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ABSTRACT

Reactive Motion Planning of Autonomous Vehicles in 3-dimensional Environments

using Collision and Rendezvous Cones

Kashish Dhal, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Dr. Animesh Chakravarthy

Co-Supervising Professor: Dr. Kamesh Subbarao

This dissertation presents a collision cone/rendezvous cone based approach

for reactive motion planning in three-dimensional dynamic environments. Collision

avoidance is fundamental to robot motion planning. In dynamic environments, the

path and velocities of obstacles are not known a-priori, and hence it is a common

practice to use reactive planners. Reactive planners should be computationally in-

expensive because they need to act fast to avoid potential collisions. To reduce

the computational load, a majority of motion planning algorithms model the shapes

of the robots and obstacles as a circle/sphere. However, when the objects are elon-

gated more in one direction than another, the spherical shape approximation becomes

over conservative. When multiple robots are operating in close proximity in an en-

vironment cluttered with obstacles, this reduces the available free space in which

the robot trajectory can lie. In such cases, one can use ellipsoidal shape approxi-

mations. However, for non-convex objects, even ellipsoidal approximations become

v



over-conservative and in such cases, a combination of non-convex quadric surfaces

or a n-faced polyhedron provides better shape approximation. In conjunction with

providing tighter shape approximations, the computational load has to be kept low.

Collision cone approach is a motion planning method which computes the set of

robot velocity headings that guarantees collision avoidance with another moving ve-

hicle. This dissertation develops methods to compute the collision cone analytically

for a large class of object shapes. Analytical expressions of guidance laws are derived

to perform collision avoidance or rendezvous in three-dimensional environments for a

range of applications. Guidance and control laws are developed for a robotic fish to

perform maneuvers through a moving orifice and for a UAS to track single/multiple

moving ground targets. Cooperative and non-cooperative collision avoidance and

rendezvous laws are demonstrated for objects with heterogeneous shapes that may

change with time, in three-dimensional dynamic environments. These laws are subse-

quently made robust to sensor measurement noise by incorporating them in an LMI

framework.
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CHAPTER 1

Introduction

Autonomous Vehicles (or robotic vehicles), equipped with on-board sensors and

communication devices, represent a field of growing interest. The problem of finding

a sequence of positions, velocities and/or orientations that can move a robot from

one point to another is referred as Motion Planning. One of the important challenges

of motion planning is collision avoidance i.e. avoiding collision with obstacles while

navigating from source to destination. These obstacles may be stationary or moving

and may even change their shape.

Generally, Motion Planning is decomposed into two sub-tasks: global path

planning and reactive collision avoidance. Global path planners generates a set of way-

points (positions/velocities) from source to destination with or without the knowledge

of obstacles and reactive planners will steer the vehicle away from collision whenever

a potential collision is detected.

Researchers have started working on path planning since the 1970s, and the

preliminary work focuses on several related geometric aspects [2, 3, 4, 5] which was

followed by the implementation of path-planning algorithms [6, 7, 8]. The funda-

mental idea was to determine a configuration space, specifically those parts of free

space which a moving object can occupy while avoiding obstacles and then finding

a shortest path in this free space. These approaches were mainly developed to han-

dle static obstacles. But since then, various algorithms have been proposed which

can also handle dynamic obstacles. Path Planning algorithms can be broadly classi-
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fied into following categories: graph-based, sampling-based, optimization approaches,

interpolating curves and bio-inspired heuristic search methods.

In graph-based methods, a map of the world is known, different states (which a

robot may traverse) are represented by the nodes of the graph and the paths between

different states are represented by edges of the graph. The task is to find a path which

takes the robot from state A to state B while traversing through any of the interme-

diate states present in the graph. For example, the Dijkstra Algorithm[9] searches for

the shortest path from the given source to the destination. The configuration space is

approximated as a discrete cell-grid space or lattice. The A-Star Algorithm (A⋆)[10]

is an extension of Dijkstra Algorithm coupled with some heuristics. It differs from

the Dijkstra Algorithm in the determination of a cost function, which defines the

weights of the nodes. This algorithm is commonly used for searching spaces mostly

known a priori, and computationally memory- and speed-intensive when the search

space is large. Several modifications of these two algorithms have been proposed to

reduce the computational complexity. State Lattice Algorithm[11] uses planning area

discrete representation with grid of states. Motion planning search is performed over

this states grid (also known as state lattice) by local queries from a set of lattices. A

cost function then decides the least expensive path between the pre-computed lattice

points.

Sampling based planners try to solve the planning problem in high dimen-

sional spaces. In this approach, the configuration space is randomly sampled and a

search for connectivity is performed on that selected configuration space[12]. Unlike

deterministic approaches (such as Dijkstra Algorithm), this algorithm will provide

only sub-optimal solution. Most commonly used sampling planners are the Rapidly-

exploring Random Tree (RRT)[13] and Probabilistic Roadmap Method (PRM)[14].

RRT allows fast planning in semi structured spaces and is suitable for on-line appli-
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cation. It also has the ability to take into account the non-holonomic constraints of

the vehicle. PRM[15] selects random samples from the configuration space and uses a

local planner to connect these random samples with one another and test whether the

connectivity path lies in the free space. Finally, a graph search algorithm is applied

to find the shortest path within these selected random samples.

Interpolating Curve Planners[16] interpolates between known reference points

(or waypoints describing global road map) to generate a smooth path taking into

account the vehicle constraints, dynamics, environment, trajectory continuity, com-

fort and feasibility. If an obstacle is detected, the vehicle will steer away from it and

after avoiding, merge back into a waypoint on the global map. There are various

techniques that can be implemented for curve generation and path smoothing. Some

of the commonly used curves are lines, circles, clothoid curves, polynomial curves,

Bézier Curves and spline curves. Each of these curves have some advantages and dis-

advantages associated with them and a curve is chosen based on desired application,

available computational resources and desired level of accuracy.

In Optimization approaches[17], a cost function is formulated based on de-

sired characteristics such as minimizing a function which penalizes trajectory errors

in position, velocity and acceleration. A Linear Quadratic Regular (LQR) is one

such example which has infinite time-horizon, on the other hand, a Model Predictive

Controller (MPC) has receding time-horizon. They both try to optimize over their

time-horizons. MPC can be classified into Linear MPC (LMPC) and Non-Linear

MPC (NMPC). LMPC uses a quadratic cost function along with linear prediction

model and constraints. However, NMPC may have non-linearities in cost function,

prediction model or constraints.

Bio-inspired heuristic[18] search methods are more suitable for online imple-

mentation. They don’t provide optimal solutions, however, they can search for sub-
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optimal solutions by using relatively low computational resources. Some examples

include Genetic Algorithm (VGA), Particle Swarm Optimization (PSO), Ant-Colony

Optimization (ACO), and Guided Local Search (GLS) and Lin-Kernighan (LKH).

Collision Avoidance is an important component of path planning and currently

can be handled in several different ways. For example, obstacle avoidance can be

handled in path planning. If the obstacle information is known a-priori then the

global path generation algorithm may generate a path in the configuration space that

ensures there are no collisions.. If the obstacle information is not known a-priori and

a potential collision is detected then the local path planner may generate a path to

steer the vehicle away from collision, followed by merging the vehicle back onto the

global path originally planned.

Conflict resolution approaches to handle collision avoidance can be sub-categorized

into rule-based control, deterministic optimal control and stochastic optimal control.

In rule-based controls[19], a vehicle decides a control based on pre-described rule

based policy. This method is not robust to unexpected events. In deterministic opti-

mal control, vehicle and obstacle dynamics are represented using ordinary differential

equations. The algorithm will try to compute reachable sets by solving an optimal

control problem which penalizes the distance from the obstacle[20]. Stochastic opti-

mal control[21] differs in the way that vehicle and obstacle dynamics are represented

by stochastic processes. An optimal control problem is solved to generate collision-free

trajectories.

Model Predictive Control, along with path planning, can also handle collision

avoidance. MPC generates the control actions on a receding time-horizon and so it

only penalizes the collisions within the current time-horizon and hence can act as a

local planner. If a potential collision is detected within the current time-horizon then
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the MPC cost function will penalize the collision generating trajectories and hence

will generate a trajectory which does not cause a collision.

The Potential Field Method (PFM)[7] is a very popular method used for col-

lision avoidance because of it’s elegant mathematical analysis and simplicity. The

fundamental idea behind PFM is that it generates an attractive potential towards

the target and repulsive potential from the obstacles. This approach was originally

designed for static environments and an inherent limitation is that a vehicle can get

trapped in a local minima or it may never reach the goal if the goal is too close to

the obstacle. Also, the shape of the vehicle could only be assumed as a circle/sphere.

Several modification have been proposed to overcome these limitations.

One of the major drawbacks of the PFM is that it uses only position infor-

mation of the vehicles and obstacles. To overcome this limitation, velocity space

methods were introduced. Such methods, instead of relying only on positions, look

ahead in time in the velocity space for a potential collision. These methods include

velocity potential field, velocity obstacle, collision cone and dynamic sliding window.

Velocity potential field[22] is an extension of the original PFM and takes into ac-

count the velocity of the obstacle. Velocity Obstacle (VO) approach[23] determines

the set of velocities of the robot that will cause it to collide with the obstacle for

given velocities of the robot and obstacle. VO predicts those set of velocities in

an adaptive time-horizon which is updated frequently. The collision cone approach,

originally introduced in [24], has some similarities with the VO approach [23] in that

both approaches determine the set of velocities of the robots that will place them

on a collision course with one or more obstacles. However while the VO approach,

and its many extensions [25], has been largely restricted to circles/spheres, the fact

that the collision cone approach has its roots in missile guidance, enables it to deter-

mine closed form collision conditions for a larger class of object shapes [24],[26],[27].
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The great benefit of obtaining analytical expressions of collision conditions is that

these then serve as a basis for designing collision avoidance laws. The collision cone

approach of [24] has been extensively employed in the literature (See for example,

[28],[29],[30],[31],[32],[1]). The Dynamic Window (DW) approach[33] is another on-

line collision avoidance method which is derived directly from the dynamics of the

robot, taking into account the control constraints. It searches for the optimal solution

inside the generated valid search space (safe circular trajectories). The optimization

function searches for velocity and heading that results in maximum clearance from

the obstacles. DW approach is only designed for vehicles with first order dynamics

and hence modifications are required to apply this algorithm in complex systems.

The majority of 2D motion planning algorithms consider the shape of robots

and obstacles (or target) as a point or a circle. However, when the objects are

elongated more in one direction than another, then the circular shape approximation

becomes over conservative. In the context of collision avoidance, especially when

multiple robots or a robot and obstacle are operating in close proximity, this reduces

the available free space in which the robot trajectory can lie. In the context of target-

tracking/rendezvous, this may lead to robot trajectory not intercepting the target.

Some recent work[34, 35] shows that there has been increasing interest in elliptical

shape approximation, however, the developed methods are not suitable for real-time

applications.

When working in 3D space, spherical shape approximations makes this problem

even more accute. For instance, refer Fig 1.1 comprising three moving elongated

agents. If we approximate each of A and B with a sphere, then these two spheres will

intersect and as a consequence, C will deem there is no path for it to go between A

and B, even though such a path exists. To overcome this, one can model the shapes

of A and B using multiple smaller spheres, but this can increase the computational
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Figure 1.1. Elongated and/or non-convex agents in a confined space.

load. In such cases, ellipsoids have been used to serve as better approximations for

the object shapes [36]. For non-convex objects such as star-shaped objects [37]

however, even ellipsoidal approximations can become over conservative, because such

approximations reduce the amount of available free space within which the robot

trajectories can lie. Another practice can be to use polygonal approximations as

bounding boxes for the shapes of the robots and obstacles. However, the polygonal

approximation can lead to increased computational complexity (measured in terms

of obstacle complexity, or the amount of information used to store a computer model

of the obstacle, where obstacle complexity is measured in terms of the number of

obstacle edges [38]). In such cases, one can take recourse to non-convex bounding

approximations involving a combination of ellipsoids and hyperboloids (shown in red

shade in Fig. 1.1). In summary, it is important to not perform over-conservative

shape modelling, at the same time, however, the computational load has to be kept

small.
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This dissertation employs a collision cone based approach to determine collision

avoidance laws for moving objects having elongated, non-convex shapes and target

tracking/rendezvous laws to track a moving finite size target, or a group of finite size

moving targets. The class of vehicles considered are unmanned aerial vehicles (UAVs)

and underwater robotic fish.

The rest of this document is organized as follows: Chapter 2 develops 3D guid-

ance laws for robotic fish to maneuver through moving orifices. A dynamics model

for the robotic fish is considered. Using the collision cone method, 3-D guidance and

control laws are derived to perform horizontal and vertical maneuvers through the

orifice. Simulations are presented to validated the efficacy of the guidance laws.

Chapter 3 presents 2-D vision-based guidance laws to track a target moving

on the ground from a UAS flying at fixed altitude. It is assumed that the UAV is

flying at a fixed known altitude and perceives only visual information to track the

vehicle. Our approach detects and handles the occlusions. Simulations are presented

in custom developed simulator in Py-game.

Chapter 4 employs 3D vision based-guidance laws to track a group of targets

moving on ground from a UAS flying at a variable altitude. A dynamic model of

UAS with 12 states is considered and horizontal as well as vertical guidance laws are

developed to track the moving targets on the ground, even as they maneuver relative

to each other. Simulations are presented in a custom developed simulator in Pygame.

Chapter 5 develops 2D non-cooperative and cooperative collision avoidance/rendezvous

laws when the robots and obstacles are approximated using quadric surfaces. The

robot and obstacles are considered dynamic and may change shape. The presented

simulations illustrates the effectiveness of our guidance laws.

Chapter 6 extends 2D non-cooperative and cooperative collision avoidance/rendezvous

laws to 3-D scenarios. Additionally, the robots and obstacles can be approximated
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using a combination of quadric surfaces, polyhedrons or 3-D point clouds. The pre-

sented simulations shows collision avoidance and motion planning in presence of dy-

namic/shape changing and non-convex obstacles/robots.

Chapter 7 extends 3-D guidance laws to now include robustness properties as

well. Simulations are presented which demonstrate successful obstacle avoidance in

scenarios where states are corrupted with sensor noise.

Chapter 8 presents the conclusion and provides suggestions for future work.
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CHAPTER 2

Model-Based Control of a Robotic Fish to Enable 3D

Maneuvering Through a Moving Orifice

Robotic fish represent a class of underwater robots that are inspired by the

swimming of fish, and have shown great value in environmental and oceanography

research. In the past decade, researchers have developed many different types of

robotic fish; these are quiet, lightweight, and can imitate the natural locomotion of

aquatic animals. In this work, we employ a compact 3D maneuverable robotic fish

with a buoyancy control device to control its depth under- water[1]. The robotic

fish gains its buoyancy by applying a voltage to an IPMC water electrolyzer which

generates hydrogen and oxygen gases. These are collected in two gas chambers, and

this causes the buoyancy of the robot to increase. The robotic fish decreases its

buoyancy by releasing the gases from the gas chambers, through a solenoid valve.

Since the robotic fish is neutrally buoyant, the gas volume variation is minimal. Gas

can spontaneously escape underwater during release. In addition to the buoyancy

control device, the robotic fish also has a servomotor-driven tail which generates 2D

planar motion. A 3D dynamic model is employed to capture the kinematics and

hydrodynamics of the tail, the motion dynamics of the body, and the depth dynamics

caused by buoyancy changes. The above dynamic model is then used to develop

a guidance and control scheme that enables the robotic fish to maneuver through

underwater orifices. Such underwater orifices may be stationary or moving. We note

that a window of a submerged shipwreck, or a narrow opening of an underwater cave,
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Figure 2.1. Fabricated Robotic Fish [1].

represent examples of underwater orifices that are stationary. If the robotic fish is

being utilized for an underwater archaeology expedition, it may be necessary for the

fish to maneuver through such orifices for taking images. Controlling the robotic fish

to pass through a moving orifice would be required when the fish has to perform an

inspection on the underwater portion of floating infrastructures, such as offshore wind

turbines and offshore oil platforms. A moving orifice underwater could also represent

a virtual entity. For example, consider that the robotic fish has a requirement to

swim so as to get close to a moving human diver, or some other moving underwater

biological specimen that it is surveying. Then, by creating a virtual orifice (circle)

around this mobile agent, and maneuvering the robotic fish through this virtual orifice,

the robotic fish can get itself into proximity with the mobile agent. Such a maneuver

needs to necessarily take into account the velocity vectors of both - the robotic fish as

well as the mobile agent, and this is achieved by developing the guidance and control

scheme using a relative velocity framework.

2.1 Description of 3D Maneuverable Robotic Fish

Robotic fish was developed by our collaborators and a detailed description can

be found in [1]. The overall design of the fish is shown in Fig. 2.1. An IPMC

enabled buoyancy control device is used for depth control. A single-joint caudal fin

design is adopted because it is a practical, reliable, and straightforward propulsion
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mechanism for forward swimming. A servo motor is attached at the end of the fish

body to actuate the tail to generate flapping motion. Upon being activated, the

servo motor drives the tail in a sinusoidal pattern. A bias angle is used to change the

direction of the thrust, thus enabling the fish to turn. This design, in conjunction

with the acceleration produced by the buoyancy control device, enables the robotic

fish to achieve three-dimensional maneuvering capabilities.

The buoyancy control device consists of three parts: a solenoid valve, a gas

chamber, and a water electrolyzer. The electrolyzer splits water into oxygen and hy-

drogen gases. It sits below the gas chamber and is immersed in the surrounding fluid.

The gas chamber stores the gas produced by the electrolyzer. The gases accumulate

at the top of the chamber due to gravity, and this displaces the water and increases

the buoyancy. The top of the gas chamber is connected to the inlet of the solenoid

valve, whose outlet connects to the exterior. Turning on the solenoid valve allows the

air to escape and thus decrease the buoyancy.

The prototype has a total length of 0.32 m and weight 0.8 kg. The volume of

the gas chamber is 9x10−6m3. The embedded circuit consists of a micro-controller

and a 7.4 V Li-ion battery. Due to poor reception of the wireless signal [39], the fish

needs to be controlled by a cable. Several open-loop control experiments have been

conducted to validate the model as well as the design. The robot can achieve 0.13

m/s forward velocity, 30.6◦/s turning rate and takes about 5 s to dive to 0.6 m and

10 s to rise [40].

2.2 Dynamic Model of Robotic Fish

Dynamic model of the robotic fish includes Motion Dynamics and Kinematics,

Hydrodynamic Model and Vertical Dynamics and was developed by our collaborators

which can be found in details in reference [1].
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Figure 2.2. Block Diagram representation of the guidance and control law..

2.3 Guidance and Control for passage of the robotic fish through a moving orifice

In this section, we develop guidance and control laws that enable the robotic fish

perform a 3-dimensional maneuver that enables it to pass through a moving orifice.

2.3.1 Guidance Law Development

Fig 2.3 shows the engagement geometry between the robotic fish A and a mov-

ing orifice B, in a three dimensional space. The robotic fish and the orifice are

moving with speeds of VA and VB, respectively, at heading angle pairs of (βA, αA),

and (βB, αB) respectively. Here, βA and αA represent, respectively, the azimuth and

elevation angles of the velocity vector of A, and a corresponding definition holds for

βB and αB. We assume that the robotic fish A is represented by a bounding sphere

of radius RA. The orifice is a circle of radius RB. Let P1P2 represent the line joining

the centers of A and B. Then, r represents the distance P1P2, and (θ, ϕ) represents

the azimuth-elevation angle pair of P1P2. The relative velocity of P2 with respect to

P1 is resolved into three mutually perpendicular components Vθ, Vϕ and Vr. Here, Vr

represents the component of relative velocity along P1P2, while Vθ and Vϕ represent

the two components that are orthogonal to P1P2.
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Figure 2.3. Engagement Geometry in 3 dimensions.

We assume that the orifice B moves with constant velocity, while the robotic

fish A can apply an acceleration of magnitude a at an azimuth-elevation angle pair

of (δ, γ). The kinematics of this engagement are characterized by the equations gov-

erning the line P1P2, as given in (2.1).

