
Semi Automatic Hand Pose Annotation using a Single Depth 

Camera 

Thesis Submitted in Fulfillment of the Requirements for the Degree of PhD in 

Computer Science 

by 

Marnim Galib 

1001427030 

Supervised by: Prof. Vassilis Athitsos 

Department of Computer Science and Engineering 

UNIVERSITY OF TEXAS AT ARLINGTON   

August 2022 



Acknowledgements  

First and foremost, I would like to express my sincere gratitude to my supervisor Dr. 

Vassilis Athitsos, for his continuous support and patience during my PhD study. I would 

also like to thank my academic committee members Dr. Dajiang Zhu, Dr. Christopher 

Conly, Dr. Farhad Kamangar, Dr. Won Hwa Kim, and Dr. Alex Dilhoff for their interest, 

assistance and valuable feedback. I am also thankful to my labmates in the VLM Lab@UTA 

for their help, cooperation and knowledge sharing.    

Finally, this journey wouldn’t be possible without the unconditional love and support of 

my parents, Md. Mizanur Rahman, late Monoara Jesmin and my grandparents, aunts and 

uncles. I am thankful to my wife, Nowrosh Islam for her love and encouragement and my 

brother, Mahir Mubassir Sadik for his enthusiasm in my work.    



 

Abstract 

This thesis investigates the problem of 3D hand pose annotation using a single 

depth camera. While hand pose annotations are critically important for training 

deep neural networks, creating such reliable training data is challenging and 

manual labor intensive. Current datasets that rely on manual annotation on real 

images are limited in size due to the difficulty of annotating them. Although, large 

datasets have been generated using tracking based methods followed by manual 

refinement, these methods are prone to annotation errors due to tracking failure. 

Synthetic images have also been used to create large datasets but synthetic frames 

does not capture the sensor characteristics such as noise while also producing 

kinematically implausible and unnatural hand poses. We propose a semi-

automatic method for efficiently and accurately labeling the 3D hand key-points in 

a hand depth video. The process starts by selecting a subset of frames that are 

representative of all the frames in the dataset and the user only provides an 

estimate of the 2D hand key-points in these selected frames. We use this 

information to infer the 3D location of the joints for all the frames by enforcing 

appearance, temporal and distance constraints. Finally, we demonstrate that our 

method can generate 3D training data more accurately using less manual 

intervention and offering more flexibility in comparison to other state-of-the-art 

methods. 
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Chapter 1

Introduction

1.1 Motivation

With the introduction of RGB-D sensors, the landscape of computer vision has changed

in the last decade. By combining an RGB camera with a depth camera, it provides not

only the color and light intensity, but also the distance of each observed pixel. There are

great expectations that these sensors will lead to a boost of new 3D perception-based

applications in the fields of robotics and visual & augmented reality. Integration of

RGB-D sensors in smartphones and tablets promises to make these applications even

more popular.

Hand motion capture with RGB-D sensor gained a lot of research attention lately as

hands are the primary body part to interact with the surrounding environment. As

we adopt smartphones, smartwatches and smartglasses, traditional input devices such

as keyboard, mouse are not an option anymore. On-screen interaction is hard due to

small size of display. If hand poses can be inferred correctly, hand interaction with

the surrounding environment can be used as input for different applications. Therefore,

markerless capture of human hands is a very interesting problem and we focus our

attention on the improvement of current hand pose estimation methods.

1



Figure 1.1: The Human Hand Model using 21 keypoints [1]

1.2 The Human Hand

The human hand has a complex structure with many individual degrees of freedom.

Some researchers have used 16 joints to model the human hand, while others have used 21

joints. In the following figure, we show the more common approach of modeling a human

hand following [1] that uses 21 keypoint locations and 31 degrees of freedom. Each finger

consists of four keypoints : the metacarpophalangeal (MCP), proximal interphalangeal

(PIP), distal interphalangeal (DIP) joints and we additionally consider the fingertip as

another keypoint (TIP) . Each joint is assigned a specific number of Degrees of Freedom

(DoF), depending on the physiology of the joint. The wrist has six DoF as it can move

freely around the body comprising 3D translation and global rotation. The MCP joints

have two DoF , PIP, DIP and TIP points have one DoF . This sums up to a total of

31 DoF. These DoFs are controlled by 38 muscles in the hand and forearm allowing

the hand to articulate the hand bones in a coordinated manner. The DoFs of the hand

cannot all be independently controlled. In spite of this limitation, hands are capable of

dexterous movements such as touching, grasping, gesturing and other manipulations.

1.3 Problem Statement

Hand pose estimation is the task of finding the hand keypoints to infer the pose in-

formation from a given image or video frame. Vision based hand pose estimation is a

challenging field where we estimate the position of hand joints without using any spe-

cialized sensing equipment but a camera. Early works used 2D images which makes

this problem very difficult due to ambiguities in the 2D images. With the advent of



3D sensors, such as structured-light or time-of-flight sensors, inferring 3D joint locations

became much more feasible. More recently, hand pose estimation from color images

have become possible by using large amounts of training data from multiple viewpoints

[12]. Other devices such as Leap Motion sensors have also been used for hand pose

estimation, however they still lack robustness and accuracy for real world applications.

In this work, we focus on 3D hand pose annotation using a semi-automatic approach,

which aims at minimizing the manual labor intensive hand pose annotation while still

providing reasonably accurate annotations. We use markerless pose estimation, which

implies that we use bare hands as input without any markers such as bands or colors.

In a more formal definition, we aim at mapping an input depth image D, to the corre-

sponding 3D hand pose P. This mapping task is not significantly different from other

pose estimation problems such as body pose. However, hand pose estimation has unique

challenges because of the complex physiology of the human hand.

