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ABSTRACT

HIGHER-ORDER NONSTANDARD FINITE DIFFERENCE METHODS FOR

AUTONOMOUS DIFFERENTIAL EQUATIONS WITH APPLICATIONS IN

MATHEMATICAL ECOLOGY

Fawaz Karhan Alalhareth, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Hristo V. Kojouharov

Nonstandard finite difference (NSFD) methods have been widely used to numer-

ically solve various problems in biology. In recent years, NSFD methods have been

proposed that preserve essential properties of the solutions of general autonomous

differential equations, such as positivity and elementary stability, among others.

However, those methods are only of first-order accuracy. In the first part of this

dissertation, we construct and analyze two second-order modified positive and elemen-

tary stable nonstandard (PESN) numerical methods for n-dimensional autonomous

differential equations. The new PESN methods are generalized versions of the explicit

Euler’s method and second-order accurate, thereby improving the order of accuracy

of the underlying numerical method. In the second part of this dissertation, we

analyze several chemostat models with a constant input of one species. Chemostat

models have been extensively used to represent microbial growth and competition in

homogeneous environments. First, we consider a simple growth chemostat model for

a donor bacteria and one limiting resource. Since competition is crucial in nature,
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we next propose a model when there is competition between a resident bacteria

and the donor bacteria for a single limiting substrate in the presence of a lethal

toxin. Resident bacteria can become donor bacteria by changing the genetics of the

resident bacteria. This change can occur by a plasmid. Therefore, we propose a model

when there is competition in the presence of a constant homogeneous plasmid. The

proposed chemostat models are non-linear ordinary differential equations, and their

exact solutions cannot be obtained analytically. Moreover, their solutions remain

positive for all time. Therefore, using accurate and efficient numerical methods

that also preserve the solutions’ positivity property is essential when working with

chemostat models. In the last part of the dissertation, the new second-order PESN

(SOPESN) methods are used to approximate the solutions of the earlier presented

chemostat models. In addition, the SOPESN methods are compared with several

standard and nonstandard finite difference methods to numerically demonstrate their

advantages when solving models in mathematical ecology.
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CHAPTER 1

Introduction

Ordinary differential equations (ODEs) are often used to model various complex

processes in economics, engineering, biology, chemistry, and many other scientific

fields. Most models are nonlinear differential equations that cannot be solved an-

alytically. Moreover, the models are dynamical systems with essential properties

such as the positivity, boundedness, and monotonicity of solutions and the linear

stability properties of the equilibria, among others. Consequently, it becomes vital to

construct numerical methods that accurately approximate the solutions of the ODEs

and preserve their essential properties. Standard finite-difference numerical methods,

especially explicit ones, such as the Euler and the Runge–Kutta methods, usually

require severe restrictions on the discrete time-step size to mimic the ODE solution

correctly.

About three decades ago, nonstandard finite difference (NSFD) methods were

introduced by Mickens to numerically solve ODEs by preserving the essential properties

of their exact solutions (see [31] and references therein). Since then, the NSFD methods

have been extensively developed to approximate the solutions of ordinary differential

equations. The NSFD schemes have been constructed to be qualitatively stable [4]

with respect to the desired property of the solution of the ODE for any time-step

size. Dynamically consistent [29, 5] NSFD methods have been developed to preserve

boundedness, conservation laws, monotonicity of solutions, and the equilibria’s linear

stability, among other properties (See [35, 36] and references therein).

1



Biological models require that solutions (concentrations or populations) remain

positive for any time. In this context, several NSFD methods have also been developed

to preserve both the positivity and elementary stability properties of solutions for

specific autonomous dynamical systems [12, 9, 11, 13, 2, 1]. A methodology for

constructing positive and elementary stable nonstandard (PESN) numerical methods

has also been proposed for general productive-destructive systems [14, 48] as well as

for solving general autonomous systems with positive solutions [49]. However, most

NSFD methods that preserve both the positivity and elementary stability properties

of solutions are only first-order accuracy. Second-order NSFD methods have been

proposed. For instance, in [15, 25, 16], we proposed a methodology for constructing

NSFD methods that are second-order accuracy and are elementary stable. However,

they do not preserve the positivity property. The positivity property of the solutions

is a very important property for the solutions when the ODEs are used to model any

biological system.

One crucial biological system is the gut microbiome, because it plays an essential

role in human health. For instance, the gut microbiome could help weight loss or

prevent obesity in individuals [8]. Moreover, the gut microbiota has crucial effects

on mental illness, maintenance of mental health, and heart failure [27, 46, 7]. The

human gut contains many bacteria; some are good for our health, but others are bad

[47]. The harmful bacteria can become a good bacteria by changing the genetics of

the harmful bacteria and vice versa. The change of the genetics in a bacteria can

occur by the plasmid. Moreover, the plasmid plays fundamental roles in antibiotic

resistance and bioremediation [6]. Therefore, understanding the dynamic plasmid

bearing (donor) or non-plasmid bearing (resident) is crucial.

A laboratory device that can be used to represent the human gut is the chemostat.

The chemostat is an experimental device that was invented simultaneously by Monod
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[32] and Novick-Szilard [34]. It plays a vital role in ecology. The chemostat can be

used as a model of a simple lake, the wastewater treatment process, or the growth of

microorganisms for industrial or experimental purposes. Moreover, it can be used

as a model of organisms’ competition for a nutrient. The simple chemostat model

of one organism consuming the nutrient appeared in the fifteen, and it is described

with two non-linear ordinary differential equations [39]. Since then, there have been

many modifications to the simple chemostat model to represent significant biological

problems such as competition, competition in the presence of an inhibitor, competition

in the presence of plasmid, and many others [44, 22, 40, 21]. However, most of the

chemostat models are non-linear ordinary differential equations. They can not be

solved analytically. Thus, it becomes essential to construct numerical methods that

are efficient and preserve some important properties of the chemostat models, such

as positivity and the local stability of the equilibria.

This dissertation is organised as follows. In Chapter 2, definitions and pre-

liminary work needed for the rest of the dissertation are given. In Chapter 3, we

construct and analyze second-order PESN methods for general classes of ODEs. In

Chapter 4, we construct and an analyze several chemostat models with microbial

input. In Chapter 5, several examples and applications are given which demonstrate

the effectiveness of the proposed NSFD methods developed in Chapter 3, and then

use the SOPESN methods to numerically solve the chemostat models and validate

the theoretical result in Chapter 4. Finally, in Chapter 6, concluding remarks are

given.
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CHAPTER 2

Definitions and preliminaries

We consider autonomous differential equations of the form

x⃗′ = f⃗(x⃗); x⃗(t0) = x⃗0 ∈ Rn
+, (2.0.1)

where Rn
+ = {(x1, x2, ..., xn) ∈ Rn : xi > 0,∀i = 1, ..., n}, the vector-function x⃗ =

[x1, . . . , xn] is unknown, and the vector-function f⃗ = [f1, . . . , fn] ∈ C2(Rn
+;Rn) such

that Rn
+ is positively invariant [44]. It is also assumed that equation (2.0.1) has

a finite number of equilibria and each of them is hyperbolic. In addition, we also

consider the following general sub-class of autonomous differential equations, termed

productive-destructive equations [14]:

x⃗′ = P⃗ (x⃗)− D⃗(x⃗); x⃗(t0) = x⃗0 ∈ Rn
+, (2.0.2)

where P⃗ = [P1, . . . , Pn], D⃗ = [D1, . . . , Dn], and Pi, Di ∈ C2(Rn
+;R+). Productive-

destructive equations (2.0.2) are widely used for models in the sciences and engineering,

with the functions P⃗ and D⃗ representing the production and destruction processes,

respectively.

A general finite difference method to approximate System (2.0.1) for all i =

1, . . . , n can be written as

Di,h(x
k
i ) = Fi,h(fi; x⃗

k), (2.0.3)

where Di,h(x
k
i ) ≈ x′

i(tk), x
k
i ≈ xi(tk), Fi,h(fi; x⃗

k) approximates fi(x⃗(tk)) in Equation

(2.0.1) and tk = t0 + kh, where h > 0 and k ≥ 0.
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Definition 2.0.1. ([4, 10, 50]) The finite-difference method (2.0.3) for solving Equa-

tion (2.0.1) is a NSFD method if at least one of the following conditions is satisfied

for all i = 1, . . . , n:

• Di,h(x⃗
k) =

xk+1
i − xk

i

φi(h)
, where φi(h) = h+O(h2) is a non-negative function;

• Fi,h(fi; x⃗
k) = gi(x⃗

k, x⃗k+1, h), where gi(x⃗
k, x⃗k+1, h) is a non-local approximation

of the i-th component of the right-hand side of System (2.0.1).

Definition 2.0.2 ([4, 10, 50]). The finite difference method (2.0.3) is called elementary

stable if, for any value of the step size h, its only fixed points x⃗∗ are those of the

equation (2.0.1) and the linear stability properties of each x⃗∗ being the same for both

the differential equation and the numerical method.

Definition 2.0.3 ([14, 48]). The finite difference method (2.0.3) is called positive,

if, for any value of the step size h, and x⃗0 ∈ Rn
+ its solution remains positive, i.e.,

x⃗k ∈ Rn
+ for all k ∈ N.

Definition 2.0.4 ([44]). Let π : Rn × R → Rn be a function of two variables. The

function π is said to be a continuous dynamical system if π is continuous and has the

following properties:

1. π(x⃗0, 0) = x⃗0;

2. π(x⃗0, t+ s) = π(π(x⃗0, t), s).

One example of a dynamical system is an ordinary differential equation of the

form

x⃗′ = f⃗(x⃗), (2.0.4)

with x⃗ ∈ Rn and f⃗ ∈ C1(Rn;Rn) by defining

π(x⃗0, t) = x⃗(t),

where x⃗(t) is the solution of Equation (2.0.4) satisfying the initial condition x⃗(0) = x⃗0.
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Definition 2.0.5 ([44]). The dynamical system is said to be dissipative if all positive

trajectories eventually lie in a bounded set.

Positive and elementary stable nonstandard numerical methods can be designed

using the following theorem [48, 49]:

Theorem 2.0.1. The numerical discretization of Equation (2.0.1):

xk+1
i − xk

i

φ(h)
= wk

i fi(x⃗
k), (2.0.5)

where

wk
i =


1, if fi(x⃗

k) ≥ 0

xk+1
i

xk
i

, if fi(x⃗
k) < 0

,

for i = 1, . . . , n and the nonstandard denominator function φ(h) satisfies the properties

listed in [49, Equation (8)], represents a positive and elementary stable nonstandard

(PESN1) numerical method for Equation (2.0.1).

The numerical discretization of Equation (2.0.2):

xk+1
i − xk

i

φ(h)
= Pi(x⃗

k)−Di(x⃗
k)
xk+1
i

xk
i

, (2.0.6)

for i = 1, . . . , n and the nonstandard denominator function φ(h) satisfies the properties

listed in [48, Theorem 5.1], represents a positive and elementary stable nonstandard

(PESN2) numerical method for Equation (2.0.2).

However, the PESN methods (2.0.5) and (2.0.6) are only of first-order accuracy.

In the following chapter, we present a novel approach that modifies the denominator

functions in the PESN1 and PESN2 methods to achieve a second-order accuracy of

the corresponding methods.
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CHAPTER 3

Second-order modified PESN numerical methods

3.1 Introduction

Modeling natural dynamical systems with ODEs requires that the physically

relevant solutions remain positive for all times. In this context, NSFD methods have

been developed to preserve both the positivity and elementary stability properties

of solutions for specific autonomous dynamical systems [12, 9, 11, 13, 2, 1]. A

methodology for constructing positive and elementary stable nonstandard (PESN)

numerical methods has been proposed for general productive-destructive systems

[14, 48] as well as for solving general autonomous dynamical systems with positive

solutions [49]. However, most NSFD methods that preserve both the positivity and

elementary stability properties of solutions are only first-order accurate.

In this chapter, two nonstandard finite difference methods, which are not

only positive and elementary stable but also of second-order accuracy (SOPESN),

are developed and analyzed to approximate the solutions of general autonomous

differential equations, including productive-destructive equations. The proposed new

SOPESN methods are generalizations of the PESN methods [14, 48, 49] with novel

nonstandard denominator functions [30] that also guarantee a second-order accuracy,

thereby improving the order of accuracy of the underlying explicit Euler’s method.

Before proving the main results, we state the following lemma which is used to

show that the new SOPESN1 and SOPESN2 methods are elementary stable:

7



Lemma 3.1.1. Suppose {xn} and {yn} are sequences of positive real numbers such

that xn → 0 as n → ∞ while yn → b ∈ R+ ∪ {∞} as n → ∞. Then, there is N ∈ N

such that n ≥ N implies

xn < yn.

Proof. First, let us suppose b ∈ R+, then there is a positive integer N1 such that if

n ≥ N1 implies ∣∣∣yn − b
∣∣∣ < b

2
.

Therefore, using the absolute value definition implies

b

2
< yn <

3b

2
, for all n ≥ N1.

But, since xn → 0 as n → ∞, then there is a positive integer N2 such that if n ≥ N2

we have

xn <
b

2
.

Now taking N = max {N1, N2} implies

xn < yn, for all n ≥ N.

If yn → ∞, then there is a positive integer N3 such that

yn > 1, for all n ≥ N3.

Also, since xn → 0 as n → ∞, then there is a positive integer N4 such that

xn < 1, for all n ≥ N4.

Therefore, taking N = max {N3, N4} we have

xn < yn, for all n ≥ N.

8



3.2 Second order modified PESN (SOPESN1) method for a general class of au-

tonomous differential equations

The following result holds for the new SOPESN1 method for Equation (2.0.1):

Theorem 3.2.1. Let f⃗ ∈ C2(Rn
+;Rn) and let φi : R+×Rn

+ → R+ satisfy the following:

φi(h, x⃗) = h− qi(x⃗)
h2

2
+O(h3), (3.2.1)

where

qi(x⃗) =


−

n∑
j=1

∂fi(x⃗)

∂xj

fj(x⃗)

fi(x⃗)
, fi(x⃗) > 0

2fi(x⃗)

xi

−
n∑

j=1

∂fi(x⃗)

∂xj

fj(x⃗)

fi(x⃗)
, fi(x⃗) < 0

. (3.2.2)

Then, the PESN1 method (2.0.5) with deniminator function (3.2.1)-(3.2.2):

xk+1
i − xk

i

φi(h, x⃗k)
= wk

i fi(x⃗
k), (3.2.3)

where

wk
i =


1, if fi(x⃗

k) ≥ 0

xk+1
i

xk
i

, if fi(x⃗
k) < 0

,

preserves the positivity of solutions of Equation (2.0.1), is elementary stable, and

second-order accurate (SOPESN1 method).

Proof. The proof is organized as follows. First, we prove that the numerical method

is positivity preserving, then, that it is second order accurate, and finally, that it is

elementary stable.

1. Positivity : The SOPESN1 method (3.2.3) can be written in the following explicit

form:

xk+1
i =


xk
i + φi(h, x⃗k)fi(x⃗

k), if fi(x⃗
k) ≥ 0

(xk
i )

2

xk
i − φi(h, x⃗k)fi(x⃗k)

, if fi(x⃗
k) < 0

. (3.2.4)

9



Note that if fi(x⃗
k) ≥ 0, then φi(h, x⃗

k)fi(x⃗
k) ≥ 0 and if fi(x⃗

k) < 0, then

−φi(h, x⃗
k)fi(x⃗

k) > 0, since φi(h, x⃗
k) > 0. Therefore, the positivity of the

SOPESN1 method follows from Equation (3.2.4), since xk
i > 0 implies that

xk+1
i > 0, for all i = 1, . . . , n.

2. Second order of accuracy : To prove the SOPESN1 method (3.2.3) is of second-

order accuracy, we separately consider the following three cases:

• If fi(x⃗) < 0, then the SOPESN1 method (3.2.3) can be written in the

explicit form

xk+1
i =

(xk
i )

2

xk
i − φi(h, x⃗k)fi(x⃗k)

.

Note that when φi(h, x⃗) = h+O(h2) and xi ̸= 0, then

φi(h, x⃗)fi(x⃗)

xi

→ 0 as h → 0.