ṙ

θ̇

ϕ̇

V̇θ

V̇ϕ

V̇r


=



Vr

Vθ/(r cosϕ)

Vϕ/r

(−VθVr + VθVϕ tanϕ)/r

(−VθVr − V 2
θ tanϕ)/r

(V 2
θ + V 2

ϕ )/r


+



0

0

0

− cos γ sin (δ − θ)

cos γ sinϕ cos (δ − θ)− sin γ cosϕ

− cos γ cosϕ cos (δ − θ)− sin γ sinϕ


a

(2.1)
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As shown in [41], given two moving objects A and B, A will pass through

the orifice B, if the relative velocities belong to a specific set. Using RA and RB

to represent the radii of A and B, respectively, this set of relative velocities can be

encapsulated in a scalar quantity y, which is defined as follows:

y =
r2(V 2

θ + V 2
ϕ )

(V 2
θ + V 2

ϕ + V 2
r )
− (RB −RA)

2 (2.2)

The conditions y < 0, Vr < 0 together define a set in the relative velocity space. As

shown in [41], if the relative velocity components belong to this set, then then A will

pass through B [41]. When the relative velocity components do not belong to this

set, then A needs to apply an appropriate acceleration a, that will drive the relative

velocity vector into this set, and subsequently facilitate passage of A through B.

The acceleration magnitude a can be determined through dynamic inversion

techniques. The time derivative of y is written as:

ẏ =

[
∂y
∂r

∂y
∂θ

∂y
∂ϕ

∂y
∂Vθ

∂y
∂Vϕ

∂y
∂Vr

]
×



ṙ

θ̇

ϕ̇

V̇θ

V̇ϕ

V̇r


(2.3)

The partial derivatives in the above equation can be computed analytically from (2.2).

Define an error quantity e(t) = w(t) − y(t), where w(t) < 0 represents a reference

input. Then, by substituting the time derivatives of the states from (2.1) in (6.15),

and using dynamic inversion techniques, it can be enforced that the error e follow the

dynamics ė = −Ke, if the acceleration a is given by:
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a =
[
K(w − y)(V 2

r + V 2
θ + V 2

ϕ )
2
]
/
[
2r2[−V 2

r Vθ cos γ sin (δ − θ)

+ V 2
r Vϕ(cos γ sinϕ cos (δ − θ)− sin γ cosϕ)

+ Vr(V
2
θ + V 2

ϕ )(cos γ cosϕ sin (δ − θ) + sin γ sinϕ)]
]

(2.4)

Thus, if A applies an acceleration a whose magnitude is given by (2.4), then y will

follow the dynamics ẏ = −K(y − w). By choosing an appropriate K > 0, y will

subsequently reach the reference value w < 0. Application of this acceleration will

thus steer the fish through the orifice, as desired.

2.3.2 Control Law Development

The acceleration command in (2.4) is next converted into control laws that

govern the tail flapping angle and the gas generation rate. Toward this end, the

acceleration a is first resolved into components ax, ay and az along the fish-body

axes. The component az controls the fish depth appropriately for passage through

the orifice. At each time instant, for a given az, the gas volume V3 inside the fish is

updated using the control law given below. It is noted that the gas generation rate

is limited at 10−7m3/s, and this imposes a saturation limit on V̇3.

V3 = −m (Patm + ρgz)

Patmρg

[
az +

CDz

m
w|w|+ ρg

m
(V1 +

PatmVin
Patm + ρgz

− m

ρ
)
]

|V̇3| = sat(|V̇3|, 10−7) (2.5)

where, sat(x, q) represents a saturation function which ensures that x ≤ q is always

true.
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The ax, ay components of the acceleration are converted into fish flapping angle,

while keeping the flapping frequency constant. By re-arranging above equations, the

following equation is obtained:

πρLC

[
U2 sin γ cos γ − d(U sin γ)

2 dt

]
− 1

2
CDxρAxu

2 = m(ax − vr) (2.6)

The above equation is solved for the unknown γ. Since γ is a function of the flapping

angle α1, we can hence compute the value of the flapping angle. To this flapping angle,

a bias is added which is proportional to the difference between the y-axis coordinates

of the fish and the orifice.

2.3.3 X Control

The fish can move forward by flapping it’s caudal fin without a bias. The

acceleration generated by the flapping action is a function of amplitude and frequency

of the flapping angle, α1 as discussed in the dynamics section. However, we will

consider that the flapping frequency is constant and restrict our x position controller

to vary only the amplitude. But, it is also considered that the amplitude of α1 is

constant over a flapping cycle and if required to vary the acceleration, it can change

in alternating odd cycles. In alternating even cycles, we will reduce the bias generated

by y-position controller which is explained in section 2.3.4. The computed value of

desired acceleration in 2.4 can be decomposed into inertial x component as shown in

2.7 and body-fixed frame as in 2.8:

axi = a cos(δ) cos(γc) (2.7)

ax = a cos(δ) cos(γc) cos(ψ) (2.8)
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Substituting the value of ax in the dynamics of the fish we will calculate the desired

force in x direction:

Fx = m(ax − vr) = m(a cos(δ) cos(γc) cos(ψ)− vr) (2.9)

But Fx should also satisfy the dynamics of fish which gives:

πρLC

[
U2 sin γ cos γ − d(U sin γ)

2 dt

]
− 1

2
CDxρAxu

2 = m(a cos(δ) cos(γc) cos(ψ)− vr)

(2.10)

where d(U sin γ)/dt = U̇ sin(γ) + U cos(γ)γ̇

U̇ =
ẏ1ÿ1 + (ẋ1 − Um)√
ẏ21 + (ẋ1 − Um)2

and γ̇ = α̇1 +
(ẋ1 − Um)ÿ1 − ẏ1ẍ1
(ẋ1 − Um)2 + ẏ21

Since x1, y1, γ, α1 are functions of Am and it is assumed that the Am is constant over

a flapping cycle. So the derivatives of x1, y1, γ, α1 will also be a function of Am. We

can then solve equation 2.10 for Am as it is only a function of Am.

2.3.4 Y Control

The control in y position is achieved using a bias in the flapping whose mag-

nitude is directly proportional to the error in y position. This magnitude is added

to α1 obtained in section 2.3.3 to get biassed flapping angle. However, using this

logic, it may be possible that bias may keep on drifting the fish in one direction, so to

overcome that, the amplitude of alternating flapping cycles is kept zero and in that

flapping cycle the bias is driven to zero. So, when the amplitude is non-zero then

bias angle is updated as Ky∆y where Ky is the gain and ∆y is the error in y position

and when in the next cycle the amplitude is zero then the bias is updated as −Kα1α1

where Kα1 is the gain, using this law, the bias angle will be slowly driven to zero with

negligible force generated on the fish.
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2.4 Simulation Results

We now present simulations that validate the guidance and control laws of the

preceding section. We consider that the robotic fish is initially positioned at (0, 0, 0)

with respect to an inertial frame and is moving with a speed of 5.4 cm/sec, with

the velocity vector acting at an azimuth angle βa = −38.35◦ and an elevation angle

αa = 15.8◦. It is desired that this fish should pass through two orifices. The first

orifice is initially positioned at (4 m, 20 cm,−50 cm), and moving with a constant

speed of 5.1 cm/sec, and the velocity vector of the orifice acts at angles βb = −84.29◦,

αb = 11.25◦. These initial conditions lead to a value y = 0.92, which means that the

relative velocity vector is such that if the fish continues to move along its original

trajectory, it will not pass through the orifice. In order to pass through the orifice,

the fish has to perform an appropriate maneuver.

The acceleration generated by (2.4) is shown in Fig 2.4(b), and by application

of this acceleration, the value of y decays to its negative reference value at time

t = 11.36 sec, as seen in Fig 2.4(a). Furthermore, y remains negative until the fish

passes through the orifice at t = 25.66 sec. The corresponding control inputs of the

fish, that is, the tail flapping angle α1 and gas generation volume V3, are shown in Fig

2.6(a),(b). Fig 2.6(c) shows the gas generation rate V̇3 with the imposed saturation

limit. The trajectory of the fish as it passes through the first orifice is shown in Fig

7.12.

After the fish clears the first orifice, it detects a second orifice located at

(−6 m, 30 cm, 50 cm) and moving with a constant speed of 4.1 cm/sec and a velocity

vector that is at an azimuth angle βb = 123.69◦ and an elevation angle αb = 29.02◦.

These conditions correspond to a value of y = 7.67, which is positive, and hence the

fish needs to perform another maneuver to pass through this orifice. The ensuing

acceleration command, generated using (2.4) is shown in Fig 2.4, and again it is seen
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that the influence of this acceleration is to drive y to its negative reference. The

value of y becomes negative at time t = 54.2 sec and remains negative until it passes

through the second orifice at time t = 55.6 sec. The corresponding flapping angle, gas

generation volume and gas generation rate are shown in Fig 2.6(a)-(c). The overall

trajectory showing the fish passing through the two orifices is shown in Fig 7.12. Fig

2.8 shows the modulations in the velocity vector of the fish, as the fish passes through

the two orifices.

Figure 2.4. (a) Guidance Parameter y vs. t, (b) Acceleration magnitude a vs. t.
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Figure 2.5. Control Input time histories: (a) Flapping angle, (b) Gas generation
volume, (c) Gas generation rate.
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Figure 2.6. Control Input time histories: (a) Am, (b) Bias angle, (c) Tail Flapping
angle..

Figure 2.7. 3−D Trajectory of robotic fish as it passes through the two orifices.
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Figure 2.8. (a) Magnitude, (b) Elevation angle, (c) Azimuth angle of velocity vector
of robotic fish.
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CHAPTER 3

Vision based Guidance for Tracking Dynamic Objects

In recent years there has been an increase in the number of applications using

unmanned aircraft systems (UASs). At the same time, researchers have progressively

inclined towards using vision as a primary source of perception [42]. This is mainly

due to cameras becoming cheaper in cost, smaller in size, lighter in weight, and higher

in image resolution. Likewise, as computing resources evolve to be more economical

and powerful, there has been growing interest in research and development for UASs.

On account of their agility, mobility, and form factor, various diverse problems have

found UASs with on-board vision-based sensors to be an ideal solution [43]. Not

only can UASs reach places that are intractable for humans to access, but they are

also excellent platforms for monotonous and dangerous jobs. This includes traffic

monitoring [44, 45], search and rescue [46, 47], reconnaissance for military operations

[48, 49], and much more.

In this work, we construct a system that permits a UAS to pursue a dynamic

ground vehicle using only visual information [50]. To do this we employ the concept

of a rendezvous cone. Concretely, we analytically show how a rendezvous cone can be

used to develop guidance laws for a UAS to track a moving vehicle. These guidance

laws are supported by a comprehensive set of computer vision algorithms that perform

feature detection, track and make adjustments to the centroid of the vehicle, and

filter for robustness and recovery through partial and full occlusions. Moreover, our

proposed system can be applied to applications such as tracking, monitoring, and

surveillance via UASs.
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Figure 3.1. Our proposed framework allows an unmanned aircraft system to visually
track a ground vehicle under the existence of partial and total occlusions using unique
guidance laws based on a rendezvous cone approach..

The remainder of this chapter is organized as follows. We discuss related work

in Section 3.1. Section 4.1 provides a concise statement of the problem to be solved.

Our vision-based guidance scheme is presented in Section 4.2. In Section 4.3, we

report our simulation results.

3.1 Related Work

3.1.1 Cones in Relative Velocity Space

There has been related work on the development of guidance laws using cones

constructed in the relative velocity space. The concept of collision cones was proposed

in [51] to represent a collection of velocity vectors of an object which leads to a
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collision with another moving object. Guidance laws to avoid collision were then

designed to steer the current velocity vector of the object outside the collision cone.

This idea was later employed by many researchers for various applications ranging

from aircraft conflict detection and resolution [52], vision-based obstacle avoidance

[53, 54], automobile collision avoidance [55], robotic collision avoidance [56], and to

study collision avoidance behavior in biological organisms [57].

In subsequent work, collision cones have been extended to higher-dimensional

spaces and general obstacle shapes [58]. They’ve also been used to design safe passage

trajectories through narrow orifices for aerial as well as underwater vehicles [1]. In

contrast to these prior research problems, the guidance laws presented in our work

specify accelerations which when applied by a UAS enables it to steer its velocity

vector towards the moving object and subsequently match its velocity to that of the

object. The term rendezvous cone is more representative for this class of applications

and we shall adopt this term in our presentation. In addition, our rendezvous cone

approach employs vision-based information in order to perform its computations.

3.1.2 Vision-Based Tracking

The first comprehensive survey on visual tracking and categorization of state-

of-the-art algorithms was presented in [59]. Further research was provided by [60]

and [61] where the main trends and taxonomy in object detection and tracking are

introduced. Various vision-based tracking techniques exist ranging from low-level

HSV threshold color-based detection [62, 63] through high-level tracking-by-detection

learning-based methods [64, 65, 66]. To overcome known challenges in visual tracking,

many ideas such as template matching [67], feature matching [68], and optical flow

[69, 70, 71] have been adopted by researchers.
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Figure 3.2. An engagement between a UAS (A) and a ground vehicle (B)..

3.2 Problem Statement

Consider a scenario in which a UAS, equipped with a downward-facing camera,

is flying at a known altitude. In addition, the UAS only perceives visual information

as it tracks a ground-based vehicle. It is assumed the vehicle has been detected and is

initially within the UAS’s field of view. Moreover, the motion of the vehicle is along

a plane orthogonal to the principal axis of the camera and thus the image projection

is orthographic. The problem is to develop vision-based guidance laws that facilitate

the UAS in consistently tracking the vehicle even as it performs evasive maneuvers

and encounters occlusions.

3.3 Vision-Based Guidance

3.3.1 Engagement Geometry and Guidance Laws

We model the engagement geometry between a UAS (A) and vehicle (B) as

an orthogonal projection onto a horizontal plane, Fig. 3.2. The UAS and vehicle

are moving with speeds VA and VB, and heading angles α and β, respectively. The
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distance between A and B is represented by r while θ denotes the angle made by the

line of sight (LOS) AB. The UAS has two control inputs: lateral acceleration alat

and longitudinal acceleration along. Thus, A can rotate its velocity vector as well as

change its speed. The vehicle can apply an acceleration of magnitude aB which acts

at an angle δB, and R denotes the radius of B. X portrays the rendezvous cone from

A to B. If A can steer its velocity vector into X, then A is on a trajectory that will

cause it to rendezvous with B. The kinematics governing the engagement geometry

are characterized by the equations governing AB,

ṙ

θ̇

V̇θ

V̇r

α̇

V̇A

β̇

V̇B



=



Vr

Vθ/r

−VθVr/r

V 2
θ /r

0

0

0

0



+



0

0

− cos(α− θ)

sin(α− θ)

1/VA

0

0

0



alat +



0

0

− sin(α− θ)

− cos(α− θ)

0

1

0

0



along +



0

0

sin(δB − θ)

cos(δB − θ)

0

0

sin(δB − β)/VB
cos(δB − β)



aB,

where Vr and Vθ are the components of the relative velocity vector.

We define the rendezvous cone [51] as

y1 = r2V 2
θ −R2(V 2

θ + V 2
r ), (3.1)

i.e., it is the cone of relative velocity vectors that will cause A to rendezvous with

B. This is established by two conditions: (i) y1 < 0, Vr < 0 and (ii) y1 = 0, Vr < 0.

Condition (i) corresponds to the case of the relative velocity vector being inside the

rendezvous cone while condition (ii) corresponds to the scenario of the relative velocity

vector being aligned with the boundary of the rendezvous cone. When (ii) occurs A
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will graze B at the instant of closest approach. We define the velocity matching error

as

y2 = V 2
r + V 2

θ . (3.2)

Dynamic inversion is employed to drive the output functions to the desired

values. By differentiating (3.1) and (3.2) we obtain the dynamic evolution of y1 and

y2 as

ẏ1
ẏ2

 =

∂y1∂r ∂y1
∂θ

∂y1
∂Vθ

∂y1
∂Vr

∂y2
∂r

∂y2
∂θ

∂y2
∂Vθ

∂y2
∂Vr

×


ṙ

θ̇

V̇θ

V̇r


. (3.3)

The partial derivatives are expressed as

∂y1∂r ∂y1
∂θ

∂y1
∂Vθ

∂y1
∂Vr

∂y2
∂r

∂y2
∂θ

∂y2
∂Vθ

∂y2
∂Vr

 =

2rV 2
θ 0 2Vθ(r

2 −R2) −2r2Vr
0 0 2Vθ 2Vr

 . (3.4)

To calculate the required control input, we define two error quantities with

respect to y1 and y2. The error in y1 is specified as e1(t) = y1d(t) − y1(t), where

y1d(t) < 0 is a reference input while the error in y2 is described as e2(t) = 0 − y2(t).

Taking y1d(t) as a constant ∀t, we seek to determine alat and along which will ensure

the error dynamics follow the equations ė1 = −k1e1 and ė2 = −k2e2 where k1, k2 > 0

are constants. This in turn allows the quantities y1 and y2 to follow the dynamics,

i.e., ẏ1
ẏ2

 =

k1(y1d − y1)
−k2y2

 . (3.5)

After substituting (3.1), (3.4), and (3.5) into (3.3) we obtaina11 a12

a21 a22


 alat
along

 =

−k1(y1d − y1)/2
k2y2/2

−
b1
b2

 aB, (3.6)
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where

a11 = Vθ(r
2 −R2) cos(α− θ) +R2Vr sin(α− θ),

a12 = Vθ(r
2 −R2) sin(α− θ) +R2Vr cos(α− θ),

a21 = Vθ cos(α− θ) + Vr sin(α− θ),

a22 = Vθ sin(α− θ) + Vr cos(α− θ),

b1 = VrR
2 cos(δB − θ)− Vθ(r2 −R2) sin(δB − θ),

b2 = −Vr cos(δB − θ)− Vθ sin(δB − θ).

By solving (4.14) we obtain

alat =
[
k1(y1 − y1d)

(
Vr cos(α− θ) + Vθ sin(α− θ)

)
+ k2y2

(
VrR

2 cos(α− θ)− Vθ(r2 −R2) sin(α− θ)
)

− 2VrVθr
2 sin(α− δB)aB

]
/(2VrVθr

2) (3.7)

along =
[
k1(y1 − y1d)

(
Vr sin(α− θ)− Vθ cos(α− θ)

)
+ k2y2

(
VrR

2 sin(α− θ) + Vθ(r
2 −R2) cos(α− θ)

)
+ 2VrVθr

2 cos(α− δB)aB
]
/(2VrVθr

2). (3.8)

(3.7) and (3.8) serve as the acceleration commands to the UAS and are supplied

to our simulator. We note the acceleration commands alat(t) and along(t) depend

on continuous feedback from the quantities y1 and y2, states r, θ, Vr, Vθ, and the

acceleration vector of the vehicle. The quantities r and θ are obtained by direct

measurements from the vision system while the remaining quantities are estimated

using an acceleration model (Section 3.3.2).
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3.3.2 Vehicle Acceleration Model

The positional measurements of the vehicle in the image frame are obtained

using feature point tracking. In addition, since it’s assumed the UAS knows its own

states, we can transform the image measurements to an inertial frame. These inertial

measurements are then fed into a linear acceleration model [72, 73]. The model filters

the position data and provides estimates of the velocity and acceleration of the vehicle.

Given that the position of the vehicle in the inertial frame is represented as (xB, yB),

we obtain the discrete form of the motion model as

χB(k) = FBχB(k − 1) +wB(k),

zB(k) = HBχB(k) + vB(k). (3.9)

where the state vector of the vehicle is represented by χB = [xB, ẋB, ẍB, yB, ẏB, ÿB]
⊤

and zB is the measurement vector. The state transition matrix corresponding to the

acceleration model is defined as

FB =

T 0

0 T

 ,
where 0 is a 3× 3 matrix of zeros and

T =


1 ∆t [e−αB∆t + αB∆t− 1]/α2

B

0 1 [1− e−αB∆t]/αB

0 0 e−αB∆t

 .

The process noise is defined as wB ∼ N
(
0,QB

)
and the noise covariance matrix is

given by

QB = 2αBσ
2
B

Q 0

0 Q

 ,
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Figure 3.3. The overall architecture of the vision-based guidance system..

where αB, σB, and Q are described in [72]. The size of Q and 0 is 3 × 3. The

measurement matrix takes the form

HB =

1 0 0 0 0 0

0 0 0 1 0 0

 .
vB ∼ N

(
0,RB

)
is the measurement noise and RB is the measurement noise covari-

ance matrix. The velocity estimates (ẋB, ẏB) of the vehicle are transformed back into

the UAS-centered relative frame to obtain the relative velocity components V̂r and

V̂θ. Similarly, the vehicle acceleration estimates (ẍB, ÿB) are translated into âB and

δ̂B.

3.3.3 System Architecture

Our system architecture is shown in Fig 3.3. First, images captured by the

UAS are used to estimate the relative and absolute position of the vehicle. Next, the

measured velocity and acceleration states are processed to determine the quantities

[r̂, θ̂, V̂θ, V̂r, âB, δ̂B]
⊤. The filtered estimates of the noisy rm and θm measurements are

represented by r̂ and θ̂, V̂θ and V̂r express approximations of the relative velocity com-

ponents, and âB and δ̂B represent estimates of the absolute acceleration magnitude

and direction of the vehicle. Finally, these values are used to compute an assessment

of the current rendezvous cone. An estimate of the UAS velocity vector with respect

to the rendezvous cone is denoted by ŷ1, while ŷ2 measures the magnitude of the

relative velocity vector. The guidance algorithm generates suitable accelerations alat

and along which drive ŷ1 and ŷ2 to the desired reference values. These accelerations
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move the UAS to a new position whereby an updated image of the scene is generated

by the simulator.

