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ABSTRACT

Deconvolving Kernel Regression Function Estimation Based On Right Censored Data

Erol Ozkan, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Dr.Sun-Mitchell,Shan

In this study, we propose a new regression function estimator when the observa-

tion is contaminated in the convolution model with error in independent variable. We

want to examine the effect of the error variables when the data is right censored. The

tail behavior of the characteristic function of the error distribution is used to describe

the optimum local and global rates of convergence of these kernel estimators. We show

that depending on the error is either ordinary smooth or super smooth, there are two

sorts of convergence rates in adjusted mean square error for the regression function

estimator. It is observed that the rate of convergence is slower in super smooth

model for both locally and globally, whereas it is faster in ordinary smooth model.

Furthermore, it is examined that in nonparametric regression function estimation, the

choice of the kernel K has very little impact on optimality (in the MSE sense), but

the bandwidth h has significant impact. Simulation are drawn for different sample

sizes in two different examples with 100 replications for each of the samples.
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CHAPTER 1

INTRODUCTION

In statistics literature, many studies deal with the problem of nonparametric

regression function estimation. There are many approaches to this estimation problem.

Kernel functions, spline functions are some of the popular examples. Each approach

has its pros and cons. Among these popular techniques, kernel regression estimators

have some advantage of mathematical and clarity [1,13]. In terms of kernel-based

regression function estimation, one of the approaches is called the Nadaraya-Watson

estimator [20]. The Nadaraya-Watson is the very earliest and simplest estimation

technique that will be given in detail in the literature review section. The other

class of kernel-based regression function estimation is called local polynomial kernel

estimators [23,24]. It is estimated the regression function at a specific point by locally

fitting a kth degree polynomial to the given dataset using weighted least squares.

When the degree equals zero, it turns out to Nadaraya-Watson estimator. The

Nadaraya-Watson approach is the special case of local polynomial kernel estimators.

When the degree is 1, the method is called the local linear kernel estimator. There is

some resemblance between the local linear kernel estimator and other kernel-based

estimation approaches, however the local linear has affirmative asymptotic features

and boundary manner compared with other estimators.

In this thesis, we work on the regression function estimation for right-censored

data by using the deconvolution kernel method. A massive amount of interest has been

targeted on the problem of nonparametric regression function estimation. Most of

the researches has been focused on the data with standard structure. The regression
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analysis with errors in variables is expanding fast [4]. Many studies have been

directed on that problem such as Anderson (1984), Stefanski and Carroll (1987),

Fuller (1987), and more. Among those studies, some of them have focused on the

parametric approach in which it is assumed that the regression function follows

a known probability density function. Our goal is to work on the nonparametric

approach to examine the effect of errors in variables in nonparametric regression

function estimation based on the right-censored data. In 1993 Fan and Young

investigated the nonparametric regression function estimation with errors in variables

using the complete data. In our study, as we use the right-censored data, it can be

represented as incomplete observation data. The right-censored data is commonly

used in health and survival analysis as well as engineering and social sciences.

The thesis is organized as follows: In Chapter 1, we will talk about the literature

about parametric and nonparametric regression. Details will be given in the literature

review section. Then, we introduce our proposed model under the model formulation

section. In chapter 2, the rate of convergence is investigated for different error

distributions such as super smooth and ordinary smooth distribution. The rate of

convergence is discussed in terms of adjusted mean squared error. In chapter 3,

the simulation study is represented by providing average squared error for different

sample sizes as well as the illustration of regression function figure is plotted. Finally,

the last chapter consists of the discussion and concluding remarks.
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1.1 Literature Review

Parametric models presume strong functional linkage between the variables

of interest, namely the dependent and independent variables. In the parametric

models, the data are used to adjust certain parameters inside the functional structure

to provide the best possible fit. For instance, the linear regression assumes that

the relationship between the two variables of interest, independent variable x, and

dependent variable y, is given by some version of the form as

y = m(x) + ε

= β0 + β1x+ ε,

where the β0 is the intercept, β1 is the estimate of the regression slope and ε is

the error term. The structure of linear regression is assumed there is no way that

the model violates the structure which means that any linear model produces the

fitted surface to the given data as some kind of line. The linear model can adjust its

parameters namely, the slope and the intercept values to provide a better fit to the

data. Another example of a parametric model is logistic regression. Different than

linear regression, the dependent variable is binary in logistic regression. The logistic

model takes the form as follows

P (y = 1) = g(Φ(β0 + β1x))

where g(·) is a functional linkage. Because the logistic regression is the functional

linkage to the normal cumulative density function, it always fits the function called

sigmoid. Similarly, by adjusting the parameters in the logistic model, the shape of

the sigmoid function changes and tries to find the best fit possible.
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Non-parametric statistics is a subfield of statistics that isn’t entirely rely

on parametrized probability distribution families. The nonparametric statistics

is predicated on being either having a predefined distribution with undetermined

parameters or distribution-free. Both descriptive statistics and statistical inference

are included in non-parametric statistics. When the assumptions of parametric tests

are violated, non-parametric tests are frequently applied [13,14]. In the above models,

as mentioned the regression function requires to take some kind of parametric family

function which might be restrictive for adequate estimation of the true regression

function. There is an obvious risk of getting inaccurate findings in the regression

analysis if a parametric family is not of appropriate form. Thus, by eliminating

the requirement that the regression function be a member of a parametric family,

the rigidity of parametric regression may be solved. This method produces what is

known as a non-parametric regression. A non-parametric regression estimate can

be obtained using a variety of approaches. Some are based on very simple concepts,

while others are more mathematically complex. Kernel regression, local regression,

neural networks, support vector regression and smoothing splines can be given as an

example of the non-parametric regression techniques.

One of the simplest approaches of kernel regression function estimation is

called Nadaraya-Watson estimator. The Nadaraya-Watson estimator is effectively a

weighted average of the data points inside the appropriate bandwidth window. The

formal function of the Nadaraya-Watson estimator is

m̂(x) =
1
n

∑n
i=1Kh(x− xi)yi

1
n

∑n
j=1Kh(x− xj)

where m̂(x) is the estimate of the regression function, Kh is the kernel function

with associated bandwidth h. Note that, the reason of the index is being j in
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the denominator is to make sure that it is the appropriate weighted average inside

the bandwidth window. The Nadaraya-Watson estimator is known as an optimal

non-parametric regression function estimator [11,16].

Another technique of kernel-type regression estimation is called local polynomial

kernel estimators [23, 25]. These estimate the regression function at a specific location

by using weighted least squares to locally fit the kth degree polynomial to the data.

The Nadaraya-Watson estimator is the special case of the local polynomial kernel

estimator when the degree k equals 0 that is, local constants. The local linear kernel

estimators, which corresponds to k = 1, are of particular importance and simplicity.

