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ABSTRACT

Abrading the enigma of the wound healing process: Modeling the inflammation,

proliferation, and maturation stage

Amanda Patrick, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Dr. Chen-Charpentier

Wound healing encompasses a group of processes categorized into overlapping

stages known as the inflammation, proliferation, and maturation/remodeling stage.

The dynamics of these processes are important in studying outcomes of wound care

and determining factors that contribute to certain wound outcomes. A system of

ordinary differential equations is constructed for the inflammation, proliferation, and

remodeling stage. Parameter sets for this model are investigated based on output

dynamics according to the literature and based on experimental data. A bifurcation

analysis is conducted to determine sudden changes that can occur in the inflammation

system. Fourier Amplitude Sensitivity Test (FAST) is implemented to investigate

sensitivity in regard to each mechanism considered. Next, the system is turned into

a stochastic differential equation to analyze possible realizations that result from

biological random fluctuations.
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CHAPTER 1

INTRODUCTION

A wound is a depletion of the integrity of living tissue in the body. The

mechanisms in which the body repairs a wound are organized into the overlapping

stages of wound healing, namely, homeostasis, inflammation, proliferation, and

remodeling. Within minutes blood clots are formed and the bleeding stops. This is

the first provisional matrix formed for the wound while the focus of the mechanisms

implemented will be to remove pathogens and debris in the inflammation stage. The

turnover of the provisional matrix proceeds in the proliferation and remodeling stages.

Elucidating mechanisms in wound healing is of interest in improving wound care and

determining causes of diseases.

Mathematical modeling provides a means to help provide framework and im-

plement theories that may not be feasible to test under experimentation. Ordinary

differential equation models are useful when studying dynamics over time in a nonspe-

cific unit of space. Previous studies incorporated this methodology to study wound

healing phenomena such as the recovery after a myocardial infarction [34], keloid

and hypertorphic scarring [8], relationship between transforming growth factor β and

tissue tension [53], and acute wound healing [50], just to name a few.
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CHAPTER 2

LITERATURE REVIEW

2.1 Wound Healing

According to MedilinePlus by the United States National Library of Medicine,

wounds are "injuries that break the skin or other body tissues" and can include

"cuts, scrapes, scratches, and punctured skin." The formation of a wound involves

a disruption in skin and tissue integrity. Where and how this integrity of the body

composition and function is disrupted is what characterizes the type of wound and

what can elucidate the overall pathology to be diagnosed. Some types of wounds

include those caused by mechanical stress. Examples of these types of wounds are

penetrating wounds, blaunt force trauma wounds (i.e., abrasions, lacerations, skin

tears), closed wounds (i.e., contusions, mematoma), ecetera. Mechanisms that cause

chronic wounds are another import type of wound to elucidate since these types

of wounds can lead to amputation and death. Nussbaum et al. [55] points out

that individuals who are at risk are elderly, disabled, or in general, individuals who

cannot care from themselves and individuals with pre-existing skin or immunological

conditions.

In addition to being involved in the before mentioned wounds, the wound

healing process is involved in cardiovascular issues. For example, when blood does

not circulate properly in the myocardium, oxygen is not able to be distributed to

cells. Heart cells undergo necrosis and tissues die, hence the sequence of phenomena
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that characterizes what is known as mycardium infarction (i.e., heart attack). This

context of wound healing has been of interest due to this repair process leading to

adverse after effects. The dynamics of this process have been studied by methods

incorporating experimental data and differential equation modeling such as in [34].

The dynamical processes of wound healing is not just important for treating

wounds but in addressing economical related conserns. Research by Nussbaum et

al. [55] conducted a retrospective analysis of the cost of chronic wound care. Some

prevalent wound types among Medicare beneficiaries were surgical infections, diabetic

infections, traumatic wounds, skin disorders, and venous infections. Data from 2014

revealed that there was a high prevalence amount individuals who were 75 years or

older, and total Medicare expenditure estimates reached between 3 billion and 96.8

billion dollars where surgical wounds were one of the most expensive.

2.1.1 Neutrophils

After the onset of the injury or wound, one of the first types of white blood cells

to infiltrate the wound is the neutrophil. Neutrophils are a relatively abundant type

of circulating leukocyte at the site of the wound but are short lived [6]; Bratton and

Henson describe their lifespan to be in hours. Regardless if the wound is pathogen

abundant or not, these cells will be recruited to the site of the wound via chemotactic

factors. In the context of an infected wound, neutrophils will phagocyotize pathogens

and will release substances such as reactive oxygen species (ROS) and antimicrobial

peptides.

The main means of removal of neutrophils is by a another leukocyte known

as the macrophage. After neutrophils reach the end of their lifecycle they commit

cell programmed death. This is a process known as apoptosis. Hence, afterwords
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they become apoptotic neutrophils. These apoptotic neutrophils can release signals

called ’find-me’ or ’eat-me’ signals to influence this phagocytosis. In Bratton and

Henson [6], the abundance of neutrophils is described to be be greater than the

abundances of macrophages and apoptotic neutrophils, but after neutrophils peak,

the transient dramatically go down. This contrasts with modeling research including

those by Cooper et al. [9, 70] and Torres et al. [70], where in Cooper assumptions

and simulations resulted in lower density of neutrophils. In Torres [70] experimental

data and the optimized solution show an equal abundance with M1 macrophages and

the decrease is not that dramatic when compared with the macrophages. In fact,

if M1 macrophages and M2 macrophages were combined, they would be of greater

abundance than the measured data of neutrophils corroborating the research by

Cooper. As Bratton and Henson note, however, much of the dynamical evidence and

phenomena have been observed either by in vitro studies or by experimental methods

on mice which will have some extent of difference to the expected phenomena in

human health. For studies involving mice vs humans see [25, 69,73].

The mechanisms that effect the removal of apoptotic neutrophils are important

as the removal of these neutrophils serve to decrease the debris and constituents

released and exposed to the remaining healthy tissue. In addition, this phogocytosis

by macrophages can effect the anti-inflammatory vs inflammatory properties of

macrophages. As a result, some immunological issues can occur can be caused by an

overabundance of neutrophils or a low rate of removal.

Dovi et al. [16] note that activated neutrophils release substances such as reactive

oxygen species, cationic peptides, and proteases that help combat pathogens, but

these substances also can degrade components of the extracellular matrix. It is also
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Figure 2.1: Neutrophil byproducts [75]

noted that neutrophils also have a high oxygen requirement to produce reactive

oxygen intermediates.

2.1.2 Macrophages

Macrophages play a critical role in the wound healing process; they are involved

in clearing debris and pathogens, as well as coordinating tissue repair. The roles

of macrophages are complex in that there is a spectrum of different macrophage

phenotypes, some in which contribute more to the inflammatory process and some

contribute more the proliferation process [37,48,51,52].

Classically activated and alternatively activated macrophages, also referred to as

M1 macrophages, M2 macrophages, respectively, are classified according to their cell

surface markers, function, and cytokine production. For example, M2 macrophages are

primarily responsible for the production of a cytokine known as TGF-β. According to

Krzyszczyk et al. [40], in mice, monocyte-derived macrophages begin to be systemically

recruited in approximately 24 hrs and these monocytes differentiate in either M1 or
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Figure 2.2: Polarization of Macrophages [51]

M2 macrophages. In particular, monocytes that differentiate to M1 macrophages are

more abundant than those that differentiate to M2 macrophages.

2.1.3 Metalloproteinases and Tranforming Growth Factor-β

As white blood cells such as neutrophils, M1 macrophages, and M2 macrophages

are present in the cell, they release proteases and cytokines that have an affect on the

proliferation and remodeling stages of wound healing, two major substances being

metalloproteinases (MMPs) and tranforming growth factor-β (TGF-β). MMPs are

proteases which whose main function is to break down protiens. MMPs are modulated

by tissue inhibitors of MMPs (TIMPs). They inhibit the activities of MMP [62].

TGF-β is a cytokine responsible to the chemoattraction of a major type of cell in the

proliferation stage, fibroblasts. They are also associated with an increased production

of TIMPS [47].
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Figure 2.3: Dynamic between TIMPs, MMPs, and TGF-β [43]

2.1.4 Fibroblasts and Myofibroblasts

As M2 macrophages are present in the wound they release TGF-β which attract

fibroblasts to the site of the wound. After these cells migrate to the cell they release

more TGF-β and MMPs. Fibroblasts are able to differentiate to a more specialized

cell known as myofibroblasts. The interaction of present fibroblasts and TGF-β can

accelerate this differentiation. Fibrobasts and myofibrobasts affect one of the final

productions of the the wound healing process which is the production of collagen.

2.1.5 Previous ODE Models

There are several types of models of healing. Ordinary differential equations

models do not model change in space, but concentrate on change over time for a

determined unit of space. Several models have been presented.

Reynolds et al. [61] focused on inflammation and anti-inflammation with their

state variables being activated phagocytes, tissue damage, and anti-inflammatory

mediators. Activated phagocytes are representative of inflammation and include

neutrophils and macrophages. The anti-inflammatory variable is representative of

mediators including cortisol and interleukin-10 (IL-10). Here subsystems based
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on mass action kinetics are presented and the quasi-steady state assumption is

implemented on the local response and resting phagocytes. Subsequent to model

construction, different scenarios of pathogen growth rate and initial conditions are

presented in scenarios where the wound is under circumstances that result in a healthy

outcome, aseptic death, and septic death.

