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ABSTRACT

ON SOME PROBLEMS IN SPARSE HYBRID IMAGING, NON-STANDARD

FINITE DIFFERENCE METHODS, AND FOKKER-PLANCK FRAMEWORKS

IN ESOPHAGEAL CANCER

Madhu Gupta, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Dr. Souvik Roy and Dr. Hristo V. Kojouharov

In this thesis, we first discuss nonlinear optimization frameworks for the sparsity-

based nonlinear reconstruction of parameters in hybrid imaging modalities such as

current density impedance imaging (CDII) and two-photon photoacoustic computed

tomography (2P-PACT). The framework comprises minimizing an objective functional

involving a least square fit and some regularization terms that promote sparsity

patterns and enhance the edges to facilitate high contrast and resolution.

Next, we show the construction and analysis of the second-order nonstandard finite

difference methods (NSFD) scheme for theta methods and explicit Runge-Kutta

method. Finally, we present an application of the NSFD scheme for Fokker-Planck

(FP) frameworks in esophageal cancer. We study a stochastic model of calcium

signaling dynamics in the deterministic setup using the FP framework and solve this

PDE using the NSFD scheme. We also present a detailed analysis of the numerical

solution. To demonstrate the effectiveness of the theoretical studies, we show various

numerical experiments.
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CHAPTER 1

Introduction

1.1 Hybrid imaging

Hybrid imaging refers to the amalgamation of two (or more) imaging modalities

to form a new technique. It has attracted the research community a lot in the last few

decades. The idea behind hybrid imaging methods is combining a high contrast modal-

ity and a high-resolution modality to get images with high contrast and resolution

simultaneously. High contrast modalities like electrical impedance tomography (EIT)

are used primarily for imaging electrical, optical, or elastic properties of biological

tissues because these properties vary significantly between healthy and unhealthy

tissues. On the other hand, modalities like magnetic resonance imaging (MRI) and

ultrasound are used to provide better resolution. Therefore, the inversion process for

hybrid imaging problems involves two steps coming from each modality discussed

above. For a more detailed discussion on hybrid imaging techniques, please see the

review articles [1, 2].

Examples of hybrid modalities include coupling optics or electromagnetism with

ultrasound: Photo-Acoustic Tomography (PAT) and Thermo-Acoustic Tomography

(TAT); coupling magnetic resonance with electrical currents: Magnetic Resonance

EIT (MREIT) and Current Density Impedance Imaging (CDII) and many others.

1.2 Current density impedance imaging

Electrical impedance tomography (EIT) is an imaging modality, in which one

attempts to recover the conductivity of a body from the boundary measurement
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of current and voltage [3]. The underlying inverse problem is highly ill-posed and

non-linear yet very important due to its wide range of applications in the fields such

as medical imaging [4] and engineering [5, 6]. The following conductivity equation

gives the mathematical formulation of the EIT inverse problem

−∇ · (σ(x)∇u(x)) = 0 x ∈ Ω,

σ(x)
∂u

∂ν
(x) = f(x), x ∈ Γ,

(1.1)

where Ω ⊂ Rn is a convex and bounded domain with Lipschitz boundary and Γ is the

boundary of Ω. In this model, σ is the electrical conductivity, u represents the electric

potential and f is the current applied to the boundary. The reconstructions obtained

Figure 1.1: EIT (Source: Wikipedia)

through the EIT setup usually have high contrast but limited spatial resolution [7]. On

the other hand, reconstructions obtained through ultrasound imaging have very high

resolution but limited contrast [8, 9]. In recent years, attempts have been made to

combine multiple imaging modalities to obtain image reconstructions with both high
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contrast and high resolution. This led to the emergence of hybrid imaging methods that

belong to class of coupled-physics imaging modalities to generate images of superior

quality. One of such imaging methods, known as current density impedance imaging

(CDII) combines the classical EIT setup with magnetic resonance (MR) scanning

[10, 11]. It is alternatively known as magnetic resonance EIT (MREIT). Current or

voltage is applied through the electrodes, which give rise to an interior electric field

and the corresponding generated magnetic field, represented as B = (Bx, By, Bz), is

measured by the MR scanner. The corresponding inverse problem is to solve for the

conductivity σ from Bz using the well-known iterative Harmonic Bz-algorithm [12, 13].

Convergence of the harmonic Bz algorithm has been well-studied [12, 13, 14]. In

particular, it has been shown that for small contrast values of the target conductivity,

the harmonic Bz-algorithm is stable and convergent, provided we have a good initial

guess [13]. Thus, it is not clear that one can recover good quality images for high

contrast objects through Harmonic Bz-algorithm.

An alternate approach to solve the CDII inverse problem is to use the knowledge

of interior electric field, which is obtained from the magnetic field. Correspondingly,

the magnitude of the interior electric field is also determined [15, 16], which is given

by

H(σ(x)) = σ(x)|∇u(x)|, x ∈ Ω. (1.2)

The formulation of reconstruction problem is as follows: Given the boundary data

f for, possibly, several choices of boundary patterns and the corresponding interior

measurement data H, find the conductivity distribution σ. In this framework, we use
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the internal function H(σ) to replace σ in the EIT equation (1.1) to get the following

nonlinear equation

∇ ·

(
H

|∇u|
∇u

)
= 0 in Ω,

H

|∇u|
∂u

∂ν
= f on Γ.

(1.3)

For the CDII inverse problem, the solution to the boundary value problem (1.3) is

crucial but it is difficult to use it in practice because of its highly nonlinear behaviour

and also because the data represented by the measured values of H enter as a

coefficient of the differential model [7]. Even with the additional measurements,

analysis and application of the 1-Laplacian relies on an iterative localized algorithm,

wherein one considers an approximation of the CDII problem. This subsequently led

to several computational approaches in solving the CDII inverse problem. In [17],

it was proved that the linearized problem is elliptic and hence solvable, if there are

at least n set of measurements {Hi(σ)}ni=1 and corresponding to n boundary data

{fi}ni=1 such that ∇ui and ∇uj are nowhere collinear for i ̸= j. It has been shown in

[18] that the solution of the above 1-Laplacian equation with the Neumann boundary

condition is non-existent unless additional measurements with different boundary

current patterns are used. Recovery of isotropic conductivity in regions where the

magnetic field is transversal using two internal current distributions was done using

an explicit local formula [19]. Moreover, using the information of two internal current

distributions, the authors in [18] uniquely determine the singular support of the

conductivity function. In [20], the authors showed that the conductivity in the planer

domain can be recovered from a single voltage-current on a part of boundary and

the magnitude of one interior current density. In the same article, they also provide

sufficient conditions on Dirichlet boundary data to guarantee unique recovery of

conductivity. In [21], the recovery of Hölder continuous conductivities have been
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establised for domains with connected boundary from the interior measurement of the

magnitude of one current density. Determination of isotropic conductivity variations

from measurements of two current density vector fields was studied in [10]. In [22],

authors showed the recovery of planar conductivities by solving the 1-Laplace equation

with partial boundary data.

The well-known numerical reconstruction algorithm using the internal current

distribution is an iterative J-substitution algorithm which was first introduced by [23]

and subsequently considered in other works, see for e.g., in [24, 25, 21, 11]. It has been

shown that the J-substitution algorithm is able to reconstruct the conductivity with

high resolution [25, 18]. Another numerical reconstruction iterative method is the

regularized D-bar method [26] that provides images with high resolution. In [27], the

authors use an alternating split Bregman algorithm for solving a minimization problem

related to the energy functional corresponding to the 1-Laplacian equation (1.3). Also,

in [28], Picard and Newton type algorithms are implemented to solve the 1-Laplacian

problem. But there is not enough evidence to suggest that these existing algorithms

(linearized or localized iterative methods) can provide high contrast images, specially

for objects with holes or inclusions, which are inherent to CDII reconstructions. In

chapter 3, we will see a a new optimization framework for the sparse reconstruction

of log-conductivity in CDII. The cost functional considered in this framework consist

of a data-fitting term, L2 − L1 regularization term, and a Perona-Malik anisotropic

diffusion filtering term.

1.3 Two-photon photoacoustic computed tomography

Photoacoustic tomography (PAT) is an another hybrid imaging modalities that

couples electromagnetic waves together with ultrasound. PAT takes advantage of

the photoacoustic effect to convert absorbed optical energy into acoustic waves. In
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PAT, near infrared (NIR) light propagates into a medium of interest and a fraction of

the incoming light energy is absorbed, which results in local heating and subsequent

cooling of the medium. Due to this heating and cooling phenomenon, acoustic waves

are generated that are recorded at the boundary of the medium. The inverse problem is

to reconstruct the diffusion, absorption and Grüneisen coefficients from these acoustic

measurements, for more details on the subject see [29, 30, 31, 32, 33, 34, 35, 36, 37, 38]

and references therein. The PAT technology can be divided into two main categories

Figure 1.2: PAT [39]

based on the way images are formed, namely, photoacoustic microscopy (PAM) and

photoacoustic computed tomography (PACT) [40, 41]. In PACT, unfocused light

waves and a series of transducers are used to obtain cross-sectional images of an

object from the photoacoustic data by solving an inverse problem. Moreover, the

PACT mechanism provides a larger tomographic imaging penetration depth beyond

one centimeter, but at the expense of inferior spatial resolution [41]. On the other

hand, in PAM, focused laser waves are used along with the method of transverse

raster-scanning to obtain cross-sectional images of an object from photoacoustic

data in a direct way. However, PAM is known to provide high resolution within a

tomographic imaging depth of several millimeters [40]. A modified PAM method,

known as the acoustic resolution-PAM (AR-PAM), uses unfocused light on a larger

6



region with similar intensity as that of the focused light to obtain greater tomographic

imaging depth similar to PACT [40].

In recent years, a strong non-linear mechanism, called the two-photon absorption,

has been observed and measured in the process of PAT reconstructions (see [42, 43,

44, 45, 46]. The two-photon absorption phenomenon is observed when an electron

transfers to an excited state after simultaneously absorbing two photons. An imaging

modality where one tries to recover optical properties of heterogeneous media (such as

biological tissues) using the photoacoustic effect resulting from two photon absorption

is known as two-photon photoacoustic tomography (2P-PACT) [42, 43, 47]. Even

though the occurrence of two-photon absorption (in healthy biological tissues) is less

frequent than single-photon absorption, two-photon absorption is extremely useful

in practice. Similar to the PAT mechanism, 2P-PACT can be classified based on

the different image formation ways: two-photon photoacoustic microscopy (2P-PAM)

and two-photon photoacoustic computed tomography (2P-PACT). While, 2P-PAM

is quite often used for deep tissue imaging, thick brain tissue imaging blood vessel

imaging, liver biopsies (see [48, 49, 50, 51, 52, 53, 54] and references therein), there

has not been any feasible demonstration of the application of 2P-PACT in medical

imaging. However, since the one-photon and two-photon absorption effects are not

easily separable from each other [44], a coupling of the two-photon effect due to

unfocused strong light intensity mechanism, as in AR-PAM, and using an array of

transducers to capture the photoacoustic wave data and solving an inverse problem

to obtain the optical coefficients, as in PACT, is a promising and efficient way to use

the 2P-PACT method in medical imaging (see [55] for a AR-PAM setup). Thus, it is

of paramount importance to study mathematical numerical algorithms for obtaining

reconstructions in 2P-PACT, which is the main aim of this chapter 4.
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1.4 Nonstandard finite difference methods

Dynamical systems are important in many disciplines, including biology, eco-

nomics, engineering, and chemistry. Because the majority of dynamical systems

cannot be solved analytically, numerical methods are typically used to approximate

their solutions. However, the stability properties of the corresponding numerical

solutions are typically strongly dependent on the computational step size, partic-

ularly when standard numerical methods such as the explicit Euler and Runge-

Kutta methods are used. R.E. Mickens [56] pioneered the use of nonstandard finite

difference (NSFD) methods to overcome this dependency while numerically pre-

serving important properties of exact solutions. Since then, NSFD methods have

been developed and applied to a wide range of scientific and engineering problems

[57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]. Several classes of NSFD methods,

in particular, have been developed based on standard theta methods [71, 72, 73, 67, 74]

and standard two-stage explicit Runge-Kutta (ERK2) methods [71, 73]. However,

these methods, while preserving the local dynamical properties of solutions near equi-

librium points, are only first-order accurate. Recently, modified nonstandard theta

and Runge-Kutta methods [75, 76, 77] that are not only elementary stable but also

second-order accurate have been presented. But, those methods were only developed

for one-dimensional autonomous dynamical systems. The previous theoretical results

are extended in this paper, and new modified NSFD theta and modified NSFD ERK2

methods for solving n-dimensional autonomous dynamical systems are designed. The

extensions are based on the use of novel denominator functions that account for both

the elementary stability and the increased accuracy of the numerical methods.
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1.5 Outline of thesis

In Chapter 2 we see the mathematical preliminaries, which is helpful to under-

stand the later chapters. We discuss some concepts of functional analysis, optimization,

and nonstandard finite difference methods used to develop the discussion in the the-

sis. Chapter 3 is dedicated to current density impedance imaging (CDII), where

we see a new optimization framework that uses tools from PDE control models

and anisotropic diffusion to obtain reconstructions with high resolution and good

contrast. This framework is developed for reconstructing the log-conductivity in

CDII. Chapter 4 focuses on a robust optimization framework for the sparsity-based

nonlinear reconstruction of optical parameters in two-photon photoacoustic com-

puted tomography. We discuss this framework to recover the optical properties of

the medium Ω from the measured acoustic wave signals. In Chapter 5, we discuss

the second order nonstandard finite difference methods for autonomous ordinary

differential equations. In particular, we see the NSFD numerical schemes for theta

methods and two-stage explicit Runge-Kutta methods. A natural generalization of

NSFD to partial differential equations is discussed in Chapter 6. Additionally, we

see a nonstandard finite difference Chang-Cooper scheme for calcium- signaling. The

theoretical discussion is supported by numerical experiments at the end of every

chapter, followed by discussions and conclusions on the current work and possible

future developments.
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CHAPTER 2

Mathematical Preliminaries

This chapter focuses on definitions and preliminaries, which will help us under-

stand upcoming content. More specifically, we discuss some topics from functional

analysis [78] (such as weak convergence, weak∗ convergence, reflexivity, Sobolev em-

bedding, etc.), basic optimization and nonstandard finite difference methods concepts.

2.1 Weak and weak∗ convergence

In this section, we discuss several modes of convergence for sequences in a

normed linear space X and in its dual X ′.

Definition 2.1.1. (Weak Convergence) A sequence (xn) in a normed space X is said

to be weakly convergent if there exists x ∈ X such that x′(xn)→ x′(x) in K for every

x′ ∈ X ′. We then write it as, xn
w−→ x in X.

Remark 1. In general, xn
w−→ x in X does not imply that xn → x in X. To see

this, let X = Lp([−π, π]), 1 ≤ p < ∞, and xn(t) = eint, t ∈ [−π, π], n = 1, 2, 3, . . ..

Then ∥xn∥p = (2π)1/p for each n, and hence xn ↛ 0. Now if x′ ∈ X, then by Riesz

representation theorem for Lp spaces, there exists some y ∈ Lq([−π, π]) with 1
p
+ 1

q
= 1

such that

x′(x) =

∫ π

−π

xy dm, x ∈ X.

Thus,

x′(xn) =

∫ π

−π

y(t)eintdm(t) = 2πŷ(−n)→ 0 as n→∞

The last convergence implies (using Riemann-Lebesgue Lemma) y ∈ Lq([−π, π]),

which is a subset of L1([−π, π]). Thus xn
w−→ 0.
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Definition 2.1.2. (Weak∗ Convergence) A sequence (x′n) in X
′ is said to be weak∗

convergent if there is some x′ ∈ X ′ such that x′n(x) → x′(x) in K for every x ∈ X.

We then write it as, x′n
w∗
−→ x′ in X ′.

Remark 2. In general, x∗n
w∗
−→ x′ in X ′ does not imply that x′n → x′ in X ′. For

instance, if X = Lp([−π, π]), 1 ≤ p <∞,then X ′ is linearly isometric to Lq([−π, π]),

where 1
p
+ 1

q
= 1, and if we assume yn(t) = eint for t ∈ [−π, π], then yn ↛ 0 in

Lq([−π, π]). But by Riemann-Lebesgue lemma (as described in previous example),

yn
w∗
−→ 0.

As X ′′ is the dual of the normed space X ′, we see that x′n
w−→ x′ in X ′ if and only

if x′′(x′n)→ x′′(x′) for every x′′ ∈ X ′′. Let us now consider the canonical embedding

J : X → X ′′. If x′n
w−→ x′ in X ′, then for every x ∈ X, we get

x′n(x) = J(x)(x′n)→ J(x)(x′) = x′(x)

and that means, x′n
w∗
−→ x′ in X ′. Now, we have three modes of convergence in the

normed dual X ′:

• Norm convergence

• Weak convergence

• Weak∗ convergence

We also have,

Norm convergence =⇒ Weak convergence =⇒ Weak∗convergence.

Next, we will see an example of Banach space X such that three modes of convergence

in X ′ are distinct, that is, reverse implication may not hold in general.

Let X = l1, then X ′ can be identified with l∞. Let us consider a sequence (en)

in l∞. Now,

∥en∥∞ = 1, for every n =⇒ ∥en∥↛ 0.

11



Further, we will show that en
w−→ 0 in l∞. Suppose, this is not true. Then there exist

some f ∈ (l∞)′ such that f(en) ↛ 0.

That means, there are positive integers n1 < n2 < . . . and some δ > 0 such that

|f(enj
)| ≥ 0 for each j = 1, 2, . . .. Now, for m = 1, 2, . . ., define

xm = sgnf(en1)en1 + . . .+ sgnf(enm)enm .

Then for each m, ∥xm∥∞ ≤ 1, but

f(xm) = |f(en1)|+ . . . |f(enm)| ≥ mδ,

which tends to ∞ as m→∞ and this goes to ∞ as m approaches to ∞. This gives

a contradiction that f is continuous on l∞. Hence en
w−→ 0 in l∞.

Now, we consider a sequence (an) in l∞, where an = (1, . . . , 1, 0, 0, . . .) with

1 occurring only in the first entries and let a = (1, 1, . . .). Then (an) is not weak

convergent to a. To prove this, find f ∈ (l∞)′, such that f(x) = 0 for every x ∈ c0

and f(a) ̸= 0 using consequence of Hahn Banach extension theorem. Since each an is

in c0, so we see that f(an) = 0. Thus f(an) ↛ f(a).

However, we will see that an
w∗
−→ in l∞. Let F denote the linear isometry from

l∞ to l∞ to (l1)′. Then for each x ∈ l1,

F (an)(x) =
∞∑
j=1

x(j)an(j) =
n∑

j=1

x(j),

while

F (a)(x) =
∞∑
j=1

x(j)a(j) =
∞∑
j=1

x(j)

Thus, F (an)(x) → F (a)(x) for every x ∈ l1, that is, an
w∗
−→ a. So, we conclude

that in general, weak convergence is even weaker than norm convergence, and weak∗

convergence is even weaker than the weak convergence.
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Theorem 2.1.1. Let (x′n) be a sequence in a normed space X ′. If

(i) (x′n) is bounded and,

(ii) (x′n(x)) is a Cauchy sequence in K for each x in a subset of X whose span is

dense in X,

then (x′n) is weak
∗ convergent in X ′. The converse holds if X is a Banach space.

If x′n → x′ in X ′, then ∥x′∥ ≤ lim infn→∞ ∥x′n∥.

2.1.0.1 Bolzano-Weirstrass Property

The statement of classical Bolzano-Weierstrass is that every bounded sequence in

K has a convergent subsequence. IfX is a normed space, then every bounded sequence

in X has a convergent subsequence if and only if X is finite dimensional. Thus, the

classical Bolzano-Weierstrass property does not hold for the norm convergence in X,

when X is an infinite dimensional normed space. Hence, it is worth to investigate

whether every bounded sequence in X has a weak convergent subsequence and whether

every bounded sequence in X ′ has a weak∗ convergent subsequence.

Remark 3. We will now see an example of a bounded sequence which does not have a

weak convergent subsequence.

Consider X = l1 and a sequence (en), then ∥en∥1 = 1 for all n, but (en) does not have

a weak convergent subsequence since ∥en− em∥1 = 2 for all n ̸= m. We could also see

in this way, if (enk
) is a subsequence of (en) and enk

w−→ x0 in l
1, then enk

(j)→ x0(j) as

k →∞, for each j = 1, 2, . . . this implies x0 = 0. But if we let f(x) =
∑∞

j=1 x(j) for

x ∈ l1, then f ∈ l1 and f(enk
)→ 1, whereas f(x0) = f(0) = 0 and this contradiction

proves that (en) has no weak convergent subsequence in l1.

Remark 4. We will now see an example that not every bounded sequence in X ′

has a weak∗ convergent subsequence, let X = l∞ and for n = 1, 2, . . . , define

13



fn(x) = x(n), x ∈ X. Then fn ∈ X and ∥fn∥ = 1 for all n. Let (fnk
) be a

subsequence of (fn). Define x ∈ X by

x(j) =


1, if j = nk and k is odd

0, otherwise.

Then fnk
= x(nk) = 1 for every odd k and fnk

= x(nk) = 0 for every even k. Since

(fnk
(x)) does not converge in K, (fnk

) cannot be weak∗ convergent in X ′.

No need to worry, we do have some positive result as well.

Theorem 2.1.2. (Banach 1932) Let X be a separable normed space. Then every

bounded sequence in X ′ has a weak∗ convergent subsequence.

From, Theorem 2.1.1 and 2.1.2 we find that the closed unit ball of the dual

of a separable normed space X is weakly∗ sequentially compact. We say that a

normed X is weakly sequentially compact if x′n ∈ X ′ with ∥x′n∥ ≤ 1, then, there is a

subsequence (x′nk
) of (x′n) such that x′nk

w∗
−→ x′, where ∥x′∥ ≤ lim infk→∞ ∥x′nk

∥ ≤ 1.

2.2 Reflexivity

This section is devoted to show how to embed a normed space in its second

dual X ′′. For a fixed x ∈ X, define J(x) : X ′ → K by

J(x)(x′) = x′(x), x′ ∈ X ′

Then J(x) ∈ X ′′, ∥J(x)∥ = ∥x∥ and the map J : X → X ′′ is linear. Since X ′′ is a

Banach space, it follows that the subspace J(X) is closed in X ′′ if and only if X is a

Banach space.

Definition 2.2.1. (Reflexive space) A normed space is said to be reflexive if the

canonical embedding J is surjective, that is if x′′ is a continuous linear functional on

X ′, then there exists some x ∈ X such that x′′ = J(x).

14



Now, we will see some properties of reflexive normed space.

Theorem 2.2.1. Let X be a reflexive normed space. Then

(i) X is Banach and it remains reflexive in any equivalent form.

(ii) X ′ is reflexive.

(iii) Every closed subspace of X is reflexive.

(iv) X is separable if and only if X ′ is separable.

Example 2.2.1. If 1 < p <∞, Lp([a, b]) is reflexive.

Next result shows a relationship between reflexivity and weak convergence.

Theorem 2.2.2. (Eberlein, 1947) Let X be a normed space. Then X is reflexive if

and only if every bounded sequence in X has a weak convergent subsequence.

In other words, a normed is reflexive if and only if its closed unit ball is “weak

sequentially compact”.

2.3 Sobolev spaces

This section is introduced to define some necessary function spaces which we

would use later. More details about Sobolev spaces can be find in [79, 80, 81]. Let

Ω ⊂ Rn be open, bounded domain with Lipschitz boundary ∂Ω. we take p ∈ [1,+∞]

Definition 2.3.1. The Sobolev space W k,p(Ω) is defined as

W k,p(Ω) = {u ∈ W k(Ω) : Dαu ∈ Lp,∀|α| ≤ k}.

It is clear that W k,p(Ω) is a linear subspace of (Lp()Ω), ∥ · ∥p. We can define two

equivalent norms in W k,p(Ω):

∥u∥k,p =


(∑

|α|≤k ∥Dαu∥pp
)1/p

, if p ∈ [1,+∞),

max|α|≤k, ∥Dαu∥∞ if p = +∞.
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and

|∥u∥|k,p ≡
∑
α≤k

∥Dαu∥p.

If p = 2, then the norm ∥ · ∥k,2 ≡ W k,2(Ω) is the one associated to the inner product

(u, v)k,2 =
∑
|α|≤k

(Dαu,Dαv)L2(Ω).

Theorem 2.3.1. The Sobolev space W k,p(Ω) is a Banach space for 1 ≤ p ≤ +∞.

Further,

(i) W k,p(Ω) is reflexive for 1 < p < +∞

(ii) W k,p(Ω) is separable for 1 ≤ p < +∞

In particular, Hk(Ω) is a separable Hilbert space.

We denote by W k,p
0 (Ω) closure of C∞

0 (Ω) in the space W k,p(Ω) with respect to

W k,p(Ω)−norm. When p = 2, we also write W k,p
0 (Ω) = Hk

0 (Ω). Thus u ∈ W
k,p
0 (Ω) if

and only if there exists functions um ∈ C∞
0 (Ω) such that um → u in W k,p(Ω).

The space H1
0 (Ω) consists of functions u ∈ H1(Ω) such that

u = 0 on ∂Ω

in the trace sense. We denote the dual of H1
0 (Ω) by H

−1(Ω).

2.4 Embedding theorems

In this section, we will see the well-known Sobolev and Rellich-Kondrachov

embedding theorems. But, first, we understand the meaning of embedding and

compact embedding.

Definition 2.4.1. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be normed spaces.

(i) The space X is said to be embedded in the space Y , we denote it by X ↪→ Y ,

if there exists an injective linear and continuous operator from X into Y and

the operator is called an embedding.
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(ii) The space X is compactly embedded in the space Y , if there exists an embedding

of X in Y which is compact and we denote it by X ↪↪→ Y .

Embeddings of W k,p(Ω) can be considered into the following three classes of

spaces:

(i) W j,q(Ω) with 0 ≤ j ≤ k (W 0,j) ≡ Lq(Ω) and q denotes the conjugate exponent

of p, i.e.,
(

1
q
+ 1

p
= 1
)
.