3.3.4 Computer Vision Related Work

Note that this work was carried out by our collaborator. A Python Pygame [74]

simulator that constructs orthographic projections from simulated kinematic states of

a UAS and a vehicle was developed. A Kanade-Lucas-Tomasi (KLT) tracker [75, 76]

was used for the task of tracking feature point sets. A method for performing Centroid

adjustment and occlusion handling was also presented.

3.4 Simulations

In this section, we demonstrate the behavior of our vision-based guidance frame-

work using the following (unknown to the UAS) vehicle trajectory variants: lane

changing and squircle following. All simulations were performed on a Windows 10

machine with an Intel Core i7-8700 CPU and 32 GB RAM. For every simulation,

we make use of the true values of each quantity alongside their measured and/or

estimated values to generate the data plots.

3.4.1 Lane Changing Trajectory

We simulate the vehicle to move in the east direction while performing lane

changing maneuvers of approximately 4m at arbitrary time instances with occlusions.

The UAS starts at position WxA0 = [0.0, 0.0, 150.0]⊤(m) while the vehicle begins at

WxB0 = [50.0,−30.0, 0.0]⊤(m) with speeds WVA0 = 31.31 (m/s) (70mph) and WVB0 =

22.22 (m/s) (50mph), and headings Wα0 = 0.0◦ and Wβ0 = 0.0◦, respectively. The

simulation was run for approximately 149 secs. Fig. 3.4 depicts the kinematic state

information collected over time. Under total occlusions, measurements disappear and

33



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

20

40

60

80

0

0

time (secs)
r
(m

)

r
r̂
rm

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

20

40

60

80

0

0

time (secs)

r
(m

)

r
r̂
rm

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

20

40

60

80

0

0

time (secs)

r
(m

)

r
r̂
rm

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

20

40

60

80

0

0

time (secs)

r
(m

)

r
r̂
rm

(a)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−200

0

200

0

0

time (secs)

θ
(◦
)

θ

θ̂
θm

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−200

0

200

0

0

time (secs)

θ
(◦
)

θ

θ̂
θm

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−200

0

200

0

0

time (secs)

θ
(◦
)

θ

θ̂
θm

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−200

0

200

0

0

time (secs)

θ
(◦
)

θ

θ̂
θm

(b)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−10

−5

0

0

0

time (secs)

V
r
(m
/s
)

Vr

V̂r

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−10

−5

0

0

0

time (secs)

V
r
(m
/s
)

Vr

V̂r

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−10

−5

0

0

0

time (secs)

V
r
(m
/s
)

Vr

V̂r

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−10

−5

0

0

0

time (secs)

V
r
(m
/s
)

Vr

V̂r
(c)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−6

−4

−2

0

2

0

0

time (secs)

V
θ
(m
/s
)

Vθ

V̂θ

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−6

−4

−2

0

2

0

0

time (secs)

V
θ
(m
/s
)

Vθ

V̂θ

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−6

−4

−2

0

2

0

0

time (secs)

V
θ
(m
/s
)

Vθ

V̂θ

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−6

−4

−2

0

2

0

0

time (secs)

V
θ
(m
/s
)

Vθ

V̂θ(d)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

−3

0

3

0

0

time (secs)a
cc
el
er
a
ti
on

(m
/s

2
)

alat
along

(e)

Figure 3.4. Lane changing trajectory: (a)-(d) true, estimated, and measured states r,
θ, Vr, and Vθ; (e) acceleration commands alat and along. No ( ), partial ( ), and
total ( ) occlusion states are indicated along the zero line..
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ŷ2
y2d

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

20

40

60

80

0
0

time (secs)

y 2
(m

2 /
s2
)

y2
ŷ2
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Figure 3.5. Lane changing trajectory: (a) speed of the UAS and vehicle and (b) their
differences; (c) heading of the UAS and vehicle and (b) their differences; (e)-(f) true
and estimated objective functions y1 and y2..
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state estimations are utilized to perform guidance. It can be observed in the data

plots that estimations may veer away from the true values if an occlusion persists for

a long time. In the simulations, the occurrence of occlusions is accompanied by an

increasing covariance (RB) in the measurement noise (vB) in (3.9) and by employing

previous estimates as current measurements in the acceleration model. In Fig. 3.5,

the speed and heading profiles of the UAS and vehicle along with their deltas are

provided. The trajectories of the UAS and vehicle in world and camera reference

frames are shown in Fig. 3.6. Visual tracking was successfully performed using our

occlusion handling and rendezvous cone-based guidance scheme.

3.4.2 Squircle Following Trajectory

We simulate the vehicle to proceed along a parameterized squircular trajectory

such that it traverses the closed curve with a period of 360 secs. The UAS begins at

position WxA0 = [0.0, 0.0, 350.0]⊤(m) with speed WVA0 = 31.31 (m/s) (70mph) while

the vehicle starts at WxB0 = [0.0,−20.0, 0.0]⊤(m). Both the UAS and vehicle have

an initial heading of Wα0 = 0.0◦ and Wβ0 = 0.0◦. The vehicle speed WVB decreases

around the corners to approximately 14.79 (m/s) (33.08mph) while it reaches nearly

22.63 (m/s) (50.62mph) along the straight ways. The simulation was run for about

671 secs. In Fig. 3.7, the true, estimated, and measured kinematics states along with

the lateral and longitudinal accelerations are shown. The speed, heading, and deltas

are visualized in Fig. 3.8 along with the true and estimated objective functions y1

and y2. Fig. 3.9 depicts the trajectories of the UAS and vehicle in world and camera

frames of reference. Our vision-based guidance system was able to successfully allow

the UAS to chase the vehicle while matching its speed and heading at non-constant

velocities.
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Figure 3.7. Squircle following trajectory: (a)-(d) true, estimated, and measured states
r, θ, Vr, and Vθ; (e) acceleration commands alat and along..
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Figure 3.8. Squircle following trajectory: (a) speed of the UAS and vehicle and (b)
their differences; (c) heading of the UAS and vehicle and (d) their differences; (e)-(f)
true and estimated objective functions y1 and y2..
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Figure 3.9. Squircle following trajectory: UAS and vehicle trajectories in world (a)
and camera (b) frames of reference..
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CHAPTER 4

Vision based Guidance for Tracking Multiple Dynamic

Objects

The problem of using a UAS, or a network of UASs, to track a group of mov-

ing ground-based vehicles is one of active interest. For example, [77] employs the

robustness of RANSAC techniques for detecting and following multiple targets. The

line of sight to the target is used to adjust the yaw rate of the UAS to maintain

tracking. In other work, [78] considers the problem of having a set of UASs track a

moving segment of vehicles using the density distribution of the vehicles on the road.

A Voronoi approach is employed to ensure that there is at least one UAS within a

specified distance from each point on the road where the car density is non-zero. A

guidance law is provided in terms of positional updates to the UAS. More approaches

on the topic of UAS tracking are provided in a recent literature survey [79].

In this work[80], we develop a system that enables a UAS to pursue multiple

kinetic vehicles using only visual information. To do this, we develop analytical guid-

ance laws based on the concept of a rendezvous cone. Our approach bounds multiple

moving ground-based vehicles by a tight-fitting ellipse which is tracked by the UAS.

The relative velocity among the vehicles may cause the bounding ellipse to stretch

and/or rotate over time. However, our rendezvous cone method accounts for this

effect by considering the kinematics of the relative position, as well as velocity of the

two focal points of the ellipse, relative to the UAS. These are then used to synthesize

UAS acceleration commands. Our guidance laws are supported by a comprehensive
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Figure 4.1. Our proposed framework allows an unmanned aircraft system to visually
track multiple ground vehicles under the existence of partial and total occlusions
using novel guidance laws based on a rendezvous cone approach..

assortment of computer vision algorithms that perform feature detection, track and

make adjustments to the centroid of a vehicle, and filter for robustness and recovery

through partial and full occlusions.

The remainder of the chapter is structured as follows. In Section 4.1, a succinct

statement of the problem to be solved is given. Section 4.2 presents our vision-based

guidance scheme. We discuss simulation results in Section 4.3.

42



4.1 Problem Statement

Consider a scenario in which a UAS, equipped with a downward-facing camera,

is flying at a known altitude. In addition, the UAS perceives only visual information

as it tracks multiple, moving ground vehicles. It is assumed that all vehicles have

been detected and are initially within the UAS’s field of view. Moreover, the motion

of the vehicles are along a plane orthogonal to the principal axis of the camera and

thus the image projection is orthographic. The problem is to develop vision-based

guidance laws that facilitate the UAS to consistently track all the vehicles even as

they perform evasive maneuvers and the UAS encounters occlusions.

4.2 Vision-Based Guidance

In this section, the vision-based guidance algorithms are discussed in several

steps. The construction of a minimum-area ellipse that encloses the vehicles being

tracked is described in Section 4.2.1. In Section 4.2.2 and Section 4.2.3, the use

of a rendezvous cone approach to determine lateral and longitudinal acceleration

components of the UAS that will enable its horizontal projection (on the ground

plane) to rendezvous with the ellipse is explained. The image relations required by

these guidance laws are detailed in Section 4.2.4. The vertical-axis guidance laws

are described in Section 4.2.5. The conversion of these guidance commands into

force and torque requirements on the UAS is examined in Section 4.2.6. The UAS’s

reliance on estimates of the acceleration of the focal points of the minimum-area

ellipse is discussed in Section 4.2.7. In Section 4.2.8, the overall system architecture

is explained.
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Figure 4.2. The minimum area ellipse surrounding multiple ground vehicles (Bi)..

4.2.1 Minimum Area Ellipse

Assume that there are n ground vehicles, (B1, B2, . . . , Bn), of arbitrary shape

and size that a UAS must visually track. We propose a methodology to obtain a

minimum area ellipse E surrounding the vehicles and then develop guidance laws

to track this ellipse. First, we assume that each vehicle can be represented by a

rectangular bounding box as shown in Fig. 4.2. Next, we obtain the four corner

points of each bounding box. Last, we extract the 4n corner points (denoted by a

red X in Fig. 4.2) that contribute to the convex hull (illustrated by the red polygon

in Fig. 4.2).

To obtain the minimum area ellipse surrounding the convex hull, we solve an

optimization problem [81] based on the Khachiyan algorithm [82]. This algorithm

is guaranteed to provide a solution in finite time. Furthermore, the solution time is

based on the number of points and the desired accuracy. The final solution will be

different from the optimal solution by no more than the pre-specified tolerance value.

Assume that there are m convex hull points, whose coordinates populate the entries
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of a matrix P ∈ R2×m. The shape and the center of the minimum area ellipse are

encapsulated in a matrix A ∈ R2×2 and c ∈ R2×1, respectively. Then, the equation

of the ellipse in the center form is represented by

(x− c)⊤A(x− c) = 1. (4.1)

The optimization problem is defined as

min: log(det(A))

subject to: (pi − c)⊤A(pi − c) <= 1, (4.2)

where pi is the i
th column of the P matrix, or equivalently, the ith point to be enclosed

inside the ellipse. We define a matrix Q ∈ R3×m such that Q =

P
1

.

Algorithm 1 Minimum Area Ellipse

Initialization: uE ← (1/n)1

while stopping criterion is not satisfied do

Ascent Search Direction:

gi(uE) = diag(Q⊤(Q diag(uE)Q
⊤)−1Q)

Set j = argmaxi gi(uE)

Line Direction: α← gi(uE)−(n+1)
(n+1)(gi(uE)−1)

Update: uE = uE + α∆uE

end while

where ej is the j
th unit vector and the stopping criteria is either maximum number

of iterations reached or the desired tolerance is met.
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Next, we initiate a vector uE = (1/n)1, and find u∗
E as per Algorithm 1 which

is used to obtain the optimal minimum area ellipse. The shape matrix and center of

the ellipse is obtained as

A = (1/n)(PUP⊤ − (Pu∗
E)(Pu∗

E)
⊤)−1,

c = Pu∗
E, (4.3)

where U = diag(u∗
E).

Note that the singular value decomposition (SVD) of the shape matrix can be

used to acquire the major axis, minor axis, and orientation of E. Concretely,

[UEQEVE] = svd(A), b = 1/
√

QE(1, 1), a = 1/
√

QE(2, 2), (4.4)

where the matrix VE is the rotation matrix which can be used to extract the orien-

tation of E.

4.2.2 Horizontal Plane Guidance Laws

We model the engagement geometry between A and E as an orthogonal pro-

jection onto a horizontal plane as shown in Fig. 4.3. The UAS is moving with a

speed and heading of VA and α, respectively. The n ground vehicles, enclosed by E,

are moving with speeds [VB1, VB2, . . . , VBn], and heading angles [β1, β2, . . . , βn]. Let

F1, F2 represent the focal points of E, let r1 be the distance AF1, and let θ1 indicate

the angle made by AF1 (on the horizontal plane) with respect to a reference line.

Similarly, let r2 denote the distance AF2 and θ2 be the angle made by AF2 on the

horizontal plane. On the horizontal plane, the UAS has two control inputs: lateral

acceleration alat (which enables the UAS to rotate its velocity vector on the horizontal

plane), and longitudinal acceleration along (which allows the UAS to adjust its speed

component on the horizontal plane).
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Figure 4.3. An engagement between a UAS (A) and a set of ground vehicles..

The accelerations of each of the n target vehicles are represented by magnitude

aBi, acting at angle δBi, for i = 1, 2, 3, . . . , n. These accelerations may cause the

enclosing ellipse E to change in size and/or rotate. Let a1, a2 portray the acceleration

magnitudes of the focal points F1 and F2, and let δ1, δ2 be the angle (on the horizontal

plane) at which these accelerations act (Fig. 4.3). In Fig. 4.3, X represents the

rendezvous cone from A to E on the horizontal plane. If A can steer its velocity

vector into X, then A is on a trajectory that will cause it’s projection to rendezvous

with E.

We define the state vector governing the relative kinematics between A and E as

Z =

[
r1, θ1, Vθ1, Vr1, r2, θ2, Vθ2, Vr2, α, VA

]⊤
. In the state vector, Vr1 and
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Vθ1 are the components (taken on the horizontal plane) of the relative velocity vector

along and perpendicular to the line AF1, while Vr2 and Vθ2 are the corresponding

quantities for AF2. Then, the engagement geometry between A and E is characterized

by the kinematic equations governing AF1 and AF2,

Ż =



Vr1

Vθ1
r1

−Vθ1Vr1
r1

V 2
θ1

r1

Vr2

Vθ2
r2

−Vθ2Vr2
r2

V 2
θ2

r2

0

0



+



0

0

sin(δ1 − θ1)a1
cos(δ1 − θ1)a1

0

0

sin(δ2 − θ2)a2
cos(δ2 − θ2)a2

0

0



−



0 0

0 0

cos(α− θ1) sin(α− θ1)

− sin(α− θ1) cos(α− θ1)

0 0

0 0

cos(α− θ2) sin(α− θ2)

− sin(α− θ2) cos(α− θ2)

−1/VA 0

0 −1



 alat
along

 .

(4.5)

The rendezvous cone is defined as the set of velocity vectors of A that will cause

the projection of A (on the ground plane) to rendezvous with E. Defining a quantity

y1 [83] as

y1 = A1
2
(
1 + τV1

2
)
+ A2

2
(
1 + τV1

2
)

+ 2A1A2

√
τ
(
V1

2 + V 2
2

)
+ (τV1V2)2 + 1− 4a2V1

2V2
2, (4.6)

where

A1 = r1Vθ1V2, A2 = r2Vθ2V1, Vi =
√
V 2
θi + V 2

ri; i = 1, 2,

τ =

(
r1Vr1
V 2
1
− r2Vr2

V 2
2

r1Vθ1
V1

+
r2Vθ2
V2

)2

, (4.7)
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the rendezvous cone is then given by

RA = {VA, α : y1 ≤ 0
⋂

Vr1 + Vr2 < 0}. (4.8)

If the velocity vector of A lies inside the rendezvous cone, then the projection of A is

on a trajectory to rendezvous with E. Note that the condition y1 < 0, Vr1 + Vr2 < 0

coincides with the scenario of the relative velocity vector being inside the rendezvous

cone. The condition y1 = 0, Vr1 + Vr2 < 0 corresponds to the situation in which the

relative velocity vector is aligned with the boundary of the rendezvous cone. When

the latter occurs, the horizontal projection of A will just graze E at the instant of

closest approach.

In addition to y1, we define a quantity y2 which corresponds to the magnitude

(on the horizontal plane) of the relative velocity between A and a point Ec ∈ E. More

formally,

y2 = V 2
r + V 2

θ , (4.9)

where Vr and Vθ are the relative velocity components along and perpendicular to the

line joining the horizontal projection of A and a point Ec that we would like the UAS

to match its velocity with. A dynamic inversion method is employed to drive the

output functions y1 and y2 to their desired values. By differentiating (4.6) and (4.9)

we obtain the dynamic evolution of y1 and y2 asẏ1
ẏ2

 = M Ż, (4.10)

where

M =

∂y1∂r1

∂y1
∂θ1

∂y1
∂Vθ1

∂y1
∂Vr1

∂y1
∂r2

∂y1
∂θ2

∂y1
∂Vθ2

∂y1
∂Vr2

0 0

∂y2
∂r1

∂y2
∂θ1

∂y2
∂Vθ1

∂y2
∂Vr1

∂y2
∂r2

∂y2
∂θ2

∂y2
∂Vθ2

∂y2
∂Vr2

0 0

 .
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Substituting the value of Ż from (7.26) into (6.15) and collecting the acceleration

terms we get ẏ1
ẏ2

 = M1 +M2

a1
a2

−M3

 alat
along

 , (4.11)

where M1, M2 and M3 are denoted as

M1 = M



Vr1

Vθ1
r1

−Vθ1Vr1
r1

V 2
θ1

r1

Vr2

Vθ2
r2

−Vθ2Vr2
r2

V 2
θ2

r2

0

0



, M2 = M



0 0

0 0

sin(δ1 − θ1) 0

cos(δ1 − θ1) 0

0 0

0 0

0 sin(δ2 − θ2)

0 cos(δ2 − θ2)

0 0

0 0



,

M3 = M



0 0

0 0

cos(α− θ1) sin(α− θ1)

− sin(α− θ1) cos(α− θ1)

0 0

0 0

cos(α− θ2) sin(α− θ2)

− sin(α− θ2) cos(α− θ2)

−1/VA 0

0 −1



.
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To calculate the required control inputs along and alat, we define two error

quantities in y1 and y2. The error in y1 is specified as e1(t) = y1d(t) − y1(t), where

y1d(t) < 0 is a reference input, while the error in y2 is described as e2(t) = 0− y2(t).

Taking y1d(t) as a constant ∀t we seek to determine alat and along, which will ensure the

error dynamics follow the equations ė1 = −k1e1 and ė2 = −k2e2, where k1, k2 > 0 are

constants. This in turn stipulates that the quantities y1 and y2 follow the dynamicsẏ1
ẏ2

 =

k1(y1d − y1)
−k2y2

 . (4.12)

Substituting (4.12) into (4.11), we obtaink1(y1d − y1)
−k2y2

 = M1 +M2

a1
a2

−M3

 alat
along

 , (4.13)

from which the values of the control inputs are obtained as alat
along

 = M−1
3

M1 +M2

a1
a2

−
k1(y1d − y1)
−k2y2


 . (4.14)

(4.14) serve as the acceleration commands to the UAS and are supplied to our simu-

lator.