Cooper et al. [9] built a model expanding on Reynolds. The inflammation

state variable replaced by more specialized inflammatory variables, neutrophils and

macrophages. Estrogen and cortisol inhibition and enhancement factors are also

implemented. A set of parameters that result in dynamical assumptions are simulated,

the assumptions being that neutrophils peak between 0.75 and 2.75 days; the peak

for macrophages is between 2.75 and 6.25 days; and that macrophage levels dropped

below 0.1 by day 20.

For some of the state variables, the rates per cell units were adapted from

Reynolds. More specifically, pathogen carrying capacity was chosen as 106 cells per

unit space per unit time which, in order for the model to be well defined, sets P-units

for the state variable P to be the same. The units for these cells are important when

comparing results to experimental conditions, when combining results from different

experiments, or when comparing parameters from different model experiments. For

the Cooper study the purpose was to simulate general behavior, so units for some

state variables such as debris were set to be arbitrary.

Torres et al. [70] utilizes these cell dynamics with experimental results. For

pathogens, neutrophils, M1 and M2 macrophages, units are chosen to be 107 units.

Note that the interaction mechanisms such as phagocytation and activation which

has units pathogen units per inflammation cell units per time and cells per pathogen
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units per time, respectively, will be affected by these chosen units. For example, the

background immune defense parameter, kbp, activation of local background immune

response by pathogen, value would change when switching from 106 P-units to 107

P-units.

Some studies that modeled the proliferation and remodeling stage are Jin et

al. [34] and Segal et al. [66]. Jin et al. incorporates macrophages, MMP-9, TGF-β,

fibroblasts, and collagen to model the healing process after a myocardial infarction.

They assume inhibition of MMP-9 by TGF-β due to the induced presence of TIMP-1.

Subsequent to model formation they validate their model and parameter values by

comparing model output to experimental data.

Segal et al. [66] constructs a model incorporating inflammation, pathogens,

fibroblasts, and collagen. They include three types of fibroblasts (proliferating

fibroblasts, migrating fibroblasts, and active fibroblasts). The collagen state variable

is chosen to be a percentage where 0 represents the wound not being filled and 1

being the wound being filled. Values are allowed to go above 1 to account for scarring.

They also include both inhibition of collagen deposition and degradation influenced

by the current amount of collagen fibers formed. It is assumed the closer the wound is

from being filled, the less need for fibroblasts which reduces amount of collagen being

deposited. Moreover, they assume that inflammation cells can release enzymes that

degrade collagen. To determine values for their parameters experimental data for

collagen where scaled so that the highest values was a little above one. Subsequently,

the resulting model was tested using low and high values of pathogen that resulted in

high collagen deposition and low collagen disposition, respectively.

9



2.2 Modeling the Wound Healing Process

A system of ordinary differential equations is constructed to measure the dy-

namics over time between the different components in the inflammation, proliferative,

and remodeling phase of the wound healing process. Main dynamics of previous ODE

models are taken under consideration to form basic structures of the equations. Some

mechanisms for pathogens, debris, neutrophils, and macrophages were adopted from

Reynolds al. [9], Cooper et al. [2], and Torres et al. [11]. Some of the proliferative

and remodeling mechanisms from Jin et al. [34] and Segal et al. [66] are accounted

for. Certain mechanisms that effect and degradation terms where updated according

to the literature (see Table 4.1).

2.2.1 Statement of Purpose

The purpose of this study is to construct a model of the wound healing system

that incorporates dynamics from all three stages, incorporate of collagen turnover,

and analyze this model in regard to parameter vs output dynamics.
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CHAPTER 3

INFLAMMATION MODEL CONSTRUCTION

A system of ordinary differential equations was constructed to measure the dy-

namics over time between the different components in the inflammation, proliferative,

and remodeling phase of the wound healing process. In this chapter, we concentrate

on the inflammation stage. Growth terms for neutrophils and macrophages where

constructed by using the quasi-steady state assumption with resting neutrophils

and monocytes, respectively; the differentiation of neutrophils and monocytes are

assumed to happen rapidly so that the rate of each of these can be assumed to be

approximately zero. Some of the structures of the equations for pathogens, debris,

neutrophils, and macrophages were adopted from Reynolds et al. [61], Cooper et

al. [9], and Torres et al. [70].

3.1 Source Terms for Neutrophils and Macrophages

Let X0 represent the predicesor cell and Xd represent the differentiated cell.

Then the set of reactions is represented by the following

*
sx

−−−−−→ X0

X0

Rx

−−−−−→ Xd

Xd

µx

−−−−−→ .

11



These reactions have an associated set of differential equations. That is,

dX0

dt
= sx −RxX0 − µxX0

dXd

dt
= RxX0.

If we assume quasi-steady state assumption then we get

dX0

dt
≈ 0

=⇒ X0 ≈
sx

Rx + µx

which gives us

dXd

dt
= Rx

sx
Rx + µx

.

which is comparable to the Michealis - Menten dynamics where if we let

Rx −→∞ then dXd
dt
−→ sx, the rate at which the predecessor cell enters the system,

and if we let Rx = 0, dXd
dt

= 0.

3.2 Inflammatory Phase

3.2.1 Pathogens

Pathogens are assumed to proliferate logistically, where the growth rate is

denoted by kpg and the carrying capacity is denoted by p∞. Upon initiation of

the wound, the body utilizes a set of natural defenses even before phagocytes like

12



neutrophils and macrophages are introduced. These defenses will be categorized

as the non-specific local immune response and include defensins and non-specific

antibodies [56, 60, 61]. Hence, the next term will incorporate another term formed

from quasi-steady state assumption on pathogens and the local non-specific immune

response where sb is the rate at which the non-specific response enter the system, kpb

is the destruction of pathogen per unit of non-specific response per time, µb is the

intrinsic decay of the non-specific response, and kbp is the activation of the non-specific

response by pathogen. Incorporating these mechanisms, we get the following

dP

dt
= kpgP (1−

P

p∞
)− kpbsbP

µm + kbpP.
(3.1)

As Reynolds et al. [61] pointed out, the solution P(t) = 0 model is asymptotically

stable under the condition that

kpg <
kmpsm
µm

.

When this condition is not met, under certain corresponding initial conditions the end

behavior of P(t) may tend toward some P ∗ > 0 which is indicative that the wound will

remain infected if other mechanisms are not initiated. Hence, the following terms will

incorporate the other means of defense against pathogens which are neutrophils and

macrophages. Incorporating phagocytation by M1 macrophages, M2 macrophages,

and neutrophils with the effect of estrogen we get

13



dP

dt
= kpgP (1−

P

P∞
)− kpbsbP

µb + kbpP
− kpnPN(1 + kenE)− kpmP (M1 +M2)(1 + kemE),

where kpn and kpm are the parameters associated with the rate that the pathogen

and neutrophil and macrophage will interact and the act of phagocytation will occur,

respectively. ken and kem are the amounts corresponding to how much per estrogen

unit will enhance the phagocytation process.

3.2.2 Debris

Upon initiation of the wound, the consequence to the body introduced is the

physical obstruction of tissue. These dead cells and possibly outside debris must

also be removed. Moreover, during the inflammation process, the inflammatory

mechanisms triggered are aimed at removing the pathogens and this can cause the

introduction of more dead tissue and a release of cellular debris when apoptotic cells

are not phagocytotized or removed from the area [6]. The equation for debris is as

follows.

dPt
dt

= µanAN − kptnPtN − kptm1PtM1 − kptm2PtM2 − µptPt,

where µanAN denotes debris introduced from unsuccessful efferocytosis; kptnPtN ,

kptm1PtM1, and kptm2PtM2 denote the removal of debris via phagocytation by neu-

trophils, M1 macrophages, and M2 macrophages, respectively; and µptPt denotes the

intrinsic/non specific removal of debris. In Cooper et al. [9] estrogen is assumed to

promote phagocytization. Incorporting this enhancement to this model, it becomes

14



dPt
dt

= µanAN − kptnPtN(1 + kenE)− kptm1PtM1(1 + kemE)− kptm2PtM2(1 + kemE)− µptPt.

3.2.3 Neutrophils

The first phagocytic cells introduced to the wound during the inflammation

stage are neutrophils. Neutrophils phagocytize pathogens and debris and afterwards

commit apoptosis. The equation for neutrophils is as follows:

dN

dt
= RN

Snr
µnr +RN

− kanN,

where RN is the rate of activation of resting neutrophils; Snr is the number of resting

neutrophils that enter the system per unit time; µnr is the rate at which resting

neutrophils exit the system; and kanN is the number of neutrophils that commit

apoptosis per unit time. The rate at which resting neutrophils are activated is

influenced by mechanisms triggered by existing neutrophils, macrophages, debris,

pathogens, and apoptotic neutrophils. RN is consequently

RN = knptPt + knpP + knanAN .