Therefore, there exists δi > 0 such that∣∣∣∣φi(h, x⃗)fi(x⃗)

xi

∣∣∣∣ < 1,

and consequently

1

1− fi(x⃗)φi(h, x⃗)

xi

= 1 +
fi(x⃗)φi(h, x⃗)

xi

+
f 2
i (x⃗)φ

2
i (h, x⃗)

x2
i

+O(h3), (3.2.5)

whenever 0 < h < δi, for all i = 1, . . . , n. Using Equation (3.2.5) and a

Taylor series expansion about tk yields the following:

xi(tk+1)−
(xi(tk))

2

xi(tk)− φi(h, x⃗(tk))fi(x⃗(tk))

= xi(tk+1)−
xi(tk)

1− φi(h, x⃗(tk))fi(x⃗(tk))

xi(tk)

= xi(tk+1)− xi(tk)

[
1 +

φi(h, x⃗(tk))fi(x⃗(tk))

xi(tk)
+

φ2
i (h, x⃗(tk))(fi(x⃗(tk)))

2

(xi(tk))2

]
10



+O(h3)

= x′
i(tk)h+ x′′

i (tk)
h2

2
− φi(h, x⃗(tk))fi(x⃗(tk))−

φ2
i (h, x⃗(tk))f

2
i (x⃗(tk))

xi(tk)

+O(h3)

= fi(x⃗(tk))h+
h2

2

n∑
j=1

∂fi(x⃗(tk))

∂xj

fj(x⃗(tk))

− φi(h, x⃗(tk))fi(x⃗(tk))−
φ2
i (h, x⃗(tk))f

2
i (x⃗(tk))

xi(tk)
+O(h3).

Now using φi(h, x⃗) = h+
(
− 2fi(x⃗)

xi

+
n∑

j=1

∂fi(x⃗)

∂xj

fj(x⃗)

fi(x⃗)

)h2

2
+O(h3).

xi(tk+1)−
x2
i (tk)

xi(tk)− φi(h, x⃗(tk))fi(x⃗(tk))
= O(h3). (3.2.6)

• If fi(x⃗) > 0, then the SOPESN1 method (3.2.3) can be written as

xk+1
i = xk

i + φi(h, x⃗
k)fi(x⃗

k).

Using Taylor series expansion about tk yields the following:

xi(tk+1)−
[
xi(tk) + φi(h, x⃗(tk))fi(x⃗(tk))

]
= xi(tk) + (xi(tk))

′h+
( n∑

j=1

∂fi(x⃗(tk))

∂xj

fj(x⃗(tk))
)h2

2
− xi(tk)

− φi(h, x⃗(tk))fi(x⃗(tk)) +O(h3)

= fi(x⃗(tk))h+
( n∑

j=1

∂fi(x⃗(tk))

∂xj

fj(x⃗(tk))
)h2

2

− φi(h, x⃗(tk))fi(x⃗(tk)) +O(h3).

Now using φi(h, x⃗) = h+
( n∑

j=1

∂fi(x⃗(tk))

∂xj

fj(x⃗(tk))

fi(x⃗(tk))

)h2

2
+O(h3) implies

xi(tk+1)−
[
xi(tk) + φi(h, x⃗(tk))fi(x⃗(tk))

]
= O(h3). (3.2.7)
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• If fi(x⃗
k) = 0, then the SOPESN1 method (3.2.3) reduces to xk+1

i = xk
i ,

which represents an exact scheme for solving Equation (2.0.1).

Equations (3.2.6) and (3.2.7) prove the second order accuracy of the SOPESN1

method (3.2.3).

3. Elementary stability : It is easy to see from the formulation (3.2.3) that all

fixed points x⃗∗ of the SOPESN1 method are equilibria of Equation (2.0.1) and

vice versa. To prove the numerical scheme (3.2.3) is elementary stable, let x⃗∗

be an equilibrium of system (2.0.1) and J = J(x⃗∗) be the Jacobian evaluated

at x⃗∗ with eigenvalues λ1, λ2, . . . , λn. We assumed the Jacobian matrices to

be diagonalizable, which is frequently considered in applications [3]. Setting

ϵ⃗ = x⃗− x⃗∗, then linearized version of System (2.0.1) can be written as

ϵ⃗′ = Jϵ⃗, (3.2.8)

We consider the following three cases:

(a) All eigenvalues of the matrix J are real: Since J is diagonalizable,

then there is nonsingular matrix Pr whose columns are the eigenvectors of

J satisfying [19]

Λr = P−1
r JPr,

where Λr = diag(λ1, . . . , λn). Now, let η⃗ = P−1
r ϵ⃗ and multiplying ϵ⃗′ = Jϵ⃗

by P−1
r on both sides yields:

P−1
r ϵ⃗′ = P−1

r Jϵ⃗,

which is equivalent to

P−1
r ϵ⃗′ = P−1

r (PrΛrP
−1
r )⃗ϵ,

12



i.e,

η⃗′ = Λrη⃗. (3.2.9)

Following the approach in [3], we apply the numerical scheme (3.2.3) to

(3.2.9).

First, let us assume x⃗∗ is a locally asymptotically stable equilibrium for

(2.0.1). Then, λi < 0 for all i = 1, . . . , n, and

ηk+1
i =

( ηki
ηki − φi(h, η⃗k)λiηki

)
ηki ,

since φi(h, η⃗
k) > 0 we can conclude∣∣∣ ηki

ηki − φi(h, η⃗k)λiηki

∣∣∣ < 1.

which shows that x⃗∗ is locally asymptotically stable for Scheme (3.2.3).

Next, if x⃗∗ is unstable, then λj0 > 0 for some j0 ∈ {1, . . . , n} . After

applying the numerical scheme to (3.2.9) yields:

ηk+1
j0

=
(
1 + φj0(h, η⃗

k)λj0

)
ηkj0 ,

since φj0(h, η⃗
k) > 0, then clearly we have∣∣∣1 + φj0(h, η⃗

k)λj0

∣∣∣ > 1.

Therefore, x⃗∗ is unstable for the numerical scheme (3.2.3).

(b) All eigenvalues of J are complex with Im(λi) ̸= 0 for all i = 1, . . . , n:

Since J is a real matrix, we note if λi is an eigenvalue of J , then λ̄i (complex

conjugate) is also an eigenvalue of J. Therefore, n must be an even positive

integer. We recall there is a invertible matrix Pc satisfying

Λc = P−1
c JPc.

13



The Jordan normal form satisfies [19]

Λc = diag(Bλ1 , . . . , Bλn),

where Bλi
=

 ai bi

−bi ai

 with R(λi) = ai and Im(λi) = bi. Similar to the

argument in the Case (a), we apply the numerical scheme (3.2.3) to

η⃗′ = Λcη⃗. (3.2.10)

First, if x⃗∗ is a locally asymptotically stable equilibrium, then ai < 0 for

all i = 1, . . . , n. Let i ∈ {1, . . . , n} , then ai < 0 and bi is either positive or

negative.

• If bi < 0, then

ηk+1
i =

( ηki
ηki − φi(h, η⃗k)(aiηki + biηki+1)

)
ηki ,

since aiη
k
i + biη

k
i+1 < 0, and ηki , η

k
i+1 are positive, then

ηki − φi(h, η⃗
k)(aiη

k
i + biη

k
i+1) > ηki .

Hence,

0 <
ηki

ηki − φi(h, η⃗k)(aiηki + biηki+1)
< 1.

i.e. ∣∣∣ ηki
ηki − φi(h, η⃗k)(aiηki + biηki+1)

∣∣∣ < 1.

Hence, ηki → 0 as k → ∞. We claim ηki+1 → 0 as k → ∞. Let k+1 ∈ N.

We consider two cases:

Case (b.I): −biη
k
i +aiη

k
i+1 < 0, then after applying the numerical scheme

to (3.2.10) we have:

ηk+1
i+1 =

( ηki+1

ηki+1 − φi+1(h, η⃗k)(−biηki + aiηki+1)

)
ηki+1,

14



and
∣∣∣ ηki+1

ηki+1−φi+1(h,η⃗k)(−biηki +aiηki+1)

∣∣∣ < 1 which implies ηk+1
i+1 → 0 as k → ∞.

Case (b.II): −biη
k
i + aiη

k
i+1 ≥ 0 :

ηk+1
i+1 = ηki+1 + φi+1(h, η⃗

k)
(
− biη

k
i + aiη

k
i+1

)
≥ ηki+1.

Therefore,
{
ηki+1

}
is a monotonically increasing sequence and hence it

either converges to a positive number or tends to infinity as k → ∞.

Therefore, by Lemma (3.1.1) there is N1 ∈ N such that m ≥ N1 implies

−biη
m
i < −aiη

m
i+1,

after applying the numerical scheme to Equation (3.2.10), we have:

ηm+1
i+1 =

( ηmi+1

ηmi+1 − φi+1(h, η⃗m)(−biηmi + aiηmi+1)

)
ηmi+1,

and since ∣∣∣ ηmi+1

ηmi+1 − φi+1(h, η⃗m)(−biηmi + aiηmi+1)

∣∣∣ < 1,

then that implies ηm+1
i+1 → 0 as m → ∞. This contradicts the limit

is either positive or ∞. Therefore, the case −biη
k
i + aiη

k
i+1 ≥ 0 is not

possible for a large enough k.

• If bi > 0, then

ηk+1
i+1 =

( ηki+1

ηki+1 − φi+1(h, η⃗k)(−biηki + aiηki+1)

)
ηki+1,

since −biη
k
i + aiη

k
i+1 < 0, and ηki , η

k
i+1 are positive, then

ηki+1 − φi+1(h, η⃗
k)(−biη

k
i + aiη

k
i+1) > ηki+1.

Hence,

0 <
ηki+1

ηki+1 − φi+1(h, η⃗k)(−biηki + aiηki+1)
< 1.

15



i.e. ∣∣∣ ηki+1

ηki+1 − φi+1(h, η⃗k)(−biηki + aiηki+1)

∣∣∣ < 1.

Therefore, ηki+1 → 0 as k → ∞ for all i = 1, . . . , n. We claim ηki → 0 as

k → ∞. Suppose for the sake of a contradiction not. Recall
{
ηki
}
is a

positive sequence, similar argument as above ηki converges to a positive

number or tends to infinity. Using Lemma (3.1.1) we can conclude for large

enough k we have

biη
k
i+1 < −aηki ,

applying the numerical scheme to (3.2.10) yields:

ηk+1
i =

( ηki
ηki − φi(h, η⃗k)(aiηki + biηki+1)

)
ηki ,

but since aiη
k
i + biη

k
i+1 < 0 and ηki , η

k
i+1 are all positive, then

ηki − φi(h, η⃗
k)(aiη

k
i + biη

k
i+1) > ηki .

Hence,

0 <
ηki

ηki − φi(h, η⃗k)(aiηki + biηki+1)
< 1,

which implies ∣∣∣ ηki
ηki − φi(h, η⃗k)(aiηki + biηki+1)

∣∣∣ < 1.

Therefore, ηki → 0 as k → ∞ contradicts the limit is either positive or

infinity. Therefore, ηki → 0 as k → ∞. Since i was an arbitrary, we can

conclude ηki → 0 as k → ∞ for all i = 1, . . . , n. Therefore, x⃗∗ is locally

asymptotically stable for Scheme (3.2.3).

Next, let us assume x⃗∗ is unstable. Then, there is an eigenvalues λj0 of J

with aj0 > 0. Now after applying the numerical scheme to Equation (3.2.10)

we consider two cases:

16



• If bj0 < 0,

ηk+1
j0+1 = ηkj0+1 + φj0+1(h, η⃗

k)(−bj0η
k
j0
+ aj0η

k
j0+1)

=
(
1 + aj0φj0+1(h, η⃗

k)
)
ηkj0+1 − φj0+1(h, η⃗

k)bj0η
k
j0

>
(
1 + aj0φj0+1(h, η⃗

k)
)
ηkj0+1.

Since
∣∣∣1 + aj0φj0+1(h, η⃗

k)
∣∣∣ > 1, then

(
1 + aj0φj0+1(h, η⃗

k)
)
ηkj0+1 → ∞

as k → ∞. Therefore, ηk+1
j0+1 → ∞ as k → ∞.

• bj0 > 0, similar argument as above will show ηkj0 → ∞ as k → ∞.

Therefore, x⃗∗ is unstable fixed point of the numerical scheme (3.2.3).

(c) J has both real and complex eigenvalues: Suppose λ1, . . . , λk are the

real eigenvalues of J and λj = aj+ibj and λ̄j = aj−ibj for j = k+1, . . . , n+k
2
.

Then, there is a nonsingular matrix Prc satisfying [19]

Λrc = P−1
rc JPrc,

Similar to the argument in Case (a), we apply the numerical scheme to

η⃗′ = Λrcη⃗, (3.2.11)

where Jrc = diag(Bλ1 , . . . , Bλn) and

Bλi
=


λi, Im(λi) = 0 R(λi) Im(λi)

− Im(λi) R(λi)

 , Im(λi) ̸= 0
.

Now let x⃗∗ is a stable equilibrium point of System (2.0.1). Then, R(λi) < 0

for all i. To prove x⃗∗ is a stable fixed point. We note that if Im(λi) = 0,

we use same argument as in Case (a) to show ηk+1
i → 0 as k → ∞. If

Im(λi) ̸= 0, we use same argument used in Case (b) to show ηk+1
i → 0
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as k → ∞. Hence, x⃗∗ is locally asymptotically stable for Scheme (3.2.3).

Finally, if x⃗∗ is unstable for (2.0.1), then, there is λj0 with R(λj0) > 0

for some j0 ∈ {1, . . . , n}. Also, Im(λj0) = 0 or Im(λi) ̸= 0 using similar

argument as in Case (a) or Case (b), respectively, will show that x⃗∗ is an

unstable fixed point for Scheme (3.2.3).

The following corollary is for the SOPESN1 method when n = 1.

Corollary 3.2.1. Let f ∈ C2(R+;R) and let φ : R+×R+ → R+ satisfy the following

specific form:

φ(h, x) = h− q(x)
h2

2
+O(h3), (3.2.12)

where

q(x) =


−fx(x), f(x) > 0

2f(x)

x
− fx(x), f(x) < 0

. (3.2.13)

Then, the PESN1 method (2.0.5) with deniminator function (3.2.12)-(3.2.13):

xk+1 − xk

φ(h, xk)
= wkf(xk), (3.2.14)

where

wk =


1, if f(xk) ≥ 0

xk+1

xk
, if f(xk) < 0

,

preserves the positivity of solutions of Equation (2.0.1) when n = 1, is elementary

stable, and second-order accurate (SOPESN1 method).

3.3 Second order modified PESN (SOPESN2) method for n-dimensional productive-

destructive systems

The following result holds for the new SOPESN2 method for Equation (2.0.2):
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Theorem 3.3.1. Let P⃗ , D⃗ ∈ C2(Rn
+;Rn

+) and φi : R+ × Rn
+ → R+ satisfies the

following condition:

φi(h, x⃗) = h− qi(x⃗)
h2

2
+O(h3), (3.3.1)

where

qi(x⃗) = −
n∑

j=1

(∂Pi(x⃗)

∂xj

− ∂Di(x⃗)

∂xj

)(Pj(x⃗)−Dj(x⃗)

Pi(x⃗)−Di(x⃗)

)
− 2Di(x⃗)

xi

, (3.3.2)

whenever Di(x⃗) ̸= Pi(x⃗). Then, the PESN2 method (2.0.6) with deniminator function

(3.3.1)-(3.3.2):

xk+1
i − xk

i

φi(h, x⃗k)
= Pi(x⃗

k)−Di(x⃗
k)
xk+1
i

xk
i

, (3.3.3)

preserves the positivity of solutions of Equation (2.0.2), is elementary stable, and

second-order accurate (SOPESN2 method).

Proof. The proof is organized similarly to the proof of Theorem 3.2.1.

1. Positivity : The positivity of the SOPESN2 method follows from the fact that

when x⃗k ∈ Rn
+, then Pi(x⃗

k) > 0 and Di(x⃗
k) > 0 for all i = 1, . . . , n, and

therefore,

xk+1
i =

xk
i

(
xk
i + φi(h, x⃗

k)Pi(x⃗
k)
)

xk
i + φi(h, x⃗k)Di(x⃗k)

> 0,

since φi(h, x⃗
k) > 0.

