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ABSTRACT

Domain Adaptive Transfer Learning for Visual Classification

Ashiq Imran, Ph.D. Candidate

The University of Texas at Arlington, 2021

Supervising Professor: Vassilis Athitsos

Deep Neural Networks have made a significant impact on many computer vision

applications with large-scale labeled datasets. However, in many applications, it is

expensive and time-consuming to gather large-scale labeled data. With the limited

availability of labeled data, it is challenging to obtain great performance. Moreover,

in many real-world problems, transfer learning has been applied to cope with lim-

ited labeled training data. Transfer learning is a machine learning paradigm where

pre-trained models on one task can be reused for another task. This dissertation in-

vestigates transfer learning and related machine learning techniques such as domain

adaptation on visual categorization applications.

At first, we leverage transfer learning on fine-grained visual categorization

(FGVC). FGVC is a challenging topic in computer vision. FGVC is different from

general recognition. It is a problem characterized by large intra-class differences and

subtle inter-class differences. FGVC should be capable of recognizing and localizing

the nuances within subordinate categories. We tackle this problem in a weakly super-

vised manner, where neural network models are getting fed with additional data using

a data augmentation technique through a visual attention mechanism. We perform
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domain adaptive knowledge transfer via fine-tuning on our base network model. We

perform our experiment on six challenging and commonly used FGVC datasets. We

show competitive improvement on accuracy by using attention-aware data augmen-

tation techniques with features derived from the deep learning model InceptionV3,

pre-trained on large-scale datasets. Our method outperforms competitor methods on

multiple FGVC datasets and showed competitive results on other datasets. Experi-

mental studies show that transfer learning from large-scale datasets can be utilized

effectively with visual attention-based data augmentation, obtaining state-of-the-art

results on several FGVC datasets.

In many applications, specifically for transfer learning, it is assumed that the

source and target domain have the same distribution. However, it is hardly true

in real-world applications. Moreover, direct transfer across domains often performs

poorly because of domain shift. Domain adaptation, a sub-field of transfer learn-

ing, has become a prominent problem setting that refers to learning a model from a

source domain that can perform reasonably well on the target domain. This disserta-

tion investigates and proposes improvements on visual categorizations using domain

adaptation. Following the context of domain adaptation, a literature review cov-

ering and summarizing the most recently proposed domain adaptation method is

presented. Finally, we propose a technique that uses the adaptive feature norm with

subdomain adaptation to boost the transfer gains. Subdomain adaptation can en-

hance the ability of deep adaptation networks by capturing the fine-grained features

from each category. Additionally, we have incorporated an adaptive feature norm

approach to increase transfer gains. Our method shows state-of-the-art results on

standard cross-domain adaptation datasets for the object categorization task.
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CHAPTER 1

INTRODUCTION

Deep Neural Networks have shown remarkable performance in various domains

in the field of computer vision. In order to achieve good performance, it requires a

humongous amount of labeled data. Training larger and deeper networks are difficult,

particularly if the size of a dataset is small. Additionally, collecting well-annotated

data is costly and time-consuming. In computer vision, transfer learning, popularly

known as cross-domain adaptation [6], aims at enabling the generalization capacity

of the target domain by loading knowledge from the source domain. Typically, a

way to regularize deep networks is to simply use a pre-trained model which has been

trained on a different dataset and use this model for the target dataset [7]. However,

fine-tuning still requires a considerable amount of labeled training data, which may

not be available for many applications.

Visual recognition is one of the most fundamental problems in the field of com-

puter vision. A computer vision system requires the generalization of many object

variations due to viewpoint, illumination, or occlusions. Additionally, it needs to be

specific towards recognizing objects.

One of the most challenging problems in the field of object recognition is Fine-

Grained Visual Categorization (FGVC). In FGVC, same-class items may have varia-

tions in the pose, scale, or rotation. FGVC contains subtle differences among classes

in a sub-category of an object, which includes the model of the cars, type of the

foods or the flowers, species of the birds or dogs, and type of the aircraft. These

differences make FGVC a challenging problem, as there are significant intra-class dif-
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ferences among the sub-categories, and at the same time, items from different classes

may look similar. In contrast with traditional object classification techniques, FGVC

aims to solve the identification of particular sub-categories from a given category

[8, 1]. A domain adaptive knowledge transfer to select the optimal source domain

for the target FGVC domains is performed. Then, we apply a visual attention-aware

data augmentation technique to boost up the FGVC accuracy. This research leads

us to investigate further in the field of domain adaptive transfer learning.

Typically, in transfer learning [9], a pre-trained model on a large dataset is

used to fine-tune the target dataset. This method may not generalize well to new

environments and new datasets. One of the reasons is that deep learning methods

assume that training and testing data are drawn from independent and identical

distributions (i.i.d). However, this assumption rarely holds, as there will be a shift

in data distributions across different domains. Furthermore, traditional machine-

learning paradigms like supervised learning train models to predict the outcome for

unseen data. These models do not necessarily optimize performance if the difference

between the test and training data is great. Domain adaptation can be a way to

mitigate these issues and reduce the effort of recollecting and retraining a model

by transferring knowledge between tasks and domains [10]. Domain adaptation is a

technique that alleviates networks’ performance degradation on the target samples,

which has a different distribution from the source samples [3]. Since most existing

domain adaptation methods assume that source and target domain contain the same

labels, performance degradation occurs when the label set of the source and target are

not the same. It is challenging to use existing domain adaptation techniques in real

situations because generating the source domain with exactly the same label set as

the target domain is ineffective. Unsupervised domain adaptation methods have been
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attended to solve this problem, which intends to learn this latent space by aligning

data across domains.

This dissertation will go over in detail of transfer learning and domain adapta-

tion. The dissertation started by analyzing the current state of the problem. Then, it

proposes a new technique of domain adaptive transfer learning on fine-grained visual

categorization. A detailed survey on unsupervised domain adaptation is presented

afterward. Subsequently, a novel approach of considering sub-domains with adaptive

feature norms is described. The efficacy of the proposed method has been tested on

several datasets and compared with state-of-the-art methods.

1.1 Dissertation Contributions

The focus of this dissertation is on domain adaptation in visual classification

tasks. The work presented in the following chapters will make the following contri-

butions:

1. Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmen-

tation for Fine-grained Visual [11] Categorization.

2. A comprehensive literature survey on unsupervised domain adaptation on visual

classification.

3. Adaptive Feature Norm for Unsupervised Sub-Domain Adaptation.

1.2 Dissertation Organization

Chapter 2 aims to tackle fine-grained visual classification with a domain adap-

tive transfer learning approach. Our proposed method achieves state-of-the-art results

in multiple fine-grained classification datasets, including CUB200 2011 bird datasets,

Flowers-102, and FGVC-Aircrafts.
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In chapter 3, it covers a comprehensive literature survey of unsupervised do-

main adaptation, including discrepancy-based methods, adversarial methods, and

reconstruction-based methods. A comparison of the neural network-based domain

adaptation methods is summarized.

In chapter 4, A technique is proposed that uses the adaptive feature norm

with subdomain adaptation to boost up the transfer gains. Subdomain adaptation

can enhance the ability of deep adaptation networks by capturing the fine-grained

features from each category. Additionally, we have incorporated an adaptive feature

norm approach to increase transfer gains. Our method shows state-of-the-art results

on the popular visual classification datasets, including Office-31, Office Home, and

Image-CLEF datasets.

Chapter 5 discusses some of the research directions of the unsupervised domain

adaptation.

In Chapter 6, the summary of contributions of my research is presented.
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CHAPTER 2

Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmentation

for Fine-grained Visual Categorization

2.1 Introduction

Deep neural networks have provided state-of-the-art results in many domains

in computer vision. However, having a big training set is very important for the

performance of deep neural networks [12, 13]. Data augmentation techniques have

been gaining popularity in deep learning and are extensively used to address the

scarcity of training data. Data augmentation has led to promising results in various

computer vision tasks [13]. There are different data augmentation methods for deep

models, like image flipping, cropping, scaling, rotation, translation, color distortion,

adding Gaussian noise, and many more.

Previous methods mostly choose random images from the dataset and apply the

above operations to enlarge the amount of training data. However, applying random

cropping to generate new training examples can have undesirable consequences. For

example, if the size of the cropped region is not large enough, it may consist entirely of

background, and not contain any part of the labeled object. Moreover, this generated

data might reduce accuracy and negatively affect the quality of the extracted features.

Consequently, the disadvantages of random cropping might cancel out its advantages.

More specific features need to be provided to the model to make data augmentation

more productive.

In Fine-Grained Visual Categorization (FGVC), same-class items may have

variation in the pose, scale, or rotation. FGVC contains subtle differences among
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classes in a sub-category of an object, which includes the model of the cars, type

of the foods or the flowers, species of the birds or dogs, and type of the aircrafts.

