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ABSTRACT

System Identification of Linear and Non-Linear Dynamical Systems using Semi-definite

Programming via Penalized Parabolic Relaxation Method

Adnan Nasir, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Ramtin Madani

This document is prepared to highlight the difference between two very important

fields in the realm of Convex Optimization, Machine Learning, Artificial Intelligence and

many such sprouting advance fields currently impacting the whole world. The main aim of

the recent SDP algorithms is to relax the NP-Hard Convex Optimization problems and trans-

form them into amenable jobs without strong theoretical guarantees, but these algorithms

tends to approximate the practical in demand applications in many of the aforementioned

fields. Moreover, The lack of theoretical guarantee makes the SDP relaxation in-exact and

unoptimizable in finite duration. The actual world applications most of the time desire real

time optimized results, for example, in applications related to stock exchange, critical space

explorations and launches, pattern and feature detection, in cyber security and many more.

Many efforts have been made to develop algorithms that can relax the SDPs, and in

the same time can reach to a near optimal solution without wasting a lot of time. Many

such efforts from the past and including some recently proposed algorithms are discussed in

this survey, highlighting important methods used by these prominent researchers such as low
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rank First and Second order relaxations, with and without sparsity. Due to the demand of

making these algorithms work fast on huge data sets, it is increasingly difficult to converge

to optimality for any of the contemporary SDP algorithms in finite time.

We have proposed a novel SDP algorithm, that utilizes Sequential Parabolic Relaxation

to further relax the non-convex constraints. The proposed algorithm not only optimizes the

SDP in hand, reaching the optimal solution in a finite amount of time, it also gives a the-

oretical guarantee of accuracy. We have discussed the proposed algorithm emphasizing the

analytical and experimental results on the System Identification and Control, and comparing

its performance with state-of-the-art algorithms.

After explaining the novel convex relaxation to solve the equations governing the be-

havior of linear and nonlinear dynamical systems. The proposed relaxation is used for the

purpose of system identification. We demonstrate significant improvements in the overall

scalability in comparison with the state-of-the-art convex relaxations.For cases where the

proposed relaxation is inexact, a sequential algorithm is provided which converges within

a finite number of rounds. Theoretical guarantees and simulation results are presented to

demonstrate the effectiveness of the proposed approach. This review will also state the

mathematical proof ensuring the convergence of the algorithm in finite time. At the end, we

tried to pin-point new directions and the challenges that are still ahead in this vast field of

SDP optimization.
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CHAPTER 1

Introduction to Semi-definite Programming

Semidefinite Programming (SDP) has been around for decades, however, their progress

was not impressive initially because of the algorithms used in SDPs were slow and required

considerable amount of memory space, especially for large scale optimization problems.

SDPs plays a pivotal role in solving most of the NP-Hard problems, that were considered

unsolvable in the past. Thanks to a number of prominent researchers and their achievements

in the field of SDPs we were able to solve these problems in efficient ways. This section sheds

light on some of their major efforts.

Burer et.al [3–5] are some of initial attempts to develop a practical algorithm which may not

offer strong theoretical guarantee but is able to relax the original problem to solve the SDPs.

Recent advances mainly adopting the Burer’s methodology, in this field has introduced new

algorithms for First and Second order SDPs and has instigated plethora of opportunities in

various fields of science, engineering, banking and numerous technologies. Figure 1.1 shows

the classes of Convex Optimization.

Before indulging into the vast and intricate sub-class of Convex Optimization called

SDPs, we need to investigate its origin. SDPs are a component of a bigger Convex Opti-

mization Theory, which it-self is a field of Mathematical Optimization.
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Figure 1.1. Classes of Convex Optimization.

A general Convex Optimization problem can be represented as:

min
x

f0(x)

s.t. fi(x) ≤ bi, i = 1, 2, ...,m.

fi = bi

(1.1)

Where in equation(1.1), f0(x) : Rn 7→ R is an objective function and fi(x) : Rn 7→ R,

are constraint functions from i = 1, 2, ...,m. A convex Objective and Constraint functions

makes the problem Convex. fi(x) ≤ bi and fi = bi are inequality and equality constraints

respectively. Mathematical Optimization generally is considered as NP-hard.

SDP is quite a new addition to the convex optimization in retrospect and efficiently solves

very complex optimization problems. Recent advances and mathematical breakthroughs

has made it one of the most persuaded technique of current convex optimization problems.

Some of the fields but not limited to Machine Learning, Artificial Intelligence, Operational

Research, Combinatorial Optimization, Power, Communications, Sensing, Signal Processing

etc. are utilizing the amazing power of SDP modelling.
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SDPs are considered as a special case of Cone Programming, where we choose a symmetric

positive semidefinite matrix to minimize a linear function subject to linear constraints.interior

point methods conveniently solve the problems related to cone programming. Moreover, al-

most all the linear and polynomial optimization problems can be re-modelled into SDPs.

The following is the Standard and inequality form semidefinite programs [6]:

min
x

tr(CX)

s.t. tr(AiX) = bi, i = 1, 2, ..., p.

X � 0,

(1.2)

SDPs have linear equality constraints and a non-negativity matrix constraint on X ∈ Sn .

Here in 1.2, C, and A1, ..., Ap ∈ Sn [6].

By definition any algorithm that needs at minimum one derivative or gradient to

optimize the problem is termed as First Order, on the same note a Second order algorithm

utilizes second gradient, since, the second order methods mainly depends upon the use

of Newtons steps, that require the use of Hessian which has second order derivative. Next

section discusses briefly some of the recent work on first and second order methods in solving

SDPs.

1.1 First-Order SDPs

First order Non-linear Programming methods are primarily motivated by Interior Point

Algorithm for linear programming,using primal-dual and Lagrangian Multipliers. Conven-

tional SDP algorithms were great in solving low dimension data problems, however, when

the dimensions of the problem becomes large it was impossible to handle by these old algo-

rithms due to huge space requirements for data storage and extraordinary time they take to
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produce feasible solutions.

In the SDP arena the two general first order methods has been in operation for long are

Projected sub-gradient method and the Method of multipliers or Augmented La-

grangian Method.

Some recent work has made it possible to solve the large SDP problems by exploiting the

sparse structure of the original problem, they can also be efficiently converged using simple

numerical matrix algebra methods. Madani [7] elaborated the first order SDPs in detail and

their projected applications. An excellent initial work on SDP by Vandenberghe and Boyd

in 1994 [8] elaborate the topic very well.

1.2 Second-Order SDPs

Second order methods are based on Newton steps hence, referred to be second order

methods. They are preconditioned conjugate gradient schemes to compute Newton direction

and rely on Matrix completion to exploit sparsity of the data.

Second-order cone programming (SOCP) problems also called the Lorentz cone or the ice-

cream cone, is a special case of SDPs. SOCPs are defines as a linear function which is

minimized over the intersection of an affine linear manifold with the Cartesian product of

second-order (Lorentz) cones. It is also noted that LPs, QPs and QCQPs can all be treated

with SOCP formulations, making SOCP to lie between LP, QP and SDP [9]. However, when

SOCP was formulated as SDP it increases the complexity and the size of the matrices, hence,

in general this transformation is not recommended [9].
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The standard form of SOCP is similar to linear program (LP) is given below:

min
X

fTX

s.t. ‖AkX + b‖2 ≤ cT
k X + dk, k = 1, ...m.

(1.3)

Where, Ak ∈ Rn×n, bk ∈ Rn, ck ∈ Rn, and di ∈ R.

SOCPs can efficiently model the problems in the fields encompassing computer, elec-

trical, mechanical engineering, automation and control, Machine and Deep Learning and

finance [10–12].

1.3 Special Case of SDP - QCQP

In quadratic program (QP) the objective is quadratic with linear constraints, however,

in quadratically constrained quadratic program (QCQP) has quadratic objective along with

quadratic constraints. QCQP is thoroughly studied during the past decade and is widely

considered as a special case of SOCP, it is used globally to solve problems in communication

systems, signal processing and many other engineering areas [13].

