Domain Adaptive Transfer Learning for Visual Classification

by
ASHIQ IMRAN

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON
August 2021



Domain Adaptive Transfer Learning for Visual Classification

The members of the Committee approve the doctoral
dissertation of Ashiq Imran

Vassilis Athitsos

Supervising Professor

Farhad Kamangar

Christopher Conly

David Levine

Dean of the Graduate School




Copyright (©) by Ashiq Imran 2021
All Rights Reserved



ACKNOWLEDGEMENTS

First and foremost, I am thankful to the almighty for giving me the patience,
perseverance and strength required to accomplish this goal of gaining and completing
my Ph.D. degree. I like to thank my parents, my wife, my brother, my sister-in-law,
my nephews, my friends and all my well wishers.

I am genuinely thankful to my supervising professor Dr. Vassillis Athitsos,
who I am honored to be one of his Ph.D. students. I highly respect and appreci-
ate his consistent help, support, guidance, patience, understanding, encouragement,
and insightful advice during my entire time in my doctoral journey. I would also
like to thank my academic committee members: Dr. Farhad Kamangar, Professor
David Levine, and Dr. Christopher Conly, for their interest, assistance, and valuable
feedback.

July 29, 2021

v



ABSTRACT

Domain Adaptive Transfer Learning for Visual Classification

Ashiq Imran, Ph.D. Candidate

The University of Texas at Arlington, 2021

Supervising Professor: Vassilis Athitsos

Deep Neural Networks have made a significant impact on many computer vision
applications with large-scale labeled datasets. However, in many applications, it is
expensive and time-consuming to gather large-scale labeled data. With the limited
availability of labeled data, it is challenging to obtain great performance. Moreover,
in many real-world problems, transfer learning has been applied to cope with lim-
ited labeled training data. Transfer learning is a machine learning paradigm where
pre-trained models on one task can be reused for another task. This dissertation in-
vestigates transfer learning and related machine learning techniques such as domain
adaptation on visual categorization applications.

At first, we leverage transfer learning on fine-grained visual categorization
(FGVC). FGVC is a challenging topic in computer vision. FGVC is different from
general recognition. It is a problem characterized by large intra-class differences and
subtle inter-class differences. FGVC should be capable of recognizing and localizing
the nuances within subordinate categories. We tackle this problem in a weakly super-
vised manner, where neural network models are getting fed with additional data using

a data augmentation technique through a visual attention mechanism. We perform



domain adaptive knowledge transfer via fine-tuning on our base network model. We
perform our experiment on six challenging and commonly used FGVC datasets. We
show competitive improvement on accuracy by using attention-aware data augmen-
tation techniques with features derived from the deep learning model InceptionV3,
pre-trained on large-scale datasets. Our method outperforms competitor methods on
multiple FGVC datasets and showed competitive results on other datasets. Experi-
mental studies show that transfer learning from large-scale datasets can be utilized
effectively with visual attention-based data augmentation, obtaining state-of-the-art
results on several FGVC datasets.

In many applications, specifically for transfer learning, it is assumed that the
source and target domain have the same distribution. However, it is hardly true
in real-world applications. Moreover, direct transfer across domains often performs
poorly because of domain shift. Domain adaptation, a sub-field of transfer learn-
ing, has become a prominent problem setting that refers to learning a model from a
source domain that can perform reasonably well on the target domain. This disserta-
tion investigates and proposes improvements on visual categorizations using domain
adaptation. Following the context of domain adaptation, a literature review cov-
ering and summarizing the most recently proposed domain adaptation method is
presented. Finally, we propose a technique that uses the adaptive feature norm with
subdomain adaptation to boost the transfer gains. Subdomain adaptation can en-
hance the ability of deep adaptation networks by capturing the fine-grained features
from each category. Additionally, we have incorporated an adaptive feature norm
approach to increase transfer gains. Our method shows state-of-the-art results on

standard cross-domain adaptation datasets for the object categorization task.
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CHAPTER 1
INTRODUCTION

Deep Neural Networks have shown remarkable performance in various domains
in the field of computer vision. In order to achieve good performance, it requires a
humongous amount of labeled data. Training larger and deeper networks are difficult,
particularly if the size of a dataset is small. Additionally, collecting well-annotated
data is costly and time-consuming. In computer vision, transfer learning, popularly
known as cross-domain adaptation [6], aims at enabling the generalization capacity
of the target domain by loading knowledge from the source domain. Typically, a
way to regularize deep networks is to simply use a pre-trained model which has been
trained on a different dataset and use this model for the target dataset [7]. However,
fine-tuning still requires a considerable amount of labeled training data, which may
not be available for many applications.