The local linear kernel estimators have some similarities to the standard kernel

regression estimators, but it has better asymptotic characteristics and boundary

behavior than those [11]. The average mean squared error characteristics of the

local linear kernel regression estimator’s are similar to those of the kernel density

estimators. This clearly indicates that most of the concepts developed in the domain

of density estimation may be simply transferred to the context of regression. The

local kernel regression turns out to be a polynomial regression when the degree k

increases.

The non-parametric estimation of the regression function under right censored

data has been discussed by Guessoum and Ould-Said in 2008. By using the incomplete

data (right censored), they investigated the behavior of a kernel estimator for the

regression function. They also discussed the pointwise and uniform strong consistency

over a compact set and calculate the estimator’s rate of convergence. The asymptotic

normality of the estimate is also established. For various scenarios, simulations are

constructed to demonstrate both convergence and asymptotic normality. Recently,

Aydin and Yilmaz (2016) also give some improvement in terms of bandwidth selection

for the non-parametric regression by using the right censored data. To account for
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censoring, they utilized Kaplan-Meier estimator which proposed by Stute in 1993.

In this study, they use three different approaches to select the optimal bandwidth,

namely improved Akaike information criterion (AICc), Risk estimation using classsical

pilots (RECP), and Generalized cross-validation(GCV). A Monte-Carlo simulation

is conducted for this aim to show which criterion provides the best estimates for

various sample sizes and censoring levels. As a conclusion, they investigated for all

sample sizes and censoring levels, the RECP criterion shows superior performance

over the other criteria. In general, the upgraded versin of the AIC and the GCV

criteria perform similarly, although GCV outperforms than the AICc.

In 1993, Fan and Young has pointed out about the non-parametric regression

with errors in variables. They have investigated the effect of the errors in variables in

non-parametric regression function estimation. Deconvolution is used in the imple-

mentation of a new class of kernel estimators to account for errors in covariates. They

have showed that the tail behavior of the characteristic function of the error distribu-

tion may be used to determine the optimal local and global rates of convergence of

these kernel estimators. In reality, depending on whether the error is ordinary smooth

or super smooth, there are two sorts of convergence rates. It is further demonstrated

that these conclusions hold consistently throughout a class of combined response and

covariate distributions, which is good enough for practical applications. Furthermore,

they demonstrate that the kernel estimators have a lower bound on the convergence

rates of all feasible estimators in order to acquire optimality. Another study has been

done by Ioannides and Alevizos in 1996 about non-parametric regression with errors

in variables and applications. The nonparametric estimator’s uniform consistency

with sharp rates is demonstrated using the Pollard empirical procedure. The Engel

curve analysis and its applications are addressed.
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1.2 Model Construction

Consider the model

Z = m(X) + ε (1.1)

where (X1, ..., Xn) is unobservable and right censored data which is contami-

nated in the following

Y = X + E (1.2)

where (Y1, ..., Yn) is also right censored data from unknown common distribution

function FY (·) and censored from the right by the censoring time Ci ∼ G(·). Assume

Yi and Ci are independent and both of them are non-negative random variables.

In this case, we are only able to observe Wi = min(Yi, Ci) and δi = I(Yi ≤ Ci),

δi is the indicator function that identify if Wi is censored or not. Let J is a distribution

function of Wi which implies J = 1− (1−G)(1− FY ). The censoring indicators are

assumed to follow a Bernoulli distribution such as:

P (δi = 1) = p and P (δi = 0) = 1− p for i = 1, ..., n , (1.3)

where p lies between 0 and 1. Thus, the joint distribution of (Wi, Zi, δi) can be

written as

gW,Z,δ(w, z, δ) = g(W,Z)|δ=1(w, z)P (δ = 1) + g(W,Z)|δ=0(w, z)P (δ = 0)

= g(Y,Z)|δ=1(y, z)p+ g(C,Z)|δ=0(c, z)(1− p)
(1.4)

Xi is contaminated in the model Yi = Xi+Ei, where Ei is the error term and Yi

is the survival time, which is observable, along with the unknown probability density

function fY in Wi = min(Yi, Ci). We assume that Ei is a random variable which is

independent of Xi and δi, {i = 1, ..., n}. In order to estimate the regression function

m(x) = E(Z|X = x), we need to first estimate the unknown distribution of random

variable X in (1.2). Hence our first objective is to estimate the unknown density of

fX based on the observations of Yi.
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To start with estimation of fX , we need to consider the convolution namely

fY = fX ∗ fE, and

ϕfX(t) =
ϕfY (t)

ϕfE(t)
(1.5)

where ϕf (·) is the characteristic function of f . By using the Fourier inversion theorem,

the estimator of fX , f̂X can be expressed as

f̂X(x) =
1

2π

∫
e−itx

ϕf̂Y (t)

ϕfE(t)
dt (1.6)

where ϕf̂Y (t) =
∫
exp(ity)f̂Y (y)dy, and f̂Y (y) can be obtained using two methods.

A common kernel density estimator of fY can be obtained by using Kaplan-Meier

estimator F̂KM of FY that is [27]

F̂KM(y) = 1− ŜKM(y) =


0 if 0 ≤ y ≤ W(1)

1−
∏j−1

i=1

(
n−i
n−i+1

)δ[i] if W(j−1) < y ≤ W(j) j=2,3,...,n

1 if y > W(n),

where (Wi, δ[i]), i = 1, ...n represents the (Wi, δi) ordered in terms of Wi’s. By

using the Kaplan-Meier method, the kernel density estimator of fY can be written

f̂KMY =
1

h

∫
K

(
y − x
h

)
dF̂KM(y)

=
1

h

n∑
i=1

K

(
y −W(j)

h

)
sj,

(1.7)

where sj denotes the size of jump of F̂KM at W(j), h is the bandwidth which is

assumed to be positive, and K is the regular kernel function which holding∫
K(t)dt = 1 ,

∫
tK(t)dt = 0 and

∫
t2K(t)dt <∞.

Therefore, Chakrabarty [2] showed that the f̂X is defined by combining the

(1.6) and (1.7) as following

f̂KMX (x) =
1

h

n∑
i=1

Kz

(
x−W(j)

h

)
sj, (1.8)
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where K(z)
(
x−W(j)

h

)
= 1

2π

∫
exp

(
−it(x−W(j))

h

)
ϕK(t)

ϕfE ( t
h

)
dt.

In this study, we introduce an another way of estimating the unknown density

of fX . The reason that we do not want to use the Kaplan-Meier is that the W(i)’s are

order statistic in the (1.8) which are not independent. Therefore it is extremely hard

to evaluate the properties of this estimator (1.8). Satten and Datta[9] stated that

the Kaplan-Meier estimator F̂KM is parallel to the following estimator using inverse

probability of censoring weighted idea as

F̂IP (y) =
1

n

n∑
i=1

I(Wi ≤ y)δi
1−G(Wi)

. (1.9)

Hence, the application of the inverse probability of weighted censoring idea fY

produces:

f̂ IPY (y) =
1

h

∫
K

(
y − x
h

)
dF̂IP (x)

=
1

nh

n∑
j=1

K

(
Wj − y
h

)
δj

1−G(Wj)
.