1.4 Challenges

Markerless 3D hand pose estimation is a difficult task that involves dealing with several

challenges. Although some of these challenges are not unique to hand pose estimation,

often times hand pose estimation poses a more difficult configuration of the body pose

estimation task. Some of the many different challenges are mentioned here briefly:

Occlusions : While for rigid objects the location and pose can be inferred from non-

occluded parts, that is not possible for highly articulated human hands. As mentioned

earlier, human hands have a complex anatomy with many DoF that can move indepen-

dently. Hand pose annotation becomes more challenging in egocentric views or when two

hands are interacting with each other, but for this work we are not focusing on either

of these scenarios. Even with manual annotations, it is sometimes difficult to figure out

the correct keypoint locations due to occlusions.

Size and Shape : Humans hands are of different shapes and sizes. Not only the size

of a human’s hand changes from childhood to adulthood, there are significant difference



between adults as well. In the field of computer vision, related works have not focused

too much on these variations.

Noisy Data : 3D Hand pose estimation requires robustness to noisy data. The noise

may come from camera sensors such as missing regions or having noisy outliers in the

depth images. In RGB images, there can be shadows and different lighting conditions

that can introduce noise. Also, the annotations are sometimes noisy or erroneous espe-

cially in large datasets because of the automatic nature of annotating them.

Self-similarity of fingers : Hand pose estimation poses a different problem in the

aspect that unlike body pose estimation hands contain self-similar parts that are hard

to distinguish. This obviously results in estimation errors especially when one or more

fingers are occluded.

Fast Motion : Hands can move fast, and individual fingers can move quickly irre-

spective of wrist movements. Human hand can perform actions very fast and can cause

motion blur as a result. This is especially challenging in tracking based methods that

use the pose of the previous frame as initialization.

Detection and Segmentation : In the hand pose annotation task, detection and seg-

mentation of hands is assumed as a prerequisite using depth thresholding or using color.

However, in real-world environments, this can be a non-trivial task. For example, depth

thresholding fails if the hand is close to the body or another object nearby and color

thresholding may fail when a similar color is present in the background. Background

clutter and lighting conditions may also pose challenges for accurate hand detection.

1.5 Dissertation Organization :

We start with a brief introduction of the hand pose estimation problem. In Chapter 2, we

review some of the methods and datasets that are being used for hand pose estimation.

We provide a detailed analysis of existing methods for creating a large scale dataset

and define our scope of work. We also provide a brief overview of our proposed semi-

automatic pipeline for hand pose estimation. In Chapter 3, we introduce our proposed



method with necessary details for each step of the pipeline. We show our preliminary

results and define the research plan in Chapter 4. Finally, we conclude our discussion

with future directions in the last chapter.

1.6 Outlines of Proposed Work :

For this work, we choose depth camera based real hand pose annotation. Recent real

hand pose datasets that are annotated manually [15, 16] are limited to a few thousand

frames. Although, large real hand pose datasets [6, 14, 17] exist, these datasets are prone

to annotation errors due to tracking failure. We, therefore, propose a semi-automatic

pipeline that produce highly accurate hand pose annotation within a very small error

margin of manually annotated images.

Firstly, given a hand depth video, we select a small number of frames that are represen-

tative of all the frames in the depth sequence. The frames will be selected automatically

using a distance function and we refer these representative frames as reference frames.

We then annotate the 2D hand joint locations in these representative frames and using

this manual annotations we infer the 3D location of all the frames by enforcing ap-

pearance, distance and temporal constraints. We propose that by annotating a small

fraction of the frames (5-10 %) we can generate 3D annotations more accurately than

other state-of-the-art methods.



Chapter 2

Related Work

In this chapter we review the related literature and put our contribution in context to the

existing approaches. Although 3D hand pose estimation is similar to other structured

keypoint estimation methods, such as facial landmark or body pose estimation, we limit

our discussion to the relevant works in the field of hand pose.

2.1 Generative vs Discriminative Methods :

Hand pose estimation methods can be broadly divided into generative and discrimina-

tive methods. While both approaches aim to assign a pose in an output space to an

observation in the input space, the way this assignment is performed is fundamentally

different.

2.1.1 Generative Methods :

Generative methods [2–4] adopt a hand model based on the kinematic structure of hands,

employs a similarity function that measures the fit of the observed image to the model,

and uses an optimization algorithm that maximizes the similarity function with respect

to the model parameters. Generative methods also require an initialization for the pose,

for example the pose in the previous frame. If the hand mesh model being used is good,

generative models can produce very accurate results.
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Figure 2.1: Hand models used by [2–4] respectively

A large number of hand models were proposed that used different hand crafted geomet-

ric approximations of the hand and some popular models are shown in the following

figure. In order to work well, these hand models should be adjusted to the users hands,

which requires an additional optimization step or manual adjustment of hand shape

parameters. Different modalities were proposed for the similarity function using edge

detection, optical flow, object silhouettes, shading and texture, salient points with vari-

ous amounts of success. And finally optimiziation of the similarity function is a critical

issue as the high dimensional pose space is prone to local minimas. Particle Swamp Op-

timization(PSO) [2], Iterative Closest Point(ICP) [18], or their combination (ICP+PSO)

[6] have been used to optimize the hand points together with kinematic and temporal

constraints.

2.1.2 Discriminative Methods:

The second type of approach is based on discriminative models that aim at directly

predicting the joint locations to the discrete or continuous parameter space using color,

depth or RGB images. The accuracy of these methods rely critically on the mapping

from image to pose.

Some approaches segment the hand parts first and estimate the pose in a second step.

Xu et al. [5] assign each pixel a hand part label and then infers the 3D hand joint

locations using a 3 stage pipeline. Direct regression based methods [6, 7] estimate a

subset of the parameters directly without intermediate representation. Generalization

in terms of capturing illumination, articulation and view-point variations can be achieved



only through adequate representative training data. But acquisition and annotation of

realistic training data is a difficult and costly procedure. For this reason most approaches

rely on synthetic rendered data that has inherent ground-truth annotations [19].

2.2 Different Sensor Based Hand Pose Estimation

Vision based hand pose estimation methods that use RGB or depth cameras are common

in the field of Computer Vision [3, 6, 8–10, 17]. However, camera based methods suffer

from various depth and pose ambiguities due to occlusion and self-similarity of hands.

To circumvent these problems, other researchers have used magnetic sensors or marker-

based approaches to infer the 3D human poses [11, 12]. There are also task-tailored

devices such as Leap Motion sensors that have been introduced as well. In this section,

we provide a brief overview of the different sensors being used in monocular or multi-view

camera setups and the datasets created using these sensors.

2.2.1 RGB based Hand Pose Estimation

Pioneering works [20, 21] in the field of hand pose estimation used RGB images to

estimate 3D hand poses. Gorce et al. proposed a model that estimates 3D hand pose,

texture and illuminant dynamically. They used two synchronized, calibrated cameras to

obtain ground truth 3D measurements on the hand. Vision based reconstruction of the

3D pose of human hands from RGB images is really difficult since any given 2D point in

the image plane can correspond to multiple 3D points in the world space. So, 3D hand

Figure 2.2: Examples of some discriminative hand pose estimation methods [5–7]
respectively



pose estimation from RGB images suffer from this depth ambiguity in addition to the

other challenges related to hand pose estimation.

Figure 2.3: Multi-view RGB camera setups for hand pose estimation by [8], [9], [10]
respectively

To tackle this issue, several works have proposed multiple RGB camera settings where,

if the hands are occluded from one camera view, the pose can be correctly inferred from

other unoccluded views. Simon et al. [8] used 31 HD cameras in a Panoptic Studio

setup to capture the same hand poses from multiple viewpoints. Using views of the

hand where keypoint detection is easy, they use these detected keypoints to triangulate

the 3D position of the hand joints. Difficult views with failed detection are annotated

using the reprojected 3D keypoints. Following the same idea, Zimmermann et al [9]

used 8 calibrated and temporally synchronized RGB cameras to create the FreiHAND

dataset. Recently, Moon et al. [10] also created a dataset that captures single as well

as more challenging interacting hand poses in a multi-view studio setup with 80 to 140

high resolution cameras. These datasets are very large in size due to being captured

from multiple different viewpoints. The camera setups used for creating these datasets

have been illustrated in Figure 2.3.

2.2.2 Depth based Hand Pose Estimation

Depth cameras using Time-of-flight(ToF) technology can be used to measure depth using

a single camera. A ToF camera uses infrared light to determine the depth of the objects

in front. Using the time it takes the signals to hit the object and bounce back, it can

accurately measure distance of the object from the camera. Intel’s Creative Interactive

Gesture Camera was used to create several benchmark hand pose datasets [3, 6, 14],

while another popular work [17] used the PrimeSense Carmine 1.09 depth camera to

create the NYU dataset.



Some of these hand pose datasets use generative approaches [6, 14] to fit a pre-defined

hand model to the input depth map by minimizing some hand-crafted cost functions.

Discriminative approaches, which directly localizes hand joints from an input depth

map, has also been proposed. Tompson et al. [17] used a deep neural network based

method to estimate the 2D heatmaps for each hand joint. Ge et al. [22] extended this

work by estimating 2D heatmaps in multiple viewpoints, and Guo et al. [23] proposed a

tree-structured Region Ensemble Network to estimate the 3D hand coordinates correctly.

2.2.3 Magnetic Sensor Based Hand Pose Estimation

Figure 2.4: Magnetic Sensor based 3D hand pose estimation methods [1, 11]

In order to generate highly accurate hand-pose annotation, Yuan et al. used six 6D

magnetic sensors to automatically create a million-scale dataset [1]. As shown on figure

1.3, global hand pose is inferred from the location and orientation of these 6 sensors, one

on the back of the palm and five other sensor on each finger nail. The fingernail sensors

are used to infer the TIP, DIP and PIP joints of the corresponding finger using bone

lengths and physical constraints. There are other methods such as Glauser et al. that

used stretch-sensing soft hand gloves to capture the hand pose with precision [11]. The

glove consists of a full soft composite of a stretchable capacitive silicone sensor array

and a thin custom textile glove(Figure 2.4) and can capture hand poses with 25 degrees

of freedom.

Hand pose estimation methods using magnetic sensors work in diverse and challenging

settings such as highly occluded poses or changing light conditions. However, these



methods require magnetic sensors to be placed at each finger joint to capture the hand

pose and the sensors need to be small enough to be wearable. But the sensitivity

of magnetic sensors increases with their size, meaning small sensors lack in precision

and are easier to be disturbed by external magnetic fields [24]. Also, magnetic sensors

are not very practical to use in day-to-day operations and sometimes restricts the free

articulation of human hands.

2.3 Methods for Hand Pose Annotation

Different public hand pose datasets have been published in recent years that uses differ-

ent annotation methods. Some of the earlier works on depth based hand pose annotation

used tracking based methods to annotate the frames. Some researchers created manu-

ally annotated datasets to evaluate other methods compared to ground-truth but these

datasets are limited in the number of frames. Synthetic hand pose datasets and marker-

based hand pose datasets have also been used for dealing with challenging hand articu-

lations. Additionally, multi-view RGB camera based methods have used semi-automatic

methods to annotate hand-poses in difficult views using 3D reprojection from unoccluded

viewpoints. Rogez et al. also introduced a semi-automatic hand pose dataset using ego-

centric depth images and used a semi-automatic labelling tool to annotate frames with

hand-object interaction. Some of these datasets contain static poses only, while others

contain complex hand articulations. Also, some datasets only consists of hand poses

with single hand, while others contain hand-object interaction or interaction between

both hands. However, we are mainly interested in the method being used to annotate

the hand poses and therefore skip this detail. In the following table 2.1, we show some

state-of-the-art datasets, the annotation method being used and other characteristics

of the datasets. We discuss these annotation methods in more detail in the following

discussions.



Dataset Annotation Method Source resolution subjects frames

ICVL [6] tracking+refinement Depth 320X240 10 180k
MSRA15 [14] tracking+refinement Depth 320X240 9 76k
NYU [17] tracking+refinement Depth 640X480 10 180k

Dexter+Object [16] manual RGB-D 640X480 1 3k
EgoDexter [15] manual RGB-D 640X480 4 1.5k

STB [25] manual RGB-D 640X480 1 18k

BigHand2.2M [1] marker-based Depth 640X480 10 2.2M
FPHA [26] marker-based RGB-D 1920X1080 6 105k

RHD [13] synthetic RGB-D 320X320 20 44k
SynthHands et al. [27] synthetic RGB-D 320X240 5 80k

Rogez et al. [28] semi-automatic RGB-D n/a 8 12k
FreiHAND [9] semi-automatic RGB 224X224 32 134k
Simon et al. [8] semi-automatic RGB 1920X1080 n/a 15k

InterHand2.6M [10] semi-automatic RGB 512X334 27 2.6M

Table 2.1: Comparison of Existing Datasets using different annotation methods

2.3.1 Manually Annotated Hand Pose Datasets

Creating datasets using manual annotation is a challenging and labor-intensive approach.

These benchmarks are generally small in size due to the difficult of annotating them.

MSRA14 [3] dataset was created using six subjects who perform various rapid gestures.

A 400-frame video sequence is recorded for each subject and the ground truth hand poses

were manually labelled for all 2400 frames. Other datasets such as Dexter+Object [16]

provide 3k frames with ground truth annotations while the EgoDexter [15] consists of

1485 frames of ground truth 2D and 3D fingertip positions. These datasets were mainly

created for evaluation purposes and creating a large dataset using manual annotations

is just not feasible.

2.3.2 Synthetic Hand pose Datasets :

Hand pose datasets that capture real hand images are limited in quantity and coverage.

Additional synthetic data can be used to increase the accuracy of 3D pose estimation.

Compared to real datasets, it is easier to acquire synthetic data. Synthetic frames can

be used to create virtually infinite training data with large variations in shapes and

view-points and produce annotations that are more accurate in case of occlusions [29].



Figure 2.5: Synthetic hand pose datasets show shape and appearance variance from
real hand images[12, 13]

For these reasons, multiple synthetic image datasets have been introduced in recent years

[12, 29] that contain 300k to five million frames. However, synthetic hands exhibit a cer-

tain level of deviation from real images as these do not capture the sensor characteristics

such as noise and missing data that are present in real images. Also, synthetically gen-

erated images sometime produce kinematically implausible and unnatural hand poses.

We show some examples of these synthetic datasets in Figure 2.5.

2.3.3 Tracking Based Hand Pose Datasets

With the introduction of Microsoft Kinect, which uses a color sensor and a depth sensor

to capture RGB images with associated depth, the tasks of hand detection and segmen-

tation have been simplified. The ICVL dataset [6] is one of the first benchmark datasets

on depth images that uses 3D skeletal tracking followed by manual refinement. The

dataset contains 180k training images from 10 different subjects, however the limita-

tions of annotation accuracy have been noted in literature [14]. MSRA15 [14] is one of

the more complex datasets in the field that consists of 76,500 depth images captured

from 9 subjects, using Intel’s Creative Interactive Camera. It is annotated in an iterative

way where an optimization method [3] and manual re-adjustment procedure alternate

until convergence. These annotations are also reported to contain annotation errors such

as missing finger and thumb annotations [30]. Tompson [17] used 3 RGBD sensors at

viewpoints separated by approximately 45 degrees surrounding the user from the front



Figure 2.6: Annotations errors in the MSRA15 Dataset [14]

to create the NYU hand pose dataset. They used a predefined 3D hand model that

was manually readjusted for poses that failed to fit perfectly. The dataset contains 80k

depth frames and regarded as one of the most popular benchmarks for 3D hand pose

estimation.

Tracking based hand pose annotation fails to generate accurate hand poses when there

is a good amount of occlusion in the hand pose. In addition, the datasets [6, 14, 17] are

prone to tracking based failures and requires some amount of manual refinement. We

show some noisy annotations from MSRA15 dataset in the Figure 2.6

2.3.4 Automatic Hand Pose Annotations :

Additional sensors such as data-gloves or magnetic sensors can aid automatic capture of

human hands [1, 31], but care must be taken not to restrict the natural motion of human

hand. The ASTAR dataset used a ShapeHand data-glove which has been reported to

influence the captured hand images, and to some extent hinder free hand movement.

Less intrusive magnetic sensors [32] have been proposed, however, they only provide

finger tip annotations. Also, some data glove annotations are not very accurate and

would be visible in training images which biases the learning algorithm.

2.3.5 Semi-automatic Hand Pose Annotations :

Semi-automatic approaches of hand pose annotation has recently been used to create

large scale hand pose datasets. Moon et al. [10] used semi-automatic approach for

creating a multi-view RGB dataset, which combines manual annotation with automatic



machine annotation and proposes a much more efficient approach compared with man-

ual annotation. Using their semi-automatic method using multi-view RGB images, they

achieve very small annotation errors(2.78 mm) compared with fully manual annotation.

Simon et. al [8] also proposed a multi-view RGB dataset, that uses multiview Bootstrap-

ping to accurately annotate difficult or occluded hand poses. It uses easily detectable

views to triangulate the 3D keypoints and using the reprojected 3D keypoints difficult

views are annotated correctly.

Rogez et al. [28] proposed a semi-automatic method for hand pose estimation from

egocentric viewpoints. They used a chest-mounted RGB-D sensor to collect egocen-

tric hand-object interactions and propose a semi-automatic labelling tool to annotate

partially occluded hands and fingers in 3D. Oberweger et al. extended this work by

creating a semi-automatic pipeline for annotating all the frames in a hand depth video

using manual 2D annotations in some of the frames. They use manual annotation of

2D joints in approximately 10% frames to infer the 3D hand pose annotations for all

the frames in a depth video sequence. Compared to this work, we propose a method

that selects the number of frames to be annotated in an automatic manner, minimizes

annotation work by selecting fewer number of frames and provides more accurate 3D

annotation compared with other state-of-the-art methods.



Chapter 3

Proposed Method

Given a sequence of N depth frames {Di}Ni=0 capturing a hand in motion, our goal is to

estimate the 3D hand joints in the depth maps while eliminating as much manual effort

as possible. Our approach is based on the common observation that not all the frames in

a hand depth video vary significantly from each other. Therefore, if we annotate the hand

joints in some frames and propagate this information to the similar frames, that should

lead to better accuracy. The process starts by automatically selecting the frames for

manual annotation. We propose to select a small subset of frames such that all the other

frames are within a distance threshold from the selected frames. We refer these small

subset of selected frames as reference frames. A human annotator provides the 2D hand

joint locations in the reference frame and using these we infer the 3D position of hand

key-points in the reference frames. We propagate this knowledge to the other frames

that are similar to the corresponding reference frames and infer the 3D hand joints in

the remaining frames. Finally, we perform a global optimization enforcing appearance,

temporal and spatial constraints to further optimize the hand joint locations.

3.1 Selecting the Reference Frames

We start by selecting the reference frames to do manual annotation. A simple way to

select the reference frames would be to regularly sample the video after a time interval,

for example every n-th frame could be selected as a reference frame. However, this
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Figure 3.1: TSNE plot for Blender Dataset

type of selection process might not be optimal for annotating hand poses. Since hand

movement can be fast or slow in different part of the video and therefore selecting a

definite value of n might not work for the whole sequence. For example, if we select

every 10-th frame as a reference frame, in some cases we will find that the hand pose

changed a lot over those 10 frames and selecting one of those 10 frames as reference

would not be a good representation for the other 9 frames. On the other hand, users

tend to keep their hand still in between poses and there could be a lot of consecutive

frames that are almost same but due to selecting every 10-th frame as reference, we

could end up selecting very similar frames. Therefore, this kind of temporal selection

of frames won’t be able to select a subset of frames that are representative of all the

frames in the video sequence.

Instead of temporal sampling, we would like to select the reference frames in such a way

that for each unannotated frame, there is a minimum degree of similarity with one of the

annotated frames, using which the 3D pose of the unannotated frame can be inferred

more accurately. Also, another constraint is that we would like to select as few reference

frames as possible to save time annotating them. In other words, we need to find groups

or clusters in the dataset frames so that frames belonging to each group are similar and

we can select one of those frames for doing manual annotation work. We can use TSNE

(t-distributed Stochastic Neighbor Embedding) [33] to visualize very high dimensional

data in a low-dimensional space to identify relevant patterns. The main advantage of



Figure 3.2: Visualization of frames that belong to the same TSNE cluster

TSNE is the ability to preserve local structure. This means that points which are close

to one another in the high-dimensional data set will tend to be close to one another in

the low dimensional plot as well. We visualize the 3040 frames in the Blender Dataset

[34] as points in the TSNE plot 3.1. Each colored dot represents a frame and the color

encodes the temporal order. Temporal changes of the hand articulation can be clearly

observed from the different trajectories.

The clusters in the TSNE plot clearly suggest that, there are a number of frames that

are very similar to each other. In Figure 3.2 we show a few frames belonging to the same

cluster in the TSNE plot and these frames are indeed quite similar to each other. So,

the idea is to select one or few of these frames to use as reference to estimate the pose in

the other frames in the cluster. However, TSNE does not preserve distance relationships

in the lower dimensional space, meaning points next to each other in the TSNE plot

might not be the closest match in the high dimensional space. So, we can not take the

centroid of our TSNE embedding to select our reference frame for that cluster. Also,

we can not assume the relative size of clusters from the TSNE plot as TSNE tends to

expand dense clusters and shrink sparse ones. But TSNE confirms our assumption that

some of the frames are indeed similar to each other and we need a similarity measure to

pick some of these frames as reference frames.



To find the similarity between frames, we define a distance function on the depth frames.

We propose to use cosine distance to measure the similarity between frames and use ρ

as a threshold for minimum similarity.

∀i ∀j s.t. i ̸= j, d(Di, Dj) = cos(θ) =
Di.Dj

||Di||||Dj ||
(3.1)

Here, Di and Dj are two depth maps, and they are considered similar if d(Di,Dj) < ρ.

We start by selecting the first frame as a reference frame and iterate over the whole set

of frames. Every time the distance of the next frame is greater than the threshold ρ,

the next frame is considered as the reference frame. If there are other frame within ρ

distance of a reference frame then we know that these frames are significantly similar to

the selected reference frame and therefore we do not need manual annotation for this.

This is illustrated by the equation 3.2 below

R =

 1 if d(Di−1, Di) > ρ

0 else
(3.2)

Here, Di−1 is the previous frame and Di is the current frame being compared. Selecting

the reference frames in this way has advantages over temporal sampling as consecutive

frames could have much higher distance than a frame that occurs much later in the

video sequence. Also, we see from the preliminary results that we achieve better results

than the greedy reference frame selection method of Oberweger et al. [30]. Moreover, we

can change the ρ threshold to change the number of reference frames. A low threshold

would increase the number of reference frames, this would not harm the accuracy of the

annotations per say but would drastically increase manual annotations. On the other

hand, a high threshold would pick far too less frames which would not be representative

of the entire dataset and could yield sub-par results.



3.2 Initializing the 3D Joint Location in the Reference

Frames

After selecting the reference frames we need to label them by a human annotator. We

use the annotation tool by Oberweger et al. [30] to annotate the frames. The annotator

provides the 2D hand joint locations for each reference frame alongside the visibility

information. The visibility information basically points whether the joints are closer

or farther from the camera than the parent joint in the hand skeleton tree. Using this

information we can recover the 3D locations of the joints. To recover the 3D locations

of the joints in the reference frame, we optimize the following non-linear least squares

problem used by Oberweger et al. [30].

argmin
{Lr,k}Kk=1

K∑
k=1

vr,k||proj(Lr,k)− lr,k||22 (3.3)

s.t. ∀k ||Lr,k − Lr,p(k)||22 = d2k,p(k)

∀k vr,k = 1 =⇒ Dr[lr,k] < z(Lr,k) < Dr[Lr,k] + ϵ

∀k vr,k = 1 =⇒ (Lr,k − Lr,p(k))
T . cr,k > 0

∀k vr,k = 0 =⇒ z(Lr,k) > Dr[Lr,k]

where, r = the index of the reference frame. vr,k = 1 if the k-th joint is visible in the r-th

frame. Lr,k = 3D location of the k-th joint in the r-th frame. lr,k is the 2D reprojection

of the 3D joint locations. proj(L) returns the 2D reprojection of a 3D location. p(r)

returns the index of the parent joint of the k-th joint in the hand skeleton. dk,p(k) is the

known distance between the k-th joint and it’s parent p(k). Dr[lr,k] is the depth value

in Dr at location lr,k. z(L) is the depth of 3D location L. ϵ is a threshold used to define

the depth interval of the visible joints. In practise, we use ϵ = 15 mm given the physical

properties of the hand. cr,k is equal to the vector [0, 0,−1]T if the k-th joint is closer

to the camera than it’s parent in the frame r, and [0, 0, 1]T otherwise. (Lr,k −Lr,p(k))
T

is the vector between joint k and it’s parent in the frame.



The constraints in Equation 3.3 assure that (1) we find the 3D joints Lr,k such that

the bone lengths i.e. the distance between 2D projection of Lr,k and lr,k is maintained;

(2) visible joints are within ϵ distance of observed depth maps; (3) the z-azis value for

hidden joints is greater than visible joints, and (4) depth order constraints between a

joint and it’s parent is also maintained. We assume the lengths dk,p(k) are known.

During implementation, we calculate this distances as the euclidean distance between

joints in the hand skeleton tree.

We use SLSQP[35] to solve this problem and find the the 3D hand keypoints i.e. Lr,k

values. Finding the hand keypoints in this way maintains the constraints of the hand

skeleton tree and provides a reasonable estimate of the 3D hand joints in the reference

frames.

Figure 3.3: A human annotator marks the 2D hand joint locations in the depth frames



Figure 3.4: Visualization of the 3D hand keypoints based on the 2D annotations

3.3 Initializing the 3D Joint Locations in the Remaining

Frames

The previous section computes the 3D location of hand joints in the reference frames.

Now we need to propagate this information to the remaining frames to improve the

accuracy of their 3D annotations. After propagating the 3D joint information from a

reference frame and estimating 3D joint locations in a non-refernce frame, we do not

add the newly annotated frame to the list of reference frames as was done by Oberweger

et al. [30]. The reason is that the reference frames are annotated by humans and we

can be very confident about their 3D joint locations. However, any frame using this

reference frame may estimate it’s joints locations poorly and we don’t want a frame

with possible errors to be added to the list of reference frames. We have already figured

out the closest reference frame for each of the remaining frames in the cosine distance

calculation part described in section 3.1 and therefore we can infer the 3D joint locations

of the remaining frames using their closest reference frame. This way, we make sure that

the human annotated frames are being used to infer the joint locations in the remaining

frames and by not allowing estimated frames to be added to the list of reference frames,

we maintain the accuracy of 3D joints in the reference frames.



The procedure is shown using 3.4 where, I is the set of reference frames for which the

3D location of the joints have been initialized. So, we check for a frame ĉ not initialized

yet and find it’s closest reference frame â ∈ I to estimate it’s joints.

ĉ
â

 = argmin
c∈[1;N ];a∈I

d(Dc, Da) (3.4)

We use the appearance of joints in â to predict their 3D locations Lĉ,k in ĉ by minimizing

equation below. Here, ds(Dĉ, proj(Lĉ,k);Dâ, lâ,k) denotes the dissimilarity between the

patch in D1 centered on the projection L1, proj(L1) and the patch D2 centered on l2.

This optimization looks for joints based on their appearance in frame â while enforcing

the 3D distances between the joints. We use Levenberg-Marquardt algorithm to solve

this following [30].

∑
{Lĉ,k}k

∑
k

ds(Dĉ, proj(Lĉ,k);Dâ, lâ,k)
2

s.t. ∀k ||Lr,k − Lr,p(k)||22 = d2k,p(k)

(3.5)

To align the nearest frame we use SIFT-Flow [36]. Unlike Optical flow which aligns

an images to it’s temporally adjacent frame, SIFT-Flow aligns an image to it’s nearest

neighbors in a large corpus containing a variety of poses. It matches densely sampled,

pixel-wise SIFT features between two images, while preserving spatial continuities. We

use the appearance of joints in reference frames to predict their location in the non-

reference frames by minimizing the dissimilarity.

At each iteration, a non-reference frame is processed using it’s closest reference frame

â ∈ I. First, we initialize the SIFT-Flow by aligning the closest reference frame â to

a non-reference frame ĉ. This maps the 2D reprojection of joints in frame â to 2D

locations in frame ĉ. We backproject each of these 2D joint locations on the Depth map

Dc to initialize Lĉ,k. We check for each 3D joint in the non-reference frame i.e. Lĉ,k, the

distance to it’s parent joint Lĉ,p(k) and thereby enforcing the bone joint constraints in

the hand skeleton tree.



3.4 Global Optimization

The previous optimization already optimizes the frames based on their closest reference

frames. However, there might be some hand constraint violations due to estimating the

hand joints in remaining frames using their closest reference frames. We also maintain

some temporal constraints with the previous frame. We perform a global optimization

over the 3D joint locations Li,k for all the frames by minimizing the equation below

using the method by Oberweger et al. [30]:

∑
i∈[1;N ]\R

∑
k

ds(Di, proj(Li,k);Dî, l̂i,k)
2+ (C)

λM

∑
i

∑
k

||Li,k − Li+1,k||22+ (TC)

λP

∑
r∈R

∑
k

vr,k||proj(Lr,k − lr,k)||22 (P )

s.t.∀i, k||Li,k − Li, p(k)||22 = d2k,p(k)

The first term (C) sums the differences of the joint locations compared to the closest

reference frame. Given the depth map and 3D joint locations in the current frames, it

calculates the dissimilarities with the closest reference frame. The second term (TC) is a

temporal constraint that makes sure that consecutive joints do not have huge fluctuations

between their 3D joints. Because, hand pose from consecutive frames can not change

very rapidly, this term maintains temporal smoothness by avoiding consecutive joint

estimations that are far away from each other. The last term(P) of the summation

ensures consistency with the manual 2D annotations for the reference frames since the

2D reprojection of 3D hand joints should be similar to what the user annotated in 2D.

λM and λP are weights that maintains the significance of each constraint. Using these

weights with their corresponding constraints, we make sure that the 3D hand joints

maintain the shape and temporal constraints and therefore this global optimization step

further refines the annotations.



Chapter 4

Experiments

In this chaper, we demonstrate the experimental results of our proposed semi-automatic

hand pose estimation method [37]. We start with selecting one real and one syn-

thetic hand pose dataset. For experiments with semi-automatic annotation, we choose

a state-of-the-art real hand pose dataset, MSRA15 [14] and a synthetic hand pose

dataset(Blender), that was introduced by [34]. We apply our reference frame selection

method on these datasets and show that our reference frame selection covers different

hand pose articulations using the TSNE diagram. We also show our preliminary re-

sults on the Blender dataset compared to another state-of-the-art hand pose estimation

method [30]. Finally, we discuss our results using the proposed semi-automatic hand

pose annotation pipeline and define our future scope of work.

4.1 Evaluation on a Synthetic Hand Pose Dataset

We start by showing our results on a synthetic hand pose dataset called Blender. The

Blender dataset contains 3040 frames of single hand articulations. We apply our pro-

posed reference frame selection method based on cosine distance with a distance thresh-

old ρ. Using ρ = 0.035, we selected 204 reference frames from the 3040 frames of the

Blender dataset. We plot the TSNE diagram with the selected reference frames in Figure

4.1. The TSNE embedding for all the frames in the Blender dataset is shown in ’Blue’

and the selected reference frames is marked in ’Orange’. The points in the TSNE plot

25



that form a line implies the temporal similarity between those frames. For each of these

lines, we would like to select at least one frame that is similar to the other frames in

that line. From the observation, it seems that the frames selected using cosine similarity

covers each of the lines in the TSNE plot for the Blender dataset. So, we can say that

our selected reference frames are representative of all the frames of the Blender dataset.

Figure 4.1: Proposed reference frame selection for the Blender hand pose dataset

After selecting the reference frames, we will have to annotate the 2D keypoint locations in

these reference frames. Since Blender is a synthetic hand pose dataset, the joint locations

are highly accurate and therefore we use the Blender ground truth annotations as our

manual 2D annotation. We only use the ground truth joint location of the reference

frames and try to estimate the joint locations in the other remaining frames. Finally, we

compare our estimated 3D keypoints with the ground truth 3D keypoints and measure

the mean, median and maximum error. We also compare our results with the method of

Oberweger et al. [30] and show the results on Table 4.1. The preliminary results show

that we achieve lower mean and median error than [30] and therefore we can say that

our proposed reference selection has lead to this improvement in accuracy.



Our Method Oberweger et al. [30]

mean error (mm) 4.69 4.91

max error (mm) 84.33 73.65

median error (mm) 3.35 3.68

Table 4.1: Comparison of Final Results on the Blender Dataset

4.2 Evaluation on Different Number of Reference Frame

Selection

We can select a different number of reference frames based on a different cosine distance

threshold ρ. If we pick a higher threshold, ρ we will get a lower no of reference frames

which will save a lot of manual annotation work. Also, if we want better accuracy and

have resources to annotate more reference frames then we can reduce the value of ρ

and then we will select a higher number of reference frames to be annotated. We can

compare the results of selecting higher or lower number of reference frames from the

following table :

∼2% frames ∼5% frames ∼10% frames Oberweger et al. [30]

(73 frames) (141 frames) (288 frames) (304 frames)

mean error (mm) 5.79 5.50 4.69 4.91

max error (mm) 76.79 78.98 84.33 73.65

median error (mm) 4.60 4.17 3.35 3.68

Table 4.2: Evaluation on the Blender Dataset for different % of reference frame
selection

As we can see from the table, the annotation results improved with the selection of

more reference frames, i.e. with more human annotation work we can always get better

results. However, we got comparably good results with Oberweger et al. [30] while

selecting 5% of the frames as reference frames and our results are better than [30] when

we consider approximately same number of reference frames. This shows that with small

effort of annotating only a fraction of the frames with can get comparably good results

with ground truth annotation.



4.3 Evaluation on a Real Hand Pose Dataset

Using our proposed method on reference frame selection, we improved the annotations

of a real hand pose dataset. The MSRA15 hand pose dataset is one of the benchmark

datasets for depth based hand pose estimation. It contains 9 subjects performing 17

different signs in front of single depth camera. Each sign was performed for 500 frames

and therefore for the total 17 signs, the dataset contains 17*500 = 8500 frames for each

user. For the total 9 subject, the total no of frames = 8500*9 = 76500. The dataset was

generated using hand tracking followed by some manual refinement. As tracking based

methods are prone to tracking failures, the annotations are not very accurate as can be

seen from the figure below.

Figure 4.2: Ground Truth Annotations of the MSRA dataset

Using our semi-automatic approach of hand pose annotation we will select a small subset

of reference frames from the 8500 frames for a particular subject. Then, we manually

annotate the 2D joints of the selected reference frames. Using the manual supervision

provided by the 2D annotations, we achieved better 3D hand pose estimation results



for the whole dataset. Using the 2D annotation tool, the users provides the 2D joint

location for each of the 21 hand joints and whether the joints are visible or not in

that frame. Using SLSQP [35] we obtain the 3D joint locations of the reference frames

and by aligning the reference frames with other frames using SIFTFLOW [36], we can

infer the 3D keypoint locations in all the remaining frames. These 3D keypoints are

then further optimized using the Global Optimization step which enforces temporal

smoothness and ensures consistency with the manual annotations. Since we do not

know ground truth 3D joint locations on real datasets, we can visualize the qualitative

results using our proposed semi-automatic method. Therefore, we show some qualitative

results on MSRA15 dataset on 4.3.



Figure 4.3: Qualitative Results on the MSRA dataset



Chapter 5

Conclusion

Training data is the backbone of the deep learning methods being used for hand pose

estimation. For datasets with real images, it is very difficult to get accurate 3D joint

locations due to noise, self-occlusion and complexity of human hand structure. This an-

notation errors are also present in state-of-the-art hand pose datasets as shown in Figure

2.6. Our proposed method provides a solution by processing some frames with manual

supervision and propagates this information to the other frame to get more accurate

annotations. This saves time required to manually annotate all the frames and provides

better accuracy than inferring the annotations without any manual supervision. More-

over, this pipeline of annotating frames using a representative subset can be applied for

other articulated structures such as human bodies or other relevant annotation tasks.

Finally, we have demonstrated our semi-automatic method on hand pose datasets con-

taining single hand images and where hand segmentation was easy. As a future work,

it remains to be seen whether this method can be extended to the more challenging

double-handed poses or for annotating hand-object interactions.

31



Bibliography

[1] Shanxin Yuan, Qi Ye, Bjorn Stenger, Siddhant Jain, and Tae-Kyun Kim. Bighand2.

2m benchmark: Hand pose dataset and state of the art analysis. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 4866–

4874, 2017.

[2] Iason Oikonomidis, Nikolaos Kyriazis, and Antonis A Argyros. Efficient model-

based 3d tracking of hand articulations using kinect. In BmVC, volume 1, page 3,

2011.

[3] Chen Qian, Xiao Sun, Yichen Wei, Xiaoou Tang, and Jian Sun. Realtime and robust

hand tracking from depth. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1106–1113, 2014.

[4] Jonathan Taylor, Lucas Bordeaux, Thomas Cashman, Bob Corish, Cem Keskin,

Toby Sharp, Eduardo Soto, David Sweeney, Julien Valentin, Benjamin Luff, et al.

Efficient and precise interactive hand tracking through joint, continuous optimiza-

tion of pose and correspondences. ACM Transactions on Graphics (TOG), 35(4):

1–12, 2016.

[5] Chi Xu and Li Cheng. Efficient hand pose estimation from a single depth image. In

Proceedings of the IEEE international conference on computer vision, pages 3456–

3462, 2013.

[6] Danhang Tang, Hyung Jin Chang, Alykhan Tejani, and Tae-Kyun Kim. Latent

regression forest: Structured estimation of 3d articulated hand posture. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pages

3786–3793, 2014.

32



[7] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. Hands deep in deep

learning for hand pose estimation. arXiv preprint arXiv:1502.06807, 2015.

[8] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser Sheikh. Hand keypoint

detection in single images using multiview bootstrapping. In Proceedings of the

IEEE conference on Computer Vision and Pattern Recognition, pages 1145–1153,

2017.

[9] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan Russell, Max Argus, and

Thomas Brox. Freihand: A dataset for markerless capture of hand pose and shape

from single rgb images. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 813–822, 2019.

[10] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori, and Kyoung Mu Lee.

Interhand2. 6m: A dataset and baseline for 3d interacting hand pose estimation

from a single rgb image. arXiv preprint arXiv:2008.09309, 2020.

[11] Oliver Glauser, Shihao Wu, Daniele Panozzo, Otmar Hilliges, and Olga Sorkine-

Hornung. Interactive hand pose estimation using a stretch-sensing soft glove. ACM

Transactions on Graphics (TOG), 38(4):1–15, 2019.

[12] Franziska Mueller, Florian Bernard, Oleksandr Sotnychenko, Dushyant Mehta, Sri-

nath Sridhar, Dan Casas, and Christian Theobalt. Ganerated hands for real-time

3d hand tracking from monocular rgb. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 49–59, 2018.

[13] Christian Zimmermann and Thomas Brox. Learning to estimate 3d hand pose from

single rgb images. In Proceedings of the IEEE international conference on computer

vision, pages 4903–4911, 2017.

[14] Xiao Sun, Yichen Wei, Shuang Liang, Xiaoou Tang, and Jian Sun. Cascaded hand

pose regression. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 824–832, 2015.

[15] Franziska Mueller, Dushyant Mehta, Oleksandr Sotnychenko, Srinath Sridhar, Dan

Casas, and Christian Theobalt. Real-time hand tracking under occlusion from an



egocentric rgb-d sensor. In Proceedings of the IEEE International Conference on

Computer Vision Workshops, pages 1284–1293, 2017.

[16] Srinath Sridhar, Franziska Mueller, Michael Zollhöfer, Dan Casas, Antti Oulasvirta,
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