These acceleration commands, alat and along, will ensure an exponential decay

of y1 and y2 to their reference values. We note that alat(t) and along(t) depend on

continuous feedback of the quantities y1 and y2, states r1, θ1, Vr1, Vθ1, r2, θ2, Vr2, Vθ2,

and the acceleration vectors of the two focal points F1 and F2 of E. The quantities r

and θ are obtained by direct measurements from the vision system while the remaining

quantities are estimated using an acceleration model incorporated into a Kalman

Filter (Section 4.2.7).
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4.2.3 Accounting for Singularities via a Boundary Layer

The horizontal-plane guidance laws (4.14) designed in Section 4.2.2 may en-

counter a singularity issue when the determinant of M3 becomes small. More specif-

ically, as det(M3) → 0, (4.13) progressively loses output-controllability (i.e., the

system requires progressively larger acceleration magnitudes to cause small changes

in y1 and y2). To overcome this problem, we construct a boundary layer around the

region of the state space where det(M3) ∈ [−ϵ, ϵ], where ϵ is a small number. When

the state trajectories enter this boundary layer, we bypass the singularity issue by

employing proportional laws of the form

along = Ksp esp +Kr rEc ,

alat = Kh eh +Kθ eθ, (4.15)

where

esp = VEc − VA, eh = γEc − α,

eθ = θEc − α, Kr = Kr,mag sign( α− θc − π/2). (4.16)

Ksp, Kh, Kθ, and Kr,mag are all positive constants, γEc is the heading angle of the

point Ec ∈ E, θEc is the angle of the line of sight from the UAS to Ec, and rEc is the

distance between the UAS and Ec. The use of these linear guidance laws inside the

boundary layer is justified since the width of the boundary layer is small. Although

this is one way of dealing with the singularity problem, other forms of controllers

within the boundary layer are also possible. We note that during those time intervals

where the state trajectories are inside the boundary layer the exponential decay of y1

and y2 does not occur.
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4.2.4 Image Formulation Relations

The position state measurements required by the guidance laws of the previous

section are obtained from the camera images. Assume that we have camera calibration

information such as the field of view ϑ and image sensor width W . Then, given the

altitude W zA(t) we can calculate the camera focal length as

φ =
W
2

[
tan

(
ϑ

2

)]−1

, (4.17)

where an object of arbitrary constant length Wx in the world frame has the following

projected length on the image plane,

x = Wx

[
φ

W zA

]
. (4.18)

Note that changing the altitude has the following effects on the visual appearance

of 2D objects in the image plane: (1) the apparent size of the objects increases as

the altitude decreases, and likewise the size decreases as altitude increases; (2) the

locations of the objects tend to move away from the image center as altitude decreases

while they tend to move towards the image center as altitude increases. The length

x on the image plane can represent either size or distance, which are both inversely

related to altitude.

We denote the axes-aligned bounding box that restricts the projection of the

enclosing ellipse in the image plane as the control area. The corner points of this

box, xmin and xmax, can be obtained by computing the extreme values from the

parametric equations of the enclosing ellipse. The size of the control area is defined

by xS = ∥xmax − xmin∥2. The Euclidean distance from the image center xO to the

midpoint of the control area xcenter is denoted as xC . These parameters are portrayed

in Fig. 4.4. Next, we proceed to use xS, xC , and
W zA to form a vertical guidance

strategy.
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Figure 4.4. The axes-aligned bounding box of the minimum area ellipse and definition
of xS and xC ..

4.2.5 Vertical Guidance Laws

As the UAS follows the horizontal guidance laws and the ground vehicles ar-

bitrarily maneuver, it is possible that the control area may become too large or the

vehicles may exit the camera’s field of view. This scenario can be addressed by pro-

viding vertical guidance to complement our horizontal guidance scheme. To perform

successful object tracking, we require the control area to remain inside the field of

view and that its size stay within desirable bounds. Although it is advantageous for

the control area size and distance to play a role in regulating the altitude of the UAS,

we also take into consideration that only letting projections (i.e., quantities in image

plane) dictate the altitude control may lead to driving the system towards undesirable

altitudes. To remedy this situation, we synthesize control commands that keep the

altitude in check by producing restoring actions when the altitude becomes too low

or high.

Utilizing (4.18), we obtain

xS = WxS

[
φ

zA

]
, xC = WxC

[
φ

zA

]
, (4.19)
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where we substitute W zA with zA for readability. In (4.19), WxS denotes size of the

control area and WxC is the planar Euclidean distance between the UAS and ellipse

center in the world frame. Note that under orthographic projection assumptions,

WxC = r, where r is line of sight distance between the UAS and the center of the

ellipse. Therefore, (4.19) can be used to additionally obtain the relation xC = r
[
φ
zA

]
.

Using (4.19), we have

z̈A = −φWxS
(
ẍS
x2S
− 2ẋ2S

x3S

)
. (4.20)

Then, substituting uzA = z̈A and solving for ẍS we get

ẍS = −
(

x2S
φWxS

)
uzA + 2

ẋ2S
xS
. (4.21)

Next, we define

uS ≜ −
(

x2S
φWxS

)
uzA + 2

ẋ2S
xS
, (4.22)

and obtain ẍS = uS. A PD controller can be used to drive xS → xdesS thereby

obtaining

uzA,S = −φ
WxS
x2S

Kp,S(eS) +
φWxS
x2S

Kd,S(ẋS), (4.23)

where eS = xdesS − xS, Kp,S, and Kd,S are the proportional and derivative gains.

Finally,

uzA,Z = Kp,z(ez) +Kd,z(żA), (4.24)

where ez = zdesA −zA, and Kp,z and Kd,z are the respective proportional and derivative

gains for zA.

By using our horizontal guidance laws we can implicitly drive |xC −xdesC | → ϵC ,

where ϵC is an arbitrarily small number. Therefore, we devise our vertical guidance
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Algorithm 2 Altitude Control Switch

if ¬(−xdesS < xS <
+xdesS ) then

while |xS − xdesS | < ϵS do

Let uzA,S drive xS → xdesS

end while

Set altitude lock zcruiseA ← zA

Let uzA,Z drive zA → zcruiseA

else

Unset altitude lock zcruiseA ← ∅

Let uzA,S drive xS → xdesS

end if

by synthesizing altitude control commands to keep zA and xS within desirable lower

bounds −zdesA , −xdesS , and upper bounds +zdesA , +xdesS , respectively. This procedure is

summarized in Algorithm 2.

4.2.6 UAS Control System

In Section 4.2.2, we obtained the desired lateral and longitudinal accelerations

alat and along to guide the UAS into the rendezvous cone and match it’s velocity with

a point inside the ellipse E. The vertical-axis acceleration az was determined in Sec-

tion 4.2.5. In this subsection, we convert these guidance commands into force/torques

to act on the UAS.
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First, we begin with the dynamic model of the UAS with state vector given by

[U, V,W, P,Q,R, θ, ϕ]T and state equations

U̇ = RV −QW − g sin(θ),

V̇ = −RU + PW + g sin(ϕ) cos(θ),

Ẇ = (QU − PV + g cos(ϕ) cos(θ)− F/m),

Ṗ = (Iy − Iz)/IxQR + τϕ/Ix,

Q̇ = (Iz − Ix)/IyPR + τθ/Iy,

Ṙ = (Ix − Iy)/IzPQ+ τψ/Iz. (4.25)

Ix, Iy, Iz are the moments of inertia along the body-fixed x, y, and z-axes, respectively.

τϕ, τθ, and τψ are the applied torques and F is the force applied along the body-fixed

z axis.

To convert alat, along, and az into corresponding values of F , τϕ, τθ, and τψ, we

proceed as follows. First, we convert alat and along into the desired accelerations in

inertial frame,

ax = −alat sin(α) + along cos(α), (4.26)

ay = alat cos(α) + along sin(α). (4.27)

Then, we adapt the desired accelerations into the desired thrust and attitude,

F =
m(g − az)

cos(ϕ) cos(θ)
,

ϕd = tan−1

(
ay cos(θ)

g − az

)
,

θd = tan−1

(
ax

az − g

)
,

ψd = 0, (4.28)
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where ϕd, θd, ψd represent the desired attitudes. Next, we design a PD controller

which outputs the moment commands used to track the desired attitudes,

τθ = Kp,θ(θd − θ) +Kd,Q(Qd −Q),

τϕ = Kp,ϕ(ϕd − ϕ) +Kd,P (Pd − P ),

τψ = Kp,ψ(ψd − ψ) +Kd,R(Rd −R), (4.29)

where Qd = Pd = Rd = 0 are the desired attitude rates. (4.28) and (4.29) are then

used to determine the commanded force and torques that act on the UAS.

4.2.7 Acceleration Models for Vehicles and Focal Points of the Enclosing Ellipse

Our guidance laws require knowledge of the accelerations of the focal points,

F1 and F2, of the enclosing ellipse E. These accelerations are obtained by using a

Kalman Filter which employs an acceleration model as follows. The position measure-

ments of each vehicle, B1, B2, . . . , Bn, in the image frame are acquired using feature

point tracking. We assume that the UAS knows its own states, and therefore it can

transform the image measurements of each of B1, B2, . . . , Bn to an inertial frame.

These inertial measurements are then fed into a linear acceleration model [72, 73],

which filters the position data and provides estimates of the velocities and accelera-

tions of each B1, B2, . . . , Bn. The acceleration model that we use here is presented

in detail in previous chapter. The position measurements of each vehicle are passed

through a Kalman filter and these estimates are passed through the minimum-area

ellipse algorithm (discussed earlier) to compute E and it’s focal points for tracking.

The vehicle acceleration estimates obtained from the Kalman Filter are transformed

into the form of the magnitude âBi and direction δ̂Bi for Bi. In parallel to the ve-

hicle acceleration model, we pass the position estimates of the focal points through

another linear acceleration model to obtain an estimate of the position, velocity, and
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Figure 4.5. The overall architecture of the vision-based guidance system..

acceleration of the focal points of E. The velocity estimates of the focal points are

transformed back into the UAS-centered relative frame to obtain the relative velocity

components V̂r1, V̂θ1, V̂r2, and V̂θ2. The acceleration estimates of the focal points are

transformed into âB1, δ̂B1, âB2, and δ̂B2.

4.2.8 System Architecture

Our overall system architecture is illustrated in Fig. 4.5. First, images captured

by the UAS’s camera are used to determine the relative and absolute positions of

the various vehicles within the image plane. Next, the position information of each
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vehicle is passed through a Kalman filter which employs a linear acceleration model to

estimate âBi and δ̂Bi. Then, we use the filtered positional information of each vehicle

to compute a minimum area ellipse that encloses the vehicles in the image plane.

We transform the relative measurements of the focal points of the ellipse (rm1,

θm1, rm2, θm2) to the corresponding quantities in the inertial frame. Then, we pass

these values through another linear acceleration model Kalman filter to obtain the

position of the focal points as well their estimated velocities and accelerations in

the inertial frame. This information is then processed to determine the estimated

quantities r̂1, θ̂1,r̂2, θ̂2, V̂r1, V̂θ1, V̂r2, V̂θ2, âB1, δ̂B1, âB2 and δ̂B2.

An estimate of the rendezvous cone is denoted by ŷ1, while ŷ2 estimates the

magnitude of the relative velocity vector. The guidance algorithm generates suitable

accelerations (alat, along, az) which are converted into thrust and torque commands

(F , τθ, τϕ, τψ) in the control system block. These force/torque values are applied

to the UAS to drive ŷ1 and ŷ2 to the desired reference values. Finally, the applied

force/torques are used to update the state of the UAS after an image of the scene is

generated by our simulator.

4.3 Simulations

We have enhanced the functionality of our Pygame [74] simulator to accurately

render multiple targets based on the requirements of the problem statement. Within

the simulator, the camera calibration parameters are set to the following values: field

of view (ϑ = 47◦), image sensor width (W = 5mm), and pixel size (6.25µm). In

this section, we demonstrate the behavior of our vision-based guidance framework.

We use the following (unknown to the UAS) multi-vehicle trajectory variants: lane

changing and squircle following. To perform the simulations we utilized a Windows

10 machine with an Intel Core i7-8700 CPU and 32 GB RAM. For each simulation,
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we collect true, measured, and estimated data points which are then used to generate

the plots.

4.3.0.1 Multiple Lane Changing Trajectories

In this simulation we perform lane changing with multiple (three) vehicles head-

ing east. Each vehicle performs arbitrary lane changing maneuvers at various times

with random occlusions. The UAS starts at position WxA0 = [0.0, 0.0, 425.0]⊤(m)

while the vehicles B1, B2 and B3 begin at WxB10 = [100.0,−150.0, 0.0]⊤(m), WxB20 =

[100.0,−120.0, 0.0]⊤(m) and WxB30 = [90.0,−135.0, 0.0]⊤(m), respectively. The ini-

tial speed for UAS was WVA0 = 31.31 (m/s) (70mph) with heading Wα0 = 0.0◦ while

the vehicles start at the speed WVB10 =
WVB20 =

WVB30 = 22.22 (m/s) (50mph) with

heading WβB10 =
WβB20 =

WβB30 = 0.0◦.

We run the simulation for 150 secs and depict the kinematic state information

collected over time in Fig. 4.6. When measurements disappear under total occlusions,

state estimations are used to perform guidance. This is accompanied by an increase

in covariances (RBi
|i∈{1,2,3}) of the measurement noises (vBi

|i∈{1,2,3}) (3.9), whereby

we employ previous estimates as current measurements in the acceleration model.

Fig. 4.7 shows the speeds and headings of the UAS and vehicles along with xS, xC

and zA plots. The plots of commanded lateral, longitudinal, and vertical accelera-

tions along with objective functions are illustrated in Fig. 4.8. Fig. 4.9 displays the

trajectories of UAS and the vehicles in camera and world frame of reference, while

Fig. 4.10 provides the trajectories in 3D.

4.3.0.2 Multiple Squircle Trajectories

For this simulation we have multiple (three) vehicles move along three param-

eterized squircular trajectories such that they each traverse their individual closed
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Figure 4.6. Multiple lane changing trajectories under occlusions: (a)-(d) shows the
true, estimated and/or measured states, ri, θi, Vri, Vθi, respectively, plotted with
respect to time (circle marker indicates vehicle/focal point 1, triangle marker indicates
vehicle/focal point 2, square marker indicates vehicle 3)..
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Figure 4.7. Multiple lane changing trajectories under occlusions: (a) and (b) show the
speeds and headings of the UAS and focal points of the ellipse, respectively; (c)-(e)
show plots of xS, zA, and xC with respect to time..
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Figure 4.8. Multiple lane changing trajectories under occlusions: (a) shows com-
manded accelerations alat, along, and az with respect to time; (b) and (c) show plots
of time versus objective functions y1 and y2, respectively..

curves with a period of 360 secs. The UAS starts at position WxA0 = [0.0, 0.0, 450.0]⊤(m)

with speed WVA0 = 31.31 (m/s) (70mph) while the vehicles B1, B2 and B3 start at

WxB10 = [100.0,−160.0, 0.0]⊤(m), WxB20 = [100.0,−130.0, 0.0]⊤(m) and WxB30 =

[90.0,−145.0, 0.0]⊤(m), respectively. The UAS and vehicles are all given initial head-

ings Wα0 = WβB10 = WβB20 = WβB30 = 0.0◦. The vehicle speeds WVBi
|i∈{1,2,3} de-

crease to∼ 14.79 (m/s) (33.08mph) around corners and reach∼ 22.63 (m/s) (50.62mph)

along straighter ways.

We run our simulation with these initial conditions for 390 secs. The collected

kinematic state information including true, estimated, and measured quantities are

64



0 25 50 75 100
−175

−150

−125

−100

−75

−50

−25

0

0

0

x (m)

y
(m

)

UAS
Vehicles
Focal Points

(a)

0 400 800 1,200 1,600 2,000 2,400 2,800 3,200 3,600

−150

−100

−50

0

0

0

x (m)

y
(m

)

UAS
Vehicles
Focal Points

(b)

Figure 4.9. Multiple lane changing trajectories under occlusions: (a)-(b) show tra-
jectories of the UAS, vehicles, and focal points in the camera and world frame (circle
marker indicates vehicle/focal point 1, triangle marker indicates vehicle/focal point
2, square marker indicates vehicle 3)..
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Figure 4.10. Multiple lane changing trajectories under occlusions: 3D trajectories of
the UAS and vehicles (circle marker indicates vehicle/focal point 1, triangle marker
indicates vehicle/focal point 2, square marker indicates vehicle 3)..

shown in Fig. 4.11. The speeds and headings of the UAS and vehicles are exhibited

in Fig. 4.12 along with xS, xC , and zA plots. The commanded lateral, longitudinal,

and vertical accelerations, and objective functions plots are depicted in Fig. 4.13.

Fig. 4.14 presents the UAS and vehicle trajectories in the camera and world reference

frames, while Fig. 4.15 highlights the 3D trajectories.

4.3.1 Computational Performance

We provide a complexity analysis of the guidance scheme and details on the

computational performance as follows. Let n be the number of vehicles being tracked.

The computation of the bounding ellipse (Section 4.2.1) is done by determining an

approximation to the minimum area ellipse, S, enclosing the points of the convex hull

of the vehicles. Given ϵ ∈ (0, 1], an ellipse E is said to be a (1 + ϵ)-approximation to
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Figure 4.11. Multiple squircle trajectories: (a)-(d) shows the true, estimated and/or
measured states, ri, θi, Vri, Vθi, respectively, plotted with respect to time (circle
marker indicates vehicle/focal point 1, triangle marker indicates vehicle/focal point
2, square marker indicates vehicle 3)..
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Figure 4.12. Multiple squircle trajectories: (a) shows the commanded accelerations
alat, along with respect to time; (c)-(e) show plots of xS, zA, and xC with respect to
time..
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S if E ⊇ S and the area of E is less than (1 + ϵ) times the area of S. This algorithm

provides a solution in finite time where the amount of time taken is a function of the

prespecified ϵ and the total number of vehicles, n. In our case, ϵ is a constant and

the time complexity is linear (i.e., O(n)).

We note that the runtime of the horizontal guidance law (Section 4.2.2) de-

pends entirely on the states of the two focal points of the ellipse being tracked. The

complexity of the vertical guidance law (Section 4.2.5) is dependent upon the image

variables (xS, xC) and the altitude (zA) of the UAS. Thus, the time complexity of the

guidance laws is independent of the number of vehicles being tracked and is O(1). The

time complexity of the estimator (Section 4.2.7) increases linearly with the number

of vehicles, since we need an acceleration model for each vehicle, and is thus O(n).

Wall-clock times were recorded during the experimental runs. These time inter-

vals were measured by a high-precision module and represent timing measurements

at a microsecond-level precision. However, it is worthwhile to note that the module

does not factor in events such as input/output operations or operating system context

switches. Additionally, the wall-clock times were measured at moderate granularity

for each component. Therefore, they are likely to report higher time interval mea-

surements. As shown in Fig. 4.16, we obtain empirical statistics of the computation

times for the following four components in our architecture: (i) controller (∆tC), (ii)

ellipse parameter computation (∆tE), (iii) filter (∆tF ), and (iv) tracker (∆tT ).

We observe that the average total computation time for processing each 1000 ×

800 input image was ∼ 46.72×10−3secs, which corresponds to a processing frequency

of ∼ 21.4 Hz. The tracker component in our system architecture is based on a classi-

cal computer vision technique (i.e., Kanade-Lucas-Tomasi tracker). This component

performs multiple tasks including (i) detection and tracking; (ii) handling occlusions;

(iii) updating SIFT features and (full and partial) templates; (iv) storing state and
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appearance models for each target; and (v) transforming states between world and

image frames. The combination of all of these tasks takes on average ∼ 35.7 × 10−3

secs on a CPU.

In contrast, state-of-the-art multiple object detection techniques [84, 85] utilize

learning-based approaches. These methods have reported computation times as good

as ∼ 33.33 × 10−3 secs, just for detection and tracking, using powerful GPUs and

carefully streamlined architectures [86]. In Fig. 4.16 we show other computational

time intervals such as ∆tC , ∆tE , and ∆tF to be ∼ 0.62×10−3secs, ∼ 2.35×10−3secs,

and ∼ 8.04 × 10−3secs, respectively. As expected in a vision-based system, the

image processing (tracker) component is the main bottleneck and takes ∼ 3× more

processing time than the rest of the components combined.
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Figure 4.13. Multiple squircle trajectories: (a) shows the commanded accelerations
alat, along with respect to time; (b) and (c) show plots of time versus objective func-
tions y1 and y2, respectively..
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Figure 4.14. Multiple squircle trajectories: (a)-(b) shows the trajectories of UAS,
vehicles, and focal points in the camera and world frame (circle marker indicates
vehicle/focal point 1, triangle marker indicates vehicle/focal point 2, square marker
indicates vehicle 3)..
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Figure 4.16. A box plot of the computation times (∼ 15, 000 samples) for each
component of our architecture, i.e., controller (∆tC), filter (∆tF ), ellipse (∆tE),
tracker (∆tT ), along with the total time (∆tΣ). We observe an average total
time of ∆tΣ = 46.72 × 10−3secs. Note that the medians of ∆tT and ∆tΣ are at
∼ 34.58× 10−3secs and ∼ 45.63× 10−3secs, respectively.

73



CHAPTER 5

2D Collision Cone for Quadric Surfaces

When the robot and obstacles are operating in close proximity, their relative

shapes can play an important role in the determination of collision avoidance trajec-

tories. One common practice is to use polygonal approximations as bounding boxes

for the shapes of the robots and obstacles. However, the polygonal approximation

can lead to increased computational complexity (measured in terms of obstacle com-

plexity, or the amount of information used to store a computer model of the obstacle,

where obstacle complexity is measured in terms of the number of obstacle edges [38]).