2. Second order of accuracy : To prove the SOPESN2 method is of second-order

accuracy, we consider the following two cases:

• If Di(x⃗
k) ̸= Pi(x⃗

k), then the SOPESN2 method (3.3.3) can be written in

the following explicit form:

xk+1
i =

xk
i

(
xk
i + φi(h, x⃗

k)Pi(x⃗
k)
)

xk
i + φi(h, x⃗k)Di(x⃗k)

.
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Note that when φi(h, x⃗) = h+O(h2) and xi ̸= 0, then there exists δi > 0

such that

1

1 +
Di(x⃗)φi(h, x⃗)

xi

= 1−Di(x⃗)φi(h, x⃗)

xi

+
D2

i (x⃗)φ
2
i (h, x⃗)

x2
i

+O(h3), (3.3.4)

whenever 0 < h < δi. Using Equation (3.3.4) and a Taylor series expansion

about tk yields the following

xi(tk+1)−
xi(tk) + φi(h, x⃗(tk))Pi(x⃗(tk))

1 + φi(h,x⃗(tk))Di(x⃗(tk))
xi(tk)

= xi(tk+1)− [xi(tk) + Pi(x⃗(tk))φi(h, x⃗(tk))]
[
1− Di(x⃗(tk))φi(h, x⃗(tk))

xi(tk)

+

(
Di(x⃗(tk))φi(h, x⃗(tk))

xi(tk)

)2 ]
+O(h3)

= xi(tk+1)− xi(tk) +Di(x⃗(tk))φi(h, x⃗(tk))−
D2

i (x⃗(tk))φ
2
i (h, x⃗(tk))

xi(tk)

− Pi(x(tk))φi(h, x⃗(tk)) +
Pi(x⃗(tk))Di(x⃗(tk))φ

2
i (h, x⃗(tk))

xi(tk)
+O(h3)

= x′
i(tk)h+ x′′

i (tk)
h2

2
+Di(x⃗(tk))φi(h, x⃗(tk))−

D2
i (x⃗(tk))φ

2
i (h, x⃗(tk))

xi(tk)

− Pi(x⃗(tk))φi(h, x⃗(tk)) +
Pi(x⃗(tk))Di(x⃗(tk))φ

2
i (h, x⃗(tk))

xi(tk)
+O(h3)

=
(
Pi(x⃗(tk))−Di(x⃗(tk))

)
h− φi(h, x⃗(tk))

(
Pi(x⃗(tk))−Di(x⃗(tk))

)
+

n∑
j=1

(∂Pi(x⃗(tk))

∂xj

− ∂Di(x⃗(tk))

∂xj

)(
Pj(x⃗(tk))−Dj(x⃗(tk))

)h2

2

+ φ2
i (h, x⃗(tk))

Di(x⃗(tk))

xi(tk)

(
Pi(x⃗(tk))−Di(x⃗(tk))

)
+O(h3).

Now using Equations (3.3.1)-(3.3.2) for φi(h, x(tn)) and substituting in

the above expression results in

xi(tk+1)−
xi(tk) + φi(h, x⃗(tk))Pi(x⃗(tk))

1 +
φi(h, x⃗(tk))Di(x⃗(tk))

xi(tk)

= O(h3).
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• If Di(x⃗
k) = Pi(x⃗

k), then the SOPESN2 method (3.3.3) reduces to xk+1
i =

xk
i , which represents an exact scheme for solving Equation (2.0.2) at t = tk.

The above two cases prove the second-order accuracy of the SOPESN2 method

(3.3.3).

3. Elementary stability : It is easy to see from the formulation (3.3.3) that all fixed

points x∗ of the SOPESN2 method are equilibria of Equation (2.0.2) and vice

versa. To prove the numerical scheme (3.3.3) is elementary stable, let x⃗∗ be an

equilibrium of Equation (2.0.2) and J = J(x∗) be the Jacobian evaluated at x⃗∗

with eigenvalues λ1, λ2, . . . , λn. We again assumed the Jacobian matrices to be

diagonalizable. Setting ϵ⃗ = x⃗− x⃗∗, then the linearized version of System (2.0.2)

can be written as

ϵ⃗′ = Jϵ⃗. (3.3.5)

We consider the following three cases:

(a) All eigenvalues of the matrix J are real: Since J is diagonalizable,

then there is nonsingular matrix Pr whose columns are the eigenvectors of

J satisfying [19]

Λr = P−1
r JPr,

where Λr = diag(λ1, . . . , λn). Now let η⃗ = P−1
r ϵ⃗. Multiplying Equation

(3.3.5) by P−1
r on both sides yields:

P−1
r ϵ⃗′ = P−1

r Jϵ⃗,

which is equivalent to

P−1
r ϵ⃗′ = P−1

r (PrΛrP
−1
r )⃗ϵ,

i.e,

η⃗′ = Λrη⃗. (3.3.6)
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Following the approach in [3], we apply the numerical scheme to Equation

(3.3.6). First, let us assume x⃗∗ be a locally asymptotically stable equilibrium

for (2.0.2). Then, λi < 0 for all i = 1, . . . , n, and

ηk+1
i =

(
1

1− φi(h, η⃗k)λi

)
ηki .

To show x⃗∗ is a locally asymptotically stable fixed point for Method (3.3.3)

is equivalent to show: ∣∣∣∣ 1

1− φi(h, η⃗k)λi

∣∣∣∣ < 1.

Since λi < 0 and φi(h, η⃗
k) > 0, we have 1− φi(h, η⃗

k)λi > 1 which implies

0 <
1

1− φi(h, η⃗k)λi

< 1. (3.3.7)

Therefore, by the inequality (3.3.7) and since i is arbitrary we can conclude

that x⃗∗ is a stable fixed point of the numerical scheme (3.3.3).

Next, if x⃗∗ is an unstable equilibrium for (2.0.2), we need to show x⃗∗ is

an unstable fixed point of the numerical scheme (3.3.3). But, since x⃗∗

is unstable, then there is an eigenvalue λj0 of J such that λj0 > 0, after

applying the numerical scheme (3.3.3) to Equation (3.3.6) yields:

ηk+1
j0

=
(
1 + φj0(h, η⃗

k)λj0

)
ηkj0 .

Since λj0 > 0, then
∣∣∣1 + φj0(h, η⃗

k)λj0

∣∣∣ > 1. Therefore, x⃗∗ is an unstable

fixed point of the numerical method (3.3.3).

(b) All eigenvalues of J are complex with Im(λi) ̸= 0 for all i = 1, . . . , n:

Since J is a real matrix, we note if λi is an eigenvalue of J , then λ̄i (complex

conjugate) is also an eigenvalue of J . Therefore, n must be an even positive

integer. We recall there is a invertible matrix Pc satisfying [19]

Λc = P−1
c JPc.
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The Jordan normal form satisfies

Λc = diag(Bλ1 , . . . , Bλn),

where Bλi
=

 ai bi

−bi ai

 with R(λi) = ai and Im(λi) = bi. Similar to the

argument in Case (a) we apply the numerical scheme to

η⃗′ = Jcη⃗. (3.3.8)

First, if x⃗∗ is a locally asymptotically stable equilibrium for (3.3.3), then

ai < 0 for all i = 1, . . . , n. Let i ∈ {1, . . . , n} , then ai < 0 and bi is either

positive or negative.

• If bi < 0, then

η′i = aiηi + biηi+1,

η′i+1 = −biηi + aiηi+1.

Since Pi(η⃗
k) = 0 and Di(η⃗

k) = −(aiη
k
i + biη

k
i+1), after applying the

numerical scheme to (3.3.8) yields:

ηk+1
i =

( ηki
ηki − φi(h, η⃗k)(aiηki + biηki+1)

)
ηki .

Using that aiη
k
i + biη

k
i+1 < 0 and φi(h, η⃗

k) > 0 we can conclude that∣∣∣ ηki
ηki − φi(h, η⃗k)(aiηki + biηki+1)

∣∣∣ < 1.

That implies ηk+1
i → 0 as k → ∞. Now we claim ηk+1

i+1 → 0 as k → ∞.

Now, suppose for the sake of a contradiction that this is not true. Since

η′i+1 = −biηi + aiηi+1,
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then Pi+1(η⃗
k) = −biη

k
i and Di+1(η⃗

k) = −aiη
k
i+1. Therefore,

ηk+1
i+1 =

( ηki+1 − φi+1(h, η⃗
k)biη

k
i

ηki+1 − φi+1(h, η⃗k)aiηki+1

)
ηki+1,

Now since ηk+1
i+1 ↛ 0 as k → ∞, then

ηki+1 − φi+1(h, η⃗
k)biη

k
i

ηki+1 − φi+1(h, η⃗k)aiηki+1

≥ 1,

thus ηk+1
i+1 ≥ ηki+1. That implies

{
ηk+1
i+1

}
is a monotonically increasing

positive sequence. Therefore, ηk+1
i+1 → b ∈ R+ ∪ {∞} as k → ∞. Using

Lemma (3.1.1) for large enough k we have:

−biη
k
i < −aiη

k
i+1,

hence, Pi(η⃗
k) = 0 and Di(η⃗

k) = −(−biη
k
i + aiη

k
i+1).

Now applying the numerical method to Equation (3.3.8) yields:

ηk+1
i+1 =

( ηki+1

ηki+1 − φi(h, η⃗k)(−biηki + aiηki+1)

)
ηki+1,

and
∣∣∣ ηki+1

ηki+1−φi(h,η⃗k)(−biηi+aiηi+1)

∣∣∣ < 1. That implies ηki+1 → 0 as k → ∞

contradicts ηki+1 → b ∈ R+ ∪ {∞} . Therefore, ηki+1 → 0 as k → ∞.

• bi > 0, similar argument as above shows that ηki → 0 and ηki+1 → 0 as

k → ∞. Therefore, x⃗∗ is a locally asymptotically stable fixed point of

the numerical scheme (3.3.3).

Next, if x⃗∗ is unstable equilibrium for System (2.0.2), then there is an

eigenvalue λj0 such that R(λj0) > 0. After applying the numerical scheme

to Equation (3.3.8) we consider the following two cases:

• If bj0 < 0, then

ηk+1
j0+1 = ηkj0+1 + φj0+1(h, η⃗

k)Pj0+1(η⃗
k)

= ηkj0+1 + φj0+1(h, η⃗
k)(−bj0η

k
j0
+ aj0η

k
j0+1)
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> ηkj0+1 + φj0+1(h, η⃗
k)aj0η

k
j0+1

=
(
1 + φj0+1(h, η⃗

k)aj0

)
ηkj0+1,

But since
∣∣∣1 + φj0+1(h, η⃗

k)aj0

∣∣∣ > 1, then clearly ηkj0+1 → ∞ as k → ∞.

• If bj0 > 0, then

ηk+1
j0

= ηkj0 + φj0(h, η⃗
k)Pj0(η⃗

k)

= ηkj0 + φj0(h, η⃗
k)(aj0η

k
j0
+ bj0η

k
j0+1)

> ηkj0 + φj0(h, η⃗
k)aj0η

k
j0

=
(
1 + φj0(h, η⃗

k)aj0

)
ηkj0 .

Therefore, since
∣∣∣1 + φj0(h, η⃗

k)aj0

∣∣∣ > 1, then ηkj0 → ∞ as k → ∞.

This implies that x⃗∗ is an unstable fixed point of the numerical method

(3.3.3).

(c) J has both real and complex eigenvalues: λ1, . . . , λk are the real

eigenvalues of J and λj = aj + ibj and λ̄j = aj − ibj for j = k + 1, . . . , n+k
2
.

Then, there is a nonsingular matrix Prc satisfying [19]

Λrc = PrcAP
−1
rc ,

where Λrc = diag(Bλ1 , . . . , Bλn) and

Bλi
=


λi, Im(λi) = 0 R(λi) Im(λi)

− Im(λi) R(λi)

 , Im(λi) ̸= 0
.

Similar to the argument in Case (a) we apply the numerical scheme to

η⃗′ = Jrcη⃗. (3.3.9)
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Now let x⃗∗ be a locally asymptotically stable equilibrium point of (2.0.2),

then R(λi) < 0 for all i. To prove x⃗∗ is a locally asymptotically stable

fixed point for Scheme (3.3.3). We note that if Im(λi) = 0, then we use the

same argument as in Case (a) to show ηk+1
i → 0 as k → ∞. If Im(λi) ̸= 0,

we use the same argument as in Case (b). That shows x⃗∗ is a locally

asymptotically stable fixed point for Scheme (3.3.3). Finally, if x⃗∗ is an

unstable equilibrium for System (2.0.2), then there is λj0 with R(λj0) > 0

for some j0 ∈ {1, . . . , n}. Also, either Im(λj0) = 0 or Im(λj0) ̸= 0 using

a similar argument as in Case (a) or Case (b), respectively, shows that

x⃗∗ is an unstable fixed point for Scheme (3.3.3). Therefore, the numerical

method (3.3.3) is elementary stable.

The following corollary is for SOPESN2 method when n = 1.

Corollary 3.3.1. Let P, D ∈ C2(R+;R+) and φ : R+ × R+ → R+ satisfies the

following condition:

φ(h, x) = h− q(x)
h2

2
+O(h3), (3.3.10)

where

q(x) = Dx(x)− Px(x)−
2D(x)

x
. (3.3.11)

Then, the PESN2 method (2.0.6) with deniminator function (3.3.10)-(3.3.11):

xk+1 − xk

φ(h, xk)
= P (xk)−D(xk)

xk+1

xk
, (3.3.12)

preserves the positivity of solutions of Equation (2.0.2) when n = 1, is elementary

stable, and second-order accurate (SOPESN2 method).

Remark 3.3.1. There exists many functions that satisfy the hypothesis of Theorems

(3.2.1) and (3.3.1), e.g., one can choose
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φi(h, x⃗
k) =


1−e−qi(x⃗

k)h

qi(x⃗k)
, if qi(x⃗

k) ̸= 0

h, if qi(x⃗
k) = 0

. (3.3.13)

φi(h, x⃗
k) =

1− e−qi(x⃗
k)h

qi(x⃗k)
, with qi(x⃗

k) as in Equation (3.2.2) and as in Equation

(3.3.2), respectively.
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CHAPTER 4

Chemostat Models with microbial input

4.1 Introduction

For many years, chemostat models have been used to mathematically model

many important biological problems. For instance, the time dynamic of one bacteria B

and the substrate S in the chemostat can be modeled by the following two differential

equations [44, 39]:
dS

dt
= DSin︸ ︷︷ ︸

input

− DS︸︷︷︸
dilution

− qµ(S)B︸ ︷︷ ︸
consumption by B

,

dB

dt
= µ(S)B︸ ︷︷ ︸

growth

− DB︸︷︷︸
dilution

.

(4.1.1)

The asymptotic behavior of Model (4.1.1) can be found in details in [44, 39]. Model

(4.1.1) has two equilibria, which are the wash-out equilibrium, E0 = (Sin, 0), and the

positive equilibrium, E1 = (µ−1(D), Sin−µ−1(D)
q

). Moreover, the positive equilibrium

is stable whenever it exists. However, when there is a constant toxin affecting the

death rate of bacteria B, the above model doesn’t represent the dynamic of this

problem. Introducing a toxin in the system is important to answer crucial questions in

commercial production with biological reactors, and to study detoxification problem

[21]. The simple chemostat model with different removal rates has been studied before

(see [20, 44]). The simple chemostat model of one bacteria including the bacteria’s

mortality rate is
dS

dt
= DSin︸ ︷︷ ︸

input

− DS︸︷︷︸
dilution

− qµ(S)B︸ ︷︷ ︸
consumption by B

,

dB

dt
= µ(S)B︸ ︷︷ ︸

growth

− DB︸︷︷︸
dilution

− mB︸︷︷︸
death of B

.

(4.1.2)
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Model (4.1.2) has two equilibria, a boundary equilibrium E0 = (Sin

D
, 0), and an interior

equilibrium E1 = (µ−1(D +m), D
q(D+m)

(Sin − µ−1(D +m))). Moreover, the positive

equilibrium is locally asymptotically stable whenever it exists.

When there are more than one bacteria in the chemostat, they compete for

the common limited resource. Since competition is crucial nature, the competition

of organisms in the chemostat has been widely studied. For instance, the simple

competition model in the chemostat can be modeled by the following nonlinear

differential equations [44, 28, 17]:

dS

dt
= DSin︸ ︷︷ ︸

input

− DS︸︷︷︸
dilution

− q1µ1(S)B1︸ ︷︷ ︸
consumption by B1

− q2µ2(S)B2︸ ︷︷ ︸
consumption by B2

,

dB1

dt
= µ1(S)B1︸ ︷︷ ︸

growth

− DB1︸︷︷︸
dilution

,

dB2

dt
= µ2(S)B2︸ ︷︷ ︸

growth

− DB2︸︷︷︸
dilution

.

(4.1.3)

The asymptotic behavior of Model (4.1.3) is described by the Competitive exclusion

principle [18, 44]. Which basically states that only one competitor survives. To tackle

this problem, Robledo et all. [40] modified the above model by introducing an input

concentration Bin to the inferior competitor.

dS

dt
= DSin︸ ︷︷ ︸

input

− DS︸︷︷︸
dilution

− q1µ1(S)B1︸ ︷︷ ︸
consumption by B1

− q2µ2(S)B2︸ ︷︷ ︸
consumption by B2

,

dB1

dt
= DBin︸ ︷︷ ︸

input

+µ1(S)B1︸ ︷︷ ︸
growth

− DB1︸︷︷︸
dilution

,

dB2

dt
= µ2(S)B2︸ ︷︷ ︸

growth

− DB2︸︷︷︸
dilution

.