(1.10)

Now, we need to find the characteristic function of f̂ IPY which is denoted by

ϕf̂IPY
(t). In order to formulate ϕf̂IPY

(t), we use the symmetric property of K as follows

[21,22]

9



ϕf̂IPY
(t) =

∫
eityf̂ IPY (y)dy

=

∫
eity

1

nh

n∑
j=1

K

(
Wj − y
h

)
δj

1−G(Wj)
dy

=
1

nh

n∑
j=1

∫
eityK

(
Wj − y
h

)
δj

1−G(Wj)
dy

=
1

nh

n∑
j=1

δj
1−G(Wj)

∫
eityK

(
Wj − y
h

)
dy

=
1

n

n∑
j=1

δj
1−G(Wj)

∫
eit(hu+Wj)K(u)du

=
1

n

n∑
j=1

δj
1−G(Wj)

eitWjϕK(ht)

(1.11)

By using (1.6) and (1.11), we obtain the deconvolving kernel density estimation of

fX(x) as

f̂ IPX (x) =
1

2π

∫
e−itx

ϕf̂Y (t)

ϕfE(t)
dt

=
1

2π

∫
e−itx

1
n

∑n
j=1

δj
1−G(Wj)

(eitWj)ϕK(ht)

ϕfE(t)
dt

=
1

2πn

n∑
j=1

∫
eit(Wj−x)ϕK(ht)

ϕfE(t)
dt

δj
1−G(Wj)

=
1

nh

n∑
j=1

1

2π

∫
eiy

(x−Wj)
h ϕK(y)

ϕfE( y
h
)

dy
δj

1−G(Wj)

=
1

nh

n∑
j=1

KZ

(
x−Wj

h

)
δj

1−G(Wj)
,

(1.12)

where

KZ

(
x−Wj

h

)
=

1

2π

∫
e

(
−it

(
x−Wj
h

))
ϕK(t)

ϕfE
(
t
h

)dt (1.13)
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We propose the following kernel regression function estimator involving errors

in variables:

m̂(x) =

∑n
j=1K

Z
(
x−Wj

h

)
Zj∑n

j=1K
Z
(
x−Wj

h

)
δj

1−G(Wj)

=
1

nh

∑n
j=1 K

Z
(
x−Wj

h

)
Zj

f̂ IPX (x)

(1.14)

where f̂ IPX (x) and KZ(·) are given in (1.12) and (1.13), respectively.
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CHAPTER 2

THE RATE OF CONVERGENCE

In this chapter, we are going to investigate the sampling behaviour of the kernel

estimators in (1.14) proposed in the model formulation section. The type of error

distribution plays an important role in terms of the rate of convergence for these

estimators. Now, the definition of ordinary smooth and super smooth distribution

will be given into the following:

• Definition(2.1) Super smooth distribution [15]:

A random variable, E, is considered to possess a super smooth distribution of

order β, if the characteristic function of E, represented by ϕfE(·), holds:

d0|t|β0exp
(
−|t|β

γ

)
≤ |ϕfE(t)| ≤ d1|t|β1exp

(
−|t|β

γ

)
(t→∞), (2.1)

where d0, d1, β and γ are positive constants and β0, β1 are constants. The

examples for super smooth distribution are normal,Cauchy.

• Definition(2.2) Ordinary smooth distribution [15]:

A random variable, E, is considered to possess a ordinary smooth distribution

of order β, if the characteristic function of E, represented by ϕfE(·), holds:

d0|t|−β ≤ |ϕfE(t)| ≤ d1|t|−β(t→∞), (2.2)

where d0, d1, β and γ are positive constants and β0, β1 are constants. The

examples for ordinary smooth distribution are gamma, double exponential.

The convergence rates depend upon the order of the smoothness of error distri-

bution, β. They depend on the smoothness of the m(x) as well. Furthermore,

12



there are some conditions that are playing a crucial role in terms of the rates

of convergence of m̂(x). Throughout this chapter, we will need the following

assumptions to prove the required lemmas and theorems.

Assumption A

• (A1) hn is a sequence of bandwidths that satisfies h = hn → 0 as n→∞ and

nhn →∞ as n→∞.

Assumption B

• (B1) The characteristic function of error distribution, ϕfE(·), does not disap-

pear.

• (B2) Assume a < b. The marginal density of the unobserved independent

variable X is bounded on the interval [a, b]. Also, it has a bounded kth derivative.

• (B3) The regression function m(·) has continuous kth derivative on [a, b].

• (B4) E(Z2|X = x) is continuous on [a, b]. Furthermore, E(Z2) <∞.

Assumption C

The kernel K(·) is a kth-order kernel. That is:

• (C1)
∫
yjK(y)dy = 0 for j = 1, ..., k − 1.

• (C2)
∫
ykK(y)dy 6= 0

Assumption (B1) establishes that the proposed estimator m̂(x) clearly expressed.

Assumption (B2) − (B4) are similar to those necessary in the ordinary non-

parametric regression. Furthermore, the rates of convergence depend upon the

assumption C.

In the following sections, the rates of convergence of the proposed regression

function will be discussed.
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2.1 Case 1: Super Smooth Distribution

In this section, the rate of convergence will be investigated when the error

distribution follows a super smooth distribution.

Theorem 2.1 (Rate for Adjusted MSE of m̂(x)). Assume (B) and (C), and

suppose that the left-hand side of inequality (2.1) is satisfied. Suppose that ϕK(t) has

a bounded support on |t| ≤ T0, T0 is a non-negative constant. Then, for bandwidth

hn = d(logn)−1/β with d > T0

(
2
γ

) 1
β
, and k is a positive number,

E

(
[m̂(x)−m(x)]

f̂ IPX (x)

fX|δ=1(x)

)2

= (dkak(x))2(logn)
−2k
β (1 + o(1)) +O

(
1

n

)
(2.3)

and

E

∫ b

a

(
[m̂(x)−m(x)]

f̂ IPX (x)

fX|δ=1(x)

)2

dx =

∫ b

a

(dkak(x))2dx(logn)
−2k
β (1+o(1))+O

(
1

n

)
,

(2.4)

where

ak(x) = (−1)k

[
[m(x)fX|δ=1(x)](k)

k!
−
m(x)[f

(k)
X|δ=1(x)]

k!

]
pf−1

X|δ=1(x)

∫
ukK(u)du.

Note that the multiplier
f̂IPX (x)

fX|δ=1(x)
is employed to prevent possible difficulty of

having 0 in the denominator of m̂(x)−m(x).