Visual recognition is one of the most fundamental problems in the field of com-
puter vision. A computer vision system requires the generalization of many object
variations due to viewpoint, illumination, or occlusions. Additionally, it needs to be
specific towards recognizing objects.

One of the most challenging problems in the field of object recognition is Fine-
Grained Visual Categorization (FGVC). In FGVC, same-class items may have varia-
tions in the pose, scale, or rotation. FGVC contains subtle differences among classes
in a sub-category of an object, which includes the model of the cars, type of the
foods or the flowers, species of the birds or dogs, and type of the aircraft. These

differences make FGVC a challenging problem, as there are significant intra-class dif-



ferences among the sub-categories, and at the same time, items from different classes
may look similar. In contrast with traditional object classification techniques, FGVC
aims to solve the identification of particular sub-categories from a given category
[8, 1]. A domain adaptive knowledge transfer to select the optimal source domain
for the target FGVC domains is performed. Then, we apply a visual attention-aware
data augmentation technique to boost up the FGVC accuracy. This research leads
us to investigate further in the field of domain adaptive transfer learning.

Typically, in transfer learning [9], a pre-trained model on a large dataset is
used to fine-tune the target dataset. This method may not generalize well to new
environments and new datasets. One of the reasons is that deep learning methods
assume that training and testing data are drawn from independent and identical
distributions (i.i.d). However, this assumption rarely holds, as there will be a shift
in data distributions across different domains. Furthermore, traditional machine-
learning paradigms like supervised learning train models to predict the outcome for
unseen data. These models do not necessarily optimize performance if the difference
between the test and training data is great. Domain adaptation can be a way to
mitigate these issues and reduce the effort of recollecting and retraining a model
by transferring knowledge between tasks and domains [10]. Domain adaptation is a
technique that alleviates networks’ performance degradation on the target samples,
which has a different distribution from the source samples [3]. Since most existing
domain adaptation methods assume that source and target domain contain the same
labels, performance degradation occurs when the label set of the source and target are
not the same. It is challenging to use existing domain adaptation techniques in real
situations because generating the source domain with exactly the same label set as

the target domain is ineffective. Unsupervised domain adaptation methods have been



attended to solve this problem, which intends to learn this latent space by aligning
data across domains.

This dissertation will go over in detail of transfer learning and domain adapta-
tion. The dissertation started by analyzing the current state of the problem. Then, it
proposes a new technique of domain adaptive transfer learning on fine-grained visual
categorization. A detailed survey on unsupervised domain adaptation is presented
afterward. Subsequently, a novel approach of considering sub-domains with adaptive
feature norms is described. The efficacy of the proposed method has been tested on

several datasets and compared with state-of-the-art methods.

1.1 Dissertation Contributions
The focus of this dissertation is on domain adaptation in visual classification
tasks. The work presented in the following chapters will make the following contri-
butions:
1. Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmen-
tation for Fine-grained Visual [11] Categorization.
2. A comprehensive literature survey on unsupervised domain adaptation on visual
classification.

3. Adaptive Feature Norm for Unsupervised Sub-Domain Adaptation.

1.2 Dissertation Organization

Chapter 2 aims to tackle fine-grained visual classification with a domain adap-
tive transfer learning approach. Our proposed method achieves state-of-the-art results
in multiple fine-grained classification datasets, including CUB200_2011 bird datasets,
Flowers-102, and FGVC-Aircrafts.



In chapter 3, it covers a comprehensive literature survey of unsupervised do-
main adaptation, including discrepancy-based methods, adversarial methods, and
reconstruction-based methods. A comparison of the neural network-based domain
adaptation methods is summarized.

In chapter 4, A technique is proposed that uses the adaptive feature norm
with subdomain adaptation to boost up the transfer gains. Subdomain adaptation
can enhance the ability of deep adaptation networks by capturing the fine-grained
features from each category. Additionally, we have incorporated an adaptive feature
norm approach to increase transfer gains. Our method shows state-of-the-art results
on the popular visual classification datasets, including Office-31, Office Home, and
Image-CLEF datasets.

Chapter 5 discusses some of the research directions of the unsupervised domain
adaptation.

In Chapter 6, the summary of contributions of my research is presented.



