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ABSTRACT

DEEP LEARNING FOR PROTEIN PROPERTY AND STRUCTURE

PREDICTION

YUZHI GUO, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Dr. Junzhou Huang

I present my work towards solving the fundamental, challenging, and valuable

problem for protein property and structure prediction. Specifically, I focus on solving

the problem from three critical aspects: (1) designing powerful deep learning net-

works for specific protein structure property prediction tasks; (2) proposing general

methods that enhancing the protein sequence homologous feature, which is an im-

portant input feature of relevant tasks; (3) developing a self-supervised pre-training

model for learning structure embeddings from protein tertiary structures. To evaluate

the effectiveness of the developed methods, I apply several protein downstream tasks

including protein secondary structure, solvent accessibility, backbone dihedral angles,

protein structure quality assessment, and protein-protein interaction site prediction.

I accomplish my work step by step. Firstly, I start from the protein secondary

structure prediction task, and constantly attempt and design different deep learn-

ing networks according to the characteristics of specific prediction tasks to learn the

protein data representation. In order to learn the powerful representation of protein

data and utilize the characteristics of protein secondary structure, I propose an En-
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sembleASP method, which is protein ensemble learning with Atrous Spatial Pyramid

networks for secondary structure prediction. Moreover, since the homologous infor-

mation of some proteins is insufficient, I propose a Bagging method which targets at

improving the performance of low-quality data in the prediction task. In addition,

in order to further solve the problem of uneven distribution of the homologous in-

formation in the data, as well as facilitate scientists and researchers to quickly apply

and experiment on existing models, I propose a plug-and-play method, WeightAln,

which is developed based on the attention mechanism. WeightAln learns the weight of

the homologous feature of a target protein, and applies it in the calculation process

to obtain a stronger sequence homologous information of the target protein. Last

but not least, in order to help protein structure-related downstream tasks, I propose

a pre-training model for learning structure embeddings from protein tertiary struc-

tures. The model is optimized with a self-supervised loss function, which only relies

on protein structures and does not require any additional supervision.
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CHAPTER 1

INTRODUCTION

The three-dimensional structure of proteins is significant in the study of pro-

teins, since the specific shape of a protein determines its function [2]. If the pro-

tein’s three-dimensional structure is altered due to mutations in the amino acid struc-

ture, the protein becomes denatured and may not functions as expected. Proteins

are chains of amino acids linked by peptide bonds. However, predicting the three-

dimensional structure of proteins from amino acid sequence is a challenging task [3].

As a result, it is necessary to address simpler problems in both the prediction of one-

dimensional structural properties, such as secondary structure, solvent accessibility,

and backbone dihedral angles prediction. In recent years, deep learning techniques

have been widely used in protein structure property prediction tasks, and achieved

remarkable results compared with traditional machine learning methods [4, 5, 6].

However, there remains two major challenges that prevent us from achieving bet-

ter performance in predicting protein structural properties: (1) most of the research

efforts focus on looking for a more powerful amino acid sequence encoder, but the

relationship among the structure property of proteins (label) is rarely studied; (2)

homologous information is the most important input feature of protein prediction

task, but the homologous feature of some proteins is low quality or redundant.

In this thesis, I introduce my works towards the effective protein representation

learning and protein input feature enhancement based on the related knowledge from

proteins and deep learning applications. The whole learning and research process

involves many key issues and challenges. Here, I present my works and contributions
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in the following three aspects: (1) I investigate the common grounds between pro-

tein secondary structure and semantic segmentation problem, then apply and modify

image segmentation network to solve the prediction problem of protein secondary

structure; (2) I develop an unsupervised framework to enhance the proteins with low-

quality homologous feature; (3) to address the redundancy problem in homologous

features, I propose a weighted homologous feature method based on the attention

mechanism to enhance the homologous features for all target proteins; (4) I propose

a self-supervised pre-training model for learning structure embeddings from protein

tertiary structures to improve the performance on protein structure-related down-

stream tasks. Those works together make the thesis meaningful for both applications

and methodology perspectives.

All of these works have been published in several research papers [7, 8, 9, 10,

11, 12, 13]. In this dissertation, I will present how those components contribute to

the major goal as follows:

Chapter 2 presents the EnsembleASP network for protein secondary struc-

ture prediction. I find that in the secondary structure of proteins, usually, adjacent

strings of amino acids have the same secondary structure, or that the characteristics

of the protein secondary structure determine this well-regulated feature. Therefore,

this problem is very similar to the image semantic segmentation [14]. As a result,

while developing more efficient amino acids encoders, I also propose an ASP network

(Atrous Spatial Pyramid Pooling (ASPP) based network) as the secondary structure

generator in our proposed framework. Extensive experiments show that the proposed

method can achieve higher performance on protein secondary structure prediction

task than existing methods on protein CB513, Casp11 and CASP12 datasets. The

method is expected to be useful for protein structure and further protein functions

prediction.
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In Chapter 3, I introduce the Bagging MSA model, which is the first attempt

to enhance low quality PSSM (Position-Specific Scoring Matrix, which is a widely used

homologous feature in structure property prediction) features of proteins. Through

unsupervised learning, our model can generate more informative PSSM features for

structure property prediction. Empirical evaluation of CB513, CASP11, and CASP12

datasets indicate the effectiveness of our method.

Inspired by Bagging MSA, Chapter 4 gives a weighting mechanism to en-

hance the homologous features for all proteins, not just those with low quality PSSM.

Specifically, I propose a novel protein sequence homologous feature weights learn-

ing framework, WeightAln, which generates learnable sequence homology weights for

protein prediction tasks using attention-based deep learning techniques. Extensive

experiments on three protein structure property prediction tasks, secondary structure,

solvent accessibility, and backbone dihedral angles prediction, sufficiently demonstrate

the effectiveness of our method.

In order to improve the performance of protein structure-related downstream

tasks, I propose a self-supervised pre-training model for learning structure embed-

dings from protein tertiary structures in Chapter 5. Native protein structures are

perturbed with random noise, and the pre-training model aims at estimating gra-

dients over perturbed 3D structures. I demonstrate the effectiveness of our pre-

training model on two downstream tasks, protein structure quality assessment (QA)

and protein-protein interaction (PPI) site prediction. Hierarchical structure embed-

dings are extracted to enhance corresponding prediction models. Extensive experi-

ments indicate that such structure embeddings consistently improve the prediction

accuracy for both downstream tasks.

In Chapter 6, some brief future work is listed to be done for the completion

of this thesis.
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CHAPTER 2

PROTEIN ENSEMBLE LEARNING WITH ATROUS SPATIAL PYRAMID

NETWORKS FOR SECONDARY STRUCTURE PREDICTION

This chapter investigates the problem of protein secondary structure predic-

tion. A novel Conditionally Parameterized Convolutional network (CondGCNN) is

proposed, which utilize the power of both CondConv and GCNN, and we leverage

an ensemble encoder to combine the capabilities of both LSTM and CondGCNN

to encode protein sequences to obtain better sequential features from proteins. In

addition, due to the similarity between the image segmentation problem and the

secondary structure prediction problem, I propose an ASP network (Atrous Spatial

Pyramid Pooling (ASPP) based network) as the secondary structure generator in

our proposed framework. Experimental results show that the proposed method can

achieve higher performance than state-of-the-art methods on CB513, CASP11 and

CASP12 datasets.

2.1 Introduction

The three-dimensional structure of proteins is significant in the study of proteins

since the specific shape of a protein determines its function [2]. If the protein’s three-

dimensional structure is altered due to mutations in the amino acid structure, the

protein becomes denatured and may not function as expected. Proteins are chains

of amino acids linked by peptide bonds. However, predicting the three-dimensional

structure of proteins from amino acid predictions is a challenging task [3]. Protein

secondary structure prediction is an important part of this task [15].
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The secondary structure is often evaluated by the Q3 accuracy: three-class

classification, that is, two regular secondary structure states: helix (H) and strand

(E), and one irregular type: coil (C) [16]. [17] developed a DSSP algorithm to extend

the three general states into eight fine-grained states: 310 helix (G), α-helix (H), π-

helix (I), β-stand (E), β-bridge (B), β-turn (T), high curvature loop (s), and others

(L). Recently, the focus of secondary structure prediction has been on the prediction

of 8-state secondary structure (Q8) rather than on the prediction of Q3, since the

fact that a chain of 8-state secondary structure contains more structural information

for a variety of research and applications [6].

In recent years, deep learning based methods have been widely used in protein

secondary structure prediction, and achieved much better results than traditional ma-

chine learning methods. For example, Recurrent Neural Network (RNN) based en-

coder method, which has been proved successful in natural language processing area, is

used to predict protein secondary structures [4]; one-dimensional Convolutional Neu-

ral Network (1d-CNN) based encoder method has also made some achievements [18].

In addition, some methods combine the superiority of the two networks, such as

DeepACLSTM [19]. They use CNN to catch local feature and bidirectional Long

Short-term Memory Network (bLSTM) to obtain long-distance dependency informa-

tion to obtain better amino acid sequence expression, which leads to better predicting

Figure 2.1. Protein 1TIG: Different purple symbols represent different secondary
structures, and red characters represent amino acid codes [1].

5



performance. Meanwhile, if DeepCNN network [18] or ResNet [5] structure is used,

CNN-based methods can also obtain long-distance dependency information from the

sequence, e.g. CBRNN [6] combines the RNN-based and CNN-based networks.

Although these amino acid sequence encoders based deep learning methods have

obtained great success, the relationship between the secondary structures of proteins

is rarely studied. DeepCNF [18] method uses Conditional random field (CRF) as

the output layer to learn the interdependency among adjacent secondary structure

labels. However, the design of this method is not specific for the characteristic of

protein secondary structure, and the Q8 accuracy does not improve much. Figure 2.1

shows the secondary structure and the amino acid sequence of protein 1TIG [20] in

CB513 dataset, the figure is generated by PDBsum [21]. We find that in the secondary

structure of proteins, usually, adjacent strings of amino acids have the same secondary

structure, or that the characteristics of the protein secondary structure determine this

well-regulated feature. Therefore, this problem is very similar to the image semantic

segmentation [14], but with two differences: 1) The fact that the input data for our

task is one-dimensional sequences rather than two-dimensional images. 2) For Image

Semantic Segmentation, the pooling layer is widely used [22, 23, 14, 24], because the

pooling of the adjacent pixels can effectively reduce the size of the input image, which

will lead to fewer network parameters, without losing too much image information.

However, for the protein sequence, the amino acid information at each position is

crucial, so we cannot apply the pooling layer to the amino acid sequence.

Although methods in the field of image semantic segmentation, such as all

versions after Deeplab v2 [14, 24], FastFCN [23], and GSCNN [22], have used different

encoders, the Atrous Spatial Pyramid Pooling (ASPP) Network Structure [14, 25]

followed by the encoder is an important step to identify the edges of objects in the

image.
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Figure 2.2. Our ensemble learning with ASP networks framework contains ensem-
ble encoder module and generation module. For ensemble encoder, we use several
CondGCNN blocks and bLSTM layers in the networks; for generation module, a
modified ASPP is applied in the module.

Recently, CNN-based encoding networks have obtained great success on both

language and image processing tasks. Gated Convolutional networks (GCNN) [26],

which employs a CNN-based gating mechanism at the channel level, helps language

modeling to achieve state-of-the-art results. Conditionally Parameterized Convolu-

tion (CondConv) [27], which uses extra sample-dependant modules to conditionally

adjust the convolutional network, have obtained remarkable improvement in the image

processing area. We introduce a novel Conditionally Parameterized Gated Convolu-

tional network (CondGCNN) as a protein sequence encoder, which not only exploits

a gating mechanism at the channel level, but also establishes a sample-dependent

attention mechanism.

Inspired by the protein secondary structure prediction methods and the image

semantic segmentation methods we have mentioned before, we propose a protein

ensemble learning with ASP networks method, including an ensemble amino acid

sequence encoder and the Atrous Spatial Pyramid Networks. Due to the remarkable
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performance of CNN-based method in language model and image processing tasks,

and the importance of lstm-based method in protein prediction [19, 4], our amino

acid sequence encoder utilizes both CondGCNN model (a new encoder we proposed)

and bLSTM model, and adds the ASP Network (optimized ASPP network for our

problem) after the encoder.

The technical contributions of our method can be summarized as: 1) It is the

first attempt to simulate protein secondary structure prediction as image segmenta-

tion tasks, and utilize the power of those models applied in the segmentation area

to tackle secondary structure prediction problem, such as ASPP network (optimized

as ASP network in our method). 2) We are the first to apply CondConv network

on sequence processing problems, and embed it in the GCNN to form a novel amino

acid sequence encoder, which equips a gating mechanism at the model channel level

and a sample-dependent attention at the input level. 3) We construct an ensemble

encoder with cnn-based and lstm-based networks to obtain more diverse information

from amino acid sequences.

