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ABSTRACT

GAN-Based Domain Translation for Hand Pose Estimation and Face Reconstruction

FARNAZ FARAHANIPAD, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Farhad Kamangar

Deep learning solutions for hand pose estimation are now very reliant on com-

prehensive datasets covering diverse camera perspectives, lighting conditions, shapes,

and pose variations. Since, acquiring such datasets is a challenging task that may be

infeasible for many novel applications, several studies aim to develop semi/self super-

vised learning methods, that learn to estimate hand pose from a few labeled/unlabeled

data. Therefore, in this dissertation, we investigate new advances in semi/self super-

vised learning which will remove the bottleneck of obtaining time-consuming frame-

by-frame manual annotations through generative adversarial networks (GANs).

To handle above mentioned challenges, this thesis makes the following contri-

butions. First, we present a comprehensive study on effective hand pose estima-

tion approaches, which are comprised of the leveraged generative adversarial network

(GAN), providing a comprehensive training dataset with different modalities. We

also, evaluate related hand pose datasets and performance comparison of some of

these methods for the hand pose estimation problem. The quantitative and quali-

tative results indicate that these methods are able to beat the baseline approaches
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with better visual quality and higher values in most of the metrics (PCK and ME)

on benchmark hand pose datasets.

The second contribution is based on the progress of the Generative Adversarial

Network (GAN) and image-style transfer. We propose a two-stage semi-supervised

pipeline which is able to accurately localize the fingertip position even in severe self

occlusion on depth images using Cycle-consistent Generative Adversarial Network

(Cycle-GAN). Due to need for huge amount of labeled data for training neural net-

works, semi/self-supervised learning is very appealing for CNN training. Experiments

on the challenging NYU hand dataset have demonstrated that our approach outper-

forms state-of-the-art approaches on 2-D fingertip estimation by a significant margin

even in the presence of severe self-occlusion and irrespective of user orientation.

Moreover, we develop a GUI in MATLAB R2020a, to obtain 12-joints hand pose

annotations of depth images. We prepare a comprehensive dataset of 10000 depth

hand images collected by Microsoft Kinect V2 along with 7 keypoints on depth hand

dataset.

Third, we present a novel framework and formulate 2D hand keypoint localiza-

tion in sequenced data as a problem of conditional video generation. We aim to learn

a mapping function from an input depth video in the source domain to target depth

video by enforcing temporal consistency constraints. To the best of our knowledge,

this is the first work ever performed on fingertip localization on depth videos through

domain adaptation. Our comparative experimental results with the state-of-the-art

single-frame hand pose estimation on the challenging NYU dataset demonstrates that

by exploiting temporal information, our model manifests better hand appearance con-

sistency in video-to-video synthesis stage which leads to accurate estimations of 2D

hand poses under motion blur by fast hand motion.
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In addition, we design and develop a novel game-based system for wrist rehabil-

itation, called HandReha. This is a unique and novel approach because the gestures

are selected from a set of human gestures suitable for wrist rehabilitation and im-

plemented to control a game built in a 3D environment as compared to previous

works where most of the games designed for rehabilitation purposes are built in a 2D

environment.

Finally, we propose a general domain translation framework that can be used

to reconstruct the hidden part of face concealed by mask. We have employed GAN-

based unpaired domain translation technique to translate masked face images from

the source to the unmasked images in the destination domain which can be used for

facial identification and secure authentication in human-computer interaction. The

obtained results demonstrate that our model outperforms other representative state-

of-the-art face completion approaches both qualitatively and quantitatively.
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CHAPTER 1

Introduction

Hand pose estimation is getting a lot of attention in many areas such as Human-

Computer Interaction, Virtual Reality (VR) and Augmented Reality (AR) device, and

Sign Language Recognition. A fundamental step to accurately estimate the hand

pose involves detecting and localizing fingertips. Despite the progress of 2-D hand

pose estimation in recent studies, accurate and robust detection and localization of

fingertips still remains a challenging task due to low resolution of a fingertip in images,

varying lightning condition, self-similar parts, and severe self-occlusions.

In recent years, Convolutional Neural Networks (CNN) have been demonstrat-

ing the power of learning real world knowledge from images with supervision from

labels. However, fully supervised models for such tasks is challenging, due to the

difficulty and extent of effort involved in obtaining large amounts of training data.

Getting such data involves manually specifying hand pose information for thousands

or millions of images, and this has been a big bottleneck for progress on this topic.

Semi-supervised learning provides a solution by learning the patterns present

in unlabelled data, and combining that knowledge with the generally, fewer labeled

training samples in order to accomplish a supervised learning tasks.

This dissertation considers several problems related to hand pose estimation

and face reconstruction in semi-supervised learning based on generative adversarial

networks (GANs) . Leverage Generative Adversarial Networks(GANs), this disser-

tation addresses the problem of 2D/3D hand pose estimation on depth image/video

whose challenges are mentioned above. With semi-supervised learning, the dataset

1



may contain millions of images, but we only need to specify hand pose information

for a very small fraction of those images.

Moreover, this dissertation proposes solution for face reconstruction using GANs.

The proposed framework, employed GAN-based unpaired domain translation tech-

nique to translate masked face images from the source to the unmasked images in the

destination domain. It can be used for facial identification and secure authentication

in human-computer interaction during a scenario when the person wears a mask.

1.1 Contributions

This dissertation makes contributions towards Hand Pose Estimation and Face

Reconstruction using Generative Adversarial Networks. This section highlights these

contributions as the pertain to each topic.

1. Reviewing all existing models for hand pose estimation using Generative Ad-

versarial Networks.

2. Enriching the field with a challenging public finger tapping dataset to address

the lack of having appropriate dataset.

3. Introducing semi-supervised 2D hand keypoint localization framework on depth

images.

4. Introducing semi-supervised 2D hand keypoint localization method on depth

video, leveraged temporal information.

5. Proposing a face reconstruction pipeline using paired image-to-image translation

for masked-face reconstruction.
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1.2 Dissertation Structure

Each following chapter in this dissertation is meant to be self-contained and it

includes all related works as necessary. In chapter 2, an overview of related works in

hand pose estimation leveraged generative adversarial networks or GANs in short is

presented.

Chapter 3, describes the Generative Adversarial Networks and image-to-image

translation technique and then presents a novel cycle-consistent framework for 2D

hand pose estimation on depth images which works without paired supervision. Ex-

periments on the challenging NYU hand dataset have demonstrated that proposed

approach outperforms 2-D fingertip localization state-of-the-art by a significant mar-

gin in terms of Mean Error (ME) in pixel and Percentage of Correct Keypoints (PCK),

even in the presence of severe self-occlusion and varying lighting conditions and irre-

spective of user orientation.

In chapter 4 and inspired by work presented in 3, 2D hand keypoint localization

is formulated as a problem of conditional video generation, where the goal is to learn

a mapping function from an input source video to an output photo-realistic depth

video by enforcing temporal consistency constraints.

Chapter 5 presents the work towards an application of hand gesture recognition

for game-based wrist rehabilitation. This is a unique and novel approach because the

gestures are selected from a set of human gestures suitable for wrist rehabilitation

and implemented to control a new designed game built in a 3D environment.

In chapter 6, a paired datasets of real face images and synthesized correspon-

dence’s with face-masks is presented. This is used towards training of a proposed

GAN-based facial reconstruction system which can be used for facial identification

and secure authentication in human-computer interaction.
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This dissertation concludes with a discussion on the key components of future

research towards GAN-based hand pose estimation.
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CHAPTER 2

GAN-Based Data Augmentation for Hand Pose Estimation Problem

2.1 Introduction

Hand pose estimation, which is a problem of predicting the 2D/3D position of

hand joints, given an RGB/depth input, is receiving a lot of attention in the com-

puter vision field. It has been applied in many applications, such as human–computer

interaction (HCI) [12], gesture recognition [13, 14, 15], sign language recognition

[16, 17, 18, 19], interactive games [20, 21, 22], user interface controls [23], computer-

aided design (CAD) [24], etc. In recent years, by the advancements in deep learning

algorithms, data-driven approaches have become more advantageous and have led to

significant improvements in 2D/3D hand pose estimation, as a large number of an-

notated datasets have become available [25, 26, 27]. However, acquiring accurate 3D

labeled data requires an expensive marker-based motion capture system or a massive

multi-view camera setting. Therefore, to avoid annotating such large datasets, which

is costly, time consuming and labor intensive, researchers are trying to find alternative

approaches that can leverage them. One upcoming solution is to use synthetic data

for training, where data are automatically annotated and convenient for generating

a large scale of data with accurate ground truth. Although image synthesis can be

generated using a physical renderer, there are usually a few differences between real

and synthetic data, without consideration of depth sensor noise in a realistic way.

Therefore, models trained on the synthetic data suffers from the domain shift prob-

lem, and they fail to perform well on real datasets, due to the domain gap between

the real and synthetic datasets.
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The most promising approach is to use generative models that learn to discover

the essence of data and find a best distribution to represent it. Generative adversarial

networks [28], or GANs in short, are a class of generative models, where two neural

networks, generator and discriminator, contest with each other in a zero-sum game,

where one agent’s gain is another agent’s loss. Given a training set, the generator

learns to generate new data with the same statistics as the training set, while the

discriminator’s goal is to distinguish between real and generated samples. GANs

have the ability to translate source synthetic images into realistic target-like images

for training purposes. This is known as domain transfer learning. Several state-of-

the-art transfer learning research works used GANs to enforce the alignment of the

latent feature space. The conditional generative adversarial networks (CGANs) [29],

which is an extension of GAN, has the ability to train synthetic models to generate

images based on auxiliary information. Due to the popularity of the framework, it

has become the foundation for many successful architectures, such as CycleGAN [30],

StyleGAN [31], PixelRNN [32], DiscoGAN [33], etc.

The great success of these methods inspired more researchers to apply the gener-

ative adversarial networks to the hand pose estimation problem and train deep learn-

ing models either with a synthesized comprehensive dataset or few existing datasets

in a semi-supervised setup or benefit from unlabeled data in a self-supervised manner

to mitigate the burden of labeled-data acquisition.

Despite the large body of works that have been conducted on hand pose es-

timation using generative adversarial networks, no recent all-round survey has been

conducted on it. As far as we know, this is the first survey among current publications

which focused on GAN-based data augmentation for hand pose estimation problem.

Moreover, different from existing review studies on the hand pose estimation prob-

lem which mainly discuss depth-based methods [34, 35], in this chapter, we present
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a comprehensive study on the most recent GAN-based methods based on input data

modality, i.e., RGB, depth, or multi-modal information. Another point of motiva-

tion of our work is that researchers do attach much importance to semi/unsupervised

learning using GANs.

In what follows, in Section 2.2, we discuss the challenge followed by a compre-

hensive study of the most representative GAN-based data augmentation studies in

solving the hand pose estimation problem in Section 2.3. Additionally, the existing

hand pose datasets, the evaluation metrics, and the state-of-the-art results on two

common datasets are summarized in Section 2.4.

Finally, potential research directions in this rapidly growing field and conclu-

sions are highlighted in Sections 2.5 and ??, respectively.

2.2 Challenge Analysis

Despite the rapid progress in hand pose estimation, it conventionally struggles

from many difficulties, such as an extensive space of pose articulations, self-occlusions,

and limited number of manually annotated data. The most important challenges in

hand pose estimation are the following:

• Annotation difficulties: Existing learning-based methods require a large

number of labeled data to accurately estimate hand poses. However, acquir-

ing precise labels is costly and labor intensive.

• Lack of various modalities: Most of the existing hand pose datasets only

contain RGB images, depth frames or infrared images instead of paired modal-

ities.

• Requirement for variety and diversity: The real datasets are limited in a

quantity and coverage, mainly due to the difficulty of annotations, annotation

accuracy, hand shape and viewpoint variations, and articulation coverage.
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• Occlusions: Due to the high degree of freedom (DoF), the fingers can be heav-

ily articulated. In particular, hand–object and hand–hand interaction scenarios

are still a big challenge, due to object occlusion and the lack of a large annotated

dataset. Severe occlusion might lead to loose information on some hand parts

or different fingers mistakenly. To handle occlusion, several studies resorted to

a multi-camera setup from different viewpoints; however, it is expensive and

complex to set up a synchronous and calibrated system with multiple sensors.

• Rapid hand and finger movements: Most conventional RGB/depth cam-

eras cannot capture the speed of the hand motions and, thus, cause blurry

frames or uncorrelated consecutive frames, which directly affect the hand pose

estimation results.

Although many existing methods try to address these challenges with powerful

learning-based approaches, as the effectiveness of generative deep learning aroused,

many researchers try to address these through generative adversarial networks. Such

methods dominate the benchmarks on large public datasets, such as NYU [36], ICVL

[37], and FreiHAND [38]. In what follows, we first explain GANs, then we discuss

studies on hand pose estimation, focusing on addressing the above challenges through

data augmentation using GANs.