CHAPTER 2

Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmentation

for Fine-grained Visual Categorization

2.1 Introduction

Deep neural networks have provided state-of-the-art results in many domains
in computer vision. However, having a big training set is very important for the
performance of deep neural networks [12, 13]. Data augmentation techniques have
been gaining popularity in deep learning and are extensively used to address the
scarcity of training data. Data augmentation has led to promising results in various
computer vision tasks [13]. There are different data augmentation methods for deep
models, like image flipping, cropping, scaling, rotation, translation, color distortion,
adding Gaussian noise, and many more.

Previous methods mostly choose random images from the dataset and apply the
above operations to enlarge the amount of training data. However, applying random
cropping to generate new training examples can have undesirable consequences. For
example, if the size of the cropped region is not large enough, it may consist entirely of
background, and not contain any part of the labeled object. Moreover, this generated
data might reduce accuracy and negatively affect the quality of the extracted features.
Consequently, the disadvantages of random cropping might cancel out its advantages.
More specific features need to be provided to the model to make data augmentation
more productive.

In Fine-Grained Visual Categorization (FGVC), same-class items may have

variation in the pose, scale, or rotation. FGVC contains subtle differences among



classes in a sub-category of an object, which includes the model of the cars, type
of the foods or the flowers, species of the birds or dogs, and type of the aircrafts.
These differences are what make FGVC a challenging problem, as there are signif-
icant intra-class differences among the sub-categories, and at the same time, items
from different classes may look similar. In contrast with regular object classification
techniques, FGVC aims to solve the identification of particular subcategories from a
given category [8, 1].

Convolutional Neural Networks (CNNs) have been extensively used for various
applications in computer vision. To achieve good performance with CNNs, typically
we need large amounts of labeled data. However, it is a tedious process to collect
labeled fine-grained datasets. That is why there are not many FGVC datasets, and
existing datasets are not as large compared to standard image recognition datasets
like TmageNet [12]. Normally, a model pre-trained on large scale datasets such as
ImageNet is used, and that model is then fine-tuned using data from an FGVC
dataset. Typically, FGVC datasets are not too big, so it becomes critical to design
methods that can compensate for the limited amount of data. In this paper, we
investigate some techniques that allow the model to learn features more effectively,
and that perform well on large scale datasets with fine-grained categories.

Generally, there are two domains involved in fine-tuning a network. One is
the source domain, which typically includes large scale image datasets like ImageNet
[12], where initial models are pre-trained. Another is the target domain, where data is
used to fine-tune the pre-trained models. In this paper, the target domain is FGVC
datasets, and we are interested in developing techniques that can boost accuracy
on these type of datasets. Modern FGVC methods use pre-trained networks with
ImageNet dataset to a large extent. We explore the possibility of achieving better

accuracy than what has been achieved so far using ImageNet. A model first learns
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useful features from a large amount of training data, and is then fine-tuned on a
more evenly-distributed subset to balance the efforts of the network among different
categories and transfer the already learned features.

In short, our research tries to address two questions: 1) What approaches
beyond transfer learning do we need to take to boost the performance on FGVC
datasets? 2) How can we determine which large scale source domain we choose, given
that the target domain is FGVC?

We calculate the domain similarity score between the source and target domains.
This score gives us a clear picture of selecting the source domain for transfer learning
to achieve better accuracy in the target domain. Then, we focus on a visual attention
guided network for data augmentation. As FGVC datasets are relatively smaller in
size, we leverage the feature learning from fine-tuning as well as data augmentation to
achieve better accuracy. The performance of the combination of these two strategies
outperforms the baseline approach.

In summary, the main contributions of this work are:

1. We propose a simple yet effective improvement over the recently proposed
Weakly Supervised Data Augmentation Network (WS-DAN) [1], which is used
for generating attention maps to extract sequential local features to tackle the
FGVC challenge. A domain similarity score can play a vital role before apply-
ing transfer learning. Based on the score, we decide which source domain is
necessary to use for transfer learning. Then, we can employ WS-DAN [1] to
achieve better results among FGVC datasets.

2. We demonstrate a domain adaptive transfer learning approach, that combines
with visual attention based data augmentation, and that can achieve state-of-

the-art results on CUB200-2011 [14], and Flowers-102 [15], and FGVC-Aircrafts



[16] datasets. Additionally, we match the current state-of-the-art accuracy on
Stanford Cars [17], Stanford Dogs [18] datasets.