2.2 Method

2.2.1 Framework Overview

The framework of our method consists of the ensemble encoder module and the

generation module. We will introduce each component later in detail. The overall

workflow is shown in Figure 4.2. First, the input sequence features are input to the

CondGCNN and the LSTM modules, respectively. Then, the two network outputs

are concatenated as the feature vectors to feed into the generation module. Finally,

the loss is calculated by the output prediction and secondary structure label, and

back-propagated to the networks to adjust the parameters.
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(a) (b) (c)

Figure 2.3. (a) 32 CondGCNN blocks are used to get the feature vectors of the
CondGCNN encoder. (b) Each block contains two layers of Conditionally Parame-
terized Gated Convolutional network. The input vector of Input block is added to
the output vector of the Block Output, the combination then input to the next block.
(c) One layer of CondGCNN contains two parallel convolutional layers, one is the
conditionally convolutional layer (A) and the other one is the gated layer (G). The
output V is obtained by the element-wise production of A and σ(G).

2.2.2 Ensemble Encoder

The ensemble encoder module is composed of one CondGCNN module and one

LSTM module. The CondGCNN module contains M × Conditionally Parameterized

Gated Convolutional blocks, while the LSTM module is constituted by N stacked

bLSTM. These two modules generate output feature vectors respectively.

2.2.2.1 CondGCNN module

Figure 2.3(a) and 2.3(b) demonstrate our CondGCNN blocks. We use 32

CondGCNN blocks to get the feature vectors in the CondGCNN encoder. Each

CondGCNN block contains two layers of Conditionally Parameterized Gated Convo-

lutional network. We build our CondGCNN layers according to [26, 27], Figure 2.3(c)

illustrates the architecture of each CondGCNN layer. A protein sequence is repre-

sented by a n×2l vector where n is the length of the protein sequence and l represents

9



the number of amino acid types. The detail about the input features is discussed in

section 3.1. For each CondGCNN layer, we set up two CNN 1D 3 networks, one is for

gating, and the other one is a one-dimensional Conditionally Parameterized Convo-

lutional network. We calculate the output vector of the CondGCNN layer following:

Vh(X) = (X ∗Wcond + b) ⊗ σ(X ∗Wg + bg) (2.1)

where, Wcond, b are the parameters of the CondConv network, Wg, bg are the

parameters of the gated convolutional network, σ is the Sigmoid function, and ⊗ is the

element-wise product between vectors. Details of the GCNN network are described

in [26]. Specifically, we parameterize the convolutional kernels in CondConv by:

Wcond = α1 ·W1 + α2 ·W2 + · · · + αn ·Wn (2.2)

where each αi = ri(X) is an example-dependent scalar weight computed using

a routing function with learned parameters, and n is the number of experts. The

routing function is able to meaningfully differentiate between the input examples.

CondConv [27] computes the example-dependent rounting weights αi from the layer

input in three steps: global average pooling, fully-connected layer, and Sigmoid acti-

vation.

r(X) = Sigmoid(GlobalAveragePool(X)R) (2.3)

where R is a matrix of the routing weights mapping the pooled inputs to n expert

weights.

Overall, our CondGCNN encoding module utilizes the power of both CondConv

and GCNN, which not only provides a gating mechanism at the channel level, but

also implements an attention mechanism in a sample-dependant fashion.
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2.2.2.2 LSTM module

Some studies about language modeling with the GCNN [26] claim that unlimited

contextual information is unnecessary for language models, and GCNN is proved to

be able to represent enough contextual information in practice. However, in the

area of protein study, several works have proved that capturing the long contextual

information (relation from the first atom to the last one) is necessary. Therefore,

RNN-based approaches are crucial for protein studies [19, 6]. In this fashion, our

proposed method implements two stacked bLSTM layers with hidden size equal to 512

within the LSTM module to capture more long-distance interdependencies of amino-

acid residues. A bLSTM neural network consists of two LSTM neural networks in

parallel, one of them runs on the input feature and the other one runs on the reverse

of the input feature. The corresponding two output vectors are then concatenated as

the LSTM module feature vector, see [19] for the stacked bLSTM network in detail.

2.2.3 Generation Module

As shown in Figure 4.2, we feed the concatenated feature vector from Ensemble

encoder into the generation module to predict the protein secondary structure. The

generation module contains the Atrous Spatial Pyramid Network and the output

layer.

2.2.3.1 Atrous Spatial Pyramid Network

As we mentioned before, the secondary structure prediction task for proteins

is similar to the semantic segmentation task for images. In image semantic segmen-

tation, the model needs to classify each pixel with one of the predetermined classes.

Similarly, in protein secondary structure prediction, we need to classify eight sec-
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ondary structures of amino acids for each position. In addition, the labels of protein

secondary structure behave consistently for adjacent positions too. Our generation

model is inspired by the ASPP network, which is widely used in image segmenta-

tion []. In order to reduce the feature map size, ASPP network uses two ways for

down-sampling: one is using convolution striding, and the other one is using reg-

ular pooling operations. ASPP sets the stride equal to 8 for each convolutional

layer in ASPP, and incorporates the image-level features via Global Average Pooling

(GAP) [28].

Considering protein sequences are short in length (usually formed by hundreds

of amino acids) and each position in the sequence is important, we set the convolution

stride to 1 and concatenate the ensemble feature vector with the outputs from four

convolutional layers in the networks directly without a pooling layer. Since very high

dilation rate is not needed for our scenario, we set the dilation rates = (2, 4, 8).

Figure 2.4 demonstrates an example of one layer Atrous Spatial Pyramid network,

as shown, the dilation rate of each Atrous (or dilated) convolutional layer is set as 2,

the rate of the normal Convolutions is 1.

Figure 2.4. An example of one layer of Atrous one-dimensional convolutions with
dilation rate equal to 2: A 3x1 kernel with a dilation rate of 2 has the same field of
view as a 5x1 kernel, which delivers a wider field of view with same computational
cost.
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2.2.3.2 Output layer

As shown in Figure 2, after the Atrous Spatial Pyramid network, we feed the

result to a 1d convolution with window size 1, to produce the final secondary struc-

ture logits. Fully connection layer (FC) is widely used in LSTM-based secondary

structure prediction methods. However in our task, since the Atrous Spatial Pyra-

mid networks apply multiplication on the channel of the feature vector, the network

would contain too many parameters if a FC layer is implemented as the output layer,

which makes the entire model hard to train. Thus, we replace the output layer with a

one-dimensional convolutional layer. In section 3, we report the experimental results

to prove the effectiveness of this change.

2.3 Experiments

2.3.1 Experiments set up

2.3.1.1 Datasets

We use four publicly available datasets: CullPDB [29] of 5926 proteins, CB513 [15]

of 513 proteins, CASP11 of 85 proteins and CASP12 of 40 proteins (http://predictioncenter.

org). 501 proteins in CullPDB are randomly sampled for validation, then the remain-

ing proteins are used for training. We use CB513, CASP11 and CASP12 as test sets.

2.3.1.2 Input feature

Our input feature consists of two parts: sequence one-hot vectors and position-

specific scoring matrix(PSSM). Each amino acid in the protein sequence is represented

by a one-hot vector of length 21, which is 20 kinds of amino acids plus one unknown

amino acid. PSSM represents the distribution of amino acid types on each position

in the protein sequence [8]. Following the same procedure in [15], we get the PSSM
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matrix by searching Uniref50 database [30], and concatenate it with the one-hot

vectors. As shown in Figure 4.2, the input feature size is n× 2l where l = 21 and n

is the length of the protein sequence.

2.3.1.3 Neural network structure and learning Hyper-paramets

In the CondGCNN module, we use 32 Conditionally Parameterized Gated Con-

volutional blocks. Each block contains two layers of CondGCNN with window size 3

and node size 64, the number of experts is 3. In the LSTM module, we use the two

stacked layers bLSTM networks with hidden size equals to 512. In the ASP network,

we use three parallel dilated convolutional layers with window size 3, node size 100,

dilation rates = (2, 4, 8), and a parallel one-dimensional convolutional layers with

window size equals to 1. We use a one-dimensional convolutional layer with window

size 1 and node size is equal to 100 as the output layer.

2.3.1.4 Comparison methods

To evaluate our method, we compare it with five state-of-the-art methods:

ICML2014, DeepCNF, MUFOLD-SS, CBRNN, and DeepACLSTM. ICML2014 [15]

presents a method based on generative stochastic network (GSN) to globally train

deep generative model. We use the public dataset they provided, the CullPDB dataset

containing 5926 Program database (PDB) files, and CB513 contains 513 proteins.

DeepCNF (Deep Convolutional Neural Fields) [18] utilizes the power of CNN and

Conditional Random Fields (CRF): several CNN layers are used to extract the se-

quence feature of proteins, and CRF is used as the output layer to catch the relation-

ship between labels. MUFOLD-SS [31] is a deep inception-inside-Inception (Deep3I)

network architecture which extends deep inception networks through nested inception

modules. Stacked inception modules could extract non-local residue interactions at
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different ranges. CBRNN [6] extract the local context information of protein sequence

by two-dimensional convolutional neural networks (2dCNNs), and long-distance in-

formation by bidirectional gated recurrent units (bGRUs) or bidirectional long short-

term memory (bLSTM). DeepACLSTM [19] using 1dCNN and 2dCNN to extract the

discriminative local interactions between amino-acid residues and bLSTM to capture

long-range interactions between amino-acid residues.

2.3.2 Ablation study on each component

Table 2.1 shows the prediction results of Conv, CondConv, GCNN, and CondGCNN

with different structures on CB513 dataset. First, we compare the results between

the regular Convolutional network (Conv) and the Conditionally Parameterized Con-

volutional network (CondConv) on CB513 dataset to prove the effectiveness of the

CondConv. We follow the settings of [18] to build a model with 5 layers of Convo-

lutional networks, then apply the CondConv structure on the regular Convolutional

networks directly. However, there is only 0.02 improvement on accuracy. The reason

is that when CondConv is applied, that attention mechanism works in a sample-

dependant manner, which means the CondConv will use more parameters to focus on

distinguishing different samples compared with the traditional convolutional network.

This will lead to the overfitting problem. To overcome this disadvantage, we adjust

the dropout rate and conduct more experiments with different number of experts.

Furthermore, we report the prediction results of GatedCNN (GCNN) with different

numbers of blocks on the protein secondary structure prediction task. As observed,

the best result is 0.698, which is obtained while using 32 GCNN blocks. Since we

do not have quite a large training dataset, the overfitting problem would be severe

if the network is too deep. Hence, with large number of blocks applied, the accu-

racy results of the validation and test set are reduced significantly. Last, we compare
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our CondGCNN method with the above CNN-based methods, and the application of

CondConv on the basis of GCNN can achieve 0.702 of Q8 accuracy on CB513 dataset.

Table 2.1. Q8 accuracy of CNN, CondConv, GCNN and CondGCNN on cb513 dataset
with different structural settings.

Network Experts num Blocks num Dropout rate Q8 acc
Conv - - 0.0 0.678
CondConv 3 - 0.0 0.680
CondConv 3 - 0.2 0.685
CondConv 5 - 0.2 0.684
CondConv 8 - 0.2 0.681
GCNN - 16 0.1 0.696
GCNN - 32 0.1 0.698
GCNN - 64 0.1 0.677
CondGCNN 3 32 0.2 0.702

In order to prove the effect of our Atrous Spatial Pyramid networks (ASP)

module, we employ ASP module in LSTM method and DeepACLSTM method. We

have noted that when directly insert the ASP module between the encoder and the

output layer, the performance is not as expected. The reason is these two methods

have used fully connected (FC) layer as the output layer, along with the augmented

output of ASP network, leads to overfull parameters. The model is then too hard to

train and become overfitting. In such a manner, we replace the output layer with a

one-dimensional convolutional layer with a window size 1 and re-run the experiments.

The corresponding results are shown in Table 2.2 and Table 2.3. bLSTM-FC repre-

sents the original two stacked layers bLSTM networks structure [4], and ACLSTM-FC

represents the DeepACLSTM network structure with FC as the output layer [19]. We

use bLSTM-ASP-FC and ACLSTM-ASP-FC to indicate that we have inserted our

ASP networks between the original encoders (bLSTM and DeepACLSTM) and FC
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layer. bLSTM-ASP-Conv1 and ACLSTM-ASP-Conv1 represent that FC layer is re-

placed by a 1d-cnn with window size 1 as the output layer after the ASP network.

The results demonstrate that applying ASP directly to bLSTM and DeepACLSTM

networks does not perform well for prediction. Nonetheless, after replacing the out-

put layer with 1d-CNN, we improve the performance of LSTM method by 0.4% and

DeepACLSTM method by 0.6%. The results prove that our ASP network can boost

the existing state-of-the-art methods of protein secondary structure prediction. In

addition, the two tables also show the hidden size (HS) of FC and the node size (NS)

of ASP and Conv1.

Table 2.2. The results of before and after inserting the ASP network into the bLSTM
network on CB513 datasets.

Network FC-HS ASP-NS Conv1-NS Q8 acc
bLSTM-FC 128 - - 0.699
bLSTM-ASP-FC 128 64 - 0.625
bLSTM-ASP-Conv1 - 64 100 0.703

Table 2.3. The results of before and after inserting the ASP network into the
ACLSTM network on CB513 datasets.