These differences are what make FGVC a challenging problem, as there are signif-

icant intra-class differences among the sub-categories, and at the same time, items

from different classes may look similar. In contrast with regular object classification

techniques, FGVC aims to solve the identification of particular subcategories from a

given category [8, 1].

Convolutional Neural Networks (CNNs) have been extensively used for various

applications in computer vision. To achieve good performance with CNNs, typically

we need large amounts of labeled data. However, it is a tedious process to collect

labeled fine-grained datasets. That is why there are not many FGVC datasets, and

existing datasets are not as large compared to standard image recognition datasets

like ImageNet [12]. Normally, a model pre-trained on large scale datasets such as

ImageNet is used, and that model is then fine-tuned using data from an FGVC

dataset. Typically, FGVC datasets are not too big, so it becomes critical to design

methods that can compensate for the limited amount of data. In this paper, we

investigate some techniques that allow the model to learn features more effectively,

and that perform well on large scale datasets with fine-grained categories.

Generally, there are two domains involved in fine-tuning a network. One is

the source domain, which typically includes large scale image datasets like ImageNet

[12], where initial models are pre-trained. Another is the target domain, where data is

used to fine-tune the pre-trained models. In this paper, the target domain is FGVC

datasets, and we are interested in developing techniques that can boost accuracy

on these type of datasets. Modern FGVC methods use pre-trained networks with

ImageNet dataset to a large extent. We explore the possibility of achieving better

accuracy than what has been achieved so far using ImageNet. A model first learns
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useful features from a large amount of training data, and is then fine-tuned on a

more evenly-distributed subset to balance the efforts of the network among different

categories and transfer the already learned features.

In short, our research tries to address two questions: 1) What approaches

beyond transfer learning do we need to take to boost the performance on FGVC

datasets? 2) How can we determine which large scale source domain we choose, given

that the target domain is FGVC?

We calculate the domain similarity score between the source and target domains.

This score gives us a clear picture of selecting the source domain for transfer learning

to achieve better accuracy in the target domain. Then, we focus on a visual attention

guided network for data augmentation. As FGVC datasets are relatively smaller in

size, we leverage the feature learning from fine-tuning as well as data augmentation to

achieve better accuracy. The performance of the combination of these two strategies

outperforms the baseline approach.

In summary, the main contributions of this work are:

1. We propose a simple yet effective improvement over the recently proposed

Weakly Supervised Data Augmentation Network (WS-DAN) [1], which is used

for generating attention maps to extract sequential local features to tackle the

FGVC challenge. A domain similarity score can play a vital role before apply-

ing transfer learning. Based on the score, we decide which source domain is

necessary to use for transfer learning. Then, we can employ WS-DAN [1] to

achieve better results among FGVC datasets.

2. We demonstrate a domain adaptive transfer learning approach, that combines

with visual attention based data augmentation, and that can achieve state-of-

the-art results on CUB200-2011 [14], and Flowers-102 [15], and FGVC-Aircrafts
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[16] datasets. Additionally, we match the current state-of-the-art accuracy on

Stanford Cars [17], Stanford Dogs [18] datasets.

3. We present the relationship of top-1 accuracy and domain score on six commonly

used FGVC datasets. We illustrate the effect of image resolution in transfer

learning in detail.

2.2 Related Work

In this section, we present a brief overview of data augmentation, fine-grained

visual categorization, visual attention mechanism and transfer learning.

2.2.1 Data Augmentation

Machine learning theory suggests that a model can be more generalized and

robust if it has been trained on a dataset with higher diversity. However, it is a very

difficult and time-consuming task to collect and label all the images which involve

these variations [19]. Data augmentation methods are proposed to address this issue

by adding the amount and diversity of training samples. Various methods have been

proposed focusing on random spatial image augmentation, specifically involving in

rotation variation, scale variation, translation, and deformation, etc. [1]. Classical

augmentation methods are widely adopted in deep learning techniques.

The main drawback of random data augmentation is low model accuracy. Ad-

ditionally, it suffers from generating a lot of unavoidable noisy data. Various methods

have been proposed to consider data distribution rather than random data augmen-

tation. A search space based data augmentation method has been proposed [20]. It

can automatically search for improving data augmentation policies in order to obtain

better validation accuracy. In contrast, we leverage WS-DAN [1], which generates

augmented data from visual attention features of the image. Peng et al. proposed a
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method for human pose estimation, by introducing an augmentation network whose

task is to generate hard data online, thus improving the robustness of models [21].

Nevertheless, their augmentation system is complicated and less accurate compared

to the network that we experimented with. Additionally, attention-aware data seg-

mentation is more simple and proven effective in terms of accuracy.

2.2.2 Fine-Grained Visual Categorization

Fine-grained Visual Categorization (FGVC) is a challenging problem in the field

of computer vision. Normally, object classification is used for categorize different ob-

jects in the image, such as humans, animals, cars, trees, etc. In contrast, fine-grained

image classification concentrates more on detecting sub-categories of a given cate-

gory, like various types of birds, dogs or cars. The purpose of FGVC is to find subtle

differences among various categories of a dataset. It presents significant challenges

for building a model that generalizes patterns. FGVC is useful in a wide range of ap-

plications such as image captioning [22], image generation [23], image search engines,

and so on.

Various methods have been developed to differentiate fine-grained categories.

Due to the remarkable success of deep learning, most of the recognition works depend

on the powerful convolutional deep features. Several methods were proposed to solve

large scale real problems [24, 25, 26]. However, it is relatively hard for the basic models

to focus on very precise differences of an object’s parts without adding special modules

[1]. A weakly supervised learning-based approach was adapted to generate class-

specific location maps by using pooling methods [27]. Adversarial Complementary

Learning (ACoL) [28] is a weakly supervised approach to identify entire objects by

training two adversarial complementary classifiers, which aims at locating several

parts of objects and detects complementary regions of the same object. However,
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their method fails to accurately locate the parts of the objects due to having only

two complementary regions. On the contrary, our proposed approach depends on

attention-guided data augmentation and domain adaptive transfer learning. Our

method extracts fine-grained discriminative features and provides a generalization of

domain features to achieve state-of-the-art performance in terms of accuracy.

2.2.3 Attention

Attention mechanisms have been getting a lot of popularity in the deep learning

area. Visual attention has been already used for FGVC. Xiao et al. proposed a

two-way attention method (object-level attention and part-level attention) to train

domain-specific deep networks [29]. Fu et al. proposed an approach that can predict

the location of one attention area and extract corresponding features [30]. However,

this method can only focus on a local object’s parts at the same time. Zheng et al.

addressed this issue and introduced Multi-Attention CNN (MA-CNN) [31], which can

simultaneously focus on multiple body parts. However, selected parts of the object

are limited and the number of selected parts is fixed (2 or 4), which might hamper

accuracy.

The works mentioned above mostly focus on object localization. In contrast,

our research concentrates more on data augmentation with visual attention, which

has not been much explored. We use the attention mechanism for data augmentation

purposes. Moreover, the benefit of guided attention based data augmentation [1]

helps the network to locate object precisely, which helps our trained model learn

about closer object details and hence, improve the predictions.
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2.2.4 Transfer Learning

The purpose of transfer learning is to improve the performance of a learning

algorithm by utilizing knowledge that is acquired from previously solved similar prob-

lems. CNNs have been widely used for transfer learning. They are mostly used in

the form of pre-trained networks that serve as feature extractors [32, 33].

Considerable amounts of effort have been made to understand transfer learning

[34, 35, 36]. Initial weights for a certain network can be obtained from an already-

trained network even if the network is used for different tasks [34]. Some prior work

has shown some results on transfer learning and domain similarity [7]. Their con-

tribution mostly addresses the effect of image resolution on large scale datasets and

choosing different subsets of datasets to boost accuracy. In our work, we show that

domain adaptive transfer learning can be useful if we also incorporate visual attention

based data augmentation.

Unlike previous works, our proposed technique takes account of domain adaptive

transfer learning between the source and target domains. Then, it incorporates the

attention-driven approach for data augmentation. Our main goal is to guide the

training model to learn relevant features from the source domain and augment data

with the visual attention of the target domain. The combination of two processes can

be useful to achieve better performance.

2.3 Domain Adaptive Transfer Learning (DATL)

In our research, we explore the way of determining similarity between the source

and target domains. Additionally, we describe the attention aware data augmentation

technique, WS-DAN in detail. We consider different types of large scale datasets to

find out the similarity score between large scale datasets and FGVC datasets. Then,
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we compute domain similarity score firstly. Based on the domain similarity score we

choose large scale datasets for transfer learning and then we perform WS-DAN to

evaluate the accuracy.

2.3.1 Domain Similarity

Generally, transfer learning performs better if it has been trained on bigger

datasets. Chen et al. showed that transfer learning performance increases logarith-

mically with the number of data [35]. In our work, we observe that using a bigger

dataset does not always provide a more accurate result. Yosinski et al. [34] men-

tions that there is some correlation between the transferability of a network from the

source task to the target task and the distance between the source and target tasks.