(4.1.4)

The authors proved the model has a positive equilibrium that is asymptotically stable

when it exists. However, their model does not account for the death rate due to a

constant toxin.
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Antibiotic resistance is one of the top threats to the public’s health. It occurs

when a microorganism is not affected by one or more than one antibiotics. Plasmids

can change bacteria’s genetic material. This change can cause the bacteria to become

antibiotic-resistant or remove an antibiotic resistance gene from the bacteria [41, 23].

Therefore, bacterial plasmids play an essential role in antibiotic resistance. There

have been many mathematical models to understand the effect of the plasmid on

the bacteria [41, 23, 45, 26]. The authors in [42] proposed a model of competition

between plasmid-bearing and plasmid-free organisms in a chemostat based on the

mass balances of the organisms.

dS

dt
= DSin︸ ︷︷ ︸

input

− DS︸︷︷︸
dilution

− q1µ1(S)B1︸ ︷︷ ︸
consumption by B1

− q2µ2(S)B2︸ ︷︷ ︸
consumption by B2

,

dB1

dt
= µ1(S)B1︸ ︷︷ ︸

growth

− DB1︸︷︷︸
dilution

− qµ1(S)B1︸ ︷︷ ︸
loss of plasmid

,

dB2

dt
= µ2(S)B2︸ ︷︷ ︸

growth

− DB2︸︷︷︸
dilution

+ qµ1(S)B1︸ ︷︷ ︸
loss of plasmid

.

(4.1.5)

The parameter q ∈ (0, 1), represents the probability that a plasmid is lost in repro-

duction. The mathematical analysis of the above model can be found in detail in [22].

The authors show that the positive equilibrium is asymptotically stable whenever it

exists.

This chapter is organized as follows. We first start with a simple growth chemo-

stat model, which represents the growth of the donor bacteria in the presence of a

lethal toxin. Next, we consider a competition model representing the competition

between the donor bacteria and the resident bacteria. Finally, we consider a com-

petition model of the donor bacteria and the resident bacteria in the presence of a

plasmid.
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4.2 Simple chemostat model with microbial input and a constant death rate

The model for the growth of a single microbial population in a chemostat with

supplying a microbial into the chemostat and a constant death rate due to a constant

homogeneous toxin is based on the following assumptions:

1. The micro-organisms introduced in the vessel are of a single species.

2. The substrate (of concentration S) is the single limiting resource for growth.

3. The vessel is perfectly mixed.

dS

dt
= DSin︸ ︷︷ ︸

input

− DS︸︷︷︸
dilution

− qµ(S)B︸ ︷︷ ︸
consumption by B

,

dB

dt
= DBin︸ ︷︷ ︸

input

− DB︸︷︷︸
dilution

+µ(S)B︸ ︷︷ ︸
growth

− mB︸︷︷︸
death of B

,
(4.2.1)

where D is a constant dilution rate, Sin is the concentration of the limiting nutrient,

m is the bacteria’s death rate, and Bin is the input concentration for B. Here, B is

the population density of the microorganism, and S is the nutrient concentration.

The function µ(S) is bounded and increasing µ(0) = 0, 0 ≤ µ(S) ≤ µmax. For growth

rate, the well-known Monod function is used µ(S) = µmaxS
K+S

where µmax is the maximal

growth rate as S → ∞ , and K is the half-saturation constant. Both µmax and

K can be measured experimentally. The parameter q is assumed to be constant

and represents the efficiency at which the organism harvest nutrient for population

growth.
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4.2.1 Basic properties

4.2.1.1 Model well-posedness

Since Model (4.2.1) represents a biological system. All solutions should remain

non-negative and bounded. The Cauchy problem associated to System (4.2.1) is

x⃗′ = f⃗(x⃗); x⃗(t0) = x⃗0, (4.2.2)

where x⃗ = (S,B), x⃗0 = (S0, B0), and f⃗(x⃗) ∈ R2. Here, f⃗(x⃗) is the right-hand side in

Equation (4.2.1). Clearly, the function f⃗(x⃗(t)) is continuously differentiable in R2.

Thus, by the Fundamental Existence-Uniqueness Theorem [37], there is a > 0 such

that the intial value problem (4.2.2) has a unique solution x⃗(t) on [−a, a].

In the following theorem, we will show that the solutions of Model (4.2.1) are non-

negative whenever (S0, B0) ∈ R2
+, and that solutions do not tend to infinity with

increasing time.

Theorem 4.2.1. If B0 > 0 and S0 > 0, then the solution (S(t), B(t)) of Model (4.2.1)

are non-negative for all t > 0. Moreover, the dynamical system (4.2.1) is dissipative.

Proof. Let f1(S,B) = D(Sin−S)−qµ(S)B, and f2(S,B) = D(Bin−B)+µ(S)B−mB,

are the right-hand sides of Model (4.2.1). Since D, Sin, and Bin0 are all positive, then

f1(0, B) = DSin > 0, and f2(S, 0) = DBin > 0. Therefore, S(t) > 0 and B(t) > 0

whenever S0 > 0 and B0 > 0. Next, we aim to show Model (4.2.1) is dissipative. Let

Σ = S + qB, then

Σ′ = D
(
Sin − S

)
− qµ(S)B

+ qD
(
Bin −B

)
+ qµ(S)B − qmB

= DSin + qDBin −D(S + qB)− qmB

< DSin + qDBin −DΣ.
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If U(t) is the solution of U ′ = DSin + qDBin −DU satisfying U(0) = Σ(0), then it

follows by comparison that

Σ(t) < U(t). (4.2.3)

One can easily solve

U ′ = DSin + qDBin −DU, U(0) = Σ(0),

and obtain the exact solution as

U(t) = Sin + qBin +
(
Σ(0)− Sin − qBin

)
e−Dt.

Therefore, we can easily see that

lim
t→∞

U(t) = Sin + qBin.

Above limit together with Inequality (4.2.3) implies

lim sup
t→∞

S(t) + qB(t) ≤ Sin + qBin.

That implies the dynamycal system (4.2.1) is dissipative.

4.2.2 Equilibria and stability analysis

The existence of one equilibrium for Model (4.2.1) is stated in the following

proposition.

Proposition 4.2.1 (Existence of Equilibrium). System (4.2.1) has one equilibrium

E∗ = (S∗, B∗) where:

B∗ =
D

d
Bin +

1

q

D

d
(Sin − S∗), and

S∗ =


Sin+

dK
µmax−d

+
qµmaxBin
µmax−d

−
√

(Sin+
dK

µmax−d
+

qµmaxBin
µmax−d

)2−4
dSinK

µmax−d

2
, if d < µmax

dSinK
dK+qµmaxBin

, if d = µmax

Sin+
dK

µmax−d
+

qµmaxBin
µmax−d

+
√

(Sin+
dK

µmax−d
+

qµmaxBin
µmax−d

)2−4
dSinK

µmax−d

2
, if d > µmax

,
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with d = D +m.

Proof. To find the equilibrium, we set the right-hand sides of Model (4.2.1) to zero,

i.e.

D(Sin − S)− qµ(S)B = 0, (4.2.4)

D(Bin −B) + µ(S)B −mB = 0. (4.2.5)

Multiplying the second equation by q, and then adding it with the first equation

yields

D(Sin − S) + qD(Bin −B)− qmB = 0.

Solving the above equation for B gives

B =
D

d
Bin +

D

qd

(
Sin − S

)
.

Next, to find S∗, we now substitute the value of B in Equation (4.2.4); we have

D(Sin − S)− qD

d
Bin

µmaxS

K + S
− D

d

µmaxS

K + S

(
Sin − S

)
= 0.

Now multiplying the above equation by d
D
(K + S) yields

d(Sin − S)(K + S)− qBinµ
maxS − µmaxS(Sin − S) = 0,

After rearranging the terms of the above equation, one can easily get the following

quadratic equation

(µmax − d)S2 −
(
(µmax − d)Sin + dK + qBinµ

max
)
S + dSinK = 0.

By Solving the above quadratic equation, one can easily find the positive root of S∗

as follows

1. If d = µmax, then S∗ = dSinK
dK+qµmaxBin

.

2. If d > µmax, then S∗ =
Sin+

dK
µmax−d

+
qµmaxBin
µmax−d

+
√

(Sin+
dK

µmax−d
+

qµmaxBin
µmax−d

)2−4
dSinK

µmax−d

2
.
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3. If d < µmax, then S∗ =
Sin+

dK
µmax−d

+
qµmaxBin
µmax−d

−
√

(Sin+
dK

µmax−d
+

qµmaxBin
µmax−d

)2−4
dSinK

µmax−d

2
.

From the above one can easily see that S∗ > 0. Moreover, we claim Sin > S∗. Notice,

if d = µmax, then S∗ = dSinK
dK+qµmaxBin

< Sin, (since dK < dK + qµmaxBin). If d > µmax,

we note that

Sin − S∗ =
Sin +

dK
d−µmax + qµmaxBin

d−µmax −
√

(Sin +
dK

µmax−d
+ qµmaxBin

µmax−d
)2 − 4 dSinK

µmax−d

2
,

multiplying by the square conjugate yields

Sin − S∗ =

4Binµ
maxqSin

2
(
d− µmax

)(
Sin +

dK
d−µmax + qµmaxBin

d−µmax +
√

(Sin +
dK

µmax−d
+ qµmaxBin

µmax−d
)2 + 4 dSinK

d−µmax

) > 0.

Similarly, one can show Sin > S∗ when d < µmax. Hence , B∗ > 0, and therefore E∗

always exists.

The following theorem concerning the local stability of the equilibrium E∗.

Theorem 4.2.2. The equilibrium E∗ of Model (4.2.1) is locally asymptotically stable.

Proof. The Jacobian evaluated at E∗ is

J(E∗) =

−D − qB∗ µmaxK
(K+S∗)2

−qµ(S∗)

B∗µmaxK
(K+S∗)2

µ(S∗)− (D +m)

 .

Next, we find the trace and the determinant (det) of J(E∗), we have

trace(J(E∗)) = −2D −m− qB∗ µmaxK

(K + S∗)2
+ µ(S∗),

det(J(E∗)) = D
(
D +m− µ(S∗)

)
+ (D +m)

qB∗µmaxK

(K + S∗)2
.

We note D(Sin − S∗) = qµ(S∗)B∗. Thus, µ(S∗) = D
q

Sin−S∗

B∗ = D Sin−S∗
qD
d

Bin+
D
d
(Sin−S∗)

<

D Sin−S∗
D
d
(Sin−S∗)

= d = D +m. Therefore, det(J(E∗)) > 0, and −trace(J(E∗)) > 0. As a

result, the equilibrium E∗ is locally asymptotically stable.
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For the global stability of the unique equilibrium E∗, we have the following

result.

Theorem 4.2.3. The equilibrium E∗ attracts any solution initiated in

△ = {(S,B) : S + qB ≤ Sin + qBin} .

Proof. Since E1 is locally asymptotically stable, and it is the only equilibrium of

Model (4.2.1), and System (4.2.1) is bounded (Proposition (4.2.1)), then by Poincaré-

Bendixson theorem it suffices to show that System (4.2.1) does not have periodic

solutions. To prove that we use Dulac criterion, let

f1(S,B) = D(Sin − S)− qµ(S)B,

f2(S,B) = D(Bin −B) + µ(S)B −mB.

We define

ϕ(S,B) =
1

B
.

Since ∂(ϕf1)
∂S

= −D
B
− q µmaxK

(K+S)2
, and ∂(ϕf2)

∂B
= −DBin

B2 , then

∂(ϕf1)

∂S
+

∂f2(S,B)

∂B
= −

(D
B

+ q
µmaxK

(K + S)2
+

DBin

B2

)
< 0.

Hence, there are no nontrivial periodic solutions, and the proof is completed.

4.3 Competition of two microbial with one limited resource and different constant

death rates and one of the bacteria is in the input flow

Next, we consider a competition chemostat model of bacterial competition

in the presence of a constant homogeneous toxin affecting the death rates of the

organisms. The competition in the chemostat model is based on several essential

assumptions:
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1. The micro-organisms introduced in the vessel are of two species.

2. The substrate (of concentration S) is the single limiting resource for growth.

3. The vessel is perfectly mixed.
dS

dt
= DSin︸ ︷︷ ︸

input

− DS︸︷︷︸
dilution

− q1µ1(S)B1︸ ︷︷ ︸
consumption by B1

− q2µ2(S)B2︸ ︷︷ ︸
consumption by B2

,

dB1

dt
= DBin︸ ︷︷ ︸

input

− DB1︸︷︷︸
dilution

+ µ1(S)B1︸ ︷︷ ︸
growth of B1

− m1B1︸ ︷︷ ︸
death of B1

,

dB2

dt
= µ2(S)B2︸ ︷︷ ︸

growth of B2

− DB2︸︷︷︸
dilution

− m2B2︸ ︷︷ ︸
death of B2

,

(4.3.1)

where D is a constant dilution rate, Sin is the limiting nutrient concentration, mi is

the death rate of the bacteria Bi, and Bin is the input concentration for B1. Here, B1

is the population density of the plasmid-bearing bacteria, B2 is the concentration of

the plasmid-free bacteria, and S is the nutrient concentration. The function µi(S) is

bounded and increasing µi(0) = 0, 0 ≤ µi(S) ≤ µmax
i . For growth rate, the well-known

Monod function is used µi(S) =
µmax
i S

Ki+S
where µmax

i is the maximal growth rate as

S → ∞ , and Ki is the half-saturation constant. Both µmax
i and Ki can be measured

experimentally. The parameter qi is the nutrient uptake efficiency by Bi.

4.3.1 Basic properties

4.3.1.1 Model well-posedness

Model (4.3.1) represents a biological system. Therefore, all solutions should

remain non-negative and bounded. The Cauchy problem associated with the system

(4.3.1) is

x⃗′ = f⃗(x⃗); x⃗(t0) = x⃗0, (4.3.2)

where x⃗ = (S,B1, B2), x⃗0 = (S0, B
0
1 , B

0
2) and f⃗(x⃗) ∈ R3. Here, f⃗(x⃗) is the right-hand

side in Equation (4.3.1). Clearly, the function f⃗(x⃗(t)) is continuously differentiable

in R3. Thus, by the Fundamental Existence-Uniqueness Theorem [37], there is a > 0
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such that the initial value problem (4.3.2) has a unique solution x⃗(t) on [−a, a]. In the

following theorem, we will show that the solutions of Model (4.3.1) are non-negative

whenever (S0, B
0
1 , B

0
2) ∈ R3

+, and that solutions are bounded.

Theorem 4.3.1. If S0 > 0, B0
1 > 0 and B0

2 > 0, then the solution (S(t), B1(t), B2(t))

of Model (4.3.1) are non-negative for all t > 0. Moreover, the dynamical system

(4.3.1) is dissipative.

Proof. Let

f1(S,B1, B2) = D
(
Sin − S

)
− q1µ1(S)B1 − q2µ2(S)B2,

f2(S,B1, B2) = D
(
Bin −B1

)
+ µ1(S)B1 −m1B1,

f3(S,B1, B2) =
(
µ2(S)−D −m2

)
B2,

are the right-hand sides of Model (4.3.1). Since D, Sin and Bin are all positive, then

f1(0, B1, B2) = DSin > 0, f2(S, 0, B2) = DBin > 0, and f3(S,B1, 0) = 0. Therefore,

S(t) ≥ 0, B1(t) ≥ 0 and B2(t) ≥ 0 whenever S0 ≥ 0, B0
1 ≥ 0 and B0

2 ≥ 0. To

complete the proof we will show that

lim sup
t→∞

S(t) + q1B1(t) + q2B2(t) ≤ M, for some M > 0.

Let Σ = S + q1B1 + q2B2, then

Σ′ = DSin + q1DBin −D
(
S + q1B1 + q2B2

)
− q1m1B1 − q2m2B2

< DSin + q1DBin −DΣ.

If U(t) is the solution of

U ′(t) = DSin + q1DBin −DU(t), U(0) = Σ(0), (4.3.3)

then by comparison we have

Σ(t) < U(t). (4.3.4)
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One can easily verify that

U(t) = Sin + q1Bin +
(
Σ(0)− Sin − q1Bin

)
e−Dt.

is the exact solution to Equation (4.3.3). Hence,

lim
t→∞

U(t) = Sin + q1Bin.

The above limit and the inequality (4.3.4) yields

lim sup
t→∞

Σ(t) ≤ Sin + q1Bin.

Therefore, Model (4.3.1) is dissipative.