Adding the modulation effects of estrogen from Cooper et al. [9] the equation

becomes

dN

dt
= RN

Snr
µnr +RN

1

(1 + E
Eninf

)2
− kanN, RN = knptPt + knpP + knanAN .

15



3.2.4 Apoptotic Neutrophils

The state of neutrophils being in an apoptotic state can influence some critical

parts of the wound healing process, namely, the continuation of the inflammation

stage [21,39], the resolution of debris removal [14,21,38], and the polarization between

M1 macrophages and M2 macrophages [3]. Neutrophils are assumed to commit

apoptosis at a rate represented by the parameter kan. After apoptosis, the apoptotic

neutrophils can then be phagocytized by M1 macrophages and M2 macrophages which

are represented by the mass action terms kanm1ANM1 and kanm2ANM2, respectively.

Apoptotic neutrophils that are not removed by efferocytosis can then decay and leave

the system. The proportion of those that release debris is represented by the term

danAN and those that do not release debris is represented by the term µanAN . The

apoptotic neutrophils equation is as follows:

dAN
dt

= kanN − kanm1ANM1 − kanm2ANM2 − kannN − danAN − µanAN ,

Adding the effect of estrogen the equation becomes

dAN
dt

= kanN−kanm1ANM1(1+kemE)−kanm2ANM2(1+kemE)−kannN(1+kenE)−danAN−µanAN .

3.2.5 M1 and M2 Macrophages

Macrophages have diverse functions in wound healing. There is spectrum of

macrophage types. For our application, we will choose to categorize macrophages with

more pro-inflammatory functions as M1 macrophages and macrophages with more

anti-inflammatory functions as M2 macrophages. The equation for M1 macrophages

is as follows:
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dM1

dt
= RM1

smr
µmr +RM1 +RM2

− km1m2ANM1 + km2m1M2 − µm1M1

dM2

dt
= RM2

smr
µmr +RM1 +RM2

+ km1m2ANM1 − km2m1M2 − µm2M2,

whereRM1 andRM2 are the rate that monocytes differentiate into M1 macrophages

and M2 macrophages, respectively; km1m2ANM1 is the amount of M1 macrophages

that turn into M2 macrophages per unit time (a factor which has increased stim-

ulation caused by efferocytosis); km2m1M2 is the amount of M2 macrophages that

turn into M1 macrophages per unit time; and µm1 and µm2 are the proportion of M1

macrophages and M2 macrophages that leave the wound site per unit time, respec-

tively. The rate at which monocytes differentiate into M1 Macrophages is effected by

the debris, pathogens, other M1 macrophage, and apoptotic neutrophils [9, 70]. With

the inhibition effect of estrogen the rate is

RM1 = kmptPt + km1pP + km1nN +
km1m1M1

1 + ( E
EM∞

)2
+ km1anAN .

And the rate at which monocytes differentiate into M2 macrophages is assumed

to be affected by other M2 macrophages and a background source kc. So we have

RM2 = km2m2M2 + kc.
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AN
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km1n
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km2m1

kanm2

kpm2

Figure 3.1: Inflammation Model Schematic. Dynamics of inflammatory system and
parameters involved in each corresponding transition where arrows, −→, indicate
upregulation, and bars, ­, indicate inhibition. Phenomena involved with upregula-
tion include release of substance that promotes differentiation of a predecessor or
proliferation of the state variable, release of substance that adds to the state variable,
or the starting state variable becoming the following state variable. The phenomenon
involved with inhibition is phagocytosis.
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CHAPTER 4

INFLAMMATION MODEL ANALYSES AND RESULTS

4.0.1 Final Inflammation Model

The full inflammation model is given by the following where definitions and

units for each parameter is given in Table 4.1, and a schematic of the relationship

between each state variable is provided in Figure 3.1.

dP

dt
= kpgP (1−

P

P∞
)− kpbsbP

µb + kbpP
− kpnPN(1 + kenE)− kpmP (M1 +M2)(1 + kemE)

dPt
dt

= µanAN − kptnPtN(1 + kenE)− kptm1PtM1(1 + kemE)

− kptm2PtM2(1 + kemE)− µptPt
dAN
dt

= kanN − kanm1ANM1(1 + kemE)− kanm2ANM2(1 + kemE)− kannN(1 + kenE)

− danAN − µanAN
dN

dt
= RN

Snr
µnr +RN

1

(1 + E
Eninf

)2
− kanN, RN = knptPt + knpP + knanAN

dM1

dt
= RM1

smr
µmr +RM1 +RM2

− km1m2ANM1 + km2m1M2 − µm1M1,

RM1 = kmptPt + km1pP + km1nN +
km1m1M1

1 + ( E
EM∞

)2
+ km1anAN

dM2

dt
= RM2

smr
µmr +RM1 +RM2

+ km1m2ANM1 − km2m1M2 − µm2M2,

RM2 = km2m2M2 + kc.

(4.1)
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4.0.2 Parameters

Parameter bounds were estimated based on the literature. These bounds were

used to find an estimate that resulted in an output that met overall conditions based

on the literature. And another method of finding parameters based on experimental

data was implemented. The first method was based on the following assumptions:

1. Neutrophils peak around day 1 day post injury (dpi)

2. M1 macrophages peak between 2 - 3 dpi

3. M2 macrophages peak at least 1 dpi after M1 macrophages peak and once M2

macrophages peak they are the dominant macrophages present.

Initial conditions where assumed to be P0 = 1 and Pt0 = 2. which has a higher

starting pathogen densisity then in in Cooper et al. [9] to simulate a wound with

more pathogenic insult. A working set was found based on the parameter constraints

in Table 4.1. The found parameter values are under "Estimation based on general

dynamics". The simulations with varying initial conditions are shown in Figure 4.3

with the initial conditions defined in Figure 4.1.

Figure 4.1: Initial conditions for general simulation results
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For the method utilizing data, parameters were found that minimized the

output from experimental data (Torres et al., [70]). In Torres, the experiment

captures wound dynamics under the conditions that there is pathogen, but minimal

debris. Pathogen starts small, but due to increase in carrying capacity the pathogen

density increases causing the onset of the inflammation process. For the initial

conditions we assume Pt = 0.001 and let P0 be an optimization argument. Due to

the nature of the experiment, another state variable B for broth was included. To

account how the broth affects the carrying capacity, another parameter kkbp∞ was

included. The inflammation dynamic from this experiment is modeled by system 4.1

with a modification on the logistic growth term for pathogens and with the inclusion

of a new equation for broth which is the following:

dB

dt
= −kbpBP.

The pathogen equation was modified to the following:

dP

dt
= kpgP (1−

P

P∞ + kkbp∞B
)− kpbsbP

µb + kbpP
−kpnPN(1+kenE)−kpmP (M1+M2)(1+kemE).

The fmincon MATLAB function was used to fit the solution to the data using

the following equation weighted least squares function:

min
p

n∑
i=1

(
yi − y(ti, pi)

σi
)2. (4.2)
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Table 4.1: Parameter Descriptions. Chosen units for P , M , N and AN are 107 cells
Pathogen Equation

Parameter Description Range / Conditions for
optimization

Estimation
based on
general
dynamics

Estimation
based on
data

Unit Reference / Reasoning

kpg Growth rate of pathogen 14.4 34.99 1
day Depends on pathogen;

chosen value
p∞ Carrying capacity of pathogen 2 0.00450 P -units Depends on pathogen and

environment; chosen value
kpb Destruction of pathogen by local back-

ground response
10 ≤ kpb ≤ 20 19.945 15

1
M−units
day

Range chosen around
value from [61]

sb Source of background local response 0.01 ≤ sb ≤ 0.2 0.141 0.0722 M−units
day Range chosen around

value from [61].
µb Intrinsic decay of local response 0.03 ≤ µb ≤ 0.06 0.052 0.0243 1

day Range chosen around
value from [61]. Note this
was based on reported
half-lives of non-specific
antibodies such as im-
munoglobulins G and A;
original references [33, 83]

kbp Activation of local background im-
mune response by pathogen

1.5 ≤ kbp ≤ 2.5 2.0 2.030
1

days

P−units
Range chosen around
one from [61]. Units
were updated from
P − units = 106Pcells
to P − units = 107Pcells.

kpn Destruction of pathogen by neu-
trophils

0 ≤ kpn ≤ 100 0.00128 0.00594
1

N−units
day

ken Estrogen increase in the phagocytic
abilities of neutrophils

0 ≤ ken ≤ 8.11 0.347 4.915 1
E−units Value was set to be no

more than the mean +std
of the working values
found in Cooper [9]

kpm Destruction of pathogen by
macrophages

0 ≤ kpm ≤ 100 7.519 1.668
1

M−units
day

kem Estrogen increase in the phagocytic
abilities of macrophages

0 ≤ kem ≤ 7.87 3.867 2.665 1
E−units Value was set to be no

more than the mean +
std. of the working values
found in Cooper [9]
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Debri and Apoptotic Neutrophil Equations