Furthermore, they show fine-tuning on a pre-trained network towards a target task

can boost performance. Our domain adaptive transfer learning approach is inspired

from Cui et al. [7] who introduce a method which can calculate domain similarity by

the Earth Mover’s Distance (EMD) [37]. Furthermore, they show transfer learning

can be treated as moving image sets from the source domain S to the target domain

T . The domain similarity [7] can be defined

d(S, T ) = EMD(S, T ) =

∑m,n
i=1,j=1 fi,jdi,j∑m,n
i=1,j=1 fi,j

(2.1)

where si is i-th category in S and tj is j-th in T , di,j = ||g(si) − g(tj)|| , feature

extractor g(.) of an image and the optimal flow fi,j computes total work as a EMD

minimization problem. Finally, the similarity is calculated as:

sim(S, T ) = e−γd(S,T ) (2.2)

where γ is a regularization constant of value 0.01.

Domain similarly score can be calculated between the source and target domain.

In our approach, we use large scale datasets as source domains, and target domains
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are selected from six commonly used FGVC datasets. After calculating the similarity

score, we choose top k categories with the highest domain similarity.

2.3.2 Attention Aware Data Augmentation

In our method, we consider using the Weakly Supervised Data Augmentation

Network (WS-DAN) [1]. Firstly, we extract features of the image I and feature

maps F ∈ RH×W×C , where H, W, and C correspond to height, width, and number

of channels of a feature layer. Then, we generate attention maps A ∈ RH×W×M

from feature maps, where M is the number of attention maps. One more critical

component is bi-linear attention pooling, which is used to extract features from part

objects. Element-wise multiplication between feature maps and attention maps is

computed to get part-feature maps, and then, pooling operation is applied on part-

feature maps afterward. Randomly generated data from augmentation is not much

efficient. However, attention maps can be handy for data augmentation. This way

model can be guided to focus on essential parts of the data and augment those data to

the network. With an augmentation map, part’s region can be zoomed, and detailed

features can be extracted. This process is called attention cropping. Attention maps

can represent similar object’s part. Attention dropping can be applied to the network

to distinguish multiple object’s part. Both attention cropping and attention dropping

are controlled through a threshold value.

During the training process, no bounding box or keypoints based annotation

is available. For each particular training image, attention maps are generated to

represent the distinguishable part of object. Attention, guided data augmentation

component, is responsible for selecting attention maps efficiently utilizing attention

cropping and attention dropping. Bilinear Attention Pooling (BAP) is used to extract

features from the object’s parts. Element-wise multiplication between the feature
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Algorithm 1 Attention Aware Fine-grained Categorization

Input: Trained model with WS-DAN and Raw Image I

Output: Classification Accuracy

1: Calculate coarse-grained probability p1 : p1 = W (I) and generate attention maps

A

2: Calculate object map Am from A and obtain bounding box B from Am

3: Zoom in the region B as Ib

4: Predict fine-grained probability p2 : p2 = W (Ib)

5: Calculate final probability p = (0.5) ∗ (p1 + p2)

6: return p

maps and attention map are used to generate a part feature matrix. In the last

step, the original data, along with attention generated augmented data, are trained

as input data.

During the testing process, in the beginning, the object’s categories probability

and attention maps are produced from input images. Then, the selected part of the

object can be enlarged to refine the category’s probability. The final prediction is

evaluated as the average of those two probabilities. The process of final prediction

[1] is presented as Algorithm 1.
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The training process is illustrated in Figure 2.1. During training process, no

bounding box or keypoints based annotation are available. For each particular train-

ing image, attention maps are generated to represent the distinguishable part of

object. Attention guided data augmentation component is responsible to select at-

tention maps efficiently utilizing attention cropping and attention dropping. Bilinear

Attention Pooling (BAP) is used to extract feature from object’s parts. Element-wise

multiplication between the feature maps and attention map is used to generate part

feature matrix. In the last step, the original data along with attention generated

augmented data are trained as input data.

Figure 2.2 shows the illustration of testing process. Firstly, the object’s cate-

gories probability and attention maps are produced from input images. Then, selected

part of the object can be enlarged to refine the categories probability. The final pre-

diction is evaluated as the average of those two probabilities.

2.3.3 Visualization of Augmented Data

We visualize the attention-guided data augmentation in CUB200-2011, Food-

101, Flowers-102, Stanford Car, Stanford Dog and FGVC-Aircraft respectively in

Figure 2.3-2.8.

2.3.4 Loss Function

The loss function of the network is derived from center loss [38], which has been

proposed to tackle face recognition issues. Here, we adopt attention regularization loss

[1] for the attention learning process. The idea is to minimize the intra-class variations

while keeping the features of inter-class features differentiable. So, penalizing the
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Figure 2.1: Weakly Supervised Data Augmentation Network [1] Training Process.

features variation that belong to same part of object which is important for fine-

grained category. The loss function can be defined as:

LA =
M∑
k=1

||fk − ck||22 (2.3)

where M is number of attention maps, fk is the part feature and ck is its part’s feature

center of kth object. ck can be updated by moving average and initialized as zero,

and the update rate is β .

ck ← ck + β(fk − ck) (2.4)
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Figure 2.2: Weakly Supervised Data Augmentation Network [1] Testing Process.

2.4 Experiments

In this section, we show comprehensive experiments to verify the effectiveness

of our approach. Firstly, we calculate the domain similarity score using EMD [37] to

demonstrate the relationship between the source and target domains. Then we com-

pare our model with the state-of-the-art methods on six publicly available fine-grained

visual categorization datasets. Following this, we perform additional experiments to

demonstrate the effect of image resolution on transfer learning. We compare input
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Figure 2.3: Visual attention on image, Attention Maps, Feature Maps, Attention
Dropping on CUB200-2011 dataset (left to right respectively) [1].

images in the iNaturalist dataset from 299× 299 to 448× 448 to observe the effect in

terms of accuracy. We have trained the baseline inceptionV3 model with iNaturalist

datasets. Additionally, we combine both iNaturalist and imageNet dataset to make

a bigger dataset. We perform detailed experimental studies with different types of

large scale datasets and apply the WS-DAN method to observe the impact. The

training loss curve and top-1 accuracy curve are presented in Figures 2.9 and 2.10,

respectively.

2.4.1 Datasets

We present a detailed overview of the datasets that we use for our experiments.

ImageNet: The ImageNet [12] contains 1.28 million training images and 50

thousand validation images along with 1,000 categories.

iNaturalist(iNat) : The iNat dataset, introduced in 2017 [39], contains more

than 665,000 training and around 10000 test images from more than 5000 natural
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Figure 2.4: Visual attention on image, Attention Maps, Feature Maps, Attention
Dropping on Food-101 dataset (left to right respectively) [1].

fine-grained categories. Those categories include different types of mammals, birds,

insects, plants, and more. This dataset is quite imbalanced and varies a lot in terms

of the number of images per category.

Fine-grained object classification datasets: Table 2.1 summarizes the in-

formation of each dataset in detail.

2.4.2 Implementation Details

In our experiment, we used Tensorflow [40] to train all the models on multiple

Nvidia Geforce GTX 1080Ti GPUs. The machine has Intel Core-i7-5930k CPU@

3.50GHz x 12 processors with 64GB of memory. During training, we adopted In-

ception v3 [26] as the backbone network. We employed WS-DAN [1] technique to

perform experiments to demonstrate the effectiveness of transfer learning. For all the

datasets, we used Stochastic Gradient Descent (SGD) with a momentum of 0.9, the
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Figure 2.5: Visual attention on image, Attention Maps, Feature Maps, Attention
Dropping on Flowers-102 dataset (left to right respectively) [1].

number of epoch 80, mini-batch size 12. The initial learning rate was set to 0.001,

with exponential decay of 0.8 after every 2 epochs.

2.5 Results

When training a CNN, input images are often preprocessed to match a specific

size. Higher resolution images usually contain essential information and precise details

that are important to visual recognition. We compare results on six FGVC datasets

with different sizes of image resolution of the iNat dataset. In summary, images with

higher resolution yields better accuracy except for the Stanford Dogs dataset. Figure

2.11 represents the effect of transfer learning with various sizes of image resolution

on iNat dataset.

In Table 2.3, we present the top-1 accuracy of the target domains on various

source domains. These results show the impact of transfer learning from a pre-trained
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Figure 2.6: Visual attention on image, Attention Maps, Feature Maps, Attention
Dropping on Stanford Car dataset (left to right respectively) [1].

model. Large scale datasets are essential for getting improved accuracy when transfer

learning is conducted. ImageNet dataset is much larger than iNat dataset; still, it

shows worse accuracy in the CUB200-2011 dataset. So, we cannot conclude that using

a bigger dataset with transfer learning can always yield better results. Moreover, the

domain similarity score also supports this hypothesis. Hence, transfer learning can

be effective if the target domain can be trained with similar source domain.

