by<br>FAWAZ KARHAN ALALHARETH

Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Copyright (C) by Fawaz Karhan Alalhareth 2022
All Rights Reserved

## ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr. Hristo V. Kojouharov, for guiding me through my Ph.D. study and for his patience, motivation, enthusiasm, and immense knowledge. Words cannot describe how I feel about him. Also, I would like to thank: Dr. Jianzhong Su, Dr. Gaik Ambartsoumian, and Dr. Souvik Roy for their interest in my research and for taking the time to serve on my comprehensive committee and dissertation committee. I also would like to thank Dr. Souvik Roy for his help and support over the last few years.

My warm and heartfelt thanks go to my family for the tremendous support and hope they had given to me. Without that hope, this thesis would not have been possible. Special thanks to my parents, Karhan and Rabiyah, for their support and encouragement in achieving my goals. Thank you to my wife Shahad for all her love and support. Special thanks to my children Hussain and Diem for inspiring and encouraging me every single day. I thank my brothers and sisters for supporting me and encouraging me in my study. Thank you all for the strength you gave me. I love you all! I also thank all of my friends - so many I cannot write all of their names here.

July 19, 2022

# ABSTRACT <br> HIGHER-ORDER NONSTANDARD FINITE DIFFERENCE METHODS FOR AUTONOMOUS DIFFERENTIAL EQUATIONS WITH APPLICATIONS IN MATHEMATICAL ECOLOGY 

Fawaz Karhan Alalhareth, Ph.D. The University of Texas at Arlington, 2022

Supervising Professor: Hristo V. Kojouharov

Nonstandard finite difference (NSFD) methods have been widely used to numerically solve various problems in biology. In recent years, NSFD methods have been proposed that preserve essential properties of the solutions of general autonomous differential equations, such as positivity and elementary stability, among others. However, those methods are only of first-order accuracy. In the first part of this dissertation, we construct and analyze two second-order modified positive and elementary stable nonstandard (PESN) numerical methods for $n$-dimensional autonomous differential equations. The new PESN methods are generalized versions of the explicit Euler's method and second-order accurate, thereby improving the order of accuracy of the underlying numerical method. In the second part of this dissertation, we analyze several chemostat models with a constant input of one species. Chemostat models have been extensively used to represent microbial growth and competition in homogeneous environments. First, we consider a simple growth chemostat model for a donor bacteria and one limiting resource. Since competition is crucial in nature,
we next propose a model when there is competition between a resident bacteria and the donor bacteria for a single limiting substrate in the presence of a lethal toxin. Resident bacteria can become donor bacteria by changing the genetics of the resident bacteria. This change can occur by a plasmid. Therefore, we propose a model when there is competition in the presence of a constant homogeneous plasmid. The proposed chemostat models are non-linear ordinary differential equations, and their exact solutions cannot be obtained analytically. Moreover, their solutions remain positive for all time. Therefore, using accurate and efficient numerical methods that also preserve the solutions' positivity property is essential when working with chemostat models. In the last part of the dissertation, the new second-order PESN (SOPESN) methods are used to approximate the solutions of the earlier presented chemostat models. In addition, the SOPESN methods are compared with several standard and nonstandard finite difference methods to numerically demonstrate their advantages when solving models in mathematical ecology.

## TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..... iii
ABSTRACT ..... iv
Chapter1. Introduction1
2. Definitions and preliminaries ..... 4
3. Second-order modified PESN numerical methods ..... 7
3.1 Introduction ..... 7
3.2 Second order modified PESN (SOPESN1) method for a general class of autonomous differential equations ..... 9
3.3 Second order modified PESN (SOPESN2) method for n-dimensional productive-destructive systems ..... 18
4. Chemostat Models with microbial input ..... 28
4.1 Introduction ..... 28
4.2 Simple chemostat model with microbial input and a constant death rate ..... 31
4.2.1 Basic properties ..... 32
4.2.2 Equilibria and stability analysis ..... 33
4.3 Competition of two microbial with one limited resource and different constant death rates and one of the bacteria is in the input flow ..... 36
4.3.1 Basic properties ..... 37
4.3.2 Equilibria and stability analysis ..... 39
4.4 Competition of two microbial with one limited resource and one of thebacteria is in the input flow in the presence of a constant homogeneousplasmid46
4.4.1 Basic properties ..... 47
4.4.2 Equilibria and stability analysis ..... 49
5. Numerical Simulations ..... 56
5.1 Numerical Simulations for one-dimensional differential equations ..... 56
5.2 SOPESN methods applied to the chemostat models ..... 60
5.2.1 SOPESN methods applied to the simple chemostat model withmicrobial input and a constant death rate60
5.2.2 SOPESN methods applied to the competition model with mi- crobial input and constant death rates ..... 64
5.2.3 SOPESN methods applied to the competition model with mi- crobial input and in the presence of a constant homogeneous plasmid ..... 70
6. Conclusions ..... 76
REFERENCES ..... 78
BIOGRAPHICAL STATEMENT ..... 84

## CHAPTER 1

## Introduction

Ordinary differential equations (ODEs) are often used to model various complex processes in economics, engineering, biology, chemistry, and many other scientific fields. Most models are nonlinear differential equations that cannot be solved analytically. Moreover, the models are dynamical systems with essential properties such as the positivity, boundedness, and monotonicity of solutions and the linear stability properties of the equilibria, among others. Consequently, it becomes vital to construct numerical methods that accurately approximate the solutions of the ODEs and preserve their essential properties. Standard finite-difference numerical methods, especially explicit ones, such as the Euler and the Runge-Kutta methods, usually require severe restrictions on the discrete time-step size to mimic the ODE solution correctly.

About three decades ago, nonstandard finite difference (NSFD) methods were introduced by Mickens to numerically solve ODEs by preserving the essential properties of their exact solutions (see [31] and references therein). Since then, the NSFD methods have been extensively developed to approximate the solutions of ordinary differential equations. The NSFD schemes have been constructed to be qualitatively stable [4] with respect to the desired property of the solution of the ODE for any time-step size. Dynamically consistent [29, 5] NSFD methods have been developed to preserve boundedness, conservation laws, monotonicity of solutions, and the equilibria's linear stability, among other properties (See [35, 36] and references therein).

Biological models require that solutions (concentrations or populations) remain positive for any time. In this context, several NSFD methods have also been developed to preserve both the positivity and elementary stability properties of solutions for specific autonomous dynamical systems $[12,9,11,13,2,1]$. A methodology for constructing positive and elementary stable nonstandard (PESN) numerical methods has also been proposed for general productive-destructive systems [14, 48] as well as for solving general autonomous systems with positive solutions [49]. However, most NSFD methods that preserve both the positivity and elementary stability properties of solutions are only first-order accuracy. Second-order NSFD methods have been proposed. For instance, in $[15,25,16]$, we proposed a methodology for constructing NSFD methods that are second-order accuracy and are elementary stable. However, they do not preserve the positivity property. The positivity property of the solutions is a very important property for the solutions when the ODEs are used to model any biological system.

One crucial biological system is the gut microbiome, because it plays an essential role in human health. For instance, the gut microbiome could help weight loss or prevent obesity in individuals [8]. Moreover, the gut microbiota has crucial effects on mental illness, maintenance of mental health, and heart failure $[27,46,7]$. The human gut contains many bacteria; some are good for our health, but others are bad [47]. The harmful bacteria can become a good bacteria by changing the genetics of the harmful bacteria and vice versa. The change of the genetics in a bacteria can occur by the plasmid. Moreover, the plasmid plays fundamental roles in antibiotic resistance and bioremediation [6]. Therefore, understanding the dynamic plasmid bearing (donor) or non-plasmid bearing (resident) is crucial.

A laboratory device that can be used to represent the human gut is the chemostat. The chemostat is an experimental device that was invented simultaneously by Monod
[32] and Novick-Szilard [34]. It plays a vital role in ecology. The chemostat can be used as a model of a simple lake, the wastewater treatment process, or the growth of microorganisms for industrial or experimental purposes. Moreover, it can be used as a model of organisms' competition for a nutrient. The simple chemostat model of one organism consuming the nutrient appeared in the fifteen, and it is described with two non-linear ordinary differential equations [39]. Since then, there have been many modifications to the simple chemostat model to represent significant biological problems such as competition, competition in the presence of an inhibitor, competition in the presence of plasmid, and many others [44, 22, 40, 21]. However, most of the chemostat models are non-linear ordinary differential equations. They can not be solved analytically. Thus, it becomes essential to construct numerical methods that are efficient and preserve some important properties of the chemostat models, such as positivity and the local stability of the equilibria.

This dissertation is organised as follows. In Chapter 2, definitions and preliminary work needed for the rest of the dissertation are given. In Chapter 3, we construct and analyze second-order PESN methods for general classes of ODEs. In Chapter 4, we construct and an analyze several chemostat models with microbial input. In Chapter 5, several examples and applications are given which demonstrate the effectiveness of the proposed NSFD methods developed in Chapter 3, and then use the SOPESN methods to numerically solve the chemostat models and validate the theoretical result in Chapter 4. Finally, in Chapter 6, concluding remarks are given.

## CHAPTER 2

Definitions and preliminaries
We consider autonomous differential equations of the form

$$
\begin{equation*}
\vec{x}^{\prime}=\vec{f}(\vec{x}) ; \quad \vec{x}\left(t_{0}\right)=\vec{x}_{0} \in \mathbb{R}_{+}^{n}, \tag{2.0.1}
\end{equation*}
$$

where $\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}>0, \forall i=1, \ldots, n\right\}$, the vector-function $\vec{x}=$ $\left[x_{1}, \ldots, x_{n}\right]$ is unknown, and the vector-function $\vec{f}=\left[f_{1}, \ldots, f_{n}\right] \in C^{2}\left(\mathbb{R}_{+}^{n} ; \mathbb{R}^{n}\right)$ such that $\mathbb{R}_{+}^{n}$ is positively invariant [44]. It is also assumed that equation (2.0.1) has a finite number of equilibria and each of them is hyperbolic. In addition, we also consider the following general sub-class of autonomous differential equations, termed productive-destructive equations [14]:

$$
\begin{equation*}
\vec{x}^{\prime}=\vec{P}(\vec{x})-\vec{D}(\vec{x}) ; \quad \vec{x}\left(t_{0}\right)=\vec{x}_{0} \in \mathbb{R}_{+}^{n}, \tag{2.0.2}
\end{equation*}
$$

where $\vec{P}=\left[P_{1}, \ldots, P_{n}\right], \vec{D}=\left[D_{1}, \ldots, D_{n}\right]$, and $P_{i}, D_{i} \in C^{2}\left(\mathbb{R}_{+}^{n} ; \mathbb{R}_{+}\right)$. Productivedestructive equations (2.0.2) are widely used for models in the sciences and engineering, with the functions $\vec{P}$ and $\vec{D}$ representing the production and destruction processes, respectively.

A general finite difference method to approximate System (2.0.1) for all $i=$ $1, \ldots, n$ can be written as

$$
\begin{equation*}
D_{i, h}\left(x_{i}^{k}\right)=F_{i, h}\left(f_{i} ; \vec{x}^{k}\right), \tag{2.0.3}
\end{equation*}
$$

where $D_{i, h}\left(x_{i}^{k}\right) \approx x_{i}^{\prime}\left(t_{k}\right), x_{i}^{k} \approx x_{i}\left(t_{k}\right), F_{i, h}\left(f_{i} ; \vec{x}^{k}\right)$ approximates $f_{i}\left(\vec{x}\left(t_{k}\right)\right)$ in Equation (2.0.1) and $t_{k}=t_{0}+k h$, where $h>0$ and $k \geq 0$.

Definition 2.0.1. ([4, 10, 50]) The finite-difference method (2.0.3) for solving Equation (2.0.1) is a NSFD method if at least one of the following conditions is satisfied for all $i=1, \ldots, n$ :

- $D_{i, h}\left(\vec{x}^{k}\right)=\frac{x_{i}^{k+1}-x_{i}^{k}}{\varphi_{i}(h)}$, where $\varphi_{i}(h)=h+\mathcal{O}\left(h^{2}\right)$ is a non-negative function;
- $F_{i, h}\left(f_{i} ; \vec{x}^{k}\right)=g_{i}\left(\vec{x}^{k}, \vec{x}^{k+1}, h\right)$, where $g_{i}\left(\vec{x}^{k}, \vec{x}^{k+1}, h\right)$ is a non-local approximation of the $i$-th component of the right-hand side of System (2.0.1).

Definition 2.0.2 ([4, 10, 50]). The finite difference method (2.0.3) is called elementary stable if, for any value of the step size $h$, its only fixed points $\vec{x}^{*}$ are those of the equation (2.0.1) and the linear stability properties of each $\vec{x}^{*}$ being the same for both the differential equation and the numerical method.

Definition 2.0.3 ([14, 48]). The finite difference method (2.0.3) is called positive, if, for any value of the step size $h$, and $\vec{x}_{0} \in \mathbb{R}_{+}^{n}$ its solution remains positive, i.e., $\vec{x}_{k} \in \mathbb{R}_{+}^{n}$ for all $k \in \mathbb{N}$.

Definition 2.0.4 ([44]). Let $\pi: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a function of two variables. The function $\pi$ is said to be a continuous dynamical system if $\pi$ is continuous and has the following properties:

1. $\pi\left(\vec{x}_{0}, 0\right)=\vec{x}_{0}$;
2. $\pi\left(\vec{x}_{0}, t+s\right)=\pi\left(\pi\left(\vec{x}_{0}, t\right), s\right)$.

One example of a dynamical system is an ordinary differential equation of the form

$$
\begin{equation*}
\vec{x}^{\prime}=\vec{f}(\vec{x}), \tag{2.0.4}
\end{equation*}
$$

with $\vec{x} \in \mathbb{R}^{n}$ and $\vec{f} \in C^{1}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$ by defining

$$
\pi\left(\vec{x}_{0}, t\right)=\vec{x}(t)
$$

where $\vec{x}(t)$ is the solution of Equation (2.0.4) satisfying the initial condition $\vec{x}(0)=\vec{x}_{0}$.

Definition 2.0.5 ([44]). The dynamical system is said to be dissipative if all positive trajectories eventually lie in a bounded set.

Positive and elementary stable nonstandard numerical methods can be designed using the following theorem [48, 49]:

Theorem 2.0.1. The numerical discretization of Equation (2.0.1):

$$
\begin{equation*}
\frac{x_{i}^{k+1}-x_{i}^{k}}{\varphi(h)}=w_{i}^{k} f_{i}\left(\vec{x}^{k}\right) \tag{2.0.5}
\end{equation*}
$$

where

$$
w_{i}^{k}=\left\{\begin{array}{ll}
1, & \text { if } f_{i}\left(\vec{x}^{k}\right) \geq 0 \\
\frac{x_{i}^{k+1}}{x_{i}^{k}}, & \text { if } f_{i}\left(\vec{x}^{k}\right)<0
\end{array},\right.
$$

for $i=1, \ldots, n$ and the nonstandard denominator function $\varphi(h)$ satisfies the properties listed in [49, Equation (8)], represents a positive and elementary stable nonstandard (PESN1) numerical method for Equation (2.0.1).

The numerical discretization of Equation (2.0.2):

$$
\begin{equation*}
\frac{x_{i}^{k+1}-x_{i}^{k}}{\varphi(h)}=P_{i}\left(\vec{x}^{k}\right)-D_{i}\left(\vec{x}^{k}\right) \frac{x_{i}^{k+1}}{x_{i}^{k}} \tag{2.0.6}
\end{equation*}
$$

for $i=1, \ldots, n$ and the nonstandard denominator function $\varphi(h)$ satisfies the properties listed in [48, Theorem 5.1], represents a positive and elementary stable nonstandard (PESN2) numerical method for Equation (2.0.2).

However, the PESN methods (2.0.5) and (2.0.6) are only of first-order accuracy. In the following chapter, we present a novel approach that modifies the denominator functions in the PESN1 and PESN2 methods to achieve a second-order accuracy of the corresponding methods.

## CHAPTER 3

Second-order modified PESN numerical methods

### 3.1 Introduction

Modeling natural dynamical systems with ODEs requires that the physically relevant solutions remain positive for all times. In this context, NSFD methods have been developed to preserve both the positivity and elementary stability properties of solutions for specific autonomous dynamical systems $[12,9,11,13,2,1]$. A methodology for constructing positive and elementary stable nonstandard (PESN) numerical methods has been proposed for general productive-destructive systems $[14,48]$ as well as for solving general autonomous dynamical systems with positive solutions [49]. However, most NSFD methods that preserve both the positivity and elementary stability properties of solutions are only first-order accurate.

In this chapter, two nonstandard finite difference methods, which are not only positive and elementary stable but also of second-order accuracy (SOPESN), are developed and analyzed to approximate the solutions of general autonomous differential equations, including productive-destructive equations. The proposed new SOPESN methods are generalizations of the PESN methods [14, 48, 49] with novel nonstandard denominator functions [30] that also guarantee a second-order accuracy, thereby improving the order of accuracy of the underlying explicit Euler's method.

Before proving the main results, we state the following lemma which is used to show that the new SOPESN1 and SOPESN2 methods are elementary stable:

Lemma 3.1.1. Suppose $\left\{x^{n}\right\}$ and $\left\{y^{n}\right\}$ are sequences of positive real numbers such that $x^{n} \rightarrow 0$ as $n \rightarrow \infty$ while $y^{n} \rightarrow b \in \mathbb{R}_{+} \cup\{\infty\}$ as $n \rightarrow \infty$. Then, there is $N \in \mathbb{N}$ such that $n \geq N$ implies

$$
x^{n}<y^{n} .
$$

Proof. First, let us suppose $b \in \mathbb{R}^{+}$, then there is a positive integer $N_{1}$ such that if $n \geq N_{1}$ implies

$$
\left|y^{n}-b\right|<\frac{b}{2}
$$

Therefore, using the absolute value definition implies

$$
\frac{b}{2}<y^{n}<\frac{3 b}{2}, \quad \text { for all } n \geq N_{1} .
$$

But, since $x^{n} \rightarrow 0$ as $n \rightarrow \infty$, then there is a positive integer $N_{2}$ such that if $n \geq N_{2}$ we have

$$
x^{n}<\frac{b}{2} .
$$

Now taking $N=\max \left\{N_{1}, N_{2}\right\}$ implies

$$
x^{n}<y^{n}, \quad \text { for all } n \geq N
$$

If $y^{n} \rightarrow \infty$, then there is a positive integer $N_{3}$ such that

$$
y^{n}>1, \text { for all } n \geq N_{3} .
$$

Also, since $x^{n} \rightarrow 0$ as $n \rightarrow \infty$, then there is a positive integer $N_{4}$ such that

$$
x^{n}<1, \text { for all } n \geq N_{4} .
$$

Therefore, taking $N=\max \left\{N_{3}, N_{4}\right\}$ we have

$$
x^{n}<y^{n}, \quad \text { for all } n \geq N
$$

3.2 Second order modified PESN (SOPESN1) method for a general class of autonomous differential equations

The following result holds for the new SOPESN1 method for Equation (2.0.1):
Theorem 3.2.1. Let $\vec{f} \in C^{2}\left(\mathbb{R}_{+}^{n} ; \mathbb{R}^{n}\right)$ and let $\varphi_{i}: \mathbb{R}_{+} \times \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$satisfy the following:

$$
\begin{equation*}
\varphi_{i}(h, \vec{x})=h-q_{i}(\vec{x}) \frac{h^{2}}{2}+\mathcal{O}\left(h^{3}\right), \tag{3.2.1}
\end{equation*}
$$

where

$$
q_{i}(\vec{x})= \begin{cases}-\sum_{j=1}^{n} \frac{\partial f_{i}(\vec{x})}{\partial x_{j}} \frac{f_{j}(\vec{x})}{f_{i}(\vec{x})}, & f_{i}(\vec{x})>0  \tag{3.2.2}\\ \frac{2 f_{i}(\vec{x})}{x_{i}}-\sum_{j=1}^{n} \frac{\partial f_{i}(\vec{x})}{\partial x_{j}} \frac{f_{j}(\vec{x})}{f_{i}(\vec{x})}, & f_{i}(\vec{x})<0\end{cases}
$$

Then, the PESN1 method (2.0.5) with deniminator function (3.2.1)-(3.2.2):

$$
\begin{equation*}
\frac{x_{i}^{k+1}-x_{i}^{k}}{\varphi_{i}\left(h, \vec{x}^{k}\right)}=w_{i}^{k} f_{i}\left(\vec{x}^{k}\right), \tag{3.2.3}
\end{equation*}
$$

where

$$
w_{i}^{k}= \begin{cases}1, & \text { if } f_{i}\left(\vec{x}^{k}\right) \geq 0 \\ \frac{x_{i}^{k+1}}{x_{i}^{k}}, & \text { if } f_{i}\left(\vec{x}^{k}\right)<0\end{cases}
$$

preserves the positivity of solutions of Equation (2.0.1), is elementary stable, and second-order accurate (SOPESN1 method).

Proof. The proof is organized as follows. First, we prove that the numerical method is positivity preserving, then, that it is second order accurate, and finally, that it is elementary stable.

1. Positivity: The SOPESN1 method (3.2.3) can be written in the following explicit form:

$$
x_{i}^{k+1}=\left\{\begin{array}{cl}
x_{i}^{k}+\varphi_{i}\left(h, \vec{x}_{k}\right) f_{i}\left(\vec{x}^{k}\right), & \text { if } f_{i}\left(\vec{x}^{k}\right) \geq 0  \tag{3.2.4}\\
\frac{\left(x_{i}^{k}\right)^{2}}{x_{i}^{k}-\varphi_{i}\left(h, \vec{x}^{k}\right) f_{i}\left(\vec{x}^{k}\right)}, & \text { if } f_{i}\left(\vec{x}^{k}\right)<0 \\
9 &
\end{array}\right.
$$

Note that if $f_{i}\left(\vec{x}^{k}\right) \geq 0$, then $\varphi_{i}\left(h, \vec{x}^{k}\right) f_{i}\left(\vec{x}^{k}\right) \geq 0$ and if $f_{i}\left(\vec{x}^{k}\right)<0$, then $-\varphi_{i}\left(h, \vec{x}^{k}\right) f_{i}\left(\vec{x}^{k}\right)>0$, since $\varphi_{i}\left(h, \vec{x}^{k}\right)>0$. Therefore, the positivity of the SOPESN1 method follows from Equation (3.2.4), since $x_{i}^{k}>0$ implies that $x_{i}^{k+1}>0$, for all $i=1, \ldots, n$.
2. Second order of accuracy: To prove the SOPESN1 method (3.2.3) is of secondorder accuracy, we separately consider the following three cases:

- If $f_{i}(\vec{x})<0$, then the SOPESN1 method (3.2.3) can be written in the explicit form

$$
x_{i}^{k+1}=\frac{\left(x_{i}^{k}\right)^{2}}{x_{i}^{k}-\varphi_{i}\left(h, \vec{x}^{k}\right) f_{i}\left(\vec{x}^{k}\right)} .
$$

Note that when $\varphi_{i}(h, \vec{x})=h+\mathcal{O}\left(h^{2}\right)$ and $x_{i} \neq 0$, then

$$
\frac{\varphi_{i}(h, \vec{x}) f_{i}(\vec{x})}{x_{i}} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

Therefore, there exists $\delta_{i}>0$ such that

$$
\left|\frac{\varphi_{i}(h, \vec{x}) f_{i}(\vec{x})}{x_{i}}\right|<1
$$

and consequently

$$
\begin{equation*}
\frac{1}{1-\frac{f_{i}(\vec{x}) \varphi_{i}(h, \vec{x})}{x_{i}}}=1+\frac{f_{i}(\vec{x}) \varphi_{i}(h, \vec{x})}{x_{i}}+\frac{f_{i}^{2}(\vec{x}) \varphi_{i}^{2}(h, \vec{x})}{x_{i}^{2}}+\mathcal{O}\left(h^{3}\right) \tag{3.2.5}
\end{equation*}
$$

whenever $0<h<\delta_{i}$, for all $i=1, \ldots, n$. Using Equation (3.2.5) and a Taylor series expansion about $t_{k}$ yields the following:

$$
\begin{aligned}
& x_{i}\left(t_{k+1}\right)-\frac{\left(x_{i}\left(t_{k}\right)\right)^{2}}{x_{i}\left(t_{k}\right)-\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) f_{i}\left(\vec{x}\left(t_{k}\right)\right)} \\
& =x_{i}\left(t_{k+1}\right)-\frac{x_{i}\left(t_{k}\right)}{1-\frac{\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) f_{i}\left(\vec{x}\left(t_{k}\right)\right)}{x_{i}\left(t_{k}\right)}} \\
& =x_{i}\left(t_{k+1}\right)-x_{i}\left(t_{k}\right)\left[1+\frac{\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) f_{i}\left(\vec{x}\left(t_{k}\right)\right)}{x_{i}\left(t_{k}\right)}+\frac{\varphi_{i}^{2}\left(h, \vec{x}\left(t_{k}\right)\right)\left(f_{i}\left(\vec{x}\left(t_{k}\right)\right)\right)^{2}}{\left(x_{i}\left(t_{k}\right)\right)^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
&+ \mathcal{O}\left(h^{3}\right) \\
&= x_{i}^{\prime}\left(t_{k}\right) h+x_{i}^{\prime \prime}\left(t_{k}\right) \frac{h^{2}}{2}-\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) f_{i}\left(\vec{x}\left(t_{k}\right)\right)-\frac{\varphi_{i}^{2}\left(h, \vec{x}\left(t_{k}\right)\right) f_{i}^{2}\left(\vec{x}\left(t_{k}\right)\right)}{x_{i}\left(t_{k}\right)} \\
&+\mathcal{O}\left(h^{3}\right) \\
&= f_{i}\left(\vec{x}\left(t_{k}\right)\right) h+\frac{h^{2}}{2} \sum_{j=1}^{n} \frac{\partial f_{i}\left(\vec{x}\left(t_{k}\right)\right)}{\partial x_{j}} f_{j}\left(\vec{x}\left(t_{k}\right)\right) \\
&-\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) f_{i}\left(\vec{x}\left(t_{k}\right)\right)-\frac{\varphi_{i}^{2}\left(h, \vec{x}\left(t_{k}\right)\right) f_{i}^{2}\left(\vec{x}\left(t_{k}\right)\right)}{x_{i}\left(t_{k}\right)}+\mathcal{O}\left(h^{3}\right) .
\end{aligned}
$$