As it has been seen that the QCQP is a non-convex NP-Hard problem, in order to solve

these problems efficiently, Semidefinite Relaxation (SDR) techniques were employed. Gen-

erally this relaxation is obtained by reformulating the problem into a rank-one constrained

optimization problem, afterwards the problem is relaxed into a convex SDP while ignoring

the rank constraints. This relaxation is not ’tight’, after utilizing some sort of randomization

algorithm, hence, the solution is sub-optimal [14].
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A general Quadratic Programming standard form is given below:

min
X∈Sn

XTQX + qTX + c

s.t. AkX ≤ b,

(1.4)

Where, Q ∈ Sn×n, q ∈ Rn, c ∈ R, A ∈ Rm×n and b ∈ Rm.

QCQP standard form is given below:

min
X∈Sn

XTQX + qTX + c

s.t. XTQiX + qT
i X + ci ≤ 0, i = 1, ...,m.

(1.5)

Here, Q,Qi ∈ Sn×n, q, qi ∈ Rn, c, ci ∈ Rn, A ∈ Rm×n and b ∈ Rm.

1.4 Commercial Solvers

In the past, optimization problems were divided in two classes:

• Linear programming problems that are convex and non-smooth, and were solved by

Simplex methods.

• Nonlinear programming problems that are smooth, can be convex and were solved by

gradient local search methods.

From 1980’s due to the origination of Interior Point Methods, SOCP and SDPs, this

division was redefined. Now the optimization problems were categorized into:
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• Convex optimization problems, which can be solved efficiently.

• Non Convex optimization problems which cannot be solved efficiently.

However, many such non-convex optimization problems can be relaxed to behave in convex

manner and these relaxations can be used to compute the bounds on the non-convex op-

timization. Convex Optimization is now thoroughly used in both academia and industry,

many applications need solvers to get to the optimal solutions quickly. To facilitate the

industry and academia many software solvers has been produced in the recent past. Many

of these solvers are designed to deal with some specific problems and type of Convex Opti-

mization under consideration.

Choosing a solver depends upon some of the following traits that fits the need of the problem

at hand. First parameter is accuracy, when the problem needs to be solved accurately, it

usually takes more time to reach the feasible optimal solution. Second is robustness, if the

desired optimal solution needs to be reliable where the tolerance for an error is very low.

Third parameter is the ability to be interfaced, it essentially means, whether the solver is

compatible with the system you are using. Finally, the performance, it includes the time it

will take to finish the job and how good the solver is in parallel multitasking.

A list of some of the most used commercial and free/open source solvers is presented below,

this list is not comprehensive.
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Solvers Solving Method Applications

Open Source

SDPA
Primal-dual interior-point method, exploits sparsity,

MATLAB, C and Python platforms
SDP

SDPT3
MATLAB based, semidefinite-quadratic-linear programming,

predictor-corrector primal-dual path-following method.
SDP, SOCP

CLPEX Integer, linear and quadratic programming LP, MILP, QP, QCQP, SOCP

SeDuMi Primal-dual interior point methods SDP, SOCP

Gurobi integer, linear and quadratic programming LP, QP, QCQP, SOCP

CVX
Matlab software for Disciplined Convex Programming

based on interior point methods.
SDP, SOCP, GP, MIDCP

LOGDETPPA
MATLAB based, log-determinant semidefinite programming,

semi-smooth Newton CG primal proximal point algorithm.
SDP

PENLAB

MATLAB based optimizer for nonlinear, linear SDPs.

used for teaching and research purposes,

based on nonlinear re-scaling method of Roman Polyak [15].

SDP

SDPLR
C-base package for solving large-scale SDPs,

Runs on MATLAB, uses Burer’s Method [3].
SDP

SDPNAL

MATLAB based solver for SDP’s with bound constraints.

Uses primal and dual methods based on,

Newton-CG augmented Lagrangian, [16].

SDP

CSDP
MATLAB platform, predictor-corrector version of Primal-Dual

method based on Helmberg method [17].
SDP

DSDP
MATLAB platform, Interior-point method for semidefinite

programming, exploits low-rank and sparsity.
SDP, SOCP

ROME
MATLAB platform, Interior-point method for semidefinite

programming, exploits low-rank and sparsity.
SDP

YALMIP
MATLAB platform, Interior-point method for semidefinite

programming, exploits low-rank and sparsity.
SDP

Table 1.1. Free/Open Source Solvers, [1, 2]
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Solvers Solving Method Applications

Commercial

PENBMI

Quadratic objective and Bilinear matrix inequality constraints,

for both dense and sparse matrices, control and optimization.

MATLAB based. Exterior penalty and Interior barrier methods

with the Augmented Lagrangian method.

SDP

PENSDP
Solves large-scale problems with sparse data structure.

It is based on a generalized augmented Lagrangian method [18].
SDP

SCIP-SDP
Solves mixed integer SDPs, combines branch-and-bound framework

of SCIP [19], with interior-point methods [20].
Mixed Integer SDP

LMILAB
MATLAB tool box, solves general Linear Matrix Inequalities (LMI) problems,

based on MATLAB Executable C-MEX implementation.
LMI, SDP

CPLEX

MATLAB and Python based, solves very large, real-world

optimization problems, not used for SDP problems,

made on C++, Java and .Net platforms, uses many algorithms like

primal, dual, Barrier(Interior Point) and network

SDPs can be re-formulated into CPLEX structure.

LP, QP,

QCQP, MIP

GUROBI

Uses on multiple platforms MATLAB, C++, Java, R etc.

utilizes multiple algorithms, Primal, Dual, Barrier, Simplex,

branch and cut, cutting planes etc.

LP, QP, MIP, QCP,

SOCP, MIQCP, SDP

GAMS
Uses multiple solvers for linear, non-linear, mixed integer, complex,

large scale modeling applications.

LP, MIP, QCP,

MIQCP, SDP

PENNON

MATLAB based, Used for solving non-linear SDPs, based on generalized

augmented Lagrangian method [18], free open source

toolbox for MATLAB is available

SDP

MATLAB
linear, integer, quadratic, and nonlinear problems with

Optimization Toolbox
LP, MIDCP, QP

MOSEK

MATLAB, R and Python based, solves large-scale, optimization problems.

Primal and dual method and Branch, Bound and Cut algorithm,

for Mixed Integer Optimization, free student version is available.

SDP, QP,

QCQP, SOCP

Table 1.2. Commercial Solvers, [1, 2]
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CHAPTER 2

Burer’s SDP Method

Interior Point methods are used to solve the SDP’s in polynomial time, however, scal-

ability is the main problem. Burer in 2002 [3] addresses this problem by solving the SDPs

using some low-rank equality constraints and non-convex alternates. Burer’s method was

instrumental in converging to the global optima in case of some application and gives an

exact solution using the block-coordinate maximization method. Burer presents a nonlinear

programming algorithm for solving SDPs in standard form by change of variables X which

is symmetric, positive semidefinite to a rectangular variable Y by factorization X = Y Y T .

Rank of Y is chosen minimally to improve speed. However, relaxing the SDP by assuming

X = Y Y T makes the system non-convex, since Y is non-convex [4].

Consider the following SDP in standard form:

min
X∈Sn

tr{A0X}

s.t. tr{AkX} ≤ ak, k = 1, 2, ...,m.

X � 0,

(2.1)

Here, the n× n matrices, A1, ..., Am ∈ Sn and a1, ..., am are given real numbers.

The factorizing method proposed by Burer at [3] and [4] uses a matrix Y of size (n×k)

such that X = Y Y T is the SDP variable X. This formulation shown in equation (2.2) below,

readily gives two main advantages over the main SDP problem shown in equation 1.2. First,

it reduces the dimension of the optimizing variable and secondly, in the process, imposed
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the condition of positive semi-definiteness on it.

min
X∈Sn

Y ∈Rn×r

tr{A0X}

s.t. tr{AkX} ≤ ak, k = 1, 2, ...,m.

X = YYT,

(2.2)

2.1 Recent Work on Burer’s Method

Here, in this section we are going to analyze some of the recent and pioneer notable

work on Burer’s method in the period after its inception. We start from the earliest work

and move towards the most recent ones.