2.3 GAN-Based Hand Pose Data Augmentation

The generative adversarial network (GAN) is an unsupervised learning task in

machine learning that involves automatically discovering and learning the regularities

or patterns in input data such that the model can be used to generate new examples

as similarly as possible to the original dataset. GAN consists of two networks called

the generator and discriminator; Figure 2.1a. The generator takes a simple random

variable and generates new examples, and the discriminator tries to distinguish real
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Figure 2.1. GAN-based hand pose data augmentation. (a) Overview on genera-
tive adversarial network, (b) procedure illustration of using generated data in HPE
problem.

samples from the generated ones. The two models are trained together in a zero-

sum game—adversarial—until the discriminator model is fooled about half of the

time, meaning that the generator model generates plausible examples. Although

the original framework [28] has no control of what is to be generated and it is only

dependent on random noise, in a later study [29], the authors introduced conditional-

GAN, where they add the conditional input vector c concatenated with noise vector

z and feed the resulting vector into the generator. This conditional GAN can be used

to generate examples from a domain of a given type. This allows for some of the more

impressive applications of GANs, such as image-to-image translation, style transfer,

photo colorization, and so on.

GANs are perhaps best known for their contributions to realistic image synthesis

and model patterns of motion in video. GANs are able to enhance synthetic datasets

such that the statistical distribution resembles a real-world dataset. Many approaches

explore how to better manipulate images by applying GAN models [39, 40, 30]. Al-

though image synthesis can be generated using a physical renderer, the difference

between real and synthetic data is not considered in the image synthesis process.
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Moreover, GANs’ successful ability to model high-dimensional data, handle missing

data, and the capacity of GANs to provide multi-modal outputs or multiple plausi-

ble answers made researchers more ambitious to the extent that they use GANs for

the hand pose estimation problem either by generating data in new modalities or by

realistic image synthesis through eliminating the domain gap between the synthetic

and real data (Figure2.1b). Below is a comprehensive survey on GAN-based hand

pose data augmentation based on GANs’ application.

2.3.1 Image Style Transfer and Data Augmentation

To achieve high accuracy, much annotated data are required in data-driven

methods, which are a labor-intensive and expensive process. Therefore, a few works

aimed at improving the accuracy of pose estimation by using a synthetic image for

data augmentation. However, using a physical renderer cannot embed the realistic

noise in real data into data augmentation. To this end, several recent methods enrich

existing training examples with style transfer by modeling real data noise realistically.

Transferring the style from one image onto another has been a trendy subject in

computer vision for the last few years.

In [1], they proposed a data-driven approach to generate depth hand images

given ground-truth hand poses using a generative model. The style transfer is applied

to generate the image with the style equivalent to the style image and the content

from the content image. The style and content are defined based on the loss functions

by measuring how far away the synthesized images are from the perfect style transfer.

The proposed style-transfer network aims to transform the smooth synthetic images

to become depth hand images more similar to the real ones. Figure 2.2 shows the

architectural structure of the developed method. It contains three parts: a generator

to transform the 3D hand pose into a deep hand image, and a discriminator which
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Figure 2.2. Flowchart of the proposed method in [1], covering the generator, the
discriminator, and style-transfer networks in detail. Originally used in [1].

determines the authenticity of the generated image and the style-transfer network.

At the end, they performed 3D hand pose regression on generated depth hand images

based on the residual convolutional neural network. Their approach was evaluated

and analyzed on three publicly available datasets NYU [36], ICVL [37], and MSRA

gesture [41] datasets—and it was shown to boost hand pose estimation performance

when used as training images.

To increase the amount of training data, Shrivastava et al. [2] proposed a

framework which uses simulated and unsupervised learning to fit a model that uses

unlabeled real data to improve the realism of a simulator’s rendered data. They

performed an experiment using real hand depth maps from the NYU [36] hand pose

dataset in an extended version of SimGAN [2], and successfully added realistic noise

to synthetic frames to better imitate imperfect real frames that are captured by depth

cameras. Figure 2.3 gives an overview of the proposed model. Once the synthetic

data are generated by a black box simulator, they are refined using a neural network
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Figure 2.3. Overview of SimGAN; the self-regularization term minimizes the image
difference between the synthetic and the refined images. Adapted from [2].

called the ‘refiner network’. The refiner network is trained using adversarial loss from

[28] to enforce the refined images similar to the real ones.

2.3.2 Domain Translation

Although using synthetic data is a potential solution to acquire accurate and

unlimited data, avoiding expensive annotated real data, it has the strong disadvantage

that the network trained only on synthetic data has limited generalization to real

images and fails to generalize to real-world imagery. This visual domain shift from

non-photo-realistic synthetic data to real images presents an even more significant

challenge. Although the classical domain adaptation methods can be used to eliminate

the dissimilarity between the real and synthetic images, recent studies focus on using

GANs to bridge the gap between image distributions through adversarial training.

Using domain translation techniques, such as image-to-image translation, not only

leads to generating realistic training images which can be used to train any machine

learning model, but it is also useful for generating data in different modalities. Since

collecting and preparing training data in different modalities is a challenging task and
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it requires expensive tools and a complex setup, researchers focus on using GANs to

translate data from one domain to another or to multiple domains to generate a large

scale of data in different modalities for the hand pose estimation problem.

Image-To-Image Translation

Image-to-image translation can be considered a type of image synthesis which

maps an image from one domain to a corresponding image in another domain. It

can be viewed as a generalization of style transfer since it not only transfers the style

but also manipulates the attributes of the objects. Pix2Pix [39] and CycleGAN [30]

are the most popular ones in supervised and unsupervised image-to-image translation.

Pix2pix makes the assumption that paired data are available for the image translation

problem that is being solved. In Pix2pix, model G was trained to translate images

from domain X to domain Y. Cycle GAN does the same, but additionally, it also

trains a model F that translates images in the opposite direction—from domain Y to

domain X. CycleGAN was created in order to support working with unpaired data

since having paired data available is actually rather rare, and collecting such data

can require a large amount of resources.

In [3], Chen et al. suggested blending a synthetic hand poses generated by

an augmented reality (AR) simulator with real background images to generate more

realistic hand images, which later served as training data. Inspired by the pix2pix

[39] which leverages the shape map to constrain the output image, they proposed a

tonality-alignment GAN (TAGAN) to take the color distribution and shape features

into account. Evaluation on multiple hand pose datasets indicates that their pro-

posed approach outperforms state-of-the-art methods in both 2D and 3D hand pose

estimation. Figure 2.4 gives an overview of the proposed method.
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Figure 2.4. Overview of the TAGAN method for realistic hand image synthesis [3].
Synthetic pose by an AR simulator is blended with real background to yield a syn-
thetic hand image, which is then fed to the proposed TAGAN to produce a more
realistic hand image. Originally used in [3].

In another study by Wu et al., they proposed to directly generate realistic

hand images from 3D pose and synthetic depth maps. However, unlike pose-guided

person image generation, pose-guided hand generation is more challenging due to

self-similarity and self-occlusion. To address these difficulties, they proposed a four-

module model, MM-Hand, which contains 3D pose embedding, multi-modality encod-

ing, progressive transfer, and image modality decoding [4]. They aimed to convert

3D hand poses to depth maps using a depth map generator. More specifically, in the

3D pose embedding module, they project the 3D hand pose onto a 2D image, given

the projection matrix, which is followed by connecting the keypoints on each finger

with an ellipsoid, using different colors. Then, a palm surrogate is formed through

connecting a polygon from the base of each finger and wrist. Then, the depth map

generator, which is a pix2pix-based model, is trained to synthesize depth maps based

on any given 3D pose. Their experimental results show that the augmented hand

images by their proposed approach significantly improved the 3D hand pose estima-

tion results, even with reduced training data. The synthesized hand images using

the proposed MM-Hand on the two benchmark datasets STB and RHP are shown in

Figure 2.5.
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Figure 2.5. Qualitative results under MM-Hand model originally reported in [4].
Synthesized hand images using MM-Hand on two datasets, STB and RHP. From top
to bottom: the STB dataset and the RHP dataset.

Moreover, to address the lack of various modalities problem, the authors in [7]

presented a depth-image guided GAN model named DGGAN, which includes two sub-

networks: a depth-map reconstruction module and a hand pose estimation module.

Once the depth-map reconstruction module is trained using the GAN loss, it is able

to generate a depth map of a hand based on the RGB input image. The second

module trained using the task loss estimates hand poses from the input RGB and

the GAN-reconstructed depth images. They aim to reconstruct the depth map from

RGB hand images in the absence of paired RGB and depth training data. Once

the depth maps are constructed from the RGB images, the hand pose estimation

modules takes both RGB and depth images to estimate the 3D hand pose first by

estimating the 2D hand keypoints on the RGB images followed by regressing the 3D

hand poses from the inferred 2D keypoints. Next, exploiting the reconstructed depth

map, it regularizes the inferred 3D hand poses. Experimental results on multiple

benchmark datasets show that the synthesized depth maps produced by DGGAN are

quite effective, yielding new state-of-the-art results in estimation accuracy by notably

reducing the mean 3D end-point errors (EPE).
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In another study [42], to generate new modalities, Haiderbhai et al. introduced

a novel architecture based on the pix2pix model. They proposed a method of syn-

thetic X-ray generation using conditional generative adversarial networks and created

triplets for X-ray, pose, and RGB images of natural hand poses sampled from the NYU

hand pose dataset . As a result, they introduced a two-module network. The first

one aims to generate a 2D image of the pose, given the RGB input. Next, the out-

put is stacked with the original RGB, which is used as input for the second module,

which is identical to the pix2pix architecture. Their proposed model, pix2ray, has

the advantages of creating X-ray simulations in situations where only the 2D input

is available and generating more clear results, especially in occluded cases.

In [5], to improve hand pose estimation on weakly blurred infrared (IR) images

under fast hand motion, the authors proposed a method based on domain transfer

learning. The proposed model consists of a hand image generator (HIG), hand image

discriminator (HID) and three hand pose estimators (HPE). The HIG synthesizes a

depth image given input IR images. To train the HIG network, adapted by [39], they

used the pair of unblurred depth and IR images with slow hand movement. The HID

classifies whether the generated depth map conforms to the human hand depth map.

The HPEs estimate the hand skeleton given an input depth image from the actual

depth sensor, synthesized depth map, and IR image. It is worth mentioning that

collecting depth and IR images from a single sensor eliminates the additional effort

for depth image labeling. Moreover, since consistency loss is back propagated from

the results of HPE, given the real depth image, the training is self-supervised. The

proposed model is able to effectively improve hand pose estimation results in infrared

images by generating un-blurred depth images as shown in Figure 2.6.

Since acquiring a large paired dataset can be difficult and expensive, inspired by

CyclicGAN, Mueller et al. applied cycleGAN for realistic appearances of generated
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Figure 2.6. The HIG synthesizes a depth map from an infrared map. In the case
of slow motion (the first and second column), the largest discrepancy is shown near
the outline of the hand due to sensor noise. In the case of fast motion (the third
and fourth column), the largest discrepancy is shown in blurry fingers. Originally
reported in [5].

synthetic samples to reduce the synthetic-real domain gap [43]. They proposed a

translation model, named GANerated, based on cycle-consistent adversarial networks

(CycleGAN) to transfer the synthetic images to “real” ones so as to reduce the domain

shift between them. Mueller et al. controlled the process through these two objectives:

first converting synthesized image to real and calculating synth2real loss, and again

converting the result to synthesized image and calculating real2synth loss. To make

the images even more realistic, they also randomly put some background behind the

hands. To simulate the occlusion, they artificially put some objects in front of the

hand.

The proposed model obtains the absolute 3D hand pose by kinematic model fit-

ting, which is more robust to occlusions, does not require paired data, and generalizes

better due to enrichment of the synthetic data such that it resembles the distribution

of real hand images.

17



In another study [6], inspired by cycleGAN [30], the authors applied a generative

adversarial network to estimate hand poses through one-to-one relation between the

disparity maps and 3D hand pose models. They aimed to enrich the existing dataset

by augmenting them. Unlike other studies, they synthesized data in the skeleton

space (instead of depth-map space), where data manipulation is intuitively controlled

and simplified and, thereafter, automatically transfers them to realistic depth maps.

Their proposed model consists of three networks: hand pose generator (HPG), hand

pose discriminator (HPD), and hand pose estimator (HPE). The job of HPG is to

generate a hand based on the 3D representation of joints while the HPD tries to

determine how real or fake the generated samples are. The HPE is responsible for

estimating the 3D hand pose based on the input depth map. During the training,

these three networks are optimized to reduce the error of HPE. In the inference time,

the algorithm refines the 3D model, which is guided by HPG to generate the most

realistic depth map. More detailed architecture can be found in [6].