4.3.2 Equilibria and stability analysis

We first find the equilibria, for simplicity, let di = D +mi, for all i = 1, 2, and

setting the right-hand sides of Model (4.3.1) to zeros gives:

D(Sin − S)− q1µ1(S)B1 − q2µ2(S)B2 = 0,

D(Bin −B1) + µ1(S)B1 −m1B1 = 0,

B2(µ2(S)−D −m2) = 0.

Therefore, System (4.3.1) has two equilibria. One is the boundary equilibrium

E0 = (S∗
0 , B

∗
10, B

∗
20), and the other is the interior equilibrium E1 = (S∗

1 , B
∗
11, B

∗
21),

where B∗
10 =

D
d1
Bin +

1
q1

D
d1
(Sin − S∗), B∗

20 = 0, and

S∗
0 =


Sin+

dK
µmax−d

+
qµmaxBin
µmax−d

−
√

(Sin+
dK

µmax−d
+

qµmaxBin
µmax−d

)2−4
dSinK

µmax−d

2
, if d < µmax

dSinK
dK+qµmaxBin

, if d = µmax

Sin+
dK

µmax−d
+

qµmaxBin
µmax−d

+
√

(Sin+
dK

µmax−d
+

qµmaxBin
µmax−d

)2−4
dSinK

µmax−d

2
, if d > µmax

.

Moreover, the components of the interior equilibrium are S∗
1 = µ−1

2 (d2),

B∗
11 =

DBin

d1−µ1(S∗
1 )
, and B∗

21 =
D(Sin−S∗

1 )−q1µ1(S∗
1 )B

∗
11

q2d2
.
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Here, µ−1
2 (d2) =

d2K2

µmax
2 −d2

. Using similar arguments used in the proof of Proposition

(4.2.1), we clearly see that E0 always exists. It remains to find the existence conditions

of the positive equilibrium E1, which is stated in the following proposition.

Proposition 4.3.1. The equilibrium E1 exists if and only if d2 < µ2(Sin), and

d1 > µ1(S
∗
1)(1 +

q1Bin

Sin−S∗
1
).

Proof. First, suppose the equilibrium E1 exists, then S∗
1 > 0, B∗

11 > 0 and B∗
21 > 0.

We clearly see that B∗
21 > 0 implies Sin > S∗

1 = µ−1
2 (d2), i.e. d2 < µ2(Sin). Also, since

B∗
21 > 0 implies

D(Sin − S∗
1) > q1µ1(S

∗
1)B

∗
11 = q1µ1(S

∗
1)

DBin

d1 − µ1(S∗
1)
. (4.3.5)

But since B∗
11 > 0, i.e. d1 > µ1(S

∗
1), then one can easily rewrite Inequality (4.3.5) as

(Sin − S∗
1)(d1 − µ1(S

∗
1)) > q1µ1(S

∗
1)Bin,

which yields

d1 > µ1(S
∗
1)
(
1 +

q1Bin

Sin − S∗
1

)
.

To prove the other direction, we now assume µ1(S
∗
1)

(
1 + q1Bin

Sin−S∗
1

)
< d1, and d2 <

µ2(Sin), then since d2 < µ2(Sin) < µmax
2 implies S∗

1 > 0. Also, since

µ1(S
∗
1)

(
1 +

q1Bin

Sin − S∗
1

)
< d1,

then d1 > µ1(S
∗
1) which implies B∗

11 > 0. Moreover, since d2 < µ2(Sin), then S∗
1 < Sin.

Therefore, the inequality µ1(S
∗
1)

(
1 + q1Bin

(Sin−S∗
1 )

)
< d1 implies

µ1(S
∗
1)
(
(Sin − S∗

1) + q1Bin

)
< d1(Sin − S∗

1),

which is equivalent to

(Sin − S∗
1)(d1 − µ1(S

∗
1)) > q1Binµ1(S

∗
1),
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dividing both sides by (d1 − µ1(S
∗
1)) yields

(Sin − S∗
1) > µ1(S

∗
1)q1

B∗
11

D
.

Therefore, B∗
21 > 0, and this completes the proof.

The local stability of the boundary equilibrium E0 is stated in the following

theorem.

Theorem 4.3.1. The equilibrium E0 is locally asymptotically stable if and only if

d2 > µ2(S
∗
0).

Proof. The Jacobian evaluated at E0 is

J(E0) =


−D − A1 −q1µ1(S

∗
0) −q2µ2(S

∗
0)

A1

q1
µ1(S

∗
0)− d1 0

0 0 µ2(S
∗
0)− d2

 ,

where A1 = q1B
∗
10

µmax
1 K1

(K1+S)2
. The characteristic equation of J(E0) is

λ3 + a1λ
2 + a2λ+ a3 = 0,

where a1 = −tr(J(E0)), a3 = −det(J(E0)) (tr(J(E0)) and det(J(E0)) are the trace

and the determinant of J(E0), respectively), and

a2 =
(
D + A1

)(
d1 − µ1(S

∗
0)
)
+
(
D + A1

)(
d2 − µ2(S

∗
0)
)

+
(
µ1(S

∗
0)− d1

)(
µ2(S

∗
0)− d2

)
+ A1µ1(S

∗
0).

An easy computation yields:

−tr(J(E0) = D + d1 + d2 + A1 − µ1(S
∗
0)− µ2(S

∗
0), and

−det(J(E0)) =
(
d2 − µ2(S

∗
0)
)(

d1D + d1A1 −Dµ1(S
∗
0)
)
.
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Also, we note that since D(Sin − S∗
0)− q1µ1(S

∗
0)B

∗
10 = 0, then

µ1(S
∗
0) =

D(Sin − S∗
0)

q1B∗
10

=
D(Sin − S∗

0)

q1
D
d1
Bin +

D
d1
(Sin − S∗

0)
< d1. (4.3.6)

We wish to prove all eigenvalues of J(E0) have a negative real part. Using the

Routh-Hurwitz conditions, all eigenvalues have a negative real part is equivalent

to show −tr(J(E0)) > 0, −det(J(E0)) > 0, and a1a2 > a3. Since Inequality (4.3.6)

holds, we have d1 > µ1(S
∗
0), and since by the assumption d2 > µ2(S

∗
0), we clearly see

−tr(J(E0)) > 0, and −det(J(E0)) > 0. It now remains to prove a1a2 > a3.

Since

a2 =
(
D + A1

)(
d1 − µ1(S

∗
0)
)
+
(
D + A1

)(
d2 − µ2(S

∗
0)
)

+
(
µ1(S

∗
0)− d1

)(
µ2(S

∗
0)− d2

)
+ A1µ1(S

∗
0)

= Dd1 −Dµ1(S
∗
0) + A1d1 − A1µ1(S

∗
0) +

(
D + A1

)(
d2 − µ2(S

∗
0)
)

+
(
µ1(S

∗
0)− d1

)(
µ2(S

∗
0)− d2

)
+ A1µ1(S

∗
0) ≥ Dd1 −Dµ1(S

∗
0) + A1d1,

then a1a2 > a1

(
Dd1 − Dµ1(S

∗
0) + A1d1

)
. Since by the inequality (4.3.6), we have

d1 > µ1(S
∗
0). Therefore, D + d1 + A1 − µ1(S

∗
0) > 0, and Dd1 −Dµ1(S

∗
0) + A1d1 > 0.

From here one can easily verify

a1a2 > −det(J(E0)) +
(
D + d1 + A1 − µ1(S

∗
0)
)(

Dd1 −Dµ1(S
∗
0) + A1d1

)
≥ −det(J(E0)) + 0 = a3.

The local stability of the positive equilibrium E1 is stated in the following

theorem.

Theorem 4.3.2. If the interior equilibrium E1 exists, then it is locally asymptotically

stable.
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Proof. The Jacobian evaluated at E1 is

J(E1) =


−D − A1 − A2 −q1µ1(S

∗
1) −q2d2

A1

q1
µ1(S

∗
1)− d1 0

A2

q2
0 0

 ,

where A1 = q1B
∗
11

µmax
1 K1

(K1+S∗
1 )

2 , A2 = q2B
∗
21

µmax
2 K2

(K2+S∗
1 )

2 . An easy computation yields

−det(J(E1)) = A2d2

(
d1 − µ1(S

∗
1)
)
, and

−tr(J(E1)) = A1 + A2 +D + d1 − µ1(S
∗
1).

and −tr(J(E1)) = A1 + A2 +D + d1 − µ1(S
∗
1). The characteristic equation is

λ3 + a1λ
2 + a2λ+ a3 = 0,

where a1 = −tr(J(E1)), a2 = (D + A1 + A2)(d1 − µ1(S
∗
1)) + A1µ1(S

∗
1) + A2d2, and

a3 = −det(J(E1)). Also, we note that since

B∗
11 =

DBin

d1 − µ1(S∗
1)
,

then we clearly see that d1 > µ1(S
∗
1), (since B∗

11 > 0). Therefore, −tr(J(E1)) > 0

and −det(J(E1)) > 0. Now it remains to prove a1a2 > a3. Since

a2 = A2d2 + (D + A1 + A2)(d1 − µ1(S
∗
1)) + A1µ1(S

∗
1),

then by multiplying the above equation by a1 yields:

a1a2 = A2d2

(
d1 − µ1(S

∗
1)
)

+
(
d1 − µ1(S

∗
1)
)(

(D + A1 + A2)(d1 − µ1(S
∗
1)) + A1µ1(S

∗
1)
)
+
(
A1 + A2 +D

)
a2

> −det(J(E1)) + 0 + 0 = a3.

Therefore, a1a2 > a3. Using Routh-Hurwitz conditions we can conclude that E1 is

locally asymptotically stable.
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Table 4.1 summarizes the equilibria and their corresponding stability conditions.

Next, we aim to find relations between the existence and stability conditions stated

Equilibrium Points Existence Conditions Local Stability

E0 = (S∗
0 , B

∗
10, B

∗
20) always d2 > µ2(S

∗
0)

E1 = (S∗
1 , B

∗
11, B

∗
21) d2 < µ2(Sin), and d1 > µ1(S

∗
1)(1 +

q1Bin

Sin−S∗
1
) stable

Table 4.1: Existence and stability conditions for the equilibrium points.

in Table (4.1). The following two propositions are used to find the relations between

the boundary equilibrium E0 and the interior equilibrium E1.

Proposition 4.3.2. If d2 < µ2(Sin) and d1 > µ1(S
∗
1)(1 +

q1Bin

Sin−S∗
1
), then d2 < µ2(S

∗
0).

Proof. We wish to show d2 < µ2(S
∗
0) which is equivalent to show µ−1

2 (d2) < S0. From

the second equation in (4.3.1), we have

B∗
10 =

DBin

d1 − µ1(S∗
0)
,

and from the first equation in (4.3.1) together with the above value for B∗
10 we have

S∗
0 = Sin − q1

µ1(S
∗
0)Bin

d1 − µ1(S∗
0)
.

That is S∗
0 is a fixed point of the following function

g(S) = Sin − q1
µ1(S)Bin

d1 − µ1(S)
.

The function g is differentiable on (0, µ−1
1 (d1)) and

g′(S) = −q1
Binµ

′
1(S)

(d1 − µ1(S))2
< 0, since µ′

1(S) > 0.

Moreover, we clearly see

lim
S→µ−1

1 (d1)
g(S) = −∞.

44



Therefore, S∗
0 ∈ (0, µ−1

1 (d1)). It remains to show that S∗
0 > µ−1

2 (d2). Notice by the

assumption we have

d1 > µ1(µ
−1
2 (d2))

(
1 +

q1Bin

Sin − µ−1
2 (d2)

)
,

multiplying both sides by Sin − µ−1
2 (d2) yields

d1

(
Sin − µ−1

2 (d2)
)
> µ1(µ

−1
2 (d2))

(
Sin − µ−1

2 (d2)
)
+ q1Binµ1(µ

−1
2 (d2)),

which is equivalent to

Sin

(
d1 − µ1(µ

−1
2 (d2))

)
− q1Binµ1(µ

−1
2 (d2)) > µ−1

2 (d2)
(
d1 − µ1(µ

−1
2 (d2))

)
.

Therefore, we have

µ−1
2 (d2) < g(µ−1

2 (d2)), (4.3.7)

and since g is decreasing, we see that S∗
0 ∈ (µ−1

2 (d2), µ
−1
1 (d1)), to see this suppose

for the sake of a contradiction not, then, S∗
0 ≤ µ−1

2 (d2), but g is decreasing thus

g(S∗
0) ≥ g(µ−1

2 (d2)). By Inequality (4.3.7),

g(S∗
0) > µ−1

2 (d2),

but S∗
0 is a fixed point of g, thus S∗

0 > µ−1
2 (d2). Hence, S

∗
0 = µ−1

2 (d2). By the inequality

(4.3.7) we have

S∗
0 < g(S∗

0) = S∗
0 .

That is a contradiction, therefore, S∗
0 > µ−1

2 (d2).

Proposition 4.3.3. If d2 < µ2(Sin) and d1 < µ1(S
∗
1)(1 +

q1Bin

Sin−S∗
1
), then d2 > µ2(S

∗
0).

Proof. The proof uses the same arguments as the proof for the previous proposition

and it is omitted here.

The following table summarizes the behavior of System (4.3.1).
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Parameter subset Local stability

d2 > µ2(Sin) Only E0 exists and locally stable.

d2 < µ2(Sin)
i. If d1 > µ1(S

∗
1 )(1 +

q1Bin

Sin−S∗
1
), then both E0

and E1 exist. E1 is locally stable while E0

is unstable.
ii. If d1 < µ1(S

∗
1 )(1 +

q1Bin

Sin−S∗
1
), then only E0

exists and it is stable.

Table 4.2: Parameter relationship to local stability.

4.4 Competition of two microbial with one limited resource and one of the bacteria

is in the input flow in the presence of a constant homogeneous plasmid

Competition of the plasmid-bearing bacteria B1 and the non-plasmid beaning

bacteria B2 in the presence of a constant homogeneous plasmid. Moreover, the model

is based on several essential assumptions:

1. The micro- organisms introduced in the vessel are of two species.

2. The substrate (of concentration S) is the single limiting resource for growth.

3. The vessel is perfectly mixed.

dS

dt
= DSin︸ ︷︷ ︸

input

− DS︸︷︷︸
dilution

− q1µ1(S)B1︸ ︷︷ ︸
consumption by B1

− q2µ2(S)B2︸ ︷︷ ︸
consumption by B2

,

dB1

dt
= DBin︸ ︷︷ ︸

input

− DB1︸︷︷︸
dilution

+µ1(S)B1︸ ︷︷ ︸
growth

+ ηB2︸︷︷︸
B2 becomes B1

,

dB2

dt
= µ2(S)B2︸ ︷︷ ︸

growth

− DB2︸︷︷︸
dilution

− ηB2︸︷︷︸
B2 becomes B1

.

(4.4.1)

We assume q1 ≤ q2. The parameter qi are assumed constants and represent the

efficiency at which the organisms Bi harvests nutrient for population growth. Here,

D is a constant dilution rate, Sin is the concentration of the limiting nutrient, and

Bin is the input concentration for B1. Here, B1 is the population density of the
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plasmid-bearing bacteria, B2 is the concentration of the plasmid-free bacteria, and

S is the nutrient concentration. The function µi(S) is bounded and increasing

µi(0) = 0, 0 ≤ µi(S) ≤ µmax
i . For growth rate, the well-known Monod function is

used µi(S) =
µmax
i S

Ki+S
where µmax

i is the maximal growth rate as S → ∞ , and Ki is

the half-saturation constant. Both µmax
i and Ki can be measured experimentally.

We assume plasmids are constant and homogeneous across the environment. The

plasmid-free bacteria, B2 takes in the plasmid and becomes the plasmid-bearing

bacteria, B1 at a rate η.

4.4.1 Basic properties

4.4.1.1 Model well-posedness

All solutions should remain non-negative and bounded. The Cauchy problem

associated to system (4.4.1) is

x⃗′ = f⃗(x⃗); x⃗(t0) = x⃗0, (4.4.2)

where x⃗ = (S,B1, B2), and x⃗0 = (S0, B
0
1 , B

0
2) and f⃗(x⃗) ∈ R3. Here, f⃗(x⃗) is the

right-hand side in Equation (4.4.1). Clearly, the function f⃗(x⃗(t)) is continuously

differentiable in R3. Thus, by the Fundamental Existence-Uniqueness, there is a > 0

such that the initial value problem (4.4.2) has a unique solution x⃗(t) on [−a, a].

In the following theorem we will show that the solutions of Model (4.4.1) are non-

negative whenever (S0, B
0
1 , B

0
2) ∈ R3

+ and that solutions do not tend to infinity with

increasing time.