In order to show (2.3) and (2.4), we need following 3 lemmas.

Lemma 2.1 Under assumption (A1) and if ϕK(·) vanishes outside the interval

[−T0, T0],then

EDn(x) =
p

h

∫
[m(y)−m(x)]K

(
x− y
h

)
fX|δ=1(y)dy (2.5)

where

Dn(x) =
1

nh

n∑
j=1

KZ

(
x−Wj

h

)
δj

1−G(Wj)
[Zj −m(x)] (2.6)
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Proof. of Lemma (2.1) First of all, we begin the proof with multiplying Dn(x)

by h, which gives,

hDn(x) =
1

n

∑
KZ

(
x−Wj

h

)
δj

1−G(Wj)
[Zj −m(x)]. (2.7)

Next, take the expectation of (2.7),

hEDn(x) = E

[
KZ

(
x−W
h

)
δ

1−G(W )
[Z −m(x)]

]
(2.8)

As it can be observed from (2.8), we have three random variables which are W ,

Z and δ. Note that the joint probability distribution of (W,Z, δ), which we define in

the model formulation section, is given by:

gW,Z,δ(w, z, δ) = g(Y,Z)|δ=1(y, z) p+ g(C,Z)|δ=0(c, z)(1− p) (2.9)

Note that, when δ = 1, W = min(Yi, Ci) is equal to Yi. So the term δ
1−G(W )

will be equal to 1 as G(Yi) = 0.

Therefore, we can write (2.8) in terms of integral as

hEDn(x) =

∫ ∫
KZ

(
x− y
h

)
1

1−G(y)
[z −m(x)]g(Y,Z)|δ=1(y, z)p dy dz

+

∫ ∫
KZ

(
x− y
h

)
0

1−G(y)
[z −m(x)]g(C,Z)|δ=1(c, z)(1− p)dc dz

=

∫ ∫
KZ

(
x− y
h

)
1

1−G(y)
[z −m(x)]g(Y,Z)|δ=1(y, z)p dy dz

=
p

2π

∫ ∫
e(
−itx
h )e(

ity
h ) ϕK(t)

ϕfE( t
h
)
[z −m(x)]g(Y,Z)|δ=1(y, z) dy dz

(2.10)

Let gY,Z|δ=1(·) and fX,Z|δ=1(·) represent the conditional density of (Y, Z) and

(X,Z), respectively. Using the independence of E and (X,Z) and Y = X + E,

g(Y,Z)|δ=1(y, z) =

∫
f(X,Z)|δ=1(y − x, z)dFE(x), (2.11)
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where FE(·) is the cumulative distribution function of E. Also, fX(x) represents

the marginal density of X.

By using the equation (2.11), (2.10) can be rewritten as:

p

2π

∫ ∫ ∫ ∫
e(
−itx
h )e(

ity
h ) ϕK(t)

ϕfE( t
h
)
[z−m(x)]f(X,Z)|δ=1(y−u, z)dt dFE(u)dy dz (2.12)

Note that the transformation of Fourier is equal to the transformation of the

product:∫
e
ity
h

[∫
f(X,Z)|δ=1(y − u, z)dFE(u)

]
dy = ϕfE

(
t

h

)∫
e
ity
h f(Y,Z)|δ=1(y, z)dy (2.13)

Using (2.13), it can be acquired

p

2π

∫ ∫ ∫
e(
−itx
h )e(

ity
h ) ϕK(t)

ϕfE( t
h
)
f(X,Z)|δ=1(y − u, z)dt dFE(u)dy

=
p

2π

∫
e(
−itx
h ) ϕK(t)

ϕfE( t
h
)

(∫
e(

ity
h )
∫
f(y − u, z)dFE(u)dy

)
dt

=
p

2π

∫
e
−itx
h ϕK(t)

∫
e
ity
h f(Y,Z)|δ=1(y, z)dy dt

= p

∫
K

(
x− y
h

)
f(Y,Z)|δ=1(y, z)dy

(2.14)

where the latter equality in (2.14) comes from the inversion of the Fourier transfor-

mation. By using the fact that the inversion of two Fourier transforms equivalent to

convolution, and (2.10) and (2.14), we obtain:

EDn(x) =
p

h

∫ ∫
[z −m(x)]K

(
x− y
h

)
f(y, z)dydz

=
p

h

∫
[m(y)−m(x)]K

(
x− y
h

)
fX|δ=1(y)dy

(2.15)

The following lemma provides the upper bound of EDn(x).

Lemma 2.2 Under assumption (C) and k is a positive integer,

EDn(x) =
p

h

∫
[m(y)−m(x)]K

(
x− y
h

)
fX|δ=1(y)dy

≤ fX|δ=1(x)ak(x)hk(1 + o(1))

(2.16)
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where Dn(x) is given by (2.6) and

ak(x) = (−1)k

[
[m(x)fX|δ=1(x)](k)

k!
−
m(x)[f

(k)
X|δ=1(x)]

k!

]
pf−1

X|δ=1(x)

∫
ukK(u)du

Proof. By Lemma 1, we have

EDn(x) =
p

h

∫
[m(y)−m(x)]K

(
x− y
h

)
fX|δ=1(y)dy (2.17)

Let u = x−y
h

which implies y = x− uh. Then, by taking derivative we obtain

dy = −hdu and using (A2):

EDn(x) = p

∣∣∣∣∫ [m(x− uh)−m(x)]K(u)fX|δ=1(x− uh)du

∣∣∣∣
≤ p

∣∣∣∣∫ [m(x− uh)−m(x)]K(u)fX|δ=1(x− uh)du

∣∣∣∣
= p

∣∣∣∣∫ m(x− uh)K(u)fX|δ=1(x− uh)du−
∫
m(x)K(u)fX|δ=1(x− uh)du

∣∣∣∣
(2.18)

In the first term of (2.18), let g(x − uh) = m(x − uh)fX|δ=1(x − uh). For

g(x− uh), we use Taylor expansion:

g(x− uh) = g(x)− uhg′(x) +
(−1)2u2h2g′′(x)

2!
+ ...+ (−1)k−1u

k−1hk−1g(k−1)(x)

(k − 1)!

+ (−1)k
ukhkg(k)(x)

k!
+ o(hk)

= m(x)fX|δ=1(x)− uh[m(x)fX|δ=1(x)]′ +
(−1)2u2h2[m(x)fX|δ=1(x)]′′

2!
+ ...

+ (−1)k−1u
k−1hk−1[m(x)fX|δ=1(x)](k−1)

(k − 1)!

+ (−1)k
ukhk[m(x)fX|δ=1(x)](k)

k!
+ o(hk)

(2.19)
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Multiplying (2.19) by K(u) and taking the integral in terms of du, we obtain∫
m(x− uh)fX|δ=1(x− uh)K(u)du = m(x)fX|δ=1(x)

∫
K(u)du

− h[m(x)fX|δ=1(x)]

∫
u′K(u)du

+
(−1)2h2[m(x)fX|δ=1(x)]′′

2!