3. We present the relationship of top-1 accuracy and domain score on six commonly
used FGVC datasets. We illustrate the effect of image resolution in transfer

learning in detail.

2.2 Related Work
In this section, we present a brief overview of data augmentation, fine-grained

visual categorization, visual attention mechanism and transfer learning.

2.2.1 Data Augmentation

Machine learning theory suggests that a model can be more generalized and
robust if it has been trained on a dataset with higher diversity. However, it is a very
difficult and time-consuming task to collect and label all the images which involve
these variations [19]. Data augmentation methods are proposed to address this issue
by adding the amount and diversity of training samples. Various methods have been
proposed focusing on random spatial image augmentation, specifically involving in
rotation variation, scale variation, translation, and deformation, etc. [1]. Classical
augmentation methods are widely adopted in deep learning techniques.

The main drawback of random data augmentation is low model accuracy. Ad-
ditionally, it suffers from generating a lot of unavoidable noisy data. Various methods
have been proposed to consider data distribution rather than random data augmen-
tation. A search space based data augmentation method has been proposed [20]. Tt
can automatically search for improving data augmentation policies in order to obtain
better validation accuracy. In contrast, we leverage WS-DAN [1], which generates

augmented data from visual attention features of the image. Peng et al. proposed a
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method for human pose estimation, by introducing an augmentation network whose
task is to generate hard data online, thus improving the robustness of models [21].
Nevertheless, their augmentation system is complicated and less accurate compared
to the network that we experimented with. Additionally, attention-aware data seg-

mentation is more simple and proven effective in terms of accuracy.

2.2.2  Fine-Grained Visual Categorization

Fine-grained Visual Categorization (FGVC) is a challenging problem in the field
of computer vision. Normally, object classification is used for categorize different ob-
jects in the image, such as humans, animals, cars, trees, etc. In contrast, fine-grained
image classification concentrates more on detecting sub-categories of a given cate-
gory, like various types of birds, dogs or cars. The purpose of FGVC is to find subtle
differences among various categories of a dataset. It presents significant challenges
for building a model that generalizes patterns. FGVC is useful in a wide range of ap-
plications such as image captioning [22], image generation [23], image search engines,
and so on.

Various methods have been developed to differentiate fine-grained categories.
Due to the remarkable success of deep learning, most of the recognition works depend
on the powerful convolutional deep features. Several methods were proposed to solve
large scale real problems [24, 25, 26]. However, it is relatively hard for the basic models
to focus on very precise differences of an object’s parts without adding special modules
[1]. A weakly supervised learning-based approach was adapted to generate class-
specific location maps by using pooling methods [27]. Adversarial Complementary
Learning (ACoL) [28] is a weakly supervised approach to identify entire objects by
training two adversarial complementary classifiers, which aims at locating several

parts of objects and detects complementary regions of the same object. However,
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their method fails to accurately locate the parts of the objects due to having only
two complementary regions. On the contrary, our proposed approach depends on
attention-guided data augmentation and domain adaptive transfer learning. Our
method extracts fine-grained discriminative features and provides a generalization of

domain features to achieve state-of-the-art performance in terms of accuracy.

2.2.3 Attention

Attention mechanisms have been getting a lot of popularity in the deep learning
area. Visual attention has been already used for FGVC. Xiao et al. proposed a
two-way attention method (object-level attention and part-level attention) to train
domain-specific deep networks [29]. Fu et al. proposed an approach that can predict
the location of one attention area and extract corresponding features [30]. However,
this method can only focus on a local object’s parts at the same time. Zheng et al.
addressed this issue and introduced Multi-Attention CNN (MA-CNN) [31], which can
simultaneously focus on multiple body parts. However, selected parts of the object
are limited and the number of selected parts is fixed (2 or 4), which might hamper
accuracy.

The works mentioned above mostly focus on object localization. In contrast,
our research concentrates more on data augmentation with visual attention, which
has not been much explored. We use the attention mechanism for data augmentation
purposes. Moreover, the benefit of guided attention based data augmentation [1]
helps the network to locate object precisely, which helps our trained model learn

about closer object details and hence, improve the predictions.
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2.2.4 Transfer Learning

The purpose of transfer learning is to improve the performance of a learning
algorithm by utilizing knowledge that is acquired from previously solved similar prob-
lems. CNNs have been widely used for transfer learning. They are mostly used in
the form of pre-trained networks that serve as feature extractors [32, 33].