Now using $\varphi_{i}(h, \vec{x})=h+\left(-\frac{2 f_{i}(\vec{x})}{x_{i}}+\sum_{j=1}^{n} \frac{\partial f_{i}(\vec{x})}{\partial x_{j}} \frac{f_{j}(\vec{x})}{f_{i}(\vec{x})}\right) \frac{h^{2}}{2}+\mathcal{O}\left(h^{3}\right)$.

$$
\begin{equation*}
x_{i}\left(t_{k+1}\right)-\frac{x_{i}^{2}\left(t_{k}\right)}{x_{i}\left(t_{k}\right)-\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) f_{i}\left(\vec{x}\left(t_{k}\right)\right)}=\mathcal{O}\left(h^{3}\right) . \tag{3.2.6}
\end{equation*}
$$

- If $f_{i}(\vec{x})>0$, then the SOPESN1 method (3.2.3) can be written as

$$
x_{i}^{k+1}=x_{i}^{k}+\varphi_{i}\left(h, \vec{x}^{k}\right) f_{i}\left(\vec{x}^{k}\right) .
$$

Using Taylor series expansion about $t_{k}$ yields the following:

$$
\begin{aligned}
& x_{i}\left(t_{k+1}\right)-\left[x_{i}\left(t_{k}\right)+\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) f_{i}\left(\vec{x}\left(t_{k}\right)\right)\right] \\
& =x_{i}\left(t_{k}\right)+\left(x_{i}\left(t_{k}\right)\right)^{\prime} h+\left(\sum_{j=1}^{n} \frac{\partial f_{i}\left(\vec{x}\left(t_{k}\right)\right)}{\partial x_{j}} f_{j}\left(\vec{x}\left(t_{k}\right)\right)\right) \frac{h^{2}}{2}-x_{i}\left(t_{k}\right) \\
& -\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) f_{i}\left(\vec{x}\left(t_{k}\right)\right)+\mathcal{O}\left(h^{3}\right) \\
& =f_{i}\left(\vec{x}\left(t_{k}\right)\right) h+\left(\sum_{j=1}^{n} \frac{\partial f_{i}\left(\vec{x}\left(t_{k}\right)\right)}{\partial x_{j}} f_{j}\left(\vec{x}\left(t_{k}\right)\right)\right) \frac{h^{2}}{2} \\
& -\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) f_{i}\left(\vec{x}\left(t_{k}\right)\right)+\mathcal{O}\left(h^{3}\right) .
\end{aligned}
$$

Now using $\varphi_{i}(h, \vec{x})=h+\left(\sum_{j=1}^{n} \frac{\partial f_{i}\left(\vec{x}\left(t_{k}\right)\right)}{\partial x_{j}} \frac{f_{j}\left(\vec{x}\left(t_{k}\right)\right)}{f_{i}\left(\vec{x}\left(t_{k}\right)\right)}\right) \frac{h^{2}}{2}+\mathcal{O}\left(h^{3}\right)$ implies

$$
\begin{equation*}
x_{i}\left(t_{k+1}\right)-\left[x_{i}\left(t_{k}\right)+\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) f_{i}\left(\vec{x}\left(t_{k}\right)\right)\right]=\mathcal{O}\left(h^{3}\right) . \tag{3.2.7}
\end{equation*}
$$

- If $f_{i}\left(\vec{x}^{k}\right)=0$, then the SOPESN1 method (3.2.3) reduces to $x_{i}^{k+1}=x_{i}^{k}$, which represents an exact scheme for solving Equation (2.0.1).

Equations (3.2.6) and (3.2.7) prove the second order accuracy of the SOPESN1 method (3.2.3).
3. Elementary stability: It is easy to see from the formulation (3.2.3) that all fixed points $\vec{x}^{*}$ of the SOPESN1 method are equilibria of Equation (2.0.1) and vice versa. To prove the numerical scheme (3.2.3) is elementary stable, let $\vec{x}^{*}$ be an equilibrium of system (2.0.1) and $J=J\left(\vec{x}^{*}\right)$ be the Jacobian evaluated at $\vec{x}^{*}$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. We assumed the Jacobian matrices to be diagonalizable, which is frequently considered in applications [3]. Setting $\vec{\epsilon}=\vec{x}-\vec{x}^{*}$, then linearized version of System (2.0.1) can be written as

$$
\begin{equation*}
\vec{\epsilon}^{\prime}=J \vec{\epsilon} \tag{3.2.8}
\end{equation*}
$$

We consider the following three cases:
(a) All eigenvalues of the matrix $J$ are real: Since $J$ is diagonalizable, then there is nonsingular matrix $P_{r}$ whose columns are the eigenvectors of $J$ satisfying [19]

$$
\Lambda_{r}=P_{r}^{-1} J P_{r},
$$

where $\Lambda_{r}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Now, let $\vec{\eta}=P_{r}^{-1} \vec{\epsilon}$ and multiplying $\vec{\epsilon}=J \vec{\epsilon}$ by $P_{r}^{-1}$ on both sides yields:

$$
P_{r}^{-1} \vec{\epsilon}^{\prime}=P_{r}^{-1} J \vec{\epsilon}
$$

which is equivalent to

$$
P_{r}^{-1} \vec{\epsilon}^{\prime}=P_{r}^{-1}\left(P_{r} \Lambda_{r} P_{r}^{-1}\right) \vec{\epsilon},
$$

i.e,

$$
\begin{equation*}
\vec{\eta}^{\prime}=\Lambda_{r} \vec{\eta} \tag{3.2.9}
\end{equation*}
$$

Following the approach in [3], we apply the numerical scheme (3.2.3) to (3.2.9).

First, let us assume $\vec{x}^{*}$ is a locally asymptotically stable equilibrium for (2.0.1). Then, $\lambda_{i}<0$ for all $i=1, \ldots, n$, and

$$
\eta_{i}^{k+1}=\left(\frac{\eta_{i}^{k}}{\eta_{i}^{k}-\varphi_{i}\left(h, \vec{\eta}^{k}\right) \lambda_{i} \eta_{i}^{k}}\right) \eta_{i}^{k}
$$

since $\varphi_{i}\left(h, \vec{\eta}^{k}\right)>0$ we can conclude

$$
\left|\frac{\eta_{i}^{k}}{\eta_{i}^{k}-\varphi_{i}\left(h, \vec{\eta}^{k}\right) \lambda_{i} \eta_{i}^{k}}\right|<1 .
$$

which shows that $\vec{x}^{*}$ is locally asymptotically stable for Scheme (3.2.3). Next, if $\vec{x}^{*}$ is unstable, then $\lambda_{j_{0}}>0$ for some $j_{0} \in\{1, \ldots, n\}$. After applying the numerical scheme to (3.2.9) yields:

$$
\eta_{j_{0}}^{k+1}=\left(1+\varphi_{j_{0}}\left(h, \vec{\eta}^{k}\right) \lambda_{j_{0}}\right) \eta_{j_{0}}^{k}
$$

since $\varphi_{j_{0}}\left(h, \vec{\eta}^{k}\right)>0$, then clearly we have

$$
\left|1+\varphi_{j_{0}}\left(h, \eta^{k}\right) \lambda_{j_{0}}\right|>1
$$

Therefore, $\vec{x}^{*}$ is unstable for the numerical scheme (3.2.3).
(b) All eigenvalues of $J$ are complex with $\operatorname{Im}\left(\lambda_{i}\right) \neq 0$ for all $i=1, \ldots, n$ : Since $J$ is a real matrix, we note if $\lambda_{i}$ is an eigenvalue of $J$, then $\bar{\lambda}_{i}$ (complex conjugate) is also an eigenvalue of $J$. Therefore, $n$ must be an even positive integer. We recall there is a invertible matrix $P_{c}$ satisfying

$$
\Lambda_{c}=P_{c}^{-1} J P_{c} .
$$

The Jordan normal form satisfies [19]

$$
\Lambda_{c}=\operatorname{diag}\left(B_{\lambda_{1}}, \ldots, B_{\lambda_{n}}\right)
$$

where $B_{\lambda_{i}}=\left(\begin{array}{cc}a_{i} & b_{i} \\ -b_{i} & a_{i}\end{array}\right)$ with $\mathrm{R}\left(\lambda_{i}\right)=a_{i}$ and $\operatorname{Im}\left(\lambda_{i}\right)=b_{i}$. Similar to the argument in the Case (a), we apply the numerical scheme (3.2.3) to

$$
\begin{equation*}
\vec{\eta}^{\prime}=\Lambda_{c} \vec{\eta} \tag{3.2.10}
\end{equation*}
$$

First, if $\vec{x}^{*}$ is a locally asymptotically stable equilibrium, then $a_{i}<0$ for all $i=1, \ldots, n$. Let $i \in\{1, \ldots, n\}$, then $a_{i}<0$ and $b_{i}$ is either positive or negative.

- If $b_{i}<0$, then

$$
\eta_{i}^{k+1}=\left(\frac{\eta_{i}^{k}}{\eta_{i}^{k}-\varphi_{i}\left(h, \vec{\eta}^{k}\right)\left(a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}\right)}\right) \eta_{i}^{k}
$$

since $a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}<0$, and $\eta_{i}^{k}, \eta_{i+1}^{k}$ are positive, then

$$
\eta_{i}^{k}-\varphi_{i}\left(h, \eta^{k}\right)\left(a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}\right)>\eta_{i}^{k}
$$

Hence,

$$
0<\frac{\eta_{i}^{k}}{\eta_{i}^{k}-\varphi_{i}\left(h, \vec{\eta}^{k}\right)\left(a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}\right)}<1
$$

i.e.

$$
\left|\frac{\eta_{i}^{k}}{\eta_{i}^{k}-\varphi_{i}\left(h, \vec{\eta}^{k}\right)\left(a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}\right)}\right|<1
$$

Hence, $\eta_{i}^{k} \rightarrow 0$ as $k \rightarrow \infty$. We claim $\eta_{i+1}^{k} \rightarrow 0$ as $k \rightarrow \infty$. Let $k+1 \in \mathbb{N}$.
We consider two cases:
Case (b.I): $-b_{i} \eta_{i}^{k}+a_{i} \eta_{i+1}^{k}<0$, then after applying the numerical scheme to (3.2.10) we have:

$$
\eta_{i+1}^{k+1}=\left(\frac{\eta_{i+1}^{k}}{\eta_{i+1}^{k}-\varphi_{i+1}\left(h, \vec{\eta}^{k}\right)\left(-b_{i} \eta_{i}^{k}+a_{i} \eta_{i+1}^{k}\right)}\right) \eta_{i+1}^{k}
$$

and $\left|\frac{\eta_{i+1}^{k}}{\eta_{i+1}^{k}-\varphi_{i+1}\left(h, \vec{\eta}^{k}\right)\left(-b_{i} \eta_{i}^{k}+a_{i} \eta_{i+1}^{k}\right)}\right|<1$ which implies $\eta_{i+1}^{k+1} \rightarrow 0$ as $k \rightarrow \infty$. Case (b.II): $-b_{i} \eta_{i}^{k}+a_{i} \eta_{i+1}^{k} \geq 0:$

$$
\begin{aligned}
\eta_{i+1}^{k+1} & =\eta_{i+1}^{k}+\varphi_{i+1}\left(h, \eta^{k}\right)\left(-b_{i} \eta_{i}^{k}+a_{i} \eta_{i+1}^{k}\right) \\
& \geq \eta_{i+1}^{k} .
\end{aligned}
$$

Therefore, $\left\{\eta_{i+1}^{k}\right\}$ is a monotonically increasing sequence and hence it either converges to a positive number or tends to infinity as $k \rightarrow \infty$. Therefore, by Lemma (3.1.1) there is $N_{1} \in \mathbb{N}$ such that $m \geq N_{1}$ implies

$$
-b_{i} \eta_{i}^{m}<-a_{i} \eta_{i+1}^{m}
$$

after applying the numerical scheme to Equation (3.2.10), we have:

$$
\eta_{i+1}^{m+1}=\left(\frac{\eta_{i+1}^{m}}{\eta_{i+1}^{m}-\varphi_{i+1}\left(h, \vec{\eta}^{m}\right)\left(-b_{i} \eta_{i}^{m}+a_{i} \eta_{i+1}^{m}\right)}\right) \eta_{i+1}^{m}
$$

and since

$$
\left|\frac{\eta_{i+1}^{m}}{\eta_{i+1}^{m}-\varphi_{i+1}\left(h, \vec{\eta}^{m}\right)\left(-b_{i} \eta_{i}^{m}+a_{i} \eta_{i+1}^{m}\right)}\right|<1
$$

then that implies $\eta_{i+1}^{m+1} \rightarrow 0$ as $m \rightarrow \infty$. This contradicts the limit is either positive or $\infty$. Therefore, the case $-b_{i} \eta_{i}^{k}+a_{i} \eta_{i+1}^{k} \geq 0$ is not possible for a large enough $k$.

- If $b_{i}>0$, then

$$
\eta_{i+1}^{k+1}=\left(\frac{\eta_{i+1}^{k}}{\eta_{i+1}^{k}-\varphi_{i+1}\left(h, \vec{\eta}^{k}\right)\left(-b_{i} \eta_{i}^{k}+a_{i} \eta_{i+1}^{k}\right)}\right) \eta_{i+1}^{k}
$$

since $-b_{i} \eta_{i}^{k}+a_{i} \eta_{i+1}^{k}<0$, and $\eta_{i}^{k}, \eta_{i+1}^{k}$ are positive, then

$$
\eta_{i+1}^{k}-\varphi_{i+1}\left(h, \vec{\eta}^{k}\right)\left(-b_{i} \eta_{i}^{k}+a_{i} \eta_{i+1}^{k}\right)>\eta_{i+1}^{k} .
$$

Hence,

$$
0<\frac{\eta_{i+1}^{k}}{\eta_{i+1}^{k}-\varphi_{i+1}\left(h, \vec{\eta}^{k}\right)\left(-b_{i} \eta_{i}^{k}+a_{i} \eta_{i+1}^{k}\right)}<1
$$

i.e.

$$
\left|\frac{\eta_{i+1}^{k}}{\eta_{i+1}^{k}-\varphi_{i+1}\left(h, \vec{\eta}^{k}\right)\left(-b_{i} \eta_{i}^{k}+a_{i} \eta_{i+1}^{k}\right)}\right|<1 .
$$

Therefore, $\eta_{i+1}^{k} \rightarrow 0$ as $k \rightarrow \infty$ for all $i=1, \ldots, n$. We claim $\eta_{i}^{k} \rightarrow 0$ as $k \rightarrow \infty$. Suppose for the sake of a contradiction not. Recall $\left\{\eta_{i}^{k}\right\}$ is a positive sequence, similar argument as above $\eta_{i}^{k}$ converges to a positive number or tends to infinity. Using Lemma (3.1.1) we can conclude for large enough $k$ we have

$$
b_{i} \eta_{i+1}^{k}<-a \eta_{i}^{k}
$$

applying the numerical scheme to (3.2.10) yields:

$$
\eta_{i}^{k+1}=\left(\frac{\eta_{i}^{k}}{\eta_{i}^{k}-\varphi_{i}\left(h, \vec{\eta}^{k}\right)\left(a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}\right)}\right) \eta_{i}^{k}
$$

but since $a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}<0$ and $\eta_{i}^{k}, \eta_{i+1}^{k}$ are all positive, then

$$
\eta_{i}^{k}-\varphi_{i}\left(h, \eta^{k}\right)\left(a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}\right)>\eta_{i}^{k}
$$

Hence,

$$
0<\frac{\eta_{i}^{k}}{\eta_{i}^{k}-\varphi_{i}\left(h, \vec{\eta}^{k}\right)\left(a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}\right)}<1
$$

which implies

$$
\left|\frac{\eta_{i}^{k}}{\eta_{i}^{k}-\varphi_{i}\left(h, \vec{\eta}^{k}\right)\left(a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}\right)}\right|<1
$$

Therefore, $\eta_{i}^{k} \rightarrow 0$ as $k \rightarrow \infty$ contradicts the limit is either positive or infinity. Therefore, $\eta_{i}^{k} \rightarrow 0$ as $k \rightarrow \infty$. Since $i$ was an arbitrary, we can conclude $\eta_{i}^{k} \rightarrow 0$ as $k \rightarrow \infty$ for all $i=1, \ldots, n$. Therefore, $\vec{x}^{*}$ is locally asymptotically stable for Scheme (3.2.3).

Next, let us assume $\vec{x}^{*}$ is unstable. Then, there is an eigenvalues $\lambda_{j_{0}}$ of $J$ with $a_{j_{0}}>0$. Now after applying the numerical scheme to Equation (3.2.10) we consider two cases:

- If $b_{j_{0}}<0$,

$$
\begin{aligned}
\eta_{j_{0}+1}^{k+1} & =\eta_{j_{0}+1}^{k}+\varphi_{j_{0}+1}\left(h, \vec{\eta}^{k}\right)\left(-b_{j_{0}} \eta_{j_{0}}^{k}+a_{j_{0}} \eta_{j_{0}+1}^{k}\right) \\
& =\left(1+a_{j_{0}} \varphi_{j_{0}+1}\left(h, \vec{\eta}^{k}\right)\right) \eta_{j_{0}+1}^{k}-\varphi_{j_{0}+1}\left(h, \vec{\eta}^{k}\right) b_{j_{0}} \eta_{j_{0}}^{k} \\
& >\left(1+a_{j_{0}} \varphi_{j_{0}+1}\left(h, \vec{\eta}^{k}\right)\right) \eta_{j_{0}+1}^{k} .
\end{aligned}
$$

Since $\left|1+a_{j_{0}} \varphi_{j_{0}+1}\left(h, \vec{\eta}^{k}\right)\right|>1$, then $\left(1+a_{j_{0}} \varphi_{j_{0}+1}\left(h, \vec{\eta}^{k}\right)\right) \eta_{j_{0}+1}^{k} \rightarrow \infty$ as $k \rightarrow \infty$. Therefore, $\eta_{j_{0}+1}^{k+1} \rightarrow \infty$ as $k \rightarrow \infty$.

- $b_{j_{0}}>0$, similar argument as above will show $\eta_{j_{0}}^{k} \rightarrow \infty$ as $k \rightarrow \infty$.

Therefore, $\vec{x}^{*}$ is unstable fixed point of the numerical scheme (3.2.3).
(c) $J$ has both real and complex eigenvalues: Suppose $\lambda_{1}, \ldots, \lambda_{k}$ are the real eigenvalues of $J$ and $\lambda_{j}=a_{j}+i b_{j}$ and $\bar{\lambda}_{j}=a_{j}-i b_{j}$ for $j=k+1, \ldots, \frac{n+k}{2}$. Then, there is a nonsingular matrix $P_{r c}$ satisfying [19]

$$
\Lambda_{r c}=P_{r c}^{-1} J P_{r c},
$$

Similar to the argument in Case (a), we apply the numerical scheme to

$$
\begin{equation*}
\vec{\eta}^{\prime}=\Lambda_{r c} \vec{\eta}, \tag{3.2.11}
\end{equation*}
$$

where $J_{r c}=\operatorname{diag}\left(B_{\lambda_{1}}, \ldots, B_{\lambda_{n}}\right)$ and

$$
B_{\lambda_{i}}=\left\{\begin{array}{l}
\lambda_{i}, \operatorname{Im}\left(\lambda_{i}\right)=0 \\
\left(\begin{array}{cc}
\mathrm{R}\left(\lambda_{i}\right) & \operatorname{Im}\left(\lambda_{i}\right) \\
-\operatorname{Im}\left(\lambda_{i}\right) & \mathrm{R}\left(\lambda_{i}\right)
\end{array}\right), \operatorname{Im}\left(\lambda_{i}\right) \neq 0
\end{array}\right.
$$

Now let $\vec{x}^{*}$ is a stable equilibrium point of System (2.0.1). Then, $\mathrm{R}\left(\lambda_{i}\right)<0$ for all $i$. To prove $\vec{x}^{*}$ is a stable fixed point. We note that if $\operatorname{Im}\left(\lambda_{i}\right)=0$, we use same argument as in Case (a) to show $\eta_{i}^{k+1} \rightarrow 0$ as $k \rightarrow \infty$. If $\operatorname{Im}\left(\lambda_{i}\right) \neq 0$, we use same argument used in Case (b) to show $\eta_{i}^{k+1} \rightarrow 0$
as $k \rightarrow \infty$. Hence, $\vec{x}^{*}$ is locally asymptotically stable for Scheme (3.2.3). Finally, if $\vec{x}^{*}$ is unstable for (2.0.1), then, there is $\lambda_{j_{0}}$ with $R\left(\lambda_{j_{0}}\right)>0$ for some $j_{0} \in\{1, \ldots, n\}$. Also, $\operatorname{Im}\left(\lambda_{j_{0}}\right)=0$ or $\operatorname{Im}\left(\lambda_{i}\right) \neq 0$ using similar argument as in Case (a) or Case (b), respectively, will show that $\vec{x}^{*}$ is an unstable fixed point for Scheme (3.2.3).

The following corollary is for the SOPESN1 method when $n=1$.
Corollary 3.2.1. Let $f \in C^{2}\left(\mathbb{R}_{+} ; \mathbb{R}\right)$ and let $\varphi: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfy the following specific form:

$$
\begin{equation*}
\varphi(h, x)=h-q(x) \frac{h^{2}}{2}+\mathcal{O}\left(h^{3}\right) \tag{3.2.12}
\end{equation*}
$$

where

$$
q(x)= \begin{cases}-f_{x}(x), & f(x)>0  \tag{3.2.13}\\ \frac{2 f(x)}{x}-f_{x}(x), & f(x)<0\end{cases}
$$

Then, the PESN1 method (2.0.5) with deniminator function (3.2.12)-(3.2.13):

$$
\begin{equation*}
\frac{x^{k+1}-x^{k}}{\varphi\left(h, x^{k}\right)}=w^{k} f\left(x^{k}\right) \tag{3.2.14}
\end{equation*}
$$

where

$$
w^{k}= \begin{cases}1, & \text { if } f\left(x^{k}\right) \geq 0 \\ \frac{x^{k+1}}{x^{k}}, & \text { if } f\left(x^{k}\right)<0\end{cases}
$$

preserves the positivity of solutions of Equation (2.0.1) when $n=1$, is elementary stable, and second-order accurate (SOPESN1 method).
3.3 Second order modified PESN (SOPESN2) method for n-dimensional productivedestructive systems

The following result holds for the new SOPESN2 method for Equation (2.0.2):

Theorem 3.3.1. Let $\vec{P}, \vec{D} \in C^{2}\left(\mathbb{R}_{+}^{n} ; \mathbb{R}_{+}^{n}\right)$ and $\varphi_{i}: \mathbb{R}_{+} \times \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$satisfies the following condition:

$$
\begin{equation*}
\varphi_{i}(h, \vec{x})=h-q_{i}(\vec{x}) \frac{h^{2}}{2}+\mathcal{O}\left(h^{3}\right), \tag{3.3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{i}(\vec{x})=-\sum_{j=1}^{n}\left(\frac{\partial P_{i}(\vec{x})}{\partial x_{j}}-\frac{\partial D_{i}(\vec{x})}{\partial x_{j}}\right)\left(\frac{P_{j}(\vec{x})-D_{j}(\vec{x})}{P_{i}(\vec{x})-D_{i}(\vec{x})}\right)-\frac{2 D_{i}(\vec{x})}{x_{i}}, \tag{3.3.2}
\end{equation*}
$$

whenever $D_{i}(\vec{x}) \neq P_{i}(\vec{x})$. Then, the PESN2 method (2.0.6) with deniminator function (3.3.1)-(3.3.2):

$$
\begin{equation*}
\frac{x_{i}^{k+1}-x_{i}^{k}}{\varphi_{i}\left(h, \vec{x}^{k}\right)}=P_{i}\left(\vec{x}^{k}\right)-D_{i}\left(\vec{x}^{k}\right) \frac{x_{i}^{k+1}}{x_{i}^{k}}, \tag{3.3.3}
\end{equation*}
$$

preserves the positivity of solutions of Equation (2.0.2), is elementary stable, and second-order accurate (SOPESN2 method).

Proof. The proof is organized similarly to the proof of Theorem 3.2.1.