We compare our method with state-of-the-art baselines on six commonly used

fine-grained categorization datasets. The summary of the comparison is presented

in Table 2.4. In Table 2.2, we show the domain similarity score between the source

and various target domains. We visually represent the relationship between the top-1

accuracy and the domain similarity score. We can observe from Figure 2.12 that the

domain similarity score positively correlated with transfer learning accuracy between

large scale datasets and FGVC datasets. Each marker represents a source domain.
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Figure 2.7: Visual attention on image, Attention Maps, Feature Maps, Attention
Dropping on Stanford Dog dataset (left to right respectively) [1].

With the right selection of source domain, better transfer learning performance can

be achieved. For example, the domain similarity score between iNat and CUB200-

2011 is around 0.65, which is the reason it shows higher accuracy (91.2) when

iNat is used as pre-training the source domain compared to others. For Flowers-102

dataset, the accuracy is 98.9 with iNat as the source domain which has the highest

domain simiarity score 0.54, among other source domains. Similarly, Stanford Cars,

Stanford Dogs and Aircrafts dataset show higher domain similarity score supports

better accuracy. Only for the Food101 dataset, the accuracy from transfer learning

remains similar while domain similarity changes. We believe this is due to having

a large number of training images in Food101. Consequently, the target domain

contains enough data and transfer learning is not as useful. We can observe that

both ImageNet and iNat are highly biased, achieving dramatically different transfer

learning accuracy on target datasets. Intriguingly, when we transfer networks trained
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Figure 2.8: Visual attention on image, Attention Maps, Feature Maps, Attention
Dropping on FGVC-Aircraft dataset (left to right respectively) [1].

on the combined ImageNet + iNat dataset and perform WS-DAN [1] method over it,

we got better results in Food-101 dataset. The resulted accuracy of the combination

of ImageNet and iNat, fell in-between ImageNet and iNat pre-trained model. It

means that we cannot attain good accuracy on target domains by just using a larger

(combined) source domain. Our work demonstrates that a domain similarity score

can be useful for identifying which large scale dataset to employ. That way, the

model can learn essential features for the target dataset from large source training

sets. Furthermore, we can employ attention aware data augmentation techniques to

achieve state-of-the-art accuracy on several FGVC datasets.

2.6 Conclusion

In this paper, we describe a simple technique that takes attention mechanism

as a data augmentation technique. Attention maps are guided to focus on the ob-
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Figure 2.9: Training loss on CUB200-2011 dataset

ject’s parts and encourage multiple attention. We demonstrate that domain adaptive

transfer learning plays a vital role in boosting performance. Depending on the domain

similarity score, we can choose which source datasets to pre-train on to get better

accuracy. We show that combining similarity-based selection of source datasets with

attention-based augmentation technique can achieve state-of-the-art results in mul-

tiple fine-grained visual classification datasets. We also analyze the effect of image

resolution on transfer learning between the source and target domains. In future work,

we are planning to explore the various factors on transfer learning to boost perfor-

mance. We like to leverage variational auto encoder and GAN to generate augmented

data which can be passed to the model to check the performance. Additionally, we

want to compare different types of source datasets and try to control the variability

in the number of training images to show the impact.
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Figure 2.10: Accuracy on CUB200-2011 dataset

Table 2.1: Six commonly used FGVC datasets.

Datasets Objects Classes Training Test

CUB200-2011 Bird 200 5,994 5,794

FGVC-Aircraft Aircraft 100 6,667 3,333

Stanford Cars Car 196 8,144 8,041

Stanford Dogs Dog 120 12,000 8,580

Flowers-102 Flowers 102 2,040 6,149

Food-101 Food 101 75,750 25,250
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Figure 2.11: Effect of transfer learning with different sizes of image resolution on iNat
dataset.
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Figure 2.12: Correlation between transfer learning accuracy and domain similarity
score between the source and target domain. Each colored line represents a target
domain.
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Source Domain
CUB200

2011

Stanford

Cars
Aircrafts

Food

101

Flowers

102

Stanford

Dogs

ImageNet 0.563 0.56 0.556 0.56 0.525 0.619

iNaturalist 0.651 0.535 0.543 0.535 0.542 0.572

ImageNet + iNat 0.584 0.555 0.553 0.56 0.532 0.608

Table 2.2: Comparison on domain similarity score between source datasets and target
datasets

Table 2.3: Comparison to different types of FGVC datasets. Each row represents a
network pre-trained on source domain for transfer learning and each column represents
top-1 image classification accuracy by fine-tuning on the target domain.

Method
CUB200

2011

Stanford

Cars
Aircrafts

Food

101

Flowers

102

Stanford

Dogs

ImageNet 82.8 91.3 85.5 88.6 96.2 84.2

ImageNet on WS-DAN 89.3 94.5 93.0 87.2 97.1 92.2

iNat on WS-DAN 91.2 92.5 91.0 87.5 98.9 79.1

ImageNet + iNat on WS-DAN 91.0 94.1 91.5 88.7 98.7 90.0
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Table 2.4: Comparison in terms of accuracy with existing FGVC methods.

Method
CUB200

2011

Stanford

Cars
Aircrafts

Food

101

Flowers

102

Stanford

Dogs

Bilinear-CNN [27] 84.1 91.3 84.1 82.4 - -

DLA [41] 85.1 94.1 92.6 89.7 - -

RA-CNN [30] 85.4 92.5 - - - 87.3

Improved Bilinear-CNN [42] 85.8 92.0 88.5 - - -

GP-256 [31] 85.8 92.8 89.8 - - -

MA-CNN [30] 86.5 92.8 89.9 - - -

DFL-CNN [43] 87.4 93.8 92.0 - - -

MPN-COV [44] 88.7 93.3 91.4 - - -

Subset B [7] 89.6 93.5 90.7 90.4 - 88.0

WS-DAN [1] 89.4 94.5 93.0 87.2 97.1 92.2

DATL + WS-DAN 91.2 94.5 93.1 88.7 98.9 92.2
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CHAPTER 3

A Survey on Unsupervised Domain Adaptation for Visual Categorization

3.1 Introduction

Deep learning-based methods have produced remarkable results for many prob-

lems in computer vision and machine learning. These methods require a large amount

of training and testing data to achieve the expected result. Nevertheless, collecting

and annotating datasets for each novel task and domain are extremely costly and

time-consuming. One way is to use a pre-trained model and fine-tune it in the target

domain. However, fine-tuning demands a large amount of labeled training data. A

large amount of labeled data may not be available for many applications.

An overview of domain adaptation is given in Fig 3.1 In the homogeneous

setting, the feature spaces between the source and target domains are identical(Xs =

X t) with the same dimension(ds = dt). Hence, the source and target datasets are

generally different in terms of data distributions. In addition, we can classify further

the homogeneous DA setting into three cases:

• In the supervised DA, a small amount of labeled target data are present. How-

ever, the labeled data are not sufficient enough for tasks.

• In the semi-supervised DA, both limited labeled data and redundant unlabeled

data are available in the training state, which allows the networks to learn the

structure information of the target domain.

• in the unsupervised DA, no labeled data are available in the training phase.
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Figure 3.1: An overview of domain adaptation[2].

The feature spaces between the source and target domains are nonequivalent;

often, the dimensions may also generally differ. The heterogeneous DA setting can

also be categorized into supervised, semi-supervised, and unsupervised DA [2].

This chapter goes over homogeneous unsupervised domain adaptation consisting

of single source and single target domain. The main goal of domain adaptation is to

reduce domain shift by aligning source and target domains. We can categorize the

various alignment methods below.

• Discrepancy-based Domain Adaptation: Discrepancy-based domain adap-

tation refers to fine-tuning the deep network with labeled or unlabeled target
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data to minimize the domain shift. The most popular method for compar-

ing and diminishing distribution shift are maximum mean discrepancy (MMD)

[45, 46, 47, 48], correlation alignment (CORAL) [49, 21], and H divergence and

KL divergence [50]

• Adversarial-based Domain Adaptation: In this case, a domain discrimina-

tor that classifies whether a data is stemmed from the source or target domain

is used to confuse domain through an adversarial objective to minimize the

distance between the source and target distributions[10, 3, 51].

• Reconstruction-based Domain Adaptation: The idea of this approach

assumes that the data reconstruction of the source or target samples can help

improve the performance of DA. The reconstruction methods are represented

using autoencoders [52, 53], and generative adversarial networks (GAN) [54].

Numerous new unsupervised domain adaptation methods have been proposed in re-

cent years, with a growing emphasis on deep learning. We cover existing methods

from each category that we mention above.