Parameter Description Range / Conditions for
optimization

Estimation
based on
general
dynamics

Estimation
based on
data

Unit Reference / Reasoning

dan Debris released by apoptotic neu-
trophils

0 ≤ µan ≤ 100 4.382 3.989 1
day

kptn Destruction of debris by neutrophils 0 ≤ kptn ≤ 100 0.048 8.624
1

N−units
day

kptm1 Destruction of debris by M1
macrophages

0 ≤ kptm1 ≤ 100 6.531
kptm2 ≥ kptm1

0.191 13.214
1

M−units
day

kptm2 Destruction of debris by M2
macrophages

0 ≤ kptm2 ≤ 100 6.643 18.430
1

M−units
day

µpt Intrinsic decay of debris 0.0019 ≤ µpt ≤ 1.04 11.187 1.002 1
day Half-life of debris is as-

sumed to be no shorter
than 16 hrs. and no longer
than 365 days which is a
more generous assump-
tion than the 33.27 hrs.
assumed in Cooper [9]

kan Apoptosis rate of neutrophils
1.0397 ≤ kan ≤ 11.09
kan > µm1, µm2

kan ≤ µnr
0.712 1.252 1

day Half-lives of neutrophils
are between 1.5 and 16
hrs. [58, 77] and are shorter
than the half-lives of M1
and M2 macrophages; half-
lives of resting neutrophils
are shorter than the half-
lives of neutrophils

kanm1 Destruction of apoptotic neutrophils
by M1 macrophages

0 ≤ kanm1 ≤ 100
kanm1 ≤ kanm2

15.409 10.507
1

M−units
day

Alternative macrophages
are more effecient at effe-
rocytosis [6]

kanm2 Destruction of apoptotic neutrophils
by M2 macrophages

0 ≤ kanm2 ≤ 100 51.403 51.192
1

M−units
day

kann Destruction of apoptotic neutrophils
by neutrophils

0 ≤ kann ≤ 100 15.877 14.759
1

N−units
day

uan Secondary necrosis of apoptotic neu-
trophils

0 ≤ uan ≤ 100 3.623 8.978 1
day
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Neutrophil Equation

Parameter Specific Description Range for optimization
/ Conditions

Estimation
based on
general
dynamics

Estimation
based on
data

Unit Reference / Reasoning

snr Source of resting neutrophils snr > smr 0.205 3.0474 N−units
day

knpt Activation of neutrophils by debris 0 ≤ k ≤ 100 74.954 0.0211
1

M−units
day

knp Activation of neutrophils by
pathogens

0 ≤ k ≤ 100 1.027 14.910
1

P−units
day

knan Activation of neutrophils by apoptotic
neutrophils

0 ≤ knan ≤ 100 27.378 9.0955
1

AN−units
day

µnr Decay rate of resting neutrophils 1.0397 ≤ µnr ≤ 33.271 12.976 1.406 1
day Resting neutrophils are

assumed to have shorter
half-lives than activated
neutrophils resting neu-
trophils, but lower bound
on the half life is assumed
to be no smaller than 0.5
hrs.

En∞ Estrogen’s effect on the inhibition of
neutrophil production

5.01 ≤ En∞ ≤ 100 6.838 7.716 E-units Value assumed to be no
less than the mean - std.
in Cooper [9]
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Macrophage Equations

Parameter Specific Description Range / Conditions for
optimization

Estimation
based on
general
dynamics

Estimation
based on
data

Unit Reference / Reasoning

smr Source of resting fixed tissue mono-
cytes

smr > snr 0.2025 M−units
day

kmpt Activation of M1 macrophages by
debris

0 ≤ kmpt ≤ 100 28.033 3.0409
1

Pt−units
day

km1p Activation of M1 macrophages by
pathogens

0 ≤ km1p ≤ 100 99.123 44.947
1

P−units
day

km1n Activation of M1 macrophages by
neutrophil byproducts

0 ≤ km1n ≤ 100 0.007 0.00121
1

N−units
day

km1m1 Activation of M1 macrophages by
their associated cytokines

0 ≤ km1m1 ≤ 100 0.0775 0.00150
1

M−units
day

km1an Activation of M1 macrophages by
apoptotic neutrophils

0 ≤ km1an ≤ 100 1.803 0.00364
1

AN−units
day

Em∞ Estrogen’s effect on the inhibition of
M1 macrophage production by other
M1 macrophages

2.06 ≤ Em∞ ≤ 100 8.742 6.113 E-units Value chosen to be no less
than the mean - std. from
the values in Cooper [9]

µmr Decay rate of resting tissue monocytes µmr > µm1, µm2 12.975 1.261 M−units
day

km2m2 Activation of M2 macrophages by
their associated cytokines

0 ≤ km2m2 ≤ 100 0.00151 0.00160
1

M−units
day

kc 0 ≤ kc ≤ 1 0.025 0.993 0.00111
km1anm2 Transition of M1 macrophages to M2

macrophages affected by phagocytosis
of apoptotic neutrophils

0 ≤ km1anm2 ≤ 100 2.1 0.0505 3.969

km1m2 Transition of M1 macrophages to M2
macrophages

0 ≤ km1m2 ≤ 100 1.146 14.993
1

AN−units
day

km2m1 Transition of M2 macrophages to M1
macrophages

0 ≤ km2m1 ≤ 100 0.117 0.183 M−units
day

µm1 Decay rate of M1 macrophages 0 ≤ µm1 ≤ 11.09 0.602 1.245 M−units
day Half-lives of M1

macrophages are assumed
to be greater than 1.5 hrs.

µm2 Decay rate of M2 macrophages 0 ≤ µm2 ≤ 11.09 0.612 1.244 M−units
day Half-lives of M2

macrophages are assumed
to be greater than 1.5 hrs.
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Figure 4.2: Output of resulting parameter set optimized from experimental data
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Figure 4.3: Transients resulting from assumptions based on literature with varying
initial conditions
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4.0.3 Bifurcation Analysis Pathogen Growth and Carrying Capacity

To analyze the model behavior in regard to the parameters, a bifurcation analysis

was conducted in XPPAUTO. The following are analyses conducted for pathogen

growth and carrying capacity.

Bifurcation analysis was conducted with respect to kpg, the growth rate of

the pathogen. XPPAUTO indicated bifurcation points in three main locations:

between 15 and 16, at 54.956, and a Hopf bifurcation at 15.446 (Table 4.2). The

AUTO program was subsequently ran from the periodic solutions from the Hopf

points, which resulted in unstable solutions shown by the blue circles (Figure 4.4).

Different kpg values where tested around the bifurcation points (Figure 4.5). For high

enough pathogen and debris initial conditions, kpg = 20 and kpg = 80 resulted in an

unhealthy outcome indicated by the high end behavior for M1 and M2 macrophages.

An example simulation of when kpg = 15.446 is provided in Figure 4.6 where the

behavior oscillates.

Table 4.2: XPPAUTO Results for varying Growth Rate of Pathogens, kpg

TY kpg P∗ Pt∗ AN∗ N∗ M1∗ M2∗

BP 15.111 0.2671 0.00 0.00 0.00 0.0015 0.0221
BP 15.521 0.5913 0.00 0.001 0.0100 0.1007 0.1568
BP 15.526 0.6611 0.00 0.0002 0.0105 0.1016 0.1569
LP 15.526 0.6623 0.00 0.0002 0.0105 0.1016 0.1568
HB 15.446 0.3614 0.00 0.0001 0.0079 0.0935 0.1527
BP 54.956 0.00 0.00 0.00 0.00 0.0015 0.0221
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Figure 4.4: Bifurcation Diagrams with varying kpg (Pathogen Growth Rate). Red
lines indicated stable steady states. Black indicates unstable steady states. Blue
circles represent unstable periodic solutions.
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Figure 4.5: Simulations with varying kpg (pathogen growth rate)
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Figure 4.6: Example simulation with kpg (pathogen growth rate) at the Hopf bifurca-
tion point
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For kpb, the source of background local response, there where two bifurcation

points found: a Hopf bifurcation at kpb = 16.215 and at kpb = 17.57 (Table 4.3).

Bifurcation digrams in Figure 4.3 show that for low values of kpb the steady state is

relatively high for all state variables and this is further elucidated in Figure 4.7 where

the transient end behaviors are high. Figure 4.9 shows an example of oscillatory

behavior when kpb = 16.215.

Table 4.3: XPPAUTO results for destruction of pathogen by local background
response, kpb

TY kpb P∗ Pt∗ AN∗ N∗ M1∗ M2∗

BP 4.992 0.00 0.00 0.00 0.00 0.0015 0.0221
HB 16.215 0.3303 0.00 0.0001 0.0072 0.0911 0.1493
BP 17.57 0.2384 0.00 0.0001 0.0053 0.0819 0.1362
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Figure 4.7: Bifurcation diagrams with varying kpb (destruction of pathogen by local
background response)
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Figure 4.8: Simulations with varying kpb (destruction of pathogen by local background
response)
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Figure 4.9: Example simulation with kpb (destruction of pathogen by local background
response) at the Hopf bifurcation point

For ub, the intrinsic decay of local response, there where two bifurcation points

found: at ub = 0.2085 and at a Hopf bifurcation ub = 0.1748 (Table 4.4). As ub
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increases the steady state of each variable steadily increases but after a high enough

value this steady state does not change much (Figure 4.4). Figure 4.11 shows the

different transient end behavior for different values around the bifurcation point, and

Figure 4.12 shows oscillatory behavior in apoptotic neutrophils.