To overcome this, a common practice then is to use circular approximations for the

robots and the obstacles, because of the analytical convenience such approximations

provide, along with the reduced information required to store a computational model

of the obstacle. The obstacle avoidance conditions are then computed for the circle

as a whole.

These approximations become overly conservative in cases when an object is

more elongated along one dimension compared to another. In such cases, non-circular

objects such as ellipses have been used to serve as better approximations for the

object shapes [87], [36], [88], [37]. For non-convex objects however, even elliptical

approximations can become over conservative, because such approximations reduce

the amount of available free space within which the robot trajectories can lie in

which case, one can take recourse to non-convex bounding approximations involving

a combination of an ellipse and a hyperbola.
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This work[89] employs a collision cone based approach to determine analytical

expressions of collision avoidance laws for moving objects whose shapes are modeled

by quadric surfaces. The great benefit of obtaining analytical expressions of collision

conditions is that these then serve as a basis for determining analytical expressions

of collision avoidance laws. Such analytical expressions can lead to tremendous com-

putational savings, especially in multi-obstacle environments.

When both agents are quadric surfaces of different shapes, one can perform a

Minkowski sum operation to superpose the shape of one object onto the other, thereby

reducing the first object to a point, while growing the second object. However, the

Minkowski sum operation can be computationally expensive. In contrast, the current

chapter develops an analytical approach to compute the collision cone between quadric

surfaces moving on a plane, without taking recourse to computing the Minkowski

sum. Acceleration laws for collision avoidance and rendezvous of quadric surfaces are

subsequently developed.

The rest of this chapter is organized as follows. Section 5.1 provides a review of

the collision avoidance results for arbitrary objects moving on a plane, as determined

in [24]. The contribution of this work begins from Section 5.2, which shows the

computation of the collision cone when the objects are modeled by quadric surfaces.

Section 5.4 presents simulations that demonstrate the working of these acceleration

laws.

5.1 Background on the Collision Cone

Refer Fig 5.1, which shows two arbitrarily shaped objects A and B moving with

velocities VA and VB, respectively. The lines Q1Q2 and R1R2 form a sector with the

property that this represents the smallest sector that completely contains A and B

such that A and B lie on opposite sides of the point of intersection O. Let V̂r and
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Figure 5.1. Engagement geometry between arbitrarily shaped objects.

V̂θ represent the relative velocity components of the angular bisector of this sector,

as shown. As demonstrated in [24], A and B are on a collision course if their relative

velocities belong to a specific set. This set is encapsulated in a quantity y defined as

follows:

y =
V̂ 2
θ(

V̂ 2
θ + V̂ 2

r

) − sin2

(
ψ

2

)
(5.1)

The collision cone is defined as the region in the (V̂θ, V̂r) space for which y < 0, V̂r < 0

is satisfied. Thus, any relative velocity vector satisfying this condition lies inside the

collision cone. The condition corresponding to y = 0, V̂r < 0 defines the boundaries of

the collision cone and any relative velocity vector satisfying this condition is aligned

with the boundary of the collision cone.

5.2 Computing the Collision and Rendezvous Cones between Quadric Surfaces

A challenge in computing the collision cone for arbitrarily shaped objects is

in the computation of the sector enclosing the objects A and B (shown in Fig 5.1),
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and determination of the angle ψ. Note that as A and B move, the angle ψ changes

with time. An iterative method to determine ψ for arbitrarily shaped objects using

the concept of conical hulls was presented in [90]. In this paper, we present an

approach to compute ψ for objects that can be modeled by quadric surfaces. This

approach is computationally inexpensive which makes it very suitable for real-time

implementation.

5.2.1 Collision cone between two ellipses

An ellipse is represented by a general equation of the form:

ax2 + bxy + cy2 + dx+ ey + f = 0 (5.2)

The above can be written in matrix form as follows:

[
x y 1

]
a b/2 d/2

b/2 c e/2

d/2 e/2 f



x

y

1

 = 0 (5.3)

which can be written compactly as: xTMx = 0. For any given point p on the ellipse,

l =Mp represents the homogeneous coordinates of the tangent to the ellipse at that

point. The equation of the tangent line is then obtained as lTx = 0. The dual
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of the ellipse xTMx = 0 is defined as the set of tangents to the given ellipse, and is

obtained as follows [91]:

pTMp = 0 (Definition of ellipse)

⇒ pTMM−1Mp = 0

⇒ lTM−1l = 0

(5.4)

Thus, any line satisfying (5.4) belongs to the tangent set of the ellipse, described by

M .

Now, consider the scenario involving two ellipses, whose equations are xTM1x =

0 and xTM2x = 0. To find the common tangents to these two ellipses, we need to find

the lines l which simultaneously satisfy the two equations, lTM−1
1 l = 0, and lTM−1

2 l =

0. See Fig 5.2. This leads to two coupled quadratic equations which have to be solved

for the unknown l. While this presents a viable method to compute the common tan-

gents to the two ellipses (and hence the angle ψ), it is still computationally expensive

to solve for real-time operations. However, by employing the concept of degener-

ate conics (discussed subsequently), a solution can be found using elementary linear

algebraic operations and this reduces the computation time.

Finding the homogeneous coordinates of the common tangents to the two el-

lipses requires finding the intersections between their corresponding duals. Toward

this end, defining C1 =M−1
1 and C2 =M−1

2 , the pencil of dual conics is formed from

C1− tC2, where t is a real number. This pencil represents the family of all dual conics

which pass through their intersection points.

A degenerate conic is formed by two lines that may or may not be parallel. The

degenerate conics obtained from the above pencil, occur at those values of t for which

det(C1 − tC2) = 0. Since this is a polynomial equation of degree 3 in t, there are
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therefore three possible solutions. The above pencil thus has three degenerate conics,

and these correspond to three pairs of lines.

The intersection point, u, of each pair of lines is obtained as a solution to the

equation (C1 − tC2)u = 0. By multiplication of C−1
2 on both sides, this equation

becomes (C−1
2 C1 − t I)u = 0, which implies that t is an eigenvalue of C−1

2 C1 and

u is the corresponding eigenvector. We note that calculating the eigenvalues of the

matrix C−1
2 C1 and their corresponding eigenvectors is computationally inexpensive,

when compared to using a numeric solver to solve lTM−1
1 l = 0, and lTM−1

2 l = 0.

We concatenate the 3 eigenvectors to form a 3×3 matrix U . Next, conjugating

C1 − tC2 by U will perform a projective transformation that sends the first two

intersection points of the degenerate conics (contained in the first two columns of U)

to infinity and the third intersection point (contained in the third column of U) to

the origin. The special coordinate system formed after this projective transformation

converts the three pairs of lines into a rectangle. The sides of this rectangle are formed

by the first two columns of U (first two degenerate conics) and the diagonals of this

rectangle are formed by the third column of U (third degenerate conic).

The homogeneous coordinates of the common tangent lines are now represented

by the vertices of this rectangle. We hence get four tangent lines from this rectangle.

These four tangent lines are then projected back to the homogeneous coordinate

system.

The next step is to find the two inner common tangent lines. We know that the

inner common tangents will have the centers of the two ellipses on opposite sides of

the tangent line, while the outer common tangents will have the the centers of both

ellipses on the same side of the tangent line. We use this fact to extract the inner

common tangents out of the four solutions obtained. Once we get the homogeneous

equations of the inner common tangents, we can find the angle between them.

79



(a)

k = 0.7 k = 1 k = 0

(b)

Figure 5.3. (a) Confocal Quadric, (b) Confocal Quadric with Varying k.

5.2.2 Collision cone between an ellipse and a confocal quadric

5.2.2.1 Confocal quadric description

A confocal quadric surface is formed by a pair of quadric surfaces which share

the same focal points. One such confocal quadric, formed by the intersection of an

ellipse and a hyperbola (both sharing the same foci) is schematically represented in

Fig 5.3 (a). It is a non-convex object and is represented by the equation:(
x′

ac

)2

+

∣∣∣∣∣
(
y′

bc

)2

− k
∣∣∣∣∣ = 1, k ∈ [0, 1]

where x′ = (x− x1) cos(ϕ) + (y − y1) sin(ϕ)

and y′ = −(x− x1) sin(ϕ) + (y − y1) cos(ϕ)

(5.5)

Here, x1 and y1 are the coordinates of the center of the confocal quadric and ϕ is the

angle which the line joining it’s foci makes with respect to the x axis in the cartesian

plane. The lengths of the semi-major and semi-minor axes of the ellipse are given by
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ac
√
1 + k and bc

√
1 + k, respectively. The lengths of the semi-major and semi-minor

axes of the hyperbola are given by ac
√
1− k and bc

√
1− k, respectively.

By varying the parameter k between 0 and 1, the object exhibits a continuous

shape and size transformation. These are shown in Fig 5.3 (b). The two extreme

values of k correspond to two special cases. When k = 0, then (5.5) represents an

ellipse whose semi-major and semi-minor axes have lengths ac and bc respectively.

When k = 1, the hyperbola degenerates into a pair of intersecting lines and the

resulting shape is as shown in Fig. 5.3 (b). The four corner points of the confocal

quadric are marked as A, B, C and D in Fig 5.3 (a).

5.2.2.2 Common tangents computation

This section describes computation of the inner common tangents between an

ellipse F1 and a confocal quadric F ′
2. Let F2 represent the ellipse which is associated

with F ′
2.

In the first step, common tangents are computed between F1 and F2 using the

algorithm given in the previous subsection. Two different cases then arise. In the

first case, both common tangents lie on F ′
2. In this case, the resulting tangents can

be accepted as a valid solution.

In the second case, one or both common tangents lie on F2, but not on F
′
2. In

this case, the corresponding common tangent(s) should pass through one of the four

corner points. (This is because the tangents cannot lie on the hyperbolic portion of

F ′
2, since that portion is concave.) Find a new tangent to F1 passing through each

corner point using the concept of polar and poles. Let (u, v) represent the cartesian

coordinates of the corner point from which we want to draw the tangents to F1. Then,
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the homogeneous coordinates of this point are p = [u v 1]T . We can write C1 = F−1
1

and define the following variables:
a′ c′ d′

c′ b′ e′

d′ e′ f ′

 = C1 (5.6)

This implies that a′ = F−1(1, 1), b′ = F−1(2, 2), c′ = F−1(1, 2), d′ = F−1(1, 3), e′ =

F−1(2, 3), and f ′ = F−1(3, 3). The pencil of lines through the corner point p can be

parametrically written in terms of γ as t(γ) = [− sin(γ) cos(γ) u sin(γ)− v cos(γ)]T .

If t is a tangent to F1 (meaning it belongs to the dual set of F1), then it should satisfy

tT C1 t = 0. We can solve this equation to find two values of γ as follows:

γ =
1

2

(
tan−1

(
K1

K2

)
±
(
sin−1

(
2K0 +K2√
K2

1 +K2
2

)
+
π

2

))

where K2 = (b′ − a′) + 2(d′u− e′v) + f ′ (v2 − u2)
K0 = a′2 − 2d′u+ f ′u2, K1 = −2 (c′ − (d′v′ + e′u) + f ′uv)

Also, the point of intersection of this tangent with F1 is computed from the concept of

polar as q = C1t. Substituting the value of γ in this equation we can find a solution

for q as follows:

q =


(c′ − d′v) cos γ + (d′u− a′) sin γ

(b′ − e′v) cos γ + (e′u− c′) sin γ

(e′ − f ′v) cos γ + (f ′u− d′) sin γ

 (5.7)

The above represents an analytical equation which can be used to compute the two

tangents to F1 from a given corner point. (Note that this analytical equation obviates

the need for computationally expensive solvers). Since there are four corner points,

this means that in all there can be eight tangents to F1 (two from each corner point).

The question now is which of the eight tangents should be chosen for the computation

of ψ. This will be explained with reference to Fig 5.4.
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In the case depicted in Fig 5.4, tangent T1 lies on F
′
2, while tangent T2 lies on F2,

but not on F ′
2. In this case, T2 is therefore not a valid tangent (for the computation

of ψ) and we therefore need to replace this with a tangent which originates from one

of the corner points. For this we use the following algorithm:

1. First, determine if F1 and F2 intersect with each other

2. (a) If they do not intersect, search for the two corner points nearest to the

original tangent point E. In Fig 5.4, these corner points are C and D.

(b) If they do intersect, search for the two corner points nearest to the mid-

point of the line joining the centers of F1 and F2.

3. From each of the two chosen corner points (C and D in Fig 5.4), draw two

tangents to F1. In Fig 5.4, these tangents are shown C1, C2, D1 and D2.

4. Out of the two tangents from each corner point, retain those tangent lines which

create a separating hyper-plane such that centers of F1 and F2 lie on opposite

sides of this hyper-plane. In Fig 5.4, we reject C2 and D2, marked by x because

the centers of both F1 and F2 lie in the same half-space for each line. In the
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special case when F1 and F
′
2 are grazing each other, both tangents from a single

corner point may satisfy this property, and in such a case we keep both of them

as the desired inner common tangent lines and skip step 5.

5. Then out of the remaining two tangents (C1 and D1 in Fig 5.4), we reject C1

because it passes through F ′
2 (indicated by D and center of F ′

2 lying in opposite

half-spaces of C1), however D1 does not pass through F ′
2 (indicated by C and

center of F ′
2 lying in the same half-space of D1).

Thus, we are left with two tangent lines D1 and T1, and these are the desired inner

common tangents. In the scenario where the other tangent line T1 also does not lie

on F ′
2, we repeat the same algorithm to replace T1 with a tangent from one of the

corner points.

5.3 Computation of acceleration laws to achieve collision avoidance or rendezvous

In this section, we derive analytical expressions for the acceleration laws re-

quired for collision avoidance or rendezvous (as the objective may be). Consider the

engagement geometry shown in Fig 5.5. The objects A and B are an ellipse and a

confocal quadric, moving with speeds VA and VB, respectively, and heading angles

α and β, respectively. (We note that B could also be an ellipse, in which case the

geometry would be one of engagement between two ellipses). The distance between

the centers of A and B is represented by r, and the angle made by the line joining

these centers is represented by θ. The control input of A is its lateral acceleration
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Figure 5.5. Engagement Geometry between an ellipse and a confocal quadric.

alat, which acts normal to the velocity vector of A. The kinematics governing the

engagement geometry are characterized by the following equations:

ṙ

θ̇

V̇θ

V̇r

α̇


=



Vr

Vθ/r

−VθVr/r

V 2
θ /r

0


+



0

0

− cos(α− θ)

sin(α− θ)

1/VA


alat,A (5.8)

Now we will use the kinematics of engagement geometry to define the collision

cone. The inner common tangents are shown in green color in Fig 5.5 and the angle

between these tangents is represented by ψ. The quantity θb represents the angle

which the angular bisector of the sector (formed by the inner common tangents),

makes with the x-axis. In general, the angular bisector of the sector will be distinct

from the line joining the centers of A and B, and thereby have different relative
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velocity components. The quantities Vr, Vθ are related to V̂r, V̂θ (bisector quantities)

as follows: V̂r
V̂θ

 =

 cos (θ − θb) sin (θ − θb)

− sin (θ − θb) cos (θ − θb)


Vr
Vθ

 (5.9)

In the special case when θ = θb we have Vr = V̂r and Vθ = V̂θ

Substituting (5.9) in (5.1), we transform the collision cone function y, so that

it is now written in terms of the kinematic states as follows:

y =
V 2
θ cos2(θ − θb) + V 2

r sin2(θ − θb)+2VrVθ cos(θ − θb) sin(θ − θb)
V 2
r + V 2

θ

− sin2

(
ψ

2

)
(5.10)

5.3.1 Acceleration Laws for Collision Avoidance:

When y < 0, V̂r < 0, then this means that A is on a collision course with B.

It needs to apply a suitable lateral acceleration alat to drive y to a reference value

w ≥ 0, and this will be equivalent to steering its velocity vector out of the collision

cone. We employ dynamic inversion to drive y to the desired reference value of w.

Differentiating (6.14), we obtain the dynamic evolution of y as follows:

ẏ =
∂y

∂θb
θ̇b +

∂y

∂θ
θ̇ +

∂y

∂Vθ
V̇θ +

∂y

∂Vr
V̇r +

∂y

∂ψ
ψ̇ (5.11)

To calculate the required control input, we define an error quantity e(t) = w − y(t).

Taking w as a constant ∀t, we seek to determine alat which will ensure the error term

follows the dynamics ė = −Ke where K > 0 is a constant. This in turn causes the

quantity y to follow the dynamics ẏ = −K(y−w). Note that all the partial derivatives

of y can be computed analytically. While the state kinematic equations are given in

(5.8), we however do not have analytical expressions of θ̇b and ψ̇ and these would
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have to be synthesized numerically. Substituting partial derivatives, state derivatives

and ẏ in (5.11), we eventually get the expression for alat,A as:

alat,A = −(V 2
r + V 2

θ )
N1 +N2

D1D2

,where

N1 = (V 2
r + V 2

θ )(2k(w − y) + ψ̇ sin(ψ))

N2 = θ̇b
(
4VθVr cos(2(θ − θb)) + 2(V 2

r − V 2
θ ) sin(2(θ − θb))

)
D1 = 2VrVθ cos(2(θ − θb)) + (V 2

r − V 2
θ ) sin(2(θ − θb))

D2 = 2 (Vr cos(α− θ) + Vθ sin(α− θ))

(5.12)

The above equation can be used for collision avoidance between A and B,

wherein A takes the onus of performing the collision avoidance maneuver. The above

equation has singularities that occur when denominator term becomes zero. However,

these are isolated singularities and we use a saturation on the acceleration law and

this prevents the acceleration from becoming infinite.

Closed-loop dynamics are obtained by substituting Eqn 5.12 into Eqn 5.8. The

boundedness of closed-loop dynamics is established as follows: The first vector on the

right-hand side of the kinematics equation is always bounded because r can never

become zero. The second vector on right-hand side is also bounded because alat,A

is bounded due to the presence of the saturation block. As a consequence, all the

closed-loop states are bounded.

5.3.2 Acceleration laws for Rendezvous

We now consider a problem where A and B need to perform a rendezvous. We

consider two versions of the rendezvous problem. In the first, rendezvous is achieved

when A and B graze each other with non-zero relative velocity while in the second,

rendezvous is achieved when A and B graze each other with zero relative velocity. We

consider the first problem to be a cooperative rendezvous problem while the second
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is a non-cooperative rendezvous problem. The acceleration commands for rendezvous

are also obtained using dynamic inversion, invoking a process similar to that used for

the collision avoidance law.

Cooperative Rendezvous without velocity matching: In this case, the state equa-

tions for V̇θ and V̇r are modified from those given in (5.8), and an additional state β

is introduced as follows:

V̇θ = −VθVr/r − cos(α− θ)alat,A + cos(β − θ)alat,B

V̇r = V 2
θ /r + sin(α− θ)alat,A − sin(β − θ)alat,B

β̇ = alat,B/VB (5.13)

Substituting V̇θ and V̇r from the above in (5.11), we obtain a cooperative rendezvous

law as follows:

alat,A A11 + alat,B A12 = −
B11 +B12(V

2
r + V 2

θ )

C11

,where

A11 = (Vr cos(α− θ) + Vθ sin(α− θ))

A12 = −(Vr cos(β − θ)− Vθ sin(β − θ))

B11 =
(
V 2
θ + V 2

r

)2 (
K(w − y) + 0.5ψ̇ sin(ψ)

)
B12 = θ̇b

((
V 2
r − V 2

θ

)
sin(2(θ − θb)) + 2VθVr cos(2(θ − θb))

)
C11 =

(
V 2
r − V 2

θ

)
sin(2(θ − θb)) + 2VθVr cos(2(θ − θb))

(5.14)

In the above equation, a combination of alat,A and alat,B are employed to steer the

relative velocity vector to the boundary of the rendezvous cone. Note that the above

represents a single equation with two unknowns, meaning that there are multiple

(alat,A, alat,B) combinations to achieve the rendezvous objective.