(ii) Cj
B(Ω), for j ∈ N∪{0}, i.e., the space of functions with continuous and bounded

partial derivatives up to order j. This is a Banach space with the following

norm:

∥u∥Cj
B(Ω) = max

0≤|α|≤j
sup
x∈Ω
|Dαu(x)|

for every u ∈ Cj
B(Ω).

(iii) Cj,ν
B,u(Ω), i.e., the space of functions with bounded and uniformly continuous

partial up to order j in Ω and these partial derivatives of order j satisfy a

Hölder condition with exponent ν ∈ (0, 1). It is also a Banach space with the

norm

∥u∥Cj,ν(Ω) = ∥u∥Cj
B(Ω) +

∑
|α|=j

sup
x,y∈Ω
x ̸=y

|Dαu(x)−Dα(y)|
|x− y|ν

for every u ∈ Cj,ν
B,u(Ω). Clearly, C

j,ν
B,u(Ω) ⊂ Cj

B(Ω).

Now we will see the main embedding results.

Theorem 2.4.1. Let Ω ⊂ RN be an open subset satisfying the cone condition.

Consider also k ∈ N ∪ 0. We have the following embeddings.

(i) If k < N
p
, then W j+k,p(Ω) ↪→ W j,q(Ω) for every q ∈

[
p, Np

N−kp

]
(ii) If k = N

p
, then W j+k,p(Ω) ↪→ W j,q for every p ≤ q < ∞. In addition, in the

particular case p = 1 and k = N, we also have W j+N,1 ↪→ Cj
B(Ω).

(iii) If k > N
p
, then W j+k,p ↪→ Cj

B(Ω). Furthermore, if ∂Ω is of class C1, then

(iv) If k − 1 < N
p
, then W j+k,p(Ω) ↪→ Cj,ν

B,u(Ω) for every ν ∈
(
0, k − N

p

]
.
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(v) If k − 1 = N
p
, then W j+k,p(Ω) ↪→ Cj,ν

B,u(Ω) for every ν ∈ (0, 1) .

Theorem 2.4.2. (Rellich-Kondrasov). Let Ω ⊂ Rn be a bounded open set of class

C1. Then the following inclusions are compact.

(i) if p < n, W 1,p(Ω)→ Lq(Ω), 1 ≤ q < p∗,

(ii) if p = n, W 1,n(Ω)→ Lq(Ω), 1 ≤ q <∞,

(i) if p > n, W 1,p(Ω)→ C(Ω̄), where Ω̄ = Ω ∪ ∂Ω.

2.5 Optimization

Let V be a Banach space and K be a non-empty subset of V . Let J : V → R,

and we consider

inf
v∈K⊂V

J(v)

Definition 2.5.1. An element u is called a local minimizer of J on K if u ∈

K and ∃ δ > 0 such that ∀ v ∈ K

∥v − u∥ < δ =⇒ J(v) ≥ J(u).

An element u is called a global minimizer of J on K if u ∈ K and

J(v) ≥ J(u) ∀v ∈ K.

Definition 2.5.2. A minimizing sequence of a function J on the set K is a sequence

(un)n∈N such that

un ∈ K ∀ n and lim
n→+∞

J(un) = inf
v∈K

J(v).

By definition of the infimum value of J on K, there always exist minimizing sequences.

If V is a finite dimensional normed vector space (in particular V = Rn). Then

we have following theorem for the existence of minimizer:
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Theorem 2.5.1. Let K be a non-empty closed subset of RN and J a continuous

function from K to R satisfying the so-called “infinite at infinity” property, i.e.,

∀ (un)n≥0 sequence in K, lim
n→+∞

∥un∥ = +∞ =⇒ lim
n→+∞

J(un) = +∞

Then there exists at least one minimizer of J on K. Furthermore, from each minimiz-

ing sequence of J on K one can extract a subsequence which converges to a minimum

of J on K.

The key idea which makes this theorem true is that the closed bounded sets

are compact in finite dimensions. In general, the above result is not true for infinite

dimensional spaces, for instance, see the following remark:

Remark 5. Let V = H1(0, 1) with the norm given by ∥v∥ =
(∫ 1

0
(v′2(x) + v2(x))dx

)1/2
,

for v ∈ H1(0, 1). Consider,

J(v) =

∫ 1

0

(
(|v′(x)| − 1)2 + v2(x)

)
dx.

One may check that this functional has no minimizer even though it satisfies the

assumptions of 2.5.1.

Next, we add convexity assumption, and obtain the existence of minimizers.

Definition 2.5.3. A set K ⊂ V is said to be convex if, for any u, v ∈ K and for any

θ ∈ [0, 1],

θu+ (1− θ)v ∈ K.

Definition 2.5.4. Let K be convex subset of V , then a function J : K → R, is said

to be convex on K if

J(θu+ (1− θ)v) ≤ θJ(u) + (1− θ)J(y), ∀ u, v ∈ K, ∀ θ ∈ [0, 1].

Further, J is said to be strictly convex if the above inequality is strict whenever

u ̸= v and θ ∈ (0, 1).
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We have the following result for the existence of minimizer under the convexity

assumption:

Theorem 2.5.2. Let K be a non-empty closed set in a reflexive Banach space V ,

and J be a convex continuous function on K, which is “infinite at infinity” in K, i.e.,

∀ (un)n≥0 sequence in K, lim
n→+∞

=⇒ lim
n∈∞

J(un) = +∞.

Then, there exists a minimizer of J in K.

Remark 6.

(i) V is reflexive Banach space if and only if (V ′)′ = V where V ′ is the dual of V

(ii) The theorem is still true if V is just the dual of a separable Banach space.

(iii) This assumption is satisfied for all functional spaces such as Lp(Ω) with 1 <

p ≤ +∞.

We will now see some uniqueness results under the same assumptions.

Proposition 2.5.3. If J is strictly convex, then there exists at most one minimizer

of J .

Proposition 2.5.4. If J is convex on the convex set K, then any local minimizer of

J on K is a global minimizer.

Remark 7.

(i) For convex functions there is no difference between local and global minimizers.

(ii) Convexity is not the only tool to prove existence of minimizers. Another method

is, for example, compactness.

2.6 Differentiation in Banach spaces

We will now see the notions of derivatives in function spaces. Let L(A,B)

denote the space of bounded the space of bounded linear operators from Banach
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space A to Banach space B. Let (Z, ∥ · ∥Z), (V, ∥ · ∥V ) be real Banach spaces, U be

an open subset of Z, F : U → V and z ∈ U .

Definition 2.6.1. (Directional derivative). F is said to be directionally differentiable

at z if limt→0
1
t
(F (z + th)− F (z)) exists in V for all h ∈ Z. If this limit exists, we

denote

F ′(z, h) := lim
t→0

1

t
(F (z + th)− F (z))

and say that F ′(z, h) is the directional derivative of F at z in the direction h.

Definition 2.6.2. (Gâteaux derivative). F is said to be Gâteaux differentiable at z

if its is directional derivative exists and F ′(z;h) = F ′(z)h for F ′(z) ∈ L(Z;V ). We

refer to F ′(z) as the Gâteaux derivative at z.

Next, we will see a stronger notation of derivation:

Definition 2.6.3. (Fréchet derivative). F is said to be Fréchet differentiable at z if

and only if F is Gâteaux differentiable at z and the following holds:

F (z + h) = F (z) + F ′(z)h+ r(z, h) with
∥r(z, h)∥V
∥h∥Z

→ 0 as ∥h∥Z → 0

Remark 8.

(i) If the Fréchet derivative exists then Gâteaux derivative also exists and they are

same in this case. But, the converse is not true in general.

(ii) We say that F is continuously Gâteaux differentiable if F ′(·) exists and F ′(·) is

continuous. In that case F is Fréchet differentiable.

(iii) Let E = G(F (z)) where F is Gâteaux differentiable at z and G is Fréchet

differentiable at F (z), then E is Gâteaux differentiable.

The case when V = R, we obtain L(Z, V ) = Z∗. Further, If F is Gâteaux

differentiable at z then we have

F ′(z)h = ⟨F ′(z), h⟩Z∗,Z ,
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where Z∗ is the dual space of Z and ⟨·, ·⟩Z∗,Z denote the duality pairing.

Example 2.6.1. Let (H, (·, ·)H) be a real Hilbert space and F : H → R defined as

F (z) := ∥z∥2H = (z, z)H , the ∀z, h ∈ H, we have

F (z + h)− F (z) = 2(z, h)H + ∥h∥2H

Thus,

F ′(z)h = (2z, h)H .

Using the Riesz Representation Theorem (identify H), we can write

(∇F (z), h)H = ⟨F ′(z), h⟩H∗,H ,

where ∇F (z) ∈ H is the representative of F ′(z) ∈ H∗. We denote ∇F (z) ∈ H as the

gradient of F at z and then we have ∇F (z) = 2z.

Remark 9. (i) The obtained expression to recognize F ′(z) ∈ H∗ with an element

of H is called the gradient of F .

(ii) We will use the notation ∇F (z) to denote the gradient.

(iii) We observe that the definition of the gradient depends on the underlying inner

product.

A a brief overview of optimization problems with partial differential equation

(PDE) constraints can be find in [82].

2.7 Nonstandard finite difference methods

An n-dimensional autonomous differential equation can be written as:

x⃗′(t) = f⃗(x⃗); x⃗(t0) = x⃗0, (2.1)

where x⃗ represents the vector-function [x1(t), . . . , xn(t)]
T , xi : [t0, T ) → R, f⃗ =

[f1, . . . , fn]
T ∈ C2(Rn;Rn) is differentiable, x⃗0 ∈ Rn. It is assumed that System (2.1)

has a finite number of only hyperbolic equilibria.

22



Definition 2.7.1. Let x⃗∗ be an equilibrium of System (2.1), J(x⃗∗) =
(

∂fi
∂xj

(x⃗∗)
)
1≤i,j≤n

be the Jacobian of system (2.1) at x⃗∗ and σ(J(x⃗∗)) denotes the spectrum of J(x⃗∗). An

equilibrium x⃗∗ of system (2.1) is called linearly stable if Re(λ) < 0, for λ ∈ σ(J(x⃗∗))

and linearly unstable if Re(λ) > 0 for some λ ∈ σ(J(x⃗∗)).

A general finite difference method which approximates the solution of System

(2.1) on the interval [t0, T ] can be written as:

Di,h(x⃗
k) = Fi,h(fi; x⃗

k), k = 0, · · · , Nt, (2.2)

where Di,h(x⃗
k) ≈ x′i

∣∣
t=tk

, Fi,h(fi; x⃗
k) ≈ fi(x⃗), x⃗

k ≈ x⃗(tk), tk = t0 + kh, k =

0, · · · , Nt, i = 1, · · · , n, with mesh size h > 0.

The NSFD numerical methods discussed in this paper satisfy the following

definitions introduced by Anguelov and Lubuma in [71] (see also [73, 83]):

Definition 2.7.2. The finite-difference method (2.2) for solving Equation (2.1) is a

nonstandard finite difference (NSFD) method if at least one of the following conditions

is satisfied for all i = 1, 2, . . . , n :

• Di,h(x⃗
k) =

xk+1
i − xki
φi(h)

, where φi(h) = h+O(h2) is a non-negative function;

• Fi,h(f⃗ ; x⃗
k) = gi(x⃗

k, x⃗k+1, h), where gi(x⃗
k, x⃗k+1, h) is a non-local approximation

of the i-th component of the right-hand side of System (2.1).

Definition 2.7.3 ([71, 73, 83]). A finite difference method is elementary stable if,

for any value of the step-size h, its only fixed points x⃗∗ are the same as the equilibria

of Equation (2.1) and the local stability properties of each x⃗∗ are the same for both

the differential equation and the discrete method.
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CHAPTER 3

Sparse Reconstruction of Log-Conductivity in Current Density

Impedance Tomography

3.1 Introduction

1 In the field of CDII imaging, we present a new optimization framework that

uses tools from PDE control models and anisotropic diffusion theory to potentially

obtain reconstructions with high resolution and contrast. Such a framework was

first used in [85, 86] to reconstruct log-conductivity in acousto-electric tomography

(AET). The results obtained demonstrated that such a framework was robust and

accurate for imaging modalities arising through a partial differential equation (PDE).

In this chapter, we will see a similar optimization framework developed in [86] for

reconstructing the log-conductivity in CDII. formulate a minimization problem, where

given interior electric field intensity data, we aim at determining the variation in

conductivity from a known background conductivity. We, further, assume that this

variation demonstrates a sparsity pattern. This is incorporated in our model through

a L2 − L1 regularization term in our objective functional. To obtain sharp edges and,

thus, improve spatial resolution of the reconstructed images, we use a Perona-Malik

anisotropic diffusion filtering term in our functional. The resulting optimality system

gives rise to an elliptic adjoint equation with a L2 source term. Classical cell-nodal

finite difference schemes are not applicable for solving such equations. We, thus, use a

1The content of this chapter has taken from [84], Gupta, M., Mishra, R. K., and Roy, S. Sparse

reconstruction of log-conductivity in current density impedance tomography. Journal of mathematical

imaging and vision, 2020, 62(2), 189-205.
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averaged cell-nodal scheme to solve such equations. Finally, we solve the optimization

problem using a variable inertial proximal scheme that efficiently handles the non-

differentiable terms in the objective functional. We demonstrate through several

examples that our method can be used to obtain superior quality reconstructions for

objects with holes and inclusions.

This chapter is organized as follows: In the Section 3.2, we formulate the minimization

problem for the CDII. In the Section 4.3, we present some theoretical results about

our optimization problem. We also characterize the optimality system. The variable

inertial proximal scheme and the averaged cell-nodal schemes to solve the optimization

problem are discussed in Section 3.4. In the Section 3.5, we present simulation results

of our CDII framework and compare them with the reconstructions obtained using

the Picard scheme proposed in [28], which validate our framework for CDII and

demonstrate the effectiveness of our method to reconstruct wide variety of objects

with corners, holes and inclusions. A section on conclusions completes our work.

3.2 A minimization problem

We consider the conductivity equation in R2 arising in EIT

−∇ · (eσ(x,y)∇u(x, y)) = 0 in Ω,

u(x, y)|Γ = fD(x, y),

(3.1)

where Ω ⊂ R2 is bounded, Γ is the boundary of Ω, eσ is the conductivity coefficient

and u ∈ H1
fD
(Ω) = {u ∈ H1(Ω) : u = fD on Γ} is the electric potential.

We assume that σ is a sparse conductivity coefficient which we want to recover,

given the fact that the conductivity of the background is 1. The conductivity equation

(3.1) can also be written as

L(u, σ, fD) = 0,
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where σ(x, y) ∈ Lad = {σ ∈ H1
0 (Ω) : σl ≤ σ(x, y) ≤ σu, ∀(x, y) ∈ Ω}, σu > 0 and

σl = −
1

2
σt .

We consider an optimization-based approach for reconstructing σ givenH1(σ), H2(σ),

where

H(σ) = eσ|∇u|

is the interior electric field corresponding to the voltage potential u. We consider the

following cost functional

J(σ, u1, u2) =
2∑

j=1

1

2

∫
Ω

(Hj(x, y)−Hδ
j (x, y))

2 dxdy +
β

2
∥σ∥2L2(Ω)

+ γ ∥σ∥L1(Ω) +
δ

2

∫
Ω

log(1 + |∇σ(x, y)|2) dxdy

(3.2)

where u1, u2 satisfy (3.1) with boundary data f 1
D, f

2
D. We now consider the following

minimization problem

min
σ

J(σ, u1, u2),

s.t. L(u1, σ, f 1
D) = 0,

L(u2, σ, f 2
D) = 0.

(P)

The term γ ∥σ∥L1(Ω), γ > 0 in the functional, defined in (3.2), implements a

L1 regularization of the minimization problem that promotes sparsity patterns in

the reconstruction of conductivity. Such a regularization method mirrors the well

known compressed-sensing technique; see [87]. In recent past, optimal control with

L1 cost functionals has become a topic of major interest [88], because one obtains

sparse controls through this procedure, which finds numerous applications. The

motivation for sparse log-conductivity patterns is based on the assumption that the

background conductivity is known to be 1 in a substantial part of the domain Ω after

normalization and varies considerably from this value in correspondence to different

kind of objects present within the domain.
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The combined L2-L1 regularization allows for the reconstruction of conductivity,

and thus the imaging of, possibly, irregular objects inside Ω. This does not serve

the ultimate goal of reconstructing objects like tissues in medical imaging, which

are more regular, save for the edges that eventually define them. We infuse this

additional aprior knowledge into our model through the last term in our functional

(3.2) that, commonly, appears in the field of anisotropic diffusion. Such a term plays an

important role in dampening image noise while keeping significant parts of the image

content such as edges and other anatomical details that are of utmost importance in

the interpretation of the image. Anisotropic diffusion means non-uniform diffusion

in different directions. The regions where |∇σ| is very small corresponds to noise

and thus, the process of smoothening occurs. At the edges or singularities of an

object, where the value of |∇σ| is large, there is a small amount of smoothening and

this preserves the edges. A standard technique to implement anisotropic diffusion,

in order to obtain a good contrast, is to use a total variation (TV) regularization

[89, 90]. But, this regularization method gives rise to a non-differentiable term in

the functional (3.2), thus requiring more sophisticated optimization algorithms. On

the other hand, anisotropic diffusion is inherent to Perona-Malik (PM) filtering [91].

It is well-known that the diffusion process governed by the PM equation leads to a

decrease in the total variation during its evolution [92]. We, thus, choose the energy

functional of the Perona-Malik equation for anisotropic diffusion [91]. One can note

that the PM regularization term is differentiable and, thus, easier to handle than the

TV regularization term.

Mathematically, one can consider the PM filtering as the gradient flow generated

by the non-convex and lower semi-continuous functional given by

JPM(σ) =

∫
Ω

log(1 + |∇σ(x, y)|2) dxdy.
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We refer to [93, 92] for a general introduction to anisotropic diffusion and a detailed

discussion on the PM functional. Further, in [86], the PM model was used in the re-

construction of log-conductivities in AET and it was observed that the reconstructions

obtained demonstrated superior contrast and resolution. Thus, for the current setup

in CDII, we use a similar PM anisotropic diffusion filter to facilitate high contrast

and high resolution images.

3.3 Theory of the minimization problem

In this section, we discuss the existence of solutions of the minimization problem

(P) and its characterization through a first-order optimality system. We refer to

this minimization problem as the CDII sparse reconstruction problem (CDII-SR).

Our analysis of this problem begins with the discussion concerning the existence and

uniqueness of weak solutions of L(u, σ, fD) = 0, which can be proved by standard

arguments of Riesz representation theorem [94, Chapter 8].

Proposition 3.3.1. Let σ ∈ Lad and fD ∈ H1/2(∂Ω). Then the problem (3.1) has a

unique solution in H1
fD
(Ω).

The solvability of the CDII inversion problem depends on the type of Dirichlet

boundary data f j
D, j = 1, 2. In this, context, we have the following lemma from [95].

Lemma 3.3.2 (Boundary data). Let Ω ⊂ R2 be a bounded simply connected open set,

whose boundary Γ is a simple closed curve. Let f = (f 1, f 2) be a mapping Γ→ R2

which is a homeomorphism of Γ onto a convex closed curve C, and let D denote

the bounded convex domain bounded by C. Let σ ∈ L∞(Ω), and let U = (u1, u2) be

the eσ-harmonic mapping whose components u1 and u2 are solutions to the Dirichlet

problem (3.1) with fD = f 1
D and fD = f 2

D, respectively, and f
J
D ∈ H1(Ω) ∩ C(Ω̄),

J = 1, 2. Then U is a homeomorphism of Ω onto D. In particular, for all ω ⊂⊂ Ω

we have either det(∇u1,∇u1) > 0 or det(∇u1,∇u1) < 0 almost everywhere in ω.
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In [17], the authors have shown that in 2D, the boundary condition pair f 1
D = x

and f 2
D = y satisfies the conditions of Lemma 4.3.3 and, thus, the corresponding

solutions to (3.1) u1 and u2 have no critical points and ∇u1,∇u2 are not collinear in

Ω̄. We will use these boundary conditions for our numerical experiments in Section

3.5.

Next, we consider the Fréchet differentiability of the mapping u(σ).

Lemma 3.3.3. The map u(σ) defined by (3.1) is Fréchet differentiable as a mapping

from Lad to H1
fD
(Ω).

For the proof of this Lemma, we refer to [17]. Using Lemma 4.3.4, we introduce

the reduced cost functional

Ĵ(σ) = J(σ, u1(σ), u2(σ)), (3.3)

where ui(σ), i = 1, 2 denotes the unique solution of (3.1) given σ and f i
D, i = 1, 2.

The constrained optimization problem (P) can be formulated as an unconstrained

one as follows

min
σ∈Lad

Ĵ(σ). (3.4)

We next investigate the existence of a minimizer to the CDII-SR problem (P). We

first consider the case when δ = 0, i.e., the Perona-Malik term in the functional J is

absent.

Proposition 3.3.4. Let f 1
D, f

2
D ∈ H1/2(Ω) such that |∇u1| > 0, |∇u2| > 0 and let

δ = 0. Then there exists a triplet (σ∗, u∗1, u
∗
2) ∈ Lad × H1

f1
D
(Ω) × H1

f2
D
(Ω) such that

u∗i , i = 1, 2 are solutions to L(σ, ui, f i
D) = 0, i = 1, 2 and σ∗ minimizes Ĵ in Lad.

Proof. Boundedness from below of Ĵ guarantees the existence of a minimizing sequence

(σm). Since Lad is reflexive and Ĵ is sequentially weakly lower semi-continuous, this

sequence is bounded. Therefore it contains a weakly convergent subsequence (σml)

29



in Lad, σ
ml ⇀ σ∗. Correspondingly, the sequence (uml

1 , uml
2 ), where uml

i = ui(σ
ml), is

bounded in H1
f1
D
(Ω)×H1

f2
D
(Ω). Therefore the sequence converges weakly to (u∗1, u

∗
2).

Now, using the Rellich Kondrachev compactness theorem in R2, we have that Lad is

compactly embedded in L2(Ω). This results in a strong convergence of the subsequence

σml in L2(Ω) to σ∗. We, now, consider the weak formulation of the solutions of the

elliptic problem (3.1) and, thus, focus on ⟨∇ · (σml∇uml
i ), ψ⟩L2(Ω) for any ψ ∈ H1

0 (Ω).

Using integration by parts, we have ⟨∇ · (σml∇uml
i ), ψ⟩L2(Ω) = −⟨σml∇uml

i ,∇ψ⟩L2(Ω).

From the above discussion, the sequence of products σml∇uml
i is weakly convergent

in L2(Ω), that is, ⟨σml∇uml
i ,∇ψ⟩L2(Ω) → ⟨σ∗∇u∗i ,∇ψ⟩L2(Ω). With this preparation

and using the continuity of the maps ui(σ), it follows that (u
∗
1, u

∗
2) = (u1(σ

∗), u2(σ
∗)),

and the triplet (σ∗, u∗1, u
∗
2) minimizes the objective Ĵ .

In the case δ ̸= 0, we first note that the function log(1 + z2) is not convex.

Therefore the PM functional, and, hence, the functional Ĵ in (3.2) is not weakly lower

semi-continuous on W 1,p(Ω) for any 1 < p <∞. Nevertheless, Ĵ is a bounded below,

lower semi-continuous Lipschitz functional, for which a minimizer exists, provided

that Lad is compact.

3.3.1 Characterization of local minima

To characterize the solution of our optimization problem through first-order

optimality conditions, we write the reduced functional Ĵ as

Ĵ = Ĵ1 + Ĵ2, Ji : Lad → R+, i = 1, 2,

where

Ĵ1(σ) =
α1

2
∥eσ|∇u1| − gδ1∥2L2(Ω) +

α2

2
∥eσ|∇u2| − gδ2∥2L2(Ω) +

β

2
∥σ∥2L2(Ω),

Ĵ2(σ) = γ∥σ∥L1(Ω).

(3.5)
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Remark 10. The functional Ĵ1 is smooth and possibly non-convex, while Ĵ2 is non-

smooth and convex.

We next state some properties of the reduced functional Ĵ1(σ) which can be

proved using the arguments in [17, Lemma 3.1].

Proposition 3.3.5. The reduced functional Ĵ1(σ) is weakly lower semi-continuous,

bounded below and Fréchet differentiable.

We now define the subdifferential of a non-smooth functional.

Definition 3.3.1 (Subdifferential). If Ĵ is finite at a point σ, the Fréchet subdiffer-

ential of Ĵ at σ is defined as follows [96]

∂Ĵ(σ̄) :=

{
ϕ ∈ L∗

ad : lim inf
σ→σ̄

Ĵ(σ)− Ĵ(σ̄)− ⟨ϕ, σ − σ̄⟩
∥σ̄ − σ∥2

≥ 0

}
, (3.6)

where L∗
ad is the dual space of Lad. An element ϕ ∈ ∂Ĵ(σ) is called a subdifferential

of Ĵ at σ.

In our setting, we have the following

∂Ĵ(σ) = ∇Ĵ1(σ) + ∂Ĵ2(σ),

since Ĵ1 is Fréchet differentiable by Prop. 4.3.6. Moreover, for each α > 0, it holds

that

∂(αĴ) = α∂Ĵ.

The following proposition gives a necessary condition for a local minimum of Ĵ (see

[86]).

Proposition 3.3.6 (Necessary condition). If Ĵ = Ĵ1+ Ĵ2, with Ĵ1, Ĵ2 given by (4.14),

attains a local minimum at σ∗ ∈ Lad, then

0 ∈ ∂Ĵ(σ∗),
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or equivalently

−∇Ĵ1(σ∗) ∈ ∂Ĵ2(σ∗).

The following variational inequality holds for each λ ∈ ∂Ĵ2(σ∗) (see [88]).