Table 4.4: XPPAUTO results for varying intrinsic decay of local response, ub

TY ub P∗ Pt∗ AN∗ N∗ M1∗ M2∗

BP 0.2085 0.0000 0.00 0.00 0.00 0.0015 0.0221
LP 0.1178 0.2016 0.00 0.0001 0.0045 0.0768 0.1290
HB 0.1748 0.3046 0.00 0.0001 0.0067 0.0889 0.1462
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Figure 4.10: Bifurcation diagrams with varying ub (intrinsic decay of local response)
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Figure 4.11: Simulations with varying ub (intrinsic decay of local response)
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Figure 4.12: Example simulation with ub (intrinsic decay of local response) at the
Hopf bifurcation point

For snr, the source of resting neutrophils, there was one bifurcation point found

at snr = 4.222 (Table 4.5). The bifurcation diagrams in Figure 4.13 show that for
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small snr, the steady state for debris, apoptotic neutrophils, M1 macrophages, and M2

macrophages the steady state is relatively high and it goes down as snr increases. In

the diagram for neutrophils, after snr is big enough the steady state starts increasing

a steady rate and for the other state variables except pathogens the steady state

remains relatively higher. Figure 4.14 shows different transient behavior for varying

snr values.

Table 4.5: XPPAUTO results for varying source of resting neutrophils, snr

TY snr P∗ Pt∗ AN∗ N∗ M1∗ M2∗

BP 4.222 0.00 0.00 0.00 0.00 0.0015 0.0221
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Figure 4.13: Bifurcation diagrams with varying snr (source of background resting
neutrophils)
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Figure 4.14: Simulations with varying snr (intrinsic decay of local response)
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4.1 Sensitivity analysis around parameters estimated from general dynamics

The working set found that resulted in output for general dynamic assumptions

were used to test ranges of values around the found parameter value. A range

of 15 units for each parameter intersection with its biological bounds in Table 4.1

was chosen as the multidimensional parameter space. Pathogen growth rate (kpg),

carrying capacity (p∞), and estrogen concentration was chosen to be [0, 50], [0, 1000],

and [0, 50], respectfully. The chosen sensitivity analysis method used was the Fourier

Amplitude Sensitivity Test (FAST). This was implemented within the SAFE package

in MATLAB. The FAST method is a variance based method that implements ANOVA

decomposition and uses the Fourier series to estimate the total model variance. The

Fourier transform is used to decompose the variance of the model output described by

each parameter. The sensitivity indices are the proportion of the variance attributable

to the factor of interest over the total variance and has a range between 0 and 1. This

method was chosen since it is computationally efficient and can be used for non-linear,

non-monotonic models [81]. This analysis is conducted utilizing each state variable

as the output, and afterwords the average of all the state variables as the output.

After each of the parameter sets are sampled, the resulting output is recorded.

Figure 4.15 a shows the resulting outputs for pathogens for each sample parameter

set. Figure 4.15 b shows the mean and standard deviation of these simulations. For

pathogens the mean trajectory is downward trend. The trajectories start with the

same initial condition, so the standard deviation starts at value zero and increase

until around day one where it is more consistent. The output was analyzed according

to each parameter. The FAST indices for each parameter is provided in Figure 4.16.

For pathogens the parameters that reulted in the higest sensitivity indices were smr

(source of monocytes), kpm (destruction of pathogens by macrophages), and kpg
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(growth rate of pathogens). Estrogen related parameters that had higher sensitivity

indices were kem (the enhancement of estrogen on macrophage phagocytosis) and E

(estrogen concentration). The indices mean over 15 days is provided in Figure 4.17.

The solid color bar indicate that the index value over time stays consistent.

(a) Simulations (b) Mean and Standard Deviation

Figure 4.15: Simulations of pathogen density after sampling and the average pathogen
density of the simulations
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Figure 4.16: FAST global sensitivity analysis results: Mean and box plot of sensitivity
for pathogen density over time
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Figure 4.17: FAST global sensitivity analysis results: Sensitivity indices with respect
to pathogens over 15 days
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For debris the mean trajectory of the output is downward trend (Figure 4.18).

Parameters that had higher sensitivity indices were smr (source of monocytes) and

estrogen concentration (Figure 4.19 and 4.20). The sensitivity index for smr did not

have as much variation with respect to time.

(a) Simulations (b) Mean and Standard Deviation

Figure 4.18: Simulations of debris density after sampling and the average pathogen
density of the simulations
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Figure 4.19: FAST global sensitivity analysis results: Mean and box plot of sensitivity
for debris density over time
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Figure 4.20: FAST global sensitivity analysis results: Sensitivity indices for Debris
Density over 15 Days
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For apoptotic neutrophils the mean trajectory increases steadily and is more

steady after day 1 (Figure 4.21). Similarly to the results for debris, the parameters

that resulted in higher sensitivity indices were the source of monocytes and estrogen

concentration (Figure 4.22). However the indices for estrogen does not vary as much

over time (Figure 4.23).

(a) Simulations (b) Mean and Standard Deviation

Figure 4.21: Simulations of apoptotic neutrophil density after sampling and the
average pathogen density of the simulations
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Figure 4.22: FAST global sensitivity analysis results: Mean and box plot of sensitivity
for Apoptotic Neutrophil Density over Time
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Figure 4.23: FAST global sensitivity analysis results: Sensitivity indices for apoptotic
neutrophil density over 15 days
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For neutrophils the mean trajectory has a slight peak around day 1 and steadily

goes down (Figure 4.24). The non-estrogen related parameters that results in higher

sensitivity indices were unr (decay of resting neutrophils), smr (source of monocytes),

kan (apoptosis rate of neutrophils), and snr (source of resting neutrophils). The

estrogen related parameter that had higher indices was estrogen concentration (Figure

4.25 and 4.26).

(a) Simulations (b) Mean and Standard Deviation

Figure 4.24: Simulations of Neutrophil Density after Sampling and the Average
Pathogen Density of the Simulations
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Figure 4.25: FAST global sensitivity analysis results: Mean and box plot of sensitivity
for neutrophil density over time
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Figure 4.26: FAST global sensitivity analysis results: Sensitivity indices for Neutrophil
Density over 15 Days
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For M1 macrophages the mean trajectory increases and the increase slows before

day 5 (Figure 4.27). The parameters that resulted in a higher sensitivity index were

um1 (decay rate of M1 macrophages), smr (source of monocytes), umr (decay rate of

monocytes), and um2 (decay rate of M2 macrophages) (Figure 4.28 and 4.32).

(a) Simulations (b) Mean and Standard Deviation

Figure 4.27: Simulations of M1 Macrophages Density after Sampling and the Average
Pathogen Density of the Simulations
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Figure 4.28: FAST global sensitivity analysis results: Mean and box plot of sensitivity
for M1 Macrophage Density over Time
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Figure 4.29: FAST global sensitivity analysis results: Sensitivity indices for M1
macrophage density over 15 days
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For M2 macrophages the mean trajectory increases and this rate of increase

decreases around day 1 (Figure 4.30). The parameters that had higher sensitivity

indices were um2 (decay rate of M2 macrophages), smr (source of monocytes),

km2m1 (transition of M2 macrophages to M1 macrophages), and umr (decay rate of

monocytes) (Figure 4.31 and Figure 4.32).

(a) Simulations (b) Mean and Standard Deviation

Figure 4.30: Simulations of M2 macrophage density after sampling and the average
pathogen density of the simulations
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Figure 4.31: FAST global sensitivity analysis results: Mean and box plot of sensitivity
for M2 Macrophage Density over Time
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Figure 4.32: FAST global sensitivity analysis results: Sensitivity indices for M2
macrophages over 15 Days
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4.2 Sensitivity Analysis with respect to the average

Next the sensitivity analysis was implemented for the output being the average

of the state variables. The parameters that had higher sensitivity indices were kpm

(the destruction of pathogen by macrophages), estrogen concentration, smr, kem

(estrogen increase in the phagocytic abilities of macrophages), kpg (growth rate of

pathogen), En∞ (estrogen’s effect of the inhibition of M1 macrophage production

causes by existing M1 macrophages), and p∞ (pathogen carrying capacity).(Figure

4.33). The indices remain around the same value as time increases (Figure 4.32).
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Figure 4.33: FAST global sensitivity analysis results: Mean and box plot of sensitivity
for average inflammation variable density over time
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Figure 4.34: FAST global sensitivity analysis results: Sensitivity indices for the
average inflammation variable density over 15 days
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4.3 Stochastic Differential Equation Model

In realistic biological systems, there are underlying mechanisms that can cause

erratic changes [45,71]. These state variables in the system do not live in isolation

but are changing along with underlying subsystems that can positively or negatively

influence these densities. Underlying uncontrolled or erratic changes can be accounted

for my incorporating white noise. The noise can be taken constant or proportional

to the state variable. If they are taken proportional, the term will be of the form

σSdWS(t), where σ depends on the range of variation of the state variable S, and

WS(t) is the random process.