3.1.1 Divergence-based Domain Adaptation

Divergence-based domain adaptation aims at minimizing some divergence cri-

teria between the source and target domain distributions. The purpose is to achieve

domain-invariant feature representation. Maximum Mean Discrepancy (MMD) [45,

3, 55, 56] is a two-sample statistical test of the hypothesis that two distributions are

equally based on observed samples from the two distributions. The test is computed

from the difference between the mean values of functions on the source and target

samples. If the means are different, then the samples are likely not from the same dis-

tribution. The samples are mapped into Reproducing Kernel Hilbert Space (RKHS).
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Figure 3.2: The architecture of DDC for learning domain invariant features [3]

A common way is to use the kernel embedding trick and comparing samples using a

Gaussian kernel.

In Figure 3.2, Deep Domain Confusion [3] is proposed to adapt MMD in their

CNN architecture-based adaptation layer and additional domain confusion loss to

learn domain invariant features.

3.1.2 Deep Adaptation Network(DAN)

Recent studies show that the features transferability decreases significantly in

the higher layers of a deep network within an increment of domain discrepancy. Prac-
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tically, the features computed in the higher layers depend a lot on the specific dataset

and task. The goal of Deep Adaptation Network (DAN)[4] is to increase the transfer-

ability in these task-specific layers by generalizing deep CNN to domain adaptation

scenarios. To reach this goal, the hidden representations of all these task-specific lay-

ers are embedded to a Reproducing Kernel Hilbert Space (RKHS), where the mean

embeddings of various domain distributions can be matched. Because mean embed-

ding matching is affected by the kernel choices, an optimal multi-kernel selection

procedure is designed to reduce further the domain discrepancy. The architecture of

this method is shown in Figure 3.3.

The starting point of this method is a deep Convolutional Neural Network

(CNN) but, just adapting CNN via fine-tuning to the target domain (that has no

labels) is complex and could lead to overfitting. Therefore the idea is to model a deep

adaptation network (DAN) that can take advantage of both the source domain (with

labeled data) and the target domain (with unlabeled data)

The main points that distinguish DAN from previous works are:

Multi-layer adaptation: It is not enough to adapt a single layer to sufficiently

reduce the dataset bias between the source and target domain because more than one

layer is not transferable. Furthermore, we could link the domain discrepancy that

characterizes the marginal and conditional distribution, a critical point for domain

adaptation by adapting the representation layers and the classification layer together.

Multi-kernel adaptation: The choice of the kernel is essential; different ker-

nels embed probability distributions in different RKHSs in which different orders of

sufficient statistics can be accentuated.
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Figure 3.3: The architecture of DAN for learning transferable features [4]

3.1.3 Domain Adversarial Training of Neural Network (DANN)

The core idea of DANN[57] is the implementation of a mapping system between

the source and target domain such that the classifier trained on the source works well

also for target test data. The algorithm focuses on learning features that are both

discriminative and domain-invariant. With this in mind, two classifiers are optimized:

• The label classifier is the standard class labels predictor. The domain classifier

whose intention is to distinguish between the source and target domain.

• The optimal feature mapping is found by lowering the loss function of the

label classifier and by increasing the loss function of the domain classifier. The
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Figure 3.4: The architecture of Domain Adversarial Training of Neural Network with
deep features extraction (in green), the deep label predictor (in blue), and the gradient
reversal layer (in pink) [4]

maximization then acts adversarially to the domain classifier. The innovation

of the DANN algorithm is the addition of Gradient Reversal Layer (GRL) in

vanilla CNN.

• Figure 3.4 illustrates the architecture of this method.

3.1.4 Adversarial Discriminative Domain Adaptation (ADDA)

The method[5] is based on a Generative Adversarial Network (GAN)s learning

where two networks (a generator and a discriminator) are involved: the generator
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Figure 3.5: The architecture of Adversarial Discriminative Domain Adaptation [5]

yields images, so that confuses the discriminator, which attempts to recognize them

from real image examples. This mechanism in domain adaptation is used to ensure

that the network cannot distinguish between source and target domain samples. The

algorithm implements the following three phases (Figure 3.5).

• Pre-training: a source encoder CNN together with a classifier is trained in a

classical way using the labeled source domain.

• Adversarial Adaptation: a target encoder CNN is trained in such a way that a

discriminator is not able to recognize the domain label of the examples.

• Testing: the classifier trained in the first phase is used together with the target

mapping learned during the second phase to classify the target examples.
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Figure 3.6: The deep reconstruction classification network (DRCN) architecture [4]

3.1.5 Deep Reconstruction-Classification Networks (DRCN)

The deep reconstruction classification network (DRCN) [53] aims to learn a

shared encoding representation that provides useful information for cross-domain ob-

ject recognition. DRCN is a CNN-based architecture that combines two pipelines

with a shared encoder. The task for the first pipeline is to classify with source labels,

and in the second pipeline, a deconvolutional network optimizes for unsupervised re-

construction with target data. This way, it makes sure that the network learns not

only to discriminate correctly but also preserves information about the target data.

Additionally, this method mentions that the reconstruction pipeline learns to trans-

form source images into images that resemble the target dataset, which suggests a

common representation is learned for both domains. The architecture of this method

is depicted in Figure 3.6.
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3.2 Discussion

In this chapter, we provide an overview of unsupervised domain adaptation

on visual tasks, mainly using deep learning methods. Table 3.1 summarizes deep

neural network-based domain adaptation methods where each one shows different

loss functions and different types of adaptation techniques.

Table 3.1: Comparison of deep learning based domain adaptation methods on different
settings

Method Discrepancy Loss Adversarial Loss Generator

CAN [58] Contrastive Domain Discrepancy (CDD)

SimNet[59] Feature

Rozant. et al. [45] Maximum Mean Discrepancy (MMD)

MCD [51] Maximum Classifier Discrepancy (MCD)

SimGAN [60] Pixel GAN

DRCN [53] Cycle Consistency

DANN [10, 57] Feature

DAN [4] MK-MMD

PixelDA [52] Pixel GAN

CoGAN [61] GAN

MADA [62] Feature

Deep CORAL [49] CORAL

Domain Mixup [63] Feature + Pixel

ADDA [5] Feature
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CHAPTER 4

Adaptive Feature Norm for Unsupervised Sub-Domain Adaptation

4.1 Introduction

In human learning, typically a child can learn new concepts without the need

for millions of examples that are pointed out individually. Once a child has seen one

cat, she or can recognize other cats to some extent, and gets better at recognizing

cats without seeing cats a thousand times. A main motivation of domain adaptation

is to train a system which can learn how to perform a similar task, e.g., recognizing

objects, like a child.

Deep Neural Networks have shown remarkable performance in various domains

in the field of computer vision. To achieve good performance, they typically require a

vast amount of labeled data. Training larger and deeper networks is complicated if the

size of a dataset is small. Additionally, collecting well-annotated data is costly and

time-consuming. A popular way to regularize these networks is to simply use a pre-

trained model trained on a different dataset and use the model for the target dataset.

However, if the data distribution between source and target domains is different,

it may lead to adverse effects and hamper the generalization ability of the models

[64]. Unsupervised Domain Adaptation (UDA) focuses on transferring knowledge

from a labeled source domain to an unlabeled target domain, and a large amount of

research tries to achieve this by exploring domain-invariant representations to bridge

the gap. Traditional machine-learning paradigms, like supervised learning, tend to

train models to predict the outcome for unseen data. These models do not necessarily

optimize performance if there is enough difference between the test and training data
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[65]. According to Tzeng et al.[3], while generically trained deep networks have a

reduced dataset bias, there still exists a domain shift between different datasets, and

it is required to adapt the features appropriately. [66] suggests that a fair domain

adaptation method should be based on features that are near similar for the source

and target domains while reducing the prediction error in the source domain as much

as possible. However, domain adaptation can have a domain shift problem. For

example, the target domain may contain images from different imaging device (e.g.

webcam vs. dslr camera), resulting in different styles in photos. This means the object

recognition model trained from the source domain requires to be adapted to the target

domain. Therefore, to reduce the domain shift problem, the two domains marginal

distributions need to be as similar as possible. The primary goal of UDA is to learn

domain-invariant feature representations that can reduce the domain shift. According

to existing studies, domain-invariant representations can be captured through several

methods, e.g., Maximum Mean Discrepancy [67, 4, 68], divergence-based methods

[66, 51], correlation distance [49], etc. Addtionally, several adversarial based methods

have been applied [10, 5, 69, 70, 71] to minimize an approximate domain discrepancy.