⟨∇Ĵ1(σ∗) + λ, σ − σ∗⟩ ≥ 0, ∀σ ∈ Lad. (3.7)

Using the definition of Ĵ2 in (4.14) and the fact that Lad is reflexive, the inclusion

λ ∈ ∂Ĵ2(σ∗) gives the following characterization of space of λ

λ ∈ Λad := {λ ∈ L2(Ω) : 0 ≤ λ ≤ γ, a.e. in Ω}.

A pointwise analysis of the variational inequality (4.16) leads to the existence of

a non-negative functions λ∗σl
, λ∗σu

∈ L2(Ω) that correspond to Lagrange multipliers for

the inequality constraints in Lad. We, thus, have the following first-order optimality

system.

Proposition 3.3.7 (First-order necessary conditions). The optimal solution of the

minimization problem (4.13) can be characterized by the existence of (λ∗, λ∗σl
, λ∗σu

) ∈

Λad × L2(Ω)× L2(Ω) such that

∇σĴ1(σ
∗) + λ∗ + λ∗σu

− λ∗σl
= 0, (3.8)

λ∗σu
≥ 0, σu − σ∗ ≥ 0, ⟨λ∗σu

, σu − σ∗⟩ = 0, (3.9)

λ∗σl
≥ 0, σ∗ − σl ≥ 0, ⟨λσ∗

l
, σ∗ − σl⟩ = 0, (3.10)

λ∗ = γ a.e. on {x ∈ Ω : σ∗(x) > 0}, (3.11)

0 ≤ λ∗ ≤ γ a.e. on {x ∈ Ω : σ∗(x) = 0}. (3.12)

The conditions (3.9)-(3.12) are known as the complementarity conditions for

(σ∗, λ∗).
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To determine the gradient ∇σĴ1, we use the adjoint approach (see for e.g.,

[97, 98]). This gives the following reduced gradient of Ĵ1

∇σĴ1(σ
∗) = (eσ

∗ |∇u1| − gδ1)|∇u1|+ (eσ
∗|∇u2| − gδ2)|∇u2|+∇u1 · ∇v1 +∇u2 · ∇v2 + βσ∗,

(3.13)

where u1, u2 satisfy the forward equations L(u1, σ∗, f 1
D) = 0, L(u2, σ∗, f 2

D) = 0,

respectively, and v1, v2 satisfy the adjoint equations

−∇ · (eσ∗∇v1) = ∇ ·

[
eσ

∗
(eσ

∗ |∇u1| − gδ1)(∇u1)

]
in Ω,

v1|Γ = 0,

(3.14)

−∇ · (eσ∗∇v2) = ∇ ·

[
eσ

∗
(eσ

∗ |∇u2| − gδ2)(∇u2)

]
in Ω,

v2|Γ = 0.

(3.15)

The complementarity conditions (3.9)-(3.12) can be rewritten in a compact

form as follows. Define

µ∗ = λ∗ + λ∗σu
− λ∗σl

. (3.16)

Then the triplet (λ∗, λ∗σl
, λ∗σu

) is obtained by solving the following equations

λ∗ = min(γ,max(0, µ∗)),

λ∗σl
= −min(0, µ∗ + γ),

λ∗σu
= max(0, µ∗ − γ),

(3.17)

(see [88]). For each k ∈ R+, define the following quantity

E(σ∗, µ∗) = σ∗ −max{0, σ∗ + k(µ∗ − γ)}+max{0, σ∗ − σu + k(µ∗ − γ)}

−min{0, σ∗ + k(µ∗ + γ)}+min{0, σ∗ − σl + k(µ∗ + γ)}.

The following lemma determines the complementarity conditions (3.9)-(3.12) in

terms of E (see [88, Lemma 2.2]).
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Lemma 3.3.8. The complementarity conditions (3.9)-(3.12) are equivalent to the

following

E(σ∗, µ∗) = 0, (3.18)

where µ is defined in (3.16).

Using the gradients in (4.27) and Lemma 4.3.9, the optimality conditions

(3.8)-(3.12) for the CDII-SR problem can be rewritten as follows

Proposition 3.3.9. A local minimizer (u1, u2, σ
∗) of the problem (P) can be charac-

terized by the existence of (v1, v2, µ
∗) ∈ H1

0 (Ω)×H1
0 (Ω)×Lad, such that the following

system is satisfied

−∇ · (eσ∗∇u1) = 0 in Ω,

u1|Γ = f 1
D,

−∇ · (eσ∗∇v1) = ∇ ·

[
eσ

∗
(eσ

∗ |∇u1| − gδ1)(∇u1)

]
in Ω,

v1|Γ = 0,

−∇ · (eσ∗∇u2) = 0 in Ω,

u2|Γ = f 2
D,

−∇ · (eσ∗∇v2) = ∇ ·

[
eσ

∗
(eσ

∗ |∇u2| − gδ2)(∇u2)

]
in Ω,

v2|Γ = 0,

(eσ
∗|∇u1| − gδ1)eσ

∗|∇u1|+ (eσ
∗|∇u2| − gδ2)eσ

∗|∇u2|+∇u1 · ∇v1 +∇u2 · ∇v2 + βσ∗ + µ∗ = 0, a.e. in Ω,

E(σ∗, µ∗) = 0, a.e. in Ω.

(3.19)
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3.4 Numerical solution of the CDII-SR problem

In this section, we discuss numerical optimization and approximation schemes

to solve the CDII-SR problem. In this context, we first discuss proximal methods

that consists of identifying a smooth and a non-smooth part in the reduced objective

Ĵ(σ). Thus, we consider the following optimization problem

min
σ∈Lad

Ĵ(σ) := Ĵ1(σ) + Ĵ2(σ). (3.20)

We assume that ∇σĴ1(σ), given in (4.27) is Lipschitz continuous and the upper

bound for the Lipschitz constant is obtained using a backtracking search scheme,

which will be discussed later. Also, from (4.14), we have that Ĵ2(σ) is a continuous,

convex, and nondifferentiable functional. The formulation of proximal methods

depends, essentially, on the following lemma [86]

Lemma 3.4.1. Let Ĵ1 be differentiable with a Lipschitz continuous gradient with

Lipschitz constant L(Ĵ1). Then the following holds

Ĵ1(σ) ≤ Ĵ1(σ̃) +
〈
∇Ĵ1(σ̃), σ − σ̃

〉
+
L

2
∥σ − σ̃∥2, ∀σ, σ̃ ∈ Lad, (3.21)

for all L ≥ L(Ĵ1) > 0.

We note that L := L(Ĵ1) represents the smallest value of L such that (3.21)

holds true.

In a proximal scheme, one usually minimizes an upper bound of the objective

functional at each iteration, instead of minimizing the functional directly. From

Lemma 3.4.1, we obtain the following

min
σ∈Lad

{
Ĵ1(σ) + Ĵ2(σ)

}
≤ min

σ∈Lad

{
Ĵ1(σ̃) +

〈
∇Ĵ1(y), σ − σ̃

〉
+
L

2
∥σ − σ̃∥2 + Ĵ2(σ)

}
,

where equality holds if σ = σ̃. Furthermore, we have the following equation

argmin
σ∈Lad

{
Ĵ1(σ̃) +

〈
∇Ĵ1(σ̃), σ − σ̃

〉
+
L

2
∥σ − σ̃∥2 + Ĵ2(σ)

}
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= argmin
σ∈Lad

{
L

2

∥∥∥∥σ − (σ̃ − 1

L
∇Ĵ1(σ̃)

)∥∥∥∥2 + Ĵ2(σ)

}
. (3.22)

Using the definition of Ĵ2(σ) = γ∥σ∥L1(Ω), we have the following lemma from

[99] that helps in characterizing the solution of (3.22).

Lemma 3.4.2. The following equation holds

argmin
σ∈Lad

{
τ∥σ∥L1 +

1

2
∥σ − σ̃∥2

}
= SLad

τ (σ̃) for any σ̃ ∈ L2(Ω),

where the left-hand side represents the proximal function and the projected soft

thresholding function on the right-hand side is defined as follows

SLad
τ (σ̃) :=


min{σ̃ − τ, σu} on {(x, y) ∈ Ω : σ̃(x, y) > τ}

0 on {(x, y) ∈ Ω : |σ̃(x, y)| ≤ τ}

max{σ̃ + τ, σl} on {(x, y) ∈ Ω : σ̃(x, y) < −τ}

. (3.23)

Using this lemma, the solution to (3.22) is given by

argmin
σ∈Lad

{
Ĵ2(σ) +

L

2

∥∥∥∥σ − (σ̃ − 1

L
∇Ĵ1(σ̃)

)∥∥∥∥2
}

= SLad
γ
L

(
σ̃ − 1

L
∇Ĵ1(σ̃)

)
.

This gives rise to the following iterative scheme

σk+1 ← SLad
γ
L

(
σk −

1

L
∇Ĵ1(σk)

)
,

starting from a given σ0 and is known as the iterative shrinkage-thresholding algorithm

(ISTA) scheme [99]. We note that the argument of SLad
γ
L

represents a gradient update

in a steepest descent scheme with a fixed step size s = 1/L in conjunction with a

regularized PM filter [86]. Further, to accelerate the ISTA scheme described above,

one can consider a sequence {tk, vk} [99, 100] such that

t0 = 1, tk := 1 +
√

1 + 4t2k−1/2, (3.24)
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and

v0 := σ0, vk := σk +
(tk−1 − 1)

tk
(σk − σk−1). (3.25)

This gives us the following update for the optimization variable σk

σk+1 ← SLad
γ
L

(
vk −

1

L
∇Ĵ1(vk)

)
. (3.26)

Replacing vk in (4.41) with (4.39), and assuming that ∇Ĵ1(σk) ≈ ∇Ĵ1(vk), we

obtain the following iterative scheme [100]

σk+1 ← SLad
γ sk

(
σk − sk∇σĴ1(σk) + θk (σk − σk−1)

)
, (3.27)

where σ−1 = σ0.

The above discussion is valid for any L ≥ L(Ĵ1). However, since the quantity

s = 1/L represents the step size in a gradient update, we use a backtracking line

search algorithm to determine the optimal step size in each iteration. This leads to

the computation of an upper bound Lk that satisfies Lk ≥ L(Ĵ1) at each iteration

step. Thus, we define our variable step size as sk = 1/Lk and substitute τ in (3.23)

with γsk. The variable step size causes the factor (tk−1−1)

tk
in (4.39) to be non-optimal

and we replace it by the fixed inertial parameter θ. This leads to a variable inertial

proximal (VIP) scheme, which is described in Algorithm ??.

With our VIP scheme, we aim at determining an optimal σ ∈ Lad ⊂ H1
0 (Ω).

But in the update step of the algorithm, we have the argument of the thresholding

function SLad
γ
L

as σk − sk∇σĴ1(σk). The term ∇σĴ1(σk) is only in L2(Ω) and the

resulting update gives us the argument of SLad
γ
L

in L2(Ω), which is not desired. We,

thus, use the H1 gradient instead of the L2 gradient, which are related by the equation

((∇σĴ1)H1 , v)H1(Ω) = (∇σĴ1, v)L2(Ω) for all v ∈ H1(Ω). But such a H1 gradient results

in a highly diffused σ with blurred edges. We, instead, consider a weighted H1 product
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that represents a suitable denoising of the ∇σĴ1(σ). We apply the denoising operator

R(c) = (I − c∆)−1 with a small denoising parameter c (we take c = 10−3) and define

(∇σĴ1)H1 = R(c)∇σĴ1. Note that a higher value of c results in a greater blurring of

the edges along with noise removal. On the other hand, since the PM term in the

functional J promotes better resolution with edge-enhancement, we choose the value

of c in proportion to the weight η of the PM functional term (we choose η = 10−2).

We summarize the variable inertial proximal (VIP) scheme for our CDII-SR

setup in algorithm below

Variable inertial proximal (VIP) method

1. Input: β, Ĵ1, σ0 = σ−1, Lad, TOL, n > 1, L0 > 0

Initialize: E0 = 1, k = 0, choose θ ∈ (0, 1) and c1 < 2 and c2 > 0;

2. While∥Ek−1∥ > TOL do

3. Compute ∇σĴ1(σk)

4. Backtracking: Find the smallest nonnegative integer i such that with

L̃ = niLk−1

Ĵ1(σ̃) ≤ Ĵ1(σk) +
〈
∇σĴ1(σk), σ̃ − σk

〉
+
L̃

2
∥σ̃ − σk∥2

where σ̃ = SLad
γ s

(
σk − s (∇σĴ1)H1(σk) + θ(σk − σk−1)

)
, s = c1(1 − θ)/(L̃ +

2c2),

5. Set Lk = L̃ and sk = c1(1− θ)/(Lk + 2c2).

6. σk+1 = SLad
γ sk

(
σk − sk (∇σĴ1)H1(σk) + θ(σk − σk−1)

)
7. µk = −ασk − (∇σĴ1)H1(σk)

8. Ek = E(σk, µk)

9. k = k + 1

10. end
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In the VIP algorithm, we need to compute the reduced gradient ∇σĴ1. This, in

turn, requires an accurate numerical solution of the forward and the corresponding

adjoint EIT problems as given in Proposition 4.3.10. For the forward EIT equation

(3.1), we use the cell-nodal finite-difference approximation. We consider a sequence

of uniform grids {Ωh}h>0 given by

Ωh = {(xi, yj) ∈ R2 : (xi, yj) = (a+ ih, a+ jh), (i, j) ∈ {0, . . . , N}2} ∩ Ω,

where N represents the number of cells in each direction and h =
(b− a)
N

is the mesh

size. The corresponding cell-nodal scheme for (3.1), at the grid point (xi, yj), is given

as follows

1

h2

{
(eσi+1/2,j + eσi−1/2,j + eσi,j+1/2 + eσi,j−1/2)ui,j

− eσi+1/2,jui+1,j − eσi−1/2,jui−1,j − eσi,j+1/2ui,j+1 − eσi,j−1/2ui,j−1

}
= 0, 1 ≤ i, j ≤ N − 1,

(3.28)

where σi±1,j = σ(xi ± h, yj), σi,j±1 = σ(xi, yj ± h). The required intermediate values

of σ are computed as follows

σi±1/2,j =
1

2

(
σi±1,j + σi,j

)
and σi,j±1/2 =

1

2

(
σi,j±1 + σi,j

)
.

The Dirichlet boundary data fD is included in the usual way in the right-hand side

of the algebraic equation.

For the adjoint equations (4.28) and (4.29), we first note that the cell nodal

finite difference scheme is not applicable to the right-hand side term in both the

equations as they are of the form G = ∇ · F , where F is in L2(Ω). We modify the

cell nodal scheme by replacing the nodal value of G at (xi, yj) with a cell average of

G given as follows

Ga =
1

h2

∫
Cij

G(x, y) dxdy,
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where the cell Cij is defined by

Cij :=

(
xi −

h

2
, xi +

h

2

)
×
(
yj −

h

2
, yj +

h

2

)
, 1 ≤ i, j ≤ N − 1.

Since G = ∇ · F , using the divergence theorem we have

Ga =
1

h2

∫
Cij

∇ · F (x, y) dxdy =
1

h2

∫
∂Cij

F (x, y).n ds

The above integral can be approximated with a midpoint quadrature rule along each

edge of Cij. This results in the following approximation

Ga =
F 1
i+1/2,j − F 1

i−1/2,j

h
+
F 2
i,j+1/2 − F 2

i,j−1/2

h
,

where F = (F 1, F 2).

3.5 Numerical experiments

In this section, we validate our CDII-SR framework using different experiments

that validate the choice of different features in our formulation and demonstrate its

effectiveness in reconstructing a wide variety of objects. We choose the two boundary

conditions as f 1
D = x, f 2

D = y on Γ, which is the boundary of Ω = (−1, 1)× (−1, 1).

The weights in the functional (3.2) are chosen as follows: α1 = α2 = 1.0, β = 0.3,

γ = 0.01, δ = 0.01. The value of the denoising parameter is c = 0.001. The parameters

of our VIP scheme are chose as θ = 0.5, c1 = 1.9, c2 = 0.001, TOL = 10−4 with the

maximum number of iterations as 20. Even though there is a specified tolerance for

the termination of the algorithm, due to the high non-linearity of the problem, our

VIP scheme terminates due to the maximum number of iterations.

In all the experiments, the domain Ω is uniformly discretized into N = 150

subintervals in both the x and y directions with h = 0.013. The generation of the

synthetic interior electric field data Hδ is done as follows: we first solve for u in (3.1)
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with given value of σ on a finer mesh with N = 400 using the finite difference method

outlined in Section 3.4. Then, we compute ∇u with one-sided finite differences to

obtain Hδ on the finer mesh. In the final step, we restrict the obtained Hδ onto the

coarser mesh with N = 150 and choose this as our given data to which we also add

noise in some of the experiments.

In Test Case 1, we consider a disk phantom for σ that is represented by a disk

centered at (0.25, 0.25) with radius 0.25. The value of σ inside the disk is 1 with the

background value chosen as 0. The plots of the actual σ and the reconstructed σ are

shown in Figure 4.1.
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(a) Actual phantom
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(b) Reconstruction without any regular-
ization; β = γ = δ = 0
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(c) Reconstruction with L2−L1 regular-
ization only
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(d) Reconstruction with L2−L1 regular-
ization and denoising; no PM regulariza-
tion
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(e) Reconstruction with L2−L1 regular-
ization, denoising and PM regularization
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(f) Reconstruction with Picard algorithm
in [28]

Figure 3.1: Test Case 1- The actual and reconstructed disk with different choices of
the values of the regularization weights.
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Figure 3.1b shows the reconstruction of σ ∈ Lad without any regularization

terms, i.e. β = γ = δ = 0 and no denoising, i.e., c = 0. Presence of strong artifacts

can be observed in this case, which is inherent to the inverse problem and not the

algorithm. A study of the pattern of such artifacts are very challenging and is out of

the scope of the paper.

Figure 3.1c shows the result of CDII-SR reconstruction without the denois-

ing and the Perona-Malik regularization term, c = δ = 0, but with the L2 − L1

regularization. We observe that the artifacts are reduced to some extent, but are

still present. Figure 3.1d shows the reconstruction with the L2 − L1 regularization

and the H1 denoising but without the PM filter. In this case, we observe that the

artifacts diminish by a huge amount, but the edges are more blunt and the value of

σ is lowered, leading to a loss of resolution and contrast. We correct this loss using

the PM regularization term as can be observed in Figure 3.1e, where the edges are

fairly well seen and the recovered parameter values are very close to the true ones.

We also compare our results with the reconstruction in Figure 3.1f obtained with the

Picard algorithm proposed in [28]. We observe a lot of artifacts and a significant loss

of contrast in Figure 3.1f in comparison to the reconstruction shown in Figure 3.1e,

which suggests that our CDII-SR scheme outperforms the Picard scheme.

In Test Case 2, we consider the heart and lung phantom for the true σ. It

consists of two ellipses representing lungs with the value is 1 and a circular region

representing the heart with the value is 0.5. The background value of σ = 0. The

plots of the actual σ and the reconstructed σ are shown in Figure 3.2
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(b) Reconstruction with Picard algo-
rithm in [28]
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(c) Reconstruction using CDII-SR
scheme
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(d) Reconstruction using CDII-SR
scheme with 10% Gaussian noise

Figure 3.2: Test Case 2- The actual and reconstructed heart and lung phantom with
and without noisy data.

We see from Figure 3.2c that our CDII-SR algorithm results in reconstruction

of σ with high resolution. Moreover, the values of the reconstructed σ are very close

to the true values, with the background value exactly equals to 0, which implies a

high contrast reconstruction. We further compare our results to the Picard algorithm

proposed in [28]. The corresponding reconstruction is shown in Figure 3.2b. It can

be seen that the CDII-SR provides a better contrast image, yet maintaining the same

resolution as that of the Picard scheme. Also, there are far more artifacts through the

Picard reconstruction method whereas the sparsity assumption and the H1 denoising
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in CDII-SR scheme results in an image with very less artifacts. Further, to test the

robustness of our method, we introduce 10% multiplicative Gaussian noise in the

interior data Hδ, which is fed as input to our CDII-SR algorithm. The corresponding

reconstruction is shown in Figure 3.2d, which again possesses high contrast and high

resolution, demonstrating that the CDII-SR algorithm is robust even in the presence

of noisy data.

In Test Case 3, we consider a more generalized form of the heart and lung

phantom. The heart is represented by a cardioid with the value of σ = 0.5. The two

lungs are represented by “boomerangs” with the value of σ = 1.0. The plots of the

actual and the reconstructed σ are shown in Figure 3.3.
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(b) Reconstruction using CDII-SR
scheme

Figure 3.3: Test Case 3- The actual and reconstructed modified heart and lung
phantom.

We again note good quality reconstructions, specially at the corners of the

phantom, which demonstrates the effectiveness of the CDII-SR scheme for irregular

shaped phantoms.

In Test Case 4, we consider a combination of phantoms, where one is supported

on a square annulus Sa = {(x, y) ∈ R2 : −0.8 < x < −0.7,−0.2 < x < −0.1,−0.8 <
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y < −0.7,−0.2 < y < −0.1} with σ = 3.0; the other one consists of 2 disks centered

at (0.7, 0.7) with radius 0.2 and σ = 1.0 and at (0.55, 0.55) with radius 0.15 and

σ = 2.0. The value of σ inside the square annulus has a value -2.0. The plots of the

actual and the reconstructed σ is shown in Figure 3.4
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(b) Reconstruction with Picard algo-
rithm in [28]
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(c) Reconstruction using CDII-SR
scheme
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(d) Reconstruction using CDII-SR
scheme with 10% Gaussian noise

Figure 3.4: Test Case 4- The actual and reconstructed mixed phantom with and
without noisy data.

Figure 3.4c shows the reconstruction with the CDII-SR algorithm. We compare

the results, as shown in Figure 3.4b, obtained with the Picard algorithm in [28] and

note that the CDII-SR scheme results in a superior contrast image while preserving

the same resolution. It should also be noted that the value inside the square annulus is
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recovered to be close to the actual negative value and the background is obtained to be

exactly 0 due to the sparsity assumption, which suggests that the CDII-SR algorithm

is robust and more effective in reconstructing objects with holes and inclusions. We

observe similar features in the reconstruction even in the presence of 10% Gaussian

noise in the interior data as shown in Figure 3.4d.

3.6 Conclusions

In this chapter, we propose a new framework to facilitate high contrast and

high resolution reconstructions in CDII. Our framework is based on formulating

the CDII inverse problem as a PDE-constrained optimization problem, where we

minimize an objective functional comprising of least square interior data fitting terms

corresponding to two boundary voltage measurements, a L1 penalization term of the

log-conductivity that helps promotes sparsity patterns and a PM filtering term to

sharpen the edges.
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CHAPTER 4

Sparsity-based nonlinear reconstruction of optical parameters in

two-photon photoacoustic computed tomography

4.1 Introduction

1 The mathematical formulation of 2P-PACT was first introduced in [44, 45],

where the authors consider an optically absorbing and scattering medium Ω ⊂ Rn (n ≥

2). Denoting the density of photons at a point x ∈ Ω as u(x), it was shown that u(x)

solves the following semi-linear diffusion equation

−∇ · (D(x)∇u(x)) + σ(x)u(x) + µ(x)|u(x)|u(x) = 0, in Ω,

u(x) = g(x), on ∂Ω,

(4.1)

where D(x) denotes the diffusion coefficient, σ(x) and µ(x) represent the single-

photon and the two-photon absorption coefficients respectively, and the function g(x)

is the illumination pattern on the boundary ∂Ω. The term µ(x)|u(x)| is the total

two-photon absorption coefficient, where the absolute value of u is taken to ensure

that the total two-photon absorption coefficient is non-negative [45].

The medium Ω heats up due to absorption of some portion of incoming photons

that results in thermal expansion of the medium. The medium cools down after

photons leave the medium and this results in contraction of the medium, which

gives rise to acoustic waves. This effect is known as the photoacoustic effect. This

1The content of this chapter has taken from [101], Gupta, M., Mishra, R. K., and Roy, S. (2021).

Sparsity-based nonlinear reconstruction of optical parameters in two-photon photoacoustic computed

tomography. Inverse Problems, 37(4), 044001.
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photoacoustic effect generates an acoustic wave pressure field Hσ,µ is given by (see

[31, 102])

Hσ,µ(x) = Γ(x) [σ(x)u(x) + µ(x)|u(x)|u(x)] , for x ∈ Ω, (4.2)

where Γ is the Grüneisen coefficient that determines the efficiency of the photoacoustic

effect. The aim is to recover the optical properties of the medium Ω from the measured

acoustic wave signals on the surface of the medium. In this process, the first step

involves the recovery of the initial acoustic wave pressure field Hσ,µ from measured

data, as usually done in a standard PAT. In the second step of 2P-PACT, the goal

is to reconstruct the optical coefficients D, σ, µ and Γ from the information of

internal data Hσ,µ. This step is usually known as the quantitative step. Recently,

the experimental aspect of 2P-PACT have been studied by several authors and it

has been shown that the effect of two-photon absorption can be measured accurately,

we refer to [42, 43, 47, 103, 104, 105] for detailed discussions. Thus, we assume that

the first step in the 2P-PACT process has been accomplished to obtain the initial

acoustic wave pressure field Hσ,µ. For the second step of recovery of the optical

coefficients, detailed mathematical and numerical analysis has been done in very few

works [44, 45, 106]. It has been shown in [45] that simultaneous reconstruction of

all the four coefficients D, σ, µ,Γ is not possible. In [44, 45], the authors show that

given D,Γ, one of σ and µ can be reconstructed with internal data corresponding

to one boundary illumination pattern and reconstruction of both coefficients require

two sets of internal datum. The authors also present two reconstruction algorithms

for reconstructing σ, µ.