Theorem 4.4.1. If S0 > 0, B0
1 > 0 and B0

2 > 0, then the solution (S(t), B1(t), B2(t))

of Model (4.4.1) are non-negative for all t > 0. Moreover, the dynamical system

(4.4.1) is dissipative.
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Proof. Let

f1(S,B1, B2) = D
(
Sin − S

)
− q1µ1(S)B1 − q2µ2(S)B2,

f2(S,B1, B2) = D
(
Bin −B1

)
+ µ1(S)B1 + ηB2,

f3(S,B1, B2) =
(
µ2(S)−D − η

)
B2.

are the right-hand sides of Model (4.4.1). Since D, Sin and Bin are all positive, then

f1(0, B1, B2) = DSin > 0, f2(S, 0, B2) = DBin + ηB2 > 0 whenever B2 > 0, and

f3(S,B1, 0) = 0. Therefore, S(t) ≥ 0, B1(t) ≥ 0 and B2(t) ≥ 0 whenever S0 ≥ 0,

B0
1 ≥ 0 and B0

2 ≥ 0. To complete the proof we will show that

lim sup
t→∞

S(t) + q1B1(t) + q2B2(t) ≤ M, for some M > 0.

Let Σ = S + q1B1 + q2B2, then

Σ′ = DSin + q1DBin −D
(
S + q1B1 + q2B2

)
+ ηq1B2 − ηq2B2

= DSin + q1DBin −D
(
S + q1B1 + q2B2

)
+ η

(
q1 − q2

)
B2 (since q1 ≤ q2)

≤ DSin + q1DBin −DΣ.

If U(t) is the solution of

U ′(t) = DSin + q1DBin −DU(t), U(0) = Σ(0), (4.4.3)

then by comparison we have

Σ(t) ≤ U(t). (4.4.4)

One can easily verify that

U(t) = Sin + q1Bin +
(
Σ(0)− Sin − q1Bin

)
e−Dt,

is the exact solution to Equation (4.4.3). Hence,

lim
t→∞

U(t) = Sin + q1Bin,
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The above limit and the inequality (4.4.4) yield

lim sup
t→∞

Σ(t) ≤ Sin + q1Bin.

Therefore, Model (4.4.1) is dissipative.

4.4.2 Equilibria and stability analysis

Model (4.4.1) has two equilibria; a boundary equilibrium E0 = (S∗
0 , B

∗
10, B

∗
20)

and an interior equilibrium E1 = (S∗
1 , B

∗
11, B

∗
21), where:

B∗
10 =

DBin

D−µ1(S∗
0 )
, B∗

20 = 0, and

S∗
0 =



Sin+
DK1

µmax
1 −D

+
q1µ

max
1 Bin

µmax
1 −D

−

√(
Sin+

DK1
µmax
1 −D

+
q1µ

max
1 Bin

µmax
1 −D

)2

−4
DSinK1
µmax
1 −D

2
, if D < µmax

DSinK1

DK1+q1µmax
1 Bin

, if D = µmax

Sin+
DK1

µmax
1 −D

+
q1µ

max
1 Bin

µmax
1 −D

+

√(
Sin+

DK1
µmax
1 −D

+
q1µ

max
1 Bin

µmax
1 −D

)2

−4
DSinK1
µmax
1 −D

2
, if D > µmax

.

The components of the interior equilibrium are; S∗
1 = µ−1

2 (D + η), B∗
11 =

DBin

D−µ1(S∗
1 )
+

ηB∗
21

D−µ1(S∗
1 )
, and B∗

21 =
D(Sin−S∗

1 )(D−µ1(S∗
1 ))−q1µ1(S∗

1 )DBin

q1µ1(S∗
1 )η+q2µ2(S∗

1 )(D−µ1(S∗
1 ))

, and the function

µ−1
2 (D + η) = (D+η)K2

µmax
2 −(D+η)

. Using similar arguments used in Proposition (4.2.1), one

can easily show that the boundary equilibrium E0 always exists. The following

theorem summarizes the existence condition for the interior equilibrium E1.

Theorem 4.4.2. If µ−1
2 (D + η) < µ−1

1 (D) < Sin, then the interior equilibrium exists

if and only if

D > µ1(S
∗
1)
(
1 +

q1Bin

Sin − S∗
1

)
. (4.4.5)

Proof. Notice that µ−1
2 (D + η) < µ−1

1 (D) < Sin, implies Sin > S∗
1 and D > µ1(S

∗
1).

Then,

D > µ1(S
∗
1)
(
1 +

q1Bin

Sin − S∗
1

)
,

which is equivalent to
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D − µ1(S
∗
1) > µ1(S

∗
1)

q1Bin

Sin − S∗
1

,

rewriting the above inequality yields

Sin − S∗
1 > µ1(S

∗
1)

q1Bin

D − µ1(S∗
1)
,

Multiplying the above inequality by D
(
D − µ1(S

∗
1)
)
implies

D
(
Sin − S∗

1)
)(

D − µ1(S
∗
1)
)
> Dµ1(S

∗
1)q1Bin.

The above inequality together with Sin > S∗
1 and D > µ1(S

∗
1) imply B∗

21 > 0, and

hence B∗
11 > 0.

The following theorem shows that the boundary equilibrium E0 always exists

and the relations between the boundary and the interior equilibria.

Theorem 4.4.3. Assume µ−1
2 (D + η) < µ−1

1 (D) < Sin is satisfied, then System

(4.4.1) has a unique equilibrium in ∂R3
+:

E0 = (S∗
0 , B

∗
10, 0) ∈ ∂R3

+,

and S∗
0 ∈ (0, µ−1

1 (D)) is the unique fixed point of g : [0, µ−1
1 (D)) → R+ given by:

g(S) = Sin − q1
µ1(S)Bin

D − µ1(S)
.

Moreover, S∗
0 ∈ (µ−1

2 (D+η), µ−1
1 (D)) when (4.4.5) is satisfied and S∗

0 ∈ (0, µ−1
2 (D+η))

when it is strictly not satisfied.

Proof. Notice that the function g is continuous on [0, µ−1
1 (D)) and that

lim
S→µ−1

1 (D)
g(S) = −∞.
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Also, we note that g(0) = Sin and an easy calculation yields

g′(S) = −q1
Binµ

′
1(S)

(D − µ1(S))2
< 0, since µ′

1(S) > 0.

Hence, g is strictly decreasing on [0, µ−1
1 (D)), and therefore, the function g will

intersect the y = S only once at (S∗
0 , S

∗
0). Thus, S

∗
0 ∈ (0, µ−1

1 (D)). Next, if the

inequality (4.4.5) is satisfied. Then, we have

D > µ1(S
∗
1)
(
1 +

q1Bin

Sin − S∗
1

)
,

which is equivalent to

Sin − S∗
1 >

µ1(S
∗
1)q1Bin

D − µ1(S∗
1)

,

That implies

Sin −
µ1(S

∗
1)q1Bin

D − µ1(S∗
1)

> S∗
1 ,

Hence,

g(S∗
1) > S∗

1 , (4.4.6)

recall that S∗
1 = µ−1

2 (D + η), and since g is decreasing, we clearly see that S∗
0 ∈

(µ−1
2 (D), µ−1

1 (D)), to see this suppose for the sake of a contradiction not, then,

S∗
0 ≤ µ−1

2 (D), but g is decreasing thus g(S∗
0) ≥ g(µ−1

2 (D)). By Inequality (4.4.6),

g(S∗
0) > µ−1

2 (D),

but S∗
0 is a fixed point of g, thus S∗

0 > µ−1
2 (D). Hence, S∗

0 = µ−1
2 (D). By the inequality

(4.4.6) we have

S∗
0 < g(S∗

0) = S∗
0 .

That is a contradiction, therefore, S∗
0 > µ−1

2 (D). Similarly, S∗
0 ∈ (0, µ−1

2 (D+ η)) when

the inequality (4.4.5) is strictly not satisfied.
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The following theorem states the condition when the boundary equilibrium E0

is locally asymptotically stable.

Theorem 4.4.4. The equilibrium E0 is locally asymptotically stable if and only if

µ−1
2 (D + η) > S∗

0 .

Proof. Introducing the notation A1 = q1B
∗
10

µmax
1 K1

(K1+S∗
0 )

2 , A2 = q2B
∗
20

µmax
2 K2

(K2+S∗
0 )

2 , then the

Jacobian evaluated at E0 is

J(E0) =


−D − A1 −q1µ1(S

∗
0) −q2µ2(S

∗
0)

A1

q1
µ1(S

∗
0)−D η

0 0 µ2(S
∗
0)−D − η

 .

Also, one can have

−tr(J(E0) = 3D + η + A1 − µ1(S
∗
0)− µ2(S

∗
0),

−det(J(E0)) =
(
D + η − µ2(S

∗
0)
)(

D2 +DA1 −Dµ1(S
∗
0)
)
.

Also, we note since D(Sin − S∗
0)− q1µ1(S

∗
0)B

∗
10 = 0, then

µ1(S
∗
0) =

D(Sin − S∗
0)

q1B∗
10

=
D(Sin − S∗

0)

q1Bin + (Sin − S∗
0)

< D. (4.4.7)

The characteristic equation of J(E0) is

λ3 + a1λ
2 + a2λ+ a3 = 0,

where a1 = −tr(J(E0)), a3 = −det(J(E0)), and

a2 =
(
D + A1

)(
D − µ1(S

∗
0)
)
+
(
D + A1

)(
D + η − µ2(S

∗
0)
)
+(

µ1(S
∗
0)−D

)(
µ2(S

∗
0)−D − η

)
+ A1µ1(S

∗
0).

Using the Routh-Hurwitz conditions, we need to show a1 > 0, a3 > 0, and a1a2 > a3.

Using the assumption, D + η > µ2(S
∗
0), and since by inequality (4.4.7), we have
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D > µ1(S
∗
0), then we clearly see −tr(J(E0)) > 0 and −det(J(E0)) > 0. It now

remains to show a1a2 > a3.

Since

a2 =
(
D + A1

)(
D − µ1(S

∗
0)
)
+
(
D + A1

)(
D + η − µ2(S

∗
0)
)
+(

µ1(S
∗
0)−D

)(
µ2(S

∗
0)−D − η

)
+ A1µ1(S

∗
0)

= D2 −Dµ1(S
∗
0) + A1D − A1µ1(S

∗
0) +

(
D + A1

)(
D + η − µ2(S

∗
0)
)
+(

µ1(S
∗
0)−D

)(
µ2(S

∗
0)−D − η

)
+ A1µ1(S

∗
0) > D2 −Dµ1(S

∗
0) + A1D + 0 + 0.

Now since a1 = −tr(J(E)) > 0, then a1a2 > a1

(
D2 −Dµ1(S

∗
0) +A1D

)
. Since by the

inequality (4.4.7), D > µ1(S
∗
0), then D +D + A1 − µ1(S

∗
0) > 0 and D2 −Dµ1(S

∗
0) +

A1D > 0. Therefore, we have

a1a2 ≥ −det(J(E0)) +
(
D +D + A1 − µ1(S

∗
0)
)(

D2 −Dµ1(S
∗
0) + A1D

)
≥ −det(J(E0)) + 0 = a3.

The local stability of the interior equilibrium E1 is stated in the following

theorem.

Theorem 4.4.5. If the interior equilibrium exists, then it is locally asymptotically

stable.

Proof. The Jacobian matrix evaluated at E1 is

J(E1) =


−D − q1B

∗
11µ

′
1(S

∗
1)− q2B

∗
21µ

′
2(S

∗
1) −q1µ1(S

∗
1) −q2(D + η)

B∗
11µ

′
1(S

∗
1) µ1(S

∗
1)−D η

B∗
21µ

′
2(S

∗
1) 0 0

 .

The characteristic equation is

λ3 + a1λ
2 + a2λ+ a3 = 0,where
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a1 = −tr(J(E1)) = D + q1B
∗
11µ

′
1(S

∗
1) + q2B

∗
21µ

′
2(S

∗
1) +D − µ1(S

∗
1),

a2 = q2B
∗
21µ

′
2(S

∗
1)
(
D + η

)
+
(
D + q1B

∗
11µ

′
1(S

∗
1) + q2B

∗
21µ

′
2(S

∗
1)
)(

D − µ1(S
∗
1)
)

+ q1B
∗
11µ

′
1(S

∗
1)µ1(S

∗
1),

a3 = −det(J(E1)) = q2B
∗
21µ

′
2(S

∗
1)D(D − µ1(S

∗
1)) + q2ηB

∗
21µ

′
2(S

∗
1)(D − µ1(S

∗
1))

+ q1ηB
∗
21µ

′
2(S

∗
1)µ1(S

∗
1).

Since µ−1
2 (D + η) < µ−1

1 (D) < Sin, then D > µ1(S
∗
1). Therefore, −tr(J(E1)) > 0,

−det(J(E1)) > 0 and a2 > 0. Now it remains to prove a1a2 > a3.

a1a2 − a3 =
[
D + q1B

∗
11µ

′
1(S

∗
1) + q2B

∗
21µ

′
2(S

∗
1) +D − µ1(S

∗
1)
][
q2B

∗
21µ

′
2(S

∗
1)
(
D + η

)
+
(
D + q1B

∗
11µ

′
1(S

∗
1) + q2B

∗
21µ

′
2(S

∗
1)
)(

D − µ1(S
∗
1)
)
+ q1B

∗
11µ

′
1(S

∗
1)µ1(S

∗
1)
]

− q2B
∗
21µ

′
2(S

∗
1)
(
D + η

)(
D − µ1(S

∗
1)
)
− q1ηB

∗
21µ

′
2(S

∗
1)µ1(S

∗
1)

=
[
D + q1B

∗
11µ

′
1(S

∗
1) + q2B

∗
21µ

′
2(S

∗
1)
][
q1B

∗
11µ

′
1(S

∗
1)µ1(S

∗
1)

+
(
D + q1B

∗
11µ

′
1(S

∗
1) + q2B

∗
21µ

′
2(S

∗
1)
)(

D − µ1(S
∗
1)
)]

+
[
D + q1B

∗
11µ

′
1(S

∗
1) + q2B

∗
21µ

′
2(S

∗
1)
]
q2B

∗
21µ

′
2(S

∗
1)
(
D + η

)
+ q2B

∗
21µ

′
2(S

∗
1)
(
D + η

)(
D − µ1(S

∗
1)
)
+ q1B

∗
11µ

′
1(S

∗
1)µ1(S

∗
1)
(
D − µ1(S

∗
1)
)

+
(
D + q1B

∗
11µ

′
1(S

∗
1) + q2B

∗
21µ

′
2(S

∗
1)
)(

D − µ1(S
∗
1)
)2

− q2B
∗
21µ

′
2(S

∗
1)
(
D + η

)(
D − µ1(S

∗
1)
)
− q1ηB

∗
21µ

′
2(S

∗
1)µ1(S

∗
1)

>
[
D + q1B

∗
11µ

′
1(S

∗
1) + q2B

∗
21µ

′
2(S

∗
1)
][
q1B

∗
11µ

′
1(S

∗
1)µ1(S

∗
1)

+
(
D + q1B

∗
11µ

′
1(S

∗
1) + q2B

∗
21µ

′
2(S

∗
1)
)(

D − µ1(S
∗
1)
)]

+Dq2B
∗
21µ

′
2(S

∗
1)
(
D + η

)
+ q2B

∗
21µ

′
2(S

∗
1)
(
D + η

)(
D − µ1(S

∗
1)
)
+ q1B

∗
11µ

′
1(S

∗
1)µ1(S

∗
1)
(
D − µ1(S

∗
1)
)

+
(
D + q1B

∗
11µ

′
1(S

∗
1) + q2B

∗
21µ

′
2(S

∗
1)
)(

D − µ1(S
∗
1)
)2

− q2B
∗
21µ

′
2(S

∗
1)
(
D + η

)(
D − µ1(S

∗
1)
)
− q1ηB

∗
21µ

′
2(S

∗
1)µ1(S

∗
1).
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Since q1 ≤ q2 and D > µ1(S
∗
1), then a1a2 − a3 ≥ 0. Therefore, E1 is locally

asymptotically stable.

The following table summarizes the behavior of System (4.4.1).

Parameter subset Local stability

D + η > µ2(Sin) Only E0 exists and locally stable.

D + η < µ2(Sin)
i. If D > µ1(S

∗
1)(1 +

q1Bin

Sin−S∗
1
), then both

E0 and E1 exist. E1 is locally stable
while E0 is unstable.

ii. If D < µ1(S
∗
1)(1 +

q1Bin

Sin−S∗
1
), then only

E0 exists and it is stable.