Random process were implemented for each state variable equation in the

inflammation system. The terms are chosen to be proportional to the state vari-

able. The random processes are assumed to be Wiener processes. The result is

a stochastic differential equation system. The random processes are defined as

WP (t),WP (t),WPt(t),WAN(t),WN(t),WM1(t), and WM2(t), which are processes af-

fecting the densities of pathogens, debris, apoptotic neutrophil, neutrophil, M1

macrophages, and M2 macrophages, respectively. Note that for each meets the

following criteria. Let W (t) be a standard Wiener process, over [0, T ]. The Wiener

process satisfies the following conditions that was described in [26] and is stated as

follows:

Brownian Motion. A scalar standard Brownian motion, or standard Wiener

process, over [0, T ] is a random variable W (t) that depends continuously on t ∈ [0, T ]

and satisfies the following three conditions.

1. W(0) = 0 (with probability 1).
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2. For 0 ≤ s < t ≤ T the random variable given by the increment W (t)−W (s) is

normally distributed with mean zero and variance t − s; equivalently, W(t) −

W (s) ∼
√
t− sN(0, 1), where N(0, 1) denotes a normally distributed random

variable with zero mean and unit variance.

3. For 0 ≤ s<t<u<v ≤ T the increments W(t) − W(s) and W(v) − W(u) are

independent.

Let S stand for the respective state variable. For each equation, σSdWS(t) is

incorporated to account for random fluctuations in the rate effected by the current

density of S. σ is chosen to be a constant which characterizes the influence of the

random process. Adding each respective white noise term, gives the following system:

dP = kpgP (1−
P

P∞
)dt− kpbsbP

µb + kbpP
dt− kpnPN(1 + kenE)dt− kpmP (M1 +M2)(1 + kemE)dt

+σPdWP (t)

dPt = µanANdt− kptnPtN(1 + kenE)dt− kptm1PtM1(1 + kemE)dt− kptm2PtM2(1 + kemE)dt

−µptPtdt+ σPtdWPt(t)

dAN = kanNdt− kanm1ANM1(1 + kemE)dt− kanm2ANM2(1 + kemE)dt− kannN(1 + kenE)dt

−danANdt− µanAN + σANdWAN(t)

dN = RN
Snr

µnr +RN

1

(1 + E
Eninf

)2
dt− kanNdt+ σNdWN(t)dt, RN = knptPt + knpP + knanAN

dM1 = RM1
smr

µmr +RM1 +RM2
dt− km1m2ANM1dt+ km2m1M2dt− µm1M1dt+ σM1dM1WM1(t),

RM1 = kmptPt + km1pP + km1nN +
km1m1M1

1 + ( E
EM∞

)2
+ km1anAN

dM2 = RM2
smr

µmr +RM1 +RM2
dt+ km1m2ANM1dt− km2m1M2dt− µm2M2dt+ σM2dWM2(t),
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RM2 = km2m2M2 + kc.

Realizations were simulated for different values of σ using Milstein method.

First σ is set equal to 0.05. Figure 4.35 shows sample realizations compared to the

deterministic solution. Next, a higher number of simulations were analyzed (N=5000).

Then the mean and standard deviation of these simulations where calculated. Though

these realizations may result in fluctuations in the wound healing process, when

taking the mean, the results is comparable to the deterministic solution (Figure 4.36).

The next type of analyses was implemented to describe how does the output of each

state variable change for each simulation. The output was averaged over the 15 days

and this average was compared as the simulations increased (Figure 4.37). This was

repeated 6 times, with each time increasing the maximum number of iterations. For

σ = 0.1, the average of each state variable fluctuates between a certain range.
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Figure 4.35: Stochastic simulations for each state variable when σ = 0.05
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Figure 4.36: Mean and standard deviation of N=5000 simulations when σ = 0.05
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Figure 4.37: Mean of each state variable over time for different number of iterations
when σ = 0.05

Next σ is increased to 0.1. Figure 4.38 shows sample realizations compared

to the deterministic solution. Some realizations result in a slightly different solving
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time for pathogens and when M1 macrophages peak, there are larger fluctuations.

Figure 4.39 show the mean and standard deviation when N=5000 realizations were

simulated. The mean is still comparable to the deterministic solution. The deviation

away from the mean is increased when compared to the deviation when σ = 0.01.

Figure 4.40 shows a higher range of fluctuations of the mean when compared to the

range of fluctuations for σ = 0.01.
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Figure 4.38: Stochastic simulations for each state variable when σ = 0.1
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Figure 4.39: Mean and standard deviation of N=5000 simulations when σ = 0.1
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Figure 4.40: Mean of each state variable over time for different number of iterations
when σ = 0.1

Considering σ = 0.5, example simulations result in different solution times for

pathogens and peak values for M2 macrophages (Figure 4.41). Figure 4.39 shows
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the mean and standard deviation when N=5000 realizations were simulated. These

standard deviation from the mean are larger as expected due to σ being larger (Figure

4.43). Analyzing the changes over the number of simulations, the range in which the

mean fluctuates is increased (Figure 4.43).
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Figure 4.41: Stochastic simulations for each state variable when σ = 0.5
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Figure 4.42: Mean and standard deviation of N=5000 simulations when σ = 0.5
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Figure 4.43: Mean of each state variable over time for different number of iterations
when σ = 0.5
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CHAPTER 5

PROLIFERATION AND MATURATION MODEL CONSTRUCTION

5.1 Proliferative Phase

In the proliferative phase the focus is shifted from removing debris and pathogens

to rebuilding and improving the provisional matrix. An important immunoregulatory

cytokine, TGF-β, causes fibroblasts to migrate to the wound by chemotaxis [59,65].

TGF-β is produced by macrophages [34,78], neutrophils [22], fibroblasts [10,18,29],

myofibroblasts [5, 76]. The production of TGF-β is also enhanced by the process

of efferocytosis [7, 13,30,38,54,79,80]. These fibroblasts produce the major protein

component of the ECM which is collagen. Through the influence of TGF-β, fibroblasts

can differentiate into a more specialized cell known as a myofibroblast which also

produces collagen but also α-smooth muscle actin which causes the edges of the

wound to contract.

Proteases play another important part of the proliferative phase. More specifi-

cally, matrix metalloproteinases (MMPs) break down collagen. This contributes to

the turn over of collagen as the wound heals. There are different types of MMPs

such as MMP-1, MMP-3, and MMP-9. MMPs can be produced by macrophages,

neutrophils, fibroblasts, and myofibroblasts. TGF-β induces the expression of tissue

inhibitors of matrix metalloproteinases (TIMPS) which inhibit MMPs ability to break

down collagen.
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5.1.1 TGF-β Equation

Since TGF-β is a cytokine that contributes to the ant-inflammatory processes

we will incorporate the production of TGF-β by M2 macrophages with the term,

k2M2. The production from efferocytosis will be represented by the mass action term,

kβapAN(M1 +M2). The other terms kβNN , kβFFkβMyMy, and µβTβ will represent

the production of TGF − β from neutrophils, production via fibroblasts, and exit

rate of TGF-β, respectively. Incorporating these mechanisms we get the following

differential equation

dTβ
dt

= kβNN + kβapAN(M1 +M2) + kβM2M2 + kβFF + kβMyMy − µβTβ.

Since the inflammation model incorporated estrogen, estrogen mediation effects

will be also taken into consideration for the proliferative portion. According to Zhou

et al. [82], presence of estrogen is associated with an increase production of TGF-β.

Adding the effect of estrogen we get the updated equation:

dTβ
dt

= [kβNN + kβapAN(M1 +M2) + kβM2M2 + kβFF + kβMyMy](1 + kβeE)− µβTβ.

5.1.2 MMP Equation

MMPs are produced by M1 and M2 macrophages [17, 23, 32, 74], neutrophils

[24, 41, 49], fibroblasts [19, 28, 46, 67], and myofibroblasts [47, 68]. In addition to

TGF-β’s ability to influence migration of fibroblasts to produce collagen, Leivonen
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et al. [44] notes that TGF-β also plays a role in down regulating the expression of

MMPs. They can do this by inducing the expression of tissue inhibitors of MMPs

(TIMPs). Some other sources that disscus this include [20,42,44,63]. This inhibition is

incorporated into the MMP equation by including the inhibition term 1

1+(
Tβ

Tβinh
)2
. The

production via M1, M2, N, F, and My is represented by kMMPM1M1, kMMPM2M2,

kMMPNN , kMMPFF , and kMMPMyMy, respectively. Finally the exit term for MMPs

are represented by µMMPMMP . These give the following equation:

dMMP

dt
=
kMMPM1M1 + kMMPM2M2 + kMMPNN + kMMPFF + kMMPMyMy

1 + (
Tβ

Tβinh
)2

−µMMPMMP .

5.1.3 Fibroblast and Myofibroblast Equations

For the fibroblast equation the migration to the wound via chemotaxis from

TGF-β is represented by the term cFβTβ, and then after these cells migrate, they

can proliferate [59,65]; this is represented by the term pFF . This proliferation may

be enhanced by the presence of TGF-β. This is represented by the term kFβTβF .