There are three major drawbacks of the existing reconstruction algorithms

for 2P-PACT: First, four sets of internal datum are used for reconstructing two

coefficients. While this gives better reconstructions, it is not conforming with the
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theoretical requirement of only two sets of internal datum. Secondly, in the presence

of 5% noise in the data, the reconstructions of µ exhibit severe artifacts. Thirdly,

there is no evidence of the algorithms performing well to reconstruct complex objects

with high contrast such as holes and inclusions. In this article, we aim at using a

robust computational framework that has the ability to provide high contrast and

high resolution reconstructions of objects with holes and inclusions. The framework

is based on a non-linear PDE-constrained optimization technique, developed recently

[107, 108, 86] to study the aforementioned hybrid inverse problem for 2P-PACT. We

start by formulating a minimization problem where we aim to determine σ and µ given

the interior acoustic wave pressure field Hσ,µ. Additionally, we also assume that the

variations in the values of absorption coefficients from known background absorption

coefficients demonstrate sparsity patterns. These patterns arise frequently in several

tomographic imaging scenarios, for e.g. in blood vessel tomographic reconstructions

[109]. One could use a Total Variation (TV) regularization for sparse reconstructions

and denoising. However, though TV regularization is more appropriate for piecewise

smooth patterns, for general objects like blood vessels, where optical coefficients

are not piecewise constants, L1 regularization has been observed to outperform TV

regularization for obtaining sparsity (for e.g. see [110]). Thus, sparsity is incorporated

in our model through an L1 regularization term in our objective functional. An H1

regularization term is also introduced in the functional that helps reducing artifacts.

We provide a comprehensive theoretical analysis of our optimization framework. We

provide a new proof for the existence of solutions of (4.1) with higher regularity, under

the assumption that g ≥ 0, using a fixed point approach. We also prove the existence

of minimizers of our minimization problem. We solve the optimization problem using

a variable inertial proximal scheme that efficiently handles the non-differentiable

L1 regularization term in the objective functional. Finally, we demonstrate the
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applicability of our reconstruction approach by implementing scheme to several

examples.

The chapter is organized as follows: In Section 4.2, we formulate the minimiza-

tion problem for the 2P-PACT reconstruction problem. In Section 4.3, we present

some theoretical results about our optimization problem and we also characterize

the optimality system. The numerical schemes to solve the forward problem and

the optimization problem are discussed in Section 4.4. In Section 4.5, we present

simulation results of our 2P-PACT framework. A section on conclusions completes

our work.

4.2 A minimization problem

In this section, we describe the minimization problem corresponding to the

2P-PACT reconstruction problem. We assume Ω to be bounded domain in R2. The

authors in [45] show that, under the assumptions of the boundary function g ≥ 0,

there exists a non-negative solution u of (4.1) in H1
g (Ω). Since g represents the density

of photons, g is non-negative. Therefore, instead of the photon propagation equation

(4.1), we consider the following boundary value problem

−∇ · (D(x)∇u(x)) + σ(x)u(x) + µ(x)u2(x) = 0, in Ω,

u(x) = g(x) on ∂Ω
(4.3)

as the model for photon propagation in Ω. We assume that the diffusion coefficient

D ∈ W 1,∞(Ω) is known. Throughout the chapter, we assume that the absorption

coefficients σ and µ belong to the function spaces Lσ
ad and Lµ

ad respectively, where

Lσ
ad = {q(x) ∈ H1(Ω) : aσ ≤ q(x) ≤ bσ, ∀x ∈ Ω, aσ, bσ > 0},

Lµ
ad = {q(x) ∈ H

1(Ω) : aµ ≤ q(x) ≤ bµ, ∀x ∈ Ω, aµ, bµ > 0}.
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Then the aim is to recover both absorption coefficients σ and µ from the knowledge of

two sets boundary illumination functions g1, g2 and the corresponding initial acoustic

wave pressure field Hσ,µ
1 ,Hσ,µ

2 , where

Hσ,µ(x) = Γ(x)
[
σ(x)u(x) + µ(x)u2(x)

]
, for x ∈ Ω. (4.4)

For a known diffusion coefficient D, the equation (4.1) can be represented as follows

L(u, σ, µ, g) = 0. (4.5)

We will use an optimization based approach to reconstruct the coefficients σ(x) and

µ(x). We start by defining the following cost functional

J(σ, µ, u1, u2) =
2∑

j=1

αj

2
∥Hσ,µ

j −Gδ
j∥2 +

ξ1
2
∥σ − σb∥2H1(Ω) +

ξ2
2
∥µ− µb∥2H1(Ω)

+ γ1∥σ − σb∥L1 + γ2∥µ− µb∥L1 ,

(4.6)

where u1, u2 satisfy (4.1) with boundary source functions g1, g2 respectively, σb, µb are

known background absorption coefficients and Gδ
j , j = 1, 2 are the (possibly noisy)

measured initial acoustic wave pressure fields.

We now consider the following constrained minimization problem associated to

the above cost functional

min
σ,µ

J(σ, µ, u1, u2), (4.7)

s.t. L(u1, σ, µ, g1) = 0, (4.8)

L(u2, σ, µ, g2) = 0. (P)

The first term in the functional (4.6) represents a least-square data fitting term for

obtaining σ, µ such that Hσ,µ
j ≈ Gδ

j , j = 1, 2. The regularization terms ∥σ − σb∥L1

and ∥µ − µb∥L1 in the above functional (4.6) implement L1 regularization of the

minimization problem that helps promote sparsity patterns in the reconstruction of
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absorption coefficients. The use of such L1 regularization terms has been shown to

obtain high contrast in the reconstructions [108, 86]. The H1 regularization terms

∥σ−σb∥2H1 and ∥µ−µb∥2H1 help in denoising and removal of artifacts, thus, promoting

high resolution.

4.3 Theory of the minimization problem

In this section, we analyze the existence of a solution to the minimization

problem (4.7) and, further, characterize this solution through a first-order optimality

system. We refer to this minimization problem as the 2P-PACT sparse reconstruction

problem (2PPACT-SR). We begin our discussion with the analysis of the solution

of (4.3). The existence of solution u ∈ H1
g (Ω) for the boundary value problem (4.3)

has been established in [45] under the assumptions that the coefficients D, σ, µ are

bounded above and below by some positive constants and the boundary function

g is the restriction of a continuous function φ ∈ C0(Ω̄). The authors also showed

the existence of a regular solution u ∈ H3
g (Ω) under extra assumptions D, σ, µ are in

H1(Ω) and g comes from φ ∈ C3(Ω̄). Further, the authors show that u is non-negative

corresponding to a non-negative boundary function g is non-negative.

To prove the existence of minimizer of (4.6), we need u ∈ H2(Ω). For this

purpose, we impose weaker assumptions on the coefficients of (4.3) and boundary

function g compared to the assumptions used in [45]. We present a new proof to the

existence and uniqueness of solution u ∈ H2(Ω) for the boundary value problem (4.3).

We first recall the following well known fixed point theorem, for reference see [111,

Theorem 4, Section 9.2].
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Theorem 4.3.1 (Schaefer’s Fixed Point Theorem). Suppose A : X −→ X is a

continuous and compact mapping. Assume further that the set

{u ∈ X : u = λA[u] for some 0 ≤ λ ≤ 1}

is bounded. Then A has a fixed point.

The following theorem gives the existence and uniqueness of solution u ∈ H2(Ω)

of (4.3).

Theorem 4.3.2. Let Ω be a bounded domain in R2. Assume D(x) ∈ W 1,∞(Ω),

(σ(x), µ(x)) ∈ Lσ
ad × Lµ

ad and g ∈ H3/2(∂Ω) are given. Then the boundary value

problem (4.3) has a unique solution u in H1
0 (Ω) ∩ L4(Ω). Further, any weak solution

u of (4.3) is also a strong solution, that is, u ∈ H2(Ω).

Proof. In order to solve above equation (4.3), we start by reducing it to a homogeneous

boundary value problem by putting u = v+φ, where φ ∈ H2(Ω) is a possible extension

of g from boundary ∂Ω to whole Ω. Then, we can verify that the function v satisfies

the equation:

−∇ · (D(x)∇v(x)) + ϑ(x)v + µ(x)v2 = f(x), in Ω, (4.9)

v(x) = 0, on ∂Ω. (4.10)

where ϑ = σ + 2µφ and f = ∇ · (D(x)∇φ)− σφ− µφ2.

For a given v ∈ H1
0 (Ω) ∩ L4(Ω), define

F (x) := −µ(x)v2(x) + f(x).

Using conditions on φ, D, σ and µ together with v ∈ L4(Ω), we see F ∈ L2(Ω).

Hence there exists a unique w ∈ H1
0 (Ω) (dependent on v) satisfying the following

linear boundary value problem, see [112, Chapter 9] and [113, Chapter 3, Section 7]

−∇ · (D(x)∇w(x)) + ϑ(x)w(x) = F (x), in Ω,
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w(x) = 0, on ∂Ω

with the estimate

∥w∥H2(Ω) ≤ C∥F∥L2(Ω)

for some constant C (dependent only on coefficient functions and the domain Ω).

This motivates us to define the the operator A : H1
0 (Ω) ∩ L4(Ω) → H1

0 (Ω) ∩ L4(Ω)

given by A[v] = w, where w and v are related in the same manner as above. Further,

we have

∥A[v]∥H2(Ω) ≤ C∥F∥L2(Ω) ≤ C
(
∥v∥L4(Ω) + ∥f∥L2(Ω)

)
. (4.11)

Note that any fixed point of A will solve (4.3) which means to obtain a solution of

(4.3) it is enough to verify the conditions of Theorem 4.3.1 for A, i.e., we need to

show that the operator A is continuous, compact and the set {v ∈ H1
0 (Ω) ∩ L4(Ω) :

v = λA[v] for some 0 ≤ λ ≤ 1} is bounded.

To show continuity of A, let us start with a sequence

vk → v, in H1
0 (Ω) ∩ L4(Ω)

then by the inequality (4.11), we have

sup
k
∥wk∥H2(Ω) <∞, where wk = A[vk], for k = 1, . . .

Thus there is a subsequence {wkj}∞j=1 and a function w ∈ H1
0 (Ω) ∩ L4(Ω) with

wkj → w, in H1
0 (Ω) ∩ L4(Ω).

Now, ∫
Ω

(
D(∇wkj · ∇χ) + ϑwkjχ

)
dx = −

∫
Ω

(
µv2kjχ− fχ

)
dx, ∀χ ∈ H1

0 (Ω).
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Taking the limit kj →∞ we get∫
Ω

(D(∇w · ∇χ) + ϑwχ) dx = −
∫
Ω

(
µv2χ− fχ

)
dx, ∀χ ∈ H1

0 (Ω).

Hence w = A[v]. This shows the continuity of A. The compactness of A also follows

by a similar argument, indeed if {vk} is a bounded sequence in H1
0 (Ω) ∩ L4(Ω), the

estimate (4.11) shows {A[vk]}∞k=1 is bounded in H2(Ω) and hence possess a strongly

convergent subsequence. The only thing remains to prove is the boundedness of the

set:

Y =
{
v ∈ H1

0 (Ω) ∩ L4(Ω) : v = λA[v] for some 0 ≤ λ ≤ 1
}
.

Let v ∈ H1
0 (Ω) ∩ L4(Ω) such that

v = λA[v], for some 0 ≤ λ ≤ 1.

Then v/λ = A[v] ∈ H2(Ω) ∩H1
0 (Ω) ∩ L4(Ω) and

−∇ · (D(x)∇v(x)) + ϑ(x)v(x) = −λµv2 + λf, a.e. in Ω.

Multiplying the above relation with v and integrating over Ω to get∫
Ω

D|∇v|2 + ϑ|v|2 = −
∫
Ω

λµv3dx+

∫
Ω

λfvdx

≤
∫
Ω

fvdx =

∫
Ω

(
1

ϵ
f

)
(ϵv) dx, for any ϵ > 0

≤ ϵ2

2

∫
Ω

v2dx+
1

2ϵ2

∫
Ω

f 2dx.

This gives ∫
Ω

D|∇v|2 +
(
ϑ− ϵ2

2

)
|v|2 ≤ 1

2ϵ2

∫
Ω

f 2dx.

Choose an ϵ > 0 such that
(
ϑ− ϵ2

2

)
is bounded below by positive constant. Using

this information together with the fact D is bounded below by a positive constant, we
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verified that the set Y is bounded. Hence by Schaefer’s Theorem 4.3.1, we conclude

that the operator A has a fixed point v ∈ H2(Ω) ∩H1
g (Ω) ∩ L4(Ω).

To show the uniqueness of the solution u, let u1 and u2 be two non-negative

solutions of the boundary value problem (4.3). Then w = u1−u2 satisfies the following

boundary value problem

−∇ · (D(x)∇w(x)) + σ(x)w(x) + µ(x)w(x)(u1(x) + u2(x)) = 0, in Ω,

w(x) = 0, on ∂Ω.

Multiplying above equation by w and integrating by part , we get∫
Ω

D(x)(∇w(x))2 + σ(x)w2(x) + µ(x)w2(x)(u1(x) + u2(x))dx = 0.

Since all coefficients are positive and solutions u1, u2 are non-negative therefore the

above relation entails w ≡ 0. This proves the uniqueness of solution for boundary

value problem (4.3).

Remark 11. The result in Theorem 4.3.2 ensures that the initial acoustic wave pressure

field Hσ,µ given by (4.4) belongs to L2(Ω) ∩ L4(Ω). Thus, the functional J given by

(4.6) is well-defined.

The solvability of the 2PPACT-SR inversion problem depends on the type of

Dirichlet boundary data gj, j = 1, 2. In this context, we have the following lemma

from [45]

Lemma 4.3.3 (Boundary data). Let gi, i = 1, 2 be two sets of boundary conditions

with gi > 0 and g1 − g2 > 0. Then u1 ̸= u2 almost everywhere in Ω and one can

uniquely reconstruct (σ, µ) from the two sets of initial acoustic wave pressure fields

Hσ,µ
i , i = 1, 2.
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Next, we state the following lemma about the Fréchet differentiability of the

mapping u(σ, µ) which will be needed later. For proof of this lemma, we refer to [45,

Proposition 2.5].

Lemma 4.3.4. The map u(σ, µ) defined by (4.1) is Fréchet differentiable with respect

to σ and µ as a mapping from Lσ
ad × L

µ
ad to H1

g (Ω).

Using Lemma 4.3.4, we introduce the reduced cost functional

Ĵ(σ, µ) = J(σ, µ, u1(σ, µ), u2(σ, µ)), (4.12)

where ui(σ, µ), i = 1, 2 denotes the unique solution of (4.5) given σ, µ and gi, i = 1, 2.

The constrained optimization problem (4.7) can be formulated as an unconstrained

one as follows

min
(σ,µ)∈Lσ

ad×Lµ
ad

Ĵ(σ, µ). (4.13)

We next investigate the existence of a minimizer to the 2PPACT-SR problem (4.7).

Proposition 4.3.5. Let g1, g2 ∈ H1/2(Ω). Then there exists a quadruplet (σ∗, µ∗, u∗1, u
∗
2) ∈

Lσ
ad × L

µ
ad ×H1

g1
(Ω)×H1

g2
(Ω) such that u∗i , i = 1, 2 are solutions to L(σ, µ, ui, gi) =

0, i = 1, 2 and (σ∗, µ∗) minimizes Ĵ in Lσ
ad × L

µ
ad.

Proof. We observe that Ĵ is bounded below. This implies there exists a minimizing

sequence (σm, µm) ∈ Lσ
ad × L

µ
ad. Since Ĵ is coercive in Lσ

ad × L
µ
ad, we have that the

sequence (σm, µm) is bounded. Since Lσ
ad × Lµ

ad is a closed subspace of a Hilbert

space, it is reflexive. Thus, the sequence (σm, µm) has a weakly convergent sub-

sequence (σml
, µml

) ⇀ (σ∗, µ∗). Consequently, the sequences ui(σml
, µml

) ⇀ u∗ in

H2(Ω) ⊂ H1
gi
(Ω), i = 1, 2. Due to the fact that H2(Ω) is compactly embedded

in H1
gi
(Ω), we have ui(σml

, µml
) → u∗ ∈ H1

gi
(Ω). Again, since H2(Ω) is compactly

embedded in L4(Ω), we additionally have ui(σml
, µml

)→ u∗ ∈ L4(Ω). We next aim

at showing that u∗ = u(σ∗, µ∗) ∈ H1
gi
(Ω). For this purpose, we consider the weak

formulation of the solution of (4.1). The first term in the weak formulation we
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need to consider is ⟨σml
ui(σml

, µml
), ψ⟩L2(Ω). By the preceding discussion, we have

⟨σml
ui(σml

, µml
), ψ⟩L2(Ω) → ⟨σ∗u∗i , ψ⟩L2(Ω). The second term we need to analyze is

⟨µml
u2i (σml

, µml
), ψ⟩L2(Ω). Since, µml

⇀ µ∗ in L2(Ω) and ui(σml
, µml

)→ u∗ ∈ L4(Ω),

we have ⟨µml
u2i (σml

, µml
), ψ⟩L2(Ω) → ⟨µ∗(u∗i )

2, ψ⟩L2(Ω).

Thus, (σ∗, µ∗, u∗i ) solves (4.1) with boundary condition gi and by continuity

of the map u(σ, µ), we have u∗ = u(σ∗, µ∗). Since Ĵ is sequentially weakly lower

semi-continuous, we have that (σ∗, µ∗, u∗1, u
∗
2) minimizes Ĵ in Lσ

ad × L
µ
ad ×H1

g1
(Ω)×

H1
g2
(Ω).

4.3.1 Characterization of local minima

To characterize the solution of our optimization problem through first-order

optimality conditions, we write the reduced functional Ĵ as follows

Ĵ = Ĵ1 + Ĵ2, Ĵi : L
σ
ad × L

µ
ad → R+, i = 1, 2,

where

Ĵ1(σ, µ) =
2∑

j=1

αj

2
∥Hσ,µ

j −Gδ
j∥2 +

ξ1
2
∥σ − σb∥2H1(Ω) +

ξ2
2
∥µ− µb∥2H1(Ω),

Ĵ2(σ, µ) = γ1∥σ − σb∥L1 + γ2∥µ− µb∥L1 .

(4.14)

Remark 12. The functional Ĵ1 is smooth and possibly non-convex, while Ĵ2 is non-

smooth and convex.

The following property can be proved using arguments in [114].

Proposition 4.3.6. The reduced functional Ĵ1(σ, µ) is weakly lower semi-continuous,

bounded below and Fréchet differentiable with respect to σ, µ.

Next, we are going to define the subdifferential of a non-smooth functional.
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Definition 4.3.1 (Subdifferential). If Ĵ is finite at a point (σ, µ), the Fréchet

subdifferential of Ĵ at (σ, µ) is defined as follows [96]

∂Ĵ(σ̄, µ̄) :=

{
ϕ ∈ (Lσ

ad × L
µ
ad)

∗ : lim inf
(σ,µ)→(σ̄,µ̄)

Ĵ(σ, µ)− Ĵ(σ̄, µ̄)− ⟨ϕ, (σ, µ)− (σ̄, µ̄)⟩
∥(σ̄, µ̄)− (σ, µ)∥2

≥ 0

}
,

(4.15)

where (Lσ
ad × L

µ
ad)

∗ is the dual space of Lσ
ad × L

µ
ad. An element ϕ ∈ ∂Ĵ(σ, µ) is called

a subdifferential of Ĵ at (σ, µ).

In our setting, we have the following

∂Ĵ(σ, µ) = ∇(σ,µ)Ĵ1(σ, µ) + ∂Ĵ2(σ, µ),

since Ĵ1 is Fréchet differentiable by Prop. 4.3.6. Moreover, for each α > 0, it holds

that

∂(αĴ) = α∂Ĵ.

The following proposition gives a necessary condition for a local minimum of Ĵ (see

[86]).

Proposition 4.3.7 (Necessary condition). If Ĵ = Ĵ1+ Ĵ2, with Ĵ1, Ĵ2 given by (4.14),

attains a local minimum at (σ∗, µ∗) ∈ Lσ
ad × L

µ
ad, then

0 ∈ ∂Ĵ(σ∗, µ∗),

or equivalently

−∇(σ,µ)Ĵ1(σ
∗, µ∗) ∈ ∂Ĵ2(σ∗, µ∗).

The following variational inequality holds for each λ ∈ ∂Ĵ2(σ∗, µ∗) (see [88]).

⟨∇Ĵ1(σ∗, µ∗) + λ, (σ, µ)− (σ∗, µ∗)⟩ ≥ 0, ∀(σ, µ) ∈ Lσ
ad × L

µ
ad. (4.16)

Using the definition of Ĵ2 in (4.14) and the fact that Lσ
ad × Lµ

ad is reflexive, the

inclusion λ ∈ ∂Ĵ2(σ∗, µ∗) gives the following characterization of space of λ

λ = (λ1, λ2), λi ∈ Λi
ad := {κ ∈ L2(Ω) : 0 ≤ κ ≤ γi, a.e. in Ω}, i = 1, 2.
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A pointwise analysis of the variational inequality (4.16) leads to the existence

of a non-negative functions λ∗i,a, λ
∗
i,b ∈ L2(Ω), i = 1, 2 that correspond to Lagrange

multipliers for the inequality constraints in Lσ
ad × L

µ
ad. We, thus, have the following

first-order optimality system.

Proposition 4.3.8 (First-order necessary conditions). The optimal solution of the

minimization problem (4.13) can be characterized by the existence of (λ∗1, λ
∗
2, λ

∗
1,a, λ

∗
2,a, λ

∗
1,b, λ

∗
2,b) ∈

(Λad)
2 × (L2(Ω))4 such that

∇σĴ1(σ
∗, µ∗) + λ∗1 + λ∗1,b − λ∗1,a = 0, (4.17)

∇µĴ1(σ
∗, µ∗) + λ∗2 + λ∗2,b − λ∗2,a = 0, (4.18)

λ∗1,b ≥ 0, b− σ∗ ≥ 0, ⟨λ∗1,b, b− σ∗⟩ = 0, (4.19)

λ∗1,a ≥ 0, σ∗ − a ≥ 0, ⟨λ1,a, σ∗ − a⟩ = 0, (4.20)

λ∗2,b ≥ 0, b− µ∗ ≥ 0, ⟨λ∗2,b, b− µ∗⟩ = 0, (4.21)

λ∗2,a ≥ 0, µ∗ − a ≥ 0, ⟨λ2,a, µ∗ − a⟩ = 0, (4.22)

λ∗1 = γ1 a.e. on {x ∈ Ω : σ∗(x) > 0}, (4.23)

λ∗2 = γ2 a.e. on {x ∈ Ω : µ∗(x) > 0}, (4.24)

0 ≤ λ∗1 ≤ γ1 a.e. on {x ∈ Ω : σ∗(x) = 0}, (4.25)

0 ≤ λ∗2 ≤ γ2 a.e. on {x ∈ Ω : µ∗(x) = 0}. (4.26)

The conditions (4.19)-(4.26) are known as the complementarity conditions for (σ∗, µ∗, λ∗1, λ
∗
2).

To determine the gradient ∇σĴ1,∇µĴ1, we use the adjoint approach (see for e.g.,

[97, 98]). This gives the following reduced gradients of Ĵ1

∇σĴ1(σ
∗, µ∗) =α1(Hσ∗,µ∗

1 −Gδ
1)Γu1 + α2(Hσ∗,µ∗

2 −Gδ
2)Γu2 + u1v1 + u2v2 + ξ1σ

∗

∇µĴ1(σ
∗, µ∗) =α1(Hσ∗,µ∗

1 −Gδ
1)Γu

2
1 + α2(Hσ∗,µ∗

2 −Gδ
2)Γu

2
2 + u21v1 + u22v2 + ξ2µ

∗

(4.27)
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where u1, u2 satisfy the forward equations L(u1, σ∗, µ∗, g1) = 0, L(u2, σ∗, µ∗, g2) = 0,

respectively, and v1, v2 satisfy the adjoint equations

−∇ · (D∇v1) + σ∗v1 + 2µ∗u1v1 = −α1Γ(σ
∗u1 + µ∗u21 −Gδ

1) · (σ∗ + 2u1) in Ω,

v1 = 0, on ∂Ω

(4.28)

−∇ · (D∇v2) + σ∗v2 + 2µ∗u2v2 = −α2Γ(σ
∗u2 + µ∗u22 −Gδ

2) · (σ∗ + 2|u2|) in Ω,

v2 = 0, on ∂Ω.

(4.29)

The complementarity conditions (4.19)-(4.26) can be rewritten in a compact form as

follows. Define

c∗1 = λ∗1 + λ∗1,b − λ∗1,a,

c∗2 = λ∗2 + λ∗2,b − λ∗2,a.
(4.30)

Then the triplets (λ∗1, λ
∗
1,a, λ

∗
1,b), (λ

∗
2, λ

∗
2,a, λ

∗
2,b) are obtained by solving the following

equations

λ∗i = min(γi,max(0, c∗i )),

λ∗i,a = −min(0, c∗i + γi),

λ∗i,b = max(0, c∗i − γi),

(4.31)

for i = 1, 2 (see [88]). For each k ∈ R+, define the following quantity

E1(σ
∗, c∗1) = σ∗ −max{0, σ∗ + k(c∗1 − γ1)}+max{0, σ∗ − b+ k(c∗1 − γ1)}

−min{0, σ∗ + k(c∗1 + γ1)}+min{0, σ∗ − a+ k(c∗1 + γ1)}.

E2(µ
∗, c∗2) = µ∗ −max{0, µ∗ + k(c∗2 − γ2)}+max{0, µ∗ − b+ k(c∗2 − γ2)}

−min{0, µ∗ + k(c∗2 + γ2)}+min{0, µ∗ − a+ k(c∗2 + γ2)}.

The following lemma determines the complementarity conditions (4.19)-(4.26) in

terms of E1, E2 (see [88, Lemma 2.2]).
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Lemma 4.3.9. The complementarity conditions (4.19)-(4.26) are equivalent to the

following

E1(σ
∗, c∗1) = 0 = E2(µ

∗, c∗2), (4.32)

where ci, i = 1, 2 are defined in (4.30).