∫
u2K(u)du+ ...

+ (−1)k−1h
k−1[m(x)fX|δ=1(x)](k−1)

(k − 1)!

∫
uk−1K(u)du

+ (−1)k
hk[m(x)fX|δ=1(x)](k)

k!

∫
ukK(u)du+ o(hk).

(2.20)

Recall that
∫
yjK(y)dy = 0 for j = 1, ..., k − 1, therefore (2.20) becomes∫

m(x− uh)fX|δ=1(x− uh)K(u)du

= m(x)fX|δ=1(x) + (−1)khk
[m(x)fX|δ=1(x)](k)

k!

∫
ukK(u)du+ o(hk). (2.21)

Now, similarly apply Taylor expansion to fX|δ=1(x− uh):

fX|δ=1(x− uh) = fX|δ=1(x)− uhf ′X|δ=1(x) + (−1)2
u2h2f ′′X|δ=1(x)

2!
+ ...

+ (−1)k−1
uk−1hk−1f

(k−1)
X|δ=1(x)

(k − 1)!
+ (−1)k

ukhkf
(k)
X|δ=1(x)

k!
+ o(hk).

(2.22)

Multiply (2.22) by m(x)K(u) and take the integral in terms of du:∫
m(x)fX|δ=1(x− uh)K(u)du = m(x)fX|δ=1(x)

∫
K(u)du−m(x)hf ′X|δ=1(x)

∫
uK(u)du

+ (−1)2
h2f ′′X|δ=1(x)

2!

∫
u2K(u)du+ ...

+ (−1)k−1
hk−1f

(k−1)
X|δ=1(x)

(k − 1)!

∫
uk−1K(u)du

+ (−1)k
hkf

(k)
X|δ=1(x)

k!

∫
ukK(u)du+ o(hk).

(2.23)
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Recall that
∫
yjK(y)dy = 0 for j = 1, ..., k − 1, therefore (2.23) becomes∫

m(x)fX|δ=1(x− uh)K(u)du

= m(x)fX|δ=1(x) + (−1)khk
m(x)f

(k)
X|δ=1(x)

k!

∫
ukK(u)du+ o(hk). (2.24)

Next, we subtract (2.24) from (2.21),∣∣∣∣∫ m(x− uh)fX|δ=1(x− uh)K(u)du−
∫
m(x)fX|δ=1(x− uh)K(u)du

∣∣∣∣

= (−1)khk
[m(x)fX|δ=1(x)](k)

k!

∫
ukK(u)du−(−1)khk

m(x)f
(k)
X|δ=1(x)

k!

∫
ukK(u)du+o(hk).

(2.25)

Now, plug in back the equality (2.25) into (2.18), then we obtain,

E(Dn(x)) ≤ p(−1)khk
[m(x)fX|δ=1(x)](k)

k!

∫
ukK(u)du

− (−1)khk
m(x)f

(k)
X|δ=1(x)

k!

∫
ukK(u)du+ o(hk)

= fX|δ=1(x)ak(x)hk(1 + o(1))

(2.26)

The following lemma provides the upper bound for the norm of the deconvolving

kernel Kz(x).

Lemma 2.3 By using the definition of super smooth distribution in (2.1) and

ϕK(t) has a bounded support |t| ≤ T0,

sup
x
|KZ(x)| ≤ O(h) +O

(
h exp

(∣∣∣∣T0

h

∣∣∣∣β
)
γ−1

)
(2.27)

where

KZ(x) =
1

2π

∫
e−itx

ϕK(t)

ϕfE( t
h
)
dt

Proof. First of all, supremum of Kz(x) can be written as

sup
x
|KZ(x)| ≤

∫ −Th
−T0

∣∣∣∣ ϕK(t)

ϕfE( t
h
)

∣∣∣∣ dt+

∫ Th

−Th

∣∣∣∣ ϕK(t)

ϕfE( t
h
)

∣∣∣∣ dt+

∫ T0

Th

∣∣∣∣ ϕK(t)

ϕfE( t
h
)

∣∣∣∣ dt (2.28)
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By using the symmetric property of the kernel K, (2.28) can be rewritten as

sup
x
|KZ(x)| ≤ 2

∫ Th

0

∣∣∣∣ ϕK(t)

ϕfE( t
h
)

∣∣∣∣ dt+ 2

∫ T0

Th

∣∣∣∣ ϕK(t)

ϕfE( t
h
)

∣∣∣∣ dt (2.29)

For the first term of (2.29) on the right hand side, as ϕK(t) is bounded (i.e

|ϕK(t)| ≤ 2
∫
K(x)dx = 2), thus using the substitution of t = yh which implies

dt = hdy, so we get ∫ Th

0

1

ϕfE( t
h
)
dt =

∫ T

0

h

ϕfE(y)
dy = O(h) (2.30)

For the second term of (2.29) on the right hand side, we use the first half of

(2.1) which states that there exists a constant T such that:

|ϕfE(t)| ≥
(
d0

2

)
|t|β0exp

(
−|t|β

γ

)
, |t| > T (2.31)

It is obvious that t > Th which implies t
h
> T . So, (2.31) can be rewritten as∣∣∣∣ϕfE ( th

)∣∣∣∣ ≥ (d0

2

) ∣∣∣∣ th
∣∣∣∣β0 exp(−| th |βγ

)
(2.32)

Now, if we use (2.32) and plug in into the second term that mentioned above,

we get

2

∫ T0

Th

∣∣∣∣ ϕK(t)

ϕfE( t
h
)

∣∣∣∣ dt ≤ 2

(
d0

2

)−1 ∫ (
t

h

)−β0
|ϕK(t)|exp

(∣∣∣∣ th
∣∣∣∣ γ−1

)
dt

≤ 4

d0

exp

(∣∣∣∣T0

h

∣∣∣∣β γ−1

)
hβ0
∫ T0

Th

t−β0dt

= O

(
h exp

(∣∣∣∣T0

h

∣∣∣∣β γ−1

)) (2.33)

Hence, the proof of Lemma 2.3 is completed. Now, we are ready to start proving

the Theorem 1.