Although the recent studies try to solve an issue of lacking reliable RGB/depth

datasets through generations of hand images, most of these works have focused on

the generation of realistic appearances of hands without considering the temporal in-

formation. In [44], leveraged temporal information, they presented an unsupervised

domain adaptation strategy based on CycleGAN for 3D hand–object joint reconstruc-

tion. Exploited by 3D geometric constraints and cycle consistency, their approach is

able to effectively transfer annotation from the synthetic source images to an unla-

beled real target domain. Moreover, by embedding short-term and long-term tempo-

ral consistency loss, the proposed model leverages unlabeled video to fine tune the

model and outperforms the state-of-the-art models on benchmark datasets.
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2.4 Results and Discussion

Although earlier hand pose datasets contain only depth data, more datasets that

contain both RGB and depth images have been introduced due to the robustness of

methods that leverage the RGB image. Since the performance of the DNN-based

methods is closely tied to both the quality and quantity of the training data, in the

following paragraphs, we compiled and described the most frequently used datasets

in GAN-based data augmentation studies.

2.4.1 Benchmark Datasets

• NYU Hand Pose Dataset It has 72,000 images as training and 8000 as

testing data. Data are collected by 3 Microsoft Kinect cameras from 3 different

views with 36 3D annotations. It is the most commonly used dataset in the

hand pose estimation problem since it covers a variety of poses in RGB and

depth modalities.

• Imperial College Vision Lab Hand Posture Dataset (ICVL) The ICVL

contains 300,000 training and 1600 images as testing images. All depth images

are captured by Intel RealSense and, in total, 16 hand joints are initialized by

the output of the camera and manually refined.

• MSRA15 This includes 9 subjects with 17 different gestures. In total, it has

76,000 depth images with 320 × 240 resolution, collected by Intel’s Creative

Interactive Camera, with 21 annotated joints.

• BigHand2.2M It contains 2.2 million real depth maps collected from 10

subjects. Since it is collected by six magnetic sensors, it has precisely 6D anno-

tations.
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Table 2.1. Summary of hand pose estimation datasets commonly used in data aug-
mentation using GANs.

Dataset Modality Type Number of Joints Number of Frames

NYU D Real 36 81 k
ICVL D Real 16 332.5 k

MSRA15 D Real 21 76.5 k
BigHand2.2M D Real 21 2.2 M

STB RGB+D Real 21 18 k
RHD RGB+D Synthetic 21 44 k

• Stereo Hand Pose Tracking Benchmark (STB) STB includes 18,000

frames, 15,000 for training and 3000 for testing with 640 × 480 resolution. The

2D keypoint locations are obtained using the intrinsic parameters of the camera.

• Rendered Hand pose Dataset (RHD) It has 43,986 rendered hand images

from 39 actions performed by 20 characters. Each depth image comes with

segmentation mask, 3D and 2D keypoint annotations.

Modality, the type of data (i.e., synthetic or real data), the number of joints

and the number of frames, are summarized in Table 2.1.

2.4.2 Evaluation Protocol

The most common evaluation metrics that are used to gauge the performance of

these methods are end-point error (EPE) and percentage of correct keypoints (PCK).

The former one is the average 3D Euclidean distance between the ground truth and

predicted joints, and the latter one measures the mean percentage of the predicted

joint locations that fall within a certain error threshold.
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2.4.3 Quantitative and Qualitative Results

It should be noted that since not all these works evaluate their performance

using both metrics and on the same dataset, we summarized the reported results for

methods on NYU and STB hand pose datasets.

Figure 2.7. On NYU dataset, the contribution of the [1, 6] methods to the accuracy
are compared. (a) Mean error. (b) The fraction of frames over different maximum
Euclidean distance error threshold. The larger the area under each curve, the better.
(Best viewed on screen).

For the NYU hand dataset, we choose Refs. [1, 6] since the other studies

with NYU do not provide the quantitative results and only compare the quality of

synthesized images. In Figure 2.7, the results are illustrated with and without the

use of synthetic images for training on the NYU dataset. As it is reported in [6], the

developed method obtains 0.4 mm reduction of the average 3D joint error, compared

with the current best performance by Pose-REN [45]. Moreover, the results from Ref.

[1] also indicate the 3.2 mm reduction in mean error due to the increase in training

samples from the proposed GAN-based data augmentation model. Furthermore, the

developed methods are compared by the percentage of frames at different maximum
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error thresholds in Figure 2.7b. It has shown that both studies [1] and [6] achieved

higher accuracy compared to the HPE base lines, [46] and [45], respectively.

Figure 2.8. Comparison of [7, 3, 8, 4] approaches for 3D pose estimation on the STB
dataset. The fraction of frames over different maximum Euclidean distance error
threshold. The larger area under the curve (AUC) represents better results. (Best
viewed on screen) .

For the STB dataset, we compare DGGAN [7], GANerated [8], TAGAN [3], and

MM-Hand [4] based on the reported PCK value in Figure 2.8. As it is mentioned, the

larger the area under the curve, the higher the represented accuracy. The GANerated

[8] has the lowest value of 0.965, compared to the others.

2.5 Discussions and Future Directions

We provide a detailed discussion of the most recent studies on image synthesis

and image-to-image translation in HPE, where they aim to alleviate the burden of

the costly 3D annotations in a real-world dataset. The explosion of interest in GANs

is driven not only by their potential to learn deep, highly nonlinear mappings from

a latent space into a data space and back, but also by their potential to make use of

the vast quantities of unlabeled image data that remain closed to deep representation
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learning. However, due to the lack of robust and consistent metrics, coming up with

good evaluation metric is still an open challenge to compare different GAN variants

based on the visual assessment of the generated images. Moreover, despite the great

performance of the current methods on hand pose estimation using GANs, still there

remain difficulties in generalizing them to multi-hand interaction. Moreover, because

of the interest of big technology companies in this field, perhaps in the near future,

we can acquire much bigger and more generalized datasets generated by GAN and,

therefore, very well-performing models on different modalities.
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CHAPTER 3

Semi-Supervised 2-D Hand Keypoint Localization using Unpaired Image-to-Image

Translation

3.1 Introduction

Accurate fingertip localization from depth images plays an essential role in

many computer vision applications such as sign language recognition [47] and human-

computer interaction [48] when image-based models are used. Many proposed ap-

proaches such as [49] and [50] involve a two-stage architecture, i.e. first performing

2-D hand pose estimation and then lifting the estimated pose from 2-D to 3-D, which

makes 2-D hand pose estimation itself still an important task.

In recent studies, deep learning methods have dominated state-of-the-art seman-

tic keypoint detection methods. Mask RCNN [51] and PifPaf [52] are two representa-

tive methods for detecting semantic key-points using supervised learning. However,

supervised training of a keypoint detection network requires extensive and expensive

annotated data. To eliminate the need of human annotation, Shotton et al. [53] and

Wetzler et al. [54] use markers, which, in some cases, are not visible in the sample

due to self-occlusion and varying articulations.

Challenges in obtaining keypoint annotations have led to the rise in self/semi-

supervised landmark localization research. Self-supervised learning is a re-emerging

topic as of early 2020 which does not require expensive and task-specific human an-

notation. Although unsupervised detection of landmarks can extract useful features,

it is not able to detect perceptible landmarks with out supervision [55, 56]. In [57], to

learn without explicit annotations, Dong et al. build on the pseudo-labeling technique
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Figure 3.1. Examples of translated input image from A domain to B domain..

which uses a teacher model and two students to generate more accurate pseudo-labels

for unlabeled data. In another study by Jakab et al. [56], additional class attributes

were utilized for semi-supervised keypoint detection.

Therefore, inspired by the progress of the Generative Adversarial Network

(GAN) and image-style transfer, we propose a semi-supervised pipeline to accurately

localize the fingertip position even in varying lighting and severe self occlusion on

depth images. The idea is to use a Cycle-consistent Generative Adversarial Network

(Cycle-GAN) to apply unpaired image-to-image translation and generate a depth im-

age with colored predictions on the fingertips, wrist, and palm given a real depth

image as shown in Figure 3.1. The model is trained in a semi-supervised manner

using a collection of images from source and target domains that do not need to be

related in anyway(See Figure 3.2).

Then, by applying color segmentation techniques, we localize the center of each

colored area which results in finding the location of each fingertip along with center of

the wrist and the palm. The proposed method achieves visually promising results on
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Figure 3.2. Unpaired training data, consisting of a source set and a target set, with
no information provided as to which xi in domain A matches which yj in domain B.

noisy depth images captured using the Microsoft Kinect. Experiments on the chal-

lenging NYU hand dataset have demonstrated that our approach not only generates

plausible samples, but also outperforms state-of-the-art approaches on 2-D fingertip

estimation by a significant margin even in the presence of severe self-occlusion. More-

over, fingertips would be detected irrespective of user orientation using this method.

3.2 Hand Pose Estimation

In many hand pose estimation studies, such as [58] and [59], 2-D fingertip local-

ization is an initial step for 3D hand pose estimation. However, fingertip detection is

a challenging task due to self occlusion and high rotational variability. Fortunately,

due to the progress of optical technologies, such as depth cameras, it is possible to

capture more accurate information of our 3-D world. Several studies have been in-

troduced which use depth images to estimate the hand poses [60, 61, 62]. Malassiotis
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and Strintzis extract PCA features from depth images of synthetic 3D hand models

for training [63]. Suryanarayan et al. [64] use depth information to recognize scale

and rotation invariant poses dynamically. Sinha et al. [65] used a regression-based

model to find the 21 joints in the hand. They trained a separate network for each

finger which regress three joint keypoints on each finger.

To minimize the dependency on large hand pose datasets and to improve the

generalization ability to unseen situations, data-efficient methods such as semi/self-

supervised learning or hybrid methods are needed. By fast progress of Generative

Adversarial Networks (GAN), several studies have been performed to model the sta-

tistical relationship of the 3D pose space and corresponding space of the input data in

semi/self-supervised manner [66, 46, 67]. Chen et al. [7] proposed a conditional Gen-

erative Adversarial Network (GAN) model called Depth-image Guided GAN (DG-

GAN) to generate realistic depth maps conditioned on the input RGB image and

use the synthesized depth image to refine the 3D hand pose estimation. In [1], He

at al. proposed a data-driven method to generate deep hand images closer to real

ones during training. In Chen et al. [68], they propose tonality-alignment generative

adversarial networks (TAGAN) to align the tonality and color distribution between

synthetic hand poses and real backgrounds.

Despite the easy generation and annotation of synthesized dataset, they lack

the generalization power and they will not perform well on real-world hand images.

To eliminate the domain gap between synthesized data and real dataset, in [69], they

used conditional GAN called GeoConGAN to transfer the generated images to real

images. Image to image translation is a concept from machine translation where

a phrase translated from English to French should translate from French back to

English and be identical to the original phrase. The reverse process should also be

true [70]. However, traditionally, paired image to image translation requires a dataset
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of paired examples which is challenging and expensive to prepare. As such, there is

a huge interest in unpaired image to image translation approaches. Unpaired image

to image translation uses extra terms along with adversarial networks to enforce the

output to be close to input in a specified way, such as labels space, image pixels

space or image features space. In recent studies,[71] and [72], authors use a weight

sharing strategy to learn the most common representation between domains. In [2]

and [73], to perform unpaired image to image translation, the proposed models share

the specific ”content” features between the two domains even though they may differ

in ”style”. Baek et al. used a CyclicGAN to transfer the depth map of the hand to

the 3D representation of the hand joints[74]. In [75] authors, proposed a strategy that

exploits the unpaired image style transfer capabilities of CycleGAN in semi-supervised

semantic segmentation. Spurr et al. also applied similar approach to make one to

one relation between RGB images to 3D hand joints pose[76].

3.3 Our Method

In this study we propose a two-stage pipeline for fingertip localization in 2-D

plane; first we reduce the problem to an unpaired image to image translation using

Cycle-consistent Generative Adversarial Network [30]. It is a general-purpose network

for unpaired image to image translation and does not require paired image and uses

the concept of cycle consistency to enforce the model to map between domain A

and domain B and vice versa with the inverse mapping (see Figure 3.3). The key

idea behind CycleGAN is that it allows the model to use two unpaired collection

of the images rather than two specific images. Applying unpaired image to image

translation, the model is able to translate the input real depth image to depth map

with colored marks corresponds to fingertip locations. Using these colored mark, we

extract the location of the fingertips along with two other points (center of the palm
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Figure 3.3. The simplified architecture of first stage to perform unpaired image to
image translation using Cycle-Consistent Adversarial Networks.

and wrist) using color segmentation techniques in HSV color space. An overview of the

proposed pipeline, detailed architecture of the unpaired image to image translation

for first stage and detailed overview of second stage are demonstrated in Figure 3.4,

3.3 and Figure 3.6 respectively.

3.3.1 Formulation

We aim to learn the mapping between real depth images and depth images with

colored marks corresponding to fingertip locations without paired example. This

can be done using general adversarial loss however, the model ignores the input

image completely and keeps generating the same depth image from the domain B. To

ensure that the model considers the input image, Cycle-GAN, uses two objectives:

adversarial loss and cycle-consistency loss.

3.3.1.1 Adversarial Loss

Adversarial loss[28] is a powerful loss specifically for image generation task.