Using the gradients in (4.27) and Lemma 4.3.9, the optimality conditions (4.28)-(4.26)

for the 2PPACT-SR problem can be rewritten as follows

Proposition 4.3.10. A local minimizer (u1, u2, σ
∗, µ∗) of the problem (4.7) can be

characterized by the existence of (v1, v2, c
∗
1, c

∗
2) ∈ H1

0 (Ω)×H1
0 (Ω)× Lσ

ad × L
µ
ad, such

that the following system is satisfied

−∇ · (D∇u1) + σ∗u1 + µ∗u21 = 0, in Ω,

u1 = g1, on ∂Ω,

−∇ · (D∇v1) + σ∗v1 + 2µ∗u1v1 = −α1Γ(σ
∗u1 + µ∗u21 −Gδ

1) · (σ∗ + 2u1) in Ω,

v1 = 0, on ∂Ω,

−∇ · (D∇u2) + σ∗u2 + µ∗u22 = 0, in Ω,

u2 = g2, on ∂Ω,

−∇ · (D∇v2) + σ∗v2 + 2µ∗u2v2 = −α2Γ(σ
∗u2 + µ∗u22 −Gδ

2) · (σ∗ + 2u2) in Ω,

v2 = 0, on ∂Ω,

α1(Hσ∗,µ∗

1 −Gδ
1)Γu1 + α2(Hσ∗,µ∗

2 −Gδ
2)Γu2 + u1v1 + u2v2 + ξ1σ

∗ = 0,

α1(Hσ∗,µ∗

1 −Gδ
1)Γu

2
1 + α2(Hσ∗,µ∗

2 −Gδ
2)Γu

2
2 + u21v1 + u22v2 + ξ2µ

∗ = 0,

E1(σ
∗, c∗1) = 0,

E2(µ
∗, c∗2) = 0.

(4.33)
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4.4 Numerical schemes for solving the 2PPACT-SR inverse problem

4.4.1 Picard type method to solve the forward problem

In this section we propose a Picard type iterative scheme to solve the semi-linear

boundary value problem (4.3). The algorithm is given as follows.

We now show the convergence of the Picard algorithm ?? to the solution of (4.1).

Picard-type algorithm

1. Input: Initial guess u0, D, σ, µ, g, N and TOL

Initialize: err0 = 1, k = 0

2. While errk > TOL and k < N do

3. Solve the following linear elliptic boundary value problem

−∇ · (D(x)∇uk+1(x)) + σ(x)uk+1(x) + µ(x)uk(x)uk+1(x) = 0, in Ω,

uk+1(x) = g(x), on ∂Ω

to get uk+1 for k ≥ 0

4. errk+1 = ∥uk+1 − uk∥2

5. k = k + 1

6. end

Theorem 4.4.1. Let D, σ, µ be non-negative functions in L∞(Ω) and g be non-

negative function in C0(∂Ω). Then the iterative sequence {uk}, we obtained from

the above Picard’s method, converges in H1(Ω) and the limit u is a solution of the

following semi-linear elliptic boundary value problem

−∇ · (D(x)∇u(x)) + σ(x)u(x) + µ(x)u2(x) = 0, in Ω,

u(x) = g(x), on ∂Ω.
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Proof. By completeness of H1(Ω) to show the convergence of sequence {uk} in H1(Ω),

we only need to show that the sequence {uk} is a Cauchy sequence in H1(Ω). To

achieve this goal, we will show the following contraction type relation for any k ≥ 1

∥uk+1 − uk∥H1(Ω) ≤ γ∥uk − uk−1∥H1(Ω) ≤ · · · ≤ γk∥u1 − u0∥H1(Ω), for some γ < 1.

We start with u2 and u1, recall from above Picard’s type algorithm ?? that the

iterates u1 and u2 satisfy the following two BVP’s respectively

−∇ · (D(x)∇u1(x)) + σ(x)u1(x) + µ(x)u0(x)u1(x) = 0, in Ω,

u1(x) = g(x), on ∂Ω.
(4.34)

−∇ · (D(x)∇u1(x)) + σ(x)u2(x) + µ(x)u1(x)u2(x) = 0, in Ω,

u2(x) = g(x), on ∂Ω.
(4.35)

Then by direct substitution, we see that the difference ū = u2 − u1 solves

−∇ · (D(x)∇ū(x)) + σ(x)ū(x) + µ(x)ū = µu2(u0 − u1), in Ω,

ū(x) = 0, on ∂Ω.

With the help of regularity estimates for elliptic boundary value problem, we get

∥ū∥H1(Ω) ≤ ∥ū∥H2(Ω) ≤ C∥µu2(u0 − u1)∥L2(Ω).

Consider the right hand side of the above inequality

∥µu2(u0 − u1)∥L2(Ω) =

(∫
Ω

|µ|2|u2|2|u0 − u1|2dx
) 1

2

≤ ∥µ∥L∞∥g∥L∞︸ ︷︷ ︸
C̃

∥(u0 − u1)∥L2(Ω).

Using this inequality, we have

∥u2 − u1∥H1(Ω) ≤ ∥u2 − u1∥H2(Ω) ≤ CC̃︸︷︷︸
γ

∥(u0 − u1)∥L2(Ω) ≤ γ∥(u0 − u1)∥H1(Ω).
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By exactly same argument, we get

∥uk+1 − uk∥H1(Ω) ≤ γ∥uk − uk−1∥H1(Ω).

Thus, we have the required relation

∥uk+1 − uk∥H1(Ω) ≤ γk∥(u0 − u1)∥H1(Ω).

We can make γ < 1 by choosing appropriate g and µ. Hence, the sequence {uk} is a

Cauchy sequence in H1(Ω) and hence converges to a limit u in H1(Ω). To complete

the proof of our theorem, the only thing remain to show is that u solve

−∇ · (D(x)∇u(x)) + σ(x)u(x) + µ(x)u2(x) = 0, in Ω,

u(x) = g(x), on ∂Ω.

We know each uk satisfies∫
Ω

D∇uk · ∇φdx+
∫
Ω

σukφdx+

∫
Ω

µuk−1ukφdx = 0, for all φ ∈ C∞
0 (Ω).

The convergence of uk −→ u in H1(Ω) implies the convergence ∇uk −→ ∇u in L2(Ω)

and the convergence σuk −→ σu in H1(Ω) as k → ∞. Additionally, the strong

convergence of {uk} in H1(Ω) will guarantee the weak convergence of uk−1uk ⇀ u2

in L2(Ω). Thus we have∫
Ω

D∇uk·∇φdx+
∫
Ω

σukφdx+

∫
Ω

µuk−1ukφdx −→
∫
Ω

D∇u·∇φdx+
∫
Ω

σuφdx+

∫
Ω

µu2φdx

for all φ ∈ C∞
0 (Ω). Therefore∫

Ω

D∇u · ∇φdx+
∫
Ω

σuφdx+

∫
Ω

µu2φdx = 0, for all φ ∈ C∞
0 (Ω).

This completes the proof of the theorem.

66



4.4.2 Variable inertial proximal method for solving the optimality system

For solving the optimality system (4.33), we use a class of iterative schemes

known as the proximal method. The fundamental idea behind a proximal scheme

is to minimize an upper bound of the objective function Ĵ1, and, thus, Ĵ , instead

of directly minimizing the functional. Assuming that the gradients of Ĵ , given in

(4.27) are Lipschitz continuous, the formulation of the proximal method depends on

the proximal operators SLσ
ad

γ1 (σ̃) and SLµ
ad

γ2 (µ̃), which are defined and characterized as

follows

argmin
σ∈Lσ

ad

{
γ1∥σ∥L1 +

1

2
∥σ − σ̃∥2

}
= SLσ

ad
γ1 (σ̃) for any σ̃ ∈ L2(Ω),

argmin
µ∈Lµ

ad

{
γ2∥µ∥L1 +

1

2
∥µ− µ̃∥2

}
= SLµ

ad
γ2 (µ̃) for any µ̃ ∈ L2(Ω),

where the left-hand sides represents the proximal functions corresponding to σ and µ,

respectively and the associated projected soft thresholding functions on the right-hand

side are defined as follows

SLσ
ad

γ1 (σ̃) :=


min{σ̃ − γ1, bσ} on {(x, y) ∈ Ω : σ̃(x, y) > γ1}

0 on {(x, y) ∈ Ω : |σ̃(x, y)| ≤ γ1}

max{σ̃ + γ1, aσ} on {(x, y) ∈ Ω : σ̃(x, y) < −γ1}

. (4.36)

SLµ
ad

γ2 (µ̃) :=


min{µ̃− γ2, bµ} on {(x, y) ∈ Ω : µ̃(x, y) > γ2}

0 on {(x, y) ∈ Ω : |µ̃(x, y)| ≤ γ2}

max{µ̃+ γ2, aµ} on {(x, y) ∈ Ω : µ̃(x, y) < −γ2}

. (4.37)

Using (4.36)-(4.37), we get the following iterative schemes

σk+1 ← SLσ
ad

γ1
Lσ

(
σk −

1

L
∇σĴ1(σk)

)
,
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µk+1 ← SLµ
ad

γ2
Lµ

(
µk −

1

L
∇µĴ1(µk)

)
,

starting from a given σ0, where L is the Lischitz constants for the gradient function

∇Ĵ1. The above schemes form the iterative shrinkage-thresholding algorithm (ISTA)

method. to accelerate the ISTA scheme described above, one can consider a sequence

{tk, vk} such that

t0 = 1, tk := 1 +
√

1 + 4t2k−1/2, (4.38)

and

vσ0 := σ0, vσk := σk +
(tk−1 − 1)

tk
(σk − σk−1), (4.39)

vµ0 := µ0, vµk := µk +
(tk−1 − 1)

tk
(µk − µk−1). (4.40)

This gives us the following update for the optimization variable σk

σk+1 ← SLσ
ad

γ1
Lσ

(
σk −

1

L
∇σĴ1(v

σ
k )

)
,

µk+1 ← SLµ
ad

γ2
Lµ

(
µk −

1

L
∇µĴ1(v

µ
k )

)
.

(4.41)

We note that the arguments of the proximal operators in (4.41) represents a gradient

step with fixed step size s = 1/L. Replacing vσk , v
µ
k in (4.41) with (4.39), and

assuming that ∇σĴ1(σk) ≈ ∇σĴ1(v
σ
k ) and ∇µĴ1(µk) ≈ ∇µĴ1(v

µ
k ), we obtain the

following iterative scheme

σk+1 ← SLσ
ad

γ1 s

(
σk − s∇σĴ1(σk) + θk (σk − σk−1)

)
,

µk+1 ← SLµ
ad

γ2 s

(
µk − s∇µĴ1(µk) + θk (µk − µk−1)

)
,

(4.42)

where µ−1 = µ0. The schemes given in (4.42) are known as the fast iterative shrinkage-

thresholding algorithm (FISTA) proximal gradient method.
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The computations done above are valid for any L ≥ L(Ĵ1). However, because the

quantity s = 1/L represents the step size in a gradient update, we use a backtracking

line search algorithm to determine the optimal step size in each iteration. We then

compute an upper bound Lk that satisfies Lk ≥ L(Ĵ1) at each iteration step. This

leads to the definition of the variable step size as sk = 1/Lk. The variable step size

causes the factor (tk−1−1)

tk
in (4.39) to be non-optimal and we replace it by the fixed

inertial parameter θ and, thus, the resulting scheme is known as Variable Inertial

Proximal Gradient Method (VIP) (see[108] for more detail). We summarize the VIP

scheme in the algorithm below

4.5 Numerical results

We first demonstrate the convergence of the Picard scheme given in Algorithm

?? for solving (4.1). We use the method of manufactured solutions to construct

an exact solution for (4.1) with a non-zero source term f(x1, x2) on the right hand

side. We set D(x1, x2) = 1.0, σ(x1, x2) = sin(x1) sin(x2), µ = 1. Further, we choose

Ω = (0, 1) × (0, 1). The boundary condition is given as g(x1, x2) = sin(x1) sin(x2)

and the right-hand side f(x1, x2) = 2 sin(x1) sin(x2) + 2(sin(x1) sin(x2))
2. With the

preceding choices of the parameters, the exact solution is given as uex = sin(x1) sin(x2).

The solution error is evaluated based on the following discrete L1 norm

∥u∥1 = h2
Nx∑

i,j=0

|ui,j|,

which we identify with L1
h. The discrete L1 error is defined as follows

Err = ∥u− uex∥1.

Table 4.1 shows the results of experiments that demonstrate the convergence of the

Picard algorithm. We see that the resulting order of convergence is O(h).
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Nx Err Order

25 1.70e-3 –
50 8.77e-4 0.96
100 4.39e-4 0.99
200 2.20e-4 1.00

Table 4.1: Convergence of the Picard algorithm given in Algorithm ??

We now present the results of numerical experiments obtained using the VIP

scheme to solve the 2PPACT-SR reconstruction problem. We choose our domain in

the experiments below as Ω = (−1, 1) × (−1, 1). We discretize Ω into 150 equally

spaced points in both x and y directions. The boundary illuminations for solving

(4.1) to generate two sets of initial acoustic wave pressure field data are chosen as

g1(x, y) = 1.0, g2(x, y) = 2.0. Such a choice of boundary conditions are consistent

with Lemma 4.3.3 that ensure unique solvability of the 2PPACT-SR reconstruction

problem. The range of the true values of σ and µ are chosen to lie in (0.1, 1.1)

and (0.01, 0.11), respectively, except for the vascular phantom in test case 4. While

these ranges are chosen for experimentation purposes, the ratio between the optical

coefficients are based on the true experiments done in [49, 115]. Thus, upto a

scaling factor, the chosen true values of the optical coefficients are similar to the

experimentally observed values. The background values σb and µb are chosen to be

0.1 and 0.01 respectively, unless otherwise mentioned and D is chosen to be 0.1σ

while generating the data with a known σ. For test case 4 with a brain vascular

phantom, we choose the range of the values of σ ∈ (0.1, 0.2), which is consistent with

the values for σ in brain blood vessels [116], and use the aforementioned ratios to set

the values of µ and D. The weights of the functional J given in (4.6) are chosen as

α1 = α2 = 1, ξ1 = 0.01, ξ2 = 0.01, γ1 = 0.1, γ2 = 0.1. We remark that large values of
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ξ1, ξ2 lead to smoothening of edges due to the presence of the H1 regularization term

whereas very small values lead to preservation of artifacts. Furthermore, large values

of γ1, γ2 also lead to greater sparsity patterns in the reconstructions whereas very

small values doesn’t help in removing the artifacts. Thus, the choices of the weights

are purely experimental and we have observed that with values of ξ1, ξ2 ∈ (0.005, 0.1)

and γ1, γ2 ∈ (0.01, 0.5), we obtain similar reconstructions. The value of the Grüneisen

coefficient is chosen to be 1.0. To generate the data Gδ
i , i = 1, 2, we first solve for ui

in (4.1) with given test values of σ, µ and boundary illumination data gi on a finer

mesh with N = 400 using the Picard iterative scheme given in Algorithm ??. We

then compute Gδ
i on the finer mesh using the values of σ, µ, ui from (4.4). Finally, we

restrict Gδ
i onto the coarser mesh with N = 150 and use this as our given data.

In test case 1, we consider a phantom represented by a disk centered at

(0.25, 0.25) and having radius 0.25. The value of σ inside the disk is .11 and outside

is 0.1. The corresponding value of µ inside the disk is 0.11 and outside is 0.01. With

this test case, we demonstrate the need for each of the regularization term in the

functional J . Further, we also validate the convergence of the VIP algorithm. The

results are shown in Figure 4.1.

Figures 4.1a and 4.1b represent the exact phantoms for σ and µ, respectively.

Figures 4.1d and 4.1g show the reconstructions without any regularization term

in the functional J in (4.6). We observe the presence of strong artifacts in the

reconstructions. With the H1 regularization, the artifacts are severely reduced as seen

in Figures 4.1e and 4.1h. One could choose a higher weight of the H1 regularization

term that would result in further removal of the artifacts. However, we observed that

in addition to artifact suppression, it also resulted in smoothing of the edges and loss

of contrast. The addition of the L1 regularization term circumvents this issue as seen
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in Figures 4.1f and 4.1i. We also see the O(1/k2) convergence of the relative error

using the VIP algorithm in Figure 4.1c.

(a) Exact σ (b) Exact µ

2 4 6 8 10 12 14

Iteration Number

10
-3

10
-2

10
-1

10
0

V
a
lu

e

Relative Error

O(1/k)

O(1/k2 )

(c) Convergence of the VIP al-
gorithm

(d) Reconstructed σ with ξ1 =
0, ξ2 = 0, γ1 = 0, γ2 = 0

(e) Reconstructed σ with ξ1 =
0.01, ξ2 = 0.01, γ1 = 0, γ2 =
0

(f) Reconstructed σ with VIP

(g) Reconstructed µ with ξ1 =
0, ξ2 = 0, γ1 = 0, γ2 = 0

(h) Reconstructed µ with ξ1 =
0.01, ξ2 = 0.01, γ1 = 0, γ2 =
0

(i) Reconstructed µ with VIP

Figure 4.1: Test Case 1-Reconstructions of the disk phantom with the 2PPACT-SR
framework
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In test case 2, we consider a heart lung phantom for both σ and µ. For σ,

the background value of the phantom is 0.1 that is perturbed into two ellipses that

represent the lungs with value 1.1 and into a disk representing heart with value 0.5.

The corresponding value of µ inside the ellipses is 0.11, in the disks is 0.05 and 0

elsewhere.The plots of the exact and the reconstructed phantoms are shown in Figure

4.2.

(a) Exact σ (b) Reconstructed σ (c) Reconstructed σ with 20%

(d) Exact µ (e) Reconstructed µ (f) Reconstructed µ with 20%
noise

Figure 4.2: Test Case 2-Reconstructions of the heart and lung phantom with the
2PPACT-SR framework

We again see from Figures 4.2b and 4.2e that the reconstructions of σ, µ are

of high contrast and high resolution. To test the robustness of our method, we

added 20% multiplicative Gaussian noise to the interior data Hσ,µ and use it for our

2PPACT-SR inversion algorithm. We also modify the value of the regularization
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parameters ξ1 = 0.1, ξ2 = 0.1, γ1 = 0.3, γ2 = 0.3, in order to counter the noisy data.

The results can be seen in Figure 4.2c and 4.2f. We see that the reconstruction

of σ contains a few artifacts but still is of good quality. The reconstruction of µ

demonstrates very little artifacts. This shows that our 2PPACT-SR reconstruction

framework is robust and accurate even in the presence of noisy data.

In test case 3, we consider σ as the Shepp-Logan phantom given in [117]. The

background σb is chosen to be 0.4 in this case. We compute µ = 0.1σ and the

background value of µb is chosen as 0.04. The plots of the exact and reconstructed

phantoms are shown in Figure 4.3.

(a) Exact σ (b) Reconstructed σ (c) Reconstructed σ with 20%
noise

(d) Exact µ (e) Reconstructed µ (f) Reconstructed µ with 20%
noise

Figure 4.3: Test Case 3-Reconstructions of the Shepp-Logan phantom with the
2PPACT-SR framework
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We again see from Figures 4.3b and 4.3e that the 2PPACT-SR reconstruction

framework gives superior quality reconstructions even for objects with high contrast

values and with holes and inclusions. The reconstructions with 20% noise in the

interior data are shown in Figures 4.3c and 4.3f with the modified regularization

parameter values as in the previous test case. We see that the reconstructions are

still of high quality with very less artifacts.

In the final test case, we consider a brain vascular phantom taken from [118].

The value of σ lies between 0.1 and 0.2 and the value of µ lies between 0.01 and 0.02.

The exact and the reconstructed phantoms are shown in Figure 4.4.

(a) Exact σ (b) Reconstructed σ

(c) Exact µ (d) Reconstructed µ

Figure 4.4: Test Case 4-Reconstructions of brain vascular phantom with the 2PPACT-
SR framework

Figures 4.4b and 4.4d demonstrates the capability of our 2PPACT-SR framework

to provided superior reconstructions in vascular imaging. Our method is able to
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capture the fine detail of the structures without loss of resolution or contrast. We

also tested the performance of our algorithm to provide reconstructions in presence

of different levels of noise in the interior data. The results are shown in Figure 4.5.

(a) Reconstructed σ with 5%
noise

(b) Reconstructed σ with 10%
noise

(c) Reconstructed σ with 20%
noise

(d) Reconstructed µ with 5%
noise

(e) Reconstructed µ with 10%
noise

(f) Reconstructed µ with 20%
noise

Figure 4.5: Test Case 4-Reconstructions of brain vascular phantom with the 2PPACT-
SR framework

Figures 4.5a-4.5c and 4.5d-4.5f show the reconstructions of the vascular phantom

in presence of 5%, 10% and 20% white multiplicative Gaussian noise in the interior

data. We observe that as the noise level increases, the artifacts, especially in the

reconstruction of σ, also increases. However, our algorithm is able to provide high

contrast and high resolution images for upto 10% noise. With 20% noisy data,

our algorithm still provided high contrast and high resolution images for µ but the

reconstruction of σ shows the presence of moderate speckled artifacts at the corner
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that reduces the resolution, but still has good contrast. This shows the robustness of

our algorithm, even in the presence of large noise in the data.

Remark 13. For the proposed nonlinear reconstruction framework, the underlying

assumption that has been used in the reconstruction procedure is the availability

of interior acoustic wave pressure field measurements in the whole of the domain Ω.

However, in practice, such measurements are limited and sparse due to the restriction

of the number of detectors that can be used. Thus, it is of paramount importance to

devise a computational algorithm for recovering the optical coefficients from sparse

interior data. For this purpose, we remark that in the part of the domain where

the sparse interior data can be obtained, multiple sets of such measurements are

available. Using this fact, one possible approach to obtain the optical coefficients

from sparse data would be to first solve a data completion problem using a Nash

games framework (see for e.g., [119]), where missing data is filled in from the given

multiple sets of sparse data and then, one can apply our proposed method to obtain

superior reconstructions.

4.6 Conclusions

In this work, we have presented a new reconstruction framework in 2P-PACT

for determining the optical coefficients from two-photon photoacoustic data. The

framework comprises of a PDE-constrained optimization problem that promotes

sparsity patterns in the reconstructions of the single and two photon absorption

coefficients. We present a new theoretical analysis of the existence and uniqueness of

a solution to a semi-linear elliptic PDE arising in 2P-PACT. Further, we present a

proximal scheme using a Picard solver for the semi-linear PDE and its adjoint to solve

the optimization problem. Several numerical results demonstrate that the proposed
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framework is able to achieve reconstructions with high contrast and high resolution

for objects including holes and inclusions.
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1. Input: β, Ĵ1, σ0 = σ−1, µ0 = µ−1, TOL, n > 1, L0 > 0

Initialize: E0
1 = E0

2 = 1, k = 0, choose θ ∈ (0, 1) and c1 < 2 and c2 > 0;

2. While ∥Ek−1
1 ∥+ ∥Ek−1

2 ∥ > TOL do

3. Compute ∇σĴ1(σk, µk), ∇µĴ1(σk, µk)

4. Backtracking: Find the smallest non-negative integer i such that with

L̃ = niLk−1

Ĵ1(σ̃, µ̃) ≤ Ĵ1(σk, µk) +
〈
∇σĴ1(σk, µk), σ̃ − σk

〉
+
〈
∇µĴ1(σk, µk), µ̃− µk

〉
+
L̃

2

(
∥σ̃ − σk∥2 + ∥µ̃− µk∥2

)
where σ̃ = SLσ

ad
γ1 s

(
σk − s (∇σĴ1)(σk, µk) + θ(σk − σk−1)

)
µ̃ = SLµ

ad
γ2 s

(
σk − s (∇µĴ1)(σk, µk) + θ(µk − µk−1)

)
,

s = c1(1− θ)/(L̃+ 2c2),

5. Set Lk = L̃ and sk = c1(1− θ)/(Lk + 2c2)

6. σk+1 = SLadσ
γ1 sk

(
σk − sk (∇σĴ1)(σk, µk) + θ(σk − σk−1)

)
µk+1 = SLµ

ad
γ2 sk

(
µk − sk (∇µĴ1)(σk, µk) + θ(µk − µk−1)

)
7. ck1 = −(∇σĴ1)(σk, µk), c

k
2 = −(∇µĴ1)(σk, µk)

8. Ek
1 = E(σk, c

k
1), E

k
2 = E(µk, c

k
2)

9. k = k + 1

10. end
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CHAPTER 5

Second-order nonstandard methods for ordinary differential equations

5.1 Introduction

Nonstandard finite difference (NSFD) methods provide an efficient way to solve

many problems numerically appearing in engineering and science and also known to

provide several advantages over classical techniques. In recent years, some NSFD

methods were constructed that are elementary stable. However, they are only first

order accurate, in general. In this chapter, we propose a new class of non-standard

finite difference methods, which are both elementary stable and of higher order

accuracy.

This chapter is structured as follows: We first discuss a second order non-

standard finite difference Explicit-Euler scheme to approximate one-dimensional

autonomous dynamical system. We further discuss the one-stage and two-stage

modified nonstandard theta methods for n− dimensional autonomous dynamical

system. We see some applications to classical mathematical biology models in Section

5.3 to numerically validate the theoretical results. In the last section, some concluding

remarks are made and future research directions are outlined and the content of this

chapter has been taken from [120, 121, 122], 1 .

1Second-order modified nonstandard theta and Runge-Kutta methods for n-dimensional au-

tonomous differential equations, Hristo V. Kojouharov, Souvik Roy, Madhu Gupta and Fawaz K.

Alalhareth (Submitted).
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5.2 Main Results

5.2.1 One-dimensional

A one-dimensional autonomous differential equation can be written as

dx

dt
= f(x); x(t0) = x0, (5.1)

where x : [t0, T )→ R, f : R→ R is differentiable and x0 ∈ R

In this section, we present a NSFD scheme for Equation (5.1) that is second

order accurate and elementary stable.

We have assumed that Equation (5.1) has a finite number of equilibria and

each of them is hyperbolic. For this purpose, we need the following result.

Lemma 5.2.1. Let fx ∈ C1(R) and fx(x∗) ̸= 0. Then there exists an ϵ(x∗) > 0 such

that

∥fx(x)− fx(x∗)∥R <
|fx(x∗)|

2
, ∀ ∥x− x∗∥R < ϵ(x∗).