Non cooperative rendezvous with velocity matching: In the second version of

the rendezvous problem, rendezvous is achieved when A and B graze each other with

zero relative velocity. We consider the case when this is non cooperative and the
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onus is on A to achieve the rendezvous with B. In this case, A is assumed to have

two control inputs alat,A and along,A which correspond to its lateral and longitudinal

accelerations, respectively. In this case, the state equations for V̇θ and V̇r are modified

from those given in (5.8), and an additional state VA is introduced as follows:

V̇θ = −VθVr/r − cos(α− θ)alat,A − sin(α− θ)along,A

V̇r = V 2
θ /r + sin(α− θ)alat,A − cos(α− θ)along,A

V̇A = along,A (5.15)

To synthesize acceleration laws for this case, we introduce a second output

function y2 = V 2
r + V 2

θ and note that driving y2 to zero is equivalent to A and B

having zero relative velocity. We then employ dynamic inversion to determine alat,A

and along,A so as to drive both y1 and y2 to zero. The eventual acceleration commands

are as follows:

alat,A A13 + along,A A14 = −B13 +B14(V
2
r + V 2

θ )

C12

(5.16)

alat,A A15 + along,A A16 = −K2

(
V 2
θ + V 2

r

)
(5.17)

where,

A13 = (Vr cos(α− θ) + Vθ sin(α− θ))

A14 = (Vr sin(α− θ)− Vθ cos(α− θ))

B13 =
(
V 2
θ + V 2

r

)2 (
K(w − y) + 0.5ψ̇ sin(ψ)

)
B14 = θ̇b

((
V 2
r − V 2

θ

)
sin(2(θ − θb)) + 2VθVr cos(2(θ − θb))

)
C12 =

(
V 2
r − V 2

θ

)
sin(2(θ − θb)) + 2VθVr cos(2(θ − θb))

A15 = (2Vr sin(α− θ)− 2Vθ cos(α− θ))

A16 = (2Vθ cos(β − θ)− 2Vr sin(β − θ))
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Eqns (5.16)-(5.17) are to be solved simultaneously to determine alat,A(t) and along,A(t)

in order to achieve rendezvous with velocity matching.

5.4 Simulations

5.4.1 Simulation 1

In the first simulation, the agent F1 is initially at (0, 0), with semi-major and

semi-minor axes of 6 m and 2 m respectively. The speed of the agent is 25 m/s and

initial heading angle is 45◦. The first obstacle is an ellipse F2 centered at (45, 0),

moving with speed 20 m/s and heading angle 120◦. The initial conditions are such

that they are on a collision course which is indicated by y(0) = −0.0452 (negative

value). Using the acceleration law (5.12), F1 applies a positive lateral acceleration

which initially gets saturated to a value of 15m/s2, and after continued acceleration,

the agent comes out of the collision cone at 0.80 sec (y > 0), and then moves at a

constant velocity until t = 2.12 sec. At t = 2.13 sec F1 spots another obstacle F3

(confocal quadric) at (5, 75) moving with a heading angle of 0◦ which is on collision

course with F1, indicated by y(2.13) = −0.06 (negative value), ψ at that instant

is 36.91◦. The parameters ac, bc, k of F3 are 6 m, 2 m, 0.9 respectively. F1 again

computes its acceleration using (5.12) and comes out of the collision cone at t = 2.70

sec, by application of negative lateral acceleration. F1 passes F3 at t = 3.74sec and

applies maximum acceleration until it is aligned with the goal point which happens

at t = 4.88 sec. The trajectories of F1, F2, F3 are shown in Fig 5.6, time histories of

heading angle and acceleration are in Fig 5.7, time history of the angle ψ is in Fig

5.8, time histories of y, Vr and Vθ are in Fig 5.9.
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Figure 5.6. Simulation 1: Trajectory.

5.4.2 Simulation 2: Shape Changing Obstacle

In the second simulation, the shape and initial conditions of F1 are same as

in the previous simulation, while F2 is now a shape-changing confocal quadric. The

shape change is governed by varying k (See 5.5), as k(t) = | sin(2t + π/2)|, which

causes the shape of F2 to change from a degenerate confocal quadric to a full ellipse.

The parameters ac and bc in (5.5) are 6 m and 2 m, respectively. At t = 0 sec, we have

k = 1, initial speed and heading angle of F2 are 20 m/s and 120◦, respectively. The
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Figure 5.7. Simulation 1: Commanded Acceleration and Heading angle.

initial conditions are such that F1 and F2 are on a collision course which is indicated

by y(0) = −0.053 (negative value). F1 applies acceleration as per (5.12) and comes

out of collision cone at 0.84 sec. The complete trajectory of F1 and F2 is shown in

Fig 5.11, time histories of heading angle, acceleration and the angle ψ in Fig 5.12.A

few snapshots showing the relative engagement of F1 and F2 at various time instants

are shown in Fig 5.10.
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CHAPTER 6

3D Collision Cone

This chapter extends the work done in previous chapter to 3-D space. In previ-

ous work([89]), we computed the collision cone between moving quadric surfaces on a

plane without taking recourse to computing the Minkowski sum. In this chapter, we

consider a larger class of objects moving in 3-D environments and compute the 3-D

collision cone between pairs of (differently shaped) 3-D objects, without computing

the Minkowski sum[92].

6.1 Equations of 3-D Quadric Surfaces

In this section, we present a discussion of the 3-D shapes that occur as a con-

sequence of combining different types of quadrics. The equation of a general 3-D

quadric is:

axxx
2 + a2yy + azzz

2 + 2axyxy + 2ayzyz + 2axzxz + 2bxx+ 2byy + 2bzz + c1 = 0

(6.1)

Eqn (7.25) can equivalently be written in matrix form as follows:

[
x y z 1

]
︸ ︷︷ ︸

xT



axx axy ax bx

axy ayy ayz by

axz ayz azz bz

bx by bz c1


︸ ︷︷ ︸

Q



x

y

z

1


︸︷︷︸

x

= 0 (6.2)

Alternatively, to determine the equation of an ellipsoid which is rotated and

translated about cartesian coordinate system, (x, y, z), we first assume that the ellip-
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soid principal axes are aligned with an imaginary coordinate system (x′, y′, z′) and is

centered at the origin of that coordinate system. In that coordinate system, we can

define the equation of ellipsoid as follows:

x′2

a2e
+
y′2

b2e
+
z′2

c2e
= 1 (6.3)

where ae, be, ce are the length of principle axes of ellipsoid. Alternatively, we can write

this in the matrix form as follows:

[
x′ y′ z′ 1

]


1/a2e 0 0 0

0 1/b2e 0 0

0 0 1/c2e 0

0 0 0 −1





x′

y′

z′

1


= 0

(6.4)

Rotating the ellipsoid by a system of angles given by (0, γy, γz) and translating

by (x0, y0, z0) about the Cartesian x, y and z axes respectively. We can define a

mapping as follows: 
x′

y′

z′

 = Ry(−γy)Rz(−γz)


x− x0
y − y0
z − z0

 . (6.5)

where Ry and Rz are the rotation matrices along y and z axis respectively. It is to

be noted that the angles −γy and γz are similar to elevation and azimuth angles of

ellipsoid in the (x, y, z) coordinate system.

Ry(γy) =


cos γy 0 sin γy

0 1 0

− sin γy 0 cos γy

 , and
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Rz(γz) =


cos γz − sin γz 0

sin γz cos γz 0

0 0 1

 .

When det(Q) < 0, (7.25) represents an ellipsoid or a one-sheeted hyperboloid,

and when det(Q) > 0, it represents a two-sheeted hyperboloid. We refer to the

matrices corresponding to an ellipsoid, one-sheeted hyperboloid and two-sheeted hy-

perboloid as Qe, Qh1 and Qh2, respectively. Please also note that in this paper,

vectors are represented in lowercase boldface, and matrices in uppercase boldface.

We now proceed towards determination of equations of surfaces comprised of

different combinations of the above quadric surfaces. We define the interior of a

quadric as the region which includes the center of the quadric and the exterior as

the complement of the interior. Accordingly, the regions {x : xTQex < 0} and

{x : xTQh1x < 0} represent, respectively, the interiors of the ellipsoid corresponding

to Qe, and the one-sheeted hyperboloid corresponding to Qh1. On the other hand,

the region {x : xTQh2x < 0} represents the exterior of the two-sheeted hyperboloid

corresponding toQh2. We now use these properties to construct surfaces that comprise

combinations of two intersecting quadrics. In constructing these combinations, we

employ the phrase “delimited”, which means “having fixed boundaries or limits”.

Consider an intersecting ellipsoid and two-sheeted hyperboloid, as shown in Fig

6.1a. Then, we define the surface of an Ellipsoid Delimited by a Hyperboloid (EDH)

as follows:

xTQex = 0, subject to:xTQh2x > 0 (6.6)

The above equation states that the surface of the EDH comprises those points on the

surface of the ellipsoid that are not present inside the two-sheeted hyperboloid. The

surface of an EDH is shown in Fig 6.1b.

98



4 

N3 

2 

6 

3.5 

N 3 

2.5 

y 

Ellipsoid 

4 2 

4 

y 

Hyperboloid 

4 

X 

3 

4 

X 

6 

5 

4 

N3 

2 

6 

4 

N3 

2 

6 

5 

y 

5 

y 

4 3 

4 
3 

4 

X 

4 

X 

5 

Figure 6.1. a) Ellipsoid and Hyperboloid b) Ellipsoid delimited by Hyperboloid c)
Hyperboloid delimited by Ellipsoid d) Biconcave Ellipsoid.

Figure 6.2. a) Ellipsoid and Hyperboloid b) Ellipsoid delimited by Hyperboloid c)
Hyperboloid delimited by Ellipsoid d) Biconvex Hyperboloid.
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We next define the surface of a two-sheeted Hyperboloid Delimited by an El-

lipsoid (HDE) as follows:

xTQh2x = 0, subject to:xTQex < 0 (6.7)

The above equation states that the surface of a HDE comprises those points on the

surface of a two-sheeted hyperboloid that are present inside the ellipsoid. Such a

HDE is shown in Fig 6.1c.

We can combine (6.6) and (6.7) to determine a surface composed of an EDH

and a HDE. This is shown in Fig 6.1d, and is mathematically represented as:

K1x
TQex+K2x

TQh2x = 0, where (6.8)

K1 =


1 if {x : xTQh2x > 0}

0 otherwise

, K2 =


1 if {x : xTQex < 0}

0 otherwise

With some abuse of terminology, we refer to the above as a biconcave ellipsoid.

Finally, we combine a one-sheeted hyperboloid and an ellipsoid. Its mathematical

representation is as follows:

K1x
TQex+K2x

TQh1x = 0, where (6.9)

K1 =


1 if {x : xTQh1x < 0}

0 otherwise

, K2 =


1 if {x : xTQex < 0}

0 otherwise

This is shown in Fig 6.1e. With some abuse of terminology, we refer to this as a bicon-

vex hyperboloid. We note that by combining an ellipsoid with multiple hyperboloids

at different orientations, one can also approximate star-shaped objects.

6.2 3D engagement geometry

Fig 7.10 shows the engagement geometry between two objects A and B. While

the figure shows A and B to be an ellipsoid and a biconcave ellipsoid, they could
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Figure 6.3. Engagement Geometry between two objects.

in principle be any pair of objects discussed in Section 6.1. A and B are moving

with speeds VA and VB, respectively, at heading angle pairs of (βA, αA), and (βB, αB)

respectively. Here, βA and αA represent, respectively, the azimuth and elevation

angles of the velocity vector of A, and a corresponding definition holds for βB and

αB. r represents the distance between the centers of A and B, and (θ, ϕ) represents the

azimuth-elevation angle pair of line joining the center of A and B. The control input

of A is its lateral accelerations aA, which acts normal to the velocity vector of A at

an azimuth-elevation angle pair of (δA, γA). A corresponding definition holds for the

lateral acceleration aB of B. Vr, Vθ, Vϕ represent the mutually orthogonal components

of the relative velocity of B with respect to A, where Vr acts along the line joining
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the centers of A and B. The kinematics governing the engagement geometry are

characterized by the following:

ẋ = f(x) + gA(x)aA − gB(x)aB (6.10)

where x, f(x) and gi(x), i = A,B are given by

x =



ṙ

θ̇

ϕ̇

V̇θ

V̇ϕ

V̇r


, f(x) =



Vr

Vθ/(r cosϕ)

Vϕ/r

(−VθVr + VθVϕ tanϕ)/r

(−VθVr − V 2
θ tanϕ)/r

(V 2
θ + V 2

ϕ )/r


,

gi(x) =



0

0

0

− cos γi sin (δi − θ)

cos γi sinϕ cos (δi − θ)− sin γi cosϕ

− cos γi cosϕ cos (δi − θ)− sin γi sinϕ


6.3 Collision Cone Computation

The procedure to compute 2D collision between two arbitrary shaped objects

and two quadrics was presented in the previous chapter. In this section, we will use

that work as a baseline and would extend the concept of computing collision cones in

3D spaces.
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Figure 6.4. Procedure to construct 3D collision cone between two ellipsoids.

6.3.1 3D Collision Cone between two Ellipsoids

We consider the scenario where A and B are ellipsoids. Let QeA and QeB

represent the respective matrices corresponding to these ellipsoids. A 3D collision

cone between A and B can be generated by first computing the 2D collision cones on

several planes, and subsequently merging these 2D cones to get a combined cone in

3D. Without loss of generality, we stipulate that all planes contain the line joining the

centers of A and B, and each successive plane is generated by rotating the preceding

plane about this line.

Let the centers of A and B be (Ax, Ay, Az) and (Bx, By, Bz), respectively.

Let r represent the vector joining these centers. Let Pj represent the j
th plane, where

j ∈
{
1, 2, . . . , n

}
, and n is the number of planes. Refer Fig 6.4, which shows one

such plane. Let Rxj and Ryj be two mutually orthogonal unit vectors on this plane.
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Here, we choose Ryj = r and Rxj orthogonal to it, on that plane. Define a matrix

corresponding to the plane as follows:

Pj =

Rxj Ryj [Ax, Ay, Az]
T

0 0 1


The intersection of the plane Pj with the two ellipsoids A and B, will produce two

ellipses. The matrices MjA and MjB corresponding to these ellipses are found as

follows:

MjA = Pj
TQeAPj, MjB = Pj

TQeBPj (6.11)

We then obtain the duals of these two ellipses as:

C1 = MjA
−1, C2 = MjB

−1 (6.12)

Next, we compute the collision cone between MjA and MjB. For that, we compute

the common tangents to these two ellipses, using algorithm 3. This algorithm pro-

vides the points of tangency tA1, tA2 that lie on MjA and tB1, tB2 that lie on MjB

(Please see Fig 6.4 for an illustration).

Note that tA, tB ∈ R3×2 where each column denotes the homogeneous coordi-

nates of each point of tangency. After obtaining these points of tangency, we obtain

the tangent lines passing through these points and then find collision cone parameters

ψ and θb on that particular plane. Henceforth, all the projected 2D states on a plane

are marked by a subscript P . Thus, ψPj and θbPj represent the values of ψ and θb on

plane Pj.

Projection of 3D relative states into the 2D plane:

The final step of computing the 3D collision cone involves computing the projection
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Algorithm 3 Common tangents to two ellipses

[U, t] = eig(C2
−1C1) ▷ U = [u1 u2 u3], t = [t1, t2, t3]

T

Li = UT (C1 − tiC2)U for i = 1, 2

x =

√
−L2(3, 3)

L2(1, 1)
, y =

√
−L1(3, 3)

L1(2, 2)

S =



x y 1

−x −y 1

−x y 1

x −y 1


S = SUT

d1 = C1[0 0 1]T , d1 = d1/d1(3)

d2 = C2[0 0 1]T , d2 = d2/d2(3)

bool = (Sd1)⊙ (Sd2) < 0 ▷ ⊙ is Hadamard product

S = S(bool) MjA and MjB

tA = C1S, tB = C2S

of the 3D states of the objects A and B on each plane Pj, j = {1, . . . , n}. Since by

construction, all the planes contain the vector r, so the length of the 3D vector r is

equal to its corresponding 2D projection, that is r = rp. θp is LOS angle from d1 to

d2. Also, the relative velocity component along r in 3D (that is, Vr) will be equal

to the relative velocity along LOS in 2D (that is, Vrp) and the 2D relative velocity

perpendicular to r, Vθp acts along the direction of Rxj. Defining V as the relative

velocity vector between A and B as V = VB − VA, V̂θ = Rxj as the unit vector

along Vθ2D, we get the following expressions for the projected 2D relative velocity

components: 1) Vrp = Vr, 2)Vθp = (V −Vr) · V̂θ Then using (5.1), we can compute

collision cone in 2D. We repeat this process over all the n planes to ultimately obtain

3D collision cone.
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Figure 6.5. Plot of relative error vs. no. of planes.

Influence of n on accuracy of 3D cone:

We note that by increasing the number of planes n, we can increase the accuracy

of the collision cone, but this increases the computation time. The proper choice

of n depends on the computational resources available and accuracy desired. To

evaluate the effect of n on accuracy, a Monte Carlo simulation of 10, 000 different

engagement geometries of two ellipsoids was performed, and for each engagement,

the 3-D collision cone was computed for varying values of n. The cross-sectional area

of the 3-D collision cone was computed in each case and this was used to determine the

numerical accuracy as follows. The 3-D cone obtained with n = 360 was treated as

the truth model and the difference between the cross-sectional area of this cone, with

the cone obtained using other values of n is shown in Fig 6.5 (the error is expressed

as a fraction). As seen in Fig 6.5, the error decreases rapidly with increasing n, and

has an upper bound of 2/n. This shows that a small number of planes can be used

to compute the 3D collision cone with a relatively small error.

6.3.2 3D Collision cone between an ellipsoid and a biconcave ellipsoid

We next consider the scenario where A is an ellipsoid A and B is a biconcave

ellipsoid. Let the matrix corresponding to A be (QeA), and those corresponding to
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Figure 6.6. 3D collision cone between an ellipsoid and a biconcave ellipsoid.

B be (QeB) and Hyperboloid (QhB). To compute collision cone in this case, we take

the planar cross-sections of the two objects similar to the case of two ellipsoids. First,

we consider the engagement between QeA and QeB and define C1 and C2 on several

planar cross-sections. Refer Fig 6.6, which shows the cross-sections on one such plane

Pj.

We use (6.12) and find the points of tangency on MjA and MjB using algorithm

3. This will give us two points of tangency on each of MjA (say tA1 and tA2) and

MjB (say tB1 and tB2). We use these to define two candidate tangent lines (say t1

and t2) passing through the pairs of points (tA1, tB1) and (tA2, tB2) respectively, and

then check if t1 and t2 are valid tangent lines.

Note that the planar cross-section of a biconcave ellipsoid can be either an ellipse

or a combination of ellipse and hyperbola (say, a biconcave ellipse). If the planar cross
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section is an ellipse, then the candidate solutions t1 and t2 can be accepted as the valid

solution on that plane. However if that is not the case, then we check if the points

tB1 and tB2 lie on the biconcave ellipse. For this, we first determine the equation of

the hyperbola on the plane Pj as:

MjBH = Pj
TQeHPj (6.13)

and then check if tBi
TMjBHtBi < 0, i = 1, 2

If either tB1 and tB2 satisfy the above equation then the corresponding tangent

lines can be accepted as valid common tangents. The ones that do not satisfy the

above equation need to be replaced by a new line tangent to MjA passing through one

of the corner points (L,M,N, P ) of the biconcave ellipse. Note that the corner points

can be obtained using algorithm 3 by taking C1 = PT
j QeBPj and C2 = PT

j QeHPj.

After performing steps 1-5, we can obtain the desired corner points in the homoge-

neous system as s. To draw tangents from a corner point to A we use a computa-

tionally efficient approach presented in [89]. To proceed, we draw two tangents from

each of the corner points to MjA. These tangent lines would be considered valid if:

i) the centers of MjA and MjB lie on opposite sides of each line, and ii) All the four

corner lie on the same side of each line. We eliminate the candidates that do not

satisfy these properties, and this will leave us with two inner common tangents from

the four corner points to MjA. Call these t
′
1 and t

′
2. If both t1 and t2 computed above

are invalid then t′1 and t′2 can be accepted as the inner common tangents. However,

if only one of them is invalid then that invalid tangent line should be replaced by t′1

or t′2, as the case may be. We finally use these computed tangents to calculate ψp

and θbp in (5.1) to compute the collision cone. A similar set of steps can be used to

compute the collision cone between an ellipsoid and a biconvex hyperboloid.
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6.3.3 3D Collision Cone between an ellipsoid and an arbitrarily shaped object

Let A be an ellipsoid (QeA) and B represent an obstacle of arbitrary shape that

cannot be represented analytically. Assume that A is equipped with multiple lidars

and the point clouds from these lidars are fused using the Iterative Closest Point (ICP)

algorithm [93]. This 3D point cloud can then be used to determine the intersection

of B with a plane passing through the center of A and B. Similar to the case of two

ellipsoids, we obtain multiple planar cross-sections of A and B. Planar cross-sections

of A corresponding to ellipse MjA can be determined using (6.13). However planar

cross-sections of B cannot be determined because it’s shape is unknown and in fact,

the only available knowledge of B is of that portion of B which can be viewed by the

lidars on A. Let MjB represent the portion of the planar cross section of B, which is

visible from the lidars on A. A schematic is shown in Fig 6.7.