1. Positivity: The positivity of the SOPESN2 method follows from the fact that when $\vec{x}^{k} \in \mathbb{R}_{+}^{n}$, then $P_{i}\left(\vec{x}^{k}\right)>0$ and $D_{i}\left(\vec{x}^{k}\right)>0$ for all $i=1, \ldots, n$, and therefore,

$$
x_{i}^{k+1}=\frac{x_{i}^{k}\left(x_{i}^{k}+\varphi_{i}\left(h, \vec{x}^{k}\right) P_{i}\left(\vec{x}^{k}\right)\right)}{x_{i}^{k}+\varphi_{i}\left(h, \vec{x}^{k}\right) D_{i}\left(\vec{x}^{k}\right)}>0
$$

since $\varphi_{i}\left(h, \vec{x}^{k}\right)>0$.
2. Second order of accuracy: To prove the SOPESN2 method is of second-order accuracy, we consider the following two cases:

- If $D_{i}\left(\vec{x}^{k}\right) \neq P_{i}\left(\vec{x}^{k}\right)$, then the SOPESN2 method (3.3.3) can be written in the following explicit form:

$$
x_{i}^{k+1}=\frac{x_{i}^{k}\left(x_{i}^{k}+\varphi_{i}\left(h, \vec{x}^{k}\right) P_{i}\left(\vec{x}^{k}\right)\right)}{x_{i}^{k}+\varphi_{i}\left(h, \vec{x}^{k}\right) D_{i}\left(\vec{x}^{k}\right)}
$$

Note that when $\varphi_{i}(h, \vec{x})=h+\mathcal{O}\left(h^{2}\right)$ and $x_{i} \neq 0$, then there exists $\delta_{i}>0$ such that

$$
\begin{equation*}
\frac{1}{1+\frac{D_{i}(\vec{x}) \varphi_{i}(h, \vec{x})}{x_{i}}}=1-\frac{D_{i}(\vec{x}) \varphi_{i}(h, \vec{x})}{x_{i}}+\frac{D_{i}^{2}(\vec{x}) \varphi_{i}^{2}(h, \vec{x})}{x_{i}^{2}}+\mathcal{O}\left(h^{3}\right), \tag{3.3.4}
\end{equation*}
$$

whenever $0<h<\delta_{i}$. Using Equation (3.3.4) and a Taylor series expansion about $t_{k}$ yields the following

$$
\begin{aligned}
& x_{i}\left(t_{k+1}\right)-\frac{x_{i}\left(t_{k}\right)+\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) P_{i}\left(\vec{x}\left(t_{k}\right)\right)}{1+\frac{\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) D_{i}\left(\vec{x}\left(t_{k}\right)\right)}{x_{i}\left(t_{k}\right)}} \\
&= x_{i}\left(t_{k+1}\right)-\left[x_{i}\left(t_{k}\right)+P_{i}\left(\vec{x}\left(t_{k}\right)\right) \varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right)\right]\left[1-\frac{D_{i}\left(\vec{x}\left(t_{k}\right)\right) \varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right)}{x_{i}\left(t_{k}\right)}\right. \\
&\left.+\left(\frac{D_{i}\left(\vec{x}\left(t_{k}\right)\right) \varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right)}{x_{i}\left(t_{k}\right)}\right)^{2}\right]+\mathcal{O}\left(h^{3}\right) \\
&= x_{i}\left(t_{k+1}\right)-x_{i}\left(t_{k}\right)+D_{i}\left(\vec{x}\left(t_{k}\right)\right) \varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right)-\frac{D_{i}^{2}\left(\vec{x}\left(t_{k}\right)\right) \varphi_{i}^{2}\left(h, \vec{x}\left(t_{k}\right)\right)}{x_{i}\left(t_{k}\right)} \\
&-P_{i}\left(x\left(t_{k}\right)\right) \varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right)+\frac{P_{i}\left(\vec{x}\left(t_{k}\right)\right) D_{i}\left(\vec{x}\left(t_{k}\right)\right) \varphi_{i}^{2}\left(h, \vec{x}\left(t_{k}\right)\right)}{x_{i}\left(t_{k}\right)}+\mathcal{O}\left(h^{3}\right) \\
&= x_{i}^{\prime}\left(t_{k}\right) h+x_{i}^{\prime \prime}\left(t_{k}\right) \frac{h^{2}}{2}+D_{i}\left(\vec{x}\left(t_{k}\right)\right) \varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right)-\frac{D_{i}^{2}\left(\vec{x}\left(t_{k}\right)\right) \varphi_{i}^{2}\left(h, \vec{x}\left(t_{k}\right)\right)}{x_{i}\left(t_{k}\right)} \\
&-P_{i}\left(\vec{x}\left(t_{k}\right)\right) \varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right)+\frac{P_{i}\left(\vec{x}\left(t_{k}\right)\right) D_{i}\left(\vec{x}\left(t_{k}\right)\right) \varphi_{i}^{2}\left(h, \vec{x}\left(t_{k}\right)\right)}{x_{i}\left(t_{k}\right)}+\mathcal{O}\left(h^{3}\right) \\
&=\left(P_{i}\left(\vec{x}\left(t_{k}\right)\right)-D_{i}\left(\vec{x}\left(t_{k}\right)\right)\right) h-\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right)\left(P_{i}\left(\vec{x}\left(t_{k}\right)\right)-D_{i}\left(\vec{x}\left(t_{k}\right)\right)\right) \\
&+\sum_{j=1}^{n}\left(\frac{\partial P_{i}\left(\vec{x}\left(t_{k}\right)\right)}{\partial x_{j}}-\frac{\partial D_{i}\left(\vec{x}\left(t_{k}\right)\right)}{\partial x_{j}}\right)\left(P_{j}\left(\vec{x}\left(t_{k}\right)\right)-D_{j}\left(\vec{x}\left(t_{k}\right)\right)\right) \frac{h^{2}}{2} \\
&+\varphi_{i}^{2}\left(h, \vec{x}\left(t_{k}\right)\right) \frac{D_{i}\left(\vec{x}\left(t_{k}\right)\right)}{x_{i}\left(t_{k}\right)}\left(P_{i}\left(\vec{x}\left(t_{k}\right)\right)-D_{i}\left(\vec{x}\left(t_{k}\right)\right)\right)+\mathcal{O}\left(h^{3}\right) .
\end{aligned}
$$

Now using Equations (3.3.1)-(3.3.2) for $\varphi_{i}\left(h, x\left(t_{n}\right)\right)$ and substituting in the above expression results in

$$
x_{i}\left(t_{k+1}\right)-\frac{x_{i}\left(t_{k}\right)+\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) P_{i}\left(\vec{x}\left(t_{k}\right)\right)}{1+\frac{\varphi_{i}\left(h, \vec{x}\left(t_{k}\right)\right) D_{i}\left(\vec{x}\left(t_{k}\right)\right)}{x_{i}\left(t_{k}\right)}}=\mathcal{O}\left(h^{3}\right)
$$

- If $D_{i}\left(\vec{x}^{k}\right)=P_{i}\left(\vec{x}^{k}\right)$, then the SOPESN2 method (3.3.3) reduces to $x_{i}^{k+1}=$ $x_{i}^{k}$, which represents an exact scheme for solving Equation (2.0.2) at $t=t_{k}$. The above two cases prove the second-order accuracy of the SOPESN2 method (3.3.3).

3. Elementary stability: It is easy to see from the formulation (3.3.3) that all fixed points $x^{*}$ of the SOPESN2 method are equilibria of Equation (2.0.2) and vice versa. To prove the numerical scheme (3.3.3) is elementary stable, let $\vec{x}^{*}$ be an equilibrium of Equation (2.0.2) and $J=J\left(x^{*}\right)$ be the Jacobian evaluated at $\vec{x}^{*}$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. We again assumed the Jacobian matrices to be diagonalizable. Setting $\vec{\epsilon}=\vec{x}-\vec{x}^{*}$, then the linearized version of System (2.0.2) can be written as

$$
\begin{equation*}
\vec{\epsilon}^{\prime}=J \vec{\epsilon} \tag{3.3.5}
\end{equation*}
$$

We consider the following three cases:
(a) All eigenvalues of the matrix $J$ are real: Since $J$ is diagonalizable, then there is nonsingular matrix $P_{r}$ whose columns are the eigenvectors of $J$ satisfying [19]

$$
\Lambda_{r}=P_{r}^{-1} J P_{r}
$$

where $\Lambda_{r}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Now let $\vec{\eta}=P_{r}^{-1} \vec{\epsilon}$. Multiplying Equation (3.3.5) by $P_{r}^{-1}$ on both sides yields:

$$
P_{r}^{-1} \vec{\epsilon}^{\prime}=P_{r}^{-1} J \vec{\epsilon}
$$

which is equivalent to

$$
P_{r}^{-1} \vec{\epsilon}^{\prime}=P_{r}^{-1}\left(P_{r} \Lambda_{r} P_{r}^{-1}\right) \vec{\epsilon},
$$

i.e,

$$
\begin{equation*}
\vec{\eta}^{\prime}=\Lambda_{r} \vec{\eta} \tag{3.3.6}
\end{equation*}
$$

Following the approach in [3], we apply the numerical scheme to Equation (3.3.6). First, let us assume $\vec{x}^{*}$ be a locally asymptotically stable equilibrium for (2.0.2). Then, $\lambda_{i}<0$ for all $i=1, \ldots, n$, and

$$
\eta_{i}^{k+1}=\left(\frac{1}{1-\varphi_{i}\left(h, \vec{\eta}^{k}\right) \lambda_{i}}\right) \eta_{i}^{k}
$$

To show $\vec{x}^{*}$ is a locally asymptotically stable fixed point for Method (3.3.3) is equivalent to show:

$$
\left|\frac{1}{1-\varphi_{i}\left(h, \vec{\eta}^{k}\right) \lambda_{i}}\right|<1 .
$$

Since $\lambda_{i}<0$ and $\varphi_{i}\left(h, \vec{\eta}^{k}\right)>0$, we have $1-\varphi_{i}\left(h, \vec{\eta}^{k}\right) \lambda_{i}>1$ which implies

$$
\begin{equation*}
0<\frac{1}{1-\varphi_{i}\left(h, \vec{\eta}^{k}\right) \lambda_{i}}<1 . \tag{3.3.7}
\end{equation*}
$$

Therefore, by the inequality (3.3.7) and since $i$ is arbitrary we can conclude that $\vec{x}^{*}$ is a stable fixed point of the numerical scheme (3.3.3).

Next, if $\vec{x}^{*}$ is an unstable equilibrium for (2.0.2), we need to show $\vec{x}^{*}$ is an unstable fixed point of the numerical scheme (3.3.3). But, since $\vec{x}^{*}$ is unstable, then there is an eigenvalue $\lambda_{j_{0}}$ of $J$ such that $\lambda_{j_{0}}>0$, after applying the numerical scheme (3.3.3) to Equation (3.3.6) yields:

$$
\eta_{j_{0}}^{k+1}=\left(1+\varphi_{j_{0}}\left(h, \vec{\eta}^{k}\right) \lambda_{j_{0}}\right) \eta_{j_{0}}^{k} .
$$

Since $\lambda_{j_{0}}>0$, then $\left|1+\varphi_{j_{0}}\left(h, \vec{\eta}^{k}\right) \lambda_{j_{0}}\right|>1$. Therefore, $\vec{x}^{*}$ is an unstable fixed point of the numerical method (3.3.3).
(b) All eigenvalues of $J$ are complex with $\operatorname{Im}\left(\lambda_{i}\right) \neq 0$ for all $i=1, \ldots, n$ : Since $J$ is a real matrix, we note if $\lambda_{i}$ is an eigenvalue of $J$, then $\bar{\lambda}_{i}$ (complex conjugate) is also an eigenvalue of $J$. Therefore, $n$ must be an even positive integer. We recall there is a invertible matrix $P_{c}$ satisfying [19]

$$
\Lambda_{c}=P_{c}^{-1} J P_{c}
$$

The Jordan normal form satisfies

$$
\Lambda_{c}=\operatorname{diag}\left(B_{\lambda_{1}}, \ldots, B_{\lambda_{n}}\right)
$$

where $B_{\lambda_{i}}=\left(\begin{array}{cc}a_{i} & b_{i} \\ -b_{i} & a_{i}\end{array}\right)$ with $\mathrm{R}\left(\lambda_{i}\right)=a_{i}$ and $\operatorname{Im}\left(\lambda_{i}\right)=b_{i}$. Similar to the argument in Case (a) we apply the numerical scheme to

$$
\begin{equation*}
\vec{\eta}^{\prime}=J_{c} \vec{\eta} \tag{3.3.8}
\end{equation*}
$$

First, if $\vec{x}^{*}$ is a locally asymptotically stable equilibrium for (3.3.3), then $a_{i}<0$ for all $i=1, \ldots, n$. Let $i \in\{1, \ldots, n\}$, then $a_{i}<0$ and $b_{i}$ is either positive or negative.

- If $b_{i}<0$, then

$$
\begin{gathered}
\eta_{i}^{\prime}=a_{i} \eta_{i}+b_{i} \eta_{i+1}, \\
\eta_{i+1}^{\prime}=-b_{i} \eta_{i}+a_{i} \eta_{i+1}
\end{gathered}
$$

Since $P_{i}\left(\vec{\eta}^{k}\right)=0$ and $D_{i}\left(\vec{\eta}^{k}\right)=-\left(a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}\right)$, after applying the numerical scheme to (3.3.8) yields:

$$
\eta_{i}^{k+1}=\left(\frac{\eta_{i}^{k}}{\eta_{i}^{k}-\varphi_{i}\left(h, \vec{\eta}^{k}\right)\left(a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}\right)}\right) \eta_{i}^{k}
$$

Using that $a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}<0$ and $\varphi_{i}\left(h, \vec{\eta}^{k}\right)>0$ we can conclude that

$$
\left|\frac{\eta_{i}^{k}}{\eta_{i}^{k}-\varphi_{i}\left(h, \vec{\eta}^{k}\right)\left(a_{i} \eta_{i}^{k}+b_{i} \eta_{i+1}^{k}\right)}\right|<1
$$

That implies $\eta_{i}^{k+1} \rightarrow 0$ as $k \rightarrow \infty$. Now we claim $\eta_{i+1}^{k+1} \rightarrow 0$ as $k \rightarrow \infty$. Now, suppose for the sake of a contradiction that this is not true. Since

$$
\eta_{i+1}^{\prime}=-b_{i} \eta_{i}+a_{i} \eta_{i+1},
$$

then $P_{i+1}\left(\vec{\eta}^{k}\right)=-b_{i} \eta_{i}^{k}$ and $D_{i+1}\left(\vec{\eta}^{k}\right)=-a_{i} \eta_{i+1}^{k}$. Therefore,

$$
\eta_{i+1}^{k+1}=\left(\frac{\eta_{i+1}^{k}-\varphi_{i+1}\left(h, \bar{\eta}^{k}\right) b_{i} \eta_{i}^{k}}{\eta_{i+1}^{k}-\varphi_{i+1}\left(h, \vec{\eta}^{k}\right) a_{i} \eta_{i+1}^{k}}\right) \eta_{i+1}^{k},
$$

Now since $\eta_{i+1}^{k+1} \nrightarrow 0$ as $k \rightarrow \infty$, then

$$
\frac{\eta_{i+1}^{k}-\varphi_{i+1}\left(h, \vec{\eta}^{k}\right) b_{i} \eta_{i}^{k}}{\eta_{i+1}^{k}-\varphi_{i+1}\left(h, \vec{\eta}^{k}\right) a_{i} \eta_{i+1}^{k}} \geq 1
$$

thus $\eta_{i+1}^{k+1} \geq \eta_{i+1}^{k}$. That implies $\left\{\eta_{i+1}^{k+1}\right\}$ is a monotonically increasing positive sequence. Therefore, $\eta_{i+1}^{k+1} \rightarrow b \in \mathbb{R}_{+} \cup\{\infty\}$ as $k \rightarrow \infty$. Using Lemma (3.1.1) for large enough $k$ we have:

$$
-b_{i} \eta_{i}^{k}<-a_{i} \eta_{i+1}^{k}
$$

hence, $P_{i}\left(\vec{\eta}^{k}\right)=0$ and $D_{i}\left(\vec{\eta}^{k}\right)=-\left(-b_{i} \eta_{i}^{k}+a_{i} \eta_{i+1}^{k}\right)$.
Now applying the numerical method to Equation (3.3.8) yields:

$$
\eta_{i+1}^{k+1}=\left(\frac{\eta_{i+1}^{k}}{\eta_{i+1}^{k}-\varphi_{i}\left(h, \eta^{k}\right)\left(-b_{i} \eta_{i}^{k}+a_{i} \eta_{i+1}^{k}\right)}\right) \eta_{i+1}^{k},
$$

and $\left|\frac{\eta_{i+1}^{k}}{\eta_{i+1}^{k}-\varphi_{i}\left(h, \vec{\eta}^{k}\right)\left(-b_{i} \eta_{i}+a_{i} \eta_{i+1}\right)}\right|<1$. That implies $\eta_{i+1}^{k} \rightarrow 0$ as $k \rightarrow \infty$ contradicts $\eta_{i+1}^{k} \rightarrow b \in \mathbb{R}_{+} \cup\{\infty\}$. Therefore, $\eta_{i+1}^{k} \rightarrow 0$ as $k \rightarrow \infty$.

- $b_{i}>0$, similar argument as above shows that $\eta_{i}^{k} \rightarrow 0$ and $\eta_{i+1}^{k} \rightarrow 0$ as $k \rightarrow \infty$. Therefore, $\vec{x}^{*}$ is a locally asymptotically stable fixed point of the numerical scheme (3.3.3).

Next, if $\vec{x}^{*}$ is unstable equilibrium for System (2.0.2), then there is an eigenvalue $\lambda_{j_{0}}$ such that $\mathrm{R}\left(\lambda_{j_{0}}\right)>0$. After applying the numerical scheme to Equation (3.3.8) we consider the following two cases:

- If $b_{j_{0}}<0$, then

$$
\begin{aligned}
\eta_{j_{0}+1}^{k+1} & =\eta_{j_{0}+1}^{k}+\varphi_{j_{0}+1}\left(h, \eta^{k}\right) P_{j_{0}+1}\left(\vec{\eta}^{k}\right) \\
& =\eta_{j_{0}+1}^{k}+\varphi_{j_{0}+1}\left(h, \eta^{k}\right)\left(-b_{j_{0}} \eta_{j_{0}}^{k}+a_{j_{0}} \eta_{j_{0}+1}^{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& >\eta_{j_{0}+1}^{k}+\varphi_{j_{0}+1}\left(h, \vec{\eta}^{k}\right) a_{j_{0}} \eta_{j_{0}+1}^{k} \\
& =\left(1+\varphi_{j_{0}+1}\left(h, \vec{\eta}^{k}\right) a_{j_{0}}\right) \eta_{j_{0}+1}^{k}
\end{aligned}
$$

But since $\left|1+\varphi_{j_{0}+1}\left(h, \vec{\eta}^{k}\right) a_{j_{0}}\right|>1$, then clearly $\eta_{j_{0}+1}^{k} \rightarrow \infty$ as $k \rightarrow \infty$.

- If $b_{j_{0}}>0$, then

$$
\begin{aligned}
\eta_{j_{0}}^{k+1} & =\eta_{j_{0}}^{k}+\varphi_{j_{0}}\left(h, \vec{\eta}^{k}\right) P_{j_{0}}\left(\vec{\eta}^{k}\right) \\
& =\eta_{j_{0}}^{k}+\varphi_{j_{0}}\left(h, \vec{\eta}^{k}\right)\left(a_{j_{0}} \eta_{j_{0}}^{k}+b_{j_{0}} \eta_{j_{0}+1}^{k}\right) \\
& >\eta_{j_{0}}^{k}+\varphi_{j_{0}}\left(h, \vec{\eta}^{k}\right) a_{j_{0}} \eta_{j_{0}}^{k} \\
& =\left(1+\varphi_{j_{0}}\left(h, \vec{\eta}^{k}\right) a_{j_{0}}\right) \eta_{j_{0}}^{k}
\end{aligned}
$$

Therefore, since $\left|1+\varphi_{j_{0}}\left(h, \vec{\eta}^{k}\right) a_{j_{0}}\right|>1$, then $\eta_{j_{0}}^{k} \rightarrow \infty$ as $k \rightarrow \infty$. This implies that $\vec{x}^{*}$ is an unstable fixed point of the numerical method (3.3.3).
(c) $J$ has both real and complex eigenvalues: $\lambda_{1}, \ldots, \lambda_{k}$ are the real eigenvalues of $J$ and $\lambda_{j}=a_{j}+i b_{j}$ and $\bar{\lambda}_{j}=a_{j}-i b_{j}$ for $j=k+1, \ldots, \frac{n+k}{2}$. Then, there is a nonsingular matrix $P_{r c}$ satisfying [19]

$$
\Lambda_{r c}=P_{r c} A P_{r c}^{-1}
$$

where $\Lambda_{r c}=\operatorname{diag}\left(B_{\lambda_{1}}, \ldots, B_{\lambda_{n}}\right)$ and

$$
B_{\lambda_{i}}=\left\{\begin{array}{l}
\lambda_{i}, \operatorname{Im}\left(\lambda_{i}\right)=0 \\
\left(\begin{array}{cc}
\mathrm{R}\left(\lambda_{i}\right) & \operatorname{Im}\left(\lambda_{i}\right) \\
-\operatorname{Im}\left(\lambda_{i}\right) & \mathrm{R}\left(\lambda_{i}\right)
\end{array}\right), \operatorname{Im}\left(\lambda_{i}\right) \neq 0
\end{array}\right.
$$

Similar to the argument in Case (a) we apply the numerical scheme to

$$
\begin{equation*}
\vec{\eta}^{\prime}=J_{r c} \vec{\eta} \tag{3.3.9}
\end{equation*}
$$

Now let $\vec{x}^{*}$ be a locally asymptotically stable equilibrium point of (2.0.2), then $\mathrm{R}\left(\lambda_{i}\right)<0$ for all $i$. To prove $\vec{x}^{*}$ is a locally asymptotically stable fixed point for Scheme (3.3.3). We note that if $\operatorname{Im}\left(\lambda_{i}\right)=0$, then we use the same argument as in Case (a) to show $\eta_{i}^{k+1} \rightarrow 0$ as $k \rightarrow \infty$. If $\operatorname{Im}\left(\lambda_{i}\right) \neq 0$, we use the same argument as in Case (b). That shows $\vec{x}^{*}$ is a locally asymptotically stable fixed point for Scheme (3.3.3). Finally, if $\vec{x}^{*}$ is an unstable equilibrium for System (2.0.2), then there is $\lambda_{j_{0}}$ with $R\left(\lambda_{j_{0}}\right)>0$ for some $j_{0} \in\{1, \ldots, n\}$. Also, either $\operatorname{Im}\left(\lambda_{j_{0}}\right)=0$ or $\operatorname{Im}\left(\lambda_{j_{0}}\right) \neq 0$ using a similar argument as in Case (a) or Case (b), respectively, shows that $\vec{x}^{*}$ is an unstable fixed point for Scheme (3.3.3). Therefore, the numerical method (3.3.3) is elementary stable.

The following corollary is for SOPESN2 method when $n=1$.
Corollary 3.3.1. Let $P, D \in C^{2}\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right)$and $\varphi: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfies the following condition:

$$
\begin{equation*}
\varphi(h, x)=h-q(x) \frac{h^{2}}{2}+\mathcal{O}\left(h^{3}\right) \tag{3.3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
q(x)=D_{x}(x)-P_{x}(x)-\frac{2 D(x)}{x} \tag{3.3.11}
\end{equation*}
$$

Then, the PESN2 method (2.0.6) with deniminator function (3.3.10)-(3.3.11):

$$
\begin{equation*}
\frac{x^{k+1}-x^{k}}{\varphi\left(h, x^{k}\right)}=P\left(x^{k}\right)-D\left(x^{k}\right) \frac{x^{k+1}}{x^{k}} \tag{3.3.12}
\end{equation*}
$$

preserves the positivity of solutions of Equation (2.0.2) when $n=1$, is elementary stable, and second-order accurate (SOPESN2 method).

Remark 3.3.1. There exists many functions that satisfy the hypothesis of Theorems (3.2.1) and (3.3.1), e.g., one can choose

$$
\begin{gathered}
\varphi_{i}\left(h, \vec{x}^{k}\right)= \begin{cases}\frac{1-e^{-q_{i}\left(\vec{x}^{k}\right) h}}{q_{i}\left(\vec{x}^{k}\right)}, & \text { if } q_{i}\left(\vec{x}^{k}\right) \neq 0 \\
h, & \text { if } q_{i}\left(\vec{x}^{k}\right)=0\end{cases} \\
\varphi_{i}\left(h, \vec{x}^{k}\right)=\frac{1-e^{-q_{i}\left(\vec{x}^{k}\right) h}}{q_{i}\left(\vec{x}^{k}\right)}, \text { with } q_{i}\left(\vec{x}^{k}\right) \text { as in Equation (3.2.2) and as in Equation }
\end{gathered}
$$ (3.3.2), respectively.