Burer’s methods uses non-convex local algorithms to solve large scale SDPs with low

rank solution [3] through change of variables, it was instrumental in giving a relaxed solu-

tion for SDP problems and after that, many researchers caught on the idea and started to

exploit the benefits of this relaxation. It was helpful to solve problems in many areas in

combinatorics, Machine Learning, Power Flow and the list goes on. Here Burer, present a

primal-dual path-following algorithm that is based on a new search direction, which, roughly

speaking, is defined completely within the space of partial symmetric matrices. This work

is in contrast to the work of Fukuda et al. [21] and Nakata et al. [22], in which the theory

of partial positive semidefinite matrices was applied to the semidefinite programming (SDP)

problem as a technique for exploiting sparsity in the data by computing primal-dual solution

of the SDP problem with a duality gap less than a fraction ε > 0 of the initial duality gap

in O(nlog(ε− 1)) iterations, where n is the size of the matrices involved.
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In [23], the authors used slack variables to verify the Burer’s method, however, they

found that the slack variable approach will not be able to increase the efficiency of the so-

lution but they will improve the doubly non-negative relaxation. They determined that a

similar improvement on the solution is obtained by introducing some linear inequality con-

straints in the SDP problem. There were many first order attempts made to solve the SDP

earlier on, however, Helmberg [17], is one of the first to try and solve the SDPs thorough Sec-

ond Order method. His proposed method utilizing semi-definite matrices based on interior

point method is crucial and become a pivotal method used by recent studies. Another one of

the first to attempt second order method was Farid’s [24] take on Newton’s method based,

Primal-dual interior-point path-following methods for semidefinite programming. However,

both these papers doesn’t employ sparsity by introducing a low rank solution.

Among some of the efforts made to exploit the sparsity of the a large scale SDP matrix

was an attempt by Fakuda and Nakata [21, 22] in two parts. The method used by them

exploits the fundamentals of positive semidefinite matrix completion. The proposed method

works in two ways, first is to convert the sparse SDP of large scale positive semidefinite ma-

trix into multiple smaller positive semidefinite matrices, this way the interior point method

can be effectively applied to get the solution. Secondly, this method can be utilized directly

using primal-dual interior point methods on a certain SDP. Nakata [22] also proposed clique

tree approach to exploit the sparsity of the SDPs. Burer in [5], based his work on [21]

and [22], to implement the theory of partial positive semidefinite matrices onto the SDP

problem in order to exploit the sparsity. His work tend to improve an existing standard

search direction algorithm. Burer, in 2006 [25], proposed an algorithm for optimizing the lift

and project relaxations of binary integer programs introduce by Lovasz and Schrijver [26].

This papers analyzed both linear and semidefinite relaxations. The key idea is to restructure

the relaxations, which isolates the complicating constraints and allows for the Lagrangian
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approach. The proposed algorithm is based on the enhanced sub-gradient with augmented

Lagrangian. The problem was solved using the IP solver from CPLEX [27].

A first order method was proposed by Wen et al. [28], without exploiting the sparsity

of the data, this algorithm uses an alternating direction dual augmented Lagrangian method

(ADMM) for solving SDP problems in standard form. This method become one of the most

important algorithms in solving SDPs. It utilizes sequential minimization of the augmented

Lagrangian function for the dual SDP problem. The minimization was done first with re-

spect to the dual variables corresponding to the linear constraints,and secondly, with respect

to the duals slack variables. In the end the dual solution is used to update the Lagrange

multipliers or the primal variables.

Masakazu [29] in order to solve large scale linear and nonlinear SDP problems, using

chordal graph structure, exploits the domain space sparsity (d-space sparsity) for positive

semidefinite symmetric matrix variables, and the range space sparsity (r-space sparsity) for

matrix-inequality constraints in SDP problems. Sunyoung [30] also exploits sparsity through

Chordal graphs, using positive semidefinite matrix completion with linear and nonlinear ma-

trix inequalities. They also used d-space sparsity and the r-space sparsity relaxations to

efficiently solve the SDPs. Sparse semidefinite programming with a chordal sparsity pattern

were utilized by Yifan-Vandenberghe [31] by proposing a similar second order method based

on clique decomposition theorems and Spingarn’s method for equality constrained convex

optimization [32].

SDP is generally NP hard, however, if there is graph sparsity, it makes the solution

more efficient by guaranteeing an existence of a low-rank solution. However, we may not

always have graph sparsity. If a low rank solution exists, Burer’s method can be utilized to
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re-formulate the problem, Parrilo Parrilo-2003 proves that Burer’s algorithm converges fast

while analyzing systems and control problems. Chordal Graphs are very important tool in

exploiting the sparsity of a large semidefinite optimization problems. Graph theory has been

around since 1960’s to examine sparse matrices using Cholesky factorization [33]. Vanden-

berghe et al. [34] proved that in the presence of graph sparsity, one can prove that low-rank

solutions exist. and the graph sparsity can be exploited to solve the problem more efficiently.

Chordal graphs technique is one the main methods for exploiting sparsity in large semidef-

inite and Convex optimization problems which have sparse positive semidefinite matrices.

Chordal graph method is also used in determining the partial inverse of a sparse positive

definite matrix, solving gradients and Hessians of logarithmic barriers for cones and dual

cones of sparse positive semidefinite matrices and many more.

In another work by Lieder, [35], the author observes that all constraints of the re-

laxation associated with linear constraints of the original problem can be accumulated in a

single linear constraint without changing the feasible set of either the completely positive

or the semidefinite approximation.The work focuses on analysis of completely positive and

semidefinite relaxations of quadratic programs with linear constraints and binary variables

as presented by Burer [4].

Murat et al. [36] offers theoretical insights into Burer’s [3] algorithm, it deals with the

general lack of scalability of convex optimization solvers with the large dimensions of the

problem. Murat analyzed the Burer and Monteiro’s method in [4] which reduces the dimen-

sion of the problem by low-rank factorization, while solving this reformulated non-convex

problem instead. This paper determines the theoretical convergence of the Burer’s method

using block-coordinate maximization algorithm which was not presented before.
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Efforts were also being made to reduce the complexity of the conventional numerical al-

gorithms for SDPs. One such attempt is by Madani in [37], utilized a first order method with

sparsity to address the in-ability of the conventional convexification methods to efficiently

solve large-scale SDPs. In this paper a low-complexity numerical algorithm was proposed

which is a general-purpose parallelizable SDP solver for sparse SDPs, utilizing ADMMs and

tree decomposition in graph theory. The performance of the proposed algorithm is tested

on the optimal power flow problem for more than 13,600 nodes. Another such work by

Richard [38], presents theoretical analysis of second order method with sparsity. Exploit-

ing the sparsity of combinatorial SDP relaxations, this paper proposed dualized clique tree

method to reduce complexity and consequently utilize any interior-point method to solve a

large scale sparse SDP, with a guaranteed complexity of O(n1.5L) time and O(n) memory.

In a recent paper, [39], Pumir et all, tries to raise a question of approximating Optimal

Second Order Optimal Points (SOSPs). They used some assumptions and shown that the

approximate SOSP’s for a randomly relaxed objective function can be approximate global

optima and used this method to solve phase retrieval application. They solved equality-

constrained SDPs with low-rank using following assumptions, First, the search space of the

SDP is compact and second, the search space of its low-rank version is smooth. Under

these assumptions, the author proved using smoothed analysis and SDP relaxations that,

if the cost matrix is perturbed randomly, with high probability, approximate second-order

stationary points of the perturbed low-rank problem is mapped to approximately optimal

solutions of the perturbed SDP. Yang et.al [40], solves a minimization of a quadratic function

with non-convex quadratic constraints using additional linear intersecting interiors ellipsoids

or Convex Hull constraints. They used mixed-integer quadratic programming to solve this

SDP problem.
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2.2 SDP Applications

SDPs with equality constraints arise in many optimization and machine learning prob-

lems, such as Max-Cut, community detection and robust PCA. SDP covers a wide range

of applications such as robust optimization, polynomial optimization, combinatorial opti-

mization, system and control theory, financial engineering, machine learning, quantum in-

formation, electrical Power and quantum chemistry. In [41] three types of structures in SDP

were discussed, a common chordal sparsity pattern that has been used in graph theory, Low

rank methods used in combinatorial optimization and polynomial optimization problems.