To obtain collision cone on that plane, we need to find the common tangents to

MjA and MjB. For this, we first draw four tangents, two from each of the extreme

ends of MjB to MjA. For each such line, we check if the centers of MjA and MjB

lie on opposite sides of the line, and additionally, all points of MjB lie on the same

side. If these criteria are satisfied by any two lines, then these correspond to the

desired common tangents and we can proceed towards computation of collision cone.

Otherwise, we perform a search across the points of MjB (starting from its extreme

ends and moving towards the middle), and repeat this process until we find two

common tangent lines. We note that the points on the boundary of MjB can be

down-sampled to decrease the computation time. In most of the cases, the common

tangents would pass through the points that are closer to the extreme ends of MjB,

and so this algorithm would be able to find the solution in a few iterations. We point

out that since this algorithm involves a search process, it will be computationally
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MjA

MjB

Figure 6.7. Planar section of an ellipsoid and an arbitrary object.

more expensive then the one used for quadrics in the preceding sections, but will still

be computationally efficient.

6.3.4 3D Collision Cone between two arbitrary shaped object

Here, we assume that A has an arbitrary shape which is known a-priori and

B also has an arbitrary shape but it’s shape is not known a-priori. Perhaps, the

only portion of B which can be viewed by lidar equipped on A is available to us.

The procedure to compute 3D collision cone is similar to the previous section except

the planar cross-section of A will not be an ellipse. In this case, to get the common

tangents between two planar cross-sections of arbitrary shaped object we can use

the algorithm presented in the earlier paper [90] and proceed towards collision cone

construction. We note that this is an iterative algorithm and will be more expensive

than the ones for previous cases and it is recommended to assume the shape of robot

as quadric or a combination of quadrics to save the computational load. However,
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in the cases where robot shape approximation is not possible, this algorithm can be

used to get a 3D collision cone.

6.4 Collision Avoidance Acceleration

From (5.9) and (5.1), we obtain the collision cone function yp for each plane

so that it is now written in terms of the 2D states of the selected plane using the

subscript p as follows:

yp =

[
V 2
θp
cos2(θp − θbp) + V 2

r sin2(θp − θbp)+2VrVθp cos(θp − θbp) sin(θp − θpb)
]

V 2
rp + V 2

θp

−sin2

(
ψp
2

)
(6.14)

The set of heading angles of A satisfying yp < 0, V̂rp < 0 on each plane are obtained,

and then combined to get the 3D collision cone for that engagement. If the velocity

vector of A lies inside the collision cone, then A is on a collision course with B,

and needs to apply a suitable lateral acceleration aA to drive steer its velocity vector

out of the collision cone. We present a discussion on the choice of the avoidance

plane (on which aA is to be applied), followed by analytical expressions for the lateral

acceleration law required for collision avoidance.

6.4.1 Selection of Collision Avoidance Plane

From the computed 3D collision cone, we take a 2D slice on a chosen plane, and

then compute the lateral acceleration for avoidance on that plane. We note that the

choice of this plane can vary from one time instant to the next, and this is particularly

true in dynamic environments and scenarios where the cross section of the 3D cone

is not circular, or is non-convex (such as those discussed in this paper). There can

be several ways to choose this plane. For instance, we can choose a plane on which

the heading angle of the agent is closest to the boundary of the cone. Such a choice
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ensures that the angular deviation in the velocity vector of the vehicle (to get out of

the cone) is small. In windy environments, the avoidance plane can be chosen such

that the directions of the applied lateral acceleration and the wind vector are not

directly opposed to each other. Other alternatives also exist.

6.4.2 Collision Avoidance Law

On the chosen avoidance plane, A needs to apply a suitable lateral acceleration

aA to drive yp to a reference value w ≥ 0, as this will be equivalent to steering its

velocity vector out of the collision cone. We employ dynamic inversion to determine

this lateral acceleration. Differentiating (6.14), we obtain the dynamic evolution of

yp as follows:

ẏp =
∂yp
∂θbp

˙θbp +
∂yp
∂θp

θ̇p +
∂yp
∂Vθp

V̇θp +
∂yp
∂Vrp

V̇rp +
∂yp
∂ψp

ψ̇p (6.15)

Define an error quantity zp(t) = yp(t) − w. Taking w as a constant ∀t, we seek to

determine alat,A which will ensure the error zp(t) follows the dynamics żp = −Kzp
where K > 0 is a constant. This in turn causes the quantity y to follow the dynamics

ẏp = −K(yp − w). We can write (6.15) as follows:

−K(yp − w) =
∂y

∂θbp
˙θbp +

∂y

∂θp
θ̇p +

∂y

∂Vθp
V̇θp +

∂y

∂Vrp
V̇rp +

∂y

∂ψp
ψ̇p (6.16)

Note that all the partial derivatives of yp can be computed analytically from (6.14).

While the state kinematic equations are given in (6.10), we however do not have

analytical expressions of θ̇bp and ψ̇p and these will have to be synthesized numerically.

Non-cooperative Collision Avoidance: Here, the onus is on A to apply a lateral

acceleration to steer its velocity vector out of the collision cone, and B does not co-
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operate. Substituting partial derivatives and state derivatives in (6.15) and assuming

aB = 0, we get an expression for aA as:

aA = −(V 2
rp + V 2

θp)
N1 +N2

D1D2

(6.17)

where, the quantities N1, N2, D1, D2 are as follows:

N1 = (V 2
rp + V 2

θp)(2K(w − yp) + ψ̇p sin(ψp)), N2 = 2θ̇bpD1

D1 = 2VrpVθp cos(2(θp − θbp)) + (V 2
rp − V 2

θp) sin(2(θp − θbp))

D2 = 2 (Vrp cos(αpA − θp) + Vθp sin(αpA − θp))

Cooperative Collision Avoidance: Here, A and B cooperate with one other in

applying suitable lateral accelerations so that they jointly steer their velocity vectors

out of the collision cone. Assume that µ represents the acceleration ratio, that is,

µ = aB/aA. Substituting partial derivatives and state derivatives in (6.15), we get

equations for aA, aB as:

0.5aA D1 + aB N3 = −
N1 + θ̇bpD1(V

2
rp + V 2

θp)

D1

,where

N3 = −(Vrp cos(αpB − θp)− Vθp sin(αpB − θp))
(6.18)

Using the acceleration ratio µ, the above leads to the following accelerations:

aA = −
N1 + θ̇bpD1(V

2
rp + V 2

θp)

D1(0.5D1 + µN3)
, aB = µaA (6.19)

Computation of Direction of Acceleration Vectors : These computed aA and aB

are applied at angles of (αpA + π/2) and (αpB + π/2), respectively, on the selected

plane. Here, αpA and αpB represent the heading angles of A and B on that plane. In

3D, the direction of the applied acceleration is as follows:

âi = Pj [cos(π/2 + αpi) sin(π/2 + αpi) 0]
T

δi = tan−1

(
âi(2)

âi(1)

)
, γi = sin−1

(
âi(3)

∥âi∥

)
, i = A,B
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Figure 6.8. Simulation 1: 3D Trajectory.

6.5 Simulation Results

Two simulation cases for a non-cooperative and cooperative collision avoidance

scenario, respectively, are presented. In the non-cooperative case, an engagement

geometry is chosen where the agent A is an ellipsoid with center at (10, 0, 0) at initial

time t = 0 and semi-principal axes of 10m, 5m, 3m. Its speed is 8.5 m/s with the

initial heading direction at an azimuth of 0◦ and elevation of 69◦, as seen in Fig 6.12.

A faces a series of four obstacles B,C,D and E in quick succession. B is an ellipsoid

with it’s center initially located at (0, 0, 20) and having the same principal axes as A.

It’s speed is 5 m/s with an initial heading angle at an azimuth and elevation of 0◦.

For this engagement, the collision cone yp is computed on multiple planes using the

algorithms of Section 6.3 as shown in Fig. 6.9. It can be clearly seen that the value of

yp obtained from those planes is negative at t = 0. Since Vr is also negative at t = 0

(See Fig 6.10), both ellipsoids are on a collision course. In order to avoid B, the plane

with the maximum value of ψp (at each instant) is selected as the avoidance plane.
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The collision cone yp along with the projected value of the states is used to generate

the acceleration command using (6.17) and the time history of the magnitude and

direction of this acceleration is given Fig 6.11. Fig. 7.17 shows the time history of yp

computed on the plane of maximum ψp. From this, and the plot of Vr in Fig 6.10,

it can be seen that both parameters become greater than zero after a certain time,

signifying a successful collision avoidance maneuver. A is able to fully steer away from

B after 4.7 s. The next obstacle C is a biconcave ellipsoid with center at (50, 15, 30)

at time t = 4.7 s. It’s speed is 5.1m/s with heading angle at an azimuth of 0◦ and

elevation of 34.5◦. Again from the yp plot in Fig 6.9, it can be seen that at t = 4.7 s, A

is on a collision course with C. The collision cone yp and value of ψp on various planes

is obtained using the steps described in Section 6.3.2. The avoidance acceleration is

again computed on the plane of maximum ψp and it can be seen that the heading

direction vector is steered out of the cone. At t = 8 s, A encounters the next obstacle

D which is a shape-changing biconcave ellipsoid, whose shape transitions from an

ellipsoid to a biconcave ellipsoid with varying levels of concavity. It’s center is at

(95,−5, 40) and speed is 3.61m/s with heading direction at an azimuth of 5◦ and an

elevation of 28◦. Similar to the first two cases, avoidance acceleration is computed on

the plane of maximum ψp to steer the velocity vector of A out of the collision cone.

After 10.5 s, the agent encounters the fourth obstacle E which is a 10 faced polyhedron

with center at (110, 30, 40) and having the speed and direction as C. Collision cone

yp and ψp on the various planes is obtained using the steps outlined in Section 6.3.3.

Acceleration is applied to avoid the obstacle and the obstacle is successfully cleared.

The trajectories of the agent A and all the obstacles can be viewed in Fig 6.8.

In the Cooperative Collision Avoidance case, A is an ellipsoid, and encounters

two other agents B1 (an ellipsoid) and B2 (a biconcave ellipsoid) in quick succession.

Both pairs of agents apply avoidance accelerations cooperatively using (6.19). Due
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Figure 6.9. Simulation 1: Collision cone y and ψ on multiple planes.
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Figure 6.10. Simulation 1: Time histories of Vr, Vθ and Vϕ.
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Figure 6.11. Time histories of acceleration and it’s direction.
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Figure 6.12. Simulation 1: Time histories of azimuth and elevation of heading.
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Figure 6.13. Simulation 1: Time histories of y and ψ on maximum ψ plane.

to page constraints, the plots for this case are not given in the paper, but are shown

in the accompanying video. In this scenaro the initial engagement geometry for the

agent A and the agent B1 is taken to be the same as the geometry of the agent and

the first obstacle for the Uncooperative case. Thus, similar to the previous case, both

agents are in a collision course at time t = 0. However, in this case both agent and

obstacle cooperatively avoid collision by generating acceleration commands aA and

aB respectively given by Eq 6.19 in the plane of maximum ψ. In this simulation

scenario, it is further assumed µ = −0.5. The plots of the acceleration magnitude

and direction over time for both agent and obstacle are given in Fig 6.17.. The time

histories of y and ψ on the collision avoidance plane (maximum ψ plane) is given

in Fig 6.19, where it can be seen that y becomes greater than zero and value of ψ

decreases just after 5.5 s, meaning that both agent and obstacle have cooperatively

avoided collision. After 5.5 s, the agent A comes into the path of the agent B2 which

is a biconcave ellipsoid centered at (60, 15, 40) and having the same speed and initial
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Figure 6.14. Simulation 2: 3D Trajectory.

heading as the second obstacle in the Uncooperative case. Again from the plot of

y on the maximum ψ plane (Fig 6.19), it is seen that both agent and obstacle are

in collision course. Cooperative accelerations are again computed for both agent

(subscript A) and obstacle (subscript B) whose time histories are given in Fig 6.17.

Finally, both agent and obstacle are able to steer away from each other at around 11 s

which can be seen from the plot of y > 0 and decreasing ψ on the plane of maximum

ψ in Fig 6.19. The complete trajectory plot of the simulation can be seen in Fig 6.14.

cooperative
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Figure 6.15. Simulation 2: Collision cone y and ψ on multiple planes.
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Figure 6.16. Simulation 2: Time histories of Vr, Vθ and Vϕ.
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Figure 6.17. Simulation 2: Time histories of acceleration and it’s direction.
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Figure 6.18. Simulation 2: Time histories of azimuth and elevation of heading.
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Figure 6.19. Simulation 2: Time histories of y and ψ on maximum ψ plane.
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CHAPTER 7

Robust Collision Avoidance

In this chapter, we consider scenarios where the robots have noisy, imperfect

state information. We first perform an analytical quantification of the effect of these

noisy states on the computation of the collision cone. We then employ a two-loop

feedback architecture, with the objective to attenuate the effects of noise and thereby

achieve robust collision avoidance. The inner loop provides a baseline acceleration

component (developed using a dynamic inversion approach which does not account

for the effects of noise), while the outer loop provides correctional components to this

baseline acceleration. These correctional terms are developed using a set of Linear

Matrix Inequalities (LMIs) which account for the effects of state measurement noise.

This two-loop architecture achieves robust collision avoidance of moving quadrics.

7.1 Robust Controller Design using LMIs

The acceleration law (6.17) derived by the dynamic inversion method requires

accurate knowledge of the true values of the states. However, as is well known, mea-

surement sensors are not perfect and possess noise which corrupts the state measure-

ments thereby causing the controller to behave improperly. In this section, we first

analyze the effect of noise on the collision cone parameter y, followed by a discussion

of its influence on the error dynamics z(t). This is followed by an LMI-based con-

troller design employed to attenuate the effects of noise, and thereby provide robust

collision avoidance performance.
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7.1.1 Effects of Noise on Collision Cone Parameter Dynamics

In the absence of noise, the inverse dynamics law ensures that y follows the

dynamics ẏ = −K(y − w), or equivalently, ż = −Kz. Now, assume the presence

of noise so that the measurements of the relative engagement states r, θ, Vr, Vθ,

θb and ψ are each corrupted by additive noise terms ∆r, ∆θ, ∆Vr, ∆Vθ, ∆θb and

∆ψ, respectively. Let the erroneous states be accented by the symbol ∼. Therefore,

r̃ = r+∆r, θ̃ = θ+∆θ, and similarly for the other states. This noise, as a consequence,

leads to an error in the value of the collision cone parameter y. Let this error be

represented by ∆y, so that ỹ = y+∆y. Additionally, the dynamic inversion law also

includes the derivative terms θ̇b and ψ̇. These terms are also corrupted to ˙̃θb and
˙̃ψ,

respectively. Substituting these terms in (6.17), we see that the applied acceleration

is

ãlat,A = −(Ṽ 2
r + Ṽ 2

θ )
Ñ1 + Ñ2

D̃1D̃2

(7.1)

where, the terms Ñ1, Ñ2, D̃1 and D̃2 are determined from their noise-free counterparts

(6.18), to be the following:

Ñ1 = (Ṽ 2
r + Ṽ 2

θ )(2K(w − ỹ) + ˙̃ψ sin(ψ̃))

Ñ2 = ˙̃θb

(
4ṼθṼr cos(2(θ̃ − θ̃b)) + 2(Ṽ 2

r − Ṽ 2
θ ) sin(2(θ̃ − θ̃b))

)
D̃1 = 2ṼrṼθ cos(2(θ̃ − θ̃b)) + (Ṽ 2

r − Ṽ 2
θ ) sin(2(θ̃ − θ̃b))

D̃2 = 2
(
Ṽr cos(α− θ̃) + Ṽθ sin(α− θ̃)

)
(7.2)

Substituting (7.1) in (6.16), after performing algebraic manipulations, we see that the

error z now follows the dynamics:

ż = −Kaz + v (7.3)
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where, the quantities a and v are as follows:

a =
D1D2

(
Ṽ 2
r + Ṽ 2

θ

)2
D̃1D̃2 (V 2

r + V 2
θ )

2 (7.4)

v = a

 Ñ2

2
(
Ṽ 2
r + Ṽ 2

θ

) + ˙̃ψ
sinψ

2
−∆y


︸ ︷︷ ︸

T

−
(

θ̇bD1

(V 2
r + V 2

θ )
+ ψ̇

sinψ

2

)
︸ ︷︷ ︸

U

(7.5)

As evident from (7.3), a and v represent multiplicative and additive noise terms (or

perturbations) respectively. They impact the dynamics of the collision cone error

function z and are functions of the relative engagement states and their erroneous

measurements. Note that in the absence of noise, (when Ṽr = Vr, Ṽθ = Vθ and so on),

these terms reduce to a = 1, v = 0 and (7.3) reduces to ż = −Kz.

7.1.2 Bounds on the Multiplicative and Additive Noise Terms

In this subsection, we determine the bounds on the error term ∆y, as well as

on the multiplicative and additive noise terms a and v, respectively. In particular, we

determine the mean and variance of each of these quantities, in terms of the mean and

variance of the noisy state measurements. We use a linearized approximation for this

purpose. We assume that all the state measurements are corrupted by an additive

Gaussian noise of zero mean and known variance. Thus, the mean (or expectation)

of ∆y is obtained from a linearized approximation as follows:

E[∆y] =

(
∂y

∂Vr

)
E[∆Vr] +

(
∂y

∂Vθ

)
E[∆Vθ] +

(
∂y

∂θ

)
E[∆θ]

+

(
∂y

∂θb

)
E[∆θb] +

(
∂y

∂ψ

)
E[∆ψ] (7.6)

125



Since the noise in all the measurements is assumed to be zero-mean Gaussian, we get

E[∆y] = 0. Using a similar linearized approximation, the variance of ∆y is obtained

as:

Var [∆y] =

(
∂y

∂Vr

)2

Var[∆Vr] +

(
∂y

∂Vθ

)2

Var[∆Vθ]

+

(
∂y

∂θ

)2

Var[∆θ] +

(
∂y

∂θb

)2

Var[∆θb] +

(
∂y

∂ψ

)2

Var[∆ψ]

(7.7)

Next, let us consider the multiplicative term a in (7.3). We get E [a] = 1. To

determine the variance of a, we first define a quantity G =
(V 2

r + V 2
θ )

2

D1D2

, and note

from (7.4), that a = G̃/G. Then, using a linearized approximation, the variance of a

can be written in terms of the partial derivatives of G as:

Var [a] =
1

G2

((
∂G

∂Vr

)2

Var [∆Vr] +

(
∂G

∂Vθ

)2

Var [∆Vθ]

+

(
∂G

∂θ

)2

Var [∆θ] +

(
∂G

∂θb

)2

Var [∆θb]

)
(7.8)

We finally consider the additive term v in (7.5). Using a linearized approach similar

to the above, we get E[v] = 0. The variance of v is:

Var[v] = Var[aT − U ] = Var[aT ] (7.9)

where, T and U are as defined in (7.5). The second equation above follows from the

fact that U does not contain any noise terms and therefore does not contribute to the

calculation of variance. Using a Taylor series expansion on a and T , we get:

a = a0 +
∂a

∂Vr
(△Vr) +

∂a

∂Vθ
(△Vθ) +

∂a

∂θ
(△θ)

+
∂a

∂θb
(△θb) +H.O.T (7.10)

T = T0 +
∂T

∂Vr
(△Vr) +

∂T

∂Vθ
(△Vθ) +

∂T

∂θ
(△θ) + ∂T

∂θb
(△θb)

+
∂T

∂θ
(△ψ) + ∂T

∂θ̇b
(△θ̇b) +

∂T

∂ψ̇
(△ψ̇) +H.O.T (7.11)
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Figure 7.1. ∆y and its 3σ bounds.

where a0 and T0 denote the true values as given below

a0 = 1, T0 =

(
N2

2 (V 2
r + V 2

θ )
+ ψ̇

sinψ

2

)
(7.12)

Substituting (7.10) and (7.11) in (7.9), ignoring the higher order and higher degree

terms, and assuming the variance of the individual terms to be independent, we get

the following:

Var[v] =

(
∂T

∂Vr
+ T0

∂a

∂Vr

)2

Var [△Vr] +
(
∂T

∂ψ

)2

Var [△ψ]

+

(
∂T

∂Vθ
+ T0

∂a

∂Vθ

)2

Var [△Vθ] +
(
∂T

∂θ̇b

)2

Var
[
△θ̇b

]
+

(
∂T

∂θ
+ T0

∂a

∂θ

)2

Var [△θ] +
(
∂T

∂ψ̇

)2

Var
[
△ψ̇
]

+

(
∂T

∂θb
+ T0

∂a

∂θb

)2

Var [△θb]

(7.13)

Figs. 7.1 and 7.2 show the time plots of the error ∆y in the collision cone

parameter, the additive and multiplicative noise terms, as well as the calculated 3σ
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bounds for each of these terms, as determined from (7.7), (7.8) and (7.9), respectively,

for a scenario (described later in the simulations section). It can be seen that the

calculated 3σ bounds follow the trend of the noise terms and a high percentage of the

noise values lie within these bounds. These 3σ bounds help us to specify the bounds

on some of the parameters of the robust controller discussed in the next subsection.
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7.1.3 Implementation of LMI-based Controller

In order to attenuate the adverse effects of the a and v terms in (7.3), an

additional control input ∆alat,A is added to the control law (7.1) as follows:

alat,A = ãlat,A +∆alat,A (7.14)

In this subsection, we demonstrate the use of an LMI-based approach for the design

of the ∆alat,A term. Toward this end, we first substitute the above equation in (7.3),

to get:

ż = −Kaz + b∆alat,A + v (7.15)

where, the quantity b is:

b =
−D1D2

2 (V 2
r + V 2

θ )
2 (7.16)

We note that the values of both a and b are unknown. We can however use the analysis

of the previous subsection to guide us in inferring bounds on a and b. Let a lie within

the bounds [−ν, ν], and let the bound on the absolute value of b be represented by λ.