In the following theorem, we now describe the NSFD scheme and the conditions

under which it is second order accurate and elementary stable.

Theorem 5.2.2. Let f ∈ C1(R) and let φ : R+ × R→ R+ satisfying the following

conditions:

(i) φ(h, x) = h+ fx(x)
h2

2
+O(h3)

(ii) 0 < φ(h, x) <
2

|fx(x∗)|
for all hyperbolic equilibria x∗ of (5.1) with h > 0, and

for all x ∈ R with ∥x− x∗∥R < ϵ(x∗) and ϵ(x∗) as obtained from Lemma 5.2.1.

Then the following nonstandard Explicit Euler’s method

xn+1 − xn
φ(h, xn)

= f(xn), (5.2)
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for approximating the solution of problem (5.1), is accurate of second order and

elementary stable, where xn is the numerical approximation of the exact solution

x(tn).

Proof. We first prove the second order accuracy of (5.2). For this purpose, we use a

Taylor series expansion about tn to obtain

x(tn+1)− [x(tn) + φ(h, x(tn))f(x(tn))]

=

[
x(tn) + hx′(tn) +

h2

2
x′′(tn) +O(h3)

]
−

[
x(tn) + φ(h, x(tn))f(x(tn))

]

= hf(x(tn)) +
h2

2
fx(x(tn))f(x(tn)) +O(h3)− φ(h, x(tn))f(x(tn))

(5.3)

For second order accuracy of (5.2), we need the right hand side of (5.9) to be of

O(h3). Substituting the expression of φ from condition (i) into equation (5.9), we

obtain

x(tn+1)− [x(tn) + φ(h, x(tn))f(x(tn))] = O(h3),

which implies that the numerical method (5.2) is of second order.

To show that the scheme in (5.2) is elementary stable, we need to show that

|1 + fx(x
∗)φ(h, xn)| < 1, whenever x∗ is a stable equilibrium point of (5.1) and

|1 + fx(x
∗)φ(h, xn)| > 1, whenever x∗ is an unstable equilibrium point of (5.1) (see

[?]).

First, let x∗ be a stable equilibrium point. Then fx(x
∗) < 0. From condition

(ii), we obtain,

0 < φ(h, xn) <
2

|fx(x∗)|
.
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This implies

−2 < fx(x
∗)φ(h, xn) < 0, since fx(x

∗) < 0.

Thus, we obtain

−1 < 1 + fx(x
∗)φ(h, xn) < 1

that gives us |1 + fx(x
∗)φ(h, xn)| < 1.

If x∗ is an unstable equilibrium point, then fx(x
∗) > 0. Thus, |1+fx(x∗)φ(h, xn)| >

1, since φ(h, xn) > 0.

We next explore a class of denominator functions φ(h, xn) that satisfy conditions

(i) and (ii) of Theorem 5.2.3. In this context we have the following lemma. Let

ϕ : R→ R satisfy the following conditions:

(i) 0 < ϕ(h) < 1 for all h > 0.

(ii) ϕ(h) = h− h2

2
+O(h3)

Then, the denominator function φ(h, xn) defined as follows:

φ(h, xn) =


ϕ(hq)

q
, q = −fx(xn) ̸= 0,

h, fx(xn) = 0

guarantees that the NSFD Euler’s scheme (5.2) is second order accurate and elemen-

tary stable.

Proof. It is enough to show that the conditions (i) and (ii) of Theorem 5.2.3 are

satisfied by φ. Since ϕ(h) = h− h2

2
+O(h3), we have

φ(h, xn) =
ϕ(hq)

q
=
hq − h2q2

2
+ q O(h3)

q
= h+ fx(xn)

h2

2
+O(h3)
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This implies φ(h, xn) satisfies condition (i) of Theorem 5.2.3.

For verifying condition (ii) of Theorem 5.2.3, we first note that since x∗ is a

hyperbolic equilibrium, fx(x
∗) ̸= 0, by Lemma 5.2.1, ∥xn − x∗∥R < ϵ(x∗) implies

fx(xn) ̸= 0. Thus, we assume fx(xn) ̸= 0 for the forthcoming discussion. We first

consider the case when x∗ is a stable equilibrium. Then for ∥xn − x∗∥R < ϵ(x∗) with

ϵ(x∗) as obtained from Lemma 5.2.1, we have

∥fx(xn)− fx(x∗)∥R < −
fx(x

∗)

2
.

This implies

− fx(x
∗)

2
< −fx(xn) = q. (5.4)

Since 0 < ϕ(hq) < 1, we have

0 < φ(h, xn) <
1

q
.

Using (5.4), we have

0 < φ(h, xn) < −
2

fx(x∗)
=

2

|fx(x∗)|
, (5.5)

since fx(x
∗) < 0. Next let x∗ be an unstable equilibrium. Then

∥fx(xn)− fx(x∗)∥R <
fx(x

∗)

2
,

implies

fx(x
∗)

2
< fx(xn) = −q.

This gives us

0 < φ(h, xn) < −
1

q
<

2

fx(x∗)
=

2

|fx(x∗)|
. (5.6)
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Equations (5.4) and (5.6) imply that φ(h, xn) satisfy condition (ii) of Theorem 5.2.3,

which proves that linear stabiity of each equilibrium x∗ of Equation (5.1) is same as

the linear stability of x∗ as a fixed point of Method (5.2).

Also, definition of numerical method (5.2) assures that all of its fixed points

are equilibria of Equation (5.1) and vice versa.

Thus, the NSFD scheme (5.2) with the denominator function φ(h, xn) =
ϕ(hq)

q

for q = −fx(xn) ̸= 0 is second order accurate and elementary stable.

Remark 14. The function ϕ(h) = 1− e−h satisfies the conditions of Lemma 5.2.1 and

ensures a second order accurate and elementary stable scheme (5.2).

5.2.2 General second-order modified nonstandard theta method

The new second-order modified nonstandard theta method is given in the

following theorem:

Theorem 5.2.3. Let f⃗ ∈ C2(Rn;Rn) and let φi : R+ × Rn → R+, for i = 1, . . . , n,

satisfies the following conditions:

(I) φi(h, x⃗) = h+ (1− 2θ)
⟨∇xfi(x⃗), f⃗(x⃗)⟩

fi(x⃗)

h2

2
+O(h3), for all 1 ⩽ i ⩽ n,

(II) 0 < φi(h, x⃗) <
2|Re(λi)|
|2θ − 1||λi|2

, 0 ⩽ θ ⩽ 1, θ ̸= 1
2
, for all hyperbolic equilibria x⃗∗

of Equation (2.1) with h > 0 and for all x⃗ ∈ Rn.

Then the following modified nonstandard theta method:

xk+1
i − xki
φi(h, x⃗k)

= fi
(
θx⃗k+1 + (1− θ)x⃗k

)
(5.7)
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and the modified nonstandard two-stage theta method [76]:

xk+1
i − xki
φi(h, x⃗k)

= θfi(x⃗
k+1) + (1− θ)fi(x⃗k), (5.8)

i = 1, . . . , n, for approximating the solution of Equation (2.1), are both accurate of

second order and elementary stable.

Proof. The second-order accuracy of the modified nonstandard one-stage theta method

(5.7) is proven using the Taylor series expansion about tk which yields:

xi(tk+1)− [xi(tk) + φi(h, x⃗(tk))fi (θx⃗(tk+1) + (1− θ)x⃗(tk))]

=

[
xi(tk) + hx′i(tk) +

h2

2
x′′(tk) +O(h3)

]
−

[
xi(tk) + φi(h, x⃗(tk))f

(
θx⃗(tk) + θhx⃗′(tk) + θ

h2

2
x⃗′′(tk) +O(h3) + x⃗(tk)− θx⃗(tk)

)]

= hx′i(tk) +
h2

2
x′′i (tk)− φi(h, x⃗(tk))f

(
x⃗(tk) + θhx⃗′(tk) + θ

h2

2
x⃗′′(tk) +O(h3)

)
+O(h3).

(5.9)

Introducing the notation H⃗ = θhx⃗′(tk) + θ
h2

2
x⃗′′(tk) +O(h3) gives

xi(tk+1)− [xi(tk) + φi(h, x⃗(tk))f (θx⃗(tk+1) + (1− θ)x⃗(tk))]

= hx′i(tk) +
h2

2
x′′i (tk)− φi(h, x⃗(tk))fi

(
x⃗(tk) + H⃗

)
+O(h3)

= hx′i(tk) +
h2

2
x′′i (tk)− φi(h, x⃗(tk))

(
fi(x⃗(tk)) + ⟨H⃗,∇xfi(x⃗(tk)⟩+O(h2)

)
+O(h3)

= hx′i(tk) +
h2

2
x′′i (tk)

−

[
h+ (1− 2θ)

⟨∇xfi(x⃗(tk)), f⃗(x⃗(tk)⟩
fi(x⃗)

h2

2

](
fi(x⃗(tk)) + ⟨H⃗,∇xfi(x⃗(tk)⟩+O(h2)

)
+O(h3)
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= O(h3).

Therefore, the numerical method (5.7) is of second-order accuracy.

To prove the elementary stability of the NSFD method (5.7), let x⃗∗ be a

hyperbolic equilibrium of System (2.1) and J = J(x∗) be the Jacobian evaluated at

x⃗∗ with eigenvalues λ1, λ2, . . . , λn. The corresponding linear system can then be given

as follows:

x⃗′ = Jx⃗ (5.10)

If Λ is a Jordan form of J , then J = S−1ΛS, where S is a non-singular complex

n× n matrix. In general, Λ has the following bi-diagonal form:

λ1 α1

λ2 α2

. . . . . .

λn−1 αn−1

λn


where λi ∈ σ(J). i = 1, 2, . . . n, and αi = {0, 1}. Therefore, the linear system can be

written as: x⃗′ = S−1ΛS x⃗ and the change of variables y⃗ = Sx⃗ yields the following

new system

y⃗′ = Λy⃗.
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Applying the numerical method (5.7) on the above system results in the following:

yk+1
1 − yk1
φ1(h, y⃗k)
yk+1
2 − yk2
φ2(h, y⃗k)

...

yk+1
n − ykn
φn(h, y⃗k)


= Λ



θyk+1
1 + (1− θ)yk1

θyk+1
2 + (1− θ)yk2

...

θyk+1
n + (1− θ)ykn


(5.11)

and, equivalently, the following vector formulation:

y⃗k+1 = (I − V Λθ)−1(I + V (1− θ)Λ)y⃗k, (5.12)

where V is the diagonal matrix:

V =



φ1(h, y⃗
k)

φ2(h, y⃗
k)

. . .

φn−1(h, y⃗
k)

φn(h, y⃗
k)


.

Note that the matrix (I−V Λθ)−1(I+V (1−θ)Λ) is upper triangular and its eigenvalues

are given by µi(h, y⃗
k) =

1 + λi(1− θ)φi(h, y⃗
k)

1− λiθφi(h, y⃗k)
, where λi ∈ σ(J), i = 1, 2, . . . , n.

Observe that x⃗∗ being a stable fixed point of System (5.12) is equivalent to∣∣∣1 + λi(1− θ)φi(h, y⃗
k)

1− λiθφi(h, y⃗k)

∣∣∣ < 1. (5.13)

Inequality (5.13) can be rewritten as

|1 + λi(1− θ)φi(h, y⃗
k)| < |1− λiθφi(h, y⃗

k)|,
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and therefore

|1+φi(h, y⃗
k)(1−θ) Re(λi)+φi(h, y⃗

k)(1−θ) Im(λi)|2 < |1−φi(h, y⃗
k) Re(λi)θ−φi(h, y⃗

k)θ Im(λi)|2.

From here, a straightforward algebraic manipulation shows that Inequality (5.13) is

equivalent to

φi(h, y⃗
k)(1− 2θ) <

−2Re(λi)
|λi|2

. (5.14)

Now consider the following two cases:

1. If 0 ⩽ θ < 1/2, then 1− 2θ > 0. Condition (II) implies

0 < φi(h, y⃗
k) <

2|Re(λi)|
(1− 2θ)|λi|2

,

and multiplying both sides by (1− 2θ) yields

0 < φi(h, y⃗
k)(1− 2θ) <

2|Re(λi)|
|λi|2

.

If x⃗∗ is a locally stable equilibrium, then |Re(λi)| = −Re(λi). Thus from the

above inequality, it can be seen that Inequality (5.14) holds. Hence, x⃗∗ is a

stable fixed point.

On the other hand, if x⃗∗ is an unstable equilibrium, then there is j0 ∈ {1, . . . , n}

such that Re(λj0) > 0. This implies

φj0(h, y⃗
k)(1− 2θ) > 0 >

−2Re(λj0)
|λj0|2

,

since φj0(h, y⃗
k) > 0. Therefore, Inequality (5.14) is strictly not satisfied, when

x⃗∗ is an unstable equilibrium.
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2. If 1/2 < θ ⩽ 1, then 1 − 2θ < 0. Multiplying the denominator function by

(1− 2θ) yields

φi(h, y⃗
k)(1− 2θ) < 0,

since φi(h, y⃗
k) > 0. If x⃗∗ is a locally stable equilibrium, then Re(λi) < 0. Hence,

φi(h, y⃗
k)(1− 2θ) < 0 <

−2Re(λi)
|λi|2

.

Therefore, Inequality (5.14) is satisfied, and the fixed point x⃗∗ is stable. If x⃗∗ is

an unstable equilibrium, then there is j0 ∈ {1, . . . , n}, such that Re(λj0) > 0.

Condition (II) implies

0 < φj0(h, x⃗) <
2Re(λj0)

(2θ − 1)|λj0|2
,

and multiplying both sides by −(2θ − 1) yields

φj0(h, x⃗)(1− 2θ) >
−2Re(λj0)
|λj0|2

.

Hence, Inequality (5.14) is strictly not satisfied. As a result, x⃗∗ is an unstable

fixed point. Therefore, the numerical scheme (5.7) is elementary stable.
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Next, the second-order accuracy of the modified nonstandard two-stage theta

method (5.8) is similarly proven using the Taylor series expansion about tk which

yields:

xi(tk+1)−
[
xi(tk) + φi(h, x⃗(tk))

{
θfi (x⃗(tk+1)) + (1− θ)fi (x⃗(tk))

]
=

[
xi(tk) + hx′i(tk) +

h2

2
x′′i (tk) +O(h3)

]
−

[
xi(tk) + φi(h, x⃗(tk))

{
θ
[
x′i(tk) + hx′′i (tk)

+
h2

2
x′′′i (tk) +O(h3)

]
+ (1− θ)fi(x⃗(tk))

}]

= hfi(x⃗(tk)) +
h2

2
⟨∇xfi(x⃗(tk)), f⃗(x⃗(tk))⟩

− φi(h, x⃗(tk))
[
fi(x⃗(tk)) + θh⟨∇xfi(x⃗(tk))f⃗(x⃗(tk))⟩

]
+O(h3) = O(h3),

which implies the second order accuracy of the numerical method (5.8).

The proof of the elementary stability for the modified nonstandard two-stage

theta method (5.8) uses the same arguments as the above proof for Method (5.7) and

it is omitted here.

Lemma 5.2.4. Let ϕi1 : R+ → R+ and ϕi2 : R→ R+ satisfy the following conditions:

(a) 0 < ϕi1(h) < 1, for all h > 0, and ϕi1(h) = h− h2

2
+O(h3).

(b) 0 < ϕi2(h) < M , for all h ∈ R and some M > 0, and ϕi2(h) = 1 + h+O(h3).

Then, the functions

φi(h, x⃗) =
ϕi1(αh)

α
ϕi2

(
α− qi(x⃗)

2
h

)
, i = 1, . . . , n,
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with α >
M

2
maxΩ

|2θ − 1||λ|2

|Re(λ)|
, where Ω =

⋃
x⃗∗∈Γ σ(J(x⃗

∗)) and Γ denotes the set

of all equilibria of System (2.1), and qi(x⃗) = −(1 − 2θ)
⟨∇xfi(x⃗), f⃗(x⃗)⟩

fi(x⃗)
, satisfy the

conditions (I) and (II) of Theorem (5.2.3).

Proof. Notice that

ϕi1(αh)

α
= h− αh2

2
+O(h3), and

ϕi2

(
α− qi(x⃗)

2
h

)
= 1 +

α− qi(x⃗)
2

h+O(h3).

Therefore,

φi(h, x⃗) = h+ (1− 2θ)
⟨∇xfi(x⃗), f⃗(x⃗)⟩

fi(x⃗)

h2

2
+O(h3),

which proves Condition (I). Next, since 0 < ϕi1(h) < 1 and 0 < ϕi2(h) < M , then one

can easily see that

0 <
ϕi1(αh)

α
ϕi2

(
α− qi(x⃗)

2
h

)
<
M

α
<

2|Re(λi)|
|2θ − 1||λi|2

,

therefore, Condition (II) is also satisfied.

Remark 15. There exists a variety of functions ϕi1 and ϕi2 that satisfy the conditions

of Lemma 5.2.4. One such set of functions is ϕi1(h) = 1−e−h and ϕi2(h) = 1+tanh(h),

which can be used to construct the denominator functions φi(h, x⃗) in Theorem 5.2.3.

5.2.3 General second-order modified nonstandard ERK2 method

The following result holds for the new two-stage modified nonstandard ERK2

method:
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Theorem 5.2.5. Let f⃗ = [f1, . . . , fn] ∈ C2(Rn;Rn) and let φ : R+ → R+ satisfy the

following conditions

(I) φ(h) = h+O(h3),

(II) 0 < φ(h) <
1

q
, for all λ ∈ Ω, where q > maxΩ

|λ|2
2|Re(λ)| , Ω =

⋃
x⃗∗∈Γ σ(J(x⃗

∗)) and

Γ denotes the set of all hyperbolic equilibria x⃗∗ of System (2.1).

Then the following two-stage modified nonstandard ERK2 method for approximating

the solution of Equation (2.1):

xk+1
i = xki + φ(h)

{
(1− ω)fi(x⃗k) + ωfi

(
x⃗k +

1

2ω
f⃗(x⃗k)φ(h)

)}
, 0 < ω ⩽ 1, (5.15)

i = 1, . . . , n, is conservative, elementary stable and of second-order accuracy, provided

the method does not introduce additional fixed points other than those of Equation

(2.1).
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Proof. The second-order accuracy of the two-stage modified nonstandard ERK2

method (5.15) is similarly proven using the Taylor series expansion about tk which

yields:

xi(tk+1)−

[
xi(tk) + φ(h)

{
(1− ω)fi(x⃗(tk)) + ωfi

(
x⃗(tk) +

1

2ω
f⃗(x⃗(tk))φ(h)

)}]

=

[
xi(tk) + hx′i(tk) +

h2

2
x′′i (tk) +O(h3)

]
−

[
xi(tk) + φ(h)

{
(1− ω)fi(x⃗(tk))

+ ω

(
fi(x⃗(tk)) +

1

2ω

n∑
j=1

φ(h)fi(x⃗(tk))
∂fi
∂xj

+O(h2)

)}]

= xi(tk) + hfi(x⃗tk) +
h2

2

n∑
j=1

∂fi
∂xj

fi(x⃗(tk))−

[
xi(tk) + φ(h)

{
(1− ω)fi(x⃗(tk))

+ ω

(
fi(x⃗(tk)) +

1

2ω
φ(h)

n∑
j=1

fi(x⃗(tk))
∂fi
∂xj

+O(h3)

)}]

= (h− φ(h))fi(x⃗(tk)) +
(
h2

2
− φ2(h)

2

) n∑
j=1

∂fi
∂xj

fi(x⃗(tk)) +O(h3) = O(h3),

which implies the second order accuracy of the numerical method (5.15).

To prove the elementary stability of the NSFD method (5.15), let x⃗∗ be an

hyperbolic equilibrium of System (2.1) and J be the Jacobian evaluated at x⃗∗ with

eigenvalues λ1, λ2, . . . , λn. Since J is diagonalizable, using a similar argument as in

the prrof of Theorem 5.2.3, the numerical method (5.15) can be applied to

y⃗′ = Λy⃗, (5.16)

where Λ = diag(λ1, . . . , λn), J = S−1ΛS and y⃗ = Sx⃗. This yields

yk+1
i = yki + φ(h)

{
(1− ω)λiyki + ωλi

(
yki +

1

2ω
λiy

k
i φ(h)

)}
,
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which results in

yk+1
i =

[
1 + φ(h)(1− ω)λi + ωλiφ(h)

(
1 +

1

2ω
λiφ(h)

)]
yki

=

[
1 + φ(h)(1− ω)λi + ωλiφ(h) +

1

2
λ2iφ

2(h)

]
yki

=

[
1 + φ(h)λi +

1

2
λ2iφ

2(h)

]
yki .

Therefore, to show that x⃗∗ is a stable equilibrium is equivalent to showing that

|1 + φ(h)λi +
1

2
λ2iφ

2(h)| < 1. (5.17)

Inequality (5.17) corresponds to(
1 +

1

2
λ2iφ

2(h) + Re(λi)φ(h)

)2

+ (Im(λi)φ(h))
2 < 1,

which is equivalent to

1

4
|λi|4φ3(h) + Re(λi)|λi|2φ2(h) + 2|λi|2φ(h) + 2Re(λi) < 0.

Denote ri(t) =
1
4
|λi|4t3+Re(λi)|λi|2t2+2Re(λi). Thus, Inequality (5.17) is equivalent

to ri(φ(h)) < 0 for each λi, where i = 1, 2, . . . , n. Similarly, to show that x⃗∗ is an

unstable equilibrium point is equivalent to show that there exists an i such that

ri(φ(h)) > 0, and the rest of the proof follows from [67].

Finally, the conservative property of the two-stage modified nonstandard ERK2

method (5.15) is proven. First, observe that the denominator function φ(h) is

independent of x and hence, is the same for each component i = 1, . . . , n, of the

numerical method. Next, summing over all i = 1, . . . , n, yields the following

n∑
i=1

xk+1
i =

n∑
i=1

xki + φ(h)

{
(1− ω)

n∑
i=1

fi(x⃗
k) + ω

n∑
i=1

fi

(
x⃗k +

1

2ω
f⃗(x⃗k)φ(h)

)}
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and, therefore,
n∑

i=1

xk+1
i =

n∑
i=1

xki ,

since
∑n

i=1 fi(x⃗
k) =

∑n
i=1 fi

(
x⃗k +

1

2ω
f⃗(x⃗k)φ⃗(h)

)
= 0.

Remark 16. There exists a variety of functions φ(h) which satisfy the conditions of

above Theorem 5.2.5, and hence ensures a second-order accurate and elementary

stable method (5.15). One such denominator function is φ(h) =
tanh(qh)

q
, where

q > maxΩ
|λ|2

2|Re(λ)| .

5.3 Numerical Simulations

To illustrate our NSFD scheme, we consider the following logistic growth model:

dx

dt
= ax

(
1− x

K

)
(5.18)

where K is carrying capacity and a represents growth rate. Hyperbolic Equilibrium

points of this ODE are 0 (unstable equilibrium point) and K (stable equilibrium point).

Numerical solution of equation (5.18) with φ(h) = 1−e−q(xn)h

q(xn)
where q(xn) = −fx(xn),

a = 20 and x(0) = 0.9 and θ = 0 support Theorem 5.2.3 for all h. We present a set

of numerical simulations for a = 2 and K = 1.

In figure (a) we compare second order nonstandard explicit Euler (SONSEE) method

with the explicit Euler method. We note that when h = 0.11, the explicit Euler

method diverges away from the equilibrium point. Figure (b), for h = 0.15 represents

the comparison of SONSEE with second order Runge Kutta (RK2) which is of order

two but not elementary stable. In figure (c), for h = 0.1 and h = 0.03 we compared
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SONSEE method with explicit Euler NSFD with fix q = 0.5 which is elementary

stable but of first order. Figure (d) actually shows that SONSEE is of second order

while explicit Euler NSFD is of first order. Above comparisons verifies all claims

numerically which has been stated in the theorems about SONSEE.
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Figure 5.1: Comparison of SONSEE with different methods

The new second-order modified nonstandard explicit Runge-Kutta (SONS

ERK2) method (5.15) with ω =
1

2
, is numerically compared to the standard ERK2
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Figure 5.2: Numerical solutions of Equation (5.18) with q = 2.5, x0 = 0.6, and using
h = 1.5 in (a)

method and the NSFD ERK2 method [71, 73]. We use the nonstandard denominator

function

φ(h, x) =
tanh(qh)

q
, with q = 2.5 >

max{|fx(0)|, |fx(1)|}
2

= 1.

The SONS ERK2 method is of second-order accuracy and elementary stable, while

the ERK2 method is also second-order accurate but unstable for h >
2

a
= 1, and the

NSFD ERK2 method is elementary stable but only first-order accurate. Accordingly,

for h = 1.5, we see in Figure 5.2(a) that the ERK2 method does not converge to the

exact solution whereas both the SONS ERK2 and NSFD ERK2 methods correctly

mimic the behavior of the exact solution. To better visualize the second-order accuracy

of the new SONS ERK2 method (5.15), we denote the numerical solution for a given

mesh size h as xh. Let us define the l∞ error as

E(h) = ∥xh − x∥∞,
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Figure 5.3: Numerical solutions of Equation (5.19) for b =
1

2
, with q = 0.26, x0 = 0.6,

and using h = 6 in (a) and h = 3 in (b)

where

∥y∥∞ = max
k=0,··· ,Nt

|yk|

represents the discrete l∞ norm of the vector y, and x represents the exact solution

of Equation (2.1). Figure 5.2(b) shows the error plot for NSFD ERK2 and SONS

ERK2 methods, where the slopes of the error lines are 1 and 2, respectively. This

numerically verifies that the SONS ERK2 method is second-order accurate while the

NSFD ERK2 method is only first-order accurate.