Table 4.3: Parameter relationship to local stability.
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CHAPTER 5

Numerical Simulations

5.1 Numerical Simulations for one-dimensional differential equations

The performance of the new SOPESN1 (3.2.14) and SOPESN2 (3.3.12) methods

is numerically compared with the second-order modified nonstandard explicit Euler

(SONSEE) method [24], the standard second-order two-stage explicit Runge-Kutta

(ERK2) method [38], and the PESN1 (2.0.5) and PESN2 (2.0.6) methods for three

different equations. We first consider the following productive-destructive equation:

dx

dt
= k1bx− k−1x

2, (5.1.1)

which models a simple autocatalytic reaction (autocatalysis), where a chemical with

concentration x is involved in its own production using a reactant [33]. Here, k1 is

the forward reaction rate constant, k−1 is the reverse reaction rate constant, and

b is the constant concentration of the reactant. In the setting of Equation (2.0.2),

the production function is P (x) = k1bx and the destruction function D(x) = k−1x
2.

Equation (5.1.1) is also considered the chemical equivalent of the logistic growth

equation [33]:

dx

dt
= ax

(
1− x

K

)
, (5.1.2)

where the intrinsic growth rate a = k1b is the equivalent of the unit production rate,

while the carrying capacity of the environment K =
k1b

k−1

is the equivalent of the

reaction’s steady-state.

Equation (5.1.2) has two hyperbolic equilibria: x∗ = K, which is stable, and

x∗ = 0, which is unstable, provided that a > 0. In all examples, we set |a| = 1 and
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K = 1. In Figure 5.1(a), for h = 0.9 and initial condition x0 = 0.1, we see that while

all the methods behave well and similar to the exact solution, the new SOPESN

methods (3.2.14), (3.3.12), and the SONSEE approach the exact solution at a faster

rate than the PESN methods. For the two PESN methods, we use the nonstandard

denominator function

φ(h) =
1− e−qh

q
,

with q = 1. Figure 5.1(b), for h = 2.6, we see that the ERK2 method initially

oscillates and introduces an artificial fixed point, and indeed with a larger enough

step-size e.g. h > 2.9, the ERK2 method will not converge to any point in R. We see

that there is no such behavior from SOPESN methods (3.2.14) and (3.3.12).

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

(a) Comparison of SOPESN, SONSEE
and PESN

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

(b) Comparison of SOPESN and
ERK2

Figure 5.1: Numerical solutions of Equation (5.1.2) for a = 1 and K = 1, and using
h = 0.9 in (a) and h = 2.6 in (b).

Next, we consider the following modified logistic growth equation ([43], p. 124):

dx

dt
= ax

(x
θ
− 1

)(
1− x

K

)
, (5.1.3)

with 0 < θ < K. In the second example, we set a = 1, θ = 0.5 and K = 1. For

this set of parameter values, the right-hand side function of Equation (5.1.3) is

f(x) = x(2x − 1)(1 − x), and the equation has x∗ = 1
2
as an unstable equilibrium
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while x∗ = 0, 1 are stable equilibria. In the productive-destructive setting of Equation

(2.0.2), the function f(x) can be rewritten as f(x) = P (x)−D(x), where P (x) = 3x2

and D(x) = 2x3 + x. Next, to better visualize the second-order accuracy of the new

SOPESN methods (3.2.14) and (3.3.12), we denote the numerical solution for a given

mesh size h as xh. Let us define the l∞ error as

E(h) = ∥xh − x∥∞,

where

∥y∥∞ = max
k=0,··· ,Nt

|yk|

represents the discrete l∞ norm of the vector y, and x represents the exact solution

of Equation (2.0.1). As can be seen in Figure 5.2(a), the error lines for the PESN

methods (2.0.5) and (2.0.6) have slopes 1, whereas both SOPESN methods (3.2.14)

and (3.3.12), including the SONSEE method, have error lines of slope 2. For small

values of the time step h, all of the above numerical methods approximate the solution

of Equation (5.1.3) very well. However, for large values of h, the SONSEE method

produces a numerical solution that is initially before correcting itself back to the

stable equilibrium x∗ = 0, while both the second-order (SOPESN) and first-order

(PESN) positive and elementary stable methods always preserve the positivity of the

solution, as can be seen in Figure 5.2(b) for h = 5 and initial condition x0 = 0.1.

Lastly, for the third example, we set a = −1, θ = 0.5 and K = 1 in Equation

(5.1.3). In this case, the right-hand side function becomes f(x) = x(2x− 1)(x− 1),

and Equation (5.1.3) has three hyperbolic equilibria, where x∗ = 0, 1 are unstable and

x∗ = 1
2
is stable. Similarly to the previous example, the right-hand side function f(x)

of Equation (5.1.3) can be rewritten in the productive-destructive setting of Equation

(2.0.2) as f(x) = P (x) − D(x), where P (x) = 2x3 + x and D(x) = 3x2. In Figure

5.3(a), for h = 0.2 and initial condition x0 = 0.9, we see that the numerical solutions
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(a) Error plot: SOPESN vs PESN
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(b) Comparison of SOPESN,
SONSEE and PESN

Figure 5.2: Numerical solutions of Equation (5.1.3) for a = 1, θ = 0.5 and K = 1,
and using h = 5 in (b).
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SONSEE

Figure 5.3: Numerical solutions of Equation (5.1.3) for a = −1, θ = 0.5 and K = 1,
and using h = 0.2 in (a) and h = 4.5 in (b).

produced by all five methods accurately resemble the exact solution and converge to

the stable equilibrium x∗ = 1
2
. However, for the large time-step h = 4.5, the solution

produced by the SONSEE method, which is not designed to be positivity preserving,

goes negative and therefore eventually blows up while the numerical solutions of the

SOPESN methods always remain positive and approach the stable equilibrium, as

seen in Figure 5.3(b).

59



5.2 SOPESN methods applied to the chemostat models

5.2.1 SOPESN methods applied to the simple chemostat model with microbial input

and a constant death rate

In this subsection, the SOPESN methods are applied to approximate the solution

of the simple chemostat model with microbial input and a constant death rate (4.2.1)

discussed in Chapter (4). Also, SOPESN methods are compared with several standard

and nonstandard finite difference methods in different settings. As was illustrated

in Chapter (4), Model (4.2.1) has a unique interior equilibrium E∗ = (S∗, B∗) that

is asymptotically stable. The SOPESN1 method for Model (4.2.1) is constructed as

follows:

Sk+1 − Sk

φ1(h, Sk, Bk)
= wk

1

(
D
(
Sin − Sk

)
− qµ(Sk)Bk

)
= f1(S

k, Bk),

Bk+1 −Bk

φ2(h, Sk, Bk)
= wk

2

(
D
(
Bin −Bk

)
+ µ(Sk)Bk −mBk

)
= f2(S

k, Bk),

(5.2.1)

where

wk
1 =


1, if f1(S

k, Bk) ≥ 0

Sk+1

Sk
, if f1(S

k, Bk) < 0

, and wk
2 =


1, if f2(S

k, Bk) ≥ 0

Bk+1

Bk
, if f2(S

k, Bk) < 0

.

The denominator functions are chosen as follows

φi(h, S
k, Bk) =


1− e−qi(S

k,Bk)h

qi(Sk, Bk)
, if qi(S

k, Bk) ̸= 0

h, if qi(S
k, Bk) = 0

,

where qi(S
k, Bk) as in Theorem (3.2.1) for all i = 1, 2. In the productive-destructive

setting of System (2.0.2), the functions f1(S,B) and f2(S,B) can be rewritten as

fi(S,B) = Pi(S,B)−Di(S,B), for all i = 1, 2, where P1(S,B) = DSin, D1(S,B) =
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DS+qµ(S)B, P2(S,B) = DBin+µ(S)B, and D2(S,B) = DB+mB. The SOPESN2

method is constructed as follows

Sk+1 − Sk

φ1(h, Sk, Bk)
= P1(S

k, Bk)−D1(S
k, Bk)

Sk+1

Sk
,

Bk+1 −Bk

φ2(h, Sk, Bk)
= P2(S

k, Bk)−D2(S
k, Bk)

Bk+1

Bk
.

(5.2.2)

The denominator functions are chosen as follows

φi(h, S
k, Bk) =


1− e−qi(S

k,Bk)h

qi(Sk, Bk)
, if qi(S

k, Bk) ̸= 0

h, if qi(S
k, Bk) = 0

.

where qi(S
k, Bk) as in Theorem (3.3.1) for all i = 1, 2, and µ(S) = µmaxS

K+S
.

For Model (4.2.1), we consider the following set of parameter values: D = 0.4,

Sin = 1.5, Bin = 0.5, q = 10−8, m = 0.2, µmax = 0.3 and K = 0.1. As was shown in

Chapter (4) that Model (4.2.1) has unique positive equilibrium E∗ = (1.5, 0.627451)

that is asymptotically stable. Moreover, the eigenvalues of the Jacobian matrix

evaluated at E∗ are: λ1 = −0.4, and λ2 = −0.31875. The PESN1 method (2.0.1) is

constructed as follows:

Sk+1 − Sk

φ(h)
= wk

1

(
D
(
Sin − Sk

)
− qµ(Sk)Bk

)
= wk

1f1(S
k, Bk),

Bk+1 −Bk

φ(h)
= wk

2

(
D
(
Bin −Bk

)
+ µ(Sk)Bk −mBk

)
= wk

2f2(S
k, Bk),

(5.2.3)

where

wk
1 =


1, if f1(S

k, Bk) ≥ 0

Sk+1

Sk
, if f1(S

k, Bk) < 0

, and wk
2 =


1, if f2(S

k, Bk) ≥ 0

Bk+1

Bk
, if f2(S

k, Bk) < 0

.
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The choice of the denominator function φ is chosen as described in [49]:

φ(h) =
1− e−0.3h

0.3
, here, 0.3 > max

{
|λ1|
2

,
|λ2|
2

}
= 0.2.

In order to apply the PESN2 method to Model (4.2.1), the model is rewritten in the

form of System (2) presented in [48], such as:

dS

dt
= DSin −

(
D + q µmaxB

K+S

)
S,

dB

dt
= DBin +

µmaxS
K+S

B −
(
D +m

)
B.

Then, the PESN2 method (2.0.1) is constructed as follows:

Sk+1 − Sk

φ(h)
= DSin −

(
D + q µmaxBk

K+Sk

)
Sk+1,

Bk+1 −Bn

φ(h)
= DBin +

µmaxSk

K+Sk Bk −
(
D +m

)
Bk+1.

(5.2.4)

The denominator function is φ(h) = h. The choice of the denominator function

φ(h) was determined using the methodology in Appendix A [48]. Figure 5.4(a)

compares the SOPESN methods (3.2.3) and (3.3.3) with the standard explicit Euler

(EE) method [38] for h = 7. It is known that the EE method neither preserves

the positivity of the solutions nor the local stability of the equilibria independently

of the step size h. As we can see, the EE method keeps oscillating and does not

converge to any point, while the SOPESN methods behave well and converge to the

exact solution. Figure 5.4(b), for h = 7, compares the SOPESN methods with the

standard second-order two-stage explicit Runge-Kutta (ERK2) method [38], and it

can be seen that the ERK2 method does not converge to the exact solution and will

eventually blow up to infinity. In contrast, the SOPESN (3.2.3) and (3.3.3) methods

behave well and converge to the exact solution. Figure 5.4(c) and Figure 5.4(d)

compare the SOPESN1 method with the PESN1 method (2.0.5) and the SOPESN2
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method with the PESN2 method (2.0.6), respectively, for h = 0.95. one can see

that all numerical solutions converge to the exact solution. However, the SOPESN

methods are much more accurate than their corresponding first-order PESN methods.

Moreover, the PESN1 method converges to the exact solution faster than the PESN2

method. Therefore, we compare the SOPESN methods with the PESN1 method from

now on. Figure 5.5(a) and Figure 5.5(b) show the global asymptotic stability of the

positive equilibrium E∗ as established in Theorem (4.2.3). Figure 5.5(c) and Figure

5.5(d) support the global asymptotic stability of the positive equilibrium E∗.
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Figure 5.4: Numerical solutions of Model (4.2.1) using h = 7 in (a) and (b), and
h = 0.95 in (c) and (d).
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Figure 5.5: Stability of E∗ (see Theorem (4.2.3)).

5.2.2 SOPESN methods applied to the competition model with microbial input and

constant death rates

In this subsection, the SOPESN methods are applied to approximate the

solutions of the competition model (4.3.1). Moreover, comparisons between the

SOPESN methods and other standard and nonstandard finite difference methods are

provided. We recall that System (4.3.1) has a boundary equilibrium, E0 = (S∗
0 , B

∗
10, 0),

and a unique positive equilibrium E1 = (S∗
1 , B

∗
11, B

∗
21). The positive equilibrium is

locally asymptotically stable whenever it exists. While the boundary equilibrium is
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locally asymptotically stable if and only if d2 > µ2(S
∗
0). The SOPESN1 method for

Model (4.3.1) is constructed as follows:

Sk+1 − Sk

φ1(h, Sk, Bk
1 , B

k
2 )

= wk
1

(
D
(
Sin − Sk

)
− q1µ1(S

k)Bk
1 − q2µ2(S

k)Bk
2

)
= wk

1f1(S
k, Bk

1 , B
k
2 ),

Bk+1
1 −Bk

1

φ2(h, Sk, Bk
1 , B

k
2 )

= wk
2

(
D
(
Bin −Bk

1

)
+ µ1(S

k)Bk
1 −m1B

k
1

)
= wk

2f2(S
k, Bk

1 .B
k
2 ),

Bk+1
2 −Bk

2

φ3(h, Sk, Bk
1 , B

k
2 )

= wk
3

(
Bk

2

(
µ2(S

k)−D −m2

))
= wk

3f3(S
k, Bk

1 .B
k
2 ),

where

wk
1 =


1, if f1(S

k, Bk
1 , B

k
2 ) ≥ 0

Sk+1

Sk
, if f1(S

k, Bk
1 , B

k
2 ) < 0

, wk
2 =


1, if f2(S

k, Bk
1 , B

k
2 ) ≥ 0

Bk+1
1

Bk
1

, if f2(S
k, Bk

1 , B
k
2 ) < 0

,

and wk
3 =


1, if f3(S

k, Bk
1 , B

k
2 ) ≥ 0

Bk+1
2

Bk
2

, if f3(S
k, Bk

1 , B
k
2 ) < 0

.

The denominator functions are chosen as

φi(h, S
k, Bk

1 , B
k
2 ) =


1− e−qi(S

k,Bk
1 ,B

k
2 )h

qi(Sk, Bk
1 , B

k
2 )

, if qi(S
k, Bk

1 , B
k
2 ) ̸= 0

h, if qi(S
k, Bk

1 , B
k
2 ) = 0

.

where qi(S
k, Bk

1 , B
k
2 ) as in Theorem (3.2.1) for all i = 1, 2, 3. In order to apply the

SOPESN2 method (3.3.3) to the system (4.3.1), the right-hand sides of System (4.3.1)
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are rewritten in the productive-destructive setting of System (2.0.2). The functions

f1(S,B1, B2), f2(S,B1, B2) and f3(S,B1, B2) can be rewritten as

fi(S,B1, B2) = Pi(S,B1, B2)−Di(S,B1, B2), for all i = 1, 2, 3,

where

P1(S,B1, B2) = DSin, D1(S,B1, B2) = DS + q1µ1(S)B1 + q2µ2(S)B2,

P2(S,B1, B2) = DBin + µ1(S)B1 , D2(S,B1, B2) = DB1 +m1B1,

P3(S,B1, B2) = µ2(S)B2, and D3(S,B1, B2) = DB2 +m2B2.

The SOPESN2 method is constructed as follows

Sk+1 − Sk

φ1(h, Sk, Bk
1 , B

k
2 )

= P1(S
k, Bk

1 , B
k
2 )−D1(S

k, Bk
1 , B

k
2 )
Sk+1

Sk
,

Bk+1
1 −Bk

1

φ2(h, Sk, Bk
1 , B

k
2 )

= P2(S
k, Bk

1 , B
k
2 )−D2(S

k, Bk
1 , B

k
2 )
Bk+1

1

Bk
1

,

Bk+1
2 −Bk

2

φ3(h, Sk, Bk
1 , B

k
2 )

= P3(S
k, Bk

1 , B
k
2 )−D3(S

k, Bk
1 , B

k
2 )
Bk+1

2

Bk
2

.

(5.2.5)

The denominator functions are chosen as

φi(h, S
k, Bk

1 , B
k
2 ) =


1− e−qi(S

k,Bk
1 ,B

k
2 )h

qi(Sk, Bk
1 , B

k
2 )

, if qi(S
k, Bk

1 , B
k
2 ) ̸= 0

h, if qi(S
k, Bk

1 , B
k
2 ) = 0

.

where qi(S
k, Bk

1 , B
k
2 ) as in Theorem (3.3.1) for all i = 1, 2, 3.