Recent studies have shown that, compared to shallow networks, deep networks

can learn more transferable features for domain adaptation by extracting domain-

invariant features [34, 4, 72, 49]. The main observation from the previous domain

adaptation methods is that the domain classifier should be confused maximally so

that the source classifier treats the samples from the target domain in a similar

fashion. Additionally, most successful methods have come up with such ways that can

make the domain classifier more confused. Most of the previous domain adaptation

methods consider aligning the source and target distributions globally. We adapt a

subdomain based approach to learn the domain transfer. A subdomain consists of

samples within the same class. This method will lead to a scenario where all the data
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UDA: Unsupervised Domain Adaptation
USDA: Unsupervised Subdomain Adaptation

Figure 4.1: Domain Adaptation Vs. Subdomain Adaptation

from different domains will be confused, and discriminative structures can be mixed

up[48]. The main advantage of the subdomains over domains is the local domain shift

instead of the global domain shift. Because of the local domain shift, the learners

precisely may align the distribution of relevant subdomains within the same category

in the source and target domains. An illustrative example of the difference between

Domain Adaptation and Subdomain adaptation is depicted in Figure 4.1. After global

domain adaptation, the resulting distributions of the two domains are quite similar,

but the data in different subdomains are too adjacent to be correctly classified. The

distributions of relevant subdomains can be aligned properly, hence the nuances of

the information can be exploited for domain adaptation.

According to [73], larger norms enable more informative trasferability. Recent

studies on the compression technique [74] support the above claim and suggest smaller
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norms contain less information during the inference. Inspired from the two studies

as mentioned above, we incorporate the step-wise adaptive feature norm approach in

subdomain space.

Xu et al.[73] demonstrates that progressively adapting the feature norms of two

domains to a broad range of values can boost domain transfer. We present the local

maximum mean discrepancy based method with adaptive progressively feature norm

on subdomain space. For effective UDA, our goal is to endorse positive transfer and

circumvent negative transfer.

In summary, the main contributions of our work are:

1. We propose an innovative stepwise adaptive feature norm-based approach for

unsupervised subdomain adaptation. This approach employs to learn task-

specific features in a progressive manner, which assists in aligning relevant sub-

domains in unsupervised scenarios.

2. We demonstrate a local MMD [48] based method with stepwise adaptive feature

norm to achieve state-of-the-art results on Office-31, Office-Home, and Image-

CLEF datasets.

3. We comapare our results with both adversarial and non-adversarial methods to

show the efficacy of our work.

4.2 Related Work

Domain adaptation problem has been widely studied in the computer vision

research community. Various methods have been employed to generalize the model

across different domains by mitigating the domain shift problem. This section will dis-

cuss the relevant work in domain adaptation, subdomain adaptation, and maximum

mean discrepancy.
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4.2.1 Domain Adaptation

Domain adaptation can be a way to mitigate domain shift issues and reduce the

effort of recollecting and retraining a model by transferring knowledge between tasks

and domains. Domain adaptation can be defined as the task of training a model on

labeled data from a source domain while minimizing test error on a target domain,

where no labels for the target domain are available at training time. Several types

of methods have been employed for unsupervised domain adaptation. Discrepancy

based methods explore domain-invariant structures by reducing some specific statistic

distances between the two domains. Maximum Mean Discrepancy (MMD) [75] has

been adopted in many approaches [67, 4] for domain adaptation. It enables the model

to learn transferable features by reducing the MMD of their kernel embedding. Some

other methods extended MMD [46, 47] to measure the source and target data’s joint

distributions. In our case, we consider local MMD measures discrepancy of relevant

subdomains between source and target domains. Adversarial DAs [10, 5, 71] are

widely applied in this field. They involve a sub-network as the domain discriminator

to distinguish features of alternate domains, whereas learners try to generate features

that confuse the domain classifier.

4.2.2 Subdomain Adaptation

A significant amount of research for subdomain adaptation has been published

recently. Multiadversarial domain adaptation (MADA) captures the multimode struc-

tures to enable fine-grained alignment of various data distributions [62]. CDAN

[72] captures the adversarial domain adaptation on discriminative information to

enable alignment of multimodal distributions. Moving the semantic transfer network

(MSTN) [70] captures the semantic representation for unlabeled target samples by

aligning the source and target centroid. Another method [76] creates multiple diverse
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feature spaces and aligns the source and target distributions in each of them sepa-

rately while encouraging that alignments agree with each other with regard to the

class predictions on the unlabeled target samples. All these methods have adopted

adversarial loss. Compared to our work, we have adopted a discrepancy based strat-

egy with stepwise adaptive feature norm approach which is more straightforward and

can perform better than these previous methods.

4.2.3 Maximum Mean Discrepancy

Among discrepancy based methods, MMD is one of the most popular metrics of

training for domain invariant features. In Deep Adaptation Network (DAN) architec-

ture [4], the authors train the first layers of the model commonly with the source and

target domains; after that, they train individual task-specific layers while minimizing

MMD between layers. Additionally, MMD has been extended by [46, 47]. However,

most previous work considers global MMD measures to reduce discrepancies between

the source and target samples. Our work is based on local MMD [48], which measures

the discrepancy in relevant subdomains between the source and target domains.

Compared to the previous technique, we use a non-adversarial based subdomain

adaptation method and incorporate adaptive feature norms within the subdomains

to perform domain transfer. So, instead of just relying on a particular discrepancy

metric, we take an additional approach as an adaptive feature norm. In our framework

(Figure 4.2), we have shown that a progressive feature-norm-based loss function in a

shared subdomain space can boost the domain adaptation performance.

4.3 Method

In unsupervised domain adaptation, we are given a source domainDs = {(xsi , ysi )}ns
i=1

of ns labeled examples and a target domain Dt = {xtj}nt
j=1 of unlabeled examples. The
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Figure 4.2: Architecture of adaptive feature norm on unsupervised subdomain adap-
atation.

source domain and target domain are sampled from joint distributions P (Xs, Y s) and

Q(X t, Y t) respectively, where P 6= Q. The goal of our method is to develop a deep

network architecture, that contains transfer features f = Gf (x) and adaptive classi-

fier y = Gc(f). This model will minimize the shift in joint distribution across relevant

subdomains and learns transferable representations simultaneously.

The formal representation for unsupervised domain adaptation is as follows.

min
f

1

ns

ns∑
i=1

J(f(Xs
i ), y

s
i ) + λd̂(p, q) (4.1)
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where J() is the cross-entropy loss function (classification loss) and d̂() is domain

adaptation loss. λ > 0 is the trade-off parameter of the domain adaptation loss and

the classification loss.

This representation covers the global source and target domain without taking

into account the relevant information between subdomains within the same category

between the source and target domains. Nevertheless, the global alignment may not

capture the nuances among subdomains. This may lead to domain shift issue as well.

The subdomain information can exploit the relationship between different domains.

The formal representation of the loss of subdomain adaptation can be

min
f

1

ns

ns∑
i=1

J(f(Xs
i ), y

s
i ) + λEc[d̂(p(c), q(c)]) (4.2)

where Ec[.] is a mathematical expectation of the class.

4.3.1 Local Maximum Mean Discrepancy

We have used local MMD as the baseline architecture. It was proposed by [48]

to align distributions of the relevant subdomains.

dH(p, q) = Ec||Ep(c) [φ(xs)]− Eq(c) [φ(xt)]||2H (4.3)

where xs and xt are the instances in Ds and Dt, and p(c) and q(c) are the distributions

of D
(c)
s and D

(c)
t , respectively. The equation (3) can measure class by class difference

of the relevant subdomains. Additionally, this can be used to align the subdomains

within the target domain with those in the source domain. Since we have an as-

sumption that each sample belongs to each class according to weight wc, we use an

unbiased estimator of equation (3) as

dH(p, q) =
1

C

C∑
c=1

||
∑
xsi∈Ds

wsci φ(xsi )−
∑
xtj∈Dt

wtcj φ(xtj)||2H (4.4)
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where wsci and wtcj represent the weight of xsi and xtj belonging to class c, re-

spectively. The sum of weights are both equal to one. We can formulate wci for the

sample xi as

wci =
yic∑

(xj ,yj∈D yjc
(4.5)

where yic is the cth entry of vector yi. For source domain, we use the ground truth

ysi as a one-hot vector to calculate wci for each sample. But, for target domain, we

use the probability of assigning xti to each of the classes. we can not use the formula

of equation (4) directly. The output of the deep neural network is a probability

distribution. We use that probability distribution which characterizes the probability

of assigning samples to the classes for each target sample. Then, we can calculate

wtcj . Finally, we can calculate equation (4).