Network FC-HS ASP-NS Conv1-NS Q8 acc
ACLSTM-FC 128 - - 0.705
ACLSTM-ASP-FC 128 64 - 0.706
ACLSTM-ASP-Conv1 - 64 100 0.711
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2.3.3 The results of ensemble learning with ASP

After we conduct a series of experiments to prove the effectiveness of each

module, we then combine them to build our network: Ensemble learning with Atrous

Spatial Pyramid networks. To confirm the effectiveness of our model, we report

the results of CB513, CASP11 and CASP12 datasets to compare with several state-

of-the-art methods. As shown in Table 2.4, the ’Ensemble’ represents our method

without the ASP network, the ’Ensemble-ASP’ shows the result of Q8 accuracy after

inserting the ASP network. Our method achieve more than 1% accuracy improvement

over other state-of-the-art methods on CB513 and CASP11 datasets, and get 0.7%

higher on CASP12. The proposed model has not only utilized the predominance of

CondGCNN and bLSTM, but also successfully applied the ASP network on protein

secondary structure prediction task to obtain significant improvement.

Table 2.4. The comparison between the results of our method and the results of
state-of-the-art methods.

Methods CB513 CASP11 CASP12
ICML2014 0.664 - -
DeepCNF* 0.683 0.707 0.681
BLSTM* 0.699 0.711 0.681
CBRNN 0.702 - -
DeepACLSTM* 0.705 0.715 0.678
MUFOLD-SS* 0.704 0.717 0.684
Ensemble (ours) 0.717 0.721 0.686
Ensemble-ASP (ours) 0.719 0.728 0.691
* Data is generated by our experiment.
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2.4 Conclusion

In this paper, we propose an ensemble learning encoder with ASP deep learning

model (Ensemble-ASP) for protein secondary structure prediction. The framework

contains ensemble learning encoder network and ASP network(modified ASPP net-

work). In the ensemble learning network, we use 32-blocks CondGCNN and 2 stacked

layers bLSTM networks to encode the rich contextual information. For CondGCNN,

we utilize the power of both CondConv and GCNN, which can not only provide a gat-

ing mechanism to extract protein information but also implement a attention mech-

anism at sample-dependant. For ASP network, we use an modified ASPP network

for our task to extract the encoder features at an arbitrary context distance. Exten-

sive experiments illustrate that our method exceeds the state-of-the-art methods on

8-state prediction performance. Moreover, our proposed framework of connecting the

ASP network after the encoder is considered generalizable, which is not only suitable

for protein secondary structure tasks, but also capable for other sequence-labeling

models.
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CHAPTER 3

BAGGING MSA LEARNING: ENHANCING LOW-QUALITY PSSM WITH

DEEP LEARNING FOR ACCURATE PROTEIN STRUCTURE PROPERTY

PREDICTION

This chapter introduces a novel pipeline to enhance features for proteins with

low-quality homologous features, named “Bagging MSA”. The model adopt a convolu-

tional network to capture local context features and bidirectional-LSTM for long-term

dependencies, and integrate them under an unsupervised framework. Structure prop-

erty prediction models are then built upon such enhanced features for more accurate

predictions. Empirical evaluation of CB513, CASP11, and CASP12 datasets indicate

that the unsupervised enhancing scheme indeed generates more informative features

for structure property prediction.

3.1 Introduction

The function of a protein is closely related to its structure, which is largely

determined by the amino-acid sequence [7, 32]. However, predicting one protein’s

structure based on its amino-acid sequence alone remains an open and challenging

problem. An alternative approach is to firstly predict structure properties, including

secondary structure, solvent accessibility, and backbone dihedral angles [33]. Those

predictions are combined eventually to help the final prediction of protein structure.

PSSM (Position-Specific Scoring Matrix) features [34], which reflect per-residue

evolution patterns in the sequence profile, are commonly used in the structure prop-

erty prediction [35, 36]. The quality of PSSM features is basically determined by
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the underlying multiple sequence alignments (MSA) [37]. MSA requires searching the

query amino-acid sequence through a large-scale sequence database, e.g.UniRef [30]

and UniClust [38]. The MSA quality of the protein can be evaluated by counting the

number of homologous proteins, or the non-redundant sequence homologs(Meff [39])

retrieved from the database. However, for those proteins with a limited number of

high-quality homologous sequences, the prediction quality is often limited due to less

informative PSSM features [40]. One possible solution is to develop more efficient and

accurate MSA search algorithm, such as SABERTOOTH [41], hhblits [42], jackhm-

mer [43], and HBLAST [44]. These algorithms have achieved certain performance

improvement by speeding up the searching process, as well as find more accurate ho-

mologous protein sequences in the database. However, if the database did not contain

enough homologous protein sequences for the target protein, it is still inaccessible to

obtain sufficient quantity or high quality of the MSA, yet the corresponding high-

quality PSSM features.

In this paper, we propose an unsupervised deep learning method to enhance

the low-quality PSSM features of proteins. To be specific, during the training of our

model, we randomly sample the MSA of each protein in a certain proportion in each

learning iteration, which we called “Bagging MSA”. Then, we use the “Weak PSSMs”

calculated by these bags and the “Original PSSM” calculated by all MSA to train

our network. In this way, our network can learn how to generate high-quality PSSM

from a protein that has low-quality PSSM features.

The most commonly predicted one-dimensional structural property of a protein

is the secondary structure. Therefore, in order to evaluate our method on different

prediction networks, we use two widely used deep learning techniques in the protein

secondary prediction area, which are CNN and bi-LSTM models [18, ?, 45]. The
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knowledge of the secondary structure of proteins and the network of validation of our

method are described in section 2 and section 3.

The technical contributions of this paper are summarized as: 1) Our method is

the first attempt to enhance low quality PSSMs of proteins. According to the exper-

imental results, our method significantly improve the secondary structure prediction

task of proteins with weak PSSM. 2) In the unsupervised module, our method calcu-

late PSSM features by randomly sampling 10% to 20% MSA in each training iteration

as the input data, and use the original PSSM features as unsupervised labels. This

approach not only increases the diversity of the data, but also make the network more

flexible to learn different PSSM quality differences so as to give full play to unsuper-

vised learning. 3) Our method is generalizable since it is capable for any prediction

model with PSSM as the input other than just secondary protein prediction task. 4)

The unsupervised part of our method is independent, so the output could be used as

the input directly for the inference phase of any prediction network, which is more

flexible and efficient.

3.2 Related work

3.2.1 Position-Specific Scoring Matrix

3.2.1.1 MSA

A multiple sequence alignment (MSA) is a sequence alignment of multiple ho-

mologous protein sequences for the target protein[37]. See Fig. 3.1 for an example of

MSA. MSA is an important step in comparative analyses and property predicting of

biological sequences, since a lot of information e.g.evolution and co-evolution clusters,

are displayed on the MSA and can be mapped to the target sequence of choice or on

the protein structure [46]. Almost all existing approaches to studying proteins utilize
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MSAs indirectly, that is, they convert MSAs into a position-specific scoring matrix

(PSSM) that represents the distribution of amino acid types on each column [47].

Figure 3.1. An example of MSA.

3.2.1.2 PSSMs calculation

PSSM scores are generally expressed as positive or negative integers. A positive

score indicates that the frequency of substitutions in a given amino acid sequence is

higher than expected, while a negative score indicates that the frequency of substi-

tutions is lower than expected [48, 49].

We extract the PSSM features of size n × 21 based on Eq.(3.1) and Eq.(3.2),

where, n is the protein sequence length, 21 is the sum of twenty known amino acids

appeared in the genetic code and one unknown amino acid marker. Frequency is the

count of occurrences of residue j (j = 1,2,3, ..., 21) in column i (i = 1,2,3, ..., n), 20

represents the known amino acids. A simple procedure called pseudo-counts assigns

minimal scores to residues which do not appear at a certain position of the alignment

according to the following equation(3.1), where we set the Pseudocount equal to 1. N

is the number of sequences in the multiple alignments. The Background frequency in

Eq.(3.2) is the frequency of each residue appearing in the entire MSA of the protein.
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scorei,j =
Frequency + Pseudocount

N + 20Pseudocount
(3.1)

PSSMi,j = log(score/Backgroundfrequency) (3.2)

3.2.2 Scoring criteria for PSSM

3.2.2.1 Count score

The number of sequence homologs is recorded as the Count score. As we men-

tioned before, PSSM is a matrix calculated from the MSA, and the quality of the MSA

directly determines the quality of the PSSM. We can use the number of homologous

proteins of the MSA to evaluate the quality of the PSSM, which is represented as

Count score. The larger Count score leads to more reliable PSSM. Thus, the Count

score is one important criteria to evaluate the quality of the PSSM features.

3.2.2.2 Meff score

We introduce the Meff score as the number of non-redundant sequence ho-

mologs. As in [40], homologous sequence in MSA of proteins have some redundancy,

so we use Meff score as another criteria for PSSM to demonstrates the superiority

and stability of our model under various evaluation standards.

The calculation formula of Meff score is shown in Eq.(3.3). where both i and

j go over all the sequence homologs, Si,j is a binary number which describes the

similarity of two proteins. We use the hamming distance to compute the similarity of

two sequence homologs[39]: Si,j is 1 if the normalized hamming distance is less than

0.3; otherwise Si,j is set to 0.

Meff =
∑
i

1∑
j Si,j

(3.3)
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Figure 3.2. Framework Overview.

3.2.3 Protein secondary structure prediction

The sequence space of proteins is vast, with perhaps 20 residues at each position,

and evolution has been sampling it over billions of years. One of the most impor-

tant sub-problems in protein studies is the secondary structure prediction. Protein

secondary structure refers to the local conformation of the polypeptide backbone of

proteins. There are two regular SS states: alpha-helix (H) and beta-strand (E), and

one irregular SS type: coil region (C) [16]. The other way is a DSSP algorithm [17]

to classify SS into 8 fine-grained states. In particular, the algorithm assigns 3 types

for helix (G, H and I), 2 types for strand (E and B), and 3 types for coil (T, S

and L). Overall, many computational methods have been developed to predict both

3-state secondary structure and a few to predict 8-state secondary structure. Mean-

while, since a chain of 8-state secondary structures contains more precise structural

information for a variety of applications [50, 15], the focus of secondary structure

prediction has been shifted from 3-state secondary structure(Q3) prediction to the

prediction of 8-state secondary structures(Q8). Because the Q8 problem is much more

complicated than the Q3 problem, deep learning methods would be more suitable for

addressing the Q8 problem.
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3.3 Method

3.3.1 Framework overview

Our method consists of two stages: enhancing PSSM and secondary structure

prediction. The workflow of the inference phase is shown in Fig. 4.2. We input the

low-quality PSSM into the trained unsupervised model with the protein sequence

features to generate enhanced PSSM features. Then the enhanced PSSM features

with sequence features are concatenated as the input of the inference phase for the

prediction network. Finally, the results of the enhanced PSSM and the original PSSM

on the prediction model are compared for evaluation.

Figure 3.3. Unsupervised learning model. 1) Bagging MSA Module has two out-
puts:“Original PSSM” calculated by all MSA are used as the unsupervised labels;
“Weak PSSM” calculated via the bags of MSA are fed into the two encoding networks.
2) The outputs of the two encoding networks are local features and long-distance fea-
tures respectively. 3) The output of the generation module is the “Enhanced PSSM”,
which is used to calculate the loss from the“Original PSSM” to adjust the networks.
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3.3.2 Unsupervised Learning to enhance PSSM

The architecture of our unsupervised learning method is shown in Fig. 3.3,

which mainly contains four parts: Bagging MSA module, Local contexts feature en-

coding module, Long-distance interdependencies feature encoding module and Gen-

eration module. For each amino acid in a protein sequence, its input features are

concatenated by its sequence features and PSSM features, which form a 2l (l=21)

dimensional vector. We denote the size of the entire input features as N × 2l, and

the size of the output from unsupervised learning network is N × l, where N is the

length of the protein sequence. The details regarding input features are explained in

the experiments section.

3.3.2.1 Bagging MSA

The main purpose of our enhancing PSSM module is to generate higher-quality

PSSM features from low-quality PSSM features calculated from MSA with fewer

rows or lower quality. Here we introduce the concept of ’Bagging MSA’: As shown

in Fig. 3.3, we randomly sample a small part of MSA for a protein and repeat this

operation in each training iteration and for each protein. We bring in a hyper-

parameter R to determine the proportion of selected homologous proteins in MSA

randomly per training iteration, e.g.when R = [10%, 20%], a number greater than 10%

and less than 20% would be randomly selected for each batch, and the homologous

proteins in MSA would be randomly sampled according to this proportion. In this

way, we are able to get many MSA bags, and each MSA bag would calculate a so-

called ’Weak PSSM’. We used the weak PSSM calculated by these bags as a part of

the input unsupervised data, and the original PSSM calculated by the complete MSA

as the unsupervised labels. This module is ideal for unsupervised learning due to the
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size of the PSSM matrix is always the same for the same protein, even though the

MSA size of each bag and label is different.

3.3.2.2 Local contexts feature encoding module

We introduce a fully convolutional architecture as the local contexts feature

encoding module. Recently, CNN has been successfully used in the seq2seq model

[51] and machine translation [52], as well as applied in several protein studies, which

achieved remarkable successes [50, 53]. This one-dimensional convolution operation

is usually used to process sequence data, such as emotional analysis and sequence

structure prediction [54, 18], so CNN would be a good fit for our prediction task.

In our method, the local contexts feature encoding module exploits the One-

dimensional convolution to extract the local hidden patterns and features of adjacent

amino-acid residues from the input matrix. This module contains three 1-d convo-

lutional layers with the ReLU activation function, and the window size is equal to

three for each layer, details are shown in Figure 3.4.

Figure 3.4. Local contexts feature encoding module includes three layers of 1d-CNN
and the top layer(3rd layer) is the output layer.