Thirdly, low dimensional invariant matrices used in truss topology optimization, particle

physics, coding theory, computational geometry, and graph theory.
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CHAPTER 3

Low Rank SDP via Parabolic Relaxation

Searching for a low-rank matrix within a convex set can solve many different types of

non-linear optimization problems. Where, SDP relaxation is just the method of re-modeling

the QCQP problems into low rank matrix optimization problems [7]. It should also be noted

that, SDPs can efficiently solve in polynomial time, small to medium proportional programs

using second-order interior point methods [8], but large scale SDPs being computational hard

and memory hungry, cannot be handled by the contemporary algorithms. We consider the

standard SDP problem presented in equation (2.1), the aim of the problem is to determine

the n×n Symmetric Positive Definite Matrix X that minimizes the objective subject to the

above inequality constraints. The problem at (2.1) is very fundamental with applications in

nearly all areas of engineering, sciences and many sectors of the economy. A wide variety of

computationally-hard problems can be cast in the form of SDP in (2.1) and therefore, many

researchers have devoted their careers to finding efficient algorithms for solving problem in

(2.1).

3.1 Problem Formulation

The state-of-art algorithms require O(n6.5) steps to solve the problem in 2.1, numeri-

cally. In the presence of sparsity (when the vast majority of A0, A1...., Am elements are zero,

there are algorithms that can solve semidefinite programs much faster ( [34]– [22]). Unfortu-

nately, sparsity is a very strong assumption and does not necessarily hold in practice. In this

work, we seek to develop a numerical method that can solve semidefinite programs much
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faster even without sparsity. Our only assumption is that the final solution is low rank.

Assume that the final solution to be found is of rank r. Hence, the problem in (2.1) can be

equivalently formulated as follows:

Since the above formulation in the optimization at (2.2), is non-convex, we relax the con-

straint X � 0 as follows:

min
X∈Sn

Y ∈Rn×r

tr(A0X)

s.t. tr{AkX} ≤ ak, k = 1, 2, ...,m.

Xii + Xjj + 2Xij ≥ ‖Yi: + Yj:‖22, i, j = 1, 2, ..., n.

Xii + Xjj − 2Xij ≥ ‖Yi: −Yj:‖22, i, j = 1, 2, ..., n.,

(3.1)

We start with an initial guess Ŷ , and sequentially update it by solving the following penal-

ized parabolic relaxation:

min
X∈Sn

Y ∈Rn×r

tr{A0X}+ × tr{X− 2YŶT + ŶŶT}

s.t. tr{AkX} ≤ ak, k = 1, 2, ...,m.

Xii + Xjj + 2Xij ≥ ‖Yi: + Yj:‖22, i, j = 1, 2, ..., n.

Xii + Xjj − 2Xij ≥ ‖Yi: −Yj:‖22, i, j = 1, 2, ..., n.,

(3.2)

The above-mentioned is guaranteed to find the optimal solution of the SDP at (2.1).

Solving each round of problem (3.1) is very easy because the above problem is a convex

quadratically-constrained quadratic program (QCQP). By solving this easy problem for a

few hundred times, we can solve the SDP optimization problem that we are interested in.
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We have proposed a new algorithm based on Burer’s formulation and we have proven

that it converges within a FINITE number of rounds.

3.2 Methodology and Algorithm

We have opted for a novel approach based on sequential parabolic relaxation on the

SDP at problem at (2.2). Our approach guarantees the optimal convergence in finite amount

of time as compared to the infinite itterations required to converge for the problem after stan-

dard Burer’s method.

Proposed Algorithm:

Algorithm 1 Sequential Parabolic Relaxation Algorithm.
Result: Exact and Finite-time Convergence of SDPs
initialization while Optimality achieved do

update the cost function and penalty term update Y matrix if Convergence achieved
then

Optimal Cost
else

Repeat the process Update the Cost and Penalty terms
end

end
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CHAPTER 4

System Identification of Dynamical Systems

4.1 Introduction

System identification has been studied for decades with the aim of deriving mathemat-

ical models for dynamical systems through observation of input-output data, several books

and technical papers has been written on this important topic [42,43], where salient features

and parameters of a system, represented by a black box were estimated to determine and

control the underline system. Today almost every field of application utilize system identifi-

cation methods in one form or another. The importance of system identification in various

industries can be evaluated through an astounding amount of research work done on this

field [44].

Dynamical systems can be classified into linear and non-linear categories. Initial linear

models’ approaches utilizes statistical methods such as, maximum likelihood, Bayesian, cross

validation, variance, gradient correction and least squares among many [45,46]. The advan-

tages of using state-of-the art linear system identification include, dealing with a generalized

error criterion function, and are suitable for online identification, however, they are not very

good for complex and or non-linear systems, and they require a full knowledge of system’s

input signals and states [44].

More recent methods that can deal with both linear and non-linear systems have been

proposed. They are mostly based on neural networks [47], genetic algorithm [48], swarm in-

telligence [49], auxiliary model identification algorithm [50], multi-innovation identification

algorithm [51], hierarchical identification algorithm [52] and many more. These methods

present benefits for certain type of systems, but cannot be generalized in order to be used
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on all sort of system identification problems. For instance, neural network-based algorithms

do not need a model structure, can be used on linear and non-linear systems. However, they

are prone to local minimums and convergence issue and they require massive amounts of

training data. Similarly, Genetic Algorithms suffer from local minimum problems and pre-

mature convergence, and they cannot identify the structure and parameters of the systems

under study [44]. Other methods, such as Swarm intelligence, Auxiliary model identifica-

tion, Multi-innovation identification, and Hierarchical identification give a global solution

without needing too much priori knowledge of the optimization problem, but are difficult to

implement, slow and computationally hard.

Another technique recently used for system identification is Convex Optimization [6]. With

the advancements in convex optimization theory, these principles are now readily adapted

for system identification problems, [53] is one of the recent work that has found convex op-

timization methods useful.

In this work, we rely on convex optimization for identifying the parameters of linear dy-

namical systems and we then extend our results to nonlinear systems. Convex optimization

is central to the design and analysis of dynamic systems. Recent advances in convex opti-

mization techniques [6] have opened new doors for efficient system identification. Common-

practice convex relaxations primarily rely on a process referred to as lifting which involves

the introduction of new auxilary variables [54]. some of the examples include are the semidef-

inite programming (SDP) [5] and second-order cone programming (SOCP) relaxations [9],

as well as the diagonally-dominant (DD) and scaled diagonally-dominant (SDD) approxima-

tions [55]. Despite their effectiveness, the main limitation of these algorithms is the curse of

dimensionality caused by lifting.

In this paper, we propose a novel method named sequential parabolic relaxation, which deals

efficiently with the problem of lifting. The primary strength of this approach is that it relies

on a modest number of auxiliary variables, which leads to a higher level of efficiency com-
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pared to the exiting methods. We prove the efficacy of our proposed method by providing

mathematical proof, that guarantees an optimal solution within a short period of time using

only a sample of input and state information. After giving the theoretical guarantees, we

formulate linear system (a state-space control system consisting of bi-linear terms) and non-

linear system (in a form of controlled permanent magnet synchronous machine PMSM).

These problems were relaxed using our penalized parabolic relaxation method. We also

compare our results by using the state-of-the art linear system identification tools in com-

mon practice, most of them are not iterative and were unable to converge, hence, further

cementing the efficiency of our method.

4.2 Notations and Terminology

Throughout the thesis, the vectors and matrices are respectively shown by lower-case

bold letters and upper-case bold letters. Symbols R, Rn, and Rn×m, respectively, denote

the set of real scalars, real vectors of size n, and real matrices of size n × m. The set of

real n × n symmetric matrices and positive semidefinite matrices are shown with Sn and

S+
n , respectively. Notation A � 0 means A is positive-semidefinite (A � 0 indicates positive

definite). tr{.} and (.)> respectively denote the trace and transpose operators, and rank{.}

denotes the rank operator. The notation ‖.‖p refers to either matrix norm or vector norm

depending on the context and |.| indicates the absolute value operator.

4.3 Problem Formulation

4.3.1 Identification of Linear Systems

Consider a linear dynamical system whose behavior is described via the equations:

x[t + 1] = Ax[t] + Bu[t] t ∈ T (4.1a)

y[t] = Cx[t] + Du[t] t ∈ T (4.1b)
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where T , {1, 2, . . . , τ} is a discrete time horizon and {x[t] ∈ Rn}t∈T ∪{τ+1}, {y[t] ∈ Rm}t∈T ,

and {u[t] ∈ Ro}t∈T denote the state, observation, and system input vectors, respectively.

Assume that (A,B,C,D) are unknown as well as the state vectors at snapshots T ′ ,

{t1, t2, . . . , tτ ′} ⊆ T ∪ {τ + 1}. We seek to determine the unknowns based on system

observation, system input, and limited knowledge of state vectors at times (T ∪{τ+1})\T ′.