Fibroblasts can then differentiate into myofibroblasts (dFF ) and this is a process that

can also be enhanced by the presence of TGF-β [64,72] (kMyFβFTβ). Fibroblasts that

do not differentiate either leave the wound or commit apoptosis. The exit term is

represented by µFF . Taking these mechanisms into account, the differential equation

for fibroblasts is constructed as the following:

dF

dt
= cFβTβ + pFF + kFβTβF − dFF − kMyFβFTβ − µFF.
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For myofibroblasts, we have the differentiation of fibroblasts (dfF + kMyFβFTβ) and

the exit term µmyMy giving the following equation:

dMy

dt
= dFF + kMyFβFTβ − µmyMy.

5.1.4 Collagen Equations

Fibroblasts and myofibroblasts secrete different types of collagen including

collagen type I and type III [2]. Type III collagen is a weaker form of collagen

than type I. At the beginning stages of extracellular matrix reformation, type III

collagen is produced, but is later replaced by stronger type I collagen [11]. The

presence of TGF-β enhances the process of collagen secretion, so the secretion of

type I collagen with and without the enhancement of TGF-β is represented by

kcwf(F +My)(1 + kctbTβ) + kcmyMy. Collagen is defined as a percentage where 0

indicating no collagen in the wound and 1 indicating collagen has filled the wound.

Similarly to the assumption implemented in Segal et al. [66], the state of existing

collagen will affect the rate at which collagen is formed and broken down. To

account for this, a collagen deposition multiplier was implemented and defined as

I(CI + CIII) = 1
1+ea(CI+CIII−b)

(Figure 5.1). For a = 20 and b = 0.7, when the

percentage of collagen in the wound is closer to zero, the multiplier is closer to 1,

hence having negligible inhibition on the deposition. As the collagen content gets

closer to 100 percent, the inhibition takes more effect. A similar inhibition is also

implemented for degradation by MMPs. Here the term 1 − 1
1+ea(CIII+CI−b)

is used

which when When a = 20 and b = 0.7 and CIII + CI −→ 1, the inhibition gets closer

to 0, allowing more MMPs to degrade collagen. However, when CIII + CI −→ 0, the

inhibition takes more into affect, inhibiting the breakdown by MMPs. After collagen
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type III collagen comes into contact with MMPs and is broken down, it is assumed

that type III collagen will be deposited in its place by fibroblasts and myofibroblasts.

Finally, the negative effect on the ECM from by-products of neutrophils are

taken into account for collagen type III by the term dcnCIIIN . Taking into account

these mechanisms, the following is the resulting equations for collagen type I and

collagen type III:

dCIII
dt

=
kcwf (F +My)(1 + kctbTβ) + kcmyMy

1 + ea(CIII+CI−b)
−dcnCIIIN−dcMmpMMPCIII(1−

1

1 + ea(CIII+CI−b)
)

dCI
dt

= kcsf
MMPCIII(F +My)

1 + ea(CIII+CI−b)

where CIII + CI ≤ 1.
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Figure 5.1: Collagen Deposition Effect = 1
1+ea(Collagen−b)

. Depostion Effect when a =
20 and b = 0.7
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Figure 5.2: Proliferation and maturation model schematic. Dynamics of inflammatory
system and parameters involved in each corresponding transition where arrows, −→,
indicate upregulation, and bars, ­, indicate inhibition. Phenomena involved with
upregulation include release of substance that promotes differentiation of a predecessor
cell, proliferation of the state variable, release of substance that adds to the state
variable, or the differentiation of the state variable into the following state variable.
The phenomena involved with inhibition is TGF-β’s association with an induced
presence of TIMPs which are known to inhibit MMPs [34, 42], and the byproducts of
neutrophils that cause tissue damage [75].
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CHAPTER 6

PROLIFERATION AND MATURATION MODEL ANALYSES AND RESULTS

6.1 Final Equations

A schematic of the relationship between the final stages of the inflammation

stage and the state variables of the proliferation and remodeling phase is provided

in Figure 5.2. The final system for the proliferation and remodeling stage is the

following:

dTβ
dt

= kβNN + kβapAN(M1 +M2) + kβM2M2 + kβFF + kβMyMy − µβTβ
dMMP

dt
=

kMMPM1M1 + kMMPM2M2 + kMMPNN + kMMPFF + kMMPMyMy

1 + (
Tβ

Tβinh
)2

− µMMPMMP

dF

dt
= cFβTβ + pFF + kFβTβF − dFF − kMyFβFTβ − µFF

dMy

dt
= dFF + kMyFβFTβ − µmyMy

dCIII
dt

=
kcwf (F +My)(1 + kctbTβ) + kcmyMy

1 + ea(CIII+CI−b)
− dcnCIIIN − dcMmpMMPCIII(1−

1

1 + ea(CIII+CI−b)
)

dCI
dt

= kcsf
MMPCIII(F +My)

1 + ea(CIII+CI−b)
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6.2 Proliferation and Remodeling stage parameters

In order to estimate parameter values, the following assumption were used in

addition to the data from an immunohistochemistry experiment in Kajikawa et al. [35]

was used (Figure 6.1). The following are the assumption used:

1. Fibroblasts peak between day 7 and day 14 [4, 66]

2. Myofibroblasts peak after fibroblasts peak

3. Collagen finishes being deposited by day 56 [66]

4. MMPs peak around day 5 [34]

In order to use the data, the data for collagen type I and collagen type III was

scaled. In a normal state a pre-wounded area has a certain amount of different type

of collagen. Collagen type I encompasses a larger amount. For some type of tissue

this is around 80 percent, and collagen type III encompasses 20 percent or less [12,57].

Using the assumption that collagen finishes being deposited by day 56, the signal on

the last day of the data in Kajikawa et al. [35] is scaled so that these values are 0.8

and 0.2 for collagen I and collagen III, respectively. The the rest of the values are

scaled using the same factor giving the proportion value in the wound (Table 6.1).

Using the assumptions and the new data a parameter set is found and is provided in

Table 6.2. The corresponding simulations are in Figure 6.2.
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Figure 6.1: Immunoreactivity signal of type I and type III collagen over time in [35]

Table 6.1: Type I and type III collagen data from [35] and data after scaling

Immunoreactivity Signal Wound Percent
Collagen I Collagen III Collagen I Collagen III

Day 3 7.183 ±4.442 33.333 ±11.111 0.156 ±0.096 0.0689 ±0.0230
Day 7 9.688 ±4.687 36.508 ±9.524 0.210 ±0.1017 0.0754 ±0.0198
Day 14 8.438 ±3.437 149.206 ±112.899 −→ 0.1831 ±0.0746 0.308 ±0.233
Day 28 35 ±17.813 93.651 ±86.349 0.759 ±0.386 0.193 ±0.178
Day 56 36.875 ±10.625 93.825 ±33.175 0.8 ±0.231 0.2 ±0.0685

Table 6.2: Parameter descriptions and results after optimization
TGF-β Equation

Parameter Description
Estimation based on
general dynamics and

data
Unit

kβn Production of TGF-β by neutrophils 0.679
Tβ

N−units
day

kβm2 Production of TGF-β by M2
macrophages

1.713
Tβ

M−units
day

kβan Production of TGF-β which is affected
by phagocyation of apoptotic neutrophils

3.314
Tβ

M−units∗AN−uits
day

kβf Production of TGF-β by fibroblasts 0.124
Tβ

F−units
day

kβMy Production of TGF-β by myofibroblasts 0.153
Tβ

My−units
day

kβe Increase in TGF-β caused by estrogen 6.067 1
E−units

µβ Exit rate of TGF-β 1.144
1
day
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MMP Equation

Parameter Description
Estimation based on
general dynamics and

data
Unit

kMmpM1 Production of MMPs by M1
macrophages

0.001
MMP

M−units
day

kMmpM2 Production of MMPs by M2
macrophages

9.505
MMP

M−units
day

kMmpN Production of MMPs by neutrophils 0.001
MMP
N−units
day

kMmpF Production of MMPs by fibroblasts 0.212
MMP
F−units
day

kMmpMy Production of MMPs by Myofibroblasts 0.007
MMP

My−units
day

TβT imp Inhibition of MMPs by increase of
TIMPs caused by TGF-β

19.999 Tβ − units

µMmp Exit rate of MMPs 0.398 1
day

Fibroblast and Myofibroblast Equations

Parameter Description
Estimation based on
general dynamics and

data
Unit

cfb Chemeotaxis of fibroblasts stimulated by
TGF-β

0.256
F−units
Tβ−units

day

pf Proliferation rate of fibroblasts 0.704 1
day

kfb Proliferation of fibroblasts stimulated by
TGF-β

0.0001
1
Tβ

day

df Differentiation rate of fibroblasts 0.001 1
day

kmyFβ Differentiation of fibroblasts influenced
by TGF-β

1.012 1
day

µf Exit rate of fibroblasts 0.0001
1

Tβ−units

day

µmy Exit rate of myofibroblasts 0.943 1
day
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Collagen Equations