## CHAPTER 4

## Chemostat Models with microbial input

### 4.1 Introduction

For many years, chemostat models have been used to mathematically model many important biological problems. For instance, the time dynamic of one bacteria $B$ and the substrate $S$ in the chemostat can be modeled by the following two differential equations [44, 39]:

$$
\begin{align*}
& \frac{d S}{d t}=\underbrace{D S_{i n}}_{\text {input }}-\underbrace{D S}_{\text {dilution }}-\underbrace{q \mu(S) B}_{\text {consumption by } B}, \\
& \frac{d B}{d t}=\underbrace{\mu(S) B}_{\text {growth }}-\underbrace{D B}_{\text {dilution }} . \tag{4.1.1}
\end{align*}
$$

The asymptotic behavior of Model (4.1.1) can be found in details in [44, 39]. Model (4.1.1) has two equilibria, which are the wash-out equilibrium, $E_{0}=\left(S_{i n}, 0\right)$, and the positive equilibrium, $E_{1}=\left(\mu^{-1}(D), \frac{S_{i n}-\mu^{-1}(D)}{q}\right)$. Moreover, the positive equilibrium is stable whenever it exists. However, when there is a constant toxin affecting the death rate of bacteria $B$, the above model doesn't represent the dynamic of this problem. Introducing a toxin in the system is important to answer crucial questions in commercial production with biological reactors, and to study detoxification problem [21]. The simple chemostat model with different removal rates has been studied before (see $[20,44]$ ). The simple chemostat model of one bacteria including the bacteria's mortality rate is

$$
\begin{align*}
& \frac{d S}{d t}=\underbrace{D S_{i n}}_{\text {input }}-\underbrace{D S}_{\text {dilution }}-\underbrace{q \mu(S) B}_{\text {consumption by } B}  \tag{4.1.2}\\
& \frac{d B}{d t}=\underbrace{\mu(S) B}_{\text {growth }}-\underbrace{D B}_{\text {dilution }}-\underbrace{m B}_{\text {death of } \mathrm{B}}
\end{align*}
$$

Model (4.1.2) has two equilibria, a boundary equilibrium $E_{0}=\left(\frac{S_{i n}}{D}, 0\right)$, and an interior equilibrium $E_{1}=\left(\mu^{-1}(D+m), \frac{D}{q(D+m)}\left(S_{i n}-\mu^{-1}(D+m)\right)\right)$. Moreover, the positive equilibrium is locally asymptotically stable whenever it exists.

When there are more than one bacteria in the chemostat, they compete for the common limited resource. Since competition is crucial nature, the competition of organisms in the chemostat has been widely studied. For instance, the simple competition model in the chemostat can be modeled by the following nonlinear differential equations [44, 28, 17]:

$$
\begin{align*}
\frac{d S}{d t} & =\underbrace{D S_{i n}}_{\text {input }}-\underbrace{D S}_{\text {dilution }}-\underbrace{q_{1} \mu_{1}(S) B_{1}}_{\text {consumption by } B_{1}}-\underbrace{q_{2} \mu_{2}(S) B_{2}}_{\text {consumption by } B_{2}} \\
\frac{d B_{1}}{d t} & =\underbrace{\mu_{1}(S) B_{1}}_{\text {growth }}-\underbrace{D B_{1}}_{\text {dilution }}  \tag{4.1.3}\\
\frac{d B_{2}}{d t} & =\underbrace{\mu_{2}(S) B_{2}}_{\text {growth }}-\underbrace{D B_{2}}_{\text {dilution }} .
\end{align*}
$$

The asymptotic behavior of Model (4.1.3) is described by the Competitive exclusion principle [18, 44]. Which basically states that only one competitor survives. To tackle this problem, Robledo et all. [40] modified the above model by introducing an input concentration $B_{\text {in }}$ to the inferior competitor.

$$
\begin{align*}
\frac{d S}{d t} & =\underbrace{D S_{i n}}_{\text {input }}-\underbrace{D S}_{\text {dilution }}-\underbrace{q_{1} \mu_{1}(S) B_{1}}_{\text {consumption by } B_{1}}-\underbrace{q_{2} \mu_{2}(S) B_{2}}_{\text {consumption by } B_{2}} \\
\frac{d B_{1}}{d t} & =\underbrace{D B_{i n}}_{\text {input }}+\underbrace{\mu_{1}(S) B_{1}}_{\text {growth }}-\underbrace{D B_{1}}_{\text {dilution }}  \tag{4.1.4}\\
\frac{d B_{2}}{d t} & =\underbrace{\mu_{2}(S) B_{2}}_{\text {growth }}-\underbrace{D B_{2}}_{\text {dilution }}
\end{align*}
$$

The authors proved the model has a positive equilibrium that is asymptotically stable when it exists. However, their model does not account for the death rate due to a constant toxin.

Antibiotic resistance is one of the top threats to the public's health. It occurs when a microorganism is not affected by one or more than one antibiotics. Plasmids can change bacteria's genetic material. This change can cause the bacteria to become antibiotic-resistant or remove an antibiotic resistance gene from the bacteria [41, 23]. Therefore, bacterial plasmids play an essential role in antibiotic resistance. There have been many mathematical models to understand the effect of the plasmid on the bacteria [41, 23, 45, 26]. The authors in [42] proposed a model of competition between plasmid-bearing and plasmid-free organisms in a chemostat based on the mass balances of the organisms.

$$
\begin{align*}
\frac{d S}{d t} & =\underbrace{D S_{i n}}_{\text {input }}-\underbrace{D S}_{\text {dilution }}-\underbrace{q_{1} \mu_{1}(S) B_{1}}_{\text {consumption by } B_{1}}-\underbrace{q_{2} \mu_{2}(S) B_{2}}_{\text {consumption by } B_{2}} \\
\frac{d B_{1}}{d t} & =\underbrace{\mu_{1}(S) B_{1}}_{\text {growth }}-\underbrace{D B_{1}}_{\text {dilution }}-\underbrace{q \mu_{1}(S) B_{1}}_{\text {loss of plasmid }}  \tag{4.1.5}\\
\frac{d B_{2}}{d t} & =\underbrace{\mu_{2}(S) B_{2}}_{\text {growth }}-\underbrace{D B_{2}}_{\text {dilution }}+\underbrace{q \mu_{1}(S) B_{1}}_{\text {loss of plasmid }}
\end{align*}
$$

The parameter $q \in(0,1)$, represents the probability that a plasmid is lost in reproduction. The mathematical analysis of the above model can be found in detail in [22]. The authors show that the positive equilibrium is asymptotically stable whenever it exists.

This chapter is organized as follows. We first start with a simple growth chemostat model, which represents the growth of the donor bacteria in the presence of a lethal toxin. Next, we consider a competition model representing the competition between the donor bacteria and the resident bacteria. Finally, we consider a competition model of the donor bacteria and the resident bacteria in the presence of a plasmid.
4.2 Simple chemostat model with microbial input and a constant death rate

The model for the growth of a single microbial population in a chemostat with supplying a microbial into the chemostat and a constant death rate due to a constant homogeneous toxin is based on the following assumptions:

1. The micro-organisms introduced in the vessel are of a single species.
2. The substrate (of concentration $S$ ) is the single limiting resource for growth.
3. The vessel is perfectly mixed.

$$
\begin{align*}
\frac{d S}{d t} & =\underbrace{D S_{i n}}_{\text {input }}-\underbrace{D S}_{\text {dilution }}-\underbrace{q \mu(S) B}_{\text {consumption by } B} \\
\frac{d B}{d t} & =\underbrace{D B_{i n}}_{\text {input }}-\underbrace{D B}_{\text {dilution }}+\underbrace{\mu(S) B}_{\text {growth }}-\underbrace{m B}_{\text {death of } B} \tag{4.2.1}
\end{align*}
$$

where $D$ is a constant dilution rate, $S_{i n}$ is the concentration of the limiting nutrient, $m$ is the bacteria's death rate, and $B_{i n}$ is the input concentration for $B$. Here, $B$ is the population density of the microorganism, and $S$ is the nutrient concentration. The function $\mu(S)$ is bounded and increasing $\mu(0)=0,0 \leq \mu(S) \leq \mu^{\text {max }}$. For growth rate, the well-known Monod function is used $\mu(S)=\frac{\mu^{\max } S}{K+S}$ where $\mu^{\max }$ is the maximal growth rate as $S \rightarrow \infty$, and $K$ is the half-saturation constant. Both $\mu^{\max }$ and $K$ can be measured experimentally. The parameter $q$ is assumed to be constant and represents the efficiency at which the organism harvest nutrient for population growth.

### 4.2.1 Basic properties

4.2.1.1 Model well-posedness

Since Model (4.2.1) represents a biological system. All solutions should remain non-negative and bounded. The Cauchy problem associated to System (4.2.1) is

$$
\begin{equation*}
\vec{x}^{\prime}=\vec{f}(\vec{x}) ; \quad \vec{x}\left(t_{0}\right)=\vec{x}_{0}, \tag{4.2.2}
\end{equation*}
$$

where $\vec{x}=(S, B), \vec{x}_{0}=\left(S_{0}, B_{0}\right)$, and $\vec{f}(\vec{x}) \in \mathbb{R}^{2}$. Here, $\vec{f}(\vec{x})$ is the right-hand side in Equation (4.2.1). Clearly, the function $\vec{f}(\vec{x}(t))$ is continuously differentiable in $\mathbb{R}^{2}$. Thus, by the Fundamental Existence-Uniqueness Theorem [37], there is $a>0$ such that the intial value problem (4.2.2) has a unique solution $\vec{x}(t)$ on $[-a, a]$.
In the following theorem, we will show that the solutions of Model (4.2.1) are nonnegative whenever $\left(S_{0}, B_{0}\right) \in \mathbb{R}_{+}^{2}$, and that solutions do not tend to infinity with increasing time.

Theorem 4.2.1. If $B_{0}>0$ and $S_{0}>0$, then the solution $(S(t), B(t))$ of Model (4.2.1) are non-negative for all $t>0$. Moreover, the dynamical system (4.2.1) is dissipative. Proof. Let $f_{1}(S, B)=D\left(S_{\text {in }}-S\right)-q \mu(S) B$, and $f_{2}(S, B)=D\left(B_{\text {in }}-B\right)+\mu(S) B-m B$, are the right-hand sides of Model (4.2.1). Since $D, S_{i n}$, and $B_{i n} 0$ are all positive, then $f_{1}(0, B)=D S_{\text {in }}>0$, and $f_{2}(S, 0)=D B_{\text {in }}>0$. Therefore, $S(t)>0$ and $B(t)>0$ whenever $S_{0}>0$ and $B_{0}>0$. Next, we aim to show Model (4.2.1) is dissipative. Let $\Sigma=S+q B$, then

$$
\begin{aligned}
\Sigma^{\prime} & =D\left(S_{i n}-S\right)-q \mu(S) B \\
& +q D\left(B_{i n}-B\right)+q \mu(S) B-q m B \\
& =D S_{i n}+q D B_{\text {in }}-D(S+q B)-q m B \\
& <D S_{\text {in }}+q D B_{\text {in }}-D \Sigma .
\end{aligned}
$$

If $U(t)$ is the solution of $U^{\prime}=D S_{\text {in }}+q D B_{\text {in }}-D U$ satisfying $U(0)=\Sigma(0)$, then it follows by comparison that

$$
\begin{equation*}
\Sigma(t)<U(t) \tag{4.2.3}
\end{equation*}
$$

One can easily solve

$$
U^{\prime}=D S_{i n}+q D B_{i n}-D U, \quad U(0)=\Sigma(0)
$$

and obtain the exact solution as

$$
U(t)=S_{i n}+q B_{i n}+\left(\Sigma(0)-S_{i n}-q B_{i n}\right) e^{-D t}
$$

Therefore, we can easily see that

$$
\lim _{t \rightarrow \infty} U(t)=S_{i n}+q B_{i n}
$$

Above limit together with Inequality (4.2.3) implies

$$
\limsup _{t \rightarrow \infty} S(t)+q B(t) \leq S_{i n}+q B_{i n} .
$$

That implies the dynamycal system (4.2.1) is dissipative.

### 4.2.2 Equilibria and stability analysis

The existence of one equilibrium for Model (4.2.1) is stated in the following proposition.

Proposition 4.2.1 (Existence of Equilibrium). System (4.2.1) has one equilibrium $E^{*}=\left(S^{*}, B^{*}\right)$ where:

$$
\begin{aligned}
& B^{*}=\frac{D}{d} B_{i n}+\frac{1}{q} \frac{D}{d}\left(S_{\text {in }}-S^{*}\right), \quad \text { and }
\end{aligned}
$$

with $d=D+m$.

Proof. To find the equilibrium, we set the right-hand sides of Model (4.2.1) to zero, i.e.

$$
\begin{align*}
& D\left(S_{i n}-S\right)-q \mu(S) B=0  \tag{4.2.4}\\
& D\left(B_{i n}-B\right)+\mu(S) B-m B=0 \tag{4.2.5}
\end{align*}
$$

Multiplying the second equation by $q$, and then adding it with the first equation yields

$$
D\left(S_{i n}-S\right)+q D\left(B_{i n}-B\right)-q m B=0
$$

Solving the above equation for $B$ gives

$$
B=\frac{D}{d} B_{i n}+\frac{D}{q d}\left(S_{i n}-S\right)
$$

Next, to find $S^{*}$, we now substitute the value of $B$ in Equation (4.2.4); we have

$$
D\left(S_{i n}-S\right)-\frac{q D}{d} B_{i n} \frac{\mu^{\max } S}{K+S}-\frac{D}{d} \frac{\mu^{\max } S}{K+S}\left(S_{i n}-S\right)=0
$$

Now multiplying the above equation by $\frac{d}{D}(K+S)$ yields

$$
d\left(S_{i n}-S\right)(K+S)-q B_{i n} \mu^{\max } S-\mu^{\max } S\left(S_{i n}-S\right)=0
$$

After rearranging the terms of the above equation, one can easily get the following quadratic equation

$$
\left(\mu^{\max }-d\right) S^{2}-\left(\left(\mu^{\max }-d\right) S_{i n}+d K+q B_{\text {in }} \mu^{\max }\right) S+d S_{\text {in }} K=0
$$

By Solving the above quadratic equation, one can easily find the positive root of $S^{*}$ as follows

1. If $d=\mu^{\max }$, then $S^{*}=\frac{d S_{i n} K}{d K+q \mu^{\max B_{i n}}}$.
2. If $d>\mu^{\text {max }}$, then $S^{*}=\frac{S_{i n}+\frac{d K}{\mu^{m a x}-d}+\frac{q \mu^{m a x} B_{i n}}{\mu^{\max x}}+\sqrt{\left(S_{i n}+\frac{d K}{\mu^{m a x}-d}+\frac{q \mu^{\text {max }} B_{i n} \mu^{m a x}}{\mu^{m a x}-d}\right)^{2}-4 \frac{d S_{i n} K}{\mu^{m i x}-d}}}{2}$.
3. If $d<\mu^{\max }$, then $S^{*}=\frac{S_{\text {in }}+\frac{d K}{\mu^{\max }-d}+\frac{q \mu^{\max } B_{i n}}{\mu^{\max }-d}-\sqrt{\left(S_{i n}+\frac{d K}{\mu^{\max -d}}+\frac{q \mu^{\max } \boldsymbol{B}_{i n}}{\mu^{\max }-d}\right)^{2}-4 \frac{d S_{i n} K}{\mu^{\max }-d}}}{2}$.

From the above one can easily see that $S^{*}>0$. Moreover, we claim $S_{i n}>S^{*}$. Notice, if $d=\mu^{\max }$, then $S^{*}=\frac{d S_{i n} K}{d K+q \mu^{\max } B_{i n}}<S_{i n}$, (since $d K<d K+q \mu^{\max } B_{i n}$ ). If $d>\mu^{\max }$, we note that

$$
S_{i n}-S^{*}=\frac{S_{i n}+\frac{d K}{d-\mu^{\max }}+\frac{q \mu^{\max } B_{i n}}{d-\mu^{\max }}-\sqrt{\left(S_{i n}+\frac{d K}{\mu^{\max }-d}+\frac{q \mu^{\max } B_{i n}}{\mu^{\max }-d}\right)^{2}-4 \frac{d S_{i n} K}{\mu^{\max }-d}}}{2},
$$

multiplying by the square conjugate yields
$S_{i n}-S^{*}=$
$\frac{4 B_{\text {in }} \mu^{\max } q S_{\text {in }}}{2\left(d-\mu^{\max }\right)\left(S_{\text {in }}+\frac{d K}{d-\mu^{\max }}+\frac{q \mu^{\max } B_{i n}}{d-\mu^{\max }}+\sqrt{\left.\left(S_{\text {in }}+\frac{d K}{\mu^{\max }-d}+\frac{q \mu^{\max } B_{i n}}{\mu^{\max }-d}\right)^{2}+4 \frac{d S_{\text {in }} K}{d-\mu^{\max }}\right)}>0 .\right.}$ Similarly, one can show $S_{i n}>S^{*}$ when $d<\mu^{\max }$. Hence, $B^{*}>0$, and therefore $E^{*}$ always exists.

The following theorem concerning the local stability of the equilibrium $E^{*}$.
Theorem 4.2.2. The equilibrium $E^{*}$ of Model (4.2.1) is locally asymptotically stable.
Proof. The Jacobian evaluated at $E^{*}$ is

$$
J\left(E^{*}\right)=\left[\begin{array}{cc}
-D-q B^{*} \frac{\mu^{\max } K}{\left(K+S^{*}\right)^{2}} & -q \mu\left(S^{*}\right) \\
\frac{B^{*} \mu^{\max } K}{\left(K+S^{*}\right)^{2}} & \mu\left(S^{*}\right)-(D+m)
\end{array}\right]
$$

Next, we find the trace and the determinant (det) of $J\left(E^{*}\right)$, we have

$$
\begin{gathered}
\operatorname{trace}\left(J\left(E^{*}\right)\right)=-2 D-m-q B^{*} \frac{\mu^{\max } K}{\left(K+S^{*}\right)^{2}}+\mu\left(S^{*}\right) \\
\operatorname{det}\left(J\left(E^{*}\right)\right)=D\left(D+m-\mu\left(S^{*}\right)\right)+(D+m) \frac{q B^{*} \mu^{\max } K}{\left(K+S^{*}\right)^{2}}
\end{gathered}
$$

We note $D\left(S_{i n}-S^{*}\right)=q \mu\left(S^{*}\right) B^{*}$. Thus, $\mu\left(S^{*}\right)=\frac{D}{q} \frac{S_{i n}-S^{*}}{B^{*}}=D \frac{S_{i n}-S^{*}}{\frac{q D}{d} B_{i n}+\frac{D}{d}\left(S_{i n}-S^{*}\right)}<$ $D \frac{S_{i n}-S^{*}}{\frac{D}{d}\left(S_{i n}-S^{*}\right)}=d=D+m$. Therefore, $\operatorname{det}\left(J\left(E^{*}\right)\right)>0$, and $-\operatorname{trace}\left(J\left(E^{*}\right)\right)>0$. As a result, the equilibrium $E^{*}$ is locally asymptotically stable.

For the global stability of the unique equilibrium $E^{*}$, we have the following result.

Theorem 4.2.3. The equilibrium $E^{*}$ attracts any solution initiated in

$$
\triangle=\left\{(S, B): S+q B \leq S_{i n}+q B_{i n}\right\}
$$

Proof. Since $E_{1}$ is locally asymptotically stable, and it is the only equilibrium of Model (4.2.1), and System (4.2.1) is bounded (Proposition (4.2.1)), then by PoincaréBendixson theorem it suffices to show that System (4.2.1) does not have periodic solutions. To prove that we use Dulac criterion, let

$$
\begin{aligned}
& f_{1}(S, B)=D\left(S_{i n}-S\right)-q \mu(S) B \\
& f_{2}(S, B)=D\left(B_{i n}-B\right)+\mu(S) B-m B
\end{aligned}
$$

We define

$$
\phi(S, B)=\frac{1}{B}
$$

Since $\frac{\partial\left(\phi f_{1}\right)}{\partial S}=-\frac{D}{B}-q \frac{\mu_{\max } K}{(K+S)^{2}}$, and $\frac{\partial\left(\phi f_{2}\right)}{\partial B}=-\frac{D B_{\text {in }}}{B^{2}}$, then

$$
\frac{\partial\left(\phi f_{1}\right)}{\partial S}+\frac{\partial f_{2}(S, B)}{\partial B}=-\left(\frac{D}{B}+q \frac{\mu_{\max } K}{(K+S)^{2}}+\frac{D B_{i n}}{B^{2}}\right)<0
$$

Hence, there are no nontrivial periodic solutions, and the proof is completed.
4.3 Competition of two microbial with one limited resource and different constant death rates and one of the bacteria is in the input flow

Next, we consider a competition chemostat model of bacterial competition in the presence of a constant homogeneous toxin affecting the death rates of the organisms. The competition in the chemostat model is based on several essential assumptions:

1. The micro-organisms introduced in the vessel are of two species.
2. The substrate (of concentration $S$ ) is the single limiting resource for growth.
3. The vessel is perfectly mixed.

$$
\begin{align*}
\frac{d S}{d t} & =\underbrace{D S_{i n}}_{\text {input }}-\underbrace{D S}_{\text {dilution }}-\underbrace{q_{1} \mu_{1}(S) B_{1}}_{\text {consumption by } B_{1}}-\underbrace{q_{2} \mu_{2}(S) B_{2}}_{\text {consumption by } B_{2}} \\
\frac{d B_{1}}{d t} & =\underbrace{D B_{i n}}_{\text {input }}-\underbrace{D B_{1}}_{\text {dilution }}+\underbrace{\mu_{1}(S) B_{1}}_{\text {growth of } B_{1}}-\underbrace{m_{1} B_{1}}_{\text {death of } B_{1}},  \tag{4.3.1}\\
\frac{d B_{2}}{d t} & =\underbrace{\mu_{2}(S) B_{2}}_{\text {growth of } B_{2}}-\underbrace{D B_{2}}_{\text {dilution }}-\underbrace{m_{2} B_{2}}_{\text {death of } B_{2}}
\end{align*}
$$

where $D$ is a constant dilution rate, $S_{i n}$ is the limiting nutrient concentration, $m_{i}$ is the death rate of the bacteria $B_{i}$, and $B_{i n}$ is the input concentration for $B_{1}$. Here, $B_{1}$ is the population density of the plasmid-bearing bacteria, $B_{2}$ is the concentration of the plasmid-free bacteria, and $S$ is the nutrient concentration. The function $\mu_{i}(S)$ is bounded and increasing $\mu_{i}(0)=0,0 \leq \mu_{i}(S) \leq \mu_{i}^{\max }$. For growth rate, the well-known Monod function is used $\mu_{i}(S)=\frac{\mu_{i}^{\max } S}{K_{i}+S}$ where $\mu_{i}^{\max }$ is the maximal growth rate as $S \rightarrow \infty$, and $K_{i}$ is the half-saturation constant. Both $\mu_{i}^{\max }$ and $K_{i}$ can be measured experimentally. The parameter $q_{i}$ is the nutrient uptake efficiency by $B_{i}$.

### 4.3.1 Basic properties

### 4.3.1.1 Model well-posedness

Model (4.3.1) represents a biological system. Therefore, all solutions should remain non-negative and bounded. The Cauchy problem associated with the system (4.3.1) is

$$
\begin{equation*}
\vec{x}^{\prime}=\vec{f}(\vec{x}) ; \quad \vec{x}\left(t_{0}\right)=\vec{x}_{0}, \tag{4.3.2}
\end{equation*}
$$

where $\vec{x}=\left(S, B_{1}, B_{2}\right), \vec{x}_{0}=\left(S_{0}, B_{1}^{0}, B_{2}^{0}\right)$ and $\vec{f}(\vec{x}) \in \mathbb{R}^{3}$. Here, $\vec{f}(\vec{x})$ is the right-hand side in Equation (4.3.1). Clearly, the function $\vec{f}(\vec{x}(t))$ is continuously differentiable in $\mathbb{R}^{3}$. Thus, by the Fundamental Existence-Uniqueness Theorem [37], there is $a>0$
such that the initial value problem (4.3.2) has a unique solution $\vec{x}(t)$ on $[-a, a]$. In the following theorem, we will show that the solutions of Model (4.3.1) are non-negative whenever $\left(S_{0}, B_{1}^{0}, B_{2}^{0}\right) \in \mathbb{R}_{+}^{3}$, and that solutions are bounded.

Theorem 4.3.1. If $S_{0}>0, B_{1}^{0}>0$ and $B_{2}^{0}>0$, then the solution $\left(S(t), B_{1}(t), B_{2}(t)\right)$ of Model (4.3.1) are non-negative for all $t>0$. Moreover, the dynamical system (4.3.1) is dissipative.