It, enforces the generated image to be indistinguishable from real photos. Since the
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Figure 3.4. The overview of proposed model.

model has two mapping functions G and F, an adversarial loss is defined for each

mapping function as:

LGAN(G,DB, A,B) = Eb∼pdata(b)[logDB(b)]

+ Ea∼pdata(a)[log(1−DB(G(a)))],

(3.1)

where G tries to generate images G(a) that look similar to images from domain

B , while DB aims to distinguish between translated samples G(a) and real samples

b. Similarly for mapping function F, it is defined as:

LGAN(F,DA, B,A) = Ea∼pdata(a)[logDA(a)]

+ Eb∼pdata(b)[log(1−DA(F (b)))],

(3.2)

3.3.1.2 Cycle Consistency Loss

Although adversarial loss can enforce the model to learn the mapping G and F

and produce outputs identically distributed as target domain, however, the network

might map the same set of input image to any random permutation of image in target
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domain. Therefore, Zhu et al. use cycle consistency loss for generative adversarial

networks to perform unpaired image to image translation[30]. Given an input image

from domain A, they apply mapping G to translate image to domain B followed by

inverse mapping F to reconstruct the input image in domain A. Cycle-consistency

loss compares the reconstructed image and input image using L1-norm distance and

it can be written as[30]:

Lcyc (G,F ) = Ea∼pdata(a) [||F (G (a))− a||1]

+ Eb∼pdata(b) [||G (F (b))− b||1]
(3.3)

The same process is done in opposite direction as shown in Figure 3.3.

3.3.1.3 Full Objective

The final loss function for training Cycle-GAN is defined as [30] :

L(G,F,DA, DB) = LGAN(G,DB, A,B)

+ LGAN(F,DA, B,A)

+ λLcyc (G,F )

(3.4)

where λ controls the relative importance of the two objectives. The Cycle-GAN

model is trained by minimizing the following loss:

G∗, F ∗ = arg minG,F maxDa,Db
L(G,F,DA, DB) (3.5)

3.3.2 Color Segmentation in HSV Color Space

HSV is a cylindrical color model that remaps the RGB primary colors into

dimensions that are easier for humans to understand. These dimensions are hue, sat-

uration and value as shown in Figure 3.5. Hue represents an angle in range [0,2π]
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Figure 3.5. HSV color space representation.

relative to the Red axis with red at angle 0, green at 2π/3, blue at 4π/3 and red again

at 2π. Saturation defines the depth or purity of the color and is measured as a radial

distance from the central axis with value between 0 at the center to 1 at the outer

surface [77]. Finally, the value of Intensity determines the particular gray shade to

which this transformation converges. It is seen that, HSV based approximation can

determine the intensity and shape variations near the edges of an object which result

in sharpening the boundaries and retraining the color information of each pixel. Fur-

thermore, the approximation done by the RGB features blurs the distinction between

two visually separable colors by changing the brightness. Therefore, in the second

stage, to extract region of interest from the generated colored annotated depth image

from the previous stage we perform color segmentation in HSV color space. The im-

ages are converted to HSV color space to have all components quantities with same

precision. Afterwards, the converted images are split into three different sub images

as hue, saturation and value. Histogram for all three components is computed and

plotted and the threshold value for each component is selected accordingly. Finally by

masking operation a desired colored area is segmented and the center of the segmented

part extracted as 2-D coordinates of the desired points (Figure 3.6).
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Figure 3.6. Second stage overview.

3.4 Experimental Details

Although there are some datasets like ICVL [37] and MSRA14 [58] for hand pose

estimation, we chose New York University (NYU) dataset [36]. NYU is a challenging

hand pose dataset and it is more commonly used in recent studies due to its accurate

annotation and variety of poses. It contains RGBD dataset captured from 3 views

and it has 72,757 frames from a single user in train set and 8,252 frames from two

different user in test set. It uses 36-joints model to annotate the hand images.

3.4.1 Data preparation

To prepare training data from NYU hand dataset for Cycle-consistency model,

we prepare two sets of data: train data for domain A, which includes 3000 cropped

real depth images of hand and, train data for domain B, which contains 3000 cropped

images around hand with color markers on 7 points (5 fingertips and center of the

wrist and center of the palm). To simulate unpaired supervision, these two set of

data do not have one to one mapping and are selected randomly from the view-point
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Figure 3.7. Example of test data; real depth image (a) and annotated depth (b)
sample from NYU hand dataset.

1(front view). For test data, we randomly chose 300 real depth images of the same

view from test set of NYU hand dataset. All the images are of size 128 x 128 and they

only contained cropped image of hand. There are 7 keypoints, which are annotated

using 7 different predefined colors and corresponds to pinky fingertip, ring fingertip,

middle fingertip, index fingertip, thumb fingertip, center of the palm and center of

the wrist. Figure 3.7 shows examples of customized NYU hand dataset.

3.4.2 Model Architecture and Internal Parameters

The general architecture of CycleGAN [30] utilizes two parts Generators and

Discriminators. Each generator has three parts; encoder, transformer and decoder.

The encoder consists of 3 convolutional layers that reduces the representation by 1/4-

th of actual image size. The transformer contains 6 or 9 residual blocks based on

the size of input and the decoder uses 2 deconvolution block with fractional strides

to increase the size of representation to the original size. The network uses instance

normalization as opposed to batch normalization, and the discriminator is a 70x70

Patch GAN which penalizes images at the level of individual patches as opposed to

per-pixel or per-image basis. We trained the model for 200 epochs for customized

NYU with 3000 unpaired data with learning rate of 0.0002 and lambda value of 10

to calculate cycle loss. Once the model is trained, we evaluate it using 300 test
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images from NYU dataset to translate them from domain A to domain B which in

turns are generated depth map along with colored markers. In the second stage,

we use the HSV color space with emphasis on the variation in Hue and Saturation.

Segmentation using this method shows better identification of fingertip localization

in an image. The center of these segmented area are extracted as fingertip positions

in 2-D as explained in section 3.3.2.

3.4.3 Evaluation Metrics

The two most common metric utilized to quantitatively evaluate the localization

method are Mean Error (ME) in pixel and Percentage of Correct Keypoints (PCK).

ME is the average 2-D Euclidean distance between predicted and ground-truth joints

and PCK measures the mean percentage of predicted joint locations that fall within

certain error thresholds compared to correct location. To have a fair comparison we

evaluate our proposed pipeline on NYU hand dataset with these two metrics.

3.5 Results and Discussion

Since, most of previous methods , [54] and [78], on 2-D hand pose estimation,

have primarily reported results on NYU hand dataset, we evaluate our method on

NYU hand dataset. It is worth mentioning that we only trained our model with al-

most 0.03 of NYU dataset while previous methods are trained over the entire dataset.

Furthermore, unlike the previous methods where they use paired example for train-

ing, our pipeline uses unpaired supervision and receives no information about which

labeled image corresponds to which image. Both qualitative and quantitative results

indicate that our propose methods produce fewer pixel errors in each frame.
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Table 3.1. Quantitative evaluation on NYU (Fingertips only).

Methods Mean error (Pixels)

Ours 7.2
Duan paper[78] 12.2

Mask RCNN(kpt and mask)[78] 13.6
Mask RCNN(kpt)[78] 24.5

Figure 3.8. Comparison on per-joints mean error distance in pixels on NYU hand
dataset.

3.5.1 Quantitative Results

We employ two metrics to evaluate the performance of our proposed method;

the average Euclidean distance in pixels between the results and ground truth and the

percentage of frames in which all joints error are within a certain threshold. However,

since there is no result reported directly on the same joints as our study, to have a fair

comparison, we extract the result for 5 fingertips from the reported results on right

hand (Figure 9 in Duan’s paper [78]) and summarized the 2D localization results for

5 fingertips in Figure 3.8 and Table 1.

As shown in Table 1, the mean joint pixel error on subset of 300 images of NYU

test data, is 7.2 which is better than reported average results on fingertips of right

hand by Duan et al. in [78]. Moreover, the comparison of our methods with extracted
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results from [78], on each joint for right hand in the NYU hand dataset is shown in

Figure 3.8.

Figure 3.9. Per-joint mean error distance in pixels on NYU test dataset.

Moreover, Figure 3.9 illustrates the mean joint pixel error for 7 keypoints on

subset of NYU test data with our proposed pipeline. The Percentage of Correct

Keypoint over a different threshold is shown in Figure 3.10.

Figure 3.10. Fraction of frames within distance on NYU test datasets.
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Figure 3.11. Qualitative results on examples of test data from NYU hand dataset;
first column real depth image, second column ground truth locations and third column
represents the translated image using Cycle-constituency approach.

3.5.2 Qualitative Results

As can be seen in Figure 3.11, our proposed approach can improve the local-

ization of fingertip positions and provide a more accurate estimation on NYU hand

dataset, by better recovery of details, and generating more natural images by unpaired

image to image translation independent of the hand orientation and in presence of

severe self occlusion.

3.6 Conclusion and Future Works

Since many 3D hand pose estimation methods perform a two-stage approach

to obtain 3D joint locations based on 2-D positions of fingertip locations, obtaining
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accurate 2-D location of joints and fingertip has a great importance. Despite the

advantage of using low cost depth-cameras, localizing the fingertip position accurately

is a difficult and challenging task since, after depth-segmentation, hand contours are

prone to erosion. Furthermore, self occlusion and varying lighting conditions are

another challenging issues. To tackle these issues, we implemented a pipeline for 2-D

localization by reducing the problem to an unpaired image to image translation task

followed by color segmentation in HSV domain and histogram threshold, to extract

the fingertip positions. Evaluation of our pipeline with subset of NYU test detests,

shows that our method can be used to localized 2-D fingertip positions which are also

competitive to state of the arts even at presence of severe self occlusion and performs

well independent of hand rotations. The model was not completely successful to

predict the fingertips in cases where part of fingers are out of the cropped ROI.

Therefore, in the future, we plan to improve the performance of our model by having

more accurate hand segmentation in prepossessing step, to accurately define the ROI

around the segmented hand. More importantly, our system could be extended to be

used in 3D hand pose estimation in our next study. Moreover, we plan to apply a

similar pipeline with small changes to RGB images.
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CHAPTER 4

2-D Fingertip Localization on Depth Videos Using Paired Video-to-Video

Translation

4.1 Introduction

Despite the fact that convolutional neural networks have brought increasingly

effective solutions for hand pose estimation on RGB and depth images, hand pose

estimation on depth videos remains difficult to deploy in practice, due to the lack

of large annotated datasets that cover a wide enough range of scenarios and lighting

conditions. Although a common remedy is to exploit synthetic data, unfortunately

a network trained with this type of data can easily fail when dealing with real data

due to the domain shift problem. Moreover, complex backgrounds, self-occlusion,

large view-point variation, and rapidly changing illumination in realistic environments

always make it arduous to generalize the parameters of a model to the different

domain data. A promising direction to address the domain gap is to use domain

translation techniques on images and videos, such as Pix2PixHD [79] and video-to-

video translation [80], to turn the source domain data close to the target domain.

Inspired by previous application-specific video synthesis methods[81, 75, 82], in

this study we investigate the problem of 2D fingertip localization on depth videos

using video-to-video translation. Our model consists of two stages: 1) video-to-

video translation model 2) color segmentation in HSV color space and histogram

threshold. At training time, we use a video-to-video translation model to translate

a source depth video into a target-style video (depth video along with color markers

on fingertips). We minimize an adversarial loss to ensure the statistical similarity

40



of the translated videos and the real target videos. Leveraged by rich temporal

information, our proposed framework successfully localize 2D hand keypoints on depth

video especially when the existing frame-based HPE provides inaccurate estimations

due to motion blur.
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Video-to-Video
Translation

Color Segmentation 
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ented R
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Figure 4.1. Model overview.

Quantitative and qualitative results on the NYU benchmark dataset show that

our proposed approach outperforms the state-of-the-art methods and can handle mo-

tion blur and severe occlusion independent of user hand orientation. In summary,

this chapter presents the following contributions:

• To the best of our knowledge, this is the first work that estimates hand poses

from depth videos.

• We present a novel end-to-end framework based on the domain adaptation for

2D hand keypoint localization on depth video. The method generalizes well

and improves the accuracy of 2D hand pose estimation under motion blur and

severe occlusion.
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• Our method works for other input video formats such as RGB, enabling many

applications from generating RGB from depth video to hand keypoint localiza-

tion on RGB videos.

4.1.1 2D/3D Hand Pose Estimation

Recently, there has been a big increase in the number of papers that exploit

convolutional and deep networks to estimate hand pose on RGB-D data [83, 49, 84,

85, 25, 46]. While one line of the studies tries to directly estimate 3D pose, the other

group first estimates 2D pose before lifting the 2D pose to 3D pose through structured

learning or a kinematic model. In the latter case, 2D hand pose estimation is an

important and fundamental task. Zimmermann and Brox [49] proposed combining

hand segmentation and 2D hand pose estimation through CPM [86], followed by

estimating 3D hand pose relative to a canonical pose. In [84], the authors estimate

3D hand pose by applying inverse kinematic on estimated 2D hand pose.

Compared to RGB images, depth images are robust to texture and light inten-

sity variations. Moreover, since depth images contain surface geometry information,

several studies [87, 34, 88] try to estimate hand poses on depth images or use depth

map as some intermediate guidance for hand pose estimation network. In [89], the

authors use a depth map as intermediate guidance and conduct an end-to-end training

framework. In another work, they proposed a weakly supervised approach leveraging

the depth map for regularization [90].