4.3.2 Architecture

Standard domain adaptation considers two domains to share a similar label

space. In our framework, the input consists of subdomains from the source and tar-

get domains. We have a backbone network Gf , which denotes the feature extraction

module. Classifier Gc is the task-specific classifier. We apply the feature norm adap-

tation along with the local MMD based method to optimize the source classification

loss during each iteration. In each iteration, each individual sample’s feature norm is

getting added a small but progressive step size of r. This way, if any target samples

are far way from the small norm region, after the domain adaptation step, it could be

classified correctly in an automatic manner. Figure 4.2 demonstrates the architecture

of our approach.
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4.3.3 Adaptive Feature Norm Loss

One of the major bottlenecks that we observe is smaller feature norm of the

source and target samples that can lead to poor transfer gains[73]. Inspired from

them, we extend the idea into subdomain spaces. We keep a parameter r, which

progressively modifies the mean feature norm in each iteration. Instead of having a

fixed feature norm, we consider a moving parameter which changes the mean feature

norm. This method has been unexplored for the subdomain adaptation case. This

loss value impacts the target samples to be correctly classified without additional

supervision. This variant impacts positively towards learning task-specific features in

a continuous manner. We propose

d̂H(p, q) = Ec||Ep(c)[φ(xs)]− Eq(c)[φ(xt)]||2H

+Ec||Ep(c)[(h(xi; θ0) + ∆r), h(xi; θ)]||
(4.6)

where h(x) = ||.||2 ·Gf ·Gc(x), where θ0 and θ are model parameters of last and

current iterations. The effectiveness of this model parameter enables the optimization

process fetching more informative features with larger norms.

4.4 Experiment

We evaluate our technique on three popular object recognition datasets, in-

cluding Office-31, Office-Home, and ImageCLEF-DA. The code will be published in

future.

4.4.1 Dataset

We present a detailed overview of the datasets that we use for our experiments.
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Method A→W D→W W→D A→D D→A W→A Avg

ResNet[25] 68.4 ± 0.5 96.7 ± 0.5 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1

DDC[3] 75.8 ± 0.2 95.0 ± 0.2 98.2 ± 0.1 77.5 ± 0.3 67.4 ± 0.3 64.0 ± 0.5 79.7

D-CORAL[49] 77.7 ± 0.3 97.6 ± 0.2 99.5 ± 0.1 81.1 ± 0.4 64.6 ± 0.3 64.0 ± 0.4 80.8

DAN[4] 83.8 ± 0.4 96.8 ± 0.2 99.5 ± 0.1 78.4 ± 0.2 66.7 ± 0.3 62.7 ± 0.2 81.3

DANN[57] 82.0 ± 0.4 96.8 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2

ADDA[5] 86.2 ± 0.5 96.2 ± 0.3 98.4 ± 0.3 77.8 ± 0.3 69.5 ± 0.4 68.9 ± 0.5 82.9

JAN[47] 85.4 ± 0.3 97.4 ± 0.2 99.8 ± 0.2 84.7 ± 0.3 68.6 ± 0.3 70.0 ± 0.4 84.3

MADA[62] 90.0 ± 0.1 97.4 ± 0.1 99.6 ± 0.1 87.8 ± 0.2 70.3 ± 0.3 66.4 ± 0.3 85.2

CDAN[72] 93.1 ± 0.2 98.2 ± 0.2 100 ± 0 89.8 ± 0.3 70.1 ± 0.4 68.0 ± 0.4 86.6

iCAN[77] 92.5 ± 0.2 98.8 ± 0.1 100 ± 0 90.1 ± 0.1 72.1 ± 0.2 69.9 ± 0.1 87.2

CDAN + E[72] 94.1 ± 0.1 98.6 ± 0.1 100 ± 0 92.9 ± 0.2 73.5 ± 0.5 69.3 ± 0.3 87.7

DSAN[48] 93.4 ± 0.2 98.3 ± 0.1 100 ± 0 90.2 ± 0.7 73.5 ± 0.5 74.8 ± 0.4 88.2

Ours 93.2 ± 0.2 98.7 ± 0.2 100 ± 0 90.1 ± 0.2 75.1 ± 0.3 72.8 ± 0.4 88.5

Table 4.1: Accuracy Comparison of Unsupervised Domain Adaptation on Office-31
Dataset

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R

ResNet[25] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4

DAN[4] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7

DANN[57] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5

JAN[47] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3

CDAN[72] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9

CDAN+E[72] 50.7 70.8 76.0 57.6 70.0 70.0 57.4 50.9 77.3

DSAN[48] 54.4 70.8 75.4 60.4 67.8 68.0 62.6 55.9 78.5

Ours 55.0 71.0 75.3 61.1 69.4 68.0 61.4 55 78
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Method R→A R→C R→P Avg

ResNet[25] 53.9 41.2 59.9 46.1

DAN[4] 63.1 51.5 74.3 56.3

DANN[57] 63.2 51.8 76.8 57.6

JAN[47] 63.9 52.4 76.8 58.3

CDAN[72] 68.4 55.4 80.5 63.8

CDAN+E[72] 70.9 56.7 81.6 65.8

DSAN[48] 73.8 60.6 83.1 67.5

Ours 72.9 60.0 83.6 67.7

Table 4.2: Accuracy Comparison of Unsupservised Domain Adaptation on Office-
Home Dataset

Method I→P P→I I→C C→I C→P P→C Avg

ResNet[25] 74.8 ± 0.3 83.9 ± 0.1 91.5 ± 0.3 78.0 ± 0.2 65.5 ± 0.3 91.2 ± 0.3 80.7

DDC[3] 74.6 ± 0.3 85.7 ± 0.8 91.1 ± 0.3 82.3 ± 0.7 68.3 ± 0.4 88.8 ± 0.2 81.8

DAN[4] 75.0 ± 0.4 86.2 ± 0.2 93.3 ± 0.2 84.1 ± 0.4 69.8 ± 0.4 91.3 ± 0.4 83.3

DANN[57] 75.0 ± 0.4 86.0 ± 0.3 96.2 ± 0.4 87.0 ± 0.5 74.3 ± 0.5 91.5 ± 0.6 85.0

D-CORAL[49] 76.9 ± 0.2 88.5 ± 0.3 93.6 ± 0.3 86.8 ± 0.6 74.0 ± 0.3 91.6 ± 0.3 85.2

JAN[47] 76.8 ± 0.4 88.0 ± 0.2 94.7 ± 0.2 89.5 ± 0.3 74.2 ± 0.3 91.7 ± 0.3 85.8

MADA[62] 75.0 ± 0.3 87.9 ± 0.2 96.0 ± 0.3 88.8 ± 0.3 75.2 ± 0.2 92.2 ± 0.3 85.8

CDAN[72] 76.7 ± 0.3 90.6 ± 0.3 97.0 ± 0.4 90.5.8 ± 0.4 74.5 ± 0.3 93.5 ± 0.4 87.1

iCAN[77] 79.5 ± 0.1 89.7 ± 0.1 94.6 ± 0.2 89.9 ± 0.4 78.5 ± 0.1 92.0 ± 0.1 87.4

DSAN[48] 80.2 ± 0.2 93.3 ± 0.4 97.2 ± 0.3 93.8 ± 0.2 80.8 ± 0.4 95.9 ± 0.4 90.1

Ours 79.8 ± 0.2 93.5 ± 0.2 98.1 ± 0.2 94.4 ± 0.2 79.8 ± 0.1 96.3 ± 0.2 90.4

Table 4.3: Accuracy Comparison of Unsupervised Domain Adaptation on ImageCLEF
Dataset
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Office-31

Office-31 [78] is a very popular dataset for benchmarking domain adaptation.

This dataset contains more than 4000 images in 31 classes collected from three differ-

ent domains: Amazon (A), which consists of images downloaded from amazon.com,

and Webcam(W), and DSLR(D), which comprises of images taken by web camera

and digital SLR camera with various photographic settings, respectively. Figure 4.3

and 4.4 represent some of the samples from Amazon and Webcam respectively. Table

4.1 reports the performance of our method compared with other works on Office-31

dataset.

Office-Home

Office-Home [79] is another challenging dataset for unsupervised domain adap-

tation. This dataset contains four domains: Art(Ar), Clipart(CI), Product(Pr), and

Real-World(Rw). Each domain has common 65 categories. The Art domain contains

the artistic description of objects including painting, sketches etc. The Clipart are

the collection of clipart images. In the Product, domain images have no background.

The Real-World domain contains an object taken from a regular camera. In Table

4.2, we compare our result with previous methods on Office-Home dataset.

ImageCLEF

ImageCLEF-DA1 contains three domains: Caltech-256(C), ILSVRC 2012 (I),

and Pascal-VOC 2012 (P). Each domain has 12 common classes, and each class has

50 samples. In total, there are 600 images in each domain. Table 4.3 reports the

performance of our method with previous methods on ImageCLEF dataset.