28



3.3.2.3 Long-distance interdependencies feature encoding module

As we mentioned before, CNNs have the ability to capture local relationships

of spatial or temporal structures, but we can not capture sufficient long-range se-

quence information by increasing the window size and network depth infinitely. How-

ever, long-distance interdependencies [45] of amino-acid residues are also critical for

amino acid sequence information. Inspired by the success of some methods which

use a combination of multiple neural networks, for example, coupling residual two-

dimensional bidirectional long short-term memory with convolutional neural networks

[55], ACLSTM[19] and CRRNNs [56], our method not only uses convolutional neural

network with a few layers but also another network to catch Long-distance interde-

pendencies feature.

RNN-based model has achieved remarkable results in sequence modeling; how-

ever, the gradient vector may grow or degrade exponentially over a long sequence

during the training process. Thus LSTM neural networks are designed to avoid this

problem by introducing the gate structures, which is good at capturing the long-range

relations (from the first atom to the last one).

In our method, the long-distance interdependencies feature encoding module

includes two stacked bidirectional LSTM neural networks. As shown in Figure 3.5,

the input data are fed into the feature encoding model by its original order as well

as the reverse order, and then the two outputs are concatenated together as the final

features representation.

3.3.2.4 Generation module

Our method has one fully connected hidden layer in the generation module.

Moreover, in order to get the complete information of protein sequence, as shown

29



Figure 3.5. Long-distance interdependencies feature encoding module includes two
stacked BLSTM neural networks.

in Fig. 3.3, we directly concatenate the outputs of the previous two modules and

feed them into the fully connected(FC) layer with the ReLU activation function to

generate the enhanced PSSMs. We use the MSE loss[57] to adjust our unsupervised

network, as shown in Eq.3.4.

Lossunsup = MSE(PSSMEnhanced, PSSMFull) (3.4)

3.3.3 Prediction network

Since our unsupervised learning method is an independent enhancing PSSM

network, we are able to use any deep learning network for the prediction module

to verify the generalization of our method. In this study, we use two protein sec-

ondary structure prediction networks to evaluate our method: CNN-based network

and LSTM-based network, which are two widely used deep learning prediction net-

works. For CNN-based method, we use five CNN layers [18], and fix the window
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size to 11 since the average length of an alpha-helix is around eleven residues [58]

and that of a beta-strand is around six [59]. For LSTM-based method, we use two

stacked bidirectional LSTM neural networks [4] and a fully connected(FC) layer.

The input data for the prediction network is the same as the input for the

unsupervised learning model, which is the concatenation of sequence information and

PSSM features calculated by the complete MSA of the protein. The protein secondary

structure is used as the label. Based on the validation results, we select the best model

as the secondary structure predictor, then feed the enhanced PSSM features generated

by our unsupervised network and the original PSSM into the predictor respectively.

Last, the prediction performances of the two PSSM features are compared to evaluate

the effectiveness of our enhanced PSSM model.

3.4 Experiments

3.4.1 Experiments set up

3.4.1.1 Dataset

We use four publicly available datasets: CullPDB [29] of 5926 proteins, CB513

[15] of 513 proteins, CASP11 of 85 proteins, and CASP12 of 40 proteins. CASP11

and CASP12 datasets are downloaded from the official CASP website (http://

predictioncenter.org). 53 duplicated proteins observed in the CullPDB are re-

moved and 591 proteins are randomly sampled for validation, then the remaining

proteins are used for training. The other three datasets are used as the test dataset.

We generate the position specific scoring matrix (PSSM) by searching the Uniref50

[60] database. And the labels used for the prediction network are 8-state protein

secondary structures which are generated by DSSP [17, 61].

31

http://predictioncenter.org
http://predictioncenter.org


3.4.1.2 Input features

The input features for the encoding networks of our method are described in

[15]. We extract the MSA from Uniref50 databases using Jackhmmer [43], and set

the parameters refer to their guide [62], details are listed in 3.4.1.5. We randomly

sample 10% to 20%(R = [10%, 20%]) of the MSA for each protein within each learning

iteration(Bagging MSA), and then we calculate PSSM using Eq.(3.1) and Eq.(3.2).

We transform those PSSMs by the Sigmoid function 1/(1+exp(-x)) where x is a PSSM

entry to map each PSSM value in between 0 and 1. As shown in Fig. 3.3, the input

features of the two encoding modules is a N ×2l matrix, where N is the length of the

input sequence and 2l is the dimension of the concatenated vectors. In our method,

the sequence feature vectors are sparse one-hot vectors of 21 elements(l=21) since

there might be some unknown amino acids in a protein sequence. Therefore, there

are 42 input features in total for each residue, 21 from PSSM features and the other

21 from sequence feature.

For the prediction part, there are 42 input features for each residue too, 21 of

them are from weighted PSSM features and the others are from sequence feature. We

compare the testing results of the enhanced input features with the original input

features to evaluate the effectiveness of our unsupervised model.

3.4.1.3 Neural network structure and learning Hyper-parameters

The framework of our unsupervised learning method is very flexible in the

network structure selection.

In the long-distance interdependencies feature encoding module, we can set

different hidden layers and hidden dimensions (with different layers and layer hidden

sizes). Moreover, different types of network can be chosen in addition to the bi-LSTM
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network, such as LSTM [63]. Due to the space limitation of this paper, two stacked

bi-LSTM with 512 hidden units are used for all experiments. Then, we use 1d-CNN of

3 hidden layers, and 100 neurons for each layer in the local contexts feature encoding

module. The window size at each layer is set to 3.

For optimization, we use multi-step LR(learning rate) descent with [30,100,200]

for epoch indices. The multiplicative factor of learning rate decay is 0.1. We use

Adam [64] as the optimizer of our method. The initial learning rate for all training

models is 0.0001.

For the protein secondary structure prediction task, we have two kinds of net-

works. For CNN network, we use five 1-dim CNN layers with window size 11, and

neurons size 100 for each layer. For LSTM network, we use two stacked bi-LSTM

with 512 hidden units and one fully connected(FC) layer.

3.4.1.4 Evaluation metric

For the unsupervised learning, we calculate the RMSE of the Enhanced PSSM

and the Original PSSM in the input feature as the evaluation matrix. Q8 accuracy

is the criterion of the prediction module.

3.4.1.5 Jackhmmer options for extracting MSA

In the per-target output, report target profiles with an E-value <=1.0; In the

per-domain output, for target profiles that have already satisfied the per-profile re-

porting threshold, report individual domains with a conditional E-value of <=1.0;

Use a conditional E-value of <=0.03 as the per-domain inclusion threshold, in targets

that have already satisfied the overall per-target inclusion threshold; Obtain residue

alignment probabilities from the built-in substitution matrix named BLOSUM62.
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3.4.1.6 Infrastructure and software

Our model was implemented through Pytorch package. And our models was

trained in a self-hosted 16-GPU cluster platform with Intel i7 6700K @ 4.00 GHz

CPU, 64 Gigabytes RAM and four Nvidia GTX 1080Ti GPUs on each workstation.

Figure 3.6. The average accuracy of proteins within Count score ranges (a) CNN-
based prediction model; (b) LSTM-based prediction model.

Figure 3.7. The average accuracy of proteins within Meff score ranges (a) CNN-based
prediction model; (b) LSTM-based prediction model.
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Table 3.1. Number of proteins in certain Count Score ranges.

range (0,20] (20,40] (40,60] (60,80] (80,120] (120,150] (150,200] (200,300] (300,500] (500,700] (700,900] (900,1000]
num 2 16 18 19 29 11 23 27 45 26 26 271

3.4.2 Results

3.4.2.1 Relationship between PSSM quality and performance

As we mentioned before, we use two methods to score the quality of the pro-

tein PSSM, higher score represents better quality. Fig. 3.6 and Fig. 3.7 show the

relationship between the quality of PSSM and the corresponding performance on the

prediction networks on CB513 dataset. Fig. 3.6 shows the average accuracy obtained

by using Count score as the evaluation standard on the prediction network of CNN

and LSTM respectively, and Fig. 3.7 for the Meff score. We can find that proteins with

high-quality PSSM performs better than proteins with low-quality PSSM both CNN-

based and LSTM-based prediction network, as well as under all evaluations including

Count score or Meff score. Table 3.1 and table 3.2 show the data distribution within

the ranges Count and Meff Scores. Thus, our method aims at improving the predic-

tion performance for those proteins with original low-quality PSSM by enhancing their

PSSM features. As shown in Fig. 3.8, which is a set of gray-scale images of the origi-

nal pssm(a) and enhanced pssm(b) of a protein from cb513 dataset. Where, y-axis is

the length N of the protein sequence, the sample protein contains 26 residues(N=26),

x-axis is l, 20 plus an unknown amino acids marker(l=21). Lighter colors indicate

larger values, while darker colors indicate smaller values. See https://www.rcsb.org

for the structure information of the protein(6O4M) in the example.
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Figure 3.8. Gray-scale images of the PSSMs. (a) Original PSSM of 6O4M protein;
(b) Enhanced PSSM of 6O4M protein.

Table 3.2. Number of proteins in certain Meff Score ranges.

range (0,15] (15,25] (25,35] (35,45] (45,55] (55,80] (80,120] (120,150] (150,200] (200,400] (400,600] (600,800] (800,1000]
num 12 23 18 9 16 18 19 15 23 68 89 89 114

3.4.2.2 Enhancement on low-quality PSSM protein

Our method is used to enhance the performance of proteins with low-quality

PSSM in secondary structure prediction task. However, while improving the low-

quality PSSM, noise might have been added to the high-quality PSSM, which would

end up with a lower accuracy score. Therefore, we need to find a standard to de-

termine the definition of low-quality proteins for our method, which would be the

thresholds of the Count score and the Meff score. As shown in Fig. 3.9, our method

increase or decrease the accuracy of prediction tasks under certain ranges. Greater
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than 0 means that the average accuracy of our method has improved under the thresh-

old, while less than 0 means that it has decreased. Based on the accuracy results,

we are able to find a consistent trend for both CNN-based and LSTM-based models:

our method shows significant superiority for proteins with a Count score less than 60

and a Meff score less than 35.

In addition, in order to verify the threshold we selected is suitable for other

datasets, we also report the results of casp11 and casp12, which are shown in table

3.3. The performances of extensive experiments demonstrate that our method has a

significant effect on enhancing low-quality PSSM for different datasets.

Figure 3.9. Our method has achieved significant improvement in all prediction tasks
(CNN-based and LSTM-based) when the Count Score is less than 60 (a, b), and the
Meff Score is less than 35 (c, d). These figures are the results on CB513 dataset.
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Table 3.3. Comparison results (Q8 accuracy) of our Enhanced PSSM vs. Original
PSSM. Enhancement experiments are conducted for low-quality proteins (Count score
<= 60, Meff score <= 35) obtained from CB513, CASP11, and CASP12 datasets.
Prediction experiments are conducted on CNN-based model and LSTM-based model.

Pred model Score range Datasets Original PSSM Enhanced PSSM Num

CNN-based

Count ≤ 60
CB513 59.106% 61.093% 36

CASP11 64.196% 67.781% 12
CASP12 53.300% 56.519% 3

Meff ≤ 35
CB513 55.973% 56.717% 53

CASP11 62.846% 65.732% 17
CASP12 52.353% 54.462% 7

LSTM-based

Count ≤ 60
CB513 60.982% 63.041% 36

CASP11 64.037% 64.990% 12
CASP12 54.335% 55.865% 3

Meff ≤ 35
CB513 56.929% 57.831% 53

CASP11 63.216% 63.504% 17
CASP12 51.493% 53.921% 7

3.5 Conclusion

We propose an innovative Bagging MSA model to enhance low-quality PSSM

features of proteins, which would help promote their performance in secondary struc-

ture prediction task. We employ an unsupervised learning network to enhance the

PSSM features, and two conventional deep learning prediction models as the protein

secondary structure prediction networks to prove the effectiveness of our method on

various datasets. Our method is the first attempt to enhance PSSM features in the

field of protein research. Moreover, the generalization of our Bagging MSA makes

it suitable for numerous PSSM related protein prediction tasks. PSSM features are

essential for studying proteins, our method pioneer another way to address the pre-

diction limitation for low-quality proteins.

38



CHAPTER 4

WEIGHTALN: WEIGHTED HOMOLOGOUS ALIGNMENT FOR PROTEIN

STRUCTURE PROPERTY

I introduce a novel Multiple Sequence Alignment (MSA) weights learning frame-

work, WeightAln, which generates learnable MSA weights for protein prediction tasks

using attention-based deep learning techniques in this chapter. Extensive experiments

on three protein structure property prediction tasks, secondary structure, solvent

accessibility, and backbone dihedral angles prediction, sufficiently demonstrate the

effectiveness of the method.

4.1 Introduction

Recently, AlphaFold [65] and RosettaFold [66] have achieved great success in

the task of predicting the three-dimensional structure of proteins. However, research

on protein sub-problems is still important and in progress [67, 68], such as secondary

structure, solvent accessibility, and backbone dihedral angles [50, 33]. These predicted

properties can not only be combined eventually to help the final prediction of protein

structure, but also help the biological scientists or researchers on specific tasks [69,

70, 71].