Despite these advances, 2D/3D hand pose estimation on temporal data remains

a challenging problem due to the lack of accurate, large-scale 2D/3D pose annota-

tions, fast movement of the hand and motion artifacts. The methods discussed above

estimate frames in isolation and may not perform well on sequential data. Since they

do not leverage the temporal consistency between individual frames, the output may
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produce noisy or infeasible changes in the estimated poses. While there are several

studies on hand pose estimation using RGB videos [91, 92, 93, 94], to our knowledge,

hand pose estimation using depth video has not yet been explored by prior work.

4.1.2 Domain Transfer Learning

Domain transfer learning algorithms attempt to transfer image/video from one

domain to a corresponding image/video in another domain by bringing the distribu-

tion of the source closer to that of the target. Several recent works on hand pose

estimation use different modalities (RGB, depth, and synthetic images) for domain

transfer learning [95, 96, 97, 46]. Rad [95] maps the features from the RGB space

to the depth space to avoid training using labeled color images. The authors in [98]

proposed a framework for 3D hand pose estimation from RGB images aided from

depth information. Mueller [43] use an image-to-image translation network to create

a large amount of RGB training images and combine a CNN with a kinematic 3D

hand model for pose estimation. In [76], they used a cyclic concept for making a one-

to-one relation between RGB images and 3D hand joints. They combined a GAN

and a Variational Auto encoder (VAE) to transfer images to a latent space before

transferring them to a target domain which is defined as a 3D pose. However, these

methods only focus on generating RGB/depth images and none of them utilize the

temporal information in order to generate sequenced data for assisting hand pose es-

timation on videos. Moreover, directly applying existing image synthesis approaches

to an input video often results in temporally incoherent videos of low visual quality.

To this end, we came up with a new approach for 2D hand pose estimation on depth

videos based on video to video translation models which, unlike the other methods,

learns not only the appearance of objects and scenes but also realistic motion and

transitions between consecutive frames.

43



4.1.3 Optical Flow

Optical flow is the pattern of apparent motion of image objects between two

consecutive frames caused by the movement of object or camera. Consider a pixel

I(x, y, t) in first frame, it moves by distance (dx, dy) in next frame taken after dt

time. So since those pixels are the same and intensity does not change, we can say,

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (4.1)

then take Taylor series approximation of right-hand side, removing common

terms and divide by dt to get the optical flow equation:

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0 (4.2)

where u = dx
dt

and v = dy
dt

.

dI
dx

, dI
dy

and dI
dt

are the image gradients along the horizontal axis, the vertical axis,

and time. Hence, we conclude with the problem of optical flow, that is, solving u(dx
dt

)

and v(dy
dt

) to determine movement over time. However, as this equation is under-

constrained, there are several methods such as supervised learning method [99] to

solve for u and v.

Optical flow is utilized in one form or another in most video-processing algo-

rithms especially it is useful in providing smoothing in Generative Adversarial Net-

works such as [80], so that generated output can appear to be temporally coherent.

4.2 Methodology

We propose a two-stage pipeline for fingertip localization on depth video. An

overview of our approach is shown in Figure 4.1. We propose to reduce the 2D

hand keypoint localization problem to video-to-video translation using generative

adversarial networks. In the first stage, inspired by [80], we use a video-to-video
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translation model, which is conditioned on the previous video sequence as well as

the corresponding target video. In the second stage, we apply color segmentation

techniques on the translated video in the target domain to extract the center of

each colored marks on the fingertips. Based on our experiments with the state-of-

the-art frame-based hand pose estimation methods, our results show that per-frame

approaches cannot capture the essential properties of videos, such as global motion

patterns and shape and texture consistency of translated objects. To the best of our

knowledge, our method is the first study on both hand pose estimation on depth video

and the first work to introduce the concept of using domain translation to support 2D

hand keypoint localization in hand pose estimation on depth videos. In the remainder

of this chapter, we will describe each module of our model in detail.

4.2.1 Mathematics

Given a real depth hand video, we aim to learn the mapping function that

translates the source video to a new realistic depth hand video along with 5 color

marks on each fingertip. In principle, one can apply image-to-image translation on

each frame. However, our experiments show that frame-wise translation only produces

realistic results on a single frame, and under performs significantly on the scale of the

whole video. The main reason is that videos have a temporal structure in addition

to the spatial structure found in images. This means that information in a video is

encoded not only spatially, but also sequentially.

4.2.1.1 Sequential Generator Exploiting Optical Flow

Similar to [80], given a pair of real depth videos in the source domain sT1 ≡

s1, s2, ..., sT and corresponding depth video along with 5 color marks on each fingertips

xT1 ≡ x1, x2, ..., xT in the target domain, we aim to generate videos x̃T1 ≡ x̃1, x̃2, ..., x̃T
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conditioned on the source domain such that the conditional distribution of generated

frames given the source domain video is identical to the conditional distribution of

the target domain videos given in the source domain videos.

p(x̃T1 |sT1 ) = p(xT1 |sT1 ). (4.3)

To learn the desired temporal coherence, the problem is expressed as condi-

tional sequence distribution matching. In other words, the problem is formulated by

factorizing p(x̃T1 |sT1 ) as the product of the probabilities of the last two time steps.

p(x̃Tt |sTt ) =
T∏
t=3

p(x̃t|x̃t−1
t−2, s

t
t−2). (4.4)

To simplify the equation for t = 3 we followed the below notations;

• current source frame (s3)

• the past two frames in source domain (s1 and s2)

• the past two generated frames in target domain (x̃1 and x̃2)

Based on this conditional assumption which is called the Markovian assumption,

authors in [80] used the deep network to learn the mapping function F from source

to target domain. The consecutive frames contain a remarkable amount of redundant

information. To optimize the process, we can estimate the next frame using a frame

warping process assuming the optical flow information (W) is available. The optical

flow is estimated using both input source images stt−2 and previously translated images

x̃t−1
t−2 (see equation 4.4). Moreover, to avoid failures of Optical flow warping in occluded

area, an additional mask (M) is used to determine the occluded and non-occluded

pixels. For W and M networks, we used pre-trained models Flownet2 [99] and Mask-

RCNN [51], respectively. These models, together produce W(t) -warped images of x̃.

Finally, to generate frame (h) in occluded pixels, an image generator (H) is added.
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Figure 4.2. An illustration of the generator components.

As a result, the network slowly adds details by blending the warped pixels and the

generated pixels as follow:

x̃t = F (x̃t−1, x̃t−2, st, st−1, st−2)

= (1− m̃t)� w̃t−1(x̃t−1) + m̃t � h̃t.
(4.5)

where � represents the element-wise product operator and 1 is an image of all

ones. The first part refers to pixels warped from the previous frame and the second

part is the hallucinated image, synthesized directly from the generator H for the
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Figure 4.3. Second stage overview.

occluded part. The generator components of the first stage, which are similar to

Pix2PixHD [79], are illustrated in Figure 4.2. All the models M,W, and H use short

residual skip connection.

4.2.1.2 Discriminator: Exploiting Spatio-Temporal Information

To solve the problem considering spatio-temporal information, two discrimi-

nators are used (similar to [80]); one as image discriminator DI , and one as video

discriminator DV . Both follow PatchGAN from Pix2Pix [39] to make computations

more tractable by lowering the time and space complexity. The image discriminator

tries to distinguish the generated image (video slice) from each pair of real depth and

a depth image in target domain. The video discriminator ensures that consecutive

output frames resemble the temporal dynamics of a real video given the same optical

flow.

4.2.1.3 Final Learning Objective Function

The video-to-video translation model is trained by solving

min
F

(max
DI

LI(F,DI) + max
DV

LV (F,DV )) + λWLW (F ), (4.6)
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where LI is the adversarial loss for conditional image discriminator DI , LV is

the adversarial loss on K consecutive frames for video discriminator DV , and LW is

the flow estimation loss with λW = 10, based on a grid search. Moreover, the discrim-

inator feature matching loss and the VGG feature matching loss are added, similar

to Pix2PixHD [79]. All the above are combined to achieve the total optimization

criterion to tackle video synthesis.

4.2.2 Implementation Details on Video-to-Video Translation

For the video-to-video translation model in the first stage, we start by generating

a few low resolution frames and gradually improve it to full resolution with all 30

frames. We trained the model for 80 epochs using ADAM optimizer [100] and we set

learning rate, β1and β2 as 0.0002 , 0.5 and 0.999 respectively.

4.2.3 Color Segmentation in HSV Color Space

The objective of the second stage is to find out the colored regions on each frame

in the translated sequence. This color detection is the process of separation between

fingertips and non-fingertips pixels. However, RGB color space is not preferred for

color based detection and color analysis because of mixing of color (chrominance)

and intensity (luminance) information and its non-uniform characteristics. Thus,

we perform color segmentation in HSV domain. HSV color space is a collection of

three different components as hue, saturation and value. Geometrically, it can be

pictured as a cone or cylinder with H being the degree, saturation being the radius,

and value being the height. Luminance and Hue-based approaches discriminate color

and intensity information even under uneven illumination conditions and are best

suited for image with uniform background.
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The algorithm for the detection of colored marks is explained as follows (Figure

4.3):

1. Each frame on a translated sequence is transformed into HSV color space.

2. Transformed frame is split into three components.

3. The Histogram is computed for all three components followed by determination

of lower and upper threshold value for each component. The threshold values

are set based on converting of predefined colors in RGB to HSV value before

fine tuning.

4. Then, to isolate the desired colored areas, we applied multiple masks. A low

threshold and high threshold mask for hue, saturation and value. Pixels within

the threshold’s range will be set to 1 and the remaining pixels will be zero. Next

by computing the connected component of Boolean image, the colored areas are

segmented.

5. Finally, the centers of the segmented parts are extracted as 2-D coordinates

that represent the locations of the desired points on each frame of the input

video.

4.3 Experiments

In recent years, the NYU hand pose dataset [36] has become a standard dataset

for depth-based methods. The ground truth for this dataset is computed using a

generative method [101] instead of manual labeling.

4.3.1 Data Preparation

The creators of this dataset provide RGB images that are warped onto the

depth map which makes the dataset unusable by RGB-only methods. To get around

this, we used real depth frames from the training data of the NYU dataset, which all

50



are center-cropped around the hand with a resolution of 128 × 128. To prepare the

training data for both source and target domains, we grouped every 30 real depth

frames from the training set of NYU into a single depth video for the source domain

and created corresponding frames with color marks on each fingertips for the target

domain as shown in the Figure 4.4. Totally, there are 2425 videos of 30 frames for

source and 2425 videos of the same length for target domain. For testing, we did the

same on test set of NYU and prepared 275 videos of 30 frame for each domain.

...

...

Sequenced Real Depth Images for Source Domain

Corresponding Real Depth Images Along with Color 
Marks for Target Domain

Figure 4.4. Example of training video data for video to video translation.
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4.3.2 Evaluation Metrics

We quantitatively evaluate our method on the NYU test set using Mean Er-

ror (ME) as metric. ME is defined as the average Euclidean distance between the

predicted and the ground-truth joint locations, measured in pixels.

4.4 Qualitative and Quantitative Results

To the best of our knowledge, this is the first marker-less 2D hand keypoint

localization method on depth videos. However, to have a fair evaluation, we compared

results of our pipeline with the state-of-the-art hand pose estimation methods on

single frames. These methods have published their results in terms of 3D hand pose

estimation. We have computed their 2D pose estimation performance from their

prediction files that are made publicly available.
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Figure 4.5. Per-joint mean error distance in pixels on NYU hand dataset..
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4.4.1 Quantitative Comparison

Figure 4.5 shows the comparison results of our method with the state-of-the-art

frame-based hand pose estimation method on NYU hand dataset. In all cases, we

can see that our method produce fewer pixels errors on each fingertip, except ring

fingertip, by enforcing temporal information.

The quantitative results of the evaluated methods are summarized in Table 4.1.

It is worth mentioning that, in our proposed pipeline, besides generating high quality

frames, including temporal information in video synthesis leads to improvement of 2D

localization in the second stage. This ability to generalize and generate high-quality

sequenced frames along with color markers from depth hand images is key to the

goals of this work.

Methods Mean Er-
ror (pixels)

Ours 9.08
Guo-baseline [102] 9.68
3DCNN [25] 9.77
Lie-X [103] 10.4
DeepHPS [104] 10.61
Feedback [105] 12.11
DeepModel [106] 12.9
DeepPrior [107] 15.29

Table 4.1. Quantitative results on NYU hand dataset

4.4.2 Qualitative Result

Figure 4.6 illustrates our generated video using the NYU dataset in the first

stage which leveraged by temporal information. Experiments demonstrate that, lever-

aged by the spatio-temporal information in the first stage, the model is able to gener-
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ate high-quality videos with precise color markers, resulting in accurate 2D keypoint

localization in the second stage.