Proof. Note that,

[m̂(x)−m(x)]
f̂ IPX (x)

fX|δ=1(x)
=

Dn(x)

fX|δ=1(x)
(2.34)
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Then using “bias”-variance decomposition and Lemma 2.2:

E

(
(m̂(x)−m(x))

f̂ IPX (x)

fX|δ=1(x)

)2

= E

(
Dn(x)

fX|δ=1(x)

)2

=
VarDn(x)

fX|δ=1(x)2 +
E(Dn(x))2

f 2
X|δ=1(x)

=
VarDn(x)

fX|δ=1(x)2 +
f 2
X|δ=1(x)a2

k(x)h2k(1 + o(1))

f 2
X|δ=1(x)

=
VarDn(x)

fX|δ=1(x)2 + a2
k(x)h2k(1 + o(1))

(2.35)

Next, we show that VarDn(x) = O
(

1
n

)
. To do this, we use the independence of

X and E, so that

VarDn(x) = V ar

(
1

nh

n∑
j=1

KZ

(
x−Wj

h

)
δj

1−G(Wj)
[Zj −m(x)]

)

= V ar

(
1

nh

n∑
j=1

KZ

(
x− Yj
h

)
[Zj −m(x)]

)

=
1

nh2
Var

(
KZ

(
x− Y
h

)
[Z −m(x)]

)
=

1

nh2
E

(∣∣∣∣KZ

(
x− Y
h

)∣∣∣∣2 [Z −m(x)]2

)

− 1

nh2
E

(∣∣∣∣KZ

(
x− Y
h

)∣∣∣∣ [Z −m(x)]

)2

≤ 1

nh2
E

(∣∣∣∣KZ

(
x− Y
h

)∣∣∣∣2 [Z −m(x)]2

)

=
1

nh2
E

(∣∣∣∣KZ

(
x− Y
h

)∣∣∣∣2 [Z −m(x)]2

)

≤ 1

nh2
sup
u

(KZ(u))2E(τ 2(X))

(2.36)

where τ 2(X) = E((Z −m(x))2|X) which is assumed to be finite. Therefore,

we need to show that supu(K
Z(u))2 is approaching to 0 with some rate. In order to

show this, we consider lemma 2.3 and the following:
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In the statement of the theorem 1, we have d > T0

(
2
γ

) 1
β

and h = d(logn)−
1
β

which leads to:

exp

(∣∣∣∣T0

h

∣∣∣∣β γ−1

)
≤ exp

(
(logn)−1

)
(2.37)

which converges to 1 as n→∞.

Now, by using lemma 2.3

sup
u
|KZ(u)| ≤ O(h) +O

(
h exp

(∣∣∣∣T0

h

∣∣∣∣β
)
γ−1

)
(2.38)

If we take the square of both sides of (2.38), we obtain

sup
u

[KZ(u)]2 ≤ O(h2) +O(h2exp(logn)−1) + 2O(h2exp(2logn)−1) (2.39)

Multiply (2.39) by 1
nh2

, then

1

nh2
sup
u

[KZ(u)]2 ≤ O(
1

n
) +O(

1

n
exp(logn)−1) + 2O(

1

n
exp(2logn)−1) (2.40)

So,

VarDn(x) ≤ O

(
1

n

)
+O

(
1

n
exp

(
(logn)−1

))
+O

(
1

n
exp

(
(2logn)−1

))
= O

(
1

n

)
(2.41)

which approaches to 0 as n→∞.

Now, go back to (2.35) and plug in the result (2.41) which gives

E

(
(m̂(x)−m(x))

f̂ IPX (x)

fX|δ=1(x)

)2

= (dkak(x))2(logn)
−2k
β (1 + o(1)) +O

(
1

n

)
(2.42)

Furthermore, as (2.16) and (2.41) hold uniformly in x ∈ (a, b), the second

expression in the Theorem 1 is also accurate.

E

∫ b

a

(
[m̂(x)−m(x)]

f̂ IPX (x)

fX|δ=1(x)

)2

dx =

∫ b

a

(dkak(x))2dx(logn)
−2k
β (1+o(1))+O

(
1

n

)
(2.43)
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Proof of Theorem 1 is completed.

2.2 Case 2: Ordinary Smooth Distribution

In this section, the rate of convergence will be investigated when the error dis-

tribution follows an ordinary smooth distribution. We need the following assumption:

Assumption D

• (D1) ϕfE(t) → d and ϕ′fE(t)(tβ+1) → −dβ as t → ∞ given d 6= 0 and β is

non-negative constant. Furthermore, ϕfE(t) 6= 0 for any given t.

• (D2) ϕK(t) has (m+ 2) bounded integrable derivatives and being symmetric

function. Also, ϕK(0) = 1 and ϕK(t) = 1 +O(|t|m) as t→ 0.

• (D3)The unknown fX(·) has mth derivative and it is continuous.

• (D4)
∫
|tβ+1|(|ϕK(t)|+ |ϕ′K(t)|)dt <∞ ,

∫
|tβ+1ϕK(t)|2dt <∞

Note that the assumption (D1) implies:∣∣∣∣hβϕK(t

ϕfE(t)

∣∣∣∣ ≤ ∣∣∣∣max|ϕK(t)|
min|ϕfE(t)|

∣∣∣∣ (2.44)

which will be used in the proof of lemma in this section.

Theorem 2.2 Assume that assumptions (B),(C) and (D4) satisfies. Then, under

the ordinary smooth error distribution (2.2) and let h = cn
−1

2k+2β+1 with provided

c > 0,

E

(
[m̂(x)−m(x)]

f̂ IPX (x)

fX|δ=1(x)

)2

=

[
a2
kh

2k +
1

nh1+2β
ξ(x)

]
(1 + o(1))

= O(n
−2k

[2k+2β+1 )

(2.45)

and

E

∫ b

a

(
[m̂(x)−m(x)]

f̂ IPX (x)

fX|δ=1(x)

)2

=

[
a2
kh

2k +
1

nh1+2β
ξ(x)

]
(1 + o(1))

= O(n
−2k

[2k+2β+1 ),

(2.46)
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where ξ(x) is given by

ξ(x) =
1

2πf 2
X|δ=1(x)

∫ ∣∣∣∣tβd
∣∣∣∣2 |ϕK(t)|2dt

∫
τ(x− u)fX|δ=1(x− u)dFE(u) (2.47)

with τ 2(X) = E((Z −m(x))2|X). Here k is a positive integer and β > 0.

Now, before we start proving the theorem (2.2), we need the following lemma.

Lemma 2.4 Under the assumptions (B) and (C),

|hβKz(x)| ≤ D

1 + |x|
(2.48)

given that D is some constant.

Proof: As stated in the definition of the ordinary smooth distribution in (2.2),

there exist T and c1 which are positive constants so that

|ϕfE(t)| ≥ c1|t|−β for |t| > T.