For Model (4.3.1), we first consider the following set of parameter values:

D = 0.2, Sin = 1.5, Bin = 0.5, q1 = q2 = 10−2, m1 = m2 = 0.1, µmax
1 = 0.1,

µmax
2 = 0.3, and K1 = K2 = 0.1, with initial conditions

(S(0), B1(0), B2(0)) = (0.5, 1, 0.5).
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For this set of parameter values, and since d2 = 0.3 > 0.2812 = µ2(Sin), then by

Proposition (4.3.1) the interior equilibrium does not exist. Thus, Model (4.3.1) has

only the boundary equilibrium E0 = (1.4977, 0.4848, 0), and it is locally asymptotically

stable, since d2 = 0.3 > 0.2812 = µ2(S
∗
0) (Theorem (4.3.1)). Moreover, the eigenvalues

of the Jacobian matrix evaluated at E0 are: λ1 = −0.204376 + 0.0108459 i, λ2 =

−0.204376 − 0.0108459 i, and λ3 = −0.0221533. The PESN1 method (2.0.5) for

Model (4.3.1) is:
Sk+1 − Sk

φ(h)
= wk

1f1(S
k, Bk

1 , B
k
2 ),

Bk+1
1 −Bk

1

φ(h)
= wk

2f2(S
k, Bk

1 .B
k
2 ),

Bk+1
2 −Bk

2

φ(h)
= wk

3f3(S
k, Bk

1 .B
k
2 ),

(5.2.6)

where

wk
1 =


1, if f1(S

k, Bk
1 , B

k
2 ) ≥ 0

Sk+1

Sk
, if f1(S

k, Bk
1 , B

k
2 ) < 0

, wk
2 =


1, if f2(S

k, Bk
1 , B

k
2 ) ≥ 0

Bk+1
1

Bk
1

, if f2(S
k, Bk

1 , B
k
2 ) < 0

,

and wk
3 =


1, if f3(S

k, Bk
1 , B

k
2 ) ≥ 0

Bk+1
2

Bk
2

, if f3(S
k, Bk

1 , B
k
2 ) < 0

.

Following the approach in [49], the denominator function is

φ(h) =
1− e−h0.2

0.2
, here, 0.2 > max

{
|λj|2

2Re(|λj|)
: j = 1, 2, 3

}
= 0.102476.

Figure (5.6a) compares the SOPESN methods with the EE method for h = 10. EE

method does not preserve the local stability of the equilibria for any step size h. We

can see that the EE method keeps oscillating and does not converge to the exact
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solution, while the SOPESN methods converge to the exact solution. Figure 5.6(b)

compares the SOPESN methods with the ERK2 method for h = 10. Even though the

ERK2 method is second-order accurate, it does not preserve the local stability of the

equilibria. We can easily see that the ERK2 method diverges from the exact solution,

while the SOPESN methods converge. Figure 5.6(c) and Figure 5.6(d ) compare the

SOPESN methods with the PESN1 method for h = 0.95. While all methods behave

well and converge to the boundary equilibrium E0 = (1.4977, 0.4848, 0). We can see

that the SOPESN methods are more accurate than the PESN1 method.

Next, we consider the following set of parameters values: D = 0.1, Sin = 1.5,

Bin = 0.1, q1 = q2 = 1, m1 = 0.4, m2 = 0.1, µmax
1 = 0.4, µmax

2 = 0.5, and

K1 = K2 = 0.1, with initial conditions:

(S(0), B1(0), B2(0)) = (0.01, 0.2, 1.4).

For this set of parameter values, Model (4.3.1) has two equilibria, a boundary equilib-

rium E0 = (1.2165, , 0.0767, 0), and an interior equilibrium E1 = (0.0667, 0.0294, 0.6931).

Since d2 = 0.2 < 0.4620 = µ2(S
∗
0), then the boundary equilibrium E0 is unstable

(Theorem (4.3.1)). Moreover, since the interior equilibrium exists, then it is locally

asymptotically stable (Theorem(4.3.2)). Furthermore, the eigenvalues of the Jaco-

bian matrix evaluated at E0 are: λ10 = 0.262021, λ20 = −0.116077 + 0.0212038 i,

and λ30 = −0.116077− 0.0212038 i. While the eigenvalues of the Jacobian matrix

evaluated at E1 are: λ1,1 = −1.3894, λ2,1 = −0.160048 and λ3,1 = −0.20006. Here,

the denominator function for the PESN1 method (5.2.6) is:

φ(h) =
1− e−0.6h

0.6
,

where 0.6 > max
{

|λjk|2
2Re(|λjk|)

: j = 1, 2, 3 and k = 0, 1
}
= 0.583768. Figure 5.7(a) and

Figure 5.7(b) compare the SOPESN methods with the PESN1 method for h = 0.95.
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As discussed previously, the interior equilibrium E1 = (0.0667, 0.0294, 0.6931) is locally

asymptotically stable. We can see all methods converge to the interior equilibrium

E1. However, the SOPESN methods converge to the exact solution faster than the

PESN method.
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Figure 5.6: Numerical solutions of Model (4.3.1) using h = 10 in (a) and (b), and
h = 0.95 in (c) and (d).
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Figure 5.7: Numerical solutions of Model (4.3.1) using h = 0.95.

5.2.3 SOPESN methods applied to the competition model with microbial input and

in the presence of a constant homogeneous plasmid

In this subsection, the SOPESN methods are applied to approximate the solution

to the competition model in the presence of plasmid (4.4.1). Moreover, comparisons

between the SOPESN methods, and the PESN1 method are also provided. We

recall that System (4.4.1) has a boundary equilibrium, E0 = (S∗
0 , B

∗
10, 0), and a

unique positive equilibrium E1 = (S∗
1 , B

∗
11, B

∗
21). The positive equilibrium is locally

asymptotically stable whenever it exists. While the boundary equilibrium is locally
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asymptotically stable if and only if D + η > µ2(S
∗
0). The SOPESN1 method for

Model (4.3.1) is constructed as follows:

Sk+1 − Sk

φ1(h, Sk, Bk
1 , B

k
2 )

= wk
1

(
D
(
Sin − Sk

)
− q1µ1(S

k)Bk
1 − q2µ2(S

k)Bk
2

)
= f1(S

k, Bk
1 , B

k
2 ),

Bk+1
1 −Bk

1

φ2(h, Sk, Bk
1 , B

k
2 )

= wk
2

(
D
(
Bin −Bk

1

)
+ µ1(S

k)Bk
1 + ηBk

2

)
= f2(S

k, Bk
1 .B

k
2 ),

Bk+1
2 −Bk

2

φ3(h, Sk, Bk
1 , B

k
2 )

= wk
3

(
Bk

2

(
µ2(S

k)−D − η
))

= f3(S
k, Bk

1 .B
k
2 ),

(5.2.7)

where

wk
1 =


1, if f1(S

k, Bk
1 , B

k
2 ) ≥ 0

Sk+1

Sk
, if f1(S

k, Bk
1 , B

k
2 ) < 0

, wk
2 =


1, if f2(S

k, Bk
1 , B

k
2 ) ≥ 0

Bk+1
1

Bk
1

, if f2(S
k, Bk

1 , B
k
2 ) < 0

,

and wk
3 =


1, if f3(S

k, Bk
1 , B

k
2 ) ≥ 0

Bk+1
2

Bk
2

, if f3(S
k, Bk

1 , B
k
2 ) < 0

.

The denominator functions are chosen as

φi(h, S
k, Bk

1 , B
k
2 ) =


1− e−qi(S

k,Bk
1 ,B

k
2 )h

qi(Sk, Bk
1 , B

k
2 )

, if qi(S
k, Bk

1 , B
k
2 ) ̸= 0

h, if qi(S
k, Bk

1 , B
k
2 ) = 0

.

where qi(S
k, Bk

1 , B
k
2 ) as in Theorem (3.2.1) for all i = 1, 2, 3. In order to apply the

SOPESN2 method (3.3.3) to the system (4.3.1), the right-hand sides of System (4.3.1)

are rewritten in the productive-destructive setting of System (2.0.2). The functions

f1(S,B1, B2), f2(S,B1, B2) and f3(S,B1, B2) can be rewritten as

fi(S,B1, B2) = Pi(S,B1, B2)−Di(S,B1, B2), for all i = 1, 2, 3,
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where

P1(S,B1, B2) = DSin, D1(S,B1, B2) = DS + q1µ1(S)B1 + q2µ2(S)B2,

P2(S,B1, B2) = DBin + µ1(S)B1 + ηB2, D2(S,B1, B2) = DB1,

P3(S,B1, B2) = µ2(S)B2, and D3(S,B1, B2) = DB2 + ηB2.

The SOPESN2 method is constructed as follows

Sk+1 − Sk

φ1(h, Sk, Bk
1 , B

k
2 )

= P1(S
k, Bk

1 , B
k
2 )−D1(S

k, Bk
1 , B

k
2 )
Sk+1

Sk
,

Bk+1
1 −Bk

1

φ2(h, Sk, Bk
1 , B

k
2 )

= P2(S
k, Bk

1 , B
k
2 )−D2(S

k, Bk
1 , B

k
2 )
Bk+1

1

Bk
1

,

Bk+1
2 −Bk

2

φ3(h, Sk, Bk
1 , B

k
2 )

= P3(S
k, Bk

1 , B
k
2 )−D3(S

k, Bk
1 , B

k
2 )
Bk+1

2

Bk
2

.

(5.2.8)

The denominator functions are chosen as

φi(h, S
k, Bk

1 , B
k
2 ) =


1− e−qi(S

k,Bk
1 ,B

k
2 )h

qi(Sk, Bk
1 , B

k
2 )

, if qi(S
k, Bk

1 , B
k
2 ) ̸= 0

h, if qi(S
k, Bk

1 , B
k
2 ) = 0

.

where qi(S
k, Bk

1 , B
k
2 ) as in Theorem (3.3.1) for all i = 1, 2, 3.

For Model (4.4.1), we first consider the following set of parameter values:

D = 0.1, Sin = 2, Bin = 0.1, q1 = 0.1, q2 = 0.2, µmax
1 = 0.1, µmax

2 = 0.2, η = 0.1, and

K1 = K2 = 0.1, with the following initial conditions:

(S(0), B1(0), B2(0)) = (0.5, 0.5, 0.1).

With this set of parameter values, Model (4.4.1) has only the boundary equilib-

rium E0 = (1.8182, 1.9182, 0). Since D + η = 0.2 > 0.1905 = µ2(Sin), then

the interior equilibrium E1 does not exist (Theorem (4.4.2)). Moreover, since
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D + η = 0.2 > 0.1896 = µ2(S
∗
0), the boundary equilibrium E0 is locally asymp-

totically stable (Theorem (4.4.4)). Furthermore, the eigenvalues of the Jacobian

matrix evaluated at the equilibrium E0 are λ1 = −0.1, λ2 = −0.0104264, and

λ3 = −0.00573454. The PESN1 method (2.0.5) for Model (4.4.1) is constructed as

follows:
Sk+1 − Sk

φ(h)
= wk

1f1(S
k, Bk

1 , B
k
2 ),

Bk+1
1 −Bk

1

φ(h)
= wk

2f2(S
k, Bk

1 .B
k
2 ),

Bk+1
2 −Bk

2

φ(h)
= wk

3f3(S
k, Bk

1 .B
k
2 ),

(5.2.9)

where

wk
1 =


1, if f1(S

k, Bk
1 , B

k
2 ) ≥ 0

Sk+1

Sk
, if f1(S

k, Bk
1 , B

k
2 ) < 0

, wk
2 =


1, if f2(S

k, Bk
1 , B

k
2 ) ≥ 0

Bk+1
1

Bk
1

, if f2(S
k, Bk

1 , B
k
2 ) < 0

,

and wk
3 =


1, if f3(S

k, Bk
1 , B

k
2 ) ≥ 0

Bk+1
2

Bk
2

, if f3(S
k, Bk

1 , B
k
2 ) < 0

.

Following the approach in [49], the denominator function is

φ(h) =
1− e−0.1h

0.1
, here 0.1 > max

{
|λj|
2

: j = 1, 2, 3

}
= 0.05.

Figure 5.8(a) and Figure 5.8(b) compare the SOPESN methods with the PESN1

method for h = 0.95. As discussed above, the interior equilibrium does not exist,

while the boundary equilibrium exists, and it is locally asymptotically stable. One

can easily see that all numerical methods converge to the boundary equilibrium E0.

However, the SOPESN methods converge to the exact solution at a faster rate than

the PESN1 method.

73



Next, we consider the following set of parameter values: D = 0.1, Sin = 2,

Bin = 0.1, q1 = q2 = 1, µmax
1 = 0.2, µmax

2 = 0.6, η = 0.1, and K1 = K2 = 0.1, with

the following initial conditions:

(S(0), B1(0), B2(0)) = (0.02, 0.8, 0.1).

In this case, Model (4.4.1) has two equilibria. One is the boundary equilibrium E0 =

(0.0905, 2.0095, 0) and the other is the interior equilibrium E1 = (0.05, 0.4375, 1.6125).

Since D+η = 0.2 < 0.2851 = µ2(S
∗
0), the boundary equilibrium is unstable (Theorem

(4.4.4)). Moreover, since the interior equilibrium E1 exists, it is locally asymptotically

stable (Theorem (4.4.5)). Furthermore, the eigenvalues of the Jacobian matrix

evaluated at E0 are: λ10 = −1.11245, λ20 = −0.1, and λ30 = 0.0850394. While the

eigenvalues of the Jacobian matrix evaluated at E1 are: λ11 = −2.57287, λ21 = −0.1,

and λ31 = −0.0604599. Here, the denominator function φ(h) of the PESN1 method

(5.2.9) is

φ(h) =
1− e−1.5h

1.5
,

where 1.5 > max
{

|λjk|2
2Re(|λjk|)

: j = 1, 2, 3 and k = 0, 1
}
= 1.28644. Figure 5.9(a) and

Figure 5.9(b) compare the SOPESN methods with the PESN1 method for h = 0.95.

In this case, we know that the interior equilibrium is locally asymptotically stable

while the boundary equilibrium is not stable. Both figures show that all numerical

converge to the interior equilibrium E1. However, the SOPESN methods are more

accurate than the PESN1 method.
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Figure 5.8: Numerical solutions of Model (4.4.1) using h = 0.95.
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Figure 5.9: Numerical solutions of Model (4.4.1) using h = 0.95.
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CHAPTER 6

Conclusions

In the first part of this dissertation, two modified nonstandard numerical meth-

ods, namely SOPESN1 and SOPESN2 methods, were constructed and analyzed.

SOPESN1 method was formulated to approximate solutions of general n-dimensional

autonomous differential equations (2.0.1), while SOPESN2 method was formulated

to approximate solutions of general n-dimensional productive-destructive equations

(2.0.2). This work presented a novel approach that modifies the nonstandard denomi-

nator functions in the PESN numerical methods to increase the order of accuracy

of existing underlying NSFD methods, resulting in a second-order accuracy of the

corresponding methods. The numerical methods are dynamically consistent with

respect to the equilibria’s local stability and the positivity of the solution. Moreover,

they are second-order accurate and can be written in an explicit form that makes

them easy to implement, so they can be used to solve numerous problems arising in

economics, engineering, and science.

Next, we analyzed three chemostat models with microbial input. The first

model aims to represent the growth of a bacteria with the bacteria in the input

inflow and in the presence of a constant homogeneous constant. Since competition is

crucial in nature. A detailed analysis of a competition model with a microbial input

and a constant death rate due to a toxin was presented. Also, since the plasmid

plays an essential role in antibiotic resistance, we analyzed a competition model with

microbial input in the presence of a constant homogeneous plasmid. As was expected,

all models have an interior equilibrium that is stable whenever it exists. This ensures
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the coexistence of all species in the chemostat. When there is no competition in the

chemostat with microbial input and a constant death rate, the analysis of Model(4.2.1)

reveals that the donor bacteria will always be present. However, in the case of the

competition, either in the presence of a toxin Model (4.3.1) or a plasmid Model (4.4.1).

We note that the coexistence of both bacteria depends strongly on the relationship

between the growth rate of the donor bacteria and its dilution rate.

Finally, before applying the SOPESN methods to approximate the solutions of

the chemostat models, the SOPESN methods were compared with several standard

and nonstandard finite difference methods. The numerical simulations illustrate

the importance of the elementary stability, positivity-preserving properties of the

SOPESN methods and the SOPESN methods are more accurate than the first-order

numerical methods. Then, SOPESN methods were used to approximate the solutions

of the chemostat models and compare with other standard and nonstandard finite

difference methods. As shown, the SOPESN methods perform better than the other

methods. Also, by using the SOPESN methods, the theoretical results presented in

Chapter (4) were validated.
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