Proof. Let

$$
\begin{aligned}
& f_{1}\left(S, B_{1}, B_{2}\right)=D\left(S_{\text {in }}-S\right)-q_{1} \mu_{1}(S) B_{1}-q_{2} \mu_{2}(S) B_{2} \\
& f_{2}\left(S, B_{1}, B_{2}\right)=D\left(B_{\text {in }}-B_{1}\right)+\mu_{1}(S) B_{1}-m_{1} B_{1} \\
& f_{3}\left(S, B_{1}, B_{2}\right)=\left(\mu_{2}(S)-D-m_{2}\right) B_{2}
\end{aligned}
$$

are the right-hand sides of Model (4.3.1). Since $D, S_{i n}$ and $B_{i n}$ are all positive, then $f_{1}\left(0, B_{1}, B_{2}\right)=D S_{\text {in }}>0, f_{2}\left(S, 0, B_{2}\right)=D B_{\text {in }}>0$, and $f_{3}\left(S, B_{1}, 0\right)=0$. Therefore, $S(t) \geq 0, B_{1}(t) \geq 0$ and $B_{2}(t) \geq 0$ whenever $S_{0} \geq 0, B_{1}^{0} \geq 0$ and $B_{2}^{0} \geq 0$. To complete the proof we will show that

$$
\limsup _{t \rightarrow \infty} S(t)+q_{1} B_{1}(t)+q_{2} B_{2}(t) \leq M, \text { for some } M>0
$$

Let $\Sigma=S+q_{1} B_{1}+q_{2} B_{2}$, then

$$
\begin{aligned}
\Sigma^{\prime} & =D S_{i n}+q_{1} D B_{i n}-D\left(S+q_{1} B_{1}+q_{2} B_{2}\right)-q_{1} m_{1} B_{1}-q_{2} m_{2} B_{2} \\
& <D S_{i n}+q_{1} D B_{i n}-D \Sigma
\end{aligned}
$$

If $U(t)$ is the solution of

$$
\begin{equation*}
U^{\prime}(t)=D S_{i n}+q_{1} D B_{i n}-D U(t), \quad U(0)=\Sigma(0) \tag{4.3.3}
\end{equation*}
$$

then by comparison we have

$$
\begin{equation*}
\Sigma(t)<U(t) \tag{4.3.4}
\end{equation*}
$$

One can easily verify that

$$
U(t)=S_{i n}+q_{1} B_{i n}+\left(\Sigma(0)-S_{i n}-q_{1} B_{i n}\right) e^{-D t}
$$

is the exact solution to Equation (4.3.3). Hence,

$$
\lim _{t \rightarrow \infty} U(t)=S_{i n}+q_{1} B_{i n} .
$$

The above limit and the inequality (4.3.4) yields

$$
\limsup _{t \rightarrow \infty} \Sigma(t) \leq S_{i n}+q_{1} B_{i n} .
$$

Therefore, Model (4.3.1) is dissipative.

### 4.3.2 Equilibria and stability analysis

We first find the equilibria, for simplicity, let $d_{i}=D+m_{i}$, for all $i=1,2$, and setting the right-hand sides of Model (4.3.1) to zeros gives:

$$
\begin{aligned}
& D\left(S_{i n}-S\right)-q_{1} \mu_{1}(S) B_{1}-q_{2} \mu_{2}(S) B_{2}=0 \\
& D\left(B_{\text {in }}-B_{1}\right)+\mu_{1}(S) B_{1}-m_{1} B_{1}=0, \\
& B_{2}\left(\mu_{2}(S)-D-m_{2}\right)=0
\end{aligned}
$$

Therefore, System (4.3.1) has two equilibria. One is the boundary equilibrium $E_{0}=\left(S_{0}^{*}, B_{10}^{*}, B_{20}^{*}\right)$, and the other is the interior equilibrium $E_{1}=\left(S_{1}^{*}, B_{11}^{*}, B_{21}^{*}\right)$, where $B_{10}^{*}=\frac{D}{d_{1}} B_{\text {in }}+\frac{1}{q_{1}} \frac{D}{d_{1}}\left(S_{\text {in }}-S^{*}\right), B_{20}^{*}=0$, and

$$
S_{0}^{*}= \begin{cases}\frac{S_{i n}+\frac{d K}{\mu^{\max }-d}+\frac{q \mu^{\max }}{\mu^{\max }-d}-\sqrt{\left(S_{i n}+\frac{d K}{\mu^{\max }-d}+\frac{q \mu^{\max } \boldsymbol{m}_{B_{i n}}}{\mu^{\max x}-d}\right)^{2}-4 \frac{d S_{i n} K}{\mu^{\max }-d}}}{2}, & \text { if } d<\mu^{\max } \\ \frac{d S_{i n} K}{d K+q \mu^{\text {max }} B_{i n}}, & \text { if } d=\mu^{\max } \\ \frac{S_{i n}+\frac{d K}{\mu^{\max }-d}+\frac{q \mu^{\max }}{\mu^{\max }-d}+\sqrt{\left(S_{i n}+\frac{d K}{\mu^{\max }-d}+\frac{q \mu^{\max }}{\mu^{\max }-d}\right)^{2}-4 \frac{d S_{i n} K}{\mu^{\max }-d}}}{2}, & \text { if } d>\mu^{\max }\end{cases}
$$

Moreover, the components of the interior equilibrium are $S_{1}^{*}=\mu_{2}^{-1}\left(d_{2}\right)$,
$B_{11}^{*}=\frac{D B_{i n}}{d_{1}-\mu_{1}\left(S_{1}^{*}\right)}$, and $B_{21}^{*}=\frac{D\left(S_{i n}-S_{1}^{*}\right)-q_{1} \mu_{1}\left(S_{1}^{*}\right) B_{11}^{*}}{q_{2} d_{2}}$.

Here, $\mu_{2}^{-1}\left(d_{2}\right)=\frac{d_{2} K_{2}}{\mu_{2}^{\max }-d_{2}}$. Using similar arguments used in the proof of Proposition (4.2.1), we clearly see that $E_{0}$ always exists. It remains to find the existence conditions of the positive equilibrium $E_{1}$, which is stated in the following proposition.

Proposition 4.3.1. The equilibrium $E_{1}$ exists if and only if $d_{2}<\mu_{2}\left(S_{\text {in }}\right)$, and $d_{1}>\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{\text {in }}}{S_{\text {in }}-S_{1}^{*}}\right)$.

Proof. First, suppose the equilibrium $E_{1}$ exists, then $S_{1}^{*}>0, B_{11}^{*}>0$ and $B_{21}^{*}>0$. We clearly see that $B_{21}^{*}>0$ implies $S_{i n}>S_{1}^{*}=\mu_{2}^{-1}\left(d_{2}\right)$, i.e. $d_{2}<\mu_{2}\left(S_{i n}\right)$. Also, since $B_{21}^{*}>0$ implies

$$
\begin{equation*}
D\left(S_{i n}-S_{1}^{*}\right)>q_{1} \mu_{1}\left(S_{1}^{*}\right) B_{11}^{*}=q_{1} \mu_{1}\left(S_{1}^{*}\right) \frac{D B_{i n}}{d_{1}-\mu_{1}\left(S_{1}^{*}\right)} \tag{4.3.5}
\end{equation*}
$$

But since $B_{11}^{*}>0$, i.e. $d_{1}>\mu_{1}\left(S_{1}^{*}\right)$, then one can easily rewrite Inequality (4.3.5) as

$$
\left(S_{i n}-S_{1}^{*}\right)\left(d_{1}-\mu_{1}\left(S_{1}^{*}\right)\right)>q_{1} \mu_{1}\left(S_{1}^{*}\right) B_{i n},
$$

which yields

$$
d_{1}>\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{i n}}{S_{i n}-S_{1}^{*}}\right)
$$

To prove the other direction, we now assume $\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{i n}}{S_{i n}-S_{1}^{*}}\right)<d_{1}$, and $d_{2}<$ $\mu_{2}\left(S_{\text {in }}\right)$, then since $d_{2}<\mu_{2}\left(S_{\text {in }}\right)<\mu_{2}^{\max }$ implies $S_{1}^{*}>0$. Also, since

$$
\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{i n}}{S_{i n}-S_{1}^{*}}\right)<d_{1},
$$

then $d_{1}>\mu_{1}\left(S_{1}^{*}\right)$ which implies $B_{11}^{*}>0$. Moreover, since $d_{2}<\mu_{2}\left(S_{\text {in }}\right)$, then $S_{1}^{*}<S_{\text {in }}$. Therefore, the inequality $\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{i n}}{\left(S_{i n}-S_{1}^{*}\right)}\right)<d_{1}$ implies

$$
\mu_{1}\left(S_{1}^{*}\right)\left(\left(S_{i n}-S_{1}^{*}\right)+q_{1} B_{i n}\right)<d_{1}\left(S_{i n}-S_{1}^{*}\right)
$$

which is equivalent to

$$
\left(S_{i n}-S_{1}^{*}\right)\left(d_{1}-\mu_{1}\left(S_{1}^{*}\right)\right)>q_{1} B_{\text {in }} \mu_{1}\left(S_{1}^{*}\right),
$$

dividing both sides by $\left(d_{1}-\mu_{1}\left(S_{1}^{*}\right)\right)$ yields

$$
\left(S_{i n}-S_{1}^{*}\right)>\mu_{1}\left(S_{1}^{*}\right) q_{1} \frac{B_{11}^{*}}{D}
$$

Therefore, $B_{21}^{*}>0$, and this completes the proof.
The local stability of the boundary equilibrium $E_{0}$ is stated in the following theorem.

Theorem 4.3.1. The equilibrium $E_{0}$ is locally asymptotically stable if and only if $d_{2}>\mu_{2}\left(S_{0}^{*}\right)$.

Proof. The Jacobian evaluated at $E_{0}$ is

$$
J\left(E_{0}\right)=\left[\begin{array}{ccc}
-D-A_{1} & -q_{1} \mu_{1}\left(S_{0}^{*}\right) & -q_{2} \mu_{2}\left(S_{0}^{*}\right) \\
\frac{A_{1}}{q_{1}} & \mu_{1}\left(S_{0}^{*}\right)-d_{1} & 0 \\
0 & 0 & \mu_{2}\left(S_{0}^{*}\right)-d_{2}
\end{array}\right]
$$

where $A_{1}=q_{1} B_{10}^{*} \frac{\mu_{1}^{\max } K_{1}}{\left(K_{1}+S\right)^{2}}$. The characteristic equation of $J\left(E_{0}\right)$ is

$$
\lambda^{3}+a_{1} \lambda^{2}+a_{2} \lambda+a_{3}=0,
$$

where $a_{1}=-\operatorname{tr}\left(J\left(E_{0}\right)\right), a_{3}=-\operatorname{det}\left(J\left(E_{0}\right)\right)\left(\operatorname{tr}\left(J\left(E_{0}\right)\right)\right.$ and $\operatorname{det}\left(J\left(E_{0}\right)\right)$ are the trace and the determinant of $J\left(E_{0}\right)$, respectively , and

$$
\begin{aligned}
a_{2} & =\left(D+A_{1}\right)\left(d_{1}-\mu_{1}\left(S_{0}^{*}\right)\right)+\left(D+A_{1}\right)\left(d_{2}-\mu_{2}\left(S_{0}^{*}\right)\right) \\
& +\left(\mu_{1}\left(S_{0}^{*}\right)-d_{1}\right)\left(\mu_{2}\left(S_{0}^{*}\right)-d_{2}\right)+A_{1} \mu_{1}\left(S_{0}^{*}\right)
\end{aligned}
$$

An easy computation yields:

$$
\begin{aligned}
-\operatorname{tr}\left(J\left(E_{0}\right)\right. & =D+d_{1}+d_{2}+A_{1}-\mu_{1}\left(S_{0}^{*}\right)-\mu_{2}\left(S_{0}^{*}\right), \text { and } \\
-\operatorname{det}\left(J\left(E_{0}\right)\right) & =\left(d_{2}-\mu_{2}\left(S_{0}^{*}\right)\right)\left(d_{1} D+d_{1} A_{1}-D \mu_{1}\left(S_{0}^{*}\right)\right) .
\end{aligned}
$$

Also, we note that since $D\left(S_{\text {in }}-S_{0}^{*}\right)-q_{1} \mu_{1}\left(S_{0}^{*}\right) B_{10}^{*}=0$, then

$$
\begin{equation*}
\mu_{1}\left(S_{0}^{*}\right)=\frac{D\left(S_{\text {in }}-S_{0}^{*}\right)}{q_{1} B_{10}^{*}}=\frac{D\left(S_{\text {in }}-S_{0}^{*}\right)}{q_{1} \frac{D}{d_{1}} B_{i n}+\frac{D}{d_{1}}\left(S_{i n}-S_{0}^{*}\right)}<d_{1} . \tag{4.3.6}
\end{equation*}
$$

We wish to prove all eigenvalues of $J\left(E_{0}\right)$ have a negative real part. Using the Routh-Hurwitz conditions, all eigenvalues have a negative real part is equivalent to show $-\operatorname{tr}\left(J\left(E_{0}\right)\right)>0,-\operatorname{det}\left(J\left(E_{0}\right)\right)>0$, and $a_{1} a_{2}>a_{3}$. Since Inequality (4.3.6) holds, we have $d_{1}>\mu_{1}\left(S_{0}^{*}\right)$, and since by the assumption $d_{2}>\mu_{2}\left(S_{0}^{*}\right)$, we clearly see $-\operatorname{tr}\left(J\left(E_{0}\right)\right)>0$, and $-\operatorname{det}\left(J\left(E_{0}\right)\right)>0$. It now remains to prove $a_{1} a_{2}>a_{3}$.

Since

$$
\begin{aligned}
a_{2} & =\left(D+A_{1}\right)\left(d_{1}-\mu_{1}\left(S_{0}^{*}\right)\right)+\left(D+A_{1}\right)\left(d_{2}-\mu_{2}\left(S_{0}^{*}\right)\right) \\
& +\left(\mu_{1}\left(S_{0}^{*}\right)-d_{1}\right)\left(\mu_{2}\left(S_{0}^{*}\right)-d_{2}\right)+A_{1} \mu_{1}\left(S_{0}^{*}\right) \\
& =D d_{1}-D \mu_{1}\left(S_{0}^{*}\right)+A_{1} d_{1}-A_{1} \mu_{1}\left(S_{0}^{*}\right)+\left(D+A_{1}\right)\left(d_{2}-\mu_{2}\left(S_{0}^{*}\right)\right) \\
& +\left(\mu_{1}\left(S_{0}^{*}\right)-d_{1}\right)\left(\mu_{2}\left(S_{0}^{*}\right)-d_{2}\right)+A_{1} \mu_{1}\left(S_{0}^{*}\right) \geq D d_{1}-D \mu_{1}\left(S_{0}^{*}\right)+A_{1} d_{1},
\end{aligned}
$$

then $a_{1} a_{2}>a_{1}\left(D d_{1}-D \mu_{1}\left(S_{0}^{*}\right)+A_{1} d_{1}\right)$. Since by the inequality (4.3.6), we have $d_{1}>\mu_{1}\left(S_{0}^{*}\right)$. Therefore, $D+d_{1}+A_{1}-\mu_{1}\left(S_{0}^{*}\right)>0$, and $D d_{1}-D \mu_{1}\left(S_{0}^{*}\right)+A_{1} d_{1}>0$. From here one can easily verify

$$
\begin{aligned}
a_{1} a_{2} & >-\operatorname{det}\left(J\left(E_{0}\right)\right)+\left(D+d_{1}+A_{1}-\mu_{1}\left(S_{0}^{*}\right)\right)\left(D d_{1}-D \mu_{1}\left(S_{0}^{*}\right)+A_{1} d_{1}\right) \\
& \geq-\operatorname{det}\left(J\left(E_{0}\right)\right)+0=a_{3} .
\end{aligned}
$$

The local stability of the positive equilibrium $E_{1}$ is stated in the following theorem.

Theorem 4.3.2. If the interior equilibrium $E_{1}$ exists, then it is locally asymptotically stable.

Proof. The Jacobian evaluated at $E_{1}$ is

$$
J\left(E_{1}\right)=\left[\begin{array}{ccc}
-D-A_{1}-A_{2} & -q_{1} \mu_{1}\left(S_{1}^{*}\right) & -q_{2} d_{2} \\
\frac{A_{1}}{q_{1}} & \mu_{1}\left(S_{1}^{*}\right)-d_{1} & 0 \\
\frac{A_{2}}{q_{2}} & 0 & 0
\end{array}\right]
$$

where $A_{1}=q_{1} B_{11}^{*} \frac{\mu_{1}^{\max } K_{1}}{\left(K_{1}+S_{1}^{*}\right)^{2}}, A_{2}=q_{2} B_{21}^{*} \frac{\mu_{2}^{\max } K_{2}}{\left(K_{2}+S_{1}^{*}\right)^{2}}$. An easy computation yields

$$
\begin{aligned}
& -\operatorname{det}\left(J\left(E_{1}\right)\right)=A_{2} d_{2}\left(d_{1}-\mu_{1}\left(S_{1}^{*}\right)\right), \text { and } \\
& -\operatorname{tr}\left(J\left(E_{1}\right)\right)=A_{1}+A_{2}+D+d_{1}-\mu_{1}\left(S_{1}^{*}\right)
\end{aligned}
$$

and $-\operatorname{tr}\left(J\left(E_{1}\right)\right)=A_{1}+A_{2}+D+d_{1}-\mu_{1}\left(S_{1}^{*}\right)$. The characteristic equation is

$$
\lambda^{3}+a_{1} \lambda^{2}+a_{2} \lambda+a_{3}=0
$$

where $a_{1}=-\operatorname{tr}\left(J\left(E_{1}\right)\right), a_{2}=\left(D+A_{1}+A_{2}\right)\left(d_{1}-\mu_{1}\left(S_{1}^{*}\right)\right)+A_{1} \mu_{1}\left(S_{1}^{*}\right)+A_{2} d_{2}$, and $a_{3}=-\operatorname{det}\left(J\left(E_{1}\right)\right)$. Also, we note that since

$$
B_{11}^{*}=\frac{D B_{i n}}{d_{1}-\mu_{1}\left(S_{1}^{*}\right)},
$$

then we clearly see that $d_{1}>\mu_{1}\left(S_{1}^{*}\right)$, (since $\left.B_{11}^{*}>0\right)$. Therefore, $-\operatorname{tr}\left(J\left(E_{1}\right)\right)>0$ and $-\operatorname{det}\left(J\left(E_{1}\right)\right)>0$. Now it remains to prove $a_{1} a_{2}>a_{3}$. Since

$$
a_{2}=A_{2} d_{2}+\left(D+A_{1}+A_{2}\right)\left(d_{1}-\mu_{1}\left(S_{1}^{*}\right)\right)+A_{1} \mu_{1}\left(S_{1}^{*}\right),
$$

then by multiplying the above equation by $a_{1}$ yields:

$$
\begin{aligned}
a_{1} a_{2} & =A_{2} d_{2}\left(d_{1}-\mu_{1}\left(S_{1}^{*}\right)\right) \\
& +\left(d_{1}-\mu_{1}\left(S_{1}^{*}\right)\right)\left(\left(D+A_{1}+A_{2}\right)\left(d_{1}-\mu_{1}\left(S_{1}^{*}\right)\right)+A_{1} \mu_{1}\left(S_{1}^{*}\right)\right)+\left(A_{1}+A_{2}+D\right) a_{2} \\
& >-\operatorname{det}\left(J\left(E_{1}\right)\right)+0+0=a_{3}
\end{aligned}
$$

Therefore, $a_{1} a_{2}>a_{3}$. Using Routh-Hurwitz conditions we can conclude that $E_{1}$ is locally asymptotically stable.

Table 4.1 summarizes the equilibria and their corresponding stability conditions. Next, we aim to find relations between the existence and stability conditions stated

$$
\begin{array}{llr}
\text { Equilibrium Points } & \text { Existence Conditions } & \text { Local Stability } \\
\hline \hline E_{0}=\left(S_{0}^{*}, B_{10}^{*}, B_{20}^{*}\right) & \text { always } & d_{2}>\mu_{2}\left(S_{0}^{*}\right) \\
\hline E_{1}=\left(S_{1}^{*}, B_{11}^{*}, B_{21}^{*}\right) & d_{2}<\mu_{2}\left(S_{\text {in }}\right), \text { and } d_{1}>\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{i n}}{S_{i n}-S_{1}^{*}}\right) & \text { stable }
\end{array}
$$

Table 4.1: Existence and stability conditions for the equilibrium points.
in Table (4.1). The following two propositions are used to find the relations between the boundary equilibrium $E_{0}$ and the interior equilibrium $E_{1}$.
Proposition 4.3.2. If $d_{2}<\mu_{2}\left(S_{i n}\right)$ and $d_{1}>\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{i n}}{S_{i n}-S_{1}^{*}}\right)$, then $d_{2}<\mu_{2}\left(S_{0}^{*}\right)$. Proof. We wish to show $d_{2}<\mu_{2}\left(S_{0}^{*}\right)$ which is equivalent to show $\mu_{2}^{-1}\left(d_{2}\right)<S_{0}$. From the second equation in (4.3.1), we have

$$
B_{10}^{*}=\frac{D B_{i n}}{d_{1}-\mu_{1}\left(S_{0}^{*}\right)},
$$

and from the first equation in (4.3.1) together with the above value for $B_{10}^{*}$ we have

$$
S_{0}^{*}=S_{i n}-q_{1} \frac{\mu_{1}\left(S_{0}^{*}\right) B_{i n}}{d_{1}-\mu_{1}\left(S_{0}^{*}\right)}
$$

That is $S_{0}^{*}$ is a fixed point of the following function

$$
g(S)=S_{i n}-q_{1} \frac{\mu_{1}(S) B_{i n}}{d_{1}-\mu_{1}(S)}
$$

The function $g$ is differentiable on $\left(0, \mu_{1}^{-1}\left(d_{1}\right)\right)$ and

$$
g^{\prime}(S)=-q_{1} \frac{B_{\text {in }} \mu_{1}^{\prime}(S)}{\left(d_{1}-\mu_{1}(S)\right)^{2}}<0, \text { since } \mu_{1}^{\prime}(S)>0
$$

Moreover, we clearly see

$$
\lim _{S \rightarrow \mu_{1}^{-1}\left(d_{1}\right)} g(S)=-\infty
$$

Therefore, $S_{0}^{*} \in\left(0, \mu_{1}^{-1}\left(d_{1}\right)\right)$. It remains to show that $S_{0}^{*}>\mu_{2}^{-1}\left(d_{2}\right)$. Notice by the assumption we have

$$
d_{1}>\mu_{1}\left(\mu_{2}^{-1}\left(d_{2}\right)\right)\left(1+\frac{q_{1} B_{i n}}{S_{i n}-\mu_{2}^{-1}\left(d_{2}\right)}\right)
$$

multiplying both sides by $S_{\text {in }}-\mu_{2}^{-1}\left(d_{2}\right)$ yields

$$
d_{1}\left(S_{i n}-\mu_{2}^{-1}\left(d_{2}\right)\right)>\mu_{1}\left(\mu_{2}^{-1}\left(d_{2}\right)\right)\left(S_{i n}-\mu_{2}^{-1}\left(d_{2}\right)\right)+q_{1} B_{i n} \mu_{1}\left(\mu_{2}^{-1}\left(d_{2}\right)\right)
$$

which is equivalent to

$$
S_{\text {in }}\left(d_{1}-\mu_{1}\left(\mu_{2}^{-1}\left(d_{2}\right)\right)\right)-q_{1} B_{i n} \mu_{1}\left(\mu_{2}^{-1}\left(d_{2}\right)\right)>\mu_{2}^{-1}\left(d_{2}\right)\left(d_{1}-\mu_{1}\left(\mu_{2}^{-1}\left(d_{2}\right)\right)\right) .
$$

Therefore, we have

$$
\begin{equation*}
\mu_{2}^{-1}\left(d_{2}\right)<g\left(\mu_{2}^{-1}\left(d_{2}\right)\right) \tag{4.3.7}
\end{equation*}
$$

and since $g$ is decreasing, we see that $S_{0}^{*} \in\left(\mu_{2}^{-1}\left(d_{2}\right), \mu_{1}^{-1}\left(d_{1}\right)\right)$, to see this suppose for the sake of a contradiction not, then, $S_{0}^{*} \leq \mu_{2}^{-1}\left(d_{2}\right)$, but $g$ is decreasing thus $g\left(S_{0}^{*}\right) \geq g\left(\mu_{2}^{-1}\left(d_{2}\right)\right)$. By Inequality (4.3.7),

$$
g\left(S_{0}^{*}\right)>\mu_{2}^{-1}\left(d_{2}\right)
$$

but $S_{0}^{*}$ is a fixed point of $g$, thus $S_{0}^{*}>\mu_{2}^{-1}\left(d_{2}\right)$. Hence, $S_{0}^{*}=\mu_{2}^{-1}\left(d_{2}\right)$. By the inequality (4.3.7) we have

$$
S_{0}^{*}<g\left(S_{0}^{*}\right)=S_{0}^{*} .
$$

That is a contradiction, therefore, $S_{0}^{*}>\mu_{2}^{-1}\left(d_{2}\right)$.

Proposition 4.3.3. If $d_{2}<\mu_{2}\left(S_{i n}\right)$ and $d_{1}<\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{i n}}{S_{\text {in }}-S_{1}^{*}}\right)$, then $d_{2}>\mu_{2}\left(S_{0}^{*}\right)$.
Proof. The proof uses the same arguments as the proof for the previous proposition and it is omitted here.