Sequenced Data in the 
Source Domain

Sequenced Data in the 
Target Domain

Generated Sequence by 
Our Pipeline with

Spatio-Temporal Info

Figure 4.6. Qualitative results on the NYU hand. First row: shows the sequenced
data in source domain. Second row: represent the ground truth in target domain
followed by Third row which represents translated video obtained by our proposed
pipeline. Best viewed in color with zoom..

4.5 Conclusion

In this study, we propose a general frame work for 2D fingertip localization

on depth video. We transform the problem of 2D localization to the problem of

video to video translation. To best of our knowledge, this is the first work on hand

pose estimation on depth video. Through well-designed generators and discriminators

coupled with spatio-temporal adversarial loss functions, we achieve high-resolution,

temporally coherent video in the first stage. This leads to a significant improvement

in performance of the localization problem in the second stage. Experimental results

on the NYU benchmark dataset demonstrate that the proposed method achieves the

best performance of fingertip localization on depth video in both qualitative and

quantitative evaluations. Most importantly, our pipeline can be extended to estimate
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depth value for 3D hand pose estimation problem. Secondly, the proposed pipeline can

be applied on RGB videos as well with small changes. In other words, we only need

to define colors for the region of interest such that they do not exist in background.
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CHAPTER 5

HAND-REHA: Dynamic Hand Gesture Recognition for Game-Based Wrist

Rehabilitation

5.1 Introduction

Rehabilitation is the recovery from the lost ability to control or coordinate a

body part of the patient through a repetitive task. Based on worldwide statistics

annually, more than 15 million people suffer from stroke, which is one of the main

causes for people to lose their control over their body-part such as hands or feet

[108]. Though physical rehabilitation can help patients regain the ability to control

the affected body-parts for many decades, conventional rehabilitation exercises tend

to not engage stroke patients due to tedious and repetitive nature [109]. Moreover,

it is important to perform these rehabilitation exercises at home to improve their

recovery.

Recently, there is a growing interest in research to utilize gesture recognition

as a viable interface between humans and computers[110],[111]. Gesture-based in-

terfaces can be an alternative to several physical peripherals that we use with our

computers[112]. Additionally, a new area of research focuses on developing game-

based approaches for various purposes other than entertainment or recreation. There

are some works such as [113], [114], [115] and [116] that focus on using games as a

mode for rehabilitation. In some of these studies they focus only on interacting with

2D games or the game is developed to perform only a specific action such as selecting

an answer for a question repeatedly or set of actions that is performed repeatedly

without any change in order. In this chapter, a game-based wrist rehabilitation sys-
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tem was developed. It recognizes pre-defined hand gestures performed in front of a

web camera. The recognized gestures are used to control the actions of an avatar

in a three-dimensional maze run game. The system runs on a personal computer

equipped with a web-camera, which enables patients to perform their hand rehabili-

tation exercises at the comfort of their home. Additionally, as the hand recognition is

vision-based, no additional sensors, such as Armbands [117], special suits [116], gloves,

motion sensors or depth-cameras [118][115] are needed. The system uses images from

the web-camera to recognize the gestures. The raw images are first pre-processed

using image processing techniques followed by a background subtraction for hand

segmentation. Once the hand in the processed image is segmented, it is sent as an

input to a three-layered convolutional neural network that classifies the type of per-

formed gesture. Based on the classified gesture type, the avatar in the designed maze

run game performs actions such as moving, rotating and shooting hostile drones in the

3D environment. Five different gestures were selected from a well-researched pool of

medically-approved gestures suitable for wrist therapies[119]. Unlike [113] and [120],

where they used gestures for simulating mouse and keyboard events for system inter-

action, we focused on using gestures to directly interact with the system and navigate

the avatar in the 3D game. Besides, in many studies, they try to collect hand gestures

through a variety of sensors, including gloves, electromagnetic or optical position and

orientation sensors for the wrist. Yet wearing gloves or trackers, as well as other men-

tioned sensors, is uncomfortable and time-consuming approaches due to setup time

or calibration process. Besides, due to our computer-vision-based interfaces, there

are several notable advantages such as providing a non-intrusive approach where the

hardware is commercially available at a lower cost compared to other approaches.

Furthermore, by applying the background subtraction method to segment hand we

were able to achieve a robust gesture classifier model that can classify the performed
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gesture in a real-time manner with the highest accuracy of 98.8, which is in the same

range of the state of the art methods.

The following sections of the chapter are organized as follows. Section 2 de-

scribes the background and related work is done in gesture recognition. Section 3

explains the methodology and architecture of the entire system. Section 4 describes

the gesture classifier, the data-set obtained for this system, followed by the achieved

result in detail. Section 5 describes the game design and the development of the

game. Section 6 explains the experimental user study and the devices used for exper-

imentation and finally the results obtained through pre and post-survey results for

our experiment. Section 7 discusses the conclusion and future work to be done in this

system respectively.

5.2 Background and Related Work

In recent years, as the percentage of older adults increased, the need for medical

and rehabilitation dramatically raised. Furthermore, motivating game-based training

improved therapy for people with physical impairments. As a result, research works

that are performed in the area of developing games for rehabilitation purposes became

extremely popular. Also, some research has been done in integrating gestures with

a human-computer interaction system. [120] focused on integrating human gesture

recognition in a human-computer interaction system by using gestures for certain

mouse events such as mouse hold, mouse drag and mouse click along with certain

keyboard events such as up and left keyboard press and used those gestures for certain

scenarios such as playing angry birds game and working in Robot Operating System

(ROS). In [121], they developed a customized augmented reality system for stroke

rehabilitation.
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We were inspired by the work done in [122] that implemented the use of gesture

recognition for therapy. There has been compelling research on hand gestures that

help in increasing a joint’s range of motion or lengthen the muscle and tendons via

stretching. Some of the popular motions like wrist ulnar and radial deviation gestures

that are effective for improvements in hand motion are included as part of gestures in

our system. This study has a focus on assisting patients to carry out rehabilitation

with hand gesture recognition[115]. The process is supported by the patient playing a

game on their computer to make the process interesting and make it as a rehabilitation

session.

As noted in the introduction, the proposed model has two main parts for the

vision-based hand gesture recognition; background subtraction along with hand detec-

tion and gesture classification. For the image processing part, we apply a background

removal technique by taking a continuous average of the background at the start of

the game, which then acts as a threshold throughout the game. Any object or obstacle

that forms a contour in the image after the background is subtracted by the system.

This detected contour is passed to our classifier which predicts one of the five possible

gestures. We utilized some naive approaches explained in [123] and [124] to apply

background subtraction and extract relevant information about the hand. By doing

so, we were able to remove unnecessary noise from the background making it easier

for the neural network to perform the classification. However, hand detection and

background removal using only an RGB camera can be relatively tough depending

on the lighting conditions and objects present in the background. So, we used a fixed

bounded box that would enclose the person’s hand. Therefore, the recognition task

is done faster, processing the smaller area, which is a key factor to have a real-time

hand gesture classifier. Since convolution neural network (CNN, or ConvNet)[125]

gained popularity back in 2012 after the revolutionary success of AlexNet on the
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public dataset ImageNet, they have come into the hype and been implemented in a

lot of research areas such as classification. To classify the gestures we applied various

methods to our processed datasets. Since CNNs are mostly applicable for image data,

we first started with a simple 3-layer convolutional neural network in PyTorch [126] (a

popular open-source deep-learning library). Besides, We implemented transfer learn-

ing with pre-trained models like ResNet50 and VGG16 [127] [128]. On comparing the

results, the CNNs trained from scratch performed better than other methods for our

use-case.

Finally, to evaluate our implemented system, unlike [113], [109] and [129] which

only focus on evaluating their system in terms of speed and accuracy, we also examined

how the user feels while performing the gestures to play the game.

5.3 Methodology

We design and develop a unique Maze run game such that the user can perform

specific hand movements (according to their therapy treatment) in front of the web-

camera and control the character in the game through the maze. As a result, doing

the therapy through the game can motivate and interest the patient to continue

their treatment without getting bored. As soon as the user starts performing the

predefined gestures in front of the web-camera, the avatar in the game will perform

several actions such as starting the game, moving forward, rotating right/left and

shooting hostile drones in the maze. The conceptual model for our proposed method

is shown in figure 5.1.

In summary, the network consists of two stages, one for hand detection and the

second stage for gesture classification. Once the gesture is shown by the candidate

the hand is detected and then the gesture classification process is performed on the

hand image. The gesture classification is explained in detail in the next section. Once
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Figure 5.1. Overview of HandReha System.

the gesture classification is done, the classified gesture is sent to the interface module

that interconnects the gesture classifier and the game. Based on the gesture, the

corresponding action is performed by the avatar in the game.

5.4 Building the Gesture Classifier

To build a real-time gesture recognition model, we propose a two-stage model.

In the first stage, the user’s hand region is segmented from the static background and

then, in the second stage, these segmented hand gestures will be used as input to the

Convolutional Neural Network (CNN), to be classified.

5.4.1 Hand Detection and Tracking

One of the main challenges and essential processes for information extraction in

many computer vision applications is the detection and tracking of the moving objects
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in video streams or image sequences [130]. Generally, there are three approaches

for this moving object detection task; Background subtraction, temporal referencing

and optical flow [131]. Among these, we chose a background subtraction method

because it is one of the most popular ones in motion object detection and it takes less

computational time and space. In this method, the foreground mask for every frame

is generated by subtracting the background frame from the current frame. In other

words, it has two major steps. First, constructing a good statistical representation

for the background which is robust to noise; second, building a statistical model

for foreground object which represents the changes that take place in the current

frame [132]. To build a background frame which is less affected by noise, we applied

some pre-processing steps. First, all the captured frames were resized to 128 by 128,

then flipped to avoid the mirroring problem. Afterward, to simplify the process and

decrease the processing time, we cropped the images from the pre-defined Region Of

Interest (ROI window) around the hand in the original frames. Figure 5.2 displays

the output images for this step.

Figure 5.2. Input frames after applying resize, flip and crop operations.

Then, the cropped images are converted to gray scale to avoid the long pro-

cessing time for color image analyses. The converted images are then followed by
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Gaussian blurring filter[133] to remove noise. Afterward, to create a smooth back-

ground image, we calculate the average frame for the first k stationary background

frames where k equals 30 and it is selected empirically(clean plates).

AvBg = 1/n
n∑

i=1

BG(i) (5.1)

where n is total number of frames, AvBg represents the smooth-average back-

ground image(clean plate) and BG(i) is i-th background frame. As a result, noise is

suppressed as much as possible and the model will become more robust to changes

in lightening. Second, to build a proper representation of the foreground object, we

need to subtract the background and segment the image such that it has two compo-

nents; hand as foreground segment and stationary background segment. To eliminate

background there are two approaches: one with a known background called a clean

plate and the other one is without known background[134]. In this study, we consider

the first approach as we already created a clean plate in the first step.

Then, as the candidate starts performing desired gestures the absolute value of

frames and clean plates are calculated and saved as different images.

diff(i) = |I(i)− AvBg| (5.2)

Where i represents the current frame with and AvBg as define in equation (1) is

the clean plate image as a background frame. In other words, diff is the absolute

difference between these two frames. Afterward, we applied a threshold value to get

the foreground object (hand) for the difference image.

segmented =


foreground, if diff(x, y)(i) > τ

background, otherwise

(5.3)
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τ is the threshold value that was selected empirically as 25. It means that all

the pixels in d iff(i-th) frame which has a value larger than τ will be assigned a value

equal to one and the remaining pixels belong to the background segment with a value

equal to zero. Although the extracted hand in our case, will be segmented from a

black background after applying the threshold, the final segmented hand might have

some missing pixels. The resulting image is a black and white segmented image with

a hand segment as white and background as black. Finally, these segmented images

are resized into a fixed size keeping the same aspect of ratio and ready to be used as

input to our CNN classifier in the second stage.

Figure 5.3. Output of the Hand Detection Stage.

In figure 5.3 the final processed frames are depicted. Besides, we get the con-

tours in these segmented images and consider the contour with maximum length as

hand’s contours. These contours are then displayed around the user’s hands in each

frame to evaluate the performance of the hand detection system.

5.4.2 Hand Gesture Classifier Model

In the second stage, to build the gesture classifier model we propose a 2D

Convolution Neural Network (CNN) as a gesture recognition model. The architecture

of the model is depicted in figure 5.4. The CNN feeds on binary images so that the

64



Figure 5.4. Overview of the CNN classifier.

color features do not affect the classifier. All the frames are first pre-processed, as

explained in section 4.2. The pre-processing steps include resizing, converting to

grayscale and applying Gaussian blurring, background subtraction, thresholding, and

contour extraction. The model includes three 2D-convolutional layers for feature

extraction, each followed by a max-pooling layer, two fully connected layers and a

softmax layer for predicting gestures probabilities. The model classifies the gesture

as the one with the highest probability. The input to this classifier is the processed

frames from the hand detection stage which have the size of 128 by 128. Compared

to other architecture such as RESNET50 [127]and VGG16 [128], the proposed CNN

model only has 3 layers which makes the model much faster compared to above

architectures.
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5.4.3 HandReha Dataset

After researching on which types of gesture have been used in wrist therapy,

we create our dataset of five gestures; “Fist”, “Ok”, “Open Palm”, ”PalmRight” and

”PalmLeft” that are widely used in hand therapy procedure especially for wrist hand

injuries[119]. A total of 7405 images are taken from three persons (two males, one

female). We ask the participants to perform the gestures at a distance of 40 to 50

centimeters from the web-camera. Each class has around 1400 images as we tried to

create a balanced data set. While collecting data all the mentioned pre-processing

steps are applied to the captured images and finally, the processed images are saved

into the separated folders. In our designed game, we assigned different tasks to each

of these gesture classes; for instance, the character in the game should go straight if

the model recognizes the ”Palm” gesture or it should start shooting after recognizing

”Fist” gesture.