The sequence-based protein homologous alignment has been extensively ex-

plored and utilized to protein structure property prediction. Multiple sequence align-

ment (MSA) of sequence homologs in a protein family is now the most prevalent

method for homology detection [9]. To facilitate the comparison and alignment, a

MSA is usually represented as a position-specific scoring matrice (PSSM). Such imple-
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mentation is commonly used in the protein structure property prediction [35, 72, 36].

In specific, PSSM is generated from MSA by simply calculating the frequency of

various types of amino acids at each residue position [10]. However, the homologous

sequences in the MSA usually contains some redundancy, and each sequence may also

contribute differently while being used in different prediction tasks [40, 39]. Although

some PSSM-based deep learning methods [19, 36, 73] have achieved remarkable per-

formance in protein structure property prediction, the problem of redundancy in MSA

has not been solved. [39] introduces a scoring method to measure the MSA quality, de-

noted as Meff , represents the effective sequence number of non-redundant sequences

after re-weighting. However, the Meff weight is not flexible and learnable, which can

not be adjusted by the prediction networks according to different tasks. Recent stud-

ies in natural language processing (NLP) and image processing have demonstrated

that the attention mechanism is a powerful tool for extracting weighted information

from words in the language sentence and pixels in the images [74, 75, 76], which

inspires us to adapt attention to learning MSA weights.

Figure 4.1. Comparison between MSA, image and sequence.

However, applying attention mechanism to our problem is not straightforward.

There are two major discrepancies between previously mentioned areas and our prob-
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lem, which makes the adaptation challenging. 1) The order of sequences is not im-

portant, while the position of pixels in an image and words in a sentence are critical,

as indicated in Figure 4.1. This makes us design a permutation-invariant attention

mechanism. 2) For each sequence and picture, the attentions are calculated sepa-

rately. But in our MSA weighting problem, each sequence is derived from the target

protein. Thus, such an individual is meaningless for the prediction task. Therefore, we

believe a pair-wise attention mechanism should be exploited to learn the relationship

between the target protein and its homologous sequences.

In this paper, we present WeightAln, an attention-based framework to obtain-

ing weighted MSA for enhancing protein structure property prediction. To be more

specific, each MSA sequence is paired with the target protein as the input, while the

order of the pairs has no impacts. Then, we employ fully-connected neural networks

as the Weighting MSA model for MSA weights generation. Next, weighted PSSM is

calculated using MSA and its corresponding weights, then the weighted PSSM is in-

put to the protein structure prediction task. We demonstrate the effectiveness of our

method by conducting experiments on three supervised protein structure property

prediction tasks: secondary structure, solvent accessibility, and backbone dihedral

angles prediction.

The technical contributions of this paper are summarized as: 1) Our method

proposes a fresh insight for protein structural prediction problem by training a weighted

MSA. 2) Our WeightAln method is flexible, making it easily to plug-and-play with

any downstream networks and any prediction tasks. Extensive experiments on three

different protein structure property prediction tasks prove that our model outperforms

other baseline methods on various prediction tasks.

The rest of the paper is organized as follows. Section 2 introduces the materials

and methods, and the framework and modules used in our method are described in
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detail. Section 3 illustrates the experimental results, which validates the superiority

of our method. Last, we discuss the results and prospect of our method, and conclude

our paper in Section 4 and 5.

4.2 Protein structure property prediction

We provide three protein structure property relevant downstream prediction

tasks to serve as the benchmarks, which are secondary structure, solvent-accessibility,

and backbone dihedral angles predictions. We use those three benchmarks to evaluate

our method.

4.2.1 Eight-State Secondary Structure (SS) Prediction

Protein secondary structure refers to the local conformation of the polypeptide

backbone of proteins [7]. DSSP algorithm [17] classifies SS into 8 fine-grained states:

3 types for helix (G, H and I), 2 types for strand (E and B), and 3 types for coil

(T, S and L). Overall, secondary structure prediction is an eight-class classification

problem at each amino acid position.

4.2.2 Three-State Relative Solvent Accessibility (RSA) Prediction

The solvent accessibility (ASA) is defined as the surface region of a residue

that is accessible to a rounded solvent while probing the surface of that residue. The

relative solvent accessibility (RSA) is the extent of the ASA of a given residue and

is related to the residue spatial arrangement and packing [77]. Based on the RSA

value, the prediction is a 3-state classification task where each input amino acid xi

is mapped to a label yi ∈ {Buried(B), Intermediate(I), Exposed(E)}. According to

the settings of [78], we use the threshold of 10% for B/I and 40% for I/E for the

3-state classification.
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4.2.3 Backbone Dihedral Angles Predictions

Protein dihedral angles provide a detailed description of protein local conforma-

tion [79]. The dihedral angles – Φ value and Ψ value prediction [80, 36], are regression

tasks.

Figure 4.2. WeightAln framework is constituted by a Weighting MSA module and
downstream prediction tasks. The Weighting MSA module contains three parts,
Pairing MSA process, Weighting MSA model, and Weighted PSSM calculation. The
prediction task can be any protein structure property prediction with any prediction
model (network). Our Weighting MSA model takes a sequence pair as input, which is
constructed by aligning a sequence in MSA against the target protein sequence. For
the prediction model, there are 2d input features for each residue, where d of them
are from weighted PSSM features and the others are from the sequence features, L is
the length of the target protein sequence. d = 21 denotes the presence of 20 known
amino acid types and one unknown type.

4.3 Method

As shown in Figure 4.2, the entire pipeline of our method consists of three

parts: First, we input the pairs of the target protein and each sequence in MSA to the

Weighting MSA model. Then we use the generated MSA Weights from the Weighting

MSA model along with the MSA sequences to calculate the weighted PSSM. Finally,
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we concatenate the target protein sequence features (one-hot vectors) and weighted

PSSM features to feed into the prediction model.

4.3.1 Weighting MSA

To leverage the contribution of different MSA sequences while calculating the

PSSM, we propose a novel weighting MSA network that assigns a weight to each

MSA sequence. Specifically, we follow the same experimental protocol as previous

studies [50, 8] to convert the target protein t and the corresponding MSA sequences

to one-hot feature vectors, which are represented by Xt ∈ RL×d and H(t) ∈ RN×L×d,

respectively. Here, L is the sequence length, N is the number of MSA sequences,

d = 21 indicates 20 known amino acid types and one unknown type. Since the order

of MSA sequences is interchangeable, we simply apply those obtained feature vectors

in the following study, rather than use the position embedding technique for feature

pre-processing as previously reported in Fig. 4.1.

Given that a single sequence in MSA is meaningless for the prediction task, our

weighting MSA network takes the
(
Xt,H

(t)
k

)
pair as inputs to produce the weight

αt,k via three stacked fully-connected layers. H
(t)
k represents the k-th sequence in the

MSA of the t-th target protein. Each fully-connected layer is defined as:

zl+1 = σ
(
WT

l zl
)
, l = 1, 2, 3 (4.1)

where σ (·) is the ReLU function, and l is the layer index. The l-th layer’s input is

denoted by zl, where z1 is the concatenation of Xt and H
(t)
k , and z4 is the last layer’s

output, which is a scalar.

In order to ensure that the per-sequence weight αt,k lies between 0 and 1, we

apply the sigmoid function to the last layer’s output z4, i.e. αt,k = 1/ [1 + exp (−z4)].
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Finally, for each target protein Xt, we obtain a series of MSA weights {α1, . . . , αN},

where the subscript t is dropped for simplicity.

Then we use the MSA and its Weights set to calculate the weighted PSSM as

the input feature for prediction tasks.

The essence of PSSM is a matrix composed of the frequency of homologous

amino acids corresponding to each residue position on the protein sequence. Given a

protein sequence P with L amino acids, it can be formulated as:

P = A1A2A3A4A5 · · ·AL (4.2)

where A1 represents the 1st residue, A2 the 2nd residue, and so forth. We count

the number of each homologous amino acid on each residue, represented by Position

Specific Count Matrix (PSCM):

PSCM =



C1,1 C1,2 · · · C1,21

C2,1 C2,2 · · · C2,21

...
...

. . .
...

CL,1 CL,2 · · · CL,21


, Ci,j =

n∑
k=1

F (Mi,k, j) (4.3)

where 21 represents the 20 types of standard amino acids plus 1 unknown marker,

the placeholder “–” for MSA in Fig. 4.1 is also regarded as the unknown amino

acid type. The element Ci,j represents the occurrence count of amino acid j (j ∈

{1, 2, 3, ..., 21}) at position i (i ∈ {1, 2, 3, ..., L}) of the protein sequences in MSA,

the rows of the matrix represent the positions of the sequence, and the columns of

the matrix represent the 21 types of amino acids. The return value of F (Mi,k, j) is

equal to 1 when Mi,k is equal to j, otherwise it is equal to 0, where Mi,k represents

the amino acid type at the i-th position in the k-th MSA sequence.

The PSSM calculation formula is same as [48, 49, 8]:

scorei,j =
Ci,j + Pseudocount

N + 20Pseudocount
(4.4)
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PSSMi,j = log(scorei,j/Backgroundfrequencyj) (4.5)

A simple procedure called pseudo-counts [8] assigns minimal scores to residues which

do not appear at a certain position of the alignment according to the following equa-

tion(4.7), where we set the Pseudocount equal to 1. N is the number of sequences in

the multiple alignments. The Background frequencyj in Eq.(4.8) is the frequency of

residue j appearing in the entire MSA of the protein.

The PSCM counting and PSSM calculation methods actually default the weight

of each sequence in the MSA to 1. According to the MSA weights generated by our

method, we can calculate weighted C
′
i,j by:

C
′

i,j =
n∑

k=1

F (Mi,k, j) × αk (4.6)

and our weighted PSSM calculation can be represented by:

score
′

i,j =
C

′
i,j + Pseudocount∑N

k=1 αk + 20Pseudocount
(4.7)

PSSM
′

i,j = log(score
′

i,j/Backgroundfrequency
′

j) (4.8)

where αk is the weight of the k′th MSA sequence, and the Background frequency′

is counted by the entire weighted MSA.

Finally, we input the weighted PSSM generated by the Weighting MSA module

into the downstream network for protein structure property prediction.

4.3.2 Prediction Networks

Since our Weighting MSA network is an independent model, we can use any deep

learning networks for any prediction tasks. In this study, we use two deep learning

based networks as the downstream prediction networks to evaluate our method for

all prediction tasks: CNN-based network and LSTM-based network, which are two
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widely used deep learning based protein structure property prediction networks [50,

4, 18, 36]. For CNN-based method, we use five CNN (Convolutional neural network)

layers [18], and set the window size as 11 since the average length of an alpha-helix is

around eleven residues [58] and that of a beta-strand is around six [59]. For LSTM-

based method, we use two stacked bidirectional LSTM (Long short-term memory)

neural networks [4] and a fully connected(FC) layer.

In addition, in order to further prove the extensiveness and effectiveness of

our method, we also apply two state-of-the-art prediction methods as the down-

stream networks to evaluate our method: 1) MUFOLD-SS [31] is a deep inception-

inside-Inception (Deep3I) network architecture which extends deep inception net-

works through nested inception modules. Stacked inception modules could extract

non-local residue interactions at different ranges. Overall, MUFOLD-SS is an ef-

ficient method for predicting 8-state SS and has the ability to extract more com-

plex sequence-structure information between amino-acid residues. 2) The NetSurfP-

2.0 [73] uses an architecture composed of one dimension convolution neural networks

(1d-CNN) and long short-term memory (LSTM) neural networks. Due to the efficient

performance of NetSurfP-2.0 method in dihedral angles prediction, we use this model

as a downstream network to evaluate the performance of our method on dihedral

angles (Phi-Φ and Psi-Ψ values) prediction task.

As shown in Figure 4.2, the input data for the prediction network is the con-

catenation of sequence features and weighted PSSM features calculated by MSA and

its weights. We utilize Cross-Entropy loss [81] for secondary structure and relative

solvent accessibility prediction tasks, and use MSE Loss [57] for dihedral angles pre-

diction. The supervised loss is back-propagated to both Weighting MSA and the

prediction networks.
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4.4 Results

4.4.1 Experimental settings

4.4.1.1 Datasets

We use four publicly available datasets, CullPDB [29], CB513 [15], CASP11

and CASP12. They are obtained from GSN [15] and official CASP website. Cullpdb

dataset is widely used in protein structure prediction [82, 18]. We use the CullPDB

dataset of 5926 proteins for training and validation. 53 duplicated proteins with the

other three datasets that we use for testing, are removed from the dataset, which

means proteins in the dataset share no more than 25% sequence identity with our

other datasets for testing [18]. And 591 proteins are randomly sampled for validation.

The remaining proteins are used for training. The other three datasets: CB513

of 513 proteins, CASP11 of 85 proteins, and CASP12 of 40 proteins are used as

the test dataset on secondary structure (SS) prediction task. We use the SS label

of CB513 dataset provided by [15] and the label for CASP datasets are generated

by DSSP [17, 61]. For relative solvent accessibility (RSA) and dihedral angels, we

only use CASP11 and CASP12 as the test sets. The reason is that the PDB files

of CB513 dataset are not released by [15]. Thus, the RSA, Phi, and Psi angles

labels cannot be generated. We extract the MSA from Uniref50 databases [60] using

Jackhmmer [43], and set the parameters refer to their guide [62]. The details are

listed in Section 4.4.1.5. The labels used for the protein dihedral angles are generated

by DSSP, and the RSA labels are generated based on [78].