The following table summarizes the behavior of System (4.3.1).

| Parameter subset | Local stability |
| :--- | :--- |
| $d_{2}>\mu_{2}\left(S_{\text {in }}\right)$ | Only $E_{0}$ exists and locally stable. |
| $d_{2}<\mu_{2}\left(S_{\text {in }}\right)$ | i. If $d_{1}>\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{i n}}{S_{i n}-S_{1}^{*}}\right)$, then both $E_{0}$  <br>  and $E_{1}$ exist. $E_{1}$ is locally stable while $E_{0}$ <br>  is unstable. <br>  ii. If $d_{1}<\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{i n}}{S_{i n}-S_{1}^{*}}\right)$, then only $E_{0}$ <br>  exists and it is stable. |
|  |  |

Table 4.2: Parameter relationship to local stability.
4.4 Competition of two microbial with one limited resource and one of the bacteria is in the input flow in the presence of a constant homogeneous plasmid

Competition of the plasmid-bearing bacteria $B_{1}$ and the non-plasmid beaning bacteria $B_{2}$ in the presence of a constant homogeneous plasmid. Moreover, the model is based on several essential assumptions:

1. The micro- organisms introduced in the vessel are of two species.
2. The substrate (of concentration $S$ ) is the single limiting resource for growth.
3. The vessel is perfectly mixed.

$$
\begin{align*}
& \frac{d S}{d t}=\underbrace{D S_{i n}}_{\text {input }}-\underbrace{D S}_{\text {dilution }}-\underbrace{q_{1} \mu_{1}(S) B_{1}}_{\text {consumption by } B_{1}}-\underbrace{q_{2} \mu_{2}(S) B_{2}}_{\text {consumption by } B_{2}} \\
& \frac{d B_{1}}{d t}=\underbrace{D B_{i n}}_{\text {input }}-\underbrace{D B_{1}}_{\text {dilution }}+\underbrace{\mu_{1}(S) B_{1}}_{\text {growth }}+\underbrace{\eta B_{2}}_{B_{2} \text { becomes } B_{1}}  \tag{4.4.1}\\
& \frac{d B_{2}}{d t}=\underbrace{\mu_{2}(S) B_{2}}_{\text {growth }}-\underbrace{D B_{2}}_{\text {dilution }}-\underbrace{\eta B_{2}}_{B_{2} \text { becomes } B_{1}}
\end{align*}
$$

We assume $q_{1} \leq q_{2}$. The parameter $q_{i}$ are assumed constants and represent the efficiency at which the organisms $B_{i}$ harvests nutrient for population growth. Here, $D$ is a constant dilution rate, $S_{\text {in }}$ is the concentration of the limiting nutrient, and $B_{\text {in }}$ is the input concentration for $B_{1}$. Here, $B_{1}$ is the population density of the
plasmid-bearing bacteria, $B_{2}$ is the concentration of the plasmid-free bacteria, and $S$ is the nutrient concentration. The function $\mu_{i}(S)$ is bounded and increasing $\mu_{i}(0)=0,0 \leq \mu_{i}(S) \leq \mu_{i}^{\max }$. For growth rate, the well-known Monod function is used $\mu_{i}(S)=\frac{\mu_{i}^{\max } S}{K_{i}+S}$ where $\mu_{i}^{\max }$ is the maximal growth rate as $S \rightarrow \infty$, and $K_{i}$ is the half-saturation constant. Both $\mu_{i}^{\max }$ and $K_{i}$ can be measured experimentally. We assume plasmids are constant and homogeneous across the environment. The plasmid-free bacteria, $B_{2}$ takes in the plasmid and becomes the plasmid-bearing bacteria, $B_{1}$ at a rate $\eta$.

### 4.4.1 Basic properties

4.4.1.1 Model well-posedness

All solutions should remain non-negative and bounded. The Cauchy problem associated to system (4.4.1) is

$$
\begin{equation*}
\vec{x}^{\prime}=\vec{f}(\vec{x}) ; \quad \vec{x}\left(t_{0}\right)=\vec{x}_{0}, \tag{4.4.2}
\end{equation*}
$$

where $\vec{x}=\left(S, B_{1}, B_{2}\right)$, and $\vec{x}_{0}=\left(S_{0}, B_{1}^{0}, B_{2}^{0}\right)$ and $\vec{f}(\vec{x}) \in \mathbb{R}^{3}$. Here, $\vec{f}(\vec{x})$ is the right-hand side in Equation (4.4.1). Clearly, the function $\vec{f}(\vec{x}(t))$ is continuously differentiable in $\mathbb{R}^{3}$. Thus, by the Fundamental Existence-Uniqueness, there is $a>0$ such that the initial value problem (4.4.2) has a unique solution $\vec{x}(t)$ on $[-a, a]$.

In the following theorem we will show that the solutions of Model (4.4.1) are nonnegative whenever $\left(S_{0}, B_{1}^{0}, B_{2}^{0}\right) \in \mathbb{R}_{+}^{3}$ and that solutions do not tend to infinity with increasing time.

Theorem 4.4.1. If $S^{0}>0, B_{1}^{0}>0$ and $B_{2}^{0}>0$, then the solution $\left(S(t), B_{1}(t), B_{2}(t)\right)$ of Model (4.4.1) are non-negative for all $t>0$. Moreover, the dynamical system (4.4.1) is dissipative.

Proof. Let

$$
\begin{aligned}
& f_{1}\left(S, B_{1}, B_{2}\right)=D\left(S_{i n}-S\right)-q_{1} \mu_{1}(S) B_{1}-q_{2} \mu_{2}(S) B_{2} \\
& f_{2}\left(S, B_{1}, B_{2}\right)=D\left(B_{\text {in }}-B_{1}\right)+\mu_{1}(S) B_{1}+\eta B_{2} \\
& f_{3}\left(S, B_{1}, B_{2}\right)=\left(\mu_{2}(S)-D-\eta\right) B_{2}
\end{aligned}
$$

are the right-hand sides of Model (4.4.1). Since $D, S_{i n}$ and $B_{i n}$ are all positive, then $f_{1}\left(0, B_{1}, B_{2}\right)=D S_{\text {in }}>0, f_{2}\left(S, 0, B_{2}\right)=D B_{\text {in }}+\eta B_{2}>0$ whenever $B_{2}>0$, and $f_{3}\left(S, B_{1}, 0\right)=0$. Therefore, $S(t) \geq 0, B_{1}(t) \geq 0$ and $B_{2}(t) \geq 0$ whenever $S_{0} \geq 0$, $B_{1}^{0} \geq 0$ and $B_{2}^{0} \geq 0$. To complete the proof we will show that

$$
\limsup _{t \rightarrow \infty} S(t)+q_{1} B_{1}(t)+q_{2} B_{2}(t) \leq M, \text { for some } M>0
$$

Let $\Sigma=S+q_{1} B_{1}+q_{2} B_{2}$, then

$$
\begin{aligned}
\Sigma^{\prime} & =D S_{i n}+q_{1} D B_{i n}-D\left(S+q_{1} B_{1}+q_{2} B_{2}\right)+\eta q_{1} B_{2}-\eta q_{2} B_{2} \\
& =D S_{i n}+q_{1} D B_{i n}-D\left(S+q_{1} B_{1}+q_{2} B_{2}\right)+\eta\left(q_{1}-q_{2}\right) B_{2} \quad\left(\text { since } q_{1} \leq q_{2}\right) \\
& \leq D S_{i n}+q_{1} D B_{i n}-D \Sigma .
\end{aligned}
$$

If $U(t)$ is the solution of

$$
\begin{equation*}
U^{\prime}(t)=D S_{i n}+q_{1} D B_{i n}-D U(t), \quad U(0)=\Sigma(0) \tag{4.4.3}
\end{equation*}
$$

then by comparison we have

$$
\begin{equation*}
\Sigma(t) \leq U(t) \tag{4.4.4}
\end{equation*}
$$

One can easily verify that

$$
U(t)=S_{i n}+q_{1} B_{i n}+\left(\Sigma(0)-S_{i n}-q_{1} B_{i n}\right) e^{-D t}
$$

is the exact solution to Equation (4.4.3). Hence,

$$
\lim _{t \rightarrow \infty} U(t)=S_{i n}+q_{1} B_{i n},
$$

The above limit and the inequality (4.4.4) yield

$$
\limsup _{t \rightarrow \infty} \Sigma(t) \leq S_{i n}+q_{1} B_{i n} .
$$

Therefore, Model (4.4.1) is dissipative.

### 4.4.2 Equilibria and stability analysis

Model (4.4.1) has two equilibria; a boundary equilibrium $E_{0}=\left(S_{0}^{*}, B_{10}^{*}, B_{20}^{*}\right)$ and an interior equilibrium $E_{1}=\left(S_{1}^{*}, B_{11}^{*}, B_{21}^{*}\right)$, where:

$$
\begin{aligned}
& B_{10}^{*}=\frac{D B_{i n}}{D-\mu_{1}\left(S_{0}^{*}\right)}, B_{20}^{*}=0, \text { and }
\end{aligned}
$$

The components of the interior equilibrium are; $S_{1}^{*}=\mu_{2}^{-1}(D+\eta), B_{11}^{*}=\frac{D B_{i n}}{D-\mu_{1}\left(S_{1}^{*}\right)}+$ $\frac{\eta B_{21}^{*}}{D-\mu_{1}\left(S_{1}^{*}\right)}$, and $B_{21}^{*}=\frac{D\left(S_{i n}-S_{1}^{*}\right)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)-q_{1} \mu_{1}\left(S_{1}^{*}\right) D B_{i n}}{q_{1} \mu_{1}\left(S_{1}^{*}\right) \eta+q_{2} \mu_{2}\left(S_{1}^{*}\right)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)}$, and the function $\mu_{2}^{-1}(D+\eta)=\frac{(D+\eta) K_{2}}{\mu_{2}^{\text {max }}-(D+\eta)}$. Using similar arguments used in Proposition (4.2.1), one can easily show that the boundary equilibrium $E_{0}$ always exists. The following theorem summarizes the existence condition for the interior equilibrium $E_{1}$.

Theorem 4.4.2. If $\mu_{2}^{-1}(D+\eta)<\mu_{1}^{-1}(D)<S_{i n}$, then the interior equilibrium exists if and only if

$$
\begin{equation*}
D>\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{\text {in }}}{S_{i n}-S_{1}^{*}}\right) . \tag{4.4.5}
\end{equation*}
$$

Proof. Notice that $\mu_{2}^{-1}(D+\eta)<\mu_{1}^{-1}(D)<S_{\text {in }}$, implies $S_{\text {in }}>S_{1}^{*}$ and $D>\mu_{1}\left(S_{1}^{*}\right)$. Then,

$$
D>\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{\text {in }}}{S_{i n}-S_{1}^{*}}\right),
$$

which is equivalent to

$$
D-\mu_{1}\left(S_{1}^{*}\right)>\mu_{1}\left(S_{1}^{*}\right) \frac{q_{1} B_{i n}}{S_{i n}-S_{1}^{*}},
$$

rewriting the above inequality yields

$$
S_{i n}-S_{1}^{*}>\mu_{1}\left(S_{1}^{*}\right) \frac{q_{1} B_{i n}}{D-\mu_{1}\left(S_{1}^{*}\right)}
$$

Multiplying the above inequality by $D\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)$ implies

$$
\left.D\left(S_{i n}-S_{1}^{*}\right)\right)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)>D \mu_{1}\left(S_{1}^{*}\right) q_{1} B_{i n}
$$

The above inequality together with $S_{i n}>S_{1}^{*}$ and $D>\mu_{1}\left(S_{1}^{*}\right)$ imply $B_{21}^{*}>0$, and hence $B_{11}^{*}>0$.

The following theorem shows that the boundary equilibrium $E_{0}$ always exists and the relations between the boundary and the interior equilibria.

Theorem 4.4.3. Assume $\mu_{2}^{-1}(D+\eta)<\mu_{1}^{-1}(D)<S_{\text {in }}$ is satisfied, then System (4.4.1) has a unique equilibrium in $\partial \mathbb{R}_{+}^{3}$ :

$$
E_{0}=\left(S_{0}^{*}, B_{10}^{*}, 0\right) \in \partial \mathbb{R}_{+}^{3},
$$

and $S_{0}^{*} \in\left(0, \mu_{1}^{-1}(D)\right)$ is the unique fixed point of $g:\left[0, \mu_{1}^{-1}(D)\right) \rightarrow R_{+}$given by:

$$
g(S)=S_{i n}-q_{1} \frac{\mu_{1}(S) B_{i n}}{D-\mu_{1}(S)}
$$

Moreover, $S_{0}^{*} \in\left(\mu_{2}^{-1}(D+\eta), \mu_{1}^{-1}(D)\right)$ when (4.4.5) is satisfied and $S_{0}^{*} \in\left(0, \mu_{2}^{-1}(D+\eta)\right)$ when it is strictly not satisfied.

Proof. Notice that the function $g$ is continuous on $\left[0, \mu_{1}^{-1}(D)\right)$ and that

$$
\lim _{S \rightarrow \mu_{1}^{-1}(D)} g(S)=-\infty
$$

Also, we note that $g(0)=S_{i n}$ and an easy calculation yields

$$
g^{\prime}(S)=-q_{1} \frac{B_{i n} \mu_{1}^{\prime}(S)}{\left(D-\mu_{1}(S)\right)^{2}}<0, \text { since } \mu_{1}^{\prime}(S)>0
$$

Hence, $g$ is strictly decreasing on $\left[0, \mu_{1}^{-1}(D)\right)$, and therefore, the function $g$ will intersect the $y=S$ only once at $\left(S_{0}^{*}, S_{0}^{*}\right)$. Thus, $S_{0}^{*} \in\left(0, \mu_{1}^{-1}(D)\right)$. Next, if the inequality (4.4.5) is satisfied. Then, we have

$$
D>\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{i n}}{S_{i n}-S_{1}^{*}}\right),
$$

which is equivalent to

$$
S_{i n}-S_{1}^{*}>\frac{\mu_{1}\left(S_{1}^{*}\right) q_{1} B_{i n}}{D-\mu_{1}\left(S_{1}^{*}\right)}
$$

That implies

$$
S_{i n}-\frac{\mu_{1}\left(S_{1}^{*}\right) q_{1} B_{i n}}{D-\mu_{1}\left(S_{1}^{*}\right)}>S_{1}^{*}
$$

Hence,

$$
\begin{equation*}
g\left(S_{1}^{*}\right)>S_{1}^{*}, \tag{4.4.6}
\end{equation*}
$$

recall that $S_{1}^{*}=\mu_{2}^{-1}(D+\eta)$, and since $g$ is decreasing, we clearly see that $S_{0}^{*} \in$ $\left(\mu_{2}^{-1}(D), \mu_{1}^{-1}(D)\right)$, to see this suppose for the sake of a contradiction not, then, $S_{0}^{*} \leq \mu_{2}^{-1}(D)$, but $g$ is decreasing thus $g\left(S_{0}^{*}\right) \geq g\left(\mu_{2}^{-1}(D)\right)$. By Inequality (4.4.6),

$$
g\left(S_{0}^{*}\right)>\mu_{2}^{-1}(D),
$$

but $S_{0}^{*}$ is a fixed point of $g$, thus $S_{0}^{*}>\mu_{2}^{-1}(D)$. Hence, $S_{0}^{*}=\mu_{2}^{-1}(D)$. By the inequality (4.4.6) we have

$$
S_{0}^{*}<g\left(S_{0}^{*}\right)=S_{0}^{*} .
$$

That is a contradiction, therefore, $S_{0}^{*}>\mu_{2}^{-1}(D)$. Similarly, $S_{0}^{*} \in\left(0, \mu_{2}^{-1}(D+\eta)\right)$ when the inequality (4.4.5) is strictly not satisfied.

The following theorem states the condition when the boundary equilibrium $E_{0}$ is locally asymptotically stable.

Theorem 4.4.4. The equilibrium $E_{0}$ is locally asymptotically stable if and only if $\mu_{2}^{-1}(D+\eta)>S_{0}^{*}$.

Proof. Introducing the notation $A_{1}=q_{1} B_{10}^{*} \frac{\mu_{1}^{m a x} K_{1}}{\left(K_{1}+S_{0}^{*}\right)^{2}}, A_{2}=q_{2} B_{20}^{*} \frac{\mu_{2}^{m a x} K_{2}}{\left(K_{2}+S_{0}^{*}\right)^{2}}$, then the Jacobian evaluated at $E_{0}$ is

$$
J\left(E_{0}\right)=\left[\begin{array}{ccc}
-D-A_{1} & -q_{1} \mu_{1}\left(S_{0}^{*}\right) & -q_{2} \mu_{2}\left(S_{0}^{*}\right) \\
\frac{A_{1}}{q_{1}} & \mu_{1}\left(S_{0}^{*}\right)-D & \eta \\
0 & 0 & \mu_{2}\left(S_{0}^{*}\right)-D-\eta
\end{array}\right]
$$

Also, one can have

$$
\begin{aligned}
-\operatorname{tr}\left(J\left(E_{0}\right)\right. & =3 D+\eta+A_{1}-\mu_{1}\left(S_{0}^{*}\right)-\mu_{2}\left(S_{0}^{*}\right) \\
-\operatorname{det}\left(J\left(E_{0}\right)\right) & =\left(D+\eta-\mu_{2}\left(S_{0}^{*}\right)\right)\left(D^{2}+D A_{1}-D \mu_{1}\left(S_{0}^{*}\right)\right)
\end{aligned}
$$

Also, we note since $D\left(S_{\text {in }}-S_{0}^{*}\right)-q_{1} \mu_{1}\left(S_{0}^{*}\right) B_{10}^{*}=0$, then

$$
\begin{equation*}
\mu_{1}\left(S_{0}^{*}\right)=\frac{D\left(S_{\text {in }}-S_{0}^{*}\right)}{q_{1} B_{10}^{*}}=\frac{D\left(S_{\text {in }}-S_{0}^{*}\right)}{q_{1} B_{i n}+\left(S_{i n}-S_{0}^{*}\right)}<D . \tag{4.4.7}
\end{equation*}
$$

The characteristic equation of $J\left(E_{0}\right)$ is

$$
\lambda^{3}+a_{1} \lambda^{2}+a_{2} \lambda+a_{3}=0,
$$

where $a_{1}=-\operatorname{tr}\left(J\left(E_{0}\right)\right), a_{3}=-\operatorname{det}\left(J\left(E_{0}\right)\right)$, and

$$
\begin{aligned}
& a_{2}=\left(D+A_{1}\right)\left(D-\mu_{1}\left(S_{0}^{*}\right)\right)+\left(D+A_{1}\right)\left(D+\eta-\mu_{2}\left(S_{0}^{*}\right)\right)+ \\
& \quad\left(\mu_{1}\left(S_{0}^{*}\right)-D\right)\left(\mu_{2}\left(S_{0}^{*}\right)-D-\eta\right)+A_{1} \mu_{1}\left(S_{0}^{*}\right) .
\end{aligned}
$$

Using the Routh-Hurwitz conditions, we need to show $a_{1}>0, a_{3}>0$, and $a_{1} a_{2}>a_{3}$. Using the assumption, $D+\eta>\mu_{2}\left(S_{0}^{*}\right)$, and since by inequality (4.4.7), we have
$D>\mu_{1}\left(S_{0}^{*}\right)$, then we clearly see $-\operatorname{tr}\left(J\left(E_{0}\right)\right)>0$ and $-\operatorname{det}\left(J\left(E_{0}\right)\right)>0$. It now remains to show $a_{1} a_{2}>a_{3}$.

Since

$$
\begin{aligned}
& a_{2}=\left(D+A_{1}\right)\left(D-\mu_{1}\left(S_{0}^{*}\right)\right)+\left(D+A_{1}\right)\left(D+\eta-\mu_{2}\left(S_{0}^{*}\right)\right)+ \\
& \quad\left(\mu_{1}\left(S_{0}^{*}\right)-D\right)\left(\mu_{2}\left(S_{0}^{*}\right)-D-\eta\right)+A_{1} \mu_{1}\left(S_{0}^{*}\right) \\
& \quad=D^{2}-D \mu_{1}\left(S_{0}^{*}\right)+A_{1} D-A_{1} \mu_{1}\left(S_{0}^{*}\right)+\left(D+A_{1}\right)\left(D+\eta-\mu_{2}\left(S_{0}^{*}\right)\right)+ \\
& \quad\left(\mu_{1}\left(S_{0}^{*}\right)-D\right)\left(\mu_{2}\left(S_{0}^{*}\right)-D-\eta\right)+A_{1} \mu_{1}\left(S_{0}^{*}\right)>D^{2}-D \mu_{1}\left(S_{0}^{*}\right)+A_{1} D+0+0
\end{aligned}
$$

Now since $a_{1}=-\operatorname{tr}(J(E))>0$, then $a_{1} a_{2}>a_{1}\left(D^{2}-D \mu_{1}\left(S_{0}^{*}\right)+A_{1} D\right)$. Since by the inequality (4.4.7), $D>\mu_{1}\left(S_{0}^{*}\right)$, then $D+D+A_{1}-\mu_{1}\left(S_{0}^{*}\right)>0$ and $D^{2}-D \mu_{1}\left(S_{0}^{*}\right)+$ $A_{1} D>0$. Therefore, we have

$$
\begin{aligned}
a_{1} a_{2} & \geq-\operatorname{det}\left(J\left(E_{0}\right)\right)+\left(D+D+A_{1}-\mu_{1}\left(S_{0}^{*}\right)\right)\left(D^{2}-D \mu_{1}\left(S_{0}^{*}\right)+A_{1} D\right) \\
& \geq-\operatorname{det}\left(J\left(E_{0}\right)\right)+0=a_{3}
\end{aligned}
$$

The local stability of the interior equilibrium $E_{1}$ is stated in the following theorem.

Theorem 4.4.5. If the interior equilibrium exists, then it is locally asymptotically stable.

Proof. The Jacobian matrix evaluated at $E_{1}$ is

$$
J\left(E_{1}\right)=\left[\begin{array}{ccc}
-D-q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right)-q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right) & -q_{1} \mu_{1}\left(S_{1}^{*}\right) & -q_{2}(D+\eta) \\
B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right) & \mu_{1}\left(S_{1}^{*}\right)-D & \eta \\
B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right) & 0 & 0
\end{array}\right]
$$

The characteristic equation is

$$
\lambda^{3}+a_{1} \lambda^{2}+a_{2} \lambda+a_{3}=0, \text { where }
$$

$$
\begin{aligned}
a_{1} & =-\operatorname{tr}\left(J\left(E_{1}\right)\right)=D+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right)+q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)+D-\mu_{1}\left(S_{1}^{*}\right), \\
a_{2} & =q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)(D+\eta)+\left(D+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right)+q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)\right)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right) \\
& +q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right) \mu_{1}\left(S_{1}^{*}\right), \\
a_{3} & =-\operatorname{det}\left(J\left(E_{1}\right)\right)=q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right) D\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)+q_{2} \eta B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right) \\
& +q_{1} \eta B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right) \mu_{1}\left(S_{1}^{*}\right) .
\end{aligned}
$$

Since $\mu_{2}^{-1}(D+\eta)<\mu_{1}^{-1}(D)<S_{\text {in }}$, then $D>\mu_{1}\left(S_{1}^{*}\right)$. Therefore, $-\operatorname{tr}\left(J\left(E_{1}\right)\right)>0$, $-\operatorname{det}\left(J\left(E_{1}\right)\right)>0$ and $a_{2}>0$. Now it remains to prove $a_{1} a_{2}>a_{3}$.

$$
\begin{aligned}
a_{1} a_{2}-a_{3} & =\left[D+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right)+q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)+D-\mu_{1}\left(S_{1}^{*}\right)\right]\left[q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)(D+\eta)\right. \\
& \left.+\left(D+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right)+q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)\right)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right) \mu_{1}\left(S_{1}^{*}\right)\right] \\
& -q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)(D+\eta)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)-q_{1} \eta B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right) \mu_{1}\left(S_{1}^{*}\right) \\
& =\left[D+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right)+q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)\right]\left[q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right) \mu_{1}\left(S_{1}^{*}\right)\right. \\
& \left.+\left(D+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right)+q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)\right)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)\right] \\
& +\left[D+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right)+q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)\right] q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)(D+\eta) \\
& +q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)(D+\eta)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right) \mu_{1}\left(S_{1}^{*}\right)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right) \\
& +\left(D+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right)+q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)\right)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)^{2} \\
& -q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)(D+\eta)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)-q_{1} \eta B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right) \mu_{1}\left(S_{1}^{*}\right) \\
& >\left[D+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right)+q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)\right]\left[q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right) \mu_{1}\left(S_{1}^{*}\right)\right. \\
& \left.+\left(D+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right)+q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)\right)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)\right]+D q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)(D+\eta) \\
& +q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)(D+\eta)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right) \mu_{1}\left(S_{1}^{*}\right)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right) \\
& +\left(D+q_{1} B_{11}^{*} \mu_{1}^{\prime}\left(S_{1}^{*}\right)+q_{2} B_{21}^{*} \mu_{2}^{\prime}\left(S_{1}^{*}\right)\right)\left(D-\mu_{1}\left(S_{1}^{*}\right)\right)
\end{aligned}
$$

Since $q_{1} \leq q_{2}$ and $D>\mu_{1}\left(S_{1}^{*}\right)$, then $a_{1} a_{2}-a_{3} \geq 0$. Therefore, $E_{1}$ is locally asymptotically stable.