5.4.4 Training the CNN Gesture Classifier

For the training process, we used a HAND-REHA dataset which includes 7405

images. We will explain the reason why we choose these special gestures in the data

collecting section. For each gesture, we used 0.1 percent of each class as the validation

set and the remaining as the training set. The model uses input images of size 128 by

128. The loss function set as MSE and ADAM[100] as our optimizer. We trained the

model for 5 epochs with processed images with various values of the learning rate, α,

and realized α= 0.001 and image size as 128*128 provides the best accuracy for the

classification task. Figure 5.5 and figure 5.6 show the loss and accuracy on training

and validation set. The model achieves 100 and 98.8 percent accuracy for training

and test set respectively.
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Figure 5.5. Train and validation accuracy .

5.5 Game Design and Development

We developed a 3D maze run game where an avatar navigates inside the maze

surrounded by hostile drones that shoot once the avatar is near to its location. The

design for the main avatar, drones and the surrounding environment was done using

Blender 2.8[135]. The game engine used for developing the game is Godot 3.1[136].

Godot is a free and open-source game engine under the MIT License. The avatar,

drones and several other aspects of the game designed in Blender were then imported

into the Godot game engine. The stage for the game along with the avatar and drone

navigation was implemented in the Godot game engine.

We built two levels in the game. The first level is a normal maze without

any drones and the avatar only navigates around the maze. This level is built to

familiarize the users with hand gestures to navigate the avatar around the maze. The
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Figure 5.6. Train and validation loss .

next level is the main level where the avatar navigates around the maze while drones

are present in it. The avatar has to navigate around the maze and shoot the drones

when they encounter them.

Figure 5.7 and 5.8 show the navigation and shooting performed by the avatar in

the game. Figure 5.9 shows the game played with gestures. You can find the video of

playing the actual game using gestures at https://www.youtube.com/watch?v=V7X4CCbExmc.

5.6 Evaluation of the HAND-REHA System

Twelve healthy participants from the Computer Science and Engineering de-

partment at the University of Texas, Arlington participated in the user study to

evaluate the Hand-Reha system. Of those twelve participants, six were male and six

were female participants. Eight participants were aged between 25 and 30 years. Two
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Figure 5.7. Navigation of avatar in the Game.

Figure 5.8. Shooting in the Game.
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Figure 5.9. Game played with gestures.

participants were aged between 31 and 50 years. Two participants were aged between

18 and 24 years.

5.6.1 Hardware

For the experiment, we used an Acer NITRO 5 Laptop with a Windows 10 64-

bit Operating system. The laptop has an 8GB RAM along with an NVIDIA Geforce

GTX 1050 Ti GPU. The laptop has a built-in camera which was used for gesture

recognition. The Game runs on Godot Game Engine and the gesture recognition

model runs on PyCharm IDE. Both the game and the model run on the same laptop.

5.6.2 Results of Vision-Based Gesture Classification

As mentioned in the previous section the accuracy for the validation set after

5 epochs reaches 98 percent. To test and evaluate the model we tried both testings
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offline and in real-time prediction. Although the model is not 100 percent accurate

and has some flaws detecting gestures performed at far distance compared to training

data, or in some cases the size of the hand matters(it defines how far the hand is

located from the camera), our model still shows promising results while doing real-

time predictions compared to other studies. Considering that we only use a shallow

CNN model(only 3 layers) compared to other states of the art models and the fact

that we only have around 1400 images per class will support our efficiency of the

proposed model. Besides, the other issue was how perfect the participants perform

the gestures, as some of them were focused on the game so they did not perform the

gestures well, especially in the first couple of minutes starting to play the game. Yet

considering all the mentioned reasons, we proved that our gesture classification model

has acceptable performance in terms of accuracy and processing time.

5.6.3 User Study Methodology

Before the study begins, each participant filled a pre-study survey form. The

form contained questions that asked whether the participant had any previous expe-

riences of hand pain or difficulty in hand movement and their preferences in the kind

of therapy if they had any such pain.

After filling the pre-study survey form, we explained the user study process of

our system in detail. Afterward, the participants played the first level of the game, a

plain maze where the avatar can only move around, to familiarized the participants

with the gestures. Then they played the main game that included the avatar and the

drones along with shooting capability for both drones and the avatar.

After playing the game the participants filled the post-study survey form. The

form had questions which asked whether the participants were comfortable with using

gestures while playing the game. The form was used to get feedback from the par-
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In case of pain where do you prefer to receive treatment?
Options Number of responses
Clinic 2

Home/Private Assistant 5
Hospital 4

Rehabilitation Center 0
Any Place is fine 3

Table 5.1. Table focusing on response regarding preferred place for receiving treat-
ment

ticipants regarding the efficiency of the system along with their opinion about using

gestures for gaming and suggestions for future work.

5.6.4 Pre-study Survey Responses

In the pre-study survey form, apart from the name, age, and gender of partici-

pants we also asked a few questions regarding whether they faced any problem with

hand movements and their preferences. With respect to the type of therapy, in case

of any pain or difficulty in hand movement, we gave two options in the survey ques-

tionnaire: Individual therapy and Group therapy. Everyone chose Individual therapy

as their preferred type of therapy.

Table 5.1 shows the response for the survey question regarding the preferred

place for receiving treatment in case of any pain. For this question, 5 participants

prefer treatment either at home or through a private assistant, 4 of the participants

prefer to receive treatment in hospitals, 2 of the participants prefer clinic treatment

and 3 of the participants were fine to receive treatment in any place.

72



Figure 5.10. Graph representing participants feedback on HandReha.

5.6.5 Post-Study Survey Responses

After conducting the experimentation we had a post-study survey that had a set

of questions regarding comfort, difficulty, effectiveness, and excitement while playing

the game with hand gestures.The answers are based on the 5-point Likert scale rating

with a range from 1 (”least”) to 5 (”most”). As shown in Figure 5.10 and 5.11 most

of the participants gave positive responses in each categories.

5.6.6 Discussion of the User Study Results

Overall most of participants reported that the hand gesture-based game was

effective, exciting and comfortable. Most of the participants reported that they felt

less pain and difficulty in controlling the game with gestures compared to traditional

method such as using a controller. However, some participants reported that they
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Figure 5.11. Graph indicating responses from the participants before using Han-
dReha.

had some difficulty while playing the game due to a time lag between gesture recog-

nition and character movement in the game which is probably because of lower RAM

capacity (8 GB) on the laptop.

5.7 Conclusion and Future Work

We have designed a game-based wrist rehabilitation system, which enables the

user to control an avatar in a three-dimensional maze-run game using hand gestures.

This is a unique and novel approach because the gestures are selected from a set of

human gestures suitable for wrist rehabilitation and implemented to control a game

built in a 3D environment as compared to previous works where most of the previous

game-based rehabilitation works are built in a 2D environment. Moreover, the game
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is built with an avatar performing multi actions based on 5 types of gestures. This is

a different from previous works where the game is built based on a single action and

the gestures are implemented to simulate mouse or keyboard events.

The results from the user study showed a good and favorable outcome where

almost all participants gave moderate to high ratings in terms of effectiveness and

interest in playing the game with gestures. Most participants reported that they had

less pain and difficulty while playing the game with gestures compared to traditional

therapies.

As of future research, we aim to improve the overall efficiency, accuracy, func-

tionality, and usability. We plan to extend the HandReha system to be compatible

with other everyday devices such as smartphones and tablets. Furthermore, addi-

tional levels will be added to the game to increase user engagement and include

additional gestures. Moreover, we plan to extend the HandReha dataset by including

additional gestures and capturing data from a larger number of people to improve

accuracy during gesture recognition. Finally, we plan to work on different ways of

integrating gestures with the game.
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CHAPTER 6

GAN-based Face Reconstruction for Masked-Face

6.1 Introduction

In modern technology, face recognition is becoming a new trend for the security

authentication systems and human-computer interaction (HCI)[137, 138]. However,

with the recent world-wide COVID-19 pandemic, the use of these face masks has

raised a serious question on the accuracy of the facial recognition system. Many HCI

applications based on face recognition techniques, such as face access control, and face

authentication based mobile payment, have nearly failed to effectively recognize the

masked faces. Moreover, touch-less verification which allows individuals to perform

photo ID checks with their mask on has become extremely important in public places

due to the impact of the coronavirus.

Despite the rapid growth in the amount of research works in face identification,

the problem of occluded face images, including masks, has not been completely ad-

dressed due to the lack of the masked face dataset, large size and complex nature of

the mask, and variation in face.

Therefore, recognizing and authenticating people wearing masks will be a long-

established research area, and more efficient methods are needed for real-time face

recognition. In this chapter, we are going to attempt to tackle the problem of getting

rid of face-masks in facial image by using Generative Adversarial Networks (GANs).

The problem we are trying to solve can be viewed as image-to-image translation, which

is generally considered to be the process of translation of images from the source to the

destination domain. In other words, given a masked face image, we apply unpaired
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image-to-image translation [30], to remove the mask and synthesizes the affected

region with fine details while retaining the global coherency of face structure. More

details of the proposed model are discussed in the section 3.

The main contributions of this work are:

• Leveraged by GANs, we propose a novel approach that automatically removes

mask object from face and reconstruct the affected region with delicate details.

• To overcome the data scarcity problem, we have collected a 10249 real face

images of 12 people and add synthetic mask on the real faces in order to create

a paired dataset of with and without mask faces.

The rest of this chapter is organized as follows. Section 2 presents related

studies. The proposed model is detailed in Section 3. Sections 4 and 5 describe

experimental setup and results, respectively.

6.2 Related Work

In order to remove undesired object in the images two main problem should

be tackled: a) object detection and removal, b) image completion. There has been a

considerable amount of learning and non-learning based object removal algorithm to

tackle object removal in an image.

Recently, due to the GAN’s nature of unsupervised learning, ability to generate

high-quality, natural and realistic images, and the power of adversarial training, deep

learning GAN-based approaches have merged as a promising paradigm for variety

of application such as data augmentation [139], pose estimation [140], and image

inpainting [141]. However, due to the plethora of related literature, we only review

some representative works related to undesired object such as sunglasses, microphone,

hand, and face masks.
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Non-learning based object removal algorithms tried to solve the problem by

removing the undesired object such as sunglasses, and random objects and synthe-

size the missing content by matching similar patches from other part of the image

[142, 143]. In [144], they introduced a regularized factor to adjust the path priority

function in computing function to remove eyeglasses from facial images. However,

these methods can only handle relatively small holes, where the color and texture

variance are small.

On the other hand, learning-based method mainly describe image inpainting

with the main application of object removal and outperform the traditional methods

both quantitatively and qualitatively. In [10], Iizuka et al. proposed a GAN-based

model, that removes an object and reconstruct the damage part. Their proposed

method, leveraged two discriminators (global and local) to ensure local and global

realism of the reconstructed image. They also apply Poisson blending as a post-

processing. Poisson blending technique is an image processing operator that allows the

user to insert one image into another, without introducing any visually unappealing

seams. Despite the ability to complete the random damaged part, this meth, is

not capable to complete high resolutions images and it is resulting artifacts when

damaged part is around the margin of the image. Yu et al.[11], presented a two-stage

image inpainting network. First, stage includes a dilated convolutional network which

is trained with reconstruction loss to rough out the missing parts. The contextual

attention is integrated in the second stage to encourage spatial coherency of attention.

In another study by Khan et al., [145], a coarse-to-fine GAN-based approach to

remove object from facial images was introduced. For mask removal, Boutros et al.

[146] introduced an embedding unmasking model which takes a feature embedding

extracted from the masked face as input and generates a new feature embedding

similar to an embedding of the unmasked face. Moreover, Din et al. [147, 148]
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Figure 6.1. Overview of our proposed model..

used GAN-based image inpainting for image completion through an image-to-image

translation approach to automatically remove face masks.

Due to the great success of learning methods to recover missing part of facial

image, we proposed a novel framework which aims to automatically reconstruct hid-

den part of the masked-face through Image-to-Image translation, and it is able to

remove masks regardless of facial angle or underlying facial expression.

6.3 Proposed Method

In this section, we provide the details of our proposed GAN-based framework

that automatically removes mask and completes the missing hole through image-to-

image translation so that the completed face not only looks natural and realistic but

also has consistency with the rest of the image. The overall structure of our framework

is illustrated in Figure 6.1.
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Figure 6.2. Dataset preparation: To create paired-face dataset with and without
mask, ”MaskTheFace” [9], tool warps the mask template based on the key face land-
mark positions of the face.