Considerable amounts of effort have been made to understand transfer learning
[34, 35, 36]. Initial weights for a certain network can be obtained from an already-
trained network even if the network is used for different tasks [34]. Some prior work
has shown some results on transfer learning and domain similarity [7]. Their con-
tribution mostly addresses the effect of image resolution on large scale datasets and
choosing different subsets of datasets to boost accuracy. In our work, we show that
domain adaptive transfer learning can be useful if we also incorporate visual attention
based data augmentation.

Unlike previous works, our proposed technique takes account of domain adaptive
transfer learning between the source and target domains. Then, it incorporates the
attention-driven approach for data augmentation. Our main goal is to guide the
training model to learn relevant features from the source domain and augment data
with the visual attention of the target domain. The combination of two processes can

be useful to achieve better performance.

2.3 Domain Adaptive Transfer Learning (DATL)

In our research, we explore the way of determining similarity between the source
and target domains. Additionally, we describe the attention aware data augmentation
technique, WS-DAN in detail. We consider different types of large scale datasets to

find out the similarity score between large scale datasets and FGVC datasets. Then,
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we compute domain similarity score firstly. Based on the domain similarity score we
choose large scale datasets for transfer learning and then we perform WS-DAN to

evaluate the accuracy.

2.3.1 Domain Similarity

Generally, transfer learning performs better if it has been trained on bigger
datasets. Chen et al. showed that transfer learning performance increases logarith-
mically with the number of data [35]. In our work, we observe that using a bigger
dataset does not always provide a more accurate result. Yosinski et al. [34] men-
tions that there is some correlation between the transferability of a network from the
source task to the target task and the distance between the source and target tasks.
Furthermore, they show fine-tuning on a pre-trained network towards a target task
can boost performance. Our domain adaptive transfer learning approach is inspired
from Cui et al. [7] who introduce a method which can calculate domain similarity by
the Earth Mover’s Distance (EMD) [37]. Furthermore, they show transfer learning
can be treated as moving image sets from the source domain S to the target domain

T. The domain similarity [7] can be defined

m,n
>icrj1 Jigdi
m,n
zz‘:1,j:1 fw

where s; is i-th category in S and t¢; is j-th in T, d,; = ||g(s;) — g(t;)|| , feature

d(S,T) = EMD(S,T) = (2.1)

extractor ¢(.) of an image and the optimal flow f;; computes total work as a EMD

minimization problem. Finally, the similarity is calculated as:
sim(S,T) = e 145T) (2.2)

where 7 is a regularization constant of value 0.01.
Domain similarly score can be calculated between the source and target domain.

In our approach, we use large scale datasets as source domains, and target domains
12



are selected from six commonly used FGVC datasets. After calculating the similarity

score, we choose top k categories with the highest domain similarity.

2.3.2 Attention Aware Data Augmentation
In our method, we consider using the Weakly Supervised Data Augmentation
Network (WS-DAN) [1]. Firstly, we extract features of the image I and feature

RIXWXC “wwhere H, W, and C correspond to height, width, and number

maps F' €
of channels of a feature layer. Then, we generate attention maps A € RH*XWxM
from feature maps, where M is the number of attention maps. One more critical
component is bi-linear attention pooling, which is used to extract features from part
objects. Element-wise multiplication between feature maps and attention maps is
computed to get part-feature maps, and then, pooling operation is applied on part-
feature maps afterward. Randomly generated data from augmentation is not much
efficient. However, attention maps can be handy for data augmentation. This way
model can be guided to focus on essential parts of the data and augment those data to
the network. With an augmentation map, part’s region can be zoomed, and detailed
features can be extracted. This process is called attention cropping. Attention maps
can represent similar object’s part. Attention dropping can be applied to the network
to distinguish multiple object’s part. Both attention cropping and attention dropping
are controlled through a threshold value.

During the training process, no bounding box or keypoints based annotation
is available. For each particular training image, attention maps are generated to
represent the distinguishable part of object. Attention, guided data augmentation
component, is responsible for selecting attention maps efficiently utilizing attention
cropping and attention dropping. Bilinear Attention Pooling (BAP) is used to extract

features from the object’s parts. Element-wise multiplication between the feature

13



Algorithm 1 Attention Aware Fine-grained Categorization
Input: Trained model with WS-DAN and Raw Image I

Output: Classification Accuracy

1: Calculate coarse-grained probability p; : p; = W ([I) and generate attention maps

A

2: Calculate object map A,, from A and obtain bounding box B from A,,

3: Zoom in the region B as I,

4: Predict fine-grained probability ps : po = W (1)

5. Calculate final probability p = (0.5) * (p1 + p2)

6: return p

maps and attention map are used to generate a part feature matrix. In the last
step, the original data, along with attention generated augmented data, are trained
as input data.