4.4.1.2 Input features

The input for our Weighting MSA module is a sequence pair, which is con-

structed through aligning a sequence in MSA against the target protein sequence. In
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our method, each sequence feature vector is a sparse L×21 one-hot vector where L is

the length of the sequence and 21 is the sum of twenty known amino acids appeared

in the genetic code and one unknown amino acid marker. Therefore, the dimension of

each sequence pair input to the model should be L× 42. For the prediction module,

there are 42 input features for each residue too, where 21 of them are from weighted

PSSM features and the others are from sequence one-hot feature. When running ex-

periments for the baseline method, we use the original PSSM instead of the weighted

PSSM generated by our method.

4.4.1.3 Evaluation metric

Secondary structure (SS) prediction task is a eight-state (Q8) classification

problem and relative solvent accessibility (RSA) is a three-state (Q3) prediction task.

We use Q8 (eight-state classification) accuracy and Q3 (three-state classification)

accuracy as the criterion of those prediction tasks, respectively. For dihedral angles

prediction, we evaluate the performance by Mean Absolute Error (MAE) as described

by [83].

4.4.1.4 Neural network structure and learning Hyper-parameters

To learn a weight value for each sequence pair, we use 3 fully connected layers in

the Weighting MSA network, and the activation function is ReLU. Sigmoid function

is used for mapping each output weight value between 0 and 1. For optimization, we

use multi-step LR (learning rate) descent with [30,100] for epoch indices (120 epochs

totally). The multiplicative factor of learning rate decay is 0.1. We use Adam [64] as

the optimizer of our method. The initial learning rate for all training models is 0.001.

For the protein secondary structure prediction task, we have two kinds of networks.

For CNN network, we use five 1-dim CNN layers with window size 11, and neurons
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size 100 for each layer. For LSTM network, we use two stacked bi-LSTM with 512

hidden units and one fully connected(FC) layer. We utilize Cross Entropy loss to

supervise all networks to predict SS and RSA, and use MSE Loss [57] for dihedral

angles prediction [11].

4.4.1.5 Jackhmmer parameters

We use the following parameter to extract MSA using Jackhmmer software [62]:

in the per-target output, report target profiles with an E-value <=1.0; in the per-

domain output, for target profiles that have already satisfied the per-profile reporting

threshold, report individual domains with a conditional E-value of <=1.0; use a con-

ditional E-value of <=0.03 as the per-domain inclusion threshold, in targets that have

already satisfied the overall per-target inclusion threshold; obtain residue alignment

probabilities from the built-in substitution matrix named BLOSUM62. For each tar-

get protein, we use up to the first 1,000 sequences extracted from the Jackhmmer as

the MSA features of the protein.

4.4.1.6 Infrastructure and software

Our model was implemented through Pytorch package. And our models was

trained in a self-hosted 16-GPU cluster platform with Intel i7 6700K @ 4.00 GHz

CPU, 64 Gigabytes RAM and four Nvidia GTX 1080Ti GPUs on each workstation.

4.4.2 Experimental results

As shown in Table 4.1 and Table 4.2, we compare the results of using our Weigh-

tAln method and not using our method (baseline) on the same prediction network on

different prediction tasks. Because of the independence of our model, we can use any

downstream network as the prediction network to evaluate our method. Table 4.1
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Table 4.1. Comparison results on CNN-based prediction network

Datasets/Methods SS [Q8] RSA [Q3] Phi [MAE] Psi [MAE]
CB513

Baseline 0.678 - - -
WeightAln 0.683 - - -

CASP11
Baseline 0.701 0.637 22.09 38.28
WeightAln 0.704 0.647 20.77 36.19

CASP12
Baseline 0.670 0.608 26.64 37.87
WeightAln 0.674 0.611 22.99 35.79

Table 4.2. Comparison results on LSTM-based prediction network

Datasets/Methods SS [Q8] RSA [Q3] Phi [MAE] Psi [MAE]
CB513

Baseline 0.699 - - -
WeightAln 0.706 - - -

CASP11
Baseline 0.704 0.652 21.40 34.98
WeightAln 0.715 0.662 20.57 34.35

CASP12
Baseline 0.672 0.625 24.94 33.15
WeightAln 0.683 0.634 22.61 32.85

shows the results of CNN-based prediction network and Table 4.2 for LSTM-based

prediction network. The different predicted structure properties are reported in the

column header, together with the corresponding performance metric. For secondary

structure (SS) and relative solvent accessibility (RSA), the evaluate metric is Q8 ac-

curacy and Q3 accuracy (higher is better), respectively. For dihedral angles (Phi

and Psi), the evaluate metric is MAE (lower is better). For each structure property

and each dataset, the best score is reported in bold. Empty cells represent predic-

tions that were not performed, because the structural property is not present in the

corresponding dataset.
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“Baseline” in the tables refers to the method using the original PSSM and

sequence features as the input features of prediction networks (CNN-based/LSTM-

based). “WeightAln” is our method which uses Weighting MSA network to generated

weighted PSSM, and the weighted PSSM features are then used instead of the original

PSSM to feed into the prediction networks. The following performance metrics are

used for evaluation: Q8 accuracy for secondary structure; Q3 accuracy for relative

solvent accessibility; and mean absolute error (MAE) in degrees for dihedral angles

(Phi-Φ and Psi-Ψ angles) prediction. For classification tasks on CNN-based and

LSTM-based prediction networks, our method achieve up to 1.1% improvement on

SS prediction benchmark and 0.9% on RSA benchmark. For regression tasks, our

method achieve up to 13.7% improvement on dihedral angles prediction benchmarks

compared with using original PSSM features on prediction networks (baseline). The

experimental results show that our method significantly improve the performance of

all three structure property prediction tasks on both CNN-based and LSTM-based

downstream networks.

In addition, in order to further prove the flexibility and effectiveness of our

method, we conduct extensive experiments on two state-of-the-art prediction methods

with the WeightAln method. As shown in Tab. 4.3 and Tab. 4.4, our WeightAln

model further boosts the performance of the MUFOLD-SS method on secondary

structure prediction and NetSurfP-2.0 method on dihedral angles (Phi and Psi angles)

prediction tasks. The weighted PSSM generated by our WeightAln model is learnable

and suitable for different prediction tasks. The results show that when we apply a

powerful (state-of-the-art) prediction network, our Weighting MSA network can also

generate a strong weighted PSSM to further improve the performance of the prediction

network.
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Table 4.3. Comparison results (Q8 acc) on Mufold-ss-based secondary structure
prediction network*

Methods CB513 CASP11 CASP12
MUFOLD-SS** [31] 0.704 0.717 0.684
WeightAln-MUFOLD-SS 0.724 0.722 0.692

* The different test sets are reported in the column header. The evaluate metric of the secondary

structure prediction is Q8 accuracy (higher is better).

** To make a fair comparison, we use the data generated by our experiment to retrain the baseline.

Table 4.4. Comparison results (MAE) on NetSurfP-2.0-based dihedral angles pre-
diction network*

Methods CASP11 CASP11 CASP12 CASP12
[Phi] [Psi] [Phi] [Psi]

NetSurfP-2.0** [73] 20.18 34.72 21.34 32.90
WeightAln-NetSurfP-2.0 19.85 34.14 20.89 32.31

* The different test sets are reported in the column header, together with the corresponding dihedral

angle type (Phi / Psi). The evaluate metric of the dihedral angles prediction is mean absolute error

(MAE) in degrees (lower is better).

** To make a fair comparison, we use the data generated by our experiment to retrain the baseline.

4.5 Discussion

Extensive experiments show that our WeightAln method has a stable effect

on different prediction networks, that is, no matter whether the prediction network

is complex or simple, powerful or not, our method can significantly improve the

prediction performance. Our embedded weighting MSA module provides a new way

of thinking for various downstream tasks of proteins. In the future, we will conduct

experiments on higher dimensional protein prediction problems, such as contact map

prediction and distance prediction.
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4.6 Conclusion

We propose an innovative MSA weights learning framework, WeightAln, which

learns from MSA and generate weighted PSSM. The weighted PSSM then can be

utilized to improve the performance of protein structure property prediction tasks.

First, a weighting MSA model is employed to generate different weights for the MSA of

each target protein. Next, a weight PSSM is calculated according to the MSA and its

corresponding weights. The weighted PSSM is then used in different prediction tasks

instead of the original PSSM. Our proposed method explores the importance of each

MSA sequence, and further generates learnable weighted PSSM for target protein.

In addition, our weighting MSA model is independent, and can be easily embedded

into various alignments related protein prediction tasks. Such implementation helps

improve the quality of PSSM, which provides a fresh insight to improve the protein

structure property prediction performance.
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CHAPTER 5

SELF-SUPERVISED PRE-TRAINING FOR PROTEIN EMBEDDINGS USING

TERTIARY STRUCTURES

I propose a self-supervised pre-training model for learning structure embed-

dings from protein tertiary structures. Native protein structures are perturbed with

random noise, and the pre-training model aims at estimating gradients over per-

turbed 3D structures. I demonstrate the effectiveness of our pre-training model on

two downstream tasks, protein structure quality assessment (QA) and protein-protein

interaction (PPI) site prediction. Hierarchical structure embeddings are extracted to

enhance corresponding prediction models. Extensive experiments indicate that such

structure embeddings consistently improve the prediction accuracy for both down-

stream tasks.

5.1 Introduction

The biological functions of a protein, as well as its possible interaction with

other molecules, are largely determined by its 3-dimensional structure [84]. For var-

ious protein-related applications, e.g. structure-based drug design (SBDD) [85, 86]

and protein-protein interaction (PPI) prediction [87, 88], protein tertiary structures

are one of the most critical features. However, it is time-consuming and costly to

collect 3D structures for protein-ligand complex and multi-protein complex via ex-

perimental structure determination. As a result, the performance of SBDD and PPI

models is often restrained by the limited structure data. On the other hand, compu-

tational methods for protein structure prediction have attracted increasing attention
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for many decades. A large number of structure decoys can be generated via various

prediction protocols, which raises the question on how to find out the most accurate

prediction, i.e. protein structure quality assessment (QA) [89, 90]. As structure de-

coys produced by different protocols can be highly diverse and non-i.i.d., it is critical

to obtain universal embeddings for protein structures. To conclude, protein structure

embeddings are crucial in many protein-related applications, but non-trivial to obtain

due to limited data and/or potential bias of data distributions.

Recent advances in natural language processing (NLP) demonstrate that large-

scale self-supervised pre-training models can be highly effective in various downstream

tasks [74, 91]. Similar idea has been adopted to train large-scale language models for

proteins, with either amino-acid sequences or multiple sequence alignments (MSAs).

In [92, 93], LSTM and Transformer models are trained to predict randomly masked-

out amino-acids in FASTA sequences, so as to formulate inter-residue interactions

within proteins. Sturmfels et al. [94] propose to predict profiles derived from multiple

sequence alignments, instead of randomly masked amino-acids. In [95], Transformer

models are trained to predict masked-out position in multiple sequence alignments

(rather than FASTA sequences), which better cooperates the co-evolution information

embedded in MSAs. All these sequence-based pre-training models have been proved

to be effective in learning meaningful embeddings for amino-acid types and providing

critical features for secondary structure and contact predictions.

However, such sequence-based pre-training models do not utilize protein tertiary

structures, which could be crucial to structure-related downstream tasks mentioned

above. Additionally, the computational complexity of large-scale language models

are often prohibitively high, and it usually takes weeks or even months to train such

models on high-performance GPU clusters [95].
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To address above issues, we propose a pre-training model for learning struc-

ture embeddings from protein tertiary structures. The model is optimized with a

self-supervised loss function, which only relies on protein structures and does not re-

quire any additional supervision. Specifically, native protein structures are randomly

perturbed with Gaussian noise, and the model aims at estimating the log probabil-

ity’s gradients over perturbed 3D coordinates. Due to intrinsic symmetries for 3D

rotations and translation, the SE(3)-equivariance must be preserved in the gradient

estimation. Standard SE(3)-equivariant models often involve complicated and time-

consuming computation for spherical harmonics [96, 97] or regular representations

[98]. In contrast, we construct SE(3)-invariant features as the pre-training model’s

inputs, and then reconstruct gradients over 3D coordinates with SE(3)-equivariance

preserved. Such workflow, similar to [99], dramatically improves the computational

efficiency without sacrificing the SE(3)-equivariance.

We demonstrate the effectiveness of our pre-training model with two down-

stream tasks: protein structure quality assessment and protein-protein interaction site

prediction. Hierarchical structure embeddings (whole-protein, per-residue, and inter-

residue) are extracted with the pre-training model, and then fed into corresponding

models proposed for each downstream task as enhancement. Extensive experiments

indicate that such structure embeddings consistently improve the prediction accuracy

of downstream tasks.

The overall contributions of this paper are summarized as:

• We propose the first self-supervised pre-training model for protein tertiary struc-

tures, while existing models only utilize amino-acids sequences or multiple se-

quence alignments.

• Our pre-training model is computationally efficient, and is capable of generating

informative structure embeddings at various hierarchical levels.
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• We demonstrate that the prediction accuracy of downstream tasks can be con-

sistently improved by cooperating structure embeddings provided by our pre-

training model.