6.3.1 Translation using a Cycle-consistency Constraint

Unsupervised Image-to-Image Translation (UI2I) [30], composed of 2 GANs

which uses two large but unpaired sets of training images to convert images from

one representation to another and vice versa. The data distributions are denoted

as a ∼ pdata(a) and b ∼ pdata(b). More specifically, given an input masked face

image, the unpaired image-to-image translation model aims to generate a complete

image without the mask using unpaired collections of facial images with and without

mask. CycleGAN loss primarily consists of adversarial loss [28] and cycle-consistency

loss. Adversarial loss, in GAN, enforce the generated image to be indistinguishable

from real photos. While generator, G, tries to find the mapping G : A → B, its

discriminator’s Db objective function is defined as:

LGAN(G,DB, A,B) = Eb∼pdata(b)[logDB(b)]

+ Ea∼pdata(a)[log(1−DB(G(a))],

(6.1)

where, G generates images G(a) that appears like images from field B and Db

observes between translated samples G(a) and original samples b. A similar adver-
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sarial loss is postulated for the second generator, F : B → A and its discriminator

Da.

However, the adversarial loss alone is not sufficient to produce good images,

as it leaves the model under-constrained. Adversarial loss, enforces the generated

output be of the appropriate domain but does not enforce that the input and output

are recognizably the same. The cycle consistency loss addresses this issue. It relies

on the expectation that if you convert an image to the other domain and back again,

by successively feeding it through both generators, you should get back something

similar to what you put in. In other words, it compares the reconstructed image and

input image using L1-norm distance and enforces that F
(
G(a)

)
≈ a and G

(
F (b)

)
≈ b.

Lcyc (G,F ) = Ea∼pdata(a) [||F (G (a))− a||1] +

Eb∼pdata(b) [||G (F (b))− b||1]
(6.2)

The full loss with cycling parameter lambda is:

L = LGAN(G,DB, A,B) + LGAN(F,DA, B,A) + λLcyc(G,F ) which is used for

training the model with an Adam optimizer [149]. lambda controls the relative im-

portance of the two objectives.

6.4 Experimental Details

6.4.1 Data Preparation

To address the lack of the masked face dataset, this study firstly contributes a

new dataset of high-quality, paired face images with and without mask simultaneously

which in real world is not possible. To this end, we propose to superimpose artificial

face masks onto real face images based on key face landmarks position, through

an open-source masking tool “MaskTheFace” [9], as shown in Figure 6.2. To this
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end, first, we collected 10249 high quality face images from 12 people (10 user for

training and 2 users for testing) and all faces in the images were detected by YOLO

algorithm[150]. Then, we used the dlib library-based face landmarks detector to

identify the face tilt and six key features (eyes, nose, lips, face edges etc.,) of the

face necessary for applying mask. The template mask is then transformed based on

the six key features to fit perfectly on the face. This results in creation of a large,

paired dataset of face images with and without masks which can be used as real world

masked-face test data and the ground truth data without mask.

6.4.2 Implementation Details

A CycleGAN model was trained to unmask the masked-face. We adapt the

architecture for our generative networks from [30], it utilizes two parts Generators

and Discriminators. Each generator composed of three initial convolutional, nine

64-channel convolutional ResNET block, two fractionally strided convolutions, and

a final convolution to reduce the output’s channel. Furthermore, each discriminator

is a 70x70 Patch GAN which penalizes images at the level of individual patches as

opposed to per-pixel or per-image basis. We trained the model for 150 epochs with

8131 unpaired facial images of size 256x256 with and without mask with learning rate

of 0.0002 and lambda value of 10 to calculate cycle loss. Once the model is trained,

we evaluate it using 2118 masked face test images of from our created dataset.

6.4.3 Evaluation Metric

We compared the results between our method and the other method using the

Structural SIMilarity (SSIM) quantitative metrics [151]. However, as reported by

many other works [152] and [153], we argue that quantitative analysis may not be the

most effective measure of the image editing task.
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Figure 6.3. Output examples generated by our model for test samples of our created
dataset. First column, masked face image in source domain, second column, gen-
erated unmasked face in target domain and, third column, ground truth unmasked
face in target domain..

6.5 Completion Results

We now discuss the qualitative and quantitative performance of our method

and its comparison with other previous state-of-the-art image manipulation methods

on real world images with mask.

6.5.1 Qualitative Comparison

Figure 6.3 shows the sample generated by our model for masked face test images.

We also present a qualitative comparison with Iizuka et al. [10] and Yu et al. [11]

on real world test images as can be seen in Figure 6.4. Although, proposed model by

Iizuka et al. [10], completes the image for random damaged region in facial images, it

is limited to relatively low resolutions (178x218) and produces artifacts when damaged

part is at the margins of an image. Moreover, Yu et al. [11] reduces the artifacts at

margins but is unable to recover a complex face structure. Moreover, although in each

test image, almost half of key facial semantics are covered by face mask, our model

offers significantly improved results for real world data than the other previous state-

of-the-art image manipulation methods and successfully removes the mask object and

generates natural looking outputs with structural consistency.
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Table 6.1. Performance comparison in term of Structural SIMilarity (SSIM).

Methods SSIM
Yu et al.[11] 0.86

Ours 0.89

Figure 6.4. Visual comparison of our proposed method with representative image
completion methods on real world images. From left to right: Input image, [10], [11],
and ours. Note: There is no ground truth since all samples are real world images
collected from the Internet. .

6.5.2 Quantitative Comparison

To have a fair comparison, we have created a synthetic dataset of 6446 images

using the publicly available, CelebA-HQ [154], celebrity face dataset and trained Yu et

al. [11] and our model. Then, we evaluate model performance and training effective-

ness by Structural SIMilarity (SSIM) [151]. It is a full reference metric that requires

two images from the same image capture and it measures the perceptual difference

between two similar images. Since real images with mask do not have corresponding

ground truth without mask object, we have evaluated SSIM on 2459 Synthetic test

data created using CelebA-HQ. Table 6.1 provides a quantitative comparison with

Yu et al. [11].
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6.6 Conclusion

Partially concealed faces by mask in situation like pandemics, or air pollution

has exerted dramatic influences and reduce the performance of existing security and

authentication systems due to the absence of large-scale training data and the presence

of large intra-class variation between masked faces and full faces. This imposes the

demand to tackle such authentication concerns using more robust and reliable facial

recognition systems under different settings.

To this end, we proposed a novel method for interaction-free mask removal from

facial images. The hidden parts of the face are regenerated in the most realistic way by

GAN-based image-to-image translation. Our proposed pipeline could be involved in

various areas such as criminal face recognition, and secure authentication. Moreover,

due to the lack of public datasets containing real masked face images, we create a high-

quality paired dataset of real faces along with their simulated masked one by placing

synthetic masks over the real face images for training. To the best of our knowledge,

this is the first effort to create high-quality, well-established face benchmarks paired

dataset of face images with and without masks. The proposed dataset is part of

an ongoing effort to gather a larger scale database with realistic variations of masks

and will be available upon request. Moreover, both qualitative and quantitative

comparison show that our model demonstrates superior performance for large facial

object (face mask) as compared to the state-of-the art.

Several future steps could be taken to improve the results as well as put the

trained model into practical usage. First, we plan to collect and expand our masked-

face dataset to improve our face reconstruction model. We also plan to develop a

user-friendly interface for unmasking the masked-face. Furthermore, future research

will continue to leverage these reconstructed face images in state-of-the-art face recog-

nition models in automobile security, secure authentication, and access control.
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CHAPTER 7

Conclusions and Future Work

Reliable estimation of hand pose using computer vision remains an elusive goal,

due to the difficulty and extent of effort involved in obtaining large amounts of train-

ing data. Getting such data involves manually specifying hand pose information for

thousands or millions of images, and this has been a big bottleneck for progress on

this topic. However, with semi-supervised learning, the dataset may contain millions

of images, but we only need to specify hand pose information for a very small frac-

tion of those images. We conclude this dissertation with summarizing the work and

contributions therein. Discussions of future work are included as these challenges are

ongoing and require further investigation before robust and accessible solutions can

be provided.

This dissertation investigated semi-supervised learning for hand pose estimation

and, face reconstruction problem through generative adversarial networks in many

perspectives:

(a) a comprehensive survey of available hand pose estimation works through

generative adversarial networks is presented. (b) a semi-supervised GAN-based ap-

proach for 2D hand pose estimation is presented. (c) a paired domain translation

approach is proposed for hand pose estimation on depth video leveraged by temporal

information. (d) as an example application, we designed a game-based wrist reha-

bilitation system, which enables the user to control an avatar in a three-dimensional

maze-run game using hand gestures. (e) finally, a general domain translation frame-
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work that can be used to reconstruct the hidden part of face concealed by mask is

proposed. The contributions in this work are as follow:

1. A survey of all existing hand pose estimation studies through genera-

tive adversarial networks is presented. We present a comprehensive study

on effective hand pose estimation approaches, which are comprised of the lever-

aged generative adversarial network (GAN), providing a comprehensive training

dataset with different modalities. Benefiting from GAN, these algorithms can

augment data to a variety of hand shapes and poses where data manipulation

is intuitively controlled and greatly realistic.

2. New public depth fingertip dataset of 10K is created. A comprehensive

depth hand images are collected by Microsoft Kinect V2 camera. The collected

dataset is then annotated for 7 joint with implemented GUI in Matlab 2020a.

The GUI is designed to read all image formats and it supports depth image

illustration to ease the annotation of depth maps.

3. Introduced a novel semi-supervised frame work for 2D hand pose

estimation. To avoid using large labeled dataset and avoid the annotation dif-

ficulties, we propose a pipeline for 2-D localization by reducing the problem to

an unpaired image to image translation task followed by color segmentation in

HSV domain and histogram threshold, to extract the fingertip positions. Eval-

uation of our pipeline with subset of NYU test detests, shows that our method

can be used to localized 2-D fingertip positions which are also competitive to

state of the arts even at presence of severe self occlusion and performs well

independent of hand rotations.

4. Leveraged by temporal information and domain translation, we ad-

dressed 2D hand pose estimation on depth videos. We transform the

problem of 2D localization to the problem of video-to-video translation. To
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the best of our knowledge, this is the first work on hand pose estimation on

depth video. Through well-designed generators and discriminators coupled with

spatio-temporal adversarial loss functions, we achieve high resolution, tempo-

rally coherent video in the first stage. This leads to a significant improvement

in performance of the localization problem in the second stage. Experimental

results on the NYU benchmark dataset demonstrate that the proposed method

achieves the best performance of fingertip localization on depth video in both

qualitative and quantitative evaluations.

5. A novel 3D game-based gesture recognition is developed for wrist

rehabilitation. We aim to deign and develop an effective, exciting and easy

to access 3D game for wrist rehabilitation at the comfort of patient’s home.

The idea is to automatically recognize pre-defined hand gestures using a web-

camera, so to control an avatar in a three dimensional maze run game. The

pre-defined gestures are picked from a pool of well-defined gestures suitable

for wrist rehabilitation. Deep learning techniques were utilized to perform real-

time hand gesture recognition from the images. The user study showed that the

developed wrist rehabilitation system is intuitive and engages the user, which

is crucial for rehabilitation purposes.

6. A new paired-synthetic dataset of face with and without mask is

created. Due to the lack of public datasets containing real masked face images,

we create a high-quality paired dataset of real faces along with their simulated

masked one by placing synthetic masks over the real face images for training.

To the best of our knowledge, this is the first effort to create high-quality, well-

established face benchmarks paired dataset of face images with and without

masks.
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7. Realistic face reconstruction approach based on domain translation is

proposed. The hidden part of the face are reconstructed in the most realistic

way by GAN-based image-to-image translation. They can be used for facial

identification and secure authentication in human-computer interaction. The

obtained results demonstrate that our model outperforms other representative

state-of-the-art face completion approaches both qualitatively and quantita-

tively

7.1 Future Works

• Explore good evaluation metrics for GAN’s evaluation. Due to the

lack of robust and consistent metrics, coming up with good evaluation metric is

still an open challenge to compare different GAN variants based on the visual

assessment of the generated images.

• Extend and improve the 2D hand pose estimation pipeline to be ap-

plied on RGB hand dataset in our next study. The proposed pipeline can

be applied to RGB input images as well with small changes. In other words, we

only need to define colors for the region of interest such that they do not exist

in the background.

• Extend the 2D hand pose estimation pipeline for 3D hand pose esti-

mation. To this end, the estimated 2D joints along with their depth value can

be used for 3D pose estimation.

• Enrich the synthesized dataset for hand pose with different modalities

using GANs. Apply the ability of GAN’s to generate realistic samples for

situation where data collection is difficult or impossible.

• Develop a user friendly interface for unmasking the masked-face in the future.

the proposed pipeline can be used in user-friendly interface for unmasking the
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masked-faces. Moreover, the reconstructed face from the proposed pipeline can

be used in facial recognition application for secure authentication, criminal face

recognition,etc.
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