As similar to in the proof of lemma 2.3, it can be written

sup
x
|KZ(x)| ≤ 2

∫ Th

0

∣∣∣∣ ϕK(t)

ϕfE( t
h
)

∣∣∣∣ dt+ 2

∫ ∞
Th

∣∣∣∣ ϕK(t)

ϕfE( t
h
)

∣∣∣∣ dt (2.49)

By using the result in (2.44), the first term of (2.49) can be written

2

∫ Th

0

∣∣∣∣ ϕK(t)

ϕfE( t
h
)

∣∣∣∣ dt ≤ 2Th

∣∣∣∣max|ϕK(t)|
min|ϕfE(t)|

∣∣∣∣ (2.50)

Now, we work on the second term in (2.49). We use the first half of the ordinary

smooth distribution definition such that

ϕfE(t) ≥ c1|t|−β , |t| > T (2.51)

Let t > Th which implies t
h
> T . So, (2.51) can be rewritten as

ϕfE

(
t

h

)
≥ c1

∣∣∣∣ th
∣∣∣∣−β (2.52)
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Thus,

2

∫ ∞
Th

∣∣∣∣ ϕK(t)

ϕfE( t
h
)

∣∣∣∣ dt ≤ 2

∫ ∞
Mh

|ϕK(t)|
c1

∣∣∣∣ th
∣∣∣∣β dt

≤ 2

h−βc1

∫ ∞
0

|ϕK(t)|tβdt

= O(h−β)

(2.53)

So, we can write

|hβKz(x)| ≤ hβ

2π

∫
|ϕK(t)|
|ϕfE( t

h
)|
dt

= O(1)

(2.54)

After applying the integration by parts to expression |hβKz(x)|, we obtain

|hβKz(x)| ≤ hβ

2π|x|

∫ ∣∣∣∣( ϕK(t)

ϕfE( t
h
)

)′∣∣∣∣ dt
≤ C

|x|

(2.55)

where C > 0. By combining (2.54) and (2.55), we get

|hβKz(x)| ≤ D

1 + |x|
(2.56)

Now, we are ready to start proving Theorem (2.2).

Proof: Using (2.35), it is enough to evaluate the ”adjusted bias” and the

variance of Dn(x) given by (2.6). Recall in lemma 2.2, we have

EDn(x) ≤ fX|δ=1(x)ak(x)hk(1 + o(1))
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Now, remaining part is the computation of the variance of Dn(x). We start

with writing the expression of variance of Dn(x) as

V arDn(x) =
1

nh2
V ar

(
Kz

(
x− Y
h

)
[Z −m(x)]

)
=

1

nh2
E

(
Kz

(
x− Y
h

)2

[Z −m(x)]2

)

− 1

nh2
E

(
Kz

(
x− Y
h

)
[Z −m(x)]

)2

≤ 1

nh2
E

(
Kz

(
x− Y
h

)2

[Z −m(x)]2

)

=
1

nh2
E

(
Kz

(
x− Y
h

)2

[Z −m(x)]2

)

≤ 1

nh2

∫ ∫
Kz

(
x− u− v

h

)2

τ 2(u)fX|δ=1(u)dFE(v)du

≤ 1

nh2

∫ ∫
(Kz(u))2fX|δ=1(x− u− vh)τ 2(x− u− vh)dFE(v)

(2.57)

By using the definition of ordinary smooth distribution in (2.2) and the domi-

nated convergence theorem, we have

Kz(x)hβ → 1

2πc

∫
e−itxϕK(t)tβdt

∆
= H(x) (2.58)

By using lemma 2.4, it can be expressed∣∣Kz(x)hβ
∣∣ ≤ D

1 + |x|
(2.59)

for D > 0.

Note that we need the following lemma from Fan(1991b):

Lemma: Assume that Kz(·) is a sequence of Borel functions satisfying

Kz(x)→ K(x) and sup|Kz(x)| ≤ K∗(x)

where K∗(x) satisfies∫
K∗(x)dx <∞. and lim

x→∞
|xK∗(x)| = 0
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If y is a continuity point of a density f(·), then for any sequence h → 0, we

have

lim
n→∞

1

h

∫
Kz

(
y − x
h

)
f(x)dx = f(y)

∫
K(x)dx

So, using (2.58) and the lemma from Fan(1991b) stated right above, the variance

of Dn(x) can be written as

V arDn(x) =
1

h2β+1n

∫
H2(u)du

∫
fX|δ=1(x− v)τ 2(x− v)dFE(v)[1 + o(1)] (2.60)

Then, using the Parseval’s identity,∫
H2(u)du =

1

|c|2π

∫
|ϕK(t)|2|tβ|dt (2.61)

Therefore,

V arDn(x) =
1

2πnh2β+1

∫
|ϕK(t)|2

∣∣∣∣tβc
∣∣∣∣ ∫ fX|δ=1(x− v)τ 2(x− v)dFE(v)[1 + o(1)]

=
1

h2β+1n
ξ(x)[1 + o(1)]

(2.62)

Note that the variance of Dn(x) in (2.62) approaches to 0 as n→∞.

We now use the ”bias”-variance decomposition to conclude the proof.

E

(
(m̂(x)−m(x))

f̂ IPX (x)

fX|δ=1(x)

)2

= E

(
Dn(x)

fX|δ=1(x)

)2

=
VarDn(x)

fX|δ=1(x)
+
E(Dn(x))2

f 2
X|δ=1(x)

=
VarDn(x)

fX|δ=1(x)
+
f 2
X|δ=1(x)a2

k(x)h2k(1 + o(1))

f 2
X|δ=1(x)

=
VarDn(x)

fX|δ=1(x)
+ a2

k(x)h2k(1 + o(1))

=
1

h2β+1n
ξ(x)[1 + o(1)] + a2

k(x)h2k(1 + o(1))

(2.63)
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Therefore,

E

(
(m̂(x)−m(x))

f̂ IPX (x)

fX|δ=1(x)

)2

≤
[
a2
k(x)h2k +

1

h2β+1n
ξ(x)

]
[1 + o(1)]

= O(n
−2k

2k+2β+1 )

(2.64)

Furthermore, as (2.16) and (2.62) hold uniformly in x ∈ (a, b), the second

expression in the Theorem 2 is also accurate.

E

∫ b

a

(
[m̂(x)−m(x)]

f̂ IPX (x)

fX|δ=1(x)

)2

=

[
a2
kh

2k +
1

nh1+2β
ξ(x)

]
(1 + o(1))

= O(n
−2k

[2k+2β+1 ),

Proof of Theorem 2 is completed.
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CHAPTER 3

SIMULATION

3.1 Introduction

This chapter describes a simulation experiment that was used to test the

behaviour of the deconvolved kernel estimate (1.14) by providing two different exam-

ples. X is a normal random variables in these examples, and it is observed through

Y = X +E. The error E’s variance σ2
0 is selected so the reliability ratio [12] given by

r =
V ar(Y )

σ2
E + V ar(Y )

=
σ2
X − σ2

E

σ2
E

≈ s2
X − σ2

E

σ2
X

= 0.7 (3.1)

The convergence rate of estimators in the presence of super- smooth errors is

slower than in the presence of ordinary smooth errors for the complete data, according

to Fan [4,17]. By considering this conclusion from Fan, E is taken to be a normal

and a double exponential random variable in order to investigate the effect of error

distributions on the MSE of the estimator (1.14) when the right-censored data is

used. In this simulation study, we consider two different regression function:

m1(x) = 2x− 2 m2(x) = sin(−4x)sin

(
11

10
x

)
(3.2)

3.2 Data generation

Our model is

Z = m(X) + ε
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where (X1, ..., Xn) is unobservable and right censored data which is contami-

nated in the following

Y = X + E

Y is generated using the Weibull distribution with shape parameter 3.4 and scale

parameter 1.1. E is taken as super smooth and ordinary smooth error distributions

with appropriate shape and scale parameters as well. Our censoring variable C is also

generated using Weibull distribution. Note that W = min(Y,C). For each sample,

100 replications were performed. Table 1 and 2 represents the average of these optimal

ASE’s in those 100 replications. The percentage of censored data is about 45 percent

for each replications.