We assume that the sign of b is known. Rewriting (7.15) in discrete form, we get

z(k + 1) = Az(k) +B∆alat,A(k) +Dv(k) (7.17)

In the above equation, the quantities A, B and D lie within bounds [A1, A2], [B1, B2],

and [D1, D2], respectively, where these bounds are defined in terms of ν, λ and the

discretization time step △t. The values of A, B and D thus lie within a polytope Ω,

which is defined as follows:

Ω = {[A1, B1, D1] , [A2, B2, D2]}

=
{[
eKν△t, 1/(Kν)(eKν△t − 1)λ, 1/(Kν)(eKν△t − 1)

]
,[

e−Kν△t, 1/(−Kν)(e−Kν△t − 1)λ, 1/(−Kν)(e−Kν△t − 1)
]}
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A robust input-constrained MPC controller is implemented using LMIs [94, 95]

to generate a feedback control law of the form ∆alat,A(k) = K(k)z(k), that satisfies

several objectives. It should minimize the tracking error z, while also ensuring that

the influence of the disturbance v on z is kept below a pre-defined threshold. Also,

the magnitude of ∆alat,A should be such that the total acceleration (which includes

the components generated from dynamic inversion and the LMIs) remains within

the actuator saturation limits. These objectives are mathematically formulated as

follows:

1) Let J∞ represent a cost function defined as:

J∞(k) =
∞∑
i=0

(
Q̂z2(k + i) + R̂∆a2lat(k + i)

)
(7.18)

where, Q̂ and R̂ represent weights on z and ∆alat,A respectively. Determine ∆alat,A,

so as to minimize the upper bound Γ on J∞(k). This objective needs to be satisfied

for the entire polytope Ω.

2) Let T vz represent the transfer function from v to z. Determine ∆alat,A so as

to ensure that the effect of v on z is upper bounded in the sense of the H∞ norm of

T vz , that is, ∥T vz ∥∞ < µ. Satisfying this objective will attenuate the influence of the

term v in (7.17). This objective needs to be satisfied for the entire polytope Ω.

3) The input ∆alat,A(k) is constrained between the bounds umin(k) and umax(k).

These limits are re-calculated such that for every simulation time step, the total

acceleration alat,A lies within the actuator saturation limits |alat,A| ≤ alat,Amax

To meet the above objectives, the MPC control gain K has the following struc-

ture:

K(k) = Y (k)Q−1(k) (7.19)
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where, Y and Q are obtained by solving the following LMIs at each time step k :

min
Γ,Q,Y

Γ (7.20)

such that

 1 z(k)

z(k) Q

 ≥ 0 (7.21)



Q QATi + Y TBT
i QQ̂1/2 Y T R̂1/2

AiQ+BiY Q 0 0

Q̂1/2Q 0 ΓI 0

R̂1/2Y 0 0 ΓI


≥ 0, i = 1, 2 (7.22)



Q 0 QATi + Y TBT
i Q

0 Γµ ΓDT
i 0

AiQ+BiY ΓDi Q 0

Q 0 0 ΓI


≥ 0, i = 1, 2 (7.23)

umax(k)Q− z(k)Y 0

0 z(k)Y − umin(k)Q

 ≥ 0 (7.24)

Note that the above equations (7.21)-(7.24) actually constitute a system of 6 LMIs,

since (7.22)-(7.23) need to be satisfied at every corner point of the polytope Ω. A

formal proof which demonstrates that obtaining a feasible solution to the above LMIs

is equivalent to satisfying the three objectives mentioned above, can be found in

[94, 95].

From (7.21), it is seen that the MPC requires the true value of the error z(k)

(equivalently, the true value of y(k)) in order to calculate ∆alat,A. Since only a noisy

value of y(k) (computed from noisy state measurements) is available, a Kalman Filter

is used to estimate y(k), and the subsequent estimate of z(k) is used in the LMIs.

At the same time, measurement noise has compounding effects on the numerical
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derivative terms ψ̇ and θ̇b, which appear in the dynamic inversion acceleration law

(6.17). This can make it difficult to find a feasible solution for the LMIs. Therefore

the numerical derivatives ψ̇ and θ̇b are also obtained through Kalman Filters. The

overall control architecture used for collision avoidance thus combines computations

from dynamic inversion-based control, LMI-based control and Kalman Filters. A

block diagram schematic demonstrating the overall two-loop architecture is provided

in Fig. 7.11.

7.2 2D Simulation Results

To test the performance of the robust collision avoidance algorithm, we take

an elliptical object A and simulate its navigation through an environment with a

series of fast-moving obstacles with varying quadric-shapes: an elliptical obstacle B,

a non-convex confocal quadric obstacle C and finally a shape-varying confocal quadric

obstacle D. A has a semi-major axis of 6 m, semi-minor axis of 2m, and its initial

position is (0, 0). The state measurements are considered to have additive Gaussian

noise as follows:

∆r(t) = 20%r(t)m(t),∆θ(t) = 3◦m(t),∆Vr(t) = 40%Vr(t)m(t),

∆Vθ(t) = 40%Vθ(t)m(t),∆ψ(t) = 1◦m(t),∆θb(t) = 1◦m(t)

where m(t) is a Gaussian random variable of zero mean and standard deviation

of 1/3. In the first phase, obstacle B starts from position (45, 0) with a heading angle

of 120◦ as can be seen from Fig. 7.12. A starts at the same time with an initial heading

angle of 45◦. Fig. 7.12 provides a visualisation of the collision cone as described by the

set of heading directions (marked by red arrows) of A which lead to collision with B.

It is clearly seen that the initial heading of A lies inside the collision cone, meaning
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A is on a collision course with B. Fig. 7.7 shows the collision cone parameters -

true, noisy and estimated values of the collision cone function y, as well as the true

and noisy relative velocity components Vr, Ṽr, Vθ and Ṽθ. From these plots, it is

seen that initially the true y and Vr are both negative, indicating a collision course

and furthermore, the noise in the collision cone parameters is quite substantial which

impacts the acceleration obtained from the dynamic inversion algorithm. However,

the LMI-generated ∆aLat,A provides a continuous additional acceleration that steers

A away from collision. After 2.33 s, A comes out of the collision cone to B (See

Fig. 7.12), both true Vr and y are positive (See Fig. 7.7) and the angle ψ starts to

decrease (See Fig. 7.6) after which the second phase starts. In the second phase, A

faces a confocal quadric obstacle C which starts from (−7, 75) with a heading angle

of 0. From Fig 7.7, it is evident that A is on a collision course with C, as y < 0,

Vr < 0. Fig. 7.12 shows that the heading angle of A lies inside the collision cone to C.
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Again, accelerations from the dynamic inversion-based controller and the LMI-based

controller act in tandem to steer the velocity vector of A out of the collision cone to C,

and this is completed at 3.54 s. Finally in the third phase, A occurs a shape-changing

confocal quadric D with a time-varying k. For an obstacle such as D, the angle ψ

changes not only because of A coming closer to D but also because of the changing

shape of D. However, the total commanded acceleration is able to steer A out of the

collision cone, by 4.35 s. The simulation ends when A reaches it’s goal at (80, 100) at

5.67 s. The complete time history of alat,A and the contribution of the heading angle

changes generated by the dynamic inversion-based and the LMI-based commands are

seen in Fig. 7.5. We note that the time profiles of the noise shown in Figs 7.1 and 7.2

are for the above simulation scenario.

The performance of the LMI-based controller is shown in Fig. 7.8. Fig 7.8(a)

shows the time history of the upper bound Γ on the LMI cost function in (7.18). It is

seen that the LMI plays an active role in ensuring collision avoidance, except during

the time intervals 2−2.33 s and 3.54−4 s during which Γ is undefined. This is because

the velocity vector of A has been steered out of the collision cone to B by 2 sec, and

during 2 − 2.33 s, A is not on a collision course, due to which the contribution from

both the dynamic inversion and the LMI based controllers are zero. During 3.54−4 s,

the dynamic inversion controller is fully saturated and thus the LMI-based controller

does not contribute a correction. The LMI-based controller is also able to effectively

reject the behaviour of the additive noise v as can be seen from Fig 7.8(b). This figure

shows that the H∞ norm of the transfer function T vs is less than the bound µ except

at the first two time instants.
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Figure 7.9. Combinations of Various 3-D Quadrics: (a) An intersecting ellipsoid and
a 2-sheeted hyperboloid, (b) An intersecting ellipsoid and a 1-sheeted hyperboloid,
(c) Biconcave ellipsoid, (d) Biconvex hyperboloid.

7.3 3-D Quadrics and Engagement Geometry

The equation of a general 3-D quadric in (x, y, z) space is:

axxx
2 + ayyy

2 + azzz
2 + 2axyxy + 2ayzyz + 2axzxz

+ 2bxx+ 2byy + 2bzz + c1 = 0

(7.25)

As shown in section 6.1, depending on the signs of the coefficients in (7.25), different

quadrics are obtained such as an ellipsoid, a one-sheeted hyperboloid, a two-sheeted

hyperboloid, and so on. Furthermore, by taking suitable combinations of these sur-

faces, we can get a larger class of surfaces. Figs 7.9(a),(b) show an ellipsoid that in-

tersects a two-sheeted hyperboloid and a one-sheeted hyperboloid, respectively. Figs

7.9(c),(d) show two shapes obtained by suitable combinations of these objects. With
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Figure 7.10. Engagement Geometry between two objects.

some abuse of terminology, we refer to them as a biconcave ellipsoid and a biconvex

hyperboloid, respectively.

Fig 7.10 shows the engagement geometry between two objects A and B. While

the figure shows A and B to be an ellipsoid and a biconcave ellipsoid, they could in

principle be any pair of objects discussed above. A and B are moving with speeds

VA and VB, respectively, at heading angle pairs of (βA, αA), and (βB, αB) respectively.

Here, (βA, αA) represents the (azimuth,elevation) angle pair of the velocity vector of

A, and (βB, αB) is correspondingly defined. Let O and M represent reference points

on A and B. Then, r represents the distance OM , and (θ, ϕ) represents the azimuth-

elevation angle pair of OM . The control input of A is its lateral acceleration aA,

which acts normal to the velocity vector of A at an azimuth-elevation angle pair of
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Figure 7.11. Two-Loop Control Architecture.

(δA, γA). Let VR = VB − VA represent the relative velocity of B with respect to

A. Then, V r, V θ, V ϕ represent the mutually orthogonal components of VR, where

V r is the component along OM . The kinematics of the engagement geometry are as

follows:

ṙ = V r, θ̇ = V θ/(r cosϕ), ϕ̇ = V ϕ/r

V̇ θ = (−V θV r + V θV ϕ tanϕ)/r − (cos γA sin(δA − θ))aA

V̇ ϕ = (−V θV r − V 2

θ tanϕ)/r + (cos γA sinϕ cos (δA − θ)

− sin γA cosϕ)aA

V̇ r = (V
2

θ + V
2

ϕ)/r − (cos γA cosϕ cos (δA − θ) + sin γA sinϕ)aA

β̇A = aA cos γA sin(δA − βA)/(VA cosαA)

α̇A = −aA(cos γA sinαA(cos δA − βA)− cosαA sin γA)/VA

(7.26)

7.4 3D Collision Avoidance Acceleration

After computing the 3-D collision cone, we choose a suitable plane P̄ on which

to perform the avoidance maneuver. There can be several different ways to choose

plane P̄ and in dynamic environments, P̄ may vary with time. For example, P̄
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may be chosen to be the plane on which ψi is maximum, or yi is minimum, over all

i = 1, · · · , n. We now determine expressions for the avoidance acceleration on the

plane P̄ . We employ a two-loop architecture shown in Fig 7.11, wherein the inner

loop is designed using a DI method, which generates a lateral acceleration with the

assumption of perfect, noise-free sensor measurements. The outer loop then generates

an additional lateral acceleration term which corrects for the effects of measurement

noise. In Fig 7.11, X̄ represents the 3D state vector (7.26), and X represents the

projection of this vector on P̄ . For the subsequent development in this section, it is

to be understood that the quantities y, Vr, Vθ, ψ, θb are all computed on the plane

P̄ . From (7.21), it is seen that the MPC requires the true value of the error z(k)

(equivalently, the true value of y(k)) in order to calculate ∆aA. Since only a noisy

value of y(k) (computed from noisy state measurements) is available, a Kalman Filter

is used to estimate y(k), and the subsequent estimate of z(k) is used in the LMIs.

At the same time, measurement noise has compounding effects on the numerical

derivative terms ψ̇ and θ̇b, which appear in the DI acceleration law (6.17), (6.18).

This can make it difficult to find a feasible solution for the LMIs. Therefore the

numerical derivatives ψ̇ and θ̇b are also obtained through Kalman Filters.

7.5 3D Simulation Results

We consider a scenario where an ellipsoid A encounters two fast-moving ob-

stacles (an ellipsoid B and a biconcave ellipsoid C) in quick succession. A has a

speed of 8.5m/s and its center at t = 0 is at (14, 0, 0). B has a speed of 5 m/s and

its center at t = 0 is at (0, 3, 20). Let the true coordinates of centers of A and B

be denoted by (Ax(t), Ay(t), Az(t)) and (Bx(t), By(t), Bz(t)) respectively, and the

components of their true velocity vectors be denoted as (VAx(t), VAy(t), VAz(t)) and
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(VBx(t), VBy(t), VBz(t)). Additive noise is present in the measured position and ve-

locity of B in the form given below:

∆Bx,y,z(t) = r% |(Bx,y,z(t)− Ax,y,z)|m(t)

∆VBx,y,z(t) = s% |(VBx,y,z(t)− VAx,y,z)|m(t)

(7.27)

where, r% = 7.5 and s% = 15 are pre-factors and m(t) is a Gaussian random variable

of zero mean and standard deviation 1/3. This additive noise causes errors in the

measured 3D relative states which affect the calculated 2D projected states of the

objects on various planes. Fig 7.14(a)-(c) show the true and noisy values of V̄r, V̄θ, V̄ϕ.

The avoidance acceleration is applied on a plane P̄ , which is chosen as the plane on

which the angle ψi is maximum (across all the planes Pi, i = 1, · · · , n). Fig 7.15(a)

shows the individual components of the applied acceleration, generated by the dy-

namic inversion and the LMIs, respectively. Fig. 7.14(d),(e) show the true (in blue)

and estimated yP̄ (in black) and true ψP̄ on the P̄ plane. It can be seen that the

estimated yP̄ is quite close to the true yP̄ which is important for the working of the

Robust Dynamic Inversion (RDI) controller. It can also be seen that the true yP̄

slowly starts increasing and becomes positive, thus signifying that the acceleration

applied by A is able to maneuver it out of the collision cone to B. After 4.7 s, A en-

counters the biconcave ellipsoid C whose speed is 5.1 m/s and center is at (60, 12, 30).

The engagement of A with B and C are demarcated by a dashed line in Fig 7.14. A

is on a collision course with C. Subsequently acceleration is applied on the plane P̄

with the LMI-based acceleration working in tandem with the acceleration from the

dynamic inversion law as can be seen from Fig 7.15(b). It is evident from Fig. 7.14(d)

that the RDI is able to drive yP̄ to a positive value, thereby steering A out of the

collision cone to C.
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In order to test the effectiveness of the robust DI controller, three Monte Carlo

simulations with 1000 trials each, and with different noise levels are conducted. The

performance of four algorithms-(a) DI alone, (b) DI with Filter on yP̄ , (c) RDI without

filter, (d) RDI with filter, are analysed considering A and B with the same initial

conditions. The results are shown in Fig 7.18. It is seen that at lower noise levels

(r% = 5%, s% = 10%) DI alone is not able to avoid the obstacle though DI with filter

improves the odds of success. At this noise level, both the RDIs (with and without

filter) show 100% success. With further increase in noise (r% = 7.5%, s% = 15%),

the DI with filter fails for all trials but both the RDIs show good performance with

the RDI with filter again showing a 100% success rate. Finally, when the noise level

increases a bit further (r% = 10%, s% = 20%), the success rates for both the RDIs

go down, but are still above 80%. In all these cases, the RDI with Filter outperforms

the other controllers.
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Figure 7.12. 3D Trajectory of A, B and C.

143



0 2 4 6
-1

0

1

y

0 2 4 6
time (sec)

0

50

100

150

A
 (

de
gr

es
s)

Figure 7.13. Collision cone y and ψ on multiple planes.

0 2 4 6(a)
-10

-5

0

V
r
(m

/s
)

0 2 4 6(d)
-1

-0.5

0

0.5

y P

True
Estimated

0 2 4 6(b)

0

2

4

6

V
3

(m
/s

)

0 2 4 6                 time (s)                   
                    (e)                   

0

50

100

150

A
P

(d
eg

re
es

)

0 2 4 6time (s)              
        (c)                   

-6

-4

-2

0

V
?

(m
/s

)

Figure 7.14. Time histories of (a) V r, (b) V θ, (c) V ϕ, (d) yP̄ , (e) ψP̄ .

144



0 1.50.5 1 
-10

-5

0

5

10

a A
 (

m
/s

2
)

aA (RDI)
aA  (LMI)

aA  (DI)

4.5 5 5.5 6
-10

-5

0

5

10

 time (s)

Figure 7.15. Time histories of breakdown of acceleration.

0 2 4 6
-40

-20

0

-
A
 (

de
gr

ee
s)

0 2 4 6
time (sec)

20

40

60

,
A
 (

de
gr

ee
s)

Figure 7.16. Time histories of azimuth and elevation of heading.

145



0 2 4 6
-1

-0.5

0

0.5

y

0 2 4 6
time (sec)

0

50

100

150

A
 (

de
gr

ee
s)

Estimated

True

Figure 7.17. Time histories of y and ψ on maximum ψ plane.

0

100

200

300

400

500

600

700

800

900

1000

DI DI with Filter RDI RDI with Filter

Success

r% = 5%, s% = 10% r% = 7.5%, s% = 15% r% = 10%, s% = 20%

Figure 7.18. Monte Carlo Simulations.

146



CHAPTER 8

Conclusions and Future Work

This thesis presented a collision cone based approach towards reactive motion

planning of autonomous systems in three-dimensional dynamic environments. We

considered a class of moving collision avoidance laws for moving objects having elon-

gated, and/or non-convex shapes. Analytical expressions were derived to construct

collision cones in two and three dimensional environments for objects modelled using

either a combination of quadric surfaces or n-faced polyhedrons. We have shown that

the computation of collision cones is computationally inexpensive and can be done

in real-time. Furthermore, this computed collision cone was used to derive guidance

and control laws for a range of application scenarios: a) The developed laws enable a

robotic fish to perform maneuvers through moving underwater orifices, b) The devel-

oped laws were integrated with a vision-based tracking framework to enable a UAV

(flying at either a fixed, or variable altitude) to track a single, or multiple moving

ground targets, where these targets may maneuver relative to the UAV as well as

relative to one another, c) The developed laws were used to perform reactive collision

avoidance in dynamic environments cluttered with obstacles having heterogeneous

shapes and sizes. Finally, we developed robust collision avoidance laws using an LMI-

based approach for the cases when sensor measurement is noisy. The efficacy of the

developed laws were demonstrated using extensive simulations.

Future work could include enhancement of the collision cone theory for a larger

class of object shapes, as well as vehicle dynamics, and performing experimental

validations of the same.
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