1http://imageclef.org/2014/adaptation
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Figure 4.3: Office-31 Dataset on Amazon Pictures

4.4.2 Setup

In our experiment, we used the open-source implementation of a popular deep

learning framework, Pytorch [80], to train the models on multiple Nvidia Geforce

GTX 1080Ti GPUs. The machine has Intel Core-i7-5930k CPU@ 3.50GHz x 12 pro-

cessors with 64GB of memory. For the visual classification task, we applied ResNet50

[25] as the backbone network. For comparison, all the baseline models use identical

architecture. We fine-tune all the layers except classifier layers from ImageNet[81]

pre-trained models and train the fully connected layers for classification through

backward-propagation. We set the learning rate to 0.01, batch size to 32, we use

stochastic gradient descent (SGD) with a momentum of 0.9, the learning rate is get-

ting changed during SGD using the formula: lrnew = lrold/(1 +α(epoch−1)/epoch)β,

where α = 10, and β = 0.75.
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Figure 4.4: Office-31 Dataset on Webcam Pictures

For the adaptation feature norm loss, we observe the embedding size of task-

specific features played a major role in norm computation. We found r = 1 and

λ = 0.05 provide the best result. the highest value of r is to R = 5, so it progresses

each step r incrementally. The average classification accuracy and error are reported

over three random repeats.

4.5 Results and Discussion

We use our proposed approach for unsupervised subdomain adaptation. We

use the protocol to utilize source data with labels and target data without labels.

The visual classification results of Office-31, Office-Home, and ImageCLEF-DA are

promising. Our method outperforms previous methods on these datasets. Some of

the observations from our experiments are:
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Figure 4.5: t-SNE visualization for Office-31 dataset on task W → A (Before Adap-
tation)

• Comparing our proposed approach with the global domain adaptation methods

and several adversarial subdomain adaptation methods [72, 62, 70], these meth-

ods are more complex compared to our approach. The reason is most of the

methods use the adversarial loss function, and don’t consider the kernel mean

embeddings between source and target subdomains, and has more number of

parameters. Moreover, our method achieves better accuracy compared with

others.

• We compared our results with previous adversarial methods [4, 57, 62, 72]. Our

results are promising against most of the adversarial techniques. We improved

the average accuracy by 2.7% on ImageCLEF dataset, 0.8% on Office-31 dataset,
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Figure 4.6: t-SNE visualization for Office-31 dataset on task W → A (After Adapta-
tion)

and around 2% on Office-Home dataset compared to the most recent adversarial

methods [72].

• The t-SNE visualization on the transfer task from Webcam (red) to Amazon

(blue) before and after adaptation is presented in Figure 4.5 and Figure 4.6,

respectively. In Figure 4.7 and 4.8, t-SNE embeddings for Amazon (red) to

Webcam (blue) is showed. Figure 4.9 and 4.10, Figure 4.11 and 4.12, Figure

4.13 and 4.14, and Figure 4.15 and 4.16 shows the before and after domain

adaptation of dslr to webcam, webcam to dslr, amazon to dslr, and dslr to

amazon respectively.

• We conducted case studies to investigate the sensitivity of parameter ∆r in

Figure 4.17. It initiallly increases upto ∆r = 1 than gradually decreases.
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Figure 4.7: t-SNE visualization for Office-31 dataset on task A→ W (Before Adap-
tation)

Most of these methods do not consider the subdomain relationship, which effectively

captures nuances for each class. Additionally, we incorporate adaptive feature norm

loss inside of subdomain distributions. It contributes to apprehend more fine-grained

information. The results validate the efficacy of our approach.

4.6 Conclusion

In this work, we have proposed an innovative UDA approach, which incorporates

local mean distributed discrepancy measure(LMMD) with adaptive feature norm on

subdomain adaptation. Subdomain adaptation can precisely align the distributions

of related subdomains within the source and target domains’ relevant category. More-

over, subdomain adaptation can boost the transfer gains more if the adaptive feature
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Figure 4.8: t-SNE visualization for Office-31 dataset on task A→ W (After Adapta-
tion)

norm of the subdomains to a large range of values is added. Extensive experiments

were performed on three of the most popular datasets for domain adaptation. Our re-

sults show the method’s effectiveness, implying that task-specific features with larger

norms are more transferable on subdomain adaptation. In future, we will investi-

gate adaptive feature norm on an adversarial based unsupervised domain adaptation

scenario.
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Figure 4.9: t-SNE visualization for Office-31 dataset on task D → W (Before Adap-
tation)
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Figure 4.10: t-SNE visualization for Office-31 dataset on task D → W (After Adap-
tation)
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Figure 4.11: t-SNE visualization for Office-31 dataset on task W → D (Before Adap-
tation)
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Figure 4.12: t-SNE visualization for Office-31 dataset on task W → D (After Adap-
tation)
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Figure 4.13: t-SNE visualization for Office-31 dataset on task A→ D (Before Adap-
tation)
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Figure 4.14: t-SNE visualization for Office-31 dataset on task A → D (After Adap-
tation)
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Figure 4.15: t-SNE visualization for Office-31 dataset on task D → A (Before Adap-
tation)
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Figure 4.16: t-SNE visualization for Office-31 dataset on task D → A (After Adap-
tation)
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Figure 4.17: parameter sensitivity of ∆r on Office-31 (Amazon→Webcam) dataset
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CHAPTER 5

DISCUSSION

Transfer Learning is one of the most widely applied methods in the field of

computer vision. Typically, a machine learning model is trained first on a large

labeled dataset such as ImageNet [81], and then fine-tuned on a target dataset. During

fine-tuning, the parameters for the network layers except the classification layer are

initialized from the pre-trained model. This method has proven very effective for

object recognition [32, 82], and many other applications. This method has been

leveraged to tackle applications where dataset size is limited. In this dissertation, we

demonstrated the effect of transfer learning on fine-grained visual categorization. We

show how the choice of pre-training data can play a crucial role when fine-tuned on

a new dataset. We have shown that more pre-training data does not always help.

Additionally, matching target domain distribution can improve the accuracy of the

model.

One of the significant problems in real-world applications is the distribution

change and domain shift between the source and target domain. Domain adaptation

is a particular case of transfer learning that exploits labeled data in one or more

relevant source domains to execute new tasks in the target domain. Deep neural

network-based domain adaptation approaches have shown remarkable results in visual

categorization applications. Unsupervised domain adaptation, where no labeled data

in the target domain is available in training, has enticed the research community. In

this dissertation, we investigate the unsupervised domain adaptation method on visual

application tasks among different domains. Our method incorporates an unsupervised
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sub-domain adaptation technique with adaptive feature norm alignment to achieve

state-of-the-art results on several datasets.

Domain adaptation using the deep neural network has been utilized success-

fully in visual classification applications such as object recognition, object detection,

face recognition, semantic segmentation, and person re-identification. However, most

methods have yet to achieve decent results on these tasks with no data or minimal

data. Various techniques [56] such as domain-invariant feature learning, domain map-

ping, statistics-based methods have been developed for achieving good performance.

Some problems still can be explored to further improvements.

• Bi-Directional Adaptation: Domain adaptation addresses some problems,

which shows decent results in one way, but not in two ways. For example, SVHN

→ MNIST shows accuracy above 90%, while for the reverse case of MNIST →

SVHN, the highest accuracy is around 80%. This accuracy shows how the bi-

directional adaptation method is much harder [10, 56]. More work is needed to

strengthen the bi-directional adaptation.

• Combining Methods: Domain adaptation methods typically align feature

distributions; another way of the research aligns the joint or conditional dis-

tribution [72, 83, 84] of the feature and label spaces instead. Some methods

found aligning jointly or conditionally improves adaptation performance when

handling multi-modal data distributions [72]. Other domain adaptation strate-

gies can apply joint or conditionally distribution to boost domain adaptation

performance instead of depending on feature distribution.

• Multiple Source or Multiple Target based Domain Adaptation: Most

of the existing methods focus on single-source homogeneous domain adaptation.

Multiple source domains or multiple target domains can provide additional gains

in performance by employing more data. In the area of heterogeneous feature
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spaces or various other levels of supervision such as semi-supervised [85] domain

adaptation may boost the performance gains. This area can be explored more

in the future.

Some of the methods show promising results, but further research can be done on novel

method combinations, direct comparisons, domain generalization, and new datasets

and applications.
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CHAPTER 6

CONCLUSION

This dissertation investigates the domain adaptive transfer learning approach on

fine-grained visual categorization (FGVC), provided a comprehensive literature study

on unsupervised domain adaptation on visual categorization, and an innovative step-

wise adaptive feature norm-based approach for unsupervised subdomain adaptation.

The contributions in this work are as follow:

1. We demonstrated a domain adaptive transfer learning approach that combines

with visual attention-based data augmentation and can achieve state-of-the-art

results on FGVC datasets.

2. We presented the relationship of top-1 accuracy and domain score on six com-

monly used FGVC datasets. Additionally, we illustrated the effect of image

resolution in transfer learning in detail.

3. We presented a survey of different types of existing techniques on unsupervised

domain adaptation for visual categorization.

4. An innovative stepwise adaptive feature norm-based approach for unsupervised

subdomain adaptation was proposed. This approach employs progressively

learning task-specific features, aligning relevant subdomains in unsupervised

scenarios.

5. We compared results with both adversarial and non-adversarial methods to

show the efficacy of the work.
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