During the testing process, in the beginning, the object’s categories probability
and attention maps are produced from input images. Then, the selected part of the
object can be enlarged to refine the category’s probability. The final prediction is
evaluated as the average of those two probabilities. The process of final prediction

[1] is presented as Algorithm 1.
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The training process is illustrated in Figure 2.1. During training process, no
bounding box or keypoints based annotation are available. For each particular train-
ing image, attention maps are generated to represent the distinguishable part of
object. Attention guided data augmentation component is responsible to select at-
tention maps efficiently utilizing attention cropping and attention dropping. Bilinear
Attention Pooling (BAP) is used to extract feature from object’s parts. Element-wise
multiplication between the feature maps and attention map is used to generate part
feature matrix. In the last step, the original data along with attention generated
augmented data are trained as input data.

Figure 2.2 shows the illustration of testing process. Firstly, the object’s cate-
gories probability and attention maps are produced from input images. Then, selected
part of the object can be enlarged to refine the categories probability. The final pre-

diction is evaluated as the average of those two probabilities.

2.3.3 Visualization of Augmented Data
We visualize the attention-guided data augmentation in CUB200-2011, Food-
101, Flowers-102, Stanford Car, Stanford Dog and FGVC-Aircraft respectively in

Figure 2.3-2.8.

2.3.4 Loss Function

The loss function of the network is derived from center loss [38], which has been
proposed to tackle face recognition issues. Here, we adopt attention regularization loss
[1] for the attention learning process. The idea is to minimize the intra-class variations

while keeping the features of inter-class features differentiable. So, penalizing the
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Figure 2.1: Weakly Supervised Data Augmentation Network [1] Training Process.

features variation that belong to same part of object which is important for fine-

grained category. The loss function can be defined as:

M
L= Il —all} (2.3)
k=1
where M is number of attention maps, fj is the part feature and ¢y, is its part’s feature
center of kth object. ¢ can be updated by moving average and initialized as zero,

and the update rate is 5 .

Cp < Cp + ﬁ(fk — Ck) (24)
16
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Figure 2.2: Weakly Supervised Data Augmentation Network [1] Testing Process.

2.4  Experiments

In this section, we show comprehensive experiments to verify the effectiveness
of our approach. Firstly, we calculate the domain similarity score using EMD [37] to
demonstrate the relationship between the source and target domains. Then we com-
pare our model with the state-of-the-art methods on six publicly available fine-grained
visual categorization datasets. Following this, we perform additional experiments to

demonstrate the effect of image resolution on transfer learning. We compare input
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Figure 2.3: Visual attention on image, Attention Maps, Feature Maps, Attention
Dropping on CUB200-2011 dataset (left to right respectively) [1].

images in the iNaturalist dataset from 299 x 299 to 448 x 448 to observe the effect in
terms of accuracy. We have trained the baseline inceptionV3 model with iNaturalist
datasets. Additionally, we combine both iNaturalist and imageNet dataset to make
a bigger dataset. We perform detailed experimental studies with different types of
large scale datasets and apply the WS-DAN method to observe the impact. The
training loss curve and top-1 accuracy curve are presented in Figures 2.9 and 2.10,

respectively.

2.4.1 Datasets
We present a detailed overview of the datasets that we use for our experiments.
ImageNet: The ImageNet [12] contains 1.28 million training images and 50
thousand validation images along with 1,000 categories.
iNaturalist(iNat) : The iNat dataset, introduced in 2017 [39], contains more

than 665,000 training and around 10000 test images from more than 5000 natural
18



Figure 2.4: Visual attention on image, Attention Maps, Feature Maps, Attention
Dropping on Food-101 dataset (left to right respectively) [1].

fine-grained categories. Those categories include different types of mammals, birds,
insects, plants, and more. This dataset is quite imbalanced and varies a lot in terms
of the number of images per category.

Fine-grained object classification datasets: Table 2.1 summarizes the in-

formation of each dataset in detail.