Parameter Description
Estimation based on
general dynamics and

data
Unit

kcwf Production rate of type III collagen by
fibroblasts and myofibroblasts

4.777
CIII−units
F−units
day

kctb Influence of production rate of type III
collagen by TGF-β

0.001 1
Tβ−units

kcmy Increased production rate of type III
collagen by myofibroblasts not influenced
by TGF-β where kcwf + kcmy is the total
production rate

0.018
CIII−units
My−units
day

dcn Destruction of type III collagen by
byproducts of neutrophils

0.001
1

N−units
day

dcmmp Destruction of type III collagen by
MMPs

22.359
1

M−units
day

kcsf Replacement of type III collagen by type
I collagen by fibroblasts and myofibrob-
lasts after degradation from MMPs

0.414
1

AN−units
day

a Parameter that controls production and
destruction of collagen type I and type
III

0.001

b Parameter that controls production and
destruction of collagen type I and type
III

0.7
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Figure 6.2: Transients resulting from assumptions based on literature with P0 = 1
and Pt0 = 2
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6.3 Global sensitivity analysis for proliferation and remodeling stage

Global senstivity analysis for for the whole model was conducted with respect

to total collagen, that is, CI + CIII . In order to help reduce the sampling space, the

parameters associated with the smallest sensitivity indices for total inflammation

variable average where left out (see Figure 4.33). For the parameters associated with

higher indices, the same range that was used is used for the inflammation sensitivity

analysis was used again here. For the proliferation and remodeling parameters, a set

range around the parameter set in Table 6.2 was used.

For total collagen the standard deviation away from the mean increases at a high

rate (Figure 6.3). Parameters that resulted in a higher sensitivity index were kmmpn

(production of MMPs by neutrophils), kpg (growth rate of pathogens), ummp (decay

rate of MMPs), dcn (destruction of type III collagen by byproducts of neutrophils) ,

sb (source of background immune response), kem (estrogen increase in the phagocytic

abilities of macrophages), and kmmpm2 (production of MMPs by M2 macrophages)

(Figure 6.4 and 6.5).

(a) Simulations (b) Mean and Standard Deviation

Figure 6.3: Simulations of Total Collagen Density after Sampling and the Average
Pathogen Density of the Simulations
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Figure 6.4: FAST global sensitivity analysis results: Mean and box plot of sensitivity
for total collagen density over time
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Figure 6.5: FAST global sensitivity analysis results: Sensitivity for total collagen over
15 days
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6.3.1 Stochastic Differential Equation System

Next a random process was implemented for each state variable equation as

before, giving a stochastic differential equation system. Let the random processes

WTβ(t),Wmmp(t),WF (t),WMy(t),WC3(t), and WC1(t) be independent standard Brow-

nian motions affecting the densities of Tβ,MMP , F,My, CIII , and CI , respectively.

Similarly to the inflammation system, the white noise terms proportional to the

state variable are implemented for each equation. The stochastic differential equation

system for the proliferation and remodeling variables is as follows:

dTβ = [ kβNN + kβapAN(M1 +M2) + kβM2M2 + kβFF + kβMyMy − µβTβ ] dt+ σTβdWTβ(t)

dMMP = [
kMMPM1M1 + kMMPM2M2 + kMMPNN + kMMPFF + kMMPMyMy

1 + (
Tβ

Tβinh
)2

−µMMPMMP ] dt+ σMMPdWmmp(t)

dF = [ cFβTβ + pFF + kFβTβF − dFF − kMyFβFTβ − µFF ] dt+ σFdFWF (t)

dMy = [ dFF + kMyFβFTβ − µmyMy ] dt+ σMydWMy(t)

dCIII = [
kcwf (F +My)(1 + kctbTβ) + kcmyMy

1 + ea(CIII+CI−b)
− dcnCIIIN

−dcMmpMMPCIII(1−
1

1 + ea(CIII+CI−b)
) ] dt+ σCIIIdWC3(t)

dCI = [ kcsf
MMPCIII(F +My)

1 + ea(CIII+CI−b)
] dt+ σCIdWC1(t)

Realizations were simulated for σ = 0.1 using Milstein method. Some realizations

were simulated showing fluctuations in the peak of M1 macrophages and resulting

low and high values for collagen type I (Figure 6.6 and Figure 6.7). The mean of 50,
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1000, and 5000 simulations of each variable was analyzed (Figure 6.8 - 6.13) . These

means are identical to the deterministic solution (Figure 6.12 and Figure 6.13). Then

the result of taking the mean over 60 days for each iteration is analyzed, the mean

for each variable is bounded between a certain range indicted in (Figure 6.14 and

Figure 6.15).
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Figure 6.6: Stochastic Simulations for each State Variable of the Inflammation Stage
when σ = 0.1
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Figure 6.7: Stochastic simulations for each state variable of the proliferation and
remodeling stage when σ = 0.1

98



Figure 6.8: Mean and standard deviation of N=50 simulations of the inflammation
variables when σ = 0.1
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Figure 6.9: Mean and standard deviation of N=50 simulations of the proliferation
and remodeling variables when σ = 0.1
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Figure 6.10: Mean and standard deviation of N=1000 simulations of the inflammation
variables when σ = 0.1

101



Figure 6.11: Mean and standard deviation of N=1000 simulations of the proliferation
and remodeling variables when σ = 0.1
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Figure 6.12: Mean and standard deviation of N=5000 simulations of the inflammation
variables when σ = 0.1

103



Figure 6.13: Mean and standard deviation of N=5000 simulations of the proliferation
and remodeling variables when σ = 0.1
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Figure 6.14: Mean of each state variable over time for different number of iterations
when σ = 0.1
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Figure 6.15: Mean of each state variable over time for different number of iterations
when σ = 0.1
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CHAPTER 7

DISCUSSION

7.1 Model Construction and Parameter Estimates

There were some elements that were in Cooper et al. [9] and Torres et al. [70] that

were not incorporated into this model. For example, the assumption that neutrophils

inhibit phagocytation by the increase of oxygen in the environment. Some factors

may be noted regarding this assumption. Neutrophils release reactive oxygen species,

but also require oxygen intake from the environment [16]. In addition, after a wound

occurs, due to the obstruction of blood vessels, the means to distribute oxygen to the

tissue is not reconstituted until the process of angiogenesis is finished [27].

There is literature to suggest that neutrophils contribute to the inhibition of

healing. Dovi et al. [15] found that the presence of neutrophils in mice on days 2

and 3 had an effect on re-epitheliatiozation. The effect of neutrophil presence on

collagen content was tested for day 3 and day 5. The effect on collagen content were

not found to be statistically significant. For this model where neutrophil by-products

inhibiting collagen deposition was considered, the effect was smaller than the other

factors taken into account, that is dcn = 0.001, which supports that the inhibition

effects from neutrophils on collagen may not be a mechanism that causes as high of

collagen degradation as other factors (e.g., degradation by MMPs) though according

to the FAST indices found, relative to other parameters, a change in this parameter

can result in a significant change in the resulting total collagen density.
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Another outcome in proliferation model was that kMmpM1 = 0.001 < kMmpM2 =

9.505 which suggests that M1 macrophages do not secrete as many MMPs as M2

macrophages. This outcome corroborates research by Jager et al. [31]. In this

study the expression of MMPs from different macrophages subtypes. In this in

vitro experiment they found that M2 macrophages had higher expression of MMP-1,

MMP-9, MMP-12 than the expressions found in M1 macrophages.

7.2 Sensitivity Analysis

Parameters corresponding to the largest sensitivity indices are the ones that

need to be measured with more care. These parameters are indicated to have more

influence on the output. Accordingly, it would be expected that treatments that

target these parameters would be the most effective.

Due to the high parameter space, the cumulative computation time was con-

siderable. Under other sensitivity analysis methods such as VBSA we would expect

the same group of parameters being associated with high sensitivity indices, but the

order of parameters with regard to which results in the higher sensitivity index might

change.

Overall, according to the FAST method, for the first 15 days the source of

monocytes were determined to be one of the parameters associated with high sensitivity

indices for all six state variables in the inflammation model. This is corroborated

when doing the sensitivity analysis again with respect to the average density of all

six state variables (Figure 4.33).

To summarize, according to the FAST GSA method the parameters associated

with higher sensitivity in regards to pathogens for the first 15 days of wound healing are:
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1. growth rate of monocytes, 2. phagocytation rate of pathogens by macrophages,

3. growth rate of pathogens, 4. the source of background local response, and 5.

destruction of pathogens by neutrophils. Taken under consideration of estrogen

parameters, some of parameters that were indicated to result in relatively high

sensitive output are 1. the estrogen increase in the phagocytic ability of macrophages

and 2. estrogen concentration.

The parameters associated with higher sensitivity in regards to debris for the first

15 days of wound healing are: 1. source of monocytes, 2. apoptotic rate of neutrophils,

3. exit rate of neutrophils that resulted in addition to debris, 4. destruction of debris

by neutrophils, and 5. intrinsic decay of apoptotic neutrophils not adding to debris.

Taken under consideration of estrogen parameters, