up in finite time with an estimate of the

blow-up time T ∗ as

T ∗ ≤ − 1

k1m0(x0)u0,x(x0)
. (4.48)

Proof. Tracking the dynamics of M̂ and using (4.45) we see that to obtain a Riccati type

inequality for M̂ it suffices to have (4.42) for some ε > 0, for both cases (a) and (b). Thus

computing (m̂/û)′ and using that ∣ux∣ ≤ u we get

(m̂
û
)
′

= −2k1m̂ûx
û2

(m̂û − û2 − 1

3
ûx

2) ≥ −2k1m̂ûx
û2

(m̂û − 4

3
û2) ,

which implies that

m̂

û
increases if

m̂

û
≥ 4

3
. (4.49)

This in turn leads to M̂ ′ ≤ −k1M̂2 and hence the blow-up of M̂ with an estimate of the

blow-up time as (4.48).

Finally, the theorem is proved by realizing that (4.49) is satisfied if either (4.46) or

(4.47) holds.
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Appendix A

The Coefficient of ε2µ2 for the Derivation of the Free

Surface Equation

The expansion of derivative of t on µ2, εµ2-order will generate ε2µ2-order terms. While

µ2, εµ2 are high order terms under Camassa–Holm regime, we will eliminate the t deriva-

tives in µ2 and εµ2-order to produce the full terms for ε2µ2-order.

For µ2-order, it takes the form of

O6(µ2) ∶= µ2(Dx +Dt) +
1

6
λ2µ

2uxxxxx − λ22νµ2(uxxx + uxxt)xx −
1

6
λ2νµ

2uxxxxx.

By the scaling in the equation, D should have the form D = λ6uxxxx for a parameter λ6.

Thus, we have

µ2(Dx +Dt) = µ2λ6(uxxxxx + uxxxxt). (A.1)

From (3.4), we observe that ut = −ux − 3
2εuux − (1

2λ1 +
A1

6 )ε2(u3)x. Therefore,
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µ2λ6(uxxxxx + uxxxxt) − λ22νµ2(uxxx + uxxt)xx

=3

2
λ22νεµ

2(uux)xxxx + λ22ν(
1

2
λ1 +

A1

6
)ε2µ2(u3)xxxxx

− 3

2
λ6εµ

2(uux)xxxx − λ6(
1

2
λ1 +

A1

6
)ε2µ2(u3)xxxxx.

It generates higher order terms, viz.

O6(εµ2) ∶ 1

2
O0(εµ2) − λ1uεO0(µ2) + λ2νµ(Fεµ)xx − λ4εµux(O0(µ))x

− λ5
2
εµuxxO0(µ) − (1

2
λ5 − λ1λ2)εµu(O0(µ))xx +

3

2
(λ22ν − λ6)εµ2(uux)xx,

O6(ε2µ2) ∶ 1

2
O0(ε2µ2) − λ1uεO0(εµ2) − u2(3

2
λ3 − 2λ21)ε2O0(µ2) + λ2νµ(Fε2µ)xx

− λ4εµux(O0(εµ) + 2λ1uεO0(µ))x − λ5εµuxx
1

2
(O0(εµ)) + λ5λ1ε2µuuxxO0(µ)

− (1

2
λ5 − λ1λ2)εµu(O0(εµ))xx + (λ5 − 2λ1λ2)λ1ε2µu(uO0(µ))xx

+ ε2µ2λ1(
1

3
λ4uuxuxxxx +

1

6
λ5uuxxuxxx +

1

6
λ5u

2uxxxxx) − λ2(
1

2
λ3 −

2

3
λ21)ε2µ2u2uxxxxx

− 1

6
λ7ε

2µ2u2xuxxx −
1

3
λ7ε

2µ2uuxuxxxx −
1

6
λ8ε

2µ2u2uxxxxx −
1

3
ε2µ2λ8uuxxuxxx

+ (λ22ν − λ6)(
1

2
λ1 +

A1

6
)ε2µ2(u3)xxxxx.

Next, we consider εµ2-order i.e. O6(εµ2). Here, the term 1
2O0(εµ2) is the only part

which will product the ε2µ2-order is εµ2(Hx + Ht). Hence, we choose H = λ9uxuxxx +

λ10uuxxxx + λ11u2xx and expand ut up to ε-order, i.e., ut = −ux − 3
2εuux. It yields that

εµ2(Hx +Ht) = −
3λ9
2
ε2µ2(uux)xuxxx −

3λ9
2
ε2µ2ux(uux)xxx −

3λ10
2
ε2µ2uuxuxxxxx

− 3λ10
2
ε2µ2u(uux)xxxx − 3λ11ε

2µ2uxx(uux)xx.
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Recalling the definition D = λ6uxxxx and O0(µ) = 2λ2µ(uxxx + uxxt) + 1
3µuxxx, we have

−λ1uεO0(µ2) − λ4εµux(O0(µ))x − λ5εµuxx
1

2
O0(µ) − (1

2
λ5 − λ1λ2)εµu(O0(µ))xx

=3λ6λ1ε
2µ2u(uux)xxxx −

λ1
3
εµ2λ2uuxxxxx −

λ4
3
εµ2uxuxxxx

+ 3λ2λ4ε
2µ2ux(uux)xxx −

λ5
6
εµ2uxxuxxx +

3

2
λ5ε

2µ2λ2uxx(uux)xx,

− (1

6
λ5 −

1

3
λ1λ2)εµ2uuxxxxx +

3

2
(λ5 − 2λ1λ2)ε2µ2uλ2(uux)xxxx.

Also, there is

λ2νµ(Fεµ)xx =3λ2νλ4ε
2µ2(ux(uux)x)xx +

3

2
λ2νλ5ε

2µ2(uuxuxx)xx +
1

3
νλ1λ2εµ

2uuxxxxx

+ 3

2
λ2νλ5ε

2µ2(u(uux)xx)xx −
1

2
λ2ν(2λ1 + 3λ2 +A3)εµ2(uxuxx)xx

− 3λ1λ
2
2νε

2µ2u(uux)xxxx −
1

2
λ2ν(

2

3
λ1 + 3λ2 +A4)εµ2(uuxxx)xx.

(A.2)

After expanding of derivative of t, ε2µ2-order terms takes the form:

O7(ε2µ2) ∶ 1

2
O0(ε2µ2) − λ1uεO0(εµ2) − u2(3

2
λ3 − 2λ21)ε2O0(µ2) + λ2νµ(Fε2µ)xx

− λ4εµux(O0(εµ) + 2λ1uεO0(µ))x −
λ5
2
εµuxxO0(εµ) + λ5λ1uuxxε2µO0(µ)

− (1

2
λ5 − λ1λ2)εµu(O0(εµ))xx + (λ5 − 2λ1λ2)λ1ε2µu(uO0(µ))xx

+ ε2µ2λ1(
1

3
λ4uuxuxxxx +

1

6
λ5uuxxuxxx +

1

6
λ5u

2uxxxxx) − λ2(
1

2
λ3 −

2

3
λ21)ε2µ2u2uxxxxx

− 1

6
λ7ε

2µ2u2xuxxx −
1

3
λ7ε

2µ2uuxuxxxx −
1

6
λ8ε

2µ2u2uxxxxx −
1

3
ε2µ2λ8uuxxuxxx

+ (λ22ν − λ6)(
1

2
λ1 +

A1

6
)ε2µ2(u3)xxxxx −

3λ9
2
ε2µ2(uux)xuxxx −

3λ9
2
ε2µ2ux(uux)xxx

− 3λ10
2
ε2µ2uuxuxxxx −

3λ10
2
ε2µ2u(uux)xxxx − 3λ11ε

2µ2uxx(uux)xx + 3λ6λ1ε
2µ2u(uux)xxxx
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+ 3λ2νλ4ε
2µ2(ux(uux)x)xx +

3

2
λ2νλ5ε

2µ2(uuxuxx)xx +
3

2
λ2νλ5ε

2µ2(u(uux)xx)xx

− 3λ1λ
2
2νε

2µ2u(uux)xxxx + 3λ2λ4ε
2µ2ux(uux)xxx +

3

2
λ5ε

2µ2λ2uxx(uux)xx

+ 3λ2
2

(λ5 − 2λ1λ2)ε2µ2u(uux)xxxx.

Now we try to write the specific form of O7(ε2µ2). We substitute the definition C =

λ4u2x + λ5uuxx, D = λ6uxxxx, G = λ7uu2x + λ8u2uxx, H = λ9uxuxxx + λ10uuxxxx + λ11u2xx into

the first term of O7(ε2µ2). Then it takes the form of

1

2
O0(ε2µ2)

=1

6
ε2µ2(λ7uu2x + λ8u2uxx)xxx +

3

2
λ1λ6ε

2µ2(u2uxxxx)x +
3

2
λ2ε

2µ2(λ4u2xuxx + λ5uu2xx)x

+ 3

2
ε2µ2(λ9uuxuxxx + λ10u2uxxxx + λ11uu2xx)x +

A1

2
ε2µ2λ22(uu2xx)x

+ A4

2
ε2µ2uxxx(λ4u2x + λ5uuxx) +

A1

2
λ6ε

2µ2(u2uxxxx)x +
A3

2
ε2µ2(ux(λ4u2x + λ5uuxx)x)x

+A3λ1λ2ε
2µ2(uuxuxxx)x +

A4

2
λ1λ2ε

2µ2u2uxxxxx +
A4

2
λ1λ2ε

2µ2uxx(u2)xxx

+ A4

2
ε2µ2u(λ4u2x + λ5uuxx)xxx +

A5

2
λ2ε

2µ2uuxuxxxx +
A5

2
λ2ε

2µ2uxu
2
xx

+ A5

2
λ2ε

2µ2uuxxuxxx +
A6

2
λ2ε

2µ2u2uxxxxx +A6λ2ε
2µ2uuxxuxxx +

3A7

2
λ2ε

2µ2u2xuxxx.

Also, the others can be rewritten as

−λ1εuO0(εµ2) − u2(3

2
λ3 − 2λ21)ε2O0(µ2)

= − 1

3
λ1ε

2µ2u(λ4u2x + λ5uuxx)xxx − 3λ1λ6ε
2µ2u(uuxxxx)x − 3λ1λ

2
2ε

2µ2uuxxuxxx

−A3λ2λ1ε
2µ2u(uxuxxx)x −A4λ1λ2ε

2µ2uuxxuxxx −A4λ1λ2ε
2µ2u2uxxxxx

− (1

2
λ3 −

2

3
λ21)λ2ε2µ2u2uxxxxx.
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Hence,

I1 ∶=λ2νµ(Fε2µ)xx − λ4εµux(O0(εµ) + 2λ1εuO0(µ))x − λ5εµ
1

2
uxxO0(εµ)

+ λ5λ1ε2µuuxxO0(µ) − (1

2
λ5 − λ1λ2)εµu(O0(εµ))xx

+ (λ5 − 2λ1λ2)λ1ε2µu(uO0(µ))xx.

Then,

I1 = −
1

2
λ2νµO0(ε2µ)xx + (λ1λ2ν −

λ5
2
)εµuxxO0(εµ) + (2λ1λ2ν − λ4)εµuxO0(εµ)x

+ (λ1λ2(1 + ν) −
λ5
2
)εµuO0(εµ)xx + (λ2ν(3λ3 − 4λ21) + 2λ5λ1 − 2λ21λ2)ε2µuuxxO0(µ)

+ (λ2ν(3λ3 − 4λ21) − 2λ4λ1)ε2µu2xO0(µ) + (λ2ν(
3

2
λ3 − 2λ21) + (λ5 − 2λ1λ2)λ1)ε2µu2O0(µ)xx

+ (2λ2ν(3λ3 − 4λ21) − 2λ4λ1 + 2(λ5 − 2λ1λ2)λ1)ε2µuux(O0(µ))x.

These operations produce the ε2µ2-order of the form

O8(ε2µ2) ∶= 1

6
ε2µ2(λ7uu2x + λ8u2uxx)xxx +

3

2
λ1λ6ε

2µ2(u2uxxxx)x +
3

2
λ2ε

2µ2(λ4u2xuxx + λ5uu2xx)x

+ 3

2
ε2µ2(λ9uuxuxxx + λ10u2uxxxx + λ11uu2xx)x +

A1

2
ε2µ2λ22(uu2xx)x

+ A4

2
ε2µ2uxxx(λ4u2x + λ5uuxx) +

A1

2
λ6ε

2µ2(u2uxxxx)x +
A3

2
ε2µ2((2λ4 + λ5)u2xuxx + λ5uuxuxxx))x

+A3λ1λ2ε
2µ2(uuxuxxx)x +

A4

2
λ1λ2ε

2µ2u2uxxxxx +
A4

2
λ1λ2ε

2µ2uxx(u2)xxx

+ A4

2
ε2µ2u(λ4u2x + λ5uuxx)xxx +

A5

2
λ2ε

2µ2uuxuxxxx +
A5

2
λ2ε

2µ2uxu
2
xx +

A5

2
λ2ε

2µ2uuxxuxxx

+ A6

2
λ2ε

2µ2u2uxxxxx +A6λ2ε
2µ2uuxxuxxx +

3A7

2
λ2ε

2µ2u2xuxxx −
1

3
λ1ε

2µ2u(λ4u2x + λ5uuxx)xxx

− 3λ1λ6ε
2µ2u(uuxxxx)x − 3λ1λ

2
2ε

2µ2uuxxuxxx −A3λ1λ2ε
2µ2u(uxuxxx)x

−A4λ1λ2ε
2µ2uuxxuxxx −A4λ1λ2ε

2µ2u2uxxxxx − λ2(
3

6
λ3 −

2

3
λ21)ε2µ2u2uxxxxx

− 1

6
λ2νλ3ε

2µ2(u3)xxxxx −
3

2
λ2νε

2µ2(λ4uu2x + λ5u2uxx)xxx −
3

2
λ22νλ1ε

2µ2(u2uxx)xxx
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− A1

2
λ22νε

2µ2(u2uxx)xxx −A3λ1λ2νε
2µ2(uu2x)xxx −

A4

2
λ1λ2νε

2µ2(u2uxxx)xx

− A4

2
λ1λ2νε

2µ2(u(u2)xxx)xx −
A5

2
λ2νε

2µ2(uuxuxx)xx −
A6

2
λ2νε

2µ2(u2uxxx)xx −
A7

2
λ2νε

2µ2(u3x)xx

+ (λ1λ2ν −
λ5
2
)ε2µ2((2λ1 + 3λ2 +A3)uxu2xx + (2

3
λ1 + 3λ2 +A4)uuxxuxxx))

+ (2λ1λ2ν − λ4)ε2µ2((2λ1 + 3λ2 +A3)uxu2xx + (8

3
λ1 + 6λ2 +A3 +A4)u2xuxxx)

+ (2λ1λ2ν − λ4)ε2µ2(2

3
λ1 + 3λ2 +A4)uuxuxxxx

+ (λ1λ2ν − (1

2
λ5 − λ1λ2))ε2µ2((10

3
λ1 + 9λ2 + 2A4 +A3)uuxuxxxx + (2

3
λ1 + 3λ2 +A4)u2uxxxxx)

+ (λ1λ2ν − (1

2
λ5 − λ1λ2))ε2µ2(20

3
λ1 + 12λ2 +A4 + 3A3)uuxxuxxx)

+ 1

3
(λ2ν(3λ3 − 4λ21) + 2λ5λ1 − 2λ21λ2)ε2µ2uuxxuxxx +

1

3
(λ2ν(3λ3 − 4λ21) − 2λ4λ1)ε2µ2u2xuxxx

+ 1

3
(2λ2ν(3λ3 − 4λ21) − 2λ4λ1 +

2

3
(λ5 − 2λ1λ2)λ1)ε2µ2uuxuxxxx

+ 1

3
(λ2ν(

3

2
λ3 − 2λ21) + (λ5 − 2λ1λ2)λ1)ε2µ2u2uxxxxx − λ2(

1

2
λ3 −

2

3
λ21)ε2µ2u2uxxxxx

+ ε2µ2λ1(
1

3
λ4uuxuxxxx +

1

6
λ5uuxxuxxx +

1

6
λ5u

2uxxxxx) +
3

2
λ2(λ5 − 2λ1λ2)ε2µ2u(uux)xxxx

− 1

6
λ7ε

2µ2u2xuxxx −
1

3
λ7ε

2µ2uuxuxxxx −
1

6
λ8ε

2µ2u2uxxxxx −
1

3
λ8ε

2µ2uuxxuxxx

+ (λ22ν − λ6)(
1

2
λ1 +

A1

6
)ε2µ2(u3)xxxxx −

3λ9
2
ε2µ2(uux)xuxxx −

3λ9
2
ε2µ2ux(uux)xxx

− 3λ10
2
ε2µ2uuxuxxxx −

3λ10
2
ε2µ2u(uux)xxxx − 3λ11ε

2µ2uxx(uux)xx + 3λ6λ1ε
2µ2u(uux)xxxx

+ 3λ2νλ4ε
2µ2(ux(uux)x)xx +

3

2
λ2νλ5ε

2µ2(uuxuxx)xx +
3

2
λ2νλ5ε

2µ2(u(uux)xx)xx

− 3λ1λ
2
2νε

2µ2u(uux)xxxx + 3λ2λ4ε
2µ2ux(uux)xxx +

3

2
λ2λ5ε

2µ2uxx(uux)xx.

Here, the coefficient of u2uxxxxx could be denoted by

C1 ∶=
A4

2
λ1λ2(1 − ν) +

A6

2
λ2(1 − ν) − λ2λ3 +

4

3
λ21λ2 −

1

6
λ1λ5.
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