2.4.2 Implementation Details

In our experiment, we used Tensorflow [40] to train all the models on multiple
Nvidia Geforce GTX 1080Ti GPUs. The machine has Intel Core-i7-5930k CPUQ
3.50GHz x 12 processors with 64GB of memory. During training, we adopted In-
ception v3 [26] as the backbone network. We employed WS-DAN [1] technique to
perform experiments to demonstrate the effectiveness of transfer learning. For all the

datasets, we used Stochastic Gradient Descent (SGD) with a momentum of 0.9, the
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Figure 2.5: Visual attention on image, Attention Maps, Feature Maps, Attention
Dropping on Flowers-102 dataset (left to right respectively) [1].

number of epoch 80, mini-batch size 12. The initial learning rate was set to 0.001,

with exponential decay of 0.8 after every 2 epochs.

2.5 Results

When training a CNN, input images are often preprocessed to match a specific
size. Higher resolution images usually contain essential information and precise details
that are important to visual recognition. We compare results on six FGVC datasets
with different sizes of image resolution of the iNat dataset. In summary, images with
higher resolution yields better accuracy except for the Stanford Dogs dataset. Figure
2.11 represents the effect of transfer learning with various sizes of image resolution
on iNat dataset.

In Table 2.3, we present the top-1 accuracy of the target domains on various

source domains. These results show the impact of transfer learning from a pre-trained
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Figure 2.6: Visual attention on image, Attention Maps, Feature Maps, Attention
Dropping on Stanford Car dataset (left to right respectively) [1].

model. Large scale datasets are essential for getting improved accuracy when transfer
learning is conducted. ImageNet dataset is much larger than iNat dataset; still, it
shows worse accuracy in the CUB200-2011 dataset. So, we cannot conclude that using
a bigger dataset with transfer learning can always yield better results. Moreover, the
domain similarity score also supports this hypothesis. Hence, transfer learning can
be effective if the target domain can be trained with similar source domain.

We compare our method with state-of-the-art baselines on six commonly used
fine-grained categorization datasets. The summary of the comparison is presented
in Table 2.4. In Table 2.2, we show the domain similarity score between the source
and various target domains. We visually represent the relationship between the top-1
accuracy and the domain similarity score. We can observe from Figure 2.12 that the
domain similarity score positively correlated with transfer learning accuracy between

large scale datasets and FGVC datasets. Each marker represents a source domain.
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Figure 2.7: Visual attention on image, Attention Maps, Feature Maps, Attention
Dropping on Stanford Dog dataset (left to right respectively) [1].

With the right selection of source domain, better transfer learning performance can
be achieved. For example, the domain similarity score between iNat and CUB200-
2011 is around 0.65, which is the reason it shows higher accuracy (91.2) when
iNat is used as pre-training the source domain compared to others. For Flowers-102
dataset, the accuracy is 98.9 with iNat as the source domain which has the highest
domain simiarity score 0.54, among other source domains. Similarly, Stanford Cars,
Stanford Dogs and Aircrafts dataset show higher domain similarity score supports
better accuracy. Only for the Food101 dataset, the accuracy from transfer learning
remains similar while domain similarity changes. We believe this is due to having
a large number of training images in Foodl0l. Consequently, the target domain
contains enough data and transfer learning is not as useful. We can observe that
both ImageNet and iNat are highly biased, achieving dramatically different transfer

learning accuracy on target datasets. Intriguingly, when we transfer networks trained
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Figure 2.8: Visual attention on image, Attention Maps, Feature Maps, Attention
Dropping on FGVC-Aircraft dataset (left to right respectively) [1].

on the combined ImageNet + iNat dataset and perform WS-DAN [1] method over it,
we got better results in Food-101 dataset. The resulted accuracy of the combination
of ImageNet and iNat, fell in-between ImageNet and iNat pre-trained model. It
means that we cannot attain good accuracy on target domains by just using a larger
(combined) source domain. Our work demonstrates that a domain similarity score
can be useful for identifying which large scale dataset to employ. That way, the
model can learn essential features for the target dataset from large source training
sets. Furthermore, we can employ attention aware data augmentation techniques to

achieve state-of-the-art accuracy on several FGVC datasets.