As a second example, we consider the following differential equation which is a

modification of the predator pit model in population ecology ([123], p. 115):

dx

dt
= −

(
x− b+ 1

2

)
(x− b)

(
x− b− 1

2

)
. (5.19)
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Equation (5.19) has x∗ = b as an unstable equilibrium while x∗ = b ± 1
2
are both

stable equilibria, with max{|fx(x∗)|} = 1
2
. To support the results of Theorem 5.2.5,

we perform numerical simulations using the nonstandard denominator function

φ(h, x) =
tanh(qh)

q
, with q = 0.26 >

max{|fx(x∗)|}
2

= 0.25.

First, we consider b =
1

2
, which results in the right-hand side function

f(x) = −x3 + 3

2
x2 − 1

2
x.

Figure 5.3(a) shows a comparison of the SONS ERK2 method with the standard

ERK2 method, for h = 6 and initial condition x0 = 0.6. Simulations show that the

ERK2 method does not converge to the exact solution for large values of h, while

the SONS ERK2 method preserves the local stability properties of the equilibrium

x∗ = 1 for any value of the step-size h. Figure 5.3(b) shows a comparison of the SONS

ERK2 method with the combined NSFD method [124] for h = 3. The two numerical

methods reproduce the correct behavior of the exact solution as they are both of

second order accuracy and elementary stable, however the combined NSFD method

is implicit in nature and, therefore, not as computationally easy to implement.

Next, we consider b =
1

2
√
3
, that results in the right-hand side function

f(x) = −x3 +
√
3

2
x2 − 1

12
√
3
.

A similar set of numerical comparisons was performed as in the case with b = 1
2
and

the same results were obtained, as shown in Figure 5.4. In this case, the combined

NSFD method, which is of second-order accuracy and elementary stable, does not

100



0 50 100 150 200

t

0.5

0.55

0.6

0.65

0.7

0.75

0.8
x
(t

)

Exact Solution

SONS ERK2

ERK2

(a)

Comparison of SONS ERK2 and

ERK2

0 20 40 60

t

0.5

0.55

0.6

0.65

0.7

0.75

0.8

x
(t

)

Exact Solution

SONS ERK2

Combined NSFD

NSFD ERK2

(b)

SONS ERK2, Combined NSFD, and

NSFD ERK2

Figure 5.4: Numerical solutions of Equation (5.19) for b =
1

2
√
3
, with x0 = 0.6, and

using h = 6, q = 0.26 in (a) and h = 4, q = 0.45 in (b)

require a nonstandard denominator function, since the right-hand side function f(x)

does not contain a first term [124]. However, it is again an implicit method, and

therefore still not as computationally easy to implement as the explicit SONS ERK2

method. In the third example, we consider the Michaelis-Menten model (Allen),

where the rate of change of the nutrient concentration x(t) used by a cell for growth

and development is modeled by the following differential equation:

dx

dt
= − kmaxx

kn + x
. (5.20)

Here, the parameter kmax > 0 is the maximum rate of uptake by the cell of the

nutrient and kn > 0 is the half-saturation constant. Given that f(x) = − kmaxx

kn + x
,

yields f ′(0) = −kmax/kn < 0 and, therefore, x∗ = 0 is a stable equilibrium of Equation

(5.20). In the numerical simulations, we take kn = 0.2, kmax = 0.8, with an initial

condition x(0) = 0.1, and q = 0.25 for the comparison of our method with the NSFD

ERK2 method.
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Figure 5.5(a) shows a comparison of the SONS ERK2 method with the ERK2 method,
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Figure 5.5: Numerical solutions of Equation (5.20) with x0 = 0.1

where we see that the ERK2 method introduces artificial equilibria for h = 0.51 and

becomes unstable when h = 0.65, while the SONS ERK2 method behaves very well

for arbitrary large values of h. Figure 5.5(b) shows a comparison of our method with

the nonstandard ERK2 method which is elementary stable but only of first-order

accuracy, and therefore, the numerical solution of the SONS ERK2 method converges

faster to the stable equilibrium x∗ = 0. Next, we will discuss the performance of the

proposed n-dimensional new modified NSFD methods, the new second-order modified

nonstandard theta method (5.8) with θ = 0 and two-stage modified nonstandard

ERK2 method (5.15) with ω = 1/2 are chosen. Note that for this value of θ, the

modified NSFD method (5.8) is the same as Method (5.7), which results in the

modified NSFD explicit Euler (modified NSFD EE) method [75]. Furthermore, the

two-stage modified nonstandard ERK2 method (5.15) with ω = 1/2 is henceforth
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referred to as the modified NSFD ERK2 method. The modified NSFD methods are

compared to other standard and nonstandard finite difference methods for solving

two specific biological systems.

For the numerical test cases, the MSEIR epidemiological model in [125, 126] is first

considered, with the notation x⃗ = (x1, x2, x3, x4, x5) = (m, s, e, i, r):

dx1
dt

= d(x3 + x4 + x5)− δx1,

dx2
dt

= −βx2x4 + δx1,

dx3
dt

= βx2x4 − (ϵ+ d)x3,

dx4
dt

= ϵx3 − (γ + d)x4,

dx5
dt

= γx4 − dx5.

(5.21)

The following initial conditions x1(0) = 0.1, x2(0) = 0.05, x3(0) = 0.05, x4(0) =

0.1, x5(0) = 0.7 and parameter values d = 1/(40 × 365), β = 0.14, γ = 1/7, δ =

1/180, ϵ = 1/14 are used in numerical simulations.

The novel nonstandard denominator functions φi for the modified NSFD EE method

are selected using Remark 15 as follows:

φi(h, x⃗) =

(
1− exp(−αh)

α

)(
1 + tanh

(
α− qi(x⃗)

2
h

))
,

for i = 1, . . . , 5. Here, the parameters qi are given according to Lemma 5.2.4:

qi = −
(f1

∂fi
x1

+ f2
∂fi
∂x2

+ f3
∂fi
∂x3

+ f4
∂fi
∂x4

+ f5
∂fi
∂x5

)

fi
,

i = 1, . . . , 5, where

f1(x⃗) = d(x3 + x4 + x5)− δx1
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f2(x⃗) = −βx2x4 + δx1

f3(x⃗) = βx2x4 − (ϵ+ d)x3

f4(x⃗) = ϵx3 − (γ + d)x4

f5(x⃗) = γx4 − dx5.

The Jacobian matrix has the form:

−δ 0 d d d

δ −βx4 0 −βx2 0

0 βx4 −(ϵ+ d) βx2 0

0 0 ϵ −(γ + d) 0

0 0 0 γ −d


.

and the eigenvalues evaluated at the epidemic equilibrium are: λ1 = −0.214422,

λ2 = −0.00555541, λ3 = −0.000300252, λ4 = 0.000232743 and λ5 = 1.95907× 10−18.

Accordingly, the value α = 0.3 > 0.214422 = max
{

|λi|2
|Re(λi)| : i = 1, . . . , 5

}
has been

used in the denominator function of the modified NSFD EE method. For the modified

NSFD ERK2 method, the denominator function is chosen as φ(h) =
tanh(qh)

q
, with

q = 0.25 > 0.107211 = max
{

|λi|2
2|Re(λi)| : i = 1, . . . , 5

}
.

Figure (5.6a) compares the modified NSFD EE method with the explicit Euler (EE)

method [127] for h = 16. For illustration purposes, only the infected population x4

plots are shown. It is known that the EE method does not preserve the local stability

of the equilibria [127]. As it can be seen from the figure, the numerical solution from

the EE method oscillates and diverges from the exact solution, while the numerical
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solution from the modified NSFD EE method behaves well and converges to the

exact solution. Figure (5.6b) compares the modified NSFD ERK2 method with the

standard explicit second-order Runge Kutta (ERK2) method [127] for h = 16. While

the ERK2 method is second-order accurate, it is not elementary stable. It can be

seen that the numerical solution from the modified NSFD ERK2 method converges

to the exact solution while the numerical solution from the ERK2 method diverges

and eventually blows up to infinity for large values of the step-size h. Figure (5.6c)

compares the NSFD EE method [67] with the modified NSFD EE method. For

step-size h = 0.95, the numerical solution from the second-order modified NSFD EE

method converges to the exact solution faster than from the first-order NSFD EE

method. In Figure (5.6d), for h = 0.95, it can also be seen that the numerical solution

from the second-order modified NSFD ERK2 method is more accurate than from the

NSFD ERK2 method [67]. Next, the two new modified nonstandard methods are

compared with two of the nonstandard numerical methods presented in [125]. Note

that the method in [125] for θ = 0, θ̂ = 1, is an explicit NSFD method, but with a

different approximation of the nonlinear right-hand side terms and a denominator

function φ(h) = (1 − exp(−Qh))/Q, where Q = max{δ, ϵ + d, γ + d, β}. Also, the

method in [125] for θ = θ̂ = 1
2
is a second-order NSFD method with a denominator

function φ(h) =
tanh(Qh)

Q
, where Q = 1

2
max{δ, ϵ + d, γ + d, β}. In Figure (5.6e)

these two numerical methods are denoted by NSFD θ = 0, θ̂ = 1 and NSFD θ = θ̂ = 1
2
,

respectively. It can be seen in the figure, the behavior of the numerical solutions from

the modified NSFD EE and the modified NSFD ERK2 methods is superior to those

produced by the NSFD methods in [125]. In addition, the absolute error plots of the
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modified NSFD EE and the modified NSFD ERK2 methods are presented for h = 1.

The absolute errors are calculated by using as a benchmark the numerical solution

obtained by the MATLAB® ode45 solver. As can be seen in Figure (5.6f), the error

in the numerical solution from the modified NSFD ERK2 method is less than the

error from the modified NSFD EE method.

For the next numerical test case, the predator-prey system with Beddington-

DeAngelis functional response in [67, 73] is considered, with the notation x⃗ =

(x1, x2) = (x, y):
dx1
dt

= x1 −
Ax1x2

1 + x1 + x2
,

dx2
dt

=
Ex1x2

1 + x1 + x2
−Dx2,

(5.22)

where x1 and x2 represent the prey and predator population sizes, respectively. The

following parameter values A = 6.0, D = 5.0, and E = 7.5 are used in the numerical

simulations.

Stability analysis of System (5.22) reveals that there exist two equilibria [73]: (0, 0) and(
AD

AE−E−AD
, E
AE−E−AD

)
= (4, 1). The eigenvalues of the Jacobian matrix evaluated

at (0, 0) are λ1 = 1 and λ2 = −5, while the eigenvalues evaluated at (4, 1) are

λ3,4 = − 1
12
± i

√
119
12

, with |λ3,4| = 0.9129. Therefore, the coexistence equilibrium (4, 1)

is globally asymptotically stable in the interior of the first quadrant, while (0, 0) is

unstable.

The novel nonstandard denominator functions φi for the modified NSFD EE method

are selected using Remark 15 as follows:

φi(h, x⃗) =

(
1− exp(−αh)

α

)(
1 + tanh

(
α− qi(x⃗)

2
h

))
,
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Figure 5.6: Comparison of the modified NSFD EE and the modified NSFD ERK2
methods to other numerical methods, applied to Model (5.21), using different values
of the step-size h. For illustration purposes, only the infected population plots are
shown.
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for i = 1, 2, using

qi(x⃗) = −

(
f1(x1, x2)

∂fi
∂x1

+ f2(x1, x2)
∂fi
∂x2

)
fi(x1, x2)

,

where f1(x1, x2) = x1 −
Ax1x2

1 + x1 + x2
and f2(x1, x2) =

Ex1x2
1 + x1 + x2

− Dx2, and

α = 10.1 > maxΩ
|λ|2

|Re(λ)| . For the modified NSFD ERK2 method, the denomina-

tor function is chosen as φ(h) =
tanh(qh)

q
, with q = 5.1 > maxΩ

|λ|2
2|Re(λ)| , where

Ω =
⋃

x⃗∗∈Γ σ(J(x⃗
∗)), and Γ denotes the set of all hyperbolic equilibria x⃗∗ of System

(2.1). Figure 5.7 compares the modified NSFD EE method with the NSFD EE method

for h = 0.02. As can be seen in Figures 5.7(a)-(c), there is a slight horizontal shift in

both components of the numerical solution from the first-order NSFD EE method,

while the numerical solution from the modified NSFD EE method converges much

more accurately to the exact solution. In addition, absolute error plots are presented

in Figure 5.7(d), where the new modified NSFD EE method clearly outperforms the

NSFD EE method. Again, the numerical solution obtained by the MATLAB® ode45

solver has been used as a benchmark. Similar comparison of numerical methods

is presented in Figure 5.8, where the second-order modified NSFD ERK2 method

outperforms the first-order NSFD ERK2 method for h = 0.05.

5.4 Conclusion

In this paper, two new classes of second-order modified nonstandard theta

and Runge-Kutta methods for multi-dimensional autonomous dynamical systems

have been presented and analyzed. The fundamental idea underlying the numerical

methods’ development is the use of a novel modified nonstandard denominator function
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Figure 5.7: Comparison of the modified NSFD EE method to the NSFD EE method,
applied to Model (5.22), using h = 0.02. The numerical solution obtained by the
MATLAB® ode45 solver has been used as a benchmark.

in the discretization of the derivative. In the case of the modified NSFD theta methods,

the denominator function is a product of two special functions. One of the functions

satisfies the methods’ second-order accuracy property, while the other function satisfies

the stability criteria of Theorem 5.2.3. For the modified nonstandard Runge-Kutta

method, a single denominator function suffices to satisfy the criteria of accuracy

and elementary stability. Examples of denominator functions have been presented

that also serve as recipes for the choice of the generic ones. Next, the proposed

109



0 20 40 60 80 100
2

3

4

5

6

7

8

(a) Time-series x(t) plot

0 20 40 60 80 100
0.5

1

1.5

2

2.5

(b) Time-series y(t) plot

2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

(c) Phase-space plot

0 20 40 60 80 100
0

0.5

1

1.5

(d) Absolute error plots

Figure 5.8: Comparison of the modified NSFD ERK2 method to the NSFD ERK2
method, applied to Model (5.22), using h = 0.05. The numerical solution obtained
by the MATLAB® ode45 solver has been used as a benchmark.

modified nonstandard methods have been applied to solve an MSEIR system and a

predator-prey system with Beddington-DeAngelis functional response. The results

obtained using the new numerical methods have been compared to existing standard

and nonstandard finite difference methods, and it has been observed that the new

methods demonstrate high accuracy and better stability properties. Future research

directions include the development of modified nonstandard numerical methods that
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are not only higher-order accurate and elementary stable but also preserves other

important properties of the exact solution, such as positivity.
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CHAPTER 6

NSFD Scheme for Fokker-Planck framework in esophageal cancer

In previous chapter, we have discussed the NSFD schemes for a class of ordinary

differential equations. In this cahpter, we will discuss an application of NSFD for

Fokker-Planck framework in esophageal cancer. Calcium signaling plays important

role in esophageal cancer.

Esophageal Cancer: The esophagus is a muscular tube connecting the throat

(pharynx) with the stomach.The esophagus is about 8 inches long and is lined by

moist pink tissue called mucosa and it runs behind the windpipe (trachea) and heart,

and in front of the spine.
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Esophageal cancer usually begins in the cells that line the inside of the esophagus.

Esophageal cancer can occur anywhere along the esophagus. More men than women

get esophageal cancer. This cancer is the 6th most common cause of cancer mortality

globally. Incidence rates vary within different geographic locations. In some regions,

higher rates of esophageal cancer may be attributed to tobacco and alcohol use or

particular nutritional habits and obesity. In a cancer patient, one of the primary

dysregulated intracellular Ca2+ signaling pathways is the store operated Ca2+ entry

(SOCE). Fluctuations in SOCE is linked to tumor cell proliferation, metastasis and

impedance to apoptosis. In accordance to experimental evidence, the messenger IP3

allows calcium to be released to the cytosol from an IP3 sensitive store which is

endoplasmic reticulam (ER). Furthermore, calcium is pumped out of the cytosol to

the ER and, also calcium leaks into the cytosol from outside the cell.
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6.1 Mathematical Model

To illustrate the aim, we consider the dynamics based on very famous Atri

models, that represents the dynamics of Ca2+ ions, inositol trisphosphate (IP3)

pathway .

dc

dt
= kf

p

kµ + p
h
bk1 + c

k1 + c︸ ︷︷ ︸
Jchannel

− γ

kγ + c︸ ︷︷ ︸
Jpump

+ β︸︷︷︸
Jleak

(6.1)

τh
dh

dt
=

k22
k22 + c2︸ ︷︷ ︸

h∞

−h (6.2)

• c is the cytosolic calcium concentration

• Jchannel models the flux of calcium from the ER into the cytosol through the

IP3 receptors, assuming that calcium activates the IP3 receptors quickly but

inactivates them on a slower timescale;

• Jpump models the calcium pumped out of the cytoplasm back to the ER or out

through the plasma membrane, and

• Jleak = β models the calcium leaking into the cytosol from outside the cell.

• h is the fraction of IP3 receptors on the ER that have not been closed (inac-

tivated) by calcium. In other words h is the rate at which Ca2+ can activate

IP3R.

• kf is the maximum total Ca2+ flux through all IP3Rs when all IP3Rs are open

and activated

• β is the constant rate of Ca2+ influx into the cytosol from the outside

• γ is the maximum rate of Ca2+ pumping from the cytosol

• kγ is the concentration of Ca2+ at which the rate of Ca2+ pumping from the

cytosol is at half maximum.
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• h represents the fraction of IP3 receptors on the ER that have not been

inactivated by calcium.

• The function h∞ represents the steady state of h as a function of c

• τh is the time constant for the dynamics of h, the proportion of IP3Rs is not

closed by Ca2+.

with the following values of parameters:

Parameter Value

c 0.01µM

h 0− 1

b 0.111

k1 0.7µM

k2 0.7µM

kf 16.2µM/s

kγ 0.1µM

kµ 0.7µM

γ 2µM/s

τh 2s

β 0.01µM/s (Range : 0− 0.02)

where µM represents micromolar,

6.2 Nondimensionalisation of the dynamical model

To non-dimensionalise the equation, we do the following substitution:

c = s̄cc̄, h = s̄hh̄, t = s̄tt̄, where dimension of s̄c is µM , s̄h is dimensionless scaling

factor and dimension of s̄t is second.
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dc̄

dt̄
=
s̄ts̄h
s̄c

kf

p
kµ

1 + p
kµ

h̄
bk1
sc

+ c̄
k1
s̄c

+ c̄
− stγ

sc

c̄
kγ
s̄c

+ c̄
+
s̄t
s̄c
β (6.3)

dh̄

dt̄
=

s̄t
s̄hτh

(k2
s̄c
)2

(k2
s̄c
)2 + c̄2

− s̄t
τh
h̄ (6.4)

Let us now put k̄f =
kf s̄ts̄h

s̄c
,P̄ = p

kµ
, k̄1 =

k1
s̄c
, k̄γ = kγ

s̄c
, γ̄ = γs̄t

s̄c
, β̄ = s̄tβ

s̄c
, k̄2 =

k2
s̄c
,

τ̄h = τhs̄h
s̄t

, and we obtain,

dc̄

dt̄
= k̄fµ(p̄)h̄

bk̄1 + c̄

k̄1 + c̄
− γ̄c̄

k̄γ + c̄
+ β̄ (6.5)

τ̄h
dh̄

dt̄
=

k̄22
k̄22 + c̄2

− shh̄ (6.6)

For the sake of convenience, dropping the bar notation and the equation as

following:

dc

dt
= kfµ(p)h

bk1 + c

k1 + c
− γc

kγ + c
+ β (6.7)

τh
dh

dt
=

k22
k22 + c2

− shh (6.8)

6.3 Fokker-Planck framework

Let us write our original equations with initial conditions:

dc

dt
= kfµ(p)h

bk1 + c

k1 + c
− γc

kγ + c
+ β, c(0) = c0 (6.9)

τh
dh

dt
=

k22
k22 + c2

− shh, h(0) = h0 (6.10)

We will now write above equations in compact form as follows:

dX(t)

dt
= u(X(t), t), X(t0) = X0

116



whereX(t) = [x1(t), x2(t)]
t and x1(t) = c(t) and x2(t) = h(t), X(0) = [x1(0), x2(0)]

t =

[c(0), h(0)]t corresponds the initial condition, and

u1(X(t), t) = kfµ(p)h
bk1 + x1
k1 + x1

− γx1
kγ + x1

+ β, (6.11)

u2(X(t), t) =
k22

k22 + x21
− shx2 (6.12)

Since in the experimental cases, trajectory does not behave as predicted or the captured

dynamics is not accurate. Therefore, we would like to include some randomness in

the system to explain the disturbance.

And, the dynamics for the continuous-time stochastics process can be modelled as

following:

dX(t) = u(X(t), t)dt+ σdW (t), X(t0) = X0, (6.13)

where dW (t) = [dW1(t), dW2(t)]
t shows random infinitesimal increments of two

stochastically independent normalized Wiener process. We assume that the process

is occurring in a bounded convex domain and boundaries of the domain are Lipschitz

and hence X(t) ∈ Ω ⊂ R2. We also assume that ∂Ω works as a reflecting barrier. We,

now write the Fokker-Planck equation corresponding to equation (6.13) that evolves

the probability density function (PDF) of the process, we have

∂tf(x, t)−
σ2

2

2∑
i=1

∂2xixi
f(x, t) +

2∑
i=1

∂xi
(ui(x, t)f(x, t)) = 0

f(x, 0) = f0(x)

(6.14)

where f = f(x, t) is the PDF of the individual to be in x at time t. The distribution

of the initial position X0 of the process is represented by f0(x) and it is represented

by the initial PDF distribution. It also satisfies the following conditions:

f0 ⩾ 0,

∫
Ω

f0(x)dx = 1. (6.15)
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Domain of the FP problem is Q = Ω × (0, T ) and we assume zero flux boundary

conditions for the above FP equation. Also, notice that (6.14) can be written in flux

form as follows:

∂tf(x, t) = ∇ · F, f(x, 0) = f0(x) (6.16)

where the flux F is given component-wise by

Fj(x, t; f) =
σ2

2
∂xj

f − uj(x, t)f. (6.17)

and ‘∇·’ denotes the divergence operator. Flux zero condition can be given as:

F.n̂ = 0 on ∂Ω× (0, T ), (6.18)

where n̂ is the unit outward normal on ∂Ω.

6.4 Discretization of the Fokker Planck equation

In this section, we discuss the we solve the forward FP equation using the

second-order accurate Chang-Cooper (CC) scheme. For the temporal discretization,

we use the NSFD method. We focus on the 2D case and consider a square domain

Ω ≡ (−a, a)× (−a, a) and a sequence of uniform grids {Ωh}h>0 which is given by

Ωh = {(x1i, x2j) ∈ R2 : (x1i, x2j) = (x10 + ih, x20 + jh), (i, j) ∈ {0, . . . , Nx}2} ∩ Ω

where Nx represents the number of grid points in each direction and h is the mesh

size. Further, h is chosen in such a way that the boundaries of Ω coincide with the

grid points. Let δt = T/Nt be the time step size and Nt denotes the number of time

steps. Define

Qh,δt = {(xi, yj, tm) : (xi, yj) ∈ Ωh, tm = mδt, 0 ⩽ m ⩽ Nt}

On the grid Qh,δt, f
m
i,j represents the value of the grid function in Ωh at (xi, yj) and

time tm.
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Using the CC scheme, the term ∇.F in Equation () at time tm can be discretized as

follows

∇.F =
1

h

{(
Fm
i+ 1

2
,j
− Fm

i− 1
2
,j

)
+
(
Fm
i,j+ 1

2
− Fm

i,j− 1
2

)}
where Fm

i+ 1
2
,j
and Fm

i,j+ 1
2

represents the flux in the ith and jth direction, respectively,

at the point (x1i, x2j). These fluxes are as follows:

Fm
i+ 1

2
,j
=

[
−(1− δm

i+ 1
2
,j
)um,1

i+ 1
2
,j
+
σ2

2h

]
fm
i+1,j −

[
σ2

2h
+ δm

i+ 1
2
,j
um,1

i+ 1
2
,j

]
fm
i,j

Fm
i−1 1

2
,j
=

[
−(1− δm

i− 1
2
,j
)um,1

i− 1
2
,j
+
σ2

2h

]
fm
i,j −

[
σ2

2h
+ δm

i− 1
2
,j
um,1

i− 1
2
,j

]
fm
i−1,j

and

Fm
i,j+ 1

2
=

[
−(1− δm

i,j+ 1
2
)um,2

i,j+ 1
2

+
σ2

2h

]
fm
i,j+1 −

[
σ2

2h
+ δm

i,j+ 1
2
um,2

i,j+ 1
2

]
fm
i,j

Fm
i,j− 1

2
=

[
−(1− δm

i,j− 1
2
)um,2

i,j− 1
2

+
σ2

2h

]
fm
i,j −

[
σ2

2h
+ δm

i,j+ 1
2
um,2

i,j− 1
2

]
fm
i,j−1

where

um,1

i+ 1
2
,j
= −u1

(
xi+ 1

2
, yj, tm

)
and

um,2

i,j+ 1
2

= −u2
(
xi, yj+ 1

2
, tm

)
and

δm
i+ 1

2
,j
=

1

wm
i+ 1

2
,j

− 1

exp
(
wm

i+ 1
2
,j

)
− 1

, wm
i+ 1

2
,j
= −2hum,1

i+ 1
2
,j
/σ2, (6.19)

δm
i,j+ 1

2
=

1

wm
i,j+ 1

2

− 1

exp
(
wm

i,j+ 1
2

)
− 1

, wm
i,j+ 1

2
= −2hum,2

i,j+ 1
2

/σ2. (6.20)
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6.5 The Chang-Cooper scheme with first-order NSFD time differencing

The NSFD-CC scheme can be written as follows:

fm+1
i,j − fm

i,j

ϕ(δt)
=

1

h

(
Fm
i+ 1

2
,j
− Fm

i− 1
2
,j

)
+

1

h

(
Fm
i,j+ 1

2
− Fm

i,j− 1
2

)
(6.21)

for all (i, j) ∈ {1, . . . , Nx − 1}.