5.2 Related Work

5.2.1 Protein 3D structures dependent tasks

In this paper, we employ two downstream tasks which require protein three-

dimensional (3D) structures to evaluate our pre-training model: protein model quality

assessment (QA) and protein-protein interaction (PPI) site prediction.

Protein structure QA (estimation of model accuracy) estimates the quality of

computational protein models in terms of the divergence from their native struc-

ture [100]. It aims at 1) finding the best model in a pool of protein structure predic-

tion models, and 2) refining a model based on its estimated local quality. QA task

utilizes two types of evaluation metrics: local score and global score. At the residue

level, local score includes Local Distance Difference Test (LDDT) [101] and the Con-

tact Area Difference (CAD) [102] scores. At the protein level, global score contains

Global Distance Test Total Score (GDT TS) [90], Global Distance Test High Accu-

racy (GDT HA) [103], TM-score [104] and the global versions of LDDT and CAD.

Protein–protein interactions refer to the physical contacts between two or more

proteins, which are crucial for the function of proteins [105, 88]. The identification

of PPI Site is an efficient way to help understand the biological functions of a pro-

tein [106]. The PPI Site prediction is a residue level 2-state classification task.

5.2.2 Self-supervised Learning

The self-supervised learning method is well known for its good performance

on NLP tasks by using substantial unlabeled data during the training. It does not
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require explicit human guides, and also brings in flexibility [74]. An effective strategy

of self-supervised training is to add certain noise to the data, then train the network to

obtain the original data, which is considered as a self-recovery process. For example,

masked-token prediction [91] replaces the value of tokens at multiple positions with

alternate tokens and allows the network to predict back. Recently, a novel protein

sequence self-supervised method called TAPE [92] uses this masked-token mechanism

to train a pre-training model and achieves good performance on several sequence-

based prediction tasks. However, due to the complexity of protein 3D structures,

there is no structure-based pre-training method to adapt to the above 3D structure-

dependent downstream tasks.

5.3 Methods

In this section, we describe how protein structures can be represented with

SE(3)-invariance preserved, i.e. invariant to arbitrary 3D rotations and translations.

Afterwards, we present our pre-training framework for protein structures, built upon

energy-based models. Finally, we demonstrate how pre-trained models can be utilized

in two downstream tasks: protein structure quality assessment (QA) and protein-

protein interaction (PPI) site prediction.

5.3.1 SE(3)-invariant Representation of Protein Structures

Protein tertiary structures are largely determined by 3D coordinates of all the

amino-acid residues’ Cα atoms [107, 108]. Therefore, it is often sufficient to represent

protein structures with 3D coordinates of Cα atoms. However, such coordinate-based

representation depends on the overall configuration (location and orientation) of pro-

tein structures. Since rigid-body rotations and translations can be arbitrary and do
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not affect protein structures, it is required that coordinated-based models must pre-

serve the SE(3)-equivariance to capture such symmetries in the conformation space.

In this paper, we circumvent this SE(3)-equivariance restraint by introducing

a SE(3)-invariant representation of protein structures. Specifically, we calculate the

Euclidean distance between all the Cα atom pairs, and represent protein structures

with the resulting pairwise distance matrix. Since the relative distance remains con-

stant w.r.t. any 3D rotations and translations, such SE(3)-invariant representation

allows much more flexible choices of subsequent models.

Formally, for a protein with amino-acid sequence of length L, we denote 3D

coordinates of all the Cα atom as X ∈ RL×3, where xi is the 3D coordinate of i-th

residue’s Cα atom. The pairwise distance matrix is denoted as D ∈ RL×L, where each

entry is determined by dij = ∥xi − xj∥2. Our pre-training model is built upon pairwise

distance matrices, thus the model itself does not need to be restrained to preserve

the SE(3)-equivariance. Nevertheless, it is worth mentioning that it is feasible to

propagate estimated gradients from the pairwise distance matrix to 3D coordinates

via the chain rule, which is critical for training energy-based models, as we shall

demonstrate later.

5.3.2 Self-supervised Pre-training

In order to extract informative protein and per-residue embeddings, we pro-

pose a pre-training model to approximate the data distribution of protein tertiary

structures. The intrinsic motivation is that if the underlying data distribution is well

approximated, then this pre-training model must have captured the critical infor-

mation embedded in protein structures, which could be quite beneficial for various

downstream tasks.
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Figure 5.1. The workflow of the pre-training process. First, we extract Cα atoms’ 3D
coordinates, which are denoted as X, and perturb it with various levels of random
noise to get perturbed 3D coordinates X̃. Then we compute the distance matrix D̃,
which is further fed into the score network to predict the corresponding gradients.
It is then transformed into the estimated gradients over perturbed 3D coordinates.
We calculate the MSE loss between the estimated and ground-truth gradients as the
pre-training signals to back-propagate to the score network. For the inference phase,
we transfer the 3D coordinates X to the distance matrix D without perturbation,
and extract the feature matrix E for the downstream tasks..

In [109], Song et al. propose to train an energy-based model via denoising score

matching [110] for image generation. Original images are perturbed with Gaussian

noise of different scales, and the network is trained to estimate the log probability’s

gradients over perturbed images. Although pairwise distance matrices, as SE(3)-

invariant representations of protein structures, can also be viewed as 2D images, it

is unreasonable to directly perturb distance matrices with random noise. The key

difference lies in that for the image generation task, every randomly perturbed image

is valid, so that the perturbed data distribution is still well defined. However, not all
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L× L real-valued matrices are valid distance matrices, i.e. there may not exist a 3D

structure satisfying the randomly perturbed distance matrix.

To tackle this issue, instead of applying random perturbation on distance ma-

trices, we propose to firstly add Gaussian noise on 3D coordinates of all the Cα atoms,

and derive the corresponding distance matrix as perturbed inputs. The score network

is then trained to estimate gradients over perturbed distance matrices. Both inputs

and outputs of the score network are invariant to 3D rotations and translations, so

the score network can be instantiated by any convolutional neural networks. Since

the random perturbation is performed over 3D coordinates, we only have closed-form

ground-truth gradients over 3D coordinates. Therefore, we also need to propagate

estimated gradients from distance matrices to 3D coordinates, which is made possible

via the chain rule.

Formally, we choose a series of standard deviations for Gaussian noise, σ1 >

σ2 > · · · > σK , where K is the total number of random noise levels. We denote the

native protein structure as X, as represented by all the Cα atoms’ 3D coordinates,

and its perturbed counterpart as X̃ ∼ p(X̃|X, σk), which is given by:

X̃ := X + Z, Z ∼ N
(
0, σ2

kI
)

(5.1)

where σk is selected as the random noise’s standard deviation. The perturbed data

distribution’s log probability’s gradients over perturbed 3D coordinates have a closed-

form solution:

∇X̃ log p(X̃|X, σk) =
X− X̃

σ2
k

(5.2)

which can be easily derived from the multivariate Gaussian distribution’s probability

density function.

We denote the pairwise distance matrix corresponding to the perturbed 3D

coordinates as D̃, where d̃ij = ∥x̃i − x̃j∥2. This perturbed distance matrix is then
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fed into the score network, which consists of multiple residual convolutional blocks.

Similar to [109], conditional batch normalization is employed to explicitly let the

score network be aware of the random noise’s standard deviation for generating the

current perturbed input. The detailed network architecture is presented in Section

5.4.1.3. The score network is trained to estimate the log probability’s gradients over

the elementwise squared perturbed distance matrix:

H := hθ(D̃, s, σk), hij ≈ ∇d̃2ij
log p(X̃|X, σk) (5.3)

where the amino-acid sequence s is also used as the inputs of the score network.

As discussed above, it is non-trivial to derive closed-form ground-truth gradients for

the distance matrices. Hence, we apply the chain rule to propagate the estimated

gradients to perturbed 3D coordinates:

G =


g1

...

gL

 , gi =
∑L

j=1
2 (hij + hji) (x̃i − x̃j)

≈ ∇x̃i
log p(X̃|X, σk)

(5.4)

where the last term can be explicitly calculated by Eq. (5.2). For simplicity, we

denote the above gradient propagation process as G = g(H, X̃) = g(hθ(D̃, s, σk), X̃).

So far, we have presented the log probability’s ground-truth gradients over per-

turbed 3D coordinates, as well as the score network’s estimation. The self-supervised

loss function is given by:

Loss =
1

2NK

∑
X∈X

K∑
k=1

σ2
k · EX̃∼N (X|σ2

kI)∥∥∥∥∥g(hθ(D̃, s, σk), X̃) − X− X̃

σ2
k

∥∥∥∥∥
2

F

(5.5)

where X is the set of all the native protein structures, and N = |X | is its cardinality.

The above loss function measures the difference between the ground-truth and the
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estimated gradients for all the K random noise levels. Each level’s loss is re-weighted

by the corresponding standard deviation σk, so that each level approximately has an

equal contribution to the overall loss function. By minimizing this loss function, the

score network’s estimated gradients approximately match ground-truth ones, thus the

underlying data distribution of native protein structures is roughly parameterized by

the score network. The overall training workflow is illustrated in Figure 5.1.

Once the pre-training model is sufficiently optimized, we may utilize it to ex-

tract structure embeddings for novel protein structures. Recall that the score network

adopts the 2D convolutional network as the backbone architecture. For any specific

protein structure, we calculate the pairwise distance matrix for all the Cα atoms,

and feed it into the pre-training model. The final feature maps (next to estimated

gradients) of size L × L × C are then extracted, where C is the number of feature

map channels. Such feature maps can be viewed as inter-residue structure embed-

dings, each of dimension C. Furthermore, by applying 1D and 2D global pooling, we

obtain C-dimensional per-residue and whole-protein structure embeddings. To wrap

up, during the inference phase (as depicted in Figure 5.1), we can extract whole-

protein, per-residue, and inter-residue structure embeddings as additional inputs to

downstream tasks.

5.3.3 Pre-training Model for Downstream Tasks

Here, we take two downstream tasks as examples, to demonstrate how structure

embeddings produced by the pre-training model can be utilized to boost the prediction

accuracy of downstream tasks.
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Figure 5.2. To align with the input feature vectors of the two downstream tasks, we
conduct multiple operations on the embeddings generated by our pre-training model:
1) pre-trained edge embeddings is obtained by using the same selecting methods as
GraphQA; 2) GResd

S is computed by 1D average pooling as the pre-trained node feature
on QA task; 3) On the basis of GResd

S , we use the same window clipping operation as
the DeepPPISP to obtain the enhanced local feature on i-th residue. 4) We perform
2D average pooling on GS to get GProt

S as the pre-trained global feature for PPI Site
prediction task..

5.3.3.1 Protein Structure Quality Assessment

Due to the randomness in the initialization and optimization process, multiple

structure decoys are generated as the candidates for the same amino-acid sequence

for most protein structure prediction methods [111, 112]. Protein structure quality

assessment (QA) aims at identifying the best predicted structure among all the can-

didates, which is one of the indispensable modules in protein structure prediction.
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In [90], the authors propose GraphQA to formulate the protein structure as a graph,

where the nodes are amino-acid residues and the edges are inter-residue interactions.

To simultaneously consider the sequential and geometric structure, GraphQA builds

the edges for both sequential-adjacent and spatial-neighboring residue pairs. The

model consists of multiple message passing operations [113] to gradually update the

node embeddings and predict both local and global lDDT scores [101]. Empirical

evaluation results indicate that GraphQA achieves similar prediction accuracy to

state-of-art-methods for quality assessment, despites the simplicity of the node/edge

features being used.

Here, we employ our pre-training model to extract structure embeddings to

further enhance the node and edge features of GraphQA. Specifically, we feed the

structure decoy which needs to be assessed into our pre-training model (without ran-

dom perturbation), and obtain the resulting structure embeddings GS. Since each

spatial location in the feature map corresponds to a pair of residues, we enhance

the edge features by selecting feature vectors at the corresponding locations. Simi-

larly, the node features can be enhanced by concatenating the 1D-Pooling results of

structure embeddings GS. The GraphQA model then takes such enhanced node and

edge features as input for local and global lDDT prediction. The overall workflow is

depicted in the upper part of Figure 5.2.

5.3.3.2 Protein-protein Interaction Site Prediction

Protein-protein interaction models predict the physical contacts between two

or more proteins, which play a vital role in various biological processes [114, 115].

To better understand how different proteins interact with each other, the first step

is to identify which amino-acid residues in each protein are actually involved in the

interaction. Formally, we follow [88] to define an amino-acid as a PPI site if its
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absolute solvent accessibility before and after the protein binding is smaller than 1 Å2.

Thus, the PPI site prediction task can be viewed as a pre-residue binary classification

problem. In [88], the authors propose DeepPPISP as an end-to-end framework, which

integrates both local contextual and global sequence features for PPI site prediction.

Concretely, local features are extracted from a fixed-size sliding windows centered at

each amino-acid residue to capture local patterns, while global features are extracted

via an 1-dimensional convolutional network. After that, local and global features are

concatenated and used by the subsequent classification sub-network for per-residue

classification.

Similarly, our pre-training model can be used as a plug-n-play module to en-

hance both local and global features used in the DeepPPISP model. For each training

sample used in PPI site prediction, we encode protein structures with our pre-training

model to calculate the corresponding structure embeddings. The additional global

features are obtained via applying the 2D-Pooling over structure embeddings. As

for local features, per-residue structure embeddings can be computed as 1D-Pooling

results of full-size structure embeddings. Such embeddings are then grouped by the

same sliding window to generate additional local contextual features to describe each

amino-acid residue. By concatenating all the original/additional local and global fea-

tures, the DeepPPISP model can be trained with an enhanced feature set for PPI

site prediction.