Example 1(Truncated Double Exponential errors):

First, we suppose E has a truncated double exponential distribution, which

corresponds to the ordinary smooth case, as we want E to have non-negative values.

fE(u) =
1

σE
e
−u
σE (3.3)

where u is non-negative. The characteristic function of E can be derived as

following,

ϕfE(t) =

∫ ∞
0

eitufE(u)du

=
1

σE

∫ ∞
0

eitue
−u
σE du

=
1

σE

∫ ∞
0

cos(tu)e
−u
σE du+ i

1

σE

∫ ∞
0

sin(tu)e
−u
σE du

=
1

σE

1
σE(

1
σE

)2

+ t2
+ i

1
σE(

1
σE

)2

+ t2

=
1

1− iσEt

(3.4)
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From (1.12), the deconvolved kernel estimator can be derived as following

KZ(x) =
1

2π

∫ ∞
−∞

e−iyx
ϕK(y)

ϕfE( y
h
)
dy

=
1

2π

∫ ∞
−∞

e−iyxϕK(y)
(

1− iσE
y

h

)
dy

=
1

2π

∫ ∞
−∞

e−iyxϕK(y) +
σE
h

1

2π

∫ ∞
−∞

e−iyx(−iy)ϕK(y)dy

= K(x) +
σE
h
K
′
(x)

(3.5)

Example 2(Normal Error):

In practice, the normal distribution N(0, σ2
0) is the most widely used error

distribution [23]. For normal errors, the kernel functions often suggest two options.

The first is the second-order kernel below, which has a compact and symmetric

support for its characteristic function [1,7].

K(x) =
48cosx

πx4

(
1− 15

x2

)
− 144sin(x)

πx5

(
2− 5

x2

)
(3.6)

Its characteristic function is

φK(t) = (1− t2)3I[−1,1](t) (3.7)

where I[−1,1](t) is the indicator function. As a result, the deconvoluting kernel

with normal error that results is

Kz(x) =
1

π

∫ 1

0

cos(tx)(1− t2)3exp

(
σ2

0t
2

2h2

)
dt (3.8)

When the error variance in Gaussian deconvolution is minimal, the necessity

for this support kernel can be reduced. Fan(1992) discussed the impact of the error

magnitude on the deconvolution kernel methods in depth. When the standard normal

density is selected as the kernel function, the corresponding deconvolving kernel

becomes
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KZ(x) =
1√

2π
(

1− σ2
0

h2

)exp
(
− x2

2(1− σ2
0

h2
)

)
(3.9)

3.3 Discussion & Results

We use 2 different kernels for each model: (3.5) and (3.9). This is used to see

how much can be gained by employing deconvolution and to evaluate the deconvolved

kernel’s robustness. Tables below are provided the average mean squared error for

different sample sizes in 100 replications. As the sample size increases, the average

mean squared error for the normal error decreases slower than for the truncated

double exponential error. Furthermore, the average mean squared error for the normal

error is slightly higher than the truncated double exponential error.

It is widely known that in nonparametric estimation, the choice of the kernel K

has little impact on optimality (in the MSE sense), while the choice of the bandwidth

h does. In this simulation, the optimal bandwidth selection is far more important

than the kernel selection. In the selection of the bandwidth, we follow the similar

way as in Fan(1992). In order to calculate the average squared error (ASE) at 91

grid points from 0.6 to 1.2 using a uniform sequence of 22 bandwidths ranging in

[0.07,0.13] for m1(x) and [0.06,0.12] for m2(x). We have chosen the optimal bandwidth

that minimizes the ASE between those 22 different bandwidth values. Note that

Assumption A1 is obviously satisfied by the bandwidth selection. The average of

these optimum ASE’s in 100 replications is reported in Tables 1 and 2.
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Figure 3.1. Super Smooth Case for different sample sizes (m1(x)).
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Figure 3.2. Ordinary Smooth Case for different sample sizes (m1(x)).

Figure 3.1 and 3.2 show that our estimator’s performance is very good with the

bandwidth selection 0.11. As we increase the sample size, the quality of fit is better.

Obviously, when the error distribution is ordinary smooth, we get better results but

not that significant.
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Figure 3.3. Ordinary Smooth Case for different sample sizes(m2(x)).

35



Figure 3.4. Super Smooth Case for different sample sizes (m2(x)).

Figures 3.3 and 3.4 indicate that the nonlinear model’s fit quality is comparable

to that of the linear model. It is again better when we use ordinary smooth error

distribution. As the sample size increase, the quality of fit also increase for the

nonlinear regression function estimation.
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CHAPTER 4

CONCLUSION AND FUTURE STUDIES

The new kernel regression function estimator is constructed by using the ordinary

kernel estimator and the the idea of deconvolution in density estimation for right

censored data for contaminated independent variable. We show that there are two

types of convergence rates in adjusted mean square error for the regression function

estimator, depending on whether the error is ordinary smooth or super smooth. The

rate of convergence for our estimator is faster in terms of mean square error when we

use the ordinary smooth error distribution for both locally and globally whereas it is

slower in super smooth model. The choice of kernel K has very small effect on the

optimality as expected; however, the bandwidth selection is very crucial. Depending

on the choice of bandwidth, there might be some issues such as overestimating,

underestimating etc. In order to find the optimal bandwidth, we use a proper interval

and try different bandwidth to find the best one. The simulation study is done to

represent our estimator’s performance. We use different sample sizes to see the what

happens when we use large samples and notice that the quality of fit increases with

large n.

The work in this thesis could possibly be used to extend the necessary conditions

for the Central Limit Theorem to hold for m̂(x) and the asymptotic normality of

the estimator m̂(x). The quality of estimator might be increased by using some

techniques in the selection of bandwidth. These techniques are such as cross validation,

bootstrapping, Risk Estimation using Classical Pilots (RECP), Improved Akaike

Criterion (AICc) etc.
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