The flux zero boundary condition at the discrete level is given by

F (i, Nx − 1/2, tm) = 0, F (i, 1/2, tm) = 0 ∀i = 0, . . . , Nx, (6.22)

F (Nx − 1/2, j, tm) = 0, F (1/2, j, tm) = 0 ∀j = 0, . . . , Nx, (6.23)

for all m = 0, 1, 2, . . . , Nt.

Lemma 6.5.1. The NSFD-CC scheme (6.21)-(6.22) is conservative .

Proof. To see this, writing NSFD-CC scheme as follows:

fm+1
i,j − fm

i,j

ϕ(δt)
=

1

h

(
Fm
i+ 1

2
,j
− Fm

i− 1
2
,j

)
+

1

h

(
Fm
i,j+ 1

2
− Fm

i,j− 1
2

)
(6.24)

Now, summing over all i, j, we get

∑
i,j

fm+1
i,j − fm

i,j

ϕ(δt)
=
∑
i,j

[1
h

(
Fm
i+ 1

2
,j
− Fm

i− 1
2
,j

)
+

1

h

(
Fm
i,j+ 1

2
− Fm

i,j− 1
2

) ]
(6.25)

We observe, the right hand side of (6.25) is a telescoping series and this summation

yields following:

∑
i,j

fm+1
i,j − fm

i,j

ϕ(δt)
=
∑
i,j

[1
h

(
Fm
i+ 1

2
,j
− Fm

i− 1
2
,j

)
+

1

h

(
Fm
i,j+ 1

2
− Fm

i,j− 1
2

) ]
(6.26)

= 0 (using(6.22)) (6.27)

This provides ∑
fm+1
i,j =

∑
i,j

fm
i,j, ∀m = 0, . . . , Nt − 1, (6.28)

which shows that NSFD-CC scheme is conservative.
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Further, to investigate the positivity and error estimate properties for (6.21),

we define the following

αm
i,j =

σ2

2h
+ δm

i+ 1
2
,j
u1,m
i+ 1

2
,j
= −

u1,m
i+ 1

2
,j

w̄m
i+ 1

2
,j
− 1

, 1 ⩽ i, j ⩽ Nx − 1, (6.29)

βm
i,j =

σ2

2h
+ δm

i,j+ 1
2
u2,m
i,j+ 1

2

= −
u2,m
i,j+ 1

2

w̄m
i,j+ 1

2

− 1
, 1 ⩽ i, j ⩽ Nx − 1, (6.30)

αm
0,j = 0, 1 ⩽ j ⩽ Nx − 1 (6.31)

βm
i,0 = 0, 1 ⩽ i ⩽ Nx − 1, (6.32)

where δm
i+ 1

2
,j
, δm

i,j+ 1
2

are defined in (6.19) and (6.20) and w̄m
i+ 1

2
,j
= exp(wm

i+ 1
2
,j
), w̄m

i,j+ 1
2

=

exp(wm
i,j+ 1

2

). We remark that αm
i,j, β

m
i,j are positive.

Now to investigate stability and consistency of the NSFD-CC scheme with first-order

time difference, we define the following:

D̄xf
m
i,j = D+

x C
m
i− 1

2
,j
D−

x f
m
i,j +D+

xB
m
i− 1

2
,j
Mδ,xf

m
i,j (6.33)

D̄yf
m
i,j = D+

y C
m
i,j− 1

2
D−

y f
m
i,j +D+

y B
m
i,j− 1

2
Mδ,yf

m
i,j (6.34)

where,

D+
x fi,j =

fi+1,j − fi,j
h

, (6.35)

D−
x fi,j =

fi,j − fi−1,j

h
, (6.36)

D+
y fi,j =

fi,j+1 − fi,j
h

, (6.37)

D−
y fi,j =

fi,j − fi,j−1

h
, (6.38)

Mδ,x = (1− δi− 1
2
, j)fi,j + δi− 1

2
,jfi,j (6.39)

Mδ,y = (1− δi,j− 1
2
)fi,j + δi,j− 1

2
fi,j (6.40)

(6.41)
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Writing the NSFD-CC scheme using the above setup,

fm+1
i,j − fm

i,j

φ(δt)
= D+

x C
m
i− 1

2
,j
D−

x f
m
i,j +D+

xB
m
i− 1

2
,j
M δ

i f
m
i,j + gmi,j (6.42)

where

D+
x C

m
i− 1

2
,j
D−

x f
m
i,j = D+

x C
m
i− 1

2
,j

(
fm
i,j − fm

i,j−1

h

)
=

1

h

{
Cm

i+ 1
2
,j

(
fm
i+1,j − fm

i,j

h

)
− Cm

i− 1
2
,j

(
fm
i,j − fm

i−1,j

h

)}
=

1

h

{
1

h
Cm

i+ 1
2
,j
fm
i+1,j −

1

h

(
Cm

i+ 1
2
,j
+ Cm

i− 1
2
,j

)
fm
i,j +

1

h
Cm

i− 1
2
,j
fm
i−1,j

}
,

D+
xB

m
i− 1

2
,j
Mδ,xf

m
i+1,j = D+

x

(
(1− δm

i− 1
2
,j
)Bm

i− 1
2
,j
fm
i,j + δm

i− 1
2
,j
Bm

i− 1
2
,j
fm
i−1,j

)
=

1

h

{
(1− δmi,j)Bm

i+ 1
2
,j
fm
i+1,j − (1− δmi−1,j)B

m
i− 1

2
,j
fm
i,j

}
+

1

h

{
δmi,jB

m
i+ 1

2
,j
fm
i,j − δmi−1,jB

m
i− 1

2
,j
fm
i−1,j

}
Now, we introduce the following discrete L1 norm, ∥f∥1 =

∑
i,j h

2|fi,j| and the

discrete L2 norm is given by ∥f∥ =
√∑

i,j h
2|fi,j|2 .

Theorem 6.5.2. Let φ : R+ → R+ satisfy the following conditions:

(I) φ(δt) = dt+O(δt2),

(II) 0 < φ(δt) < 2
2γ−1

, where γ is the Lipschitz constant.

then the NSFD-CC (6.21) is satisfies the following inequality:

∥fm∥ ⩽ 3m/2∥f 0∥+ Cδt

m∑
k=0

max(∥gk∥, ∥gk+1∥), (6.43)

where C is a constant.

Proof. We take discrete L2 inner product of (6.21) with fm, we have

(
fm+1 − fm

φ(δt)
, fm

)
=
(
D+

x C
m
1
2
D−

x f
m, fm

)
+
(
D+

xB
m
1
2
Mδ,xf

m, fm
)

+
(
D+

y C
m
1
2
D−

y f
m, fm

)
+
(
D+

y B
m
1
2
Mδ,yf

m, fm
)
+ (gm, fm)
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Similar to the computation in [128], we get(
D+

x C
m
1
2
D−

x f
m, fm

)
=

N∑
i=0

(D+
x C

m
i− 1

2
,j
D−

x f
m)fm

i,jh

⩽ Cm
N+ 1

2
,j

(
fm
N+1,j − fm

N,j

h

)
fm
N,j − Cm

− 1
2
,j

(
fm
0,j − fm

−1,j

h

)
fm
i−1,j

Next, we have(
D+

xB
m
1
2
Mδ,xf

m, fm
)
=

N∑
i=0

((1− δmi,j)Bm
i+ 1

2
,j
fm
i+1,jf

m
i,j − (1− δmi−1,j)B

m
i−1,j(f

m
i,j)

2

+ δmi,j(f
m
i,j)

2 − δmi−1,jB
m
i− 1

2
,j
fm
i−1,jf

m
i,j)

=
N∑
i=0

((1− δmi,j)Bm
i+ 1

2
,j
fm
i+1,jf

m
i,j −

N−1∑
i=−1

δmi,jB
m
i+ 1

2
,j
fm
i,jf

m
i+1,j

+
N∑
i=0

δmi,jB
m
i+ 1

2
(fm

i,j)
2 +

N−1∑
i=−1

(δmj − 1)Bm
i+ 1

2
,j
(fm

i+1,j)
2

=
N∑
i=0

(1− δmi,j)Bm
i+ 1

2
,j
fm
i+1,jf

m
i,j −

N−1∑
i=−1

δmi,jB
m
i+ 1

2
,j
fm
i,jf

m
i+1,j

+ (1− δN,j)B
m
N+ 1

2
,j
fm
N+1,j − δm−1B

m
− 1

2
,j
fm
−1,jf

m
0,j

+
N−1∑
i=0

δmi,jB
m
i+ 1

2
,j
(fm

i,j)
2 +

N−1∑
i=0

(δmi,j − 1)Bm
i+ 1

2
,j
(fm

i+1,j)
2

+ δmN,jB
m
N= 1

2
(fm

N , j)
2 + (δm−1 − 1)Bm

− 1
2
(fm

0,j)
2

Applying the zero-flux boundary conditions Fm
− 1

2
,0

= 0 and Fm
N+ 1

2
,j

= 0 for all

j = 0, . . . , N which is given by

Bm
− 1

2
,j
((1− δm−1)f

m
0,j + δm−1,jf

m
−1,j) + Cm

− 1
2
,j

(
fm
0,j − fm

−1,j

h

)
= 0

and

Bm
N+ 1

2
,j
((1− δmN )fm

N+1,j + δmN,jf
m
N,j) + Cm

N+ 1
2
,j

(
fm
N+1,j − fm

N,j

h

)
= 0

which yields

D+
x C

m
i− 1

2
,j
D−

x f
m
i,j +

(
D+

xB
m
1
2
Mδ,xf

m, fm
)
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⩽
N−1∑
i=0

[
(fm

i,j)
2 + (fm

i+1,j)
2
]
Bm

i+1,j

(
1− 2δmi,j

2

)

+
N−1∑
i=0

δmi,jB
m
i+ 1

2
,j
(fm

i,j)
2 +

N−1∑
i=0

(δmi,j − 1)Bm
i+ 1

2
(fm

i+1,j)
2

⩽
N−1∑
i=0

1

2
Bm

i+ 1
2
,j
(fm

i,j)
2 −

N−1∑
i=0

1

2
Bm

i+ 1
2
,j
(fm

i+1,j)
2

⩽
N−1∑
i=0

1

2
Bm

i+ 1
2
,j
(fm

i,j)
2 −

N∑
i=0

1

2
Bm

i− 1
2
,j
(fm

i,j)
2

+
1

2
Bm

N+ 1
2
,j
(fm

N,j)
2 − 1

2
Bm

− 1
2
,j
(fm

0,j)
2 (6.44)

=
N∑
i=0

1

2
Bm

i+ 1
2
,j
(fm

i,j)
2 −

N∑
i=0

1

2
Bm

i− 1
2
,j
(fm

i,j)
2 (6.45)

⩽
N∑
i=0

1

2
|Bm

i+ 1
2
,j
−Bm

i− 1
2
,j
||fm

i,j|2 (6.46)

⩽
1

2
γ

N∑
i=0

|fm
i,j|2h (6.47)

=
1

2
γ∥fm∥2 (6.48)

Therefore, we obtain the following estimate(
fm+1 − fm

φ(δt)
, fm

)
⩽

1

2
γ∥fm∥2 + ∥gm∥∥fm∥ (6.49)

And from the calculation in [128], we have(
fm+1 − fm

φ(δt)
, fm+1

)
⩽

1

2
γ∥fm+1∥2 + ∥gm+1∥∥fm+1∥ (6.50)

Adding above two equations, we get(
fm+1 − fm

φ(δt)
, fm+1 + fm

)
⩽

1

2
γ∥fm∥2 + 1

2
γ∥fm+1∥2 + ∥gm∥∥fm∥+ ∥gm+1∥∥fm+1∥

(6.51)

On the other hand, we have(
∥fm+1∥2 − ∥fm∥2

φ(δt)

)
=

(
fm+1 − fm

φ(δt)
, fm+1 + fm

)
(6.52)
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Thus, we get(
∥fm+1∥2 − ∥fm∥2

φ(δt)

)
⩽

1

2
γ∥fm∥2 + 1

2
γ∥fm+1∥2 + ∥gm∥∥fm∥+ ∥gm+1∥∥fm+1∥

(6.53)

which gives

∥fm+1∥2 ⩽ ∥fm∥2 + 1

2
γφ(δt)∥fm∥2 + 1

2
γφ(δt)∥fm+1∥2 + φ(δt)∥gm∥∥fm∥+ φ(δt)∥gm+1∥∥fm+1∥

∥fm+1∥2 ⩽ ∥fm∥2 + 1

2
γφ(δt)2∥fm∥2 + 1

2
γφ(δt)∥fm+1∥2 + 1

2
(φ(δt)2∥gm∥2 + ∥fm∥2)

+
1

2
(φ(δt)2∥gm+1∥2 + ∥fm+1∥2)(

1− 1

2
φ(δt)(γ − 1)

)
∥fm+1∥2

⩽

(
1 +

1

2
φ(δt)(γ + 1)

)
∥fm∥2 + 1

2
φ(δt)2(∥gm∥2 + ∥gm+1∥2)

⩽

(
1 + 1

2
φ(δt)(γ + 1)

)(
1− 1

2
φ(δt)(γ − 1)

)∥fm∥2 + 1

2
φ(δt)2(∥gm∥2 + ∥gm+1∥2)

∥fm+1∥2 ⩽
(
1 + 1

2
φ(dt)(γ + 1)

)(
1− 1

2
φ(δt)(γ − 1)

)∥fm∥2 + 1

2
φ(δt)2(∥gm∥2 + ∥gm+1∥2 + 2∥gm∥∥gm+1∥)

=

(
1 + 1

2
φ(δt)(γ + 1)

)(
1− 1

2
φ(δt)(γ − 1)

)∥fm∥2 + 1

2
φ(δt)2(∥gm∥+ ∥gm+1∥)2

=

(
1 + 1

2
φ(δt)(γ + 1)

)(
1− 1

2
φ(δt)(γ − 1)

)∥fm∥2 + 1

2
φ(δt)2(∥gm∥+ ∥gm+1∥)2

+ 2φ(δt)


(
1 + 1

2
φ(δt)(γ + 1)

)
2
(
1− 1

2
φ(δt)(γ − 1)

)


1
2

∥fm∥(∥gm∥+ ∥gm+1∥)

⩽


(
1 + 1

2
φ(δt)(γ + 1)

)(
1− 1

2
φ(δt)(γ − 1)

)


1
2

∥fm∥+
√
2φ(δt)max(∥gm∥, ∥gm+1∥)

⩽


(
1 + 1

2
φ(δt)(γ + 1)

)(
1− 1

2
φ(δt)(γ − 1)

)


1
2

∥fm∥+
√
2δt(1 +O(δt))max(∥gm∥, ∥gm+1∥)

125



We want to emphasize here that(
1 + 1

2
φ(δt)(γ + 1)

)(
1− 1

2
φ(δt)(γ − 1)

) > 0.

and in fact it is greater that 1, hence the term inside the bracket makes sense. It can

be seen as follows (
1 +

1

2
φ(δt)(γ + 1)

)
>
(
1− 1

2
φ(δt)(γ − 1)

)
,

which gives φ(δt)γ > 0, and this is true since φ and γ > 0. Further , under the

assumption φ(δt) < 2
2γ−1

, we get(
1 + 1

2
φ(δt)(γ + 1)

)(
1− 1

2
φ(δt)(γ − 1)

) < 3

This gives,

∥fm+1∥ ⩽
√
3∥fm∥+ Cmax(∥gm∥, ∥gm+1∥) (6.54)

This recursion relation gives us,

∥fm∥ ⩽ 3m/2∥f 0∥+ Cδt
m∑
k=0

max(∥gk∥, ∥gk+1∥). (6.55)

where C =
√
2
∑m

k=0(
√
3)

m+k
2 .

To explore the order of accuracy of the NSFD-CC scheme, we assume f ∈

C2([0, T ], C3(Ω)) and compute the truncation error.

Lemma 6.5.3. The truncation error of the discretization scheme (6.21) is of order

O(δt+ h2).

We write the Taylor series expansion of f in t

f(xi, yj, tm+1) = f(xi, yj, tm) + δt
∂f

∂t
(xi, yj, tm) +

δt2

2

∂2f

∂t2
(xi, yj, µk)

= f(xi, yj, tm) + δt∇ · F (xi, yj, tm) +
δt2

2

∂2f

∂t2
(xi, yj, µk) (6.56)
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since ∂f
∂t
(xi, yj, tm) = ∇ · F (xi, yj, tm).

Now consider the following,

f(xi, yj, tm+1)− {f(xi, yj, tm) + φ(δt)∇ · F (xi, yj, tm)}

= f(xi, yj, tm) + δt
∂f

∂t
(xi, yj, tm) +

δt2

2

∂2f

∂t2
(xi, yj, µk)

− {f(xi, yj, tm) + φ(δt)∇ · F (xi, yj, tm)}

= (δt− φ(δt))∇ · F (xi, yj, tm) +
δt2

2

∂2f

∂t2
(xi, yj, µk)

= O(δt2) (6.57)

as φ(δt) = δt+O(δt2)

Further, doing the similar calculations as in [128], we get

D+
x C

m
i− 1

2
,j
D−

x f
m
i,j − ∂x(Cm∂xf)

tm
xi,yj

= O(h4)

D+
y C

m
i− 1

2
,j
D−

y f
m
i,j − ∂x(Cm∂yf)

tm
xi,yj

= O(h4)

D+
xB

m
i− 1

2
,j
Mδ,xf

m
i,j − ∂x(Bf)tmxi,yj

= O(h2)

D+
y B

m
i,j− 1

2
Mδ,yf

m
i,j − ∂y(Bf)tmxi,yj

= O(h2) (6.58)

and hence,

D̄xf
m
i,j = D+

x C
m
i− 1

2
,j
D−

x f
m
i,j +D+

xB
m
i− 1

2
,j
Mδ,xf

m
i,j

= O(h2) (6.59)

D̄yf
m
i,j = D+

y C
m
i,j− 1

2
D−

y f
m
i,j +D+

y B
m
i,j− 1

2
Mδ,yf

m
i,j

= O(h2) (6.60)

Using above calculations, the truncation error can be given as follows:

τm+1
i,,j =

f(xi, yj, tm+1)− f(xi, yj, tm)
φ(δt)

+ D̄xf(xi, yj, tm) + D̄xf(xi, yj, tm)

= O(δt+ h2) (6.61)
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Next, we define the global error as follows:

emi,j = f(xi, yj, tm)− fm
i,j, i, j = 0, . . . , Nx, m = 1, . . . , Nt. (6.62)

Theorem 6.5.4. The NSFD-CC scheme (6.21) converges with an error of order

O(dt+ h2) under the CFL condition in the discrete L1 norm.

Proof. By the definition of truncation error, we have

em+1
i,j − emi,j
φ(δt)

− (D̄x + D̄y)e
m
i,j

=
f(xi, yj, tm+1)− fm+1

i,j − f(xi, yj, tm) + fm
i,j

φ(δt)

− (D̄x + D̄y)(f(xi, yj, tm+1)− fm+1
i,j − f(xi, yj, tm) + fm

i,j)

=
f(xi, yj, tm+1)− f(xi, yj, tm)

φ(δt)
−

(fm+1
i,j − fm

i,j)

φ(δt)

− (D̄x + D̄y)(f(xi, yj, tm+1)− f(xi, yj, tm)) + (D̄x + D̄y)(f
m+1
i,j − fm

i,j)

= τm+1
i,j

since
fm+1
i,j −fm

i,j

φ(δt)
− (D̄x + D̄y)(f

m+1
i,j − fm

i,j) = 0.

Thus

em+1
i,j − emi,j
φ(δt)

= (D̄x + D̄y)e
m
i,j + τm+1

i,j

Thus, the solution error emi,j satisfies the discretized FP equation discussed above

with the right hand side given by the truncation error function. Hence, using the

Theorem 6.5.2 , we have

∥em∥ ⩽ 3m/2∥e0∥+ Cδt

m∑
k=0

max(∥τ k∥, ∥τ k+1∥),
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⩽3m/2∥e0∥+ Cmax(∥τ k∥, ∥τ k+1∥)Mδt

= CT max(∥τ k∥, ∥τ k+1∥).

Therefore, from Lemma 6.5.3 , the NSFD-CC scheme converges with order

O(dt+ h2) in the discrete L1 norm.

Next, we will investigate the positivity property of NSFD-CC scheme. Let

fm = (fm
1,1, . . . , f

m
1,Nx−1, . . . , f

m
2,1, . . . , f

m
2,Nx−1, . . . , f

m
Nx−1,1, . . . , f

m
Nx−1,Nx−1), then we can

rewrite the scheme (6.21) as follows:

fm+1 = Afm + gmi,j, m = 0, . . . , Nt − 1, (6.63)

where A is a block diagonal matrix and is given by

Pm,1 Rm,1

Qm,1 Pm,2 Rm,2

Qm,2 Pm,3 Rm,3

. . . . . . . . .

Pm,Nx−1


(6.64)

where, each block Pm,k, for k = 1, 2, . . . , Nx − 1 is a tridiagonal matrix and block

Qm,k and Rm,k are diagonal matrices,

super diagonal entries of Pm,k =
δt

h
αm
i,jw̄

m
i+ 1

2
,j
,

sub diagonal entries of Pm,k =
δt

h
αm
i−1,j

diagonal entries of Pm,k = 1− δt

h
(αm

i−1,jw̄
m
i,j + βm

i−1,jw̄
m
i,j + αm

i,j + βm
i,j)

diagonal entries of Qm,k =
δt

h
βm
i−1,j

diagonal entries of Rm,k =
δt

h
βm
i,jw̄

m
i+ 1

2
,j
,

From (6.29) and (6.30), we see that super diagonal and sub diagonal entries of

Pm,k, diagonal entries of Qm,k and Rm,k are positive. Diagonal entries of Pm,k are
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also non-negative under the assumption that δt
h
(αm

i−1,jw̄
m
i,j +β

m
i−1,jw̄

m
i,j +α

m
i,j +β

m
i,j) < 1.

Since, u is bounded, so let M = max{αm
i−1,jw̄

m
i,j +β

m
i−1,jw̄

m
i,j +α

m
i,j +β

m
i,j, 0 ⩽ i, j ⩽ N},

then δt < h
M
.

Thus the CFL-like condition is

δt <
h

M
(6.65)

shows the non-negativity of diagonal entry of Pm,k. Thus, we see that the NSFD-CC

(6.21) is positive.

Theorem 6.5.5. The NSFD-CC scheme (6.21), is L1 stable under the CFL-like

condition,

∥fm∥1 = ∥f 0∥1, m = 0, . . . Nt − 1.

Proof. From Lemma (6.5.1), we get

n∑
i,j=0

fm
i,j =

n∑
i,j=0

f 0
i,j, ∀ m = 1, . . . , Nt, (6.66)

Using positivity result, above equation can be written as

n∑
i,j=0

|fm
i,j| =

n∑
i,j=0

|f 0
i,j|, ∀m = 1, . . . , Nt, (6.67)

6.6 Numerical results

In this section, we present results of numerical experiments to validate our

proposed NSFD-CC scheme. The initial PDF f0(x) is given as follows

f0(x) = Ĉ exp(−(x1 − A1)
2 − (x2 − A2)

2) (6.68)

where (A1, A2) = x̄(0) is the starting point of the trajectory x̄ and Ĉ is the normalisa-

tion constant such that
∫
Ω
f(x)dx = 1. For test case I, we consider the drift coefficient
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Figure 6.1

(1, 1), hence the expected motion is in the direction of a straight line x2 = x1, which is

evident from figure. The total number of spatial points is Nx = 150 and the number

of temporal grid points is Nt = 1000 and q = 2.
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Figure 6.2

For the next simulation, we consider the drift term as the right hand side of ode and

is given in Equation (6.11).
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6.7 Conclusion

A Fokker-Planck framework for calcium signaling is discussed. To compute

the approximate solution of FP equation, an NSFD-CC scheme is used to discretize

the system. The scheme was shown to be conservative, positivity preserving, stable,

and first accurate in time while second order accurate in space. To demonstrate

the effectiveness of the numerical scheme, various numerical simulations are also

discussed.
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CHAPTER 7

Conclusion

The main aim of the thesis was to study nonlinear optimization framework

to reconstruct the electrical and optical properties in hybrid imaging modalities,

nonstandard finite difference methods and Fokker-Planck framework in esophageal

cancer. In the field of hybrid imaging, we developed a PDE-constraint optimization

problem to reconstruct the electrical conductivity in current density impedance

imaging and optical coefficients in two-photon photoacoustic computed tomography.

We characterized the solution of the optimization problem through an optimality

system that was solved with using a proximal scheme, coupled with various regularizer

for denoising to remove artifacts in the reconstructions and obtain images which are

of high contrast and high resolution. We then demonstrated the effectiveness of our

proposed scheme through several numerical experiments and compared our results

with an existing scheme. Our scheme facilitated reconstructions of a wide variety of

conductivity patters with good contrast and resolution. The developed framework is

useful for other kind of hybrid imaging modalities.

In nonstandard finite difference methods, we first discussed two-classes of

modified nonstandard theta methods and Runge-Kutta methods. The new numerical

methods were developed based on modifications of the nonstandard denominator

functions used in NSFD methods. The methods were shown to be of second order

accuracy, which is an improvement in the accuracy of their NSFD counterparts,

while preserving their stability properties. Using a set of numerical simulations, the

two-stage modified nonstandard explicit Runge-Kutta methods were compared to the
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NSFD ERK2 method, the standard ERK2 method, and the combined NSFD method,

which verified the theoretical results and demonstrated the strengths of the proposed

new numerical methods. We would like to further develop NSFD schemes which

are higher order accurate. In Chapter 6, we discussed a Fokker-Planck framework

for esophageal cancer. To solve FP equation, we presented an NSFD scheme based

on explicit Euler method for temporal discretization and Chang-Cooper scheme

for spatial resolution. Next, we showed that the NSFD-CC scheme is conservative,

positive, and L1 stable. We further showed that NSFD-CC is of first order accurate in

time and second order accurate in spatial discretization. To show the effectiveness of

our method, we also discussed various numerical simulations In this direction, future

work involves to develop NSFD-CC schemes which are based on ERK2 method.
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