The following table summarizes the behavior of System (4.4.1).

| Parameter subset | Local stability |
| :--- | :--- |
| $D+\eta>\mu_{2}\left(S_{i n}\right)$ | Only $E_{0}$ exists and locally stable. |
| $D+\eta<\mu_{2}\left(S_{\text {in }}\right)$ | i. If $D>\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{i n}}{S_{i n}-S_{1}^{*}}\right)$, then both |
|  | $E_{0}$ and $E_{1}$ exist. $E_{1}$ is locally stable |
| while $E_{0}$ is unstable. |  |
| ii. If $D<\mu_{1}\left(S_{1}^{*}\right)\left(1+\frac{q_{1} B_{i n}}{S_{i n}-S_{1}^{*}}\right)$, then only |  |
|  | $E_{0}$ exists and it is stable. |

Table 4.3: Parameter relationship to local stability.

## CHAPTER 5

## Numerical Simulations

5.1 Numerical Simulations for one-dimensional differential equations

The performance of the new SOPESN1 (3.2.14) and SOPESN2 (3.3.12) methods is numerically compared with the second-order modified nonstandard explicit Euler (SONSEE) method [24], the standard second-order two-stage explicit Runge-Kutta (ERK2) method [38], and the PESN1 (2.0.5) and PESN2 (2.0.6) methods for three different equations. We first consider the following productive-destructive equation:

$$
\begin{equation*}
\frac{d x}{d t}=k_{1} b x-k_{-1} x^{2} \tag{5.1.1}
\end{equation*}
$$

which models a simple autocatalytic reaction (autocatalysis), where a chemical with concentration $x$ is involved in its own production using a reactant [33]. Here, $k_{1}$ is the forward reaction rate constant, $k_{-1}$ is the reverse reaction rate constant, and $b$ is the constant concentration of the reactant. In the setting of Equation (2.0.2), the production function is $P(x)=k_{1} b x$ and the destruction function $D(x)=k_{-1} x^{2}$. Equation (5.1.1) is also considered the chemical equivalent of the logistic growth equation [33]:

$$
\begin{equation*}
\frac{d x}{d t}=a x\left(1-\frac{x}{K}\right), \tag{5.1.2}
\end{equation*}
$$

where the intrinsic growth rate $a=k_{1} b$ is the equivalent of the unit production rate, while the carrying capacity of the environment $K=\frac{k_{1} b}{k_{-1}}$ is the equivalent of the reaction's steady-state.

Equation (5.1.2) has two hyperbolic equilibria: $x^{*}=K$, which is stable, and $x^{*}=0$, which is unstable, provided that $a>0$. In all examples, we set $|a|=1$ and
$K=1$. In Figure 5.1(a), for $h=0.9$ and initial condition $x_{0}=0.1$, we see that while all the methods behave well and similar to the exact solution, the new SOPESN methods (3.2.14), (3.3.12), and the SONSEE approach the exact solution at a faster rate than the PESN methods. For the two PESN methods, we use the nonstandard denominator function

$$
\varphi(h)=\frac{1-e^{-q h}}{q},
$$

with $q=1$. Figure $5.1(\mathrm{~b})$, for $h=2.6$, we see that the ERK2 method initially oscillates and introduces an artificial fixed point, and indeed with a larger enough step-size e.g. $h>2.9$, the ERK2 method will not converge to any point in $\mathbb{R}$. We see that there is no such behavior from SOPESN methods (3.2.14) and (3.3.12).


Figure 5.1: Numerical solutions of Equation (5.1.2) for $a=1$ and $K=1$, and using $h=0.9$ in (a) and $h=2.6$ in (b).

Next, we consider the following modified logistic growth equation ([43], p. 124):

$$
\begin{equation*}
\frac{d x}{d t}=a x\left(\frac{x}{\theta}-1\right)\left(1-\frac{x}{K}\right), \tag{5.1.3}
\end{equation*}
$$

with $0<\theta<K$. In the second example, we set $a=1, \theta=0.5$ and $K=1$. For this set of parameter values, the right-hand side function of Equation (5.1.3) is $f(x)=x(2 x-1)(1-x)$, and the equation has $x^{*}=\frac{1}{2}$ as an unstable equilibrium
while $x^{*}=0,1$ are stable equilibria. In the productive-destructive setting of Equation (2.0.2), the function $f(x)$ can be rewritten as $f(x)=P(x)-D(x)$, where $P(x)=3 x^{2}$ and $D(x)=2 x^{3}+x$. Next, to better visualize the second-order accuracy of the new SOPESN methods (3.2.14) and (3.3.12), we denote the numerical solution for a given mesh size $h$ as $x^{h}$. Let us define the $l^{\infty}$ error as

$$
E(h)=\left\|x^{h}-x\right\|_{\infty}
$$

where

$$
\|y\|_{\infty}=\max _{k=0, \cdots, N_{t}}\left|y_{k}\right|
$$

represents the discrete $l_{\infty}$ norm of the vector $y$, and $x$ represents the exact solution of Equation (2.0.1). As can be seen in Figure 5.2(a), the error lines for the PESN methods (2.0.5) and (2.0.6) have slopes 1, whereas both SOPESN methods (3.2.14) and (3.3.12), including the SONSEE method, have error lines of slope 2. For small values of the time step $h$, all of the above numerical methods approximate the solution of Equation (5.1.3) very well. However, for large values of $h$, the SONSEE method produces a numerical solution that is initially before correcting itself back to the stable equilibrium $x^{*}=0$, while both the second-order (SOPESN) and first-order (PESN) positive and elementary stable methods always preserve the positivity of the solution, as can be seen in Figure 5.2(b) for $h=5$ and initial condition $x_{0}=0.1$.

Lastly, for the third example, we set $a=-1, \theta=0.5$ and $K=1$ in Equation (5.1.3). In this case, the right-hand side function becomes $f(x)=x(2 x-1)(x-1)$, and Equation (5.1.3) has three hyperbolic equilibria, where $x^{*}=0,1$ are unstable and $x^{*}=\frac{1}{2}$ is stable. Similarly to the previous example, the right-hand side function $f(x)$ of Equation (5.1.3) can be rewritten in the productive-destructive setting of Equation (2.0.2) as $f(x)=P(x)-D(x)$, where $P(x)=2 x^{3}+x$ and $D(x)=3 x^{2}$. In Figure 5.3(a), for $h=0.2$ and initial condition $x_{0}=0.9$, we see that the numerical solutions


Figure 5.2: Numerical solutions of Equation (5.1.3) for $a=1, \theta=0.5$ and $K=1$, and using $h=5$ in (b).


Figure 5.3: Numerical solutions of Equation (5.1.3) for $a=-1, \theta=0.5$ and $K=1$, and using $h=0.2$ in (a) and $h=4.5$ in (b).
produced by all five methods accurately resemble the exact solution and converge to the stable equilibrium $x^{*}=\frac{1}{2}$. However, for the large time-step $h=4.5$, the solution produced by the SONSEE method, which is not designed to be positivity preserving, goes negative and therefore eventually blows up while the numerical solutions of the SOPESN methods always remain positive and approach the stable equilibrium, as seen in Figure 5.3(b).

### 5.2 SOPESN methods applied to the chemostat models

5.2.1 SOPESN methods applied to the simple chemostat model with microbial input and a constant death rate

In this subsection, the SOPESN methods are applied to approximate the solution of the simple chemostat model with microbial input and a constant death rate (4.2.1) discussed in Chapter (4). Also, SOPESN methods are compared with several standard and nonstandard finite difference methods in different settings. As was illustrated in Chapter (4), Model (4.2.1) has a unique interior equilibrium $E^{*}=\left(S^{*}, B^{*}\right)$ that is asymptotically stable. The SOPESN1 method for Model (4.2.1) is constructed as follows:

$$
\begin{align*}
& \frac{S^{k+1}-S^{k}}{\varphi_{1}\left(h, S^{k}, B^{k}\right)}=w_{1}^{k}\left(D\left(S_{i n}-S^{k}\right)-q \mu\left(S^{k}\right) B^{k}\right)=f_{1}\left(S^{k}, B^{k}\right)  \tag{5.2.1}\\
& \frac{B^{k+1}-B^{k}}{\varphi_{2}\left(h, S^{k}, B^{k}\right)}=w_{2}^{k}\left(D\left(B_{i n}-B^{k}\right)+\mu\left(S^{k}\right) B^{k}-m B^{k}\right)=f_{2}\left(S^{k}, B^{k}\right)
\end{align*}
$$

where

$$
w_{1}^{k}=\left\{\begin{array}{ll}
1, & \text { if } f_{1}\left(S^{k}, B^{k}\right) \geq 0 \\
\frac{S^{k+1}}{S^{k}}, & \text { if } f_{1}\left(S^{k}, B^{k}\right)<0
\end{array}, \quad \text { and } \quad w_{2}^{k}= \begin{cases}1, & \text { if } f_{2}\left(S^{k}, B^{k}\right) \geq 0 \\
\frac{B^{k+1}}{B^{k}}, & \text { if } f_{2}\left(S^{k}, B^{k}\right)<0\end{cases}\right.
$$

The denominator functions are chosen as follows

$$
\varphi_{i}\left(h, S^{k}, B^{k}\right)= \begin{cases}\frac{1-e^{-q_{i}\left(S^{k}, B^{k}\right) h}}{q_{i}\left(S^{k}, B^{k}\right)}, & \text { if } q_{i}\left(S^{k}, B^{k}\right) \neq 0 \\ h, & \text { if } q_{i}\left(S^{k}, B^{k}\right)=0\end{cases}
$$

where $q_{i}\left(S^{k}, B^{k}\right)$ as in Theorem (3.2.1) for all $i=1,2$. In the productive-destructive setting of System (2.0.2), the functions $f_{1}(S, B)$ and $f_{2}(S, B)$ can be rewritten as $f_{i}(S, B)=P_{i}(S, B)-D_{i}(S, B)$, for all $i=1,2$, where $P_{1}(S, B)=D S_{\text {in }}, D_{1}(S, B)=$
$D S+q \mu(S) B, P_{2}(S, B)=D B_{i n}+\mu(S) B$, and $D_{2}(S, B)=D B+m B$. The SOPESN2 method is constructed as follows

$$
\begin{align*}
& \frac{S^{k+1}-S^{k}}{\varphi_{1}\left(h, S^{k}, B^{k}\right)}=P_{1}\left(S^{k}, B^{k}\right)-D_{1}\left(S^{k}, B^{k}\right) \frac{S^{k+1}}{S^{k}}  \tag{5.2.2}\\
& \frac{B^{k+1}-B^{k}}{\varphi_{2}\left(h, S^{k}, B^{k}\right)}=P_{2}\left(S^{k}, B^{k}\right)-D_{2}\left(S^{k}, B^{k}\right) \frac{B^{k+1}}{B^{k}}
\end{align*}
$$

The denominator functions are chosen as follows

$$
\varphi_{i}\left(h, S^{k}, B^{k}\right)= \begin{cases}\frac{1-e^{-q_{i}\left(S^{k}, B^{k}\right) h}}{q_{i}\left(S^{k}, B^{k}\right)}, & \text { if } q_{i}\left(S^{k}, B^{k}\right) \neq 0 \\ h, & \text { if } q_{i}\left(S^{k}, B^{k}\right)=0\end{cases}
$$

where $q_{i}\left(S^{k}, B^{k}\right)$ as in Theorem (3.3.1) for all $i=1,2$, and $\mu(S)=\frac{\mu^{\max } S}{K+S}$.
For Model (4.2.1), we consider the following set of parameter values: $D=0.4$, $S_{i n}=1.5, B_{\text {in }}=0.5, q=10^{-8}, m=0.2, \mu^{\max }=0.3$ and $K=0.1$. As was shown in Chapter (4) that Model (4.2.1) has unique positive equilibrium $E^{*}=(1.5,0.627451)$ that is asymptotically stable. Moreover, the eigenvalues of the Jacobian matrix evaluated at $E^{*}$ are: $\lambda_{1}=-0.4$, and $\lambda_{2}=-0.31875$. The PESN1 method (2.0.1) is constructed as follows:

$$
\begin{align*}
& \frac{S^{k+1}-S^{k}}{\varphi(h)}=w_{1}^{k}\left(D\left(S_{\text {in }}-S^{k}\right)-q \mu\left(S^{k}\right) B^{k}\right)=w_{1}^{k} f_{1}\left(S^{k}, B^{k}\right)  \tag{5.2.3}\\
& \frac{B^{k+1}-B^{k}}{\varphi(h)}=w_{2}^{k}\left(D\left(B_{\text {in }}-B^{k}\right)+\mu\left(S^{k}\right) B^{k}-m B^{k}\right)=w_{2}^{k} f_{2}\left(S^{k}, B^{k}\right),
\end{align*}
$$

where

$$
w_{1}^{k}=\left\{\begin{array}{ll}
1, & \text { if } f_{1}\left(S^{k}, B^{k}\right) \geq 0 \\
\frac{S^{k+1}}{S^{k}}, & \text { if } f_{1}\left(S^{k}, B^{k}\right)<0
\end{array}, \quad \text { and } \quad w_{2}^{k}=\left\{\begin{array}{ll}
1, & \text { if } f_{2}\left(S^{k}, B^{k}\right) \geq 0 \\
\frac{B^{k+1}}{B^{k}}, & \text { if } f_{2}\left(S^{k}, B^{k}\right)<0
\end{array} .\right.\right.
$$

The choice of the denominator function $\varphi$ is chosen as described in [49]:

$$
\varphi(h)=\frac{1-e^{-0.3 h}}{0.3}, \text { here, } 0.3>\max \left\{\frac{\left|\lambda_{1}\right|}{2}, \frac{\left|\lambda_{2}\right|}{2}\right\}=0.2 \text {. }
$$

In order to apply the PESN2 method to Model (4.2.1), the model is rewritten in the form of System (2) presented in [48], such as:

$$
\left.\begin{array}{rl}
\frac{d S}{d t} & =D S_{i n}-\left(D+q^{\mu^{\max } B}\right. \\
K+S
\end{array}\right) S, ~=D B_{i n}+\frac{\mu^{\max S}}{K+S} B-(D+m) B .
$$

Then, the PESN2 method (2.0.1) is constructed as follows:

$$
\begin{align*}
& \frac{S^{k+1}-S^{k}}{\varphi(h)}=D S_{i n}-\left(D+q \frac{\mu^{\max } B^{k}}{K+S^{k}}\right) S^{k+1}  \tag{5.2.4}\\
& \frac{B^{k+1}-B^{n}}{\varphi(h)}=D B_{i n}+\frac{\mu^{\max } S^{k}}{K+S^{k}} B^{k}-(D+m) B^{k+1}
\end{align*}
$$

The denominator function is $\varphi(h)=h$. The choice of the denominator function $\varphi(h)$ was determined using the methodology in Appendix A [48]. Figure 5.4(a) compares the SOPESN methods (3.2.3) and (3.3.3) with the standard explicit Euler (EE) method [38] for $h=7$. It is known that the EE method neither preserves the positivity of the solutions nor the local stability of the equilibria independently of the step size $h$. As we can see, the EE method keeps oscillating and does not converge to any point, while the SOPESN methods behave well and converge to the exact solution. Figure $5.4(\mathrm{~b})$, for $h=7$, compares the SOPESN methods with the standard second-order two-stage explicit Runge-Kutta (ERK2) method [38], and it can be seen that the ERK2 method does not converge to the exact solution and will eventually blow up to infinity. In contrast, the SOPESN (3.2.3) and (3.3.3) methods behave well and converge to the exact solution. Figure 5.4(c) and Figure 5.4(d) compare the SOPESN1 method with the PESN1 method (2.0.5) and the SOPESN2
method with the PESN2 method (2.0.6), respectively, for $h=0.95$. one can see that all numerical solutions converge to the exact solution. However, the SOPESN methods are much more accurate than their corresponding first-order PESN methods. Moreover, the PESN1 method converges to the exact solution faster than the PESN2 method. Therefore, we compare the SOPESN methods with the PESN1 method from now on. Figure 5.5(a) and Figure 5.5(b) show the global asymptotic stability of the positive equilibrium $E^{*}$ as established in Theorem (4.2.3). Figure 5.5(c) and Figure $5.5(\mathrm{~d})$ support the global asymptotic stability of the positive equilibrium $E^{*}$.


Figure 5.4: Numerical solutions of Model (4.2.1) using $h=7$ in (a) and (b), and $h=0.95$ in (c) and (d).


Figure 5.5: Stability of $E^{*}$ (see Theorem (4.2.3)).
5.2.2 SOPESN methods applied to the competition model with microbial input and constant death rates

In this subsection, the SOPESN methods are applied to approximate the solutions of the competition model (4.3.1). Moreover, comparisons between the SOPESN methods and other standard and nonstandard finite difference methods are provided. We recall that System (4.3.1) has a boundary equilibrium, $E_{0}=\left(S_{0}^{*}, B_{10}^{*}, 0\right)$, and a unique positive equilibrium $E_{1}=\left(S_{1}^{*}, B_{11}^{*}, B_{21}^{*}\right)$. The positive equilibrium is locally asymptotically stable whenever it exists. While the boundary equilibrium is
locally asymptotically stable if and only if $d_{2}>\mu_{2}\left(S_{0}^{*}\right)$. The SOPESN1 method for Model (4.3.1) is constructed as follows:

$$
\begin{aligned}
\frac{S^{k+1}-S^{k}}{\varphi_{1}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)} & =w_{1}^{k}\left(D\left(S_{i n}-S^{k}\right)-q_{1} \mu_{1}\left(S^{k}\right) B_{1}^{k}-q_{2} \mu_{2}\left(S^{k}\right) B_{2}^{k}\right) \\
& =w_{1}^{k} f_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right), \\
\frac{B_{1}^{k+1}-B_{1}^{k}}{\varphi_{2}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)} & =w_{2}^{k}\left(D\left(B_{i n}-B_{1}^{k}\right)+\mu_{1}\left(S^{k}\right) B_{1}^{k}-m_{1} B_{1}^{k}\right) \\
& =w_{2}^{k} f_{2}\left(S^{k}, B_{1}^{k} \cdot B_{2}^{k}\right), \\
\frac{B_{2}^{k+1}-B_{2}^{k}}{\varphi_{3}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)} & =w_{3}^{k}\left(B_{2}^{k}\left(\mu_{2}\left(S^{k}\right)-D-m_{2}\right)\right) \\
& =w_{3}^{k} f_{3}\left(S^{k}, B_{1}^{k} \cdot B_{2}^{k}\right),
\end{aligned}
$$

where

$$
\begin{gathered}
w_{1}^{k}=\left\{\begin{array}{ll}
1, & \text { if } f_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \geq 0 \\
\frac{S^{k+1}}{S^{k}}, & \text { if } f_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)<0
\end{array}, \quad w_{2}^{k}= \begin{cases}1, & \text { if } f_{2}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \geq 0 \\
\frac{B_{1}^{k+1}}{B_{1}^{k}}, & \text { if } f_{2}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)<0\end{cases} \right. \\
\text { and } w_{3}^{k}= \begin{cases}1, & \text { if } f_{3}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \geq 0 \\
\frac{B_{2}^{k+1}}{B_{2}^{k}}, & \text { if } f_{3}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)<0\end{cases}
\end{gathered}
$$

The denominator functions are chosen as

$$
\varphi_{i}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)= \begin{cases}\frac{1-e^{-q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) h}}{q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)}, & \text { if } q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \neq 0 \\ h, & \text { if } q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)=0\end{cases}
$$

where $q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)$ as in Theorem (3.2.1) for all $i=1,2,3$. In order to apply the SOPESN2 method (3.3.3) to the system (4.3.1), the right-hand sides of System (4.3.1)
are rewritten in the productive-destructive setting of System (2.0.2). The functions $f_{1}\left(S, B_{1}, B_{2}\right), f_{2}\left(S, B_{1}, B_{2}\right)$ and $f_{3}\left(S, B_{1}, B_{2}\right)$ can be rewritten as

$$
f_{i}\left(S, B_{1}, B_{2}\right)=P_{i}\left(S, B_{1}, B_{2}\right)-D_{i}\left(S, B_{1}, B_{2}\right), \quad \text { for all } i=1,2,3
$$

where

$$
\begin{gathered}
P_{1}\left(S, B_{1}, B_{2}\right)=D S_{i n}, D_{1}\left(S, B_{1}, B_{2}\right)=D S+q_{1} \mu_{1}(S) B_{1}+q_{2} \mu_{2}(S) B_{2} \\
P_{2}\left(S, B_{1}, B_{2}\right)=D B_{i n}+\mu_{1}(S) B_{1}, D_{2}\left(S, B_{1}, B_{2}\right)=D B_{1}+m_{1} B_{1} \\
P_{3}\left(S, B_{1}, B_{2}\right)=\mu_{2}(S) B_{2}, \text { and } D_{3}\left(S, B_{1}, B_{2}\right)=D B_{2}+m_{2} B_{2} .
\end{gathered}
$$

The SOPESN2 method is constructed as follows

$$
\begin{align*}
& \frac{S^{k+1}-S^{k}}{\varphi_{1}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)}=P_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)-D_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \frac{S^{k+1}}{S^{k}} \\
& \frac{B_{1}^{k+1}-B_{1}^{k}}{\varphi_{2}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)}=P_{2}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)-D_{2}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \frac{B_{1}^{k+1}}{B_{1}^{k}}  \tag{5.2.5}\\
& \frac{B_{2}^{k+1}-B_{2}^{k}}{\varphi_{3}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)}=P_{3}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)-D_{3}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \frac{B_{2}^{k+1}}{B_{2}^{k}}
\end{align*}
$$

The denominator functions are chosen as

$$
\varphi_{i}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)= \begin{cases}\frac{1-e^{-q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) h}}{q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)}, & \text { if } q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \neq 0 \\ h, & \text { if } q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)=0\end{cases}
$$

where $q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)$ as in Theorem (3.3.1) for all $i=1,2,3$.
For Model (4.3.1), we first consider the following set of parameter values: $D=0.2, S_{\text {in }}=1.5, B_{\text {in }}=0.5, q_{1}=q_{2}=10^{-2}, m_{1}=m_{2}=0.1, \mu_{1}^{\max }=0.1$, $\mu_{2}^{\max }=0.3$, and $K_{1}=K_{2}=0.1$, with initial conditions

$$
\left(S(0), B_{1}(0), B_{2}(0)\right)=(0.5,1,0.5)
$$

For this set of parameter values, and since $d_{2}=0.3>0.2812=\mu_{2}\left(S_{i n}\right)$, then by Proposition (4.3.1) the interior equilibrium does not exist. Thus, Model (4.3.1) has only the boundary equilibrium $E_{0}=(1.4977,0.4848,0)$, and it is locally asymptotically stable, since $d_{2}=0.3>0.2812=\mu_{2}\left(S_{0}^{*}\right)$ (Theorem (4.3.1)). Moreover, the eigenvalues of the Jacobian matrix evaluated at $E_{0}$ are: $\lambda_{1}=-0.204376+0.0108459 i, \lambda_{2}=$ $-0.204376-0.0108459 i$, and $\lambda_{3}=-0.0221533$. The PESN1 method (2.0.5) for Model (4.3.1) is:

$$
\begin{align*}
& \frac{S^{k+1}-S^{k}}{\varphi(h)}=w_{1}^{k} f_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right), \\
& \frac{B_{1}^{k+1}-B_{1}^{k}}{\varphi(h)}=w_{2}^{k} f_{2}\left(S^{k}, B_{1}^{k} \cdot B_{2}^{k}\right),  \tag{5.2.6}\\
& \frac{B_{2}^{k+1}-B_{2}^{k}}{\varphi(h)}=w_{3}^{k} f_{3}\left(S^{k}, B_{1}^{k} \cdot B_{2}^{k}\right),
\end{align*}
$$

where

$$
\begin{gathered}
w_{1}^{k}=\left\{\begin{array}{ll}
1, & \text { if } f_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \geq 0 \\
\frac{S^{k+1}}{S^{k}}, & \text { if } f_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)<0
\end{array}, \quad w_{2}^{k}= \begin{cases}1, & \text { if } f_{2}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \geq 0 \\
\frac{B_{1}^{k+1}}{B_{1}^{k}}, & \text { if } f_{2}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)<0\end{cases} \right. \\
\text { and } w_{3}^{k}= \begin{cases}1, & \text { if } f_{3}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \geq 0 \\
\frac{B_{2}^{k+1}}{B_{2}^{k}}, & \text { if } f_{3}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)<0\end{cases}
\end{gathered}
$$

Following the approach in [49], the denominator function is

$$
\varphi(h)=\frac{1-e^{-h 0.2}}{0.2}, \text { here, } 0.2>\max \left\{\frac{\left|\lambda_{j}\right|^{2}}{2 \operatorname{Re}\left(\left|\lambda_{j}\right|\right)}: j=1,2,3\right\}=0.102476
$$

Figure (5.6a) compares the SOPESN methods with the EE method for $h=10$. EE method does not preserve the local stability of the equilibria for any step size $h$. We can see that the EE method keeps oscillating and does not converge to the exact
solution, while the SOPESN methods converge to the exact solution. Figure 5.6(b) compares the SOPESN methods with the ERK2 method for $h=10$. Even though the ERK2 method is second-order accurate, it does not preserve the local stability of the equilibria. We can easily see that the ERK2 method diverges from the exact solution, while the SOPESN methods converge. Figure 5.6(c) and Figure 5.6(d) compare the SOPESN methods with the PESN1 method for $h=0.95$. While all methods behave well and converge to the boundary equilibrium $E_{0}=(1.4977,0.4848,0)$. We can see that the SOPESN methods are more accurate than the PESN1 method.