2.6 Conclusion

In this paper, we describe a simple technique that takes attention mechanism

as a data augmentation technique. Attention maps are guided to focus on the ob-
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Figure 2.9: Training loss on CUB200-2011 dataset

ject’s parts and encourage multiple attention. We demonstrate that domain adaptive
transfer learning plays a vital role in boosting performance. Depending on the domain
similarity score, we can choose which source datasets to pre-train on to get better
accuracy. We show that combining similarity-based selection of source datasets with
attention-based augmentation technique can achieve state-of-the-art results in mul-
tiple fine-grained visual classification datasets. We also analyze the effect of image
resolution on transfer learning between the source and target domains. In future work,
we are planning to explore the various factors on transfer learning to boost perfor-
mance. We like to leverage variational auto encoder and GAN to generate augmented
data which can be passed to the model to check the performance. Additionally, we
want to compare different types of source datasets and try to control the variability

in the number of training images to show the impact.
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Figure 2.10: Accuracy on CUB200-2011 dataset

Table 2.1: Six commonly used FGVC datasets.

Datasets Objects | Classes | Training | Test
CUB200-2011 Bird 200 5,994 5,794
FGVC-Aircraft | Aircraft 100 6,667 3,333
Stanford Cars Car 196 8,144 8,041
Stanford Dogs Dog 120 12,000 | 8,580
Flowers-102 Flowers 102 2,040 6,149
Food-101 Food 101 75,750 | 25,250
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Figure 2.11: Effect of transfer learning with different sizes of image resolution on iNat
dataset.
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CUB200 | Stanford | Food | Flowers | Stanford
Source Domain Aircrafts
2011 Cars 101 102 Dogs
ImageNet 0.563 0.56 0.556 0.56 | 0.525 0.619
iNaturalist 0.651 0.535 0.543 | 0.535 | 0.542 0.572
ImageNet + iNat | 0.584 0.555 0.553 0.56 | 0.532 0.608

Table 2.2: Comparison on domain similarity score between source datasets and target

datasets

Table 2.3: Comparison to different types of FGVC datasets. Each row represents a
network pre-trained on source domain for transfer learning and each column represents
top-1 image classification accuracy by fine-tuning on the target domain.

CUB200 | Stanford Food | Flowers | Stanford
Method Aircrafts
2011 Cars 101 102 Dogs
ImageNet 82.8 91.3 85.5 88.6 96.2 84.2
ImageNet on WS-DAN 89.3 94.5 93.0 87.2 97.1 92.2
iNat on WS-DAN 91.2 92.5 91.0 87.5 98.9 79.1
ImageNet + iNat on WS-DAN 91.0 94.1 91.5 88.7 98.7 90.0
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Table 2.4: Comparison in terms of accuracy with existing FGVC methods.

\Method CUB200 | Stanford Airerafts Food | Flowers | Stanford

2011 Cars 101 102 Dogs
Bilinear-CNN [27] 84.1 91.3 84.1 82.4 - -
DLA [41] 85.1 94.1 92.6 89.7 - -

RA-CNN [30] 85.4 92.5 - - - 87.3
Improved Bilinear-CNN [42] 85.8 92.0 88.5 . - -
GP-256 [31] 85.8 92.8 89.8 - - -
MA-CNN [30] 86.5 92.8 89.9 - - -
DFL-CNN [43] 87.4 93.8 92.0 - - -
MPN-COV [44] 88.7 93.3 914 - - -

Subset B [7] 89.6 93.5 90.7 90.4 - 88.0

WS-DAN [1] 89.4 94.5 93.0 87.2 97.1 92.2

DATL + WS-DAN 91.2 94.5 93.1 88.7 | 98.9 92.2
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CHAPTER 3
A Survey on Unsupervised Domain Adaptation for Visual Categorization

3.1 Introduction

Deep learning-based methods have produced remarkable results for many prob-
lems in computer vision and machine learning. These methods require a large amount
of training and testing data to achieve the expected result. Nevertheless, collecting
and annotating datasets for each novel task and domain are extremely costly and
time-consuming. One way is to use a pre-trained model and fine-tune it in the target
domain. However, fine-tuning demands a large amount of labeled training data. A
large amount of labeled data may not be available for many applications.

An overview of domain adaptation is given in Fig 3.1 In the homogeneous
setting, the feature spaces between the source and target domains are identical(X*® =
X") with the same dimension(d® = d'). Hence, the source and target datasets are
generally different in terms of data distributions. In addition, we can classify further
the homogeneous DA setting into three cases:

e In the supervised DA, a small amount of labeled target data are present. How-
ever, the labeled data are not sufficient enough for tasks.

e In the semi-supervised DA, both limited labeled data and redundant unlabeled
data are available in the training state, which allows the networks to learn the
structure information of the target domain.

e in the unsupervised DA, no labeled data are available in the training phase.
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Figure 3.1: An overview of domain adaptation|2].

The feature spaces between the source and target domains are nonequi