This problem can be formulated as follows:

find A ∈ Rn×n, B ∈ Rn×o, C ∈ Rm×n, D ∈ Rm×o,

{x[t] ∈ Rn}t∈T ′ (4.2a)

subject to x[t + 1] = Ax[t] + Bu[t] t ∈ T (4.2b)

y[t] = Cx[t] + Du[t] t ∈ T (4.2c)

Problem (4.2a) – (4.2c) is non-convex and computationally challenging, due to the bi-linear

terms Ax[t] and Cx[t]. One popular approach for tackling the non-convexity of dynamical

system equations is convex relaxation or approximation [56]. Despite the effectiveness of

local search methods [57,58], convex relaxation can offer major benefits including reliability

and efficiency in the parameter estimation [59,60]. For instance, in [59], it is proven that the

number of feasible connected components induced by dynamical system equations can grow

exponentially leading the failure of local search methods. This paper, is primarily focused

on boosting the scalability of convex relaxation. We introduce a computationally-efficient

parabolic relaxation to tackle constraints of the form (4.2b) and (4.2c).
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4.4 State-of-the-art Relaxations and Approximations

In this section, we cover two different forms of the common-practice semidefinite pro-

gramming (SDP) and second-order cone programming (SOCP) relaxations [61–63] and show

that each suffer from major drawbacks compared to the proposed method.

4.4.1 Vector Formulation

Let the vector sets {ak ∈ Rn}nk=1, {bk ∈ Ro}nk=1, {ck ∈ Rn}mk=1, and {dk ∈ Ro}mk=1

represent the columns of A, B, C, and D, respectively, i.e.,

A =
[
a1 a2 . . . an

]>
B =

[
b1 b2 . . . bn

]> (4.3a)

C =
[
c1 c2 . . . cm

]>
D =

[
d1 d2 . . . dm

]> (4.3b)

To formulate the standard conic relaxations of the problem (4.2a – (4.2c), one can cast the

identification problem with respect to the new vector and matrix variables:

h ,
[
a>1 a>2 . . . a>n c>1 c>2 . . . c>n

x>[t1] . . . x>[tτ ′ ]
]> ∈ Rn(m+τ) (4.4a)

H , hh> (4.4b)

using which the nonlinear constrains (4.2b) and (4.2c) can be cast linearly [64]. This approach

is regarded as lifting, as we are transitioning to a higher-dimensional space with respect to
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⋯
𝑥𝑥𝑘𝑘[t1] 𝑥𝑥𝑘𝑘[t2] 𝑥𝑥𝑘𝑘[t3] 𝑥𝑥𝑘𝑘[t�́�𝜏 − 1] 𝑥𝑥𝑘𝑘[t�́�𝜏]

A1,𝑘𝑘

⋯

A2,𝑘𝑘 A𝑛𝑛,𝑘𝑘 C1,𝑘𝑘

⋯

C2,𝑘𝑘 C𝑚𝑚,𝑘𝑘

⋯ ⋯
𝒦𝒦𝑛𝑛+𝑚𝑚,𝜏𝜏 𝑘𝑘 = 1,2,⋯ ,𝑛𝑛

Figure 4.1. The bipartite sparsity pattern of the constraint.

the new matrix variable H. The relations between the pair (H,h) can then be implicitly

imposed as


H h

h 1

 ∈ H (4.5)

where H ∈ Sn(m+τ) is an appropriate convex set depending on the choice of relaxation /

approximation [64]. The main drawback of the aforementioned approach is the curse of

dimensionality caused by lifting, even if the present sparsity of the problem is fully leveraged.

Let K denote the sparsity graph of the quadratic constraints (4.2b) – (4.2c), whose every

vertex corresponds to an element of the vector h, and every edge corresponds a bilinear term:

Aik xk[t] ∀(i, k, t) ∈ N ×N × T ′ (4.6a)

Cjk xk[t] ∀(j, k, t) ∈M×N × T ′ (4.6b)
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adding up to a total of n(n+m)τ ′ edges, where N = {1, . . . , n} andM = {1, . . . ,m}. More

precisely, each pair of elements in h, are connected if and only if their product appears in

either (4.2b) or (4.2c). As demonstrated in Figure 4.1, it can be easily observed that

K = Kn+m,τ ′ ∪ Kn+m,τ ′ ∪ · · · ∪ Kn+m,τ ′︸ ︷︷ ︸
n

(4.7)

where Kn+m,τ ′ denotes the complete bipartite graph with partitions of size n+m and τ ′. The

complexity of solving cone programming relaxations is closely related to the sparsity graph

of the problem [21, 22]. As shown in Table 4.1, in the case of SOCP relaxation for problem

(4.2a) – (4.2c), one can leverage the sparsity of K by incorporating only those elements of H

that correspond to existing edges amounting to n(n+m)τ ′ auxiliary variables.

The curse of dimensionality caused by lifting is further pronounced in the case of SDP

relaxation that requires the incorporation of every element in H corresponding to the edges

of an arbitrary chordal extension (Table 4.1). In the reminder of this section, we discuss an

alternative conic relaxation for which a smaller number of variables are needed.

4.4.2 Matrix Formulation

Another approach for tackling problems of the form (4.2a) – (4.2c) through convex

relaxation is the matrix formulation. To this end, constraints (4.2b) and (4.2c) can be cast

in the following form:



Ā
[
x[t1+1] . . . x[tτ ′+1]

]
− BU A

∗ X̄ X>

∗ ∗ In×n


∈ C1 (4.8a)
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Table 4.1. Complexity of state-of-the-art convex relaxations versus parabolic relaxation.

Max size of SDP constraints Number of SDP constraints Number of new variables

SDP relaxation of (4.4b)∗ (maxV ∈V |V |)× (maxV ∈V |V |) n|V| n(n+m)τ ′

SOCP relaxation of (4.4b) 2× 2 n(n+m)τ ′ n(n+m)τ ′

SDP relaxation of (4.8) (n+ max{m,n}+ τ ′)× (n+ max{m,n}+ τ ′) 2
(
n+1

2

)
+
(
m+1

2

)
+
(
τ ′+1

2

)
SOCP relaxation of (4.8) 2× 2

(
n+m+τ ′

2

)
+
(

2n+τ ′

2

) (
n+1

2

)
+
(
m+1

2

)
+
(
τ ′+1

2

)
Parabolic relaxation Convex Quadratic 2(n+m)τ ′ + n+m+ τ ′ n+m+ τ ′

∗ (V, E) is an arbitrary tree decomposition of Kn+m,τ ′



C̄
[
y[t1] . . . y[tτ ′ ]

]
−DU C

∗ X̄ X>

∗ ∗ In×n.


∈ C2 (4.8b)

where X ,
[
x[t1] . . . x[tτ ′ ]

]
and U =

[
u[t1] . . .u[tτ ′ ]

]
, and Ā, C̄, and X̄ are auxiliary variables

accounting for AA>, CC> and X>X, respectively. Having

C1 = {W ∈ S2n+τ ′ | W � 0, rank{W } = n} (4.9a)

C2 = {W ∈ Sm+τ ′+n | W � 0, rank{W } = n} (4.9b)

makes the two formulations (4.2a) – (4.2c) and (4.8a) – (4.8b) equivalent. Additionally, vari-

ous convex relaxations/approximation can be formulated via different choices for C1 ⊆ S2n+τ ′

and C2 ⊆ Sm+τ ′+n, such as the common-practice semidefinite programming (SDP), second-

order cone programming (SOCP) relaxations. In what follows, we pursue an alternative

approach with far less complexity, involving convex quadratic constraints only.
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4.5 System ID via Parabolic Relaxation

In order to formulate parabolic relaxation of the problem (4.2a) – (4.2c) we need to

introduce a modest number of auxiliary variables:

• Define ā ∈ Rn as the variable whose k-th element represents ‖ak‖2
2,

• Define c̄ ∈ Rm as the variable whose k-th element represents ‖ck‖2
2,

• Define x̄ ∈ Rτ ′ as the variable whose k-th element represents ‖x[tk]‖2
2,

Then problem (4.2a) – (4.2c) can be reformulated as:

find ā ∈ Rn, c̄ ∈ Rm, x̄ ∈ Rτ
′
, {x[t] ∈ Rn}t∈T ′ ,

{ak ∈ Rn}nk=1, {bk ∈ Ro}nk=1, {ck ∈ Rn}mk=1,

{dk ∈ Ro}mk=1, (4.10a)

subject to

āk+x̄t+2xk[t+1]−2b>ku[t]≥‖ak+x[t]‖22 t∈T ′, k∈N (4.10b)

āk+x̄t−2xk[t+1]+2b>ku[t]≥‖ak−x[t]‖22 t∈T ′, k∈N (4.10c)

c̄k+x̄t+2yk[t]−2d>ku[t]≥‖ck+x[t]‖22 t∈T ′, k∈M (4.10d)

c̄k+x̄t−2yk[t]+2d>ku[t]≥‖ck−x[t]‖22 t∈T ′, k∈M (4.10e)

x̄t = ‖x[t]‖22 t ∈ T ′ (4.10f)

āk = ‖ak‖22 k ∈ N (4.10g)

c̄k = ‖ck‖22 k ∈M (4.10h)

xk[t + 1] = a>kx[t] + b>ku[t] t ∈ T \T ′, k ∈ N (4.10i)

yk[t] = c>kx[t] + d>ku[t] t ∈ T \T ′, k ∈M (4.10j)
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It can be easily observed that problems (4.2a) – (4.2c) and (4.10a) – (4.10j) are equivalent.

This is because the pair of constraints (4.10b) and (4.10c), are equivalent to

xk[t + 1] ≥ a>kx[t] + b>ku[t]− (x̄t − ‖x[t]‖2
2)− (āk − ‖ak‖2

2)

xk[t + 1] ≤ a>kx[t] + b>ku[t] + (x̄t − ‖x[t]‖2
2) + (āk − ‖ak‖2

2)

and the pair of constraints (4.10d) and (4.10e), are equivalent to:

yk[t] ≥ c>kx[t] + d>ku[t]− (x̄t − ‖x[t]‖2
2)− (c̄k − ‖ck‖2

2)

yk[t] ≤ c>kx[t] + d>ku[t] + (x̄t − ‖x[t]‖2
2) + (c̄k − ‖ck‖2

2)

Now, according to (4.10f), (4.10g) and (4.10h), the terms (x̄t − ‖x[t]‖2
2), (āk − ‖ak‖2

2), and

(c̄k − ‖ck‖2
2) are zero which means that:

xk[t + 1] = a>kx[t] + b>ku[t] t ∈ T ′, k ∈ N (4.13a)

yk[t] = c>kx[t] + d>ku[t] t ∈ T ′, k ∈M (4.13b)

that are equivalent to (4.2b) and (4.2b).

The primary motivation behind the use of formulation (4.10a) – (4.10h) is that the

only non-convex constraints in this new formulation are (4.10a), (4.10b), and (4.10c). These

non-convex constraints can be readily relaxed to

x̄t ≥ ‖x[t]‖2
2 āk ≥ ‖ak‖2

2 c̄k ≥ ‖ck‖2
2 (4.14)
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We regard this as the parabolic relaxation of the problem (4.2a) – (4.2c). If the relaxed

problem has a unique solution for which the non-convex equalities (4.10b) – (4.10h) hold

true, i.e., if

x̄sol
t = ‖xsol[t]‖2

2 āsol
k = ‖asol

k ‖2
2 c̄sol

k = ‖csol
k ‖2

2 (4.15)

then we refer to the relaxation as exact. However, like any other convex relaxation, we may

encounter cases where the equalities in (4.15) are not true and the relaxation is inexact. To

remedy this issue, we introduce a family of penalty functions whose minimization can help

with cases where parabolic relaxation is inexact.

4.6 Sequential Penalization

Motivated by [65], we minimize a penalty function to obtain feasible points for problem

(4.10a) – (4.10j). The penalized parabolic relaxation of the bi-linear problem (4.10a) – (4.10j)

is given as

minimize
A, B, C, D,
{x[t]}t∈T ′ ,
ā, c̄, x̄

η1

(
1>n ā− 2 tr

{
[a1 . . . an]>Ǎ

}
+ ‖Ǎ‖2

F

)
+

η2

(
1>n c̄− 2 tr

{
[c1 . . . cn]>Č

}
+ ‖Č‖2

F

)
+

η3

∑
t∈T

(
x̄t − 2 x̌>[t] x[t] + ‖x̌[t]‖2

2

)
(4.16a)

subject to (4.10b), (4.10c), (4.10d), (4.10e), (4.14), (4.10i), (4.10j) (4.16b)

where η1, η2, η3 > 0 are fixed regularization parameters and Ǎ ∈ Rn×n, Č ∈ Rm×n, and

{x̌[t] ∈ Rn}t∈T ′ represent an arbitrary initial guess for the solution. This approach can be
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Algorithm 2 Sequential Penalized Parabolic Relaxation.

Require: Ǎ ∈ Rn×n, Č ∈ Rm×n, {x̌[t] ∈ Rn}t∈T ′ , and η1, η2, η3 > 0 repeat
s
until

1: ;
olve the penalized convex problem (4.16a) – (4.16b) to obtain (Asol,Bsol,Csol,Dsol,

{xsol[t]}t∈T ′ , āsol, c̄sol, x̄sol).
2: set Ǎ := Asol, Č := Csol, and x̌[t] := xsol[t] for all t ∈ T ′.
3: stopping criterion is met.
4: return (Asol,Bsol,Csol,Dsol) =0

applied sequentially. To this end, we propose Algorithm 2 which starts from an initial point

and solves a sequence of penalized relaxations until the ground truth system is identified.

4.7 Theoretical Guarantees

In this section, we first offer some preliminary notations and definition and then we

state the main theoretical result of the paper.

Definition 1. For every A ∈ Rn×n, C ∈ Rm×n, and {x[t] ∈ Rn}t∈T ′, define the Jacobian

matrix

J
(
A,C, x[t1], . . . , x[tτ ′ ]

)
,

∂vec{Q}
∂vec{A}

∂vec{Q}
∂vec{B}

∂vec{Q}
∂vec{C}

∂vec{Q}
∂vec{D}

∂vec{Q}
∂x[t1] . . . ∂vec{Q}

∂x[tτ ′ ]

∂vec{R}
∂vec{A}

∂vec{R}
∂vec{B}

∂vec{R}
∂vec{C}

∂vec{R}
∂vec{D}

∂vec{R}
∂x[t1] . . . ∂vec{R}

∂x[tτ ′ ]


(4.17)

where the matrix functions

Q : Rn×n×Rn×o×Rm×n×Rm×o×Rn×. . .×Rn → Rn×τ

R : Rn×n×Rn×o×Rm×n×Rm×o×Rn×. . .×Rn → Rm×τ
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are defined as:

Q
(
A,B,C,D, x[t1], . . . , x[tτ ′ ]

)
,[

x[2] . . . x[τ+1]
]
− A

[
x[1] . . . x[τ ]

]
− B

[
u[1] . . .u[τ ]

]
(4.18a)

R
(
A,B,C,D, x[t1], . . . , x[tτ ′ ]

)
,[

y[1] . . . y[τ ]
]
− C

[
x[1] . . . x[τ ]

]
−D

[
u[1] . . .u[τ ]

]
(4.18b)

The point (A,C, {x[t]}t∈T ′) is said to satisfy the linear independence constraint qualification

(LICQ) condition if the columns of J
(
A,C, x[t1], . . . , x[tτ ′ ]

)
are linearly independent. More-

over, the singularity function s : Rn×n×Rm×n×Rn×. . .×Rn → R is defined as

s
(
A,C, x[t1], . . . , x[tτ ′ ]

)
,

σmin

{
J
(
A,C, x[t1], . . . , x[tτ ′ ]

)}
J is full row rank

0 otherwise,

where σmin denotes the smallest singular value operator.

The next theorem states that if the initial guess of the penalized convex relaxation

(4.16a) – (4.16b) is sufficiently close to the ground truth, then the relaxation is exact and

the ground truth can be recovered by solving the penalized convex relaxation.

Theorem 1. Let (
∗
A,

∗
B,

∗
C,

∗
D, {∗x[t]}t∈T ′) denote a solution for the problem (4.2a) – (4.2c)

that satisfies the LICQ condition. If

√
η2

1‖
∗
A− Ǎ‖2F + η2

2‖
∗
C− Č‖2F + η2

3

∑
t∈T ′
‖∗x[t]− x̌[t]‖22 <

min

{
η1√
τ
,
η2√
τ
,

η3√
m+ n

}
s
(
A,C, x[t1], . . . , x[tτ ′ ]

)
2

(4.19)
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K
(
A,B,C,D, x[t1], . . . , x[tτ ′ ], ā, c̄, x̄

)
,

diag
{
ā−diag{AA>}

}
0n×m

[
x[t1+1] . . . x[tτ ′+1]

]
−A
[
x[t1] . . . x[tτ ′ ]

]
−B
[
u[t1] . . .u[tτ ′ ]

]
∗ diag

{
c̄−diag{CC>}

} [
y[t1] . . . y[tτ ′ ]

]
−C
[
x[t1] . . . x[tτ ′ ]

]
−D

[
u[t1] . . .u[tτ ′ ]

]
∗ ∗ diag

{
x̄− diag

{[
x[t1] . . . x[tτ ′ ]

]>[
x[t1] . . . x[tτ ′ ]

]}}


(4.20)

then (
∗
A,

∗
B,

∗
C,

∗
D, {∗x[t]}t∈T ′) is the unique solution of the penalized convex relaxation (4.16a)

– (4.16b).

Corollary 1. According to Theorem 1, it can be observed that if Algorithm 2 converges to a

ground truth solution, then convergence occurs within a finite number of rounds.

Proof. Define the matrix function K as shown in (4.20). Constraint (4.16b) is true if and

only if

K
(
A,B,C,D, x[t1], . . . , x[tτ ′ ], ā, c̄, x̄

)
∈ F (4.21)

where

F ,
{
F ∈ Sn+m+τ ′ | Fii + Fjj ≥ 2Fij

∀i, j ∈ {1, . . . , n+m+ τ ′}
}
. (4.22)
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In order to prove the optimality of (
∗
A,

∗
B,

∗
C,

∗
D, {∗x[t]}t∈T ′), it suffices to construct a dual

certificate. To this end, define Λ ∈ Rn×τ ′ and Π ∈ Rm×τ ′ as the pair of matrices satisfying:


vec{Λ}

vec{Π}

=2J+
( ∗
A,

∗
C,
∗
x[t1], . . . ,

∗
x[tτ ′ ]

)



η1vec{
∗
A− Ǎ}

η2vec{
∗
C− Č}

η3(
∗
x[t1]−x̌[t1])

...

η3(
∗
x[tτ ′ ]−x̌[tτ ′ ])



(4.23)

We claim that the matrix

Γ ,



η1In×n 0n×m Λ

∗ η2Im×m Π

∗ ∗ η3Iτ ′×τ ′


(4.24)

qualifies as a Lagrange multiplier associated with the constraint (4.21).

Stationarity with respect to primal variables is an immediate consequence of (4.23).

Additionally, according to (4.23), we have

√
‖Λ‖2F + ‖Π‖2F ≤

2

√
η2

1‖
∗
A− Ǎ‖2F + η2

2‖
∗
C− Č‖2F + η2

3

∑
t∈T ′‖

∗
x[t]− x̌[t]‖22

s
(
A,C, x[t1], . . . , x[tτ ′ ]

) (4.25)
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which concludes that

√
‖Λ‖2

F + ‖Π‖2
F < min

{
η1√
τ
,
η2√
τ
,

η3√
m+ n

}
(4.26)

meaning that Γ is strictly diagonally-dominant. Since, the set of strictly diagonally-dominant

matrices is the dual cone of F, Γ is dual feasible and qualifies as dual certificate.

4.8 Extension to Non-Linear System Identification

In this section, we extend the proposed methodology to nonlinear systems. Consider

the following dynamical equations:

x[t + 1] = Ax[t] + Bu[t] + E s[t] + F r[t] t ∈ T (4.27a)

y[t] = Cx[t] + Du[t] t ∈ T (4.27b)

r[t] = (G1 x[t]) ◦ (G2 x[t]) t ∈ T (4.27c)

s[t] = x[t] ◦ x[t] t ∈ T (4.27d)

where the matrices (A,B,C,D,E,F) are unknown, and (G1,G2) are known binary incidence

matrices that are selected in such a way that r[t] contains all possible monomials of type

xi[t]xj[t] (i 6= j) that may appear in the dynamics. In other words,

• s[t] encapsulates all monomials of the type xi[t]
2,

• r[t] encapsulates a known subset of monomials of the type xi[t]xj[t], where i 6= j.

The next example gives the model of a Permanent Magnet Synchronous Machine (PMSM)

in the above form.

Example 1. Consider a PMSM machine with the following internal parameters:

• rs: stator resistance,

• lq: q-axis inductance,
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• ld: d-axis inductance,

• λm: permanent magnet flux,

• p: pole pairs,

• jm: rotor inertia,

• dm: viscous friction coefficient,

time-domain system states:

• iqs[t]: q-axis stator current,

• ids[t]: d-axis stator current,

• wr[t]: rotor electrical speed,

• θr[t]: rotor electrical position,

and time-domain input:

• vqs[t]: q-axis stator voltage,

• vds[t]: d-axis stator voltage,

• tl[t]: load torque.

The dynamics of the PMSM can be formulated as

x[t + 1] = Ax[t] + Bu[t] + Fr[t] (4.28a)

r[t] = (G1x[t]) ◦ (G2x[t]) (4.28b)

with respect to the time-domain state and input vectors

x[t] =

[
iqs[t] ids[t] wr[t] θr[t]

]>
(4.29)

u[t] =

[
vqs[t] vds[t] tl[t]

]>
(4.30)

36



where

A=



1− rsδ
lq

0 −λmδ
lq

0

0 1− rsδ
ld

0 0

3λmp2δ
2jm

0 1− dmδ
jm

0

0 0 1 δ


B=



δ
lq

0 0

0 δ
ld

0

0 0 − pδ
jm

0 0 0



F=



− ldδ
lq

0 0

0
lqδ
ld

0

0 0
3(ld−lq)p2δ

2jm

0 0 0


(4.31)

and δ is the time step, and

G1 =



0 0 1 0

0 0 1 0

1 0 0 0


G2 =



0 1 0 0

1 0 0 0

0 1 0 0


(4.32)

in section 4.8, we demonstrate the effectiveness of the proposed approach in recovering the

unknown time-domain parameters of this machine.

In order to convexify the dynamical equations (4.27), we first introduce the auxiliary

vectors {xA[t] = Ax[t] ∈ Rn}τ∈T , {sE[t] = E s[t] ∈ Rn}τ∈T , {rF[t] = F r[t] ∈ Rn}τ∈T , and
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{xC[t] = Cx[t] ∈ Rn}τ∈T . Using these auxiliary variables, the dynamical equations (4.27)

can be cast linearly in form of:

x[t + 1] = xA[t] + Bu[t] + sE[t] + rF[t] t ∈ T (4.33a)

y[t] = xC[t] + Du[t] t ∈ T (4.33b)

Additionally, let ek and fk represent the k-th column of E> and F>, respectively. We then

impose the following constraints to relate xA[t], sE[t], rF[t], and xC[t] and their corresponding

values:

āk + x̄t + 2xAk [t] ≥ ‖ak + x[t]‖2
2 t ∈ T , k ∈ N (4.34a)

āk + x̄t − 2xAk [t] ≥ ‖ak − x[t]‖2
2 t ∈ T , k ∈ N (4.34b)

ēk + s̄t + 2sEk [t] ≥ ‖ek + s[t]‖2
2 t ∈ T , k ∈ N (4.34c)

ēk + s̄t − 2sEk [t] ≥ ‖ek − s[t]‖2
2 t ∈ T , k ∈ N (4.34d)

f̄k + r̄t + 2rFk [t] ≥ ‖fk + r[t]‖2
2 t ∈ T , k ∈ N (4.34e)

f̄k + r̄t − 2rFk [t] ≥ ‖fk − r[t]‖2
2 t ∈ T , k ∈ N (4.34f)

c̄k + x̄t + 2xCk [t] ≥ ‖ak + x[t]‖2
2 t ∈ T , k ∈M (4.34g)

c̄k + x̄t − 2xCk [t] ≥ ‖ak − x[t]‖2
2 t ∈ T , k ∈M (4.34h)

where ēk = ‖ek‖2, f̄k = ‖fk‖2, s̄t = ‖s[t]‖2, and r̄t = ‖r[t]‖2. The following constraints impose

the relationship between r[t] and the corresponding monomials that it contains:

G1 s[t] + G2 s[t] + 2 r[t] ≥

(G1 x[t] + G2 x[t]) ◦ (G1 x[t] + G2 x[t]) t ∈ T (4.35a)

G1 s[t] + G2 s[t]− 2 r[t] ≥
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(G1 x[t]− G2 x[t]) ◦ (G1 x[t]− G2 x[t]) t ∈ T (4.35b)

Finally, the following constraints complete the proposed parabolic relaxation for non-

linear systems:

x̄t = 1>s[t], r̄t ≥ ‖r[t]‖2
2 t ∈ T (4.36a)

s̄t ≥ ‖s[t]‖2
2, s[t] ≥ x[t] ◦ x[t] t ∈ T (4.36b)

āk ≥ ‖ak‖2
2, ēk ≥ ‖ek‖2

2, f̄k ≥ ‖fk‖2
2 k ∈ N (4.36c)

c̄k ≥ ‖ck‖2
2 k ∈M. (4.36d)

If equality holds for all of the constraints in (4.36), then the relaxation is exact. The penalized

parabolic relaxation for identification of nonlinear systems can cast as follows:

minimize η1

(
1>n ā− 2 tr

{
[a1 . . . an]>Ǎ

}
+ ‖Ǎ‖2

F

)
+

η2

(
1>n c̄− 2 tr

{
[c1 . . . cn]>Č

}
+ ‖Č‖2

F

)
+

η3

(
1>n ē− 2 tr

{
[e1 . . . en]>Ě

}
+ ‖Ě‖2

F

)
+

η4

(
1>n f̄ − 2 tr

{
[f1 . . . fn]>F̌

}
+ ‖F̌‖2

F

)
+

η5

∑
t∈T

(̄
rt − 2 ř>[t] r[t] + ‖ř[t]‖2

2

)
+

η6

∑
t∈T

(
s̄t − 2 š>[t] s[t] + ‖š[t]‖2

2

)
+

η7

∑
t∈T

(
x̄t − 2 x̌>[t] x[t] + ‖x̌[t]‖2

2

)
(4.37a)

subject to (4.33), (4.34), (4.35), (4.36). (4.37b)

As demonstrated before, this problem can be solved sequentially to obtain a feasible solution

for the set of dynamical equations (4.27).
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4.9 Numerical Results

In this section, we consider case studies of both large-scale and small-scale system

identification problems.

4.9.1 Linear Systems

In this case study, we consider system identification problems with n = 16, m = 12,

o = 10, τ = 250, and T̂ = T \ {1, 6, 11, . . . , 246}. The resulting problem is 3928-dimensional

accounting for the elements of A ∈ R16×16, B ∈ R16×10, C ∈ R12×16, D ∈ R12×10, and

{x[t] ∈ R16}t∈T ′ . The ground truth matrices are chosen as follows:

• Every element of A− In×n is uniformly chosen from the interval [−0.25,+0.25].

• The elements of B ∈ R16×10, C ∈ R12×16, and D ∈ R12×10 have zero-mean standard

normal distribution.

• The elements of x[1] are uniformly chosen from the interval [0.5; 1.5].

• For every t ∈ T , we have u[t] = Fx[t]+w[t], where the elements ofw[t] have independent

Gaussian distribution with zero mean and standard deviation 0.1. Additionally, F =

−(Im×m +B>P)−1B>PA is an optimal LQR controller with P representing the unique

positive-definite solution to the Riccati equation:

A>PA + In×n − P = A>PB(In×n + B>PB)−1B>PA (4.38)

We generate 15 random systems and solve the resulting problem, using the sequential Algo-

rithm 2 with the initial point Ǎ = In×n and x̌[t] = 0n for every t ∈ T̂ . Figure 4.2 illustrates

the convergence of the error function

(
τ∑

t=1

‖x[t]− xtrue[t]‖2
2

)1/2

(4.39)
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Figure 4.2. The performance of the sequential Algorithm 2 for linear system identification.

for all of the 15 experiments. Each round of the penalized parabolic is solved in less than 15

seconds.

In order to emphasize the efficacy of our proposed method compared to the fundamental

and state-of-the-art linear system identification methods that are still employed for system

identification, we have performed system identification on the same randomly generated

systems using the methods proposed in [66]. We found that subspace system identification

works really well when all the instances of the state matrix x[t] are well known in advance,

however, when a sub-sample or the portion of the input states x[t] were known the method

fails to converge no matter how many iterations were performed. In comparison, our proposed

method by penalizing and iteratively solving the problem converges quite quickly with high

accuracy.

4.9.2 Nonlinear Systems

In this part we consider a PMSM machine with the parameters rs = 0.1465, ld = lq =

0.0001395, dm = 0.009, λm = 0.005, p = 7, and jm = 0.0000835. We generated time-domain

signals with time steps of size δ = 5× 10−6 seconds and attempted to recover the unknown
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Figure 4.3. The performance of the proposed sequential approach on the PMSM nonlinear model.

parameters using the approach proposed in section 4.8. We considered a time horizon of

length 20 with the following control signals:

• Each vqs[t] random Gaussian distribution with mean 12 and standard deviation 1.

• Each vds[t] random Gaussian distribution with mean 0.25 and standard deviation 1.

• tl[t] =


0 t < 10

0.25 t ≥ 10

We assumed that the following parameters are known:

• The matrices G1 and G2.

• The last row of matrices A, B, and F, due to the trivial relation between rotor position

and rotor speed.

• The state vector x[t] at times t ∈ {1, 5, 15, 20}.

The convergence of the error function (4.39) is demonstrated in Figure 4.3.
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CHAPTER 5

Conclusion

5.1 Future Directions

We have discussed in detail Semidefinite Programming, a sub-class of Convex Opti-

mization with two flavors, First and Second order, with and without sparsity. The purpose

of this document was to establish the usefulness of this highly researched and potentially

game changing field of Optimization. The impact of a fast and near optimal optimization of

intricate and intriguing Convex Optimization problems relaxed through SDPs will be deep

in almost all the fields of Computer Science and Engineering, Artificial intelligence, Space,

Genetics, Medicine and many other fields.

After introducing the subject in hand, detailing the recent and past prominent work, we

galloped towards the modern applications that has been impacted by the recent success of

SDP algorithms, these new findings has been instrumental in sprouting many more areas

where these algorithms can be efficiently utilized and can solve problems previously thought

unsolvable.

In the end, we spotlight our proposed novel SDP sequential parabolic relaxation technique

that not only guarantees the optimal solution but also make sure it converges in finite polyno-

mial time as compared to the peer SDP algorithms proposed recently and in the past decades.

The proposed algorithm, gives a theoretical guarantee of convergence in finite polynomial

time. We want to utilize our finding on the complex problems related to Power Systems’

Flow Optimization and Unit Commitment. In general, the Power System’s data come in

huge matrices, optimizing such problems are hard and takes a lot of time and computational

power to approximate the solution of a certain cost function. We will analyzed our proposed
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system on these real world scenarios and compare the performance, latency and accuracy

of the contemporary algorithms with our proposed method.We will be trying to expanding

on our proposed algorithm to cater for newly sprouting domains of Data Science, Machine

Learning, Deep Learning and many more.

5.2 Conclusion

We utilized our novel algorithm on the System Identification problem. System identifi-

cation is a process of finding optimized parameters of a unknown system using the input and

outputs of the system, it has been around for decades. There are numerous approaches to

identify the linear and non-linear systems, however, they suffer from complexity, speed and

the computational hardships. This paper presents a novel parabolic relaxation with the aim

of identifying linear and nonlinear dynamical systems. The proposed convex relaxation relies

on a significantly smaller number of auxiliary variables leading to higher efficiency compared

to the state-of-the-art methods. We also gave theoretical guarantees on the feasibility of

the method in discussion. Numerical methods are provided to demonstrate the effective-

ness of the proposed sequential parabolic relaxation on both linear and non-linear systems.

Moreover, we formulate linear and non-linear problems and used the known state-of-the art

system identification methods to determine the parameters, these known methods failed to

converge when the state input is partially known. This further proves the efficacy of our

proposed method.
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