5.3.3.3 Summary

To wrap up, we have demonstrated how our pre-training model can be uti-

lized to produce structure embeddings at various hierarchical levels. As long as the

downstream task relies on structure-based features of proteins, it should always be
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beneficial to include our structure embeddings to further enhance its feature repre-

sentation. Potential application scenarios include protein fold classification [116] and

structure-based drug design [86].

5.4 Experiments

5.4.1 Experiments setup

5.4.1.1 Datasets

For the pre-training model, we obtain native protein structures from the RCSB-

PDB database (released on 01/05/2021) [117], which includes over 170 thousands

unlabeled protein tertiary structures. The RCSB-PDB database is somewhat re-

dundant, where identical or highly-similar amino-acid sequences may correspond to

multiple protein structures. Therefore, we adopt the official sequence clustering re-

sults, BC-30 and BC-100, to filter-out the redundant sequences with at least 30% or

100% sequence identity, respectively. After removing overlap proteins with valid and

test data in downstream tasks, the BC-100 dataset contains 73,585 proteins, among

which 58,868 are used as the training set, 7,357 as the validation set, and the remain-

ing ones are test set. The BC-30 dataset consists of 29,242 proteins. Within them,

23,394 proteins are used as training set, 2,923 as the validation set, and 2,925 proteins

are used for testing.

For the protein QA prediction task, we use the dataset published by GraphQA [90].

CASP9-CASP12 datasets contain 85k decoys, which are randomly split into a train-

ing set (˜270 targets) and a validation set (˜50 targets). CASP13 dataset contains

˜14k decoys (˜72 targets) in the test set.

For the PPI site prediction task, we use the processed data from DeepP-

PISP [88], i.e. Dset 186 of 186 proteins, Dset 72 of 72 proteins [118] and PDBset 164
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of 164 proteins [119]. DeepPPISP removes two proteins since they do not have the

related protein DSSP files [17], which is one of the input features used in the method.

DeepPPISP integrates three datasets to a fused dataset to ensure that the training

and test set are from an identical distribution. We download the training, validation,

and test data list from [88]. There are 300 proteins in the training set, 50 proteins

for independent validation set, and 70 proteins in the test set.

5.4.1.2 Input features

In addition to the distance matrix described in Section 5.3.1, we also encode the

protein-specific information as the input features of the score network, which include

protein sequence one-hot feature and positional encoding [74]:

One-hot feature: Each amino acid in the protein sequence is represented by

a one-hot vector with the length as 20, which refers to 20 kinds of amino acids. Thus,

for a protein sequence of length L, we have a L× 20 one-hot encoding feature vector.

We repeat the process row-wisely and column-wisely to obtain a stacked L× L× 40

feature map.

Positional encoding: Following [74], we adopt the positional encoding scheme

to encode each residue’s relative position in the protein sequence. To obtain a posi-

tional encoding feature map of size L× L× dmodel, we first encode the sequence into

a L× 1
2
dmodel matrix follows:

PE(pos,2i) = sin[i/pow(Lmax,
4i

dmodel

)],

PE(pos,2i+1) = cos[i/pow(Lmax,
4i

dmodel

)],

(5.6)
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where pos is the residue’s position, and i denotes the dimension (i ∈ {0, 1 · · · ⌊1
4
dmodel⌋});

Lmax = 700 is the maximal length of protein sequences. We then repeat the matrix

PE row-wisely to form a 2D positional feature map.

5.4.1.3 Network architecture and learning hyper-parameters

Our score network for pre-training adopts the fully-convolutional neural net-

works architecture, which consists of 32 residual blocks with dilation convolution.

To reduce the computational overhead, we apply the bottleneck mechanism [120] on

each residual unit. We also use conditional batch normalization [109] to take random

noise’s standard deviation level into consideration. The number of hidden layers’

channels k is set to 64. We use a batch size of 32 for training and validation, and ran-

domly crop the input feature maps with size 32 for data augmentation. The positional

encodings’ dimension is set to dmodel = 24. We construct random noise’s standard

deviations for K = 32 levels, which ranges from 0.01 to 10.0. When σ1 = 10.0, the

conformation space can be sufficiently explored, while σK = 0.01 indicates trivial

perturbation is introduced to the native structures.

For the optimization, we apply a constant learning rate of 0.0001 and use

Adam [64] as the optimizer for our pre-training model. After training 50 epochs,

we select the optimal checkpoint based on the validation loss, and then use it for the

upcoming structure embeddings (GS) generation.

1To make a fair comparison, all the settings and data are the same with the original papers when

we run baseline, sequence embeddings, and structural embeddings experiments. The evaluation

metrics are originally used in GraphQA and DeepPPISP.

70



GDT TS CAD LDDT

Method 1 RMSE R Rtarget z FRL5 ρ ρdecoy ρ ρdecoy

w/o pre-trained embeddings 0.201 0.793 0.751 1.026 0.045 0.637 0.390 0.774 0.510
w/ sequence embeddings 0.158 0.799 0.772 1.101 0.037 0.624 0.387 0.754 0.502
w/ BC-30 embeddings (ours) 0.149 0.818 0.775 1.272 0.035 0.649 0.415 0.782 0.530
w/ BC-100 embeddings (ours) 0.133 0.848 0.787 1.345 0.031 0.667 0.424 0.800 0.534

Table 5.1. Results on global and local QA prediction task using GraphQA prediction
model

Method 1 ACC Precision Recall F-measure MCC

w/o pre-trained embeddings 0.589±0.012 0.270±0.006 0.623±0.018 0.377±0.004 0.163±0.006
w/ sequence embeddings 0.592±0.036 0.274±0.009 0.635±0.058 0.382±0.003 0.174±0.005
w/ BC-30 embeddings (ours) 0.614±0.016 0.280±0.005 0.604±0.026 0.382±0.001 0.177±0.002
w/ BC-100 embeddings (ours) 0.621±0.029 0.285±0.010 0.601±0.052 0.386±0.003 0.185±0.004

Table 5.2. Results on PPI Site prediction task using DeepPPISP prediction model

5.4.2 Results

Table 5.1 shows the comparison performance on protein QA downstream super-

vised task for CASP13 dataset. Other than evaluating the effectiveness of our method

by running experiments with and without our pre-training model, we also compare

the performance of protein sequence-based embedding. GraphQA is utilized as the

baseline model, and we follow [92] to generate TAPE’s sequence-based embeddings.

Table 5.1-GDT TS shows the results of various evaluation metrics for global quality

predictions w.r.t. GDT TS. For RMSE and FRL5, lower is better; for R, Rtarget, and

z, higher is better. The results demonstrate that with the embeddings generated by

our pre-training model, GraphQA is more capable than all other methods, including

using the original features and adding sequence-based embeddings at ranking decoys

on their overall quality.

The performance of local quality predictions w.r.t. the ground-truth CAD and

LDDT scores are also reported in Table 5.1, higher is better. As observed, our pre-
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training method further improves the performance at the local level, which indicates

the high quality of our embeddings at the local (residue) level, as well as the ability of

distinguishing the correctly predicted parts of the protein chain. In consequence, the

embeddings extracted by our pre-training model can make the prediction network

capture more complex information and long-range dependencies between residues

compared with the original features. Please note that the results of adding sequence

embedding on local scores are worse than the baseline. One possible reason is that

local QA task is more dependent on inter-residue (edge) information, while TAPE

does not contain such information. Moreover, adding a large number of dimensions’

node features (768 dimensions of TAPE) makes the original network more difficult to

train.

We implement the experiments precisely according to the experimental settings

in GraphQA [90], including data-splitting, network hyper-parameters, and training

strategy.

Table 5.2 shows the results of DeepPPISP model training with and without

the embeddings generated by our pre-training model, and we introduce the TAPE

embeddings for comparison as well. Since DeePPPISP does not provide a seed for data

loading, we repeat the experiment five times to get the mean and standard deviation

to eliminate the randomness and verify the robustness. Although the recall of our

method is lower than the performance of baselines, the scores of all other assessment

metrics are the highest. It is noteworthy that the PPI Site prediction training problem

is imbalanced, thus the downstream task is usually more concentrated on the the

performance of MCC and F-measure [121], and DeepPPISP uses F-measure to select

the best validation model. Compared with QA task, PPI task has relatively balanced

dependence on sequence information and structure information. Thus, it is reasonable

that TAPE performs better than the baseline model which only utilizes the original
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features. Moreover, our structure embeddings is able to achieve better performance

by exploring the structure information.

In addition, we conduct experiments with pre-training on a smaller dataset,

named the BC-30 filtered dataset, to confirm the effectiveness of proposed method. As

shown in Table 5.1 and 5.2, although the data involved in pre-training is streamlined,

it consistently performs well on downstream tasks. The results indicate that even

pre-training on a smaller dataset, our model can still provide high-quality local and

global embeddings for downstream tasks.

5.5 Conclusion

In this work, we propose a self-supervised pre-training model for protein struc-

ture. To the best of our knowledge, this is the first attempt to construct and evaluate

self-supervised learning on protein 3D structures. In addition, our method can be

easily applied to various downstream models. It is empirically demonstrated that our

pre-training model can generate high quality structure embeddings for downstream

tasks. Recent pre-training strategies mainly focus on the protein sequence dataset

since it is easier to obtain and contains huge amount of data. However, even the

dataset used for pre-training protein 3D structure is not as large as protein sequence

dataset, we argue that the 3D structure contains more information than the sequence.

In order to fully utilize the available protein data, our next move is to integrate the 3D

structure pre-training strategy with a sequence-based pre-training method to acquire

sufficient protein information.
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CHAPTER 6

Conclusions

This thesis aims at developing effective deep learning techniques for protein

property and structure prediction tasks. We investigate several typical type of protein

prediction tasks including protein secondary structure, solvent accessibility, backbone

dihedral angles, protein structure quality assessment, and protein-protein interaction

site prediction.

We have demonstrated, both in theory and practice, our deep learning ap-

proaches and formed effective and efficient solutions with clear performance gains in

extensive experiments on protein property and structure prediction tasks. Specifi-

cally, we have developed the following methods:

Protein Ensemble Learning With Atrous Spatial Pyramid Networks

For Secondary Structure Prediction: We propose an efficient method to inves-

tigate the problem of protein secondary structure prediction. A novel Conditionally

Parameterized Convolutional network (CondGCNN) is proposed, which utilize the

power of both CondConv and GCNN, and we leverage an ensemble encoder to com-

bine the capabilities of both LSTM and CondGCNN to encode protein sequences

to obtain better sequential features from proteins. In addition, due to the similar-

ity between the image segmentation problem and the secondary structure prediction

problem, I propose an ASP network (Atrous Spatial Pyramid Pooling (ASPP) based

network) as the secondary structure generator in our proposed framework. Experi-

mental results show that the proposed method can achieve higher performance than

state-of-the-art methods on CB513, CASP11 and CASP12 datasets.
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Bagging MSA Learning: Enhancing Low-quality Pssm With Deep

Learning For Accurate Protein Structure Property Prediction: A novel

pipeline to enhance features for proteins with low-quality homologous features. The

model adopt a convolutional network to capture local context features and bidirectional-

LSTM for long-term dependencies, and integrate them under an unsupervised frame-

work. Structure property prediction models are then built upon such enhanced fea-

tures for more accurate predictions. Empirical evaluation of CB513, CASP11, and

CASP12 datasets indicate that the unsupervised enhancing scheme indeed generates

more informative features for structure property prediction. In the future, we shall

attempt to combine the semi-supervised techniques [122] to further improve the ac-

curacy.

WeightAln: Weighted Homologous Alignment For Protein Structure

Property: We introduce a novel Multiple Sequence Alignment (MSA) weights learn-

ing framework, WeightAln, which generates learnable MSA weights for protein pre-

diction tasks using attention-based deep learning techniques in this chapter. Ex-

tensive experiments on three protein structure property prediction tasks, secondary

structure, solvent accessibility, and backbone dihedral angles prediction, sufficiently

demonstrate the effectiveness of the method. In the future, we shall conduct ex-

periments on higher dimensional protein prediction problems, such as contact map

prediction and distance prediction.

Self-supervised Pre-training for Protein Embeddings Using Tertiary

Structures: We propose a self-supervised pre-training model for learning structure

embeddings from protein tertiary structures. Native protein structures are perturbed

with random noise, and the pre-training model aims at estimating gradients over per-

turbed 3D structures. I demonstrate the effectiveness of our pre-training model on

two downstream tasks, protein structure quality assessment (QA) and protein-protein
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interaction (PPI) site prediction. Hierarchical structure embeddings are extracted to

enhance corresponding prediction models. Extensive experiments indicate that such

structure embeddings consistently improve the prediction accuracy for both down-

stream tasks.

In order to fully utilize the available protein data, our next move is to in-

tegrate the 3D structure pre-training strategy with a sequence-based pre-training

method to acquire sufficient protein information. In addition, it might be interesting

to further investigate bonds between protein data and graph neural network (GNN)

model [123, 124], which might bring in many novel methods to further accelerate pro-

tein related research. The techniques described in this paper might also be extendable

and beneficial to deep learning and machine learning research.
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