Next, we consider the following set of parameters values: $D=0.1, S_{\text {in }}=1.5$, $B_{\text {in }}=0.1, q_{1}=q_{2}=1, m_{1}=0.4, m_{2}=0.1, \mu_{1}^{\max }=0.4, \mu_{2}^{\max }=0.5$, and $K_{1}=K_{2}=0.1$, with initial conditions:

$$
\left(S(0), B_{1}(0), B_{2}(0)\right)=(0.01,0.2,1.4)
$$

For this set of parameter values, Model (4.3.1) has two equilibria, a boundary equilibrium $E_{0}=(1.2165,, 0.0767,0)$, and an interior equilibrium $E_{1}=(0.0667,0.0294,0.6931)$. Since $d_{2}=0.2<0.4620=\mu_{2}\left(S_{0}^{*}\right)$, then the boundary equilibrium $E_{0}$ is unstable (Theorem (4.3.1)). Moreover, since the interior equilibrium exists, then it is locally asymptotically stable (Theorem(4.3.2)). Furthermore, the eigenvalues of the Jacobian matrix evaluated at $E_{0}$ are: $\lambda_{10}=0.262021, \lambda_{20}=-0.116077+0.0212038 i$, and $\lambda_{30}=-0.116077-0.0212038 i$. While the eigenvalues of the Jacobian matrix evaluated at $E_{1}$ are: $\lambda_{1,1}=-1.3894, \lambda_{2,1}=-0.160048$ and $\lambda_{3,1}=-0.20006$. Here, the denominator function for the PESN1 method (5.2.6) is:

$$
\varphi(h)=\frac{1-e^{-0.6 h}}{0.6}
$$

where $0.6>\max \left\{\frac{\left|\lambda_{j k}\right|^{2}}{2 \operatorname{Re}\left(\left|\lambda_{j k}\right|\right)}: j=1,2,3\right.$ and $\left.k=0,1\right\}=0.583768$. Figure 5.7(a) and Figure 5.7(b) compare the SOPESN methods with the PESN1 method for $h=0.95$.

As discussed previously, the interior equilibrium $E_{1}=(0.0667,0.0294,0.6931)$ is locally asymptotically stable. We can see all methods converge to the interior equilibrium $E_{1}$. However, the SOPESN methods converge to the exact solution faster than the PESN method.


Figure 5.6: Numerical solutions of Model (4.3.1) using $h=10$ in (a) and (b), and $h=0.95$ in (c) and (d).


Figure 5.7: Numerical solutions of Model (4.3.1) using $h=0.95$.
5.2.3 SOPESN methods applied to the competition model with microbial input and in the presence of a constant homogeneous plasmid

In this subsection, the SOPESN methods are applied to approximate the solution to the competition model in the presence of plasmid (4.4.1). Moreover, comparisons between the SOPESN methods, and the PESN1 method are also provided. We recall that System (4.4.1) has a boundary equilibrium, $E_{0}=\left(S_{0}^{*}, B_{10}^{*}, 0\right)$, and a unique positive equilibrium $E_{1}=\left(S_{1}^{*}, B_{11}^{*}, B_{21}^{*}\right)$. The positive equilibrium is locally asymptotically stable whenever it exists. While the boundary equilibrium is locally
asymptotically stable if and only if $D+\eta>\mu_{2}\left(S_{0}^{*}\right)$. The SOPESN1 method for Model (4.3.1) is constructed as follows:

$$
\begin{align*}
& \frac{S^{k+1}-S^{k}}{\varphi_{1}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)}=w_{1}^{k}\left(D\left(S_{i n}-S^{k}\right)-q_{1} \mu_{1}\left(S^{k}\right) B_{1}^{k}-q_{2} \mu_{2}\left(S^{k}\right) B_{2}^{k}\right)=f_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \\
& \frac{B_{1}^{k+1}-B_{1}^{k}}{\varphi_{2}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)}=w_{2}^{k}\left(D\left(B_{i n}-B_{1}^{k}\right)+\mu_{1}\left(S^{k}\right) B_{1}^{k}+\eta B_{2}^{k}\right)=f_{2}\left(S^{k}, B_{1}^{k} \cdot B_{2}^{k}\right) \\
& \frac{B_{2}^{k+1}-B_{2}^{k}}{\varphi_{3}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)}=w_{3}^{k}\left(B_{2}^{k}\left(\mu_{2}\left(S^{k}\right)-D-\eta\right)\right)=f_{3}\left(S^{k}, B_{1}^{k} \cdot B_{2}^{k}\right) \tag{5.2.7}
\end{align*}
$$

where

$$
\begin{gathered}
w_{1}^{k}=\left\{\begin{array}{ll}
1, & \text { if } f_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \geq 0 \\
\frac{S^{k+1}}{S^{k}}, & \text { if } f_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)<0
\end{array}, \quad w_{2}^{k}= \begin{cases}1, & \text { if } f_{2}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \geq 0 \\
\frac{B_{1}^{k+1}}{B_{1}^{k}}, & \text { if } f_{2}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)<0\end{cases} \right. \\
\text { and } w_{3}^{k}= \begin{cases}1, & \text { if } f_{3}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \geq 0 \\
\frac{B_{2}^{k+1}}{B_{2}^{k}}, & \text { if } f_{3}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)<0\end{cases}
\end{gathered}
$$

The denominator functions are chosen as

$$
\varphi_{i}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)= \begin{cases}\frac{1-e^{-q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) h}}{q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)}, & \text { if } q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \neq 0 \\ h, & \text { if } q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)=0\end{cases}
$$

where $q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)$ as in Theorem (3.2.1) for all $i=1,2,3$. In order to apply the SOPESN2 method (3.3.3) to the system (4.3.1), the right-hand sides of System (4.3.1) are rewritten in the productive-destructive setting of System (2.0.2). The functions $f_{1}\left(S, B_{1}, B_{2}\right), f_{2}\left(S, B_{1}, B_{2}\right)$ and $f_{3}\left(S, B_{1}, B_{2}\right)$ can be rewritten as

$$
f_{i}\left(S, B_{1}, B_{2}\right)=P_{i}\left(S, B_{1}, B_{2}\right)-D_{i}\left(S, B_{1}, B_{2}\right), \quad \text { for all } i=1,2,3
$$

where

$$
\begin{gathered}
P_{1}\left(S, B_{1}, B_{2}\right)=D S_{i n}, D_{1}\left(S, B_{1}, B_{2}\right)=D S+q_{1} \mu_{1}(S) B_{1}+q_{2} \mu_{2}(S) B_{2} \\
P_{2}\left(S, B_{1}, B_{2}\right)=D B_{i n}+\mu_{1}(S) B_{1}+\eta B_{2}, D_{2}\left(S, B_{1}, B_{2}\right)=D B_{1} \\
P_{3}\left(S, B_{1}, B_{2}\right)=\mu_{2}(S) B_{2}, \text { and } D_{3}\left(S, B_{1}, B_{2}\right)=D B_{2}+\eta B_{2}
\end{gathered}
$$

The SOPESN2 method is constructed as follows

$$
\begin{align*}
& \frac{S^{k+1}-S^{k}}{\varphi_{1}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)}=P_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)-D_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \frac{S^{k+1}}{S^{k}} \\
& \frac{B_{1}^{k+1}-B_{1}^{k}}{\varphi_{2}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)}=P_{2}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)-D_{2}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \frac{B_{1}^{k+1}}{B_{1}^{k}}  \tag{5.2.8}\\
& \frac{B_{2}^{k+1}-B_{2}^{k}}{\varphi_{3}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)}=P_{3}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)-D_{3}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \frac{B_{2}^{k+1}}{B_{2}^{k}}
\end{align*}
$$

The denominator functions are chosen as

$$
\varphi_{i}\left(h, S^{k}, B_{1}^{k}, B_{2}^{k}\right)= \begin{cases}\frac{1-e^{-q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) h}}{q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)}, & \text { if } q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \neq 0 \\ h, & \text { if } q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)=0\end{cases}
$$

where $q_{i}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)$ as in Theorem (3.3.1) for all $i=1,2,3$.
For Model (4.4.1), we first consider the following set of parameter values: $D=0.1, S_{\text {in }}=2, B_{\text {in }}=0.1, q_{1}=0.1, q_{2}=0.2, \mu_{1}^{\max }=0.1, \mu_{2}^{\max }=0.2, \eta=0.1$, and $K_{1}=K_{2}=0.1$, with the following initial conditions:

$$
\left(S(0), B_{1}(0), B_{2}(0)\right)=(0.5,0.5,0.1)
$$

With this set of parameter values, Model (4.4.1) has only the boundary equilibrium $E_{0}=(1.8182,1.9182,0)$. Since $D+\eta=0.2>0.1905=\mu_{2}\left(S_{\text {in }}\right)$, then the interior equilibrium $E_{1}$ does not exist (Theorem (4.4.2)). Moreover, since
$D+\eta=0.2>0.1896=\mu_{2}\left(S_{0}^{*}\right)$, the boundary equilibrium $E_{0}$ is locally asymptotically stable (Theorem (4.4.4)). Furthermore, the eigenvalues of the Jacobian matrix evaluated at the equilibrium $E_{0}$ are $\lambda_{1}=-0.1, \lambda_{2}=-0.0104264$, and $\lambda_{3}=-0.00573454$. The PESN1 method (2.0.5) for Model (4.4.1) is constructed as follows:

$$
\begin{align*}
& \frac{S^{k+1}-S^{k}}{\varphi(h)}=w_{1}^{k} f_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right), \\
& \frac{B_{1}^{k+1}-B_{1}^{k}}{\varphi(h)}=w_{2}^{k} f_{2}\left(S^{k}, B_{1}^{k} \cdot B_{2}^{k}\right),  \tag{5.2.9}\\
& \frac{B_{2}^{k+1}-B_{2}^{k}}{\varphi(h)}=w_{3}^{k} f_{3}\left(S^{k}, B_{1}^{k} \cdot B_{2}^{k}\right),
\end{align*}
$$

where

$$
\begin{gathered}
w_{1}^{k}=\left\{\begin{array}{ll}
1, & \text { if } f_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \geq 0 \\
\frac{S^{k+1}}{S^{k}}, & \text { if } f_{1}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)<0
\end{array}, \quad w_{2}^{k}= \begin{cases}1, & \text { if } f_{2}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \geq 0 \\
\frac{B_{1}^{k+1}}{B_{1}^{k}}, & \text { if } f_{2}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)<0\end{cases} \right. \\
\text { and } w_{3}^{k}= \begin{cases}1, & \text { if } f_{3}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right) \geq 0 \\
\frac{B_{2}^{k+1}}{B_{2}^{k}}, & \text { if } f_{3}\left(S^{k}, B_{1}^{k}, B_{2}^{k}\right)<0\end{cases}
\end{gathered}
$$

Following the approach in [49], the denominator function is

$$
\varphi(h)=\frac{1-e^{-0.1 h}}{0.1}, \text { here } 0.1>\max \left\{\frac{\left|\lambda_{j}\right|}{2}: j=1,2,3\right\}=0.05
$$

Figure 5.8(a) and Figure 5.8(b) compare the SOPESN methods with the PESN1 method for $h=0.95$. As discussed above, the interior equilibrium does not exist, while the boundary equilibrium exists, and it is locally asymptotically stable. One can easily see that all numerical methods converge to the boundary equilibrium $E_{0}$. However, the SOPESN methods converge to the exact solution at a faster rate than the PESN1 method.

Next, we consider the following set of parameter values: $D=0.1, S_{\text {in }}=2$, $B_{\text {in }}=0.1, q_{1}=q_{2}=1, \mu_{1}^{\max }=0.2, \mu_{2}^{\max }=0.6, \eta=0.1$, and $K_{1}=K_{2}=0.1$, with the following initial conditions:

$$
\left(S(0), B_{1}(0), B_{2}(0)\right)=(0.02,0.8,0.1)
$$

In this case, Model (4.4.1) has two equilibria. One is the boundary equilibrium $E_{0}=$ $(0.0905,2.0095,0)$ and the other is the interior equilibrium $E_{1}=(0.05,0.4375,1.6125)$. Since $D+\eta=0.2<0.2851=\mu_{2}\left(S_{0}^{*}\right)$, the boundary equilibrium is unstable (Theorem (4.4.4)). Moreover, since the interior equilibrium $E_{1}$ exists, it is locally asymptotically stable (Theorem (4.4.5)). Furthermore, the eigenvalues of the Jacobian matrix evaluated at $E_{0}$ are: $\lambda_{10}=-1.11245, \lambda_{20}=-0.1$, and $\lambda_{30}=0.0850394$. While the eigenvalues of the Jacobian matrix evaluated at $E_{1}$ are: $\lambda_{11}=-2.57287, \lambda_{21}=-0.1$, and $\lambda_{31}=-0.0604599$. Here, the denominator function $\varphi(h)$ of the PESN1 method (5.2.9) is

$$
\varphi(h)=\frac{1-e^{-1.5 h}}{1.5}
$$

where $1.5>\max \left\{\frac{\left|\lambda_{j k}\right|^{2}}{2 \operatorname{Re}\left(\left|\lambda_{j k}\right|\right)}: j=1,2,3\right.$ and $\left.k=0,1\right\}=1.28644$. Figure 5.9(a) and Figure 5.9(b) compare the SOPESN methods with the PESN1 method for $h=0.95$. In this case, we know that the interior equilibrium is locally asymptotically stable while the boundary equilibrium is not stable. Both figures show that all numerical converge to the interior equilibrium $E_{1}$. However, the SOPESN methods are more accurate than the PESN1 method.


Figure 5.8: Numerical solutions of Model (4.4.1) using $h=0.95$.


Figure 5.9: Numerical solutions of Model (4.4.1) using $h=0.95$.

## CHAPTER 6

Conclusions
In the first part of this dissertation, two modified nonstandard numerical methods, namely SOPESN1 and SOPESN2 methods, were constructed and analyzed. SOPESN1 method was formulated to approximate solutions of general $n$-dimensional autonomous differential equations (2.0.1), while SOPESN2 method was formulated to approximate solutions of general $n$-dimensional productive-destructive equations (2.0.2). This work presented a novel approach that modifies the nonstandard denominator functions in the PESN numerical methods to increase the order of accuracy of existing underlying NSFD methods, resulting in a second-order accuracy of the corresponding methods. The numerical methods are dynamically consistent with respect to the equilibria's local stability and the positivity of the solution. Moreover, they are second-order accurate and can be written in an explicit form that makes them easy to implement, so they can be used to solve numerous problems arising in economics, engineering, and science.

Next, we analyzed three chemostat models with microbial input. The first model aims to represent the growth of a bacteria with the bacteria in the input inflow and in the presence of a constant homogeneous constant. Since competition is crucial in nature. A detailed analysis of a competition model with a microbial input and a constant death rate due to a toxin was presented. Also, since the plasmid plays an essential role in antibiotic resistance, we analyzed a competition model with microbial input in the presence of a constant homogeneous plasmid. As was expected, all models have an interior equilibrium that is stable whenever it exists. This ensures
the coexistence of all species in the chemostat. When there is no competition in the chemostat with microbial input and a constant death rate, the analysis of $\operatorname{Model}(4.2 .1)$ reveals that the donor bacteria will always be present. However, in the case of the competition, either in the presence of a toxin Model (4.3.1) or a plasmid Model (4.4.1). We note that the coexistence of both bacteria depends strongly on the relationship between the growth rate of the donor bacteria and its dilution rate.

Finally, before applying the SOPESN methods to approximate the solutions of the chemostat models, the SOPESN methods were compared with several standard and nonstandard finite difference methods. The numerical simulations illustrate the importance of the elementary stability, positivity-preserving properties of the SOPESN methods and the SOPESN methods are more accurate than the first-order numerical methods. Then, SOPESN methods were used to approximate the solutions of the chemostat models and compare with other standard and nonstandard finite difference methods. As shown, the SOPESN methods perform better than the other methods. Also, by using the SOPESN methods, the theoretical results presented in Chapter (4) were validated.

## REFERENCES

[1] R. Anguelov, T. Berge, M. Chapwanya, J.K. Djoko, P. Kama, J.M.S. Lubuma, and Y. Terefe. Nonstandard finite difference method revisited and application to the ebola virus disease transmission dynamics. Journal of Difference Equations and Applications, 26(6):818-854, 2020.
[2] R. Anguelov, Y. Dumont, J.M.S. Lubuma, and M. Shillor. Dynamically consistent nonstandard finite difference schemes for epidemiological models. Journal of Computational and Applied Mathematics, 255:161-182, 2014.
[3] R. Anguelov, Y. Dumont, J.M.S. Lubuma, and M. Shillor. Dynamically consistent nonstandard finite difference schemes for epidemiological models. Journal of Computational and Applied Mathematics, 255:161-182, 2014.
[4] R. Anguelov and J.M.S. Lubuma. Contributions to the mathematics of the nonstandard finite difference method and applications. Numerical Methods for Partial Differential Equations, 17(5):518-543, 2001.
[5] R. Anguelov, J.M.S. Lubuma, and M. Shillor. Topological dynamic consistency of non-standard finite difference schemes for dynamical systems. Journal of Difference Equations and Applications, 17(12):1769-1791, 2011.
[6] H. Banu and K.P. Prasad. Role of plasmids in microbiology. J Aquac Res Development, 8(466):2, 2017.
[7] M. Branchereau, R. Burcelin, and C. Heymes. The gut microbiome and heart failure: A better gut for a better heart. Reviews in Endocrine and Metabolic Disorders, 20(4):407-414, 2019.
[8] C.D. Davis. The gut microbiome and its role in obesity. Nutrition Today, 51(4):167, 2016.
[9] D.T. Dimitrov and H.V. Kojouharov. Analysis and numerical simulation of phytoplankton-nutrient systems with nutrient loss. Mathematics and Computers in Simulation, 70(1):33-43, 2005.
[10] D.T. Dimitrov and H.V. Kojouharov. Nonstandard finite-difference schemes for general two-dimensional autonomous dynamical systems. Applied Mathematics Letters, 18:769-774, 2005.
[11] D.T. Dimitrov and H.V. Kojouharov. Positive and elementary stable nonstandard numerical methods with applications to predator-prey models. Journal of Computational and Applied Mathematics, 189(1-2):98-108, 2006.
[12] D.T. Dimitrov and H.V. Kojouharov. Nonstandard numerical methods for a class of predator-prey models with predator interference. Electronic Journal of Differential Equations, 15:67-75, 2007.
[13] D.T. Dimitrov and H.V. Kojouharov. Stability-preserving finite-difference methods for general multi-dimensional autonomous dynamical systems. International Journal of Numerical Analysis and Modeling, 4(2):280-290, 2007.
[14] D.T. Dimitrov and H.V. Kojouharov. Dynamically consistent numerical methods for general productive-destructive systems. Journal of Difference Equations and Applications, 17(12):1721-1736, 2011.
[15] M. Gupta, J.M. Slezak, F. Alalhareth, S. Roy, and H.V. Kojouharov. Secondorder nonstandard explicit euler method. In AIP Conference Proceedings, volume 2302, page 110003. AIP Publishing LLC, 2020.
[16] M. Gupta, J.M. Slezak, F.K. Alalhareth, S. Roy, and H.V. Kojouharov. Secondorder modified nonstandard explicit runge-kutta and theta methods for one-
dimensional autonomous differential equations. Applications $\mathfrak{6}$ Applied Mathematics, 16(2), 2021.
[17] S.R. Hansen and S.P. Hubbell. Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes. Science, 207(4438):1491-1493, 1980.
[18] G. Hardin. The competitive exclusion principle: An idea that took a century to be born has implications in ecology, economics, and genetics. Science, 131(3409):1292-1297, 1960.
[19] M. Hirsch and S. Smale. Differential Equations, Dynamical Systems, and Linear Algebra (Pure and Applied Mathematics, Vol. 60). 1974.
[20] S.B. Hsu. Limiting behavior for competing species. SIAM Journal on Applied Mathematics, 34(4):760-763, 1978.
[21] S.B. Hsu and P. Waltman. A survey of mathematical models of competition with an inhibitor. Mathematical Biosciences, 187(1):53-91, 2004.
[22] S.B. Hsu, P. Waltman, and G.S.K. Wolkowicz. Global analysis of a model of plasmid-bearing, plasmid-free competition in a chemostat. Journal of Mathematical Biology, 32(7):731-742, 1994.
[23] E. Ibargüen-Mondragón, K. Prieto, and S.P. Hidalgo-Bonilla. A model on bacterial resistance considering a generalized law of mass action for plasmid replication. Journal of Biological Systems, 29(02):375-412, 2021.
[24] H.V. Kojouharov, S. Roy, M. Gupta, F. Alalhareth, and J. M. Slezak. A secondorder modified nonstandard theta method for one-dimensional autonomous differential equations. Applied Mathematics Letters, 112:106775, 2021.
[25] H.V. Kojouharov, S. Roy, M. Gupta, F. Alalhareth, and J.M. Slezak. A secondorder modified nonstandard theta method for one-dimensional autonomous differential equations. Applied Mathematics Letters, 112:106775, 2021.
[26] C.A. Macken, S.A. Levin, and R. Waldstätter. The dynamics of bacteria-plasmid systems. Journal of Mathematical Biology, 32(2):123-145, 1994.
[27] S. Malan-Muller, M. Valles-Colomer, J. Raes, C.A. Lowry, S. Seedat, and S.M.J. Hemmings. The gut microbiome and mental health: implications for anxiety-and trauma-related disorders. Omics: a Journal of Integrative Biology, 22(2):90-107, 2018.
[28] I.P. Martines, H.V. Kojouharov, and J.P. Grover. A chemostat model of resource competition and allelopathy. Applied Mathematics and Computation, 215(2):573582, 2009.
[29] R.E. Mickens. Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations. Journal of Difference Equations and Applications, 11(7):645-653, 2005.
[30] R.E. Mickens. Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition. Numerical Methods for Partial Differential Equations, 23(3):672-691, 2007.
[31] R.E. Mickens. Nonstandard Finite Difference Schemes: Methodology and Applications. World Scientific, 2020.
[32] J. Monod. La technique de culture continue: theorie et applications. Academic Press New York, 1950.
[33] J.D. Murray. Mathematical Biology: I. An introduction, volume 17. Springer Science \& Business Media, 2007.
[34] A. Novick and L. Szilard. Experiments with the chemostat on spontaneous mutations of bacteria. Proceedings of the National Academy of Sciences of the United States of America, 36(12):708, 1950.
[35] K.C. Patidar. On the use of nonstandard finite difference methods. Journal of Difference Equations and Applications, 11(8):735-758, 2005.
[36] K.C. Patidar. Nonstandard finite difference methods: recent trends and further developments. Journal of Difference Equations and Applications, 22(6):817-849, 2016.
[37] L. Perko. Differential Equations and Dynamical Systems. Springer-Verlag, Berlin, Heidelberg, 1991.
[38] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer-Verlag Berlin Heidelberg, Springer-Verlag Berlin Heidelberg, 2007.
[39] A. Rapaport. Some non-intuitive properties of simple extensions of the chemostat model. Ecological Complexity, 34:111-118, 2018.
[40] G. Robledo, F. Grognard, and J. Gouzé. Global stability for a model of competition in the chemostat with microbial inputs. Nonlinear Analysis: Real World Applications, 13(2):582-598, 2012.
[41] M. Rodrigues, S.W. McBride, K. Hullahalli, K.L. Palmer, and B.A. Duerkop. Conjugative delivery of crispr-cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrobial Agents and Chemotherapy, 63(11):e01454-19, 2019.
[42] D.F. Ryder and D. DiBiasio. An operational strategy for unstable recombinant dna cultures. Biotechnology and Bioengineering, 26(8):942-947, 1984.
[43] R.W. Shonkwiler and J. Herod. Mathematical biology: an introduction with Maple and Matlab. Springer Science \& Business Media, 2009.
[44] H.L. Smith and P. Waltman. The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press, Cambridge, 1995.
[45] F.M. Stewart and B.R. Levin. The population biology of bacterial plasmids: a priori conditions for the existence of conjugationally transmitted factors. Genetics, 87(2):209-228, 1977.
[46] W.H. Tang, D.Y. Li, and S.L. Hazen. Dietary metabolism, the gut microbiome, and heart failure. Nature Reviews Cardiology, 16(3):137-154, 2019.
[47] T. Venkova, C.C. Yeo, and M. Espinosa. The good, the bad, and the ugly: multiple roles of bacteria in human life. Frontiers in Microbiology, 9:1702, 2018.
[48] D.T. Wood, D.T. Dimitrov, and H.V. Kojouharov. A nonstandard finite difference method for n-dimensional productive-destructive systems. Journal of Difference Equations and Applications, 21(3):240-254, 2015.
[49] D.T. Wood and H.V. Kojouharov. A class of nonstandard numerical methods for autonomous dynamical systems. Applied Mathematics Letters, 50:78-82, 2015.
[50] D.T. Wood, H.V. Kojouharov, and D.T. Dimitrov. Universal approaches to approximate biological systems with nonstandard finite difference methods. Mathematics and Computers in Simulation, 133:337-350, 2017.

## BIOGRAPHICAL STATEMENT

Fawaz Karhan Alalhareth was born in Najran, Saudi Arabia in 1990. He earned his B.S. and M.S. degrees in Mathematics at Najran University and at Ball State University, Muncie, Indiana, in 2013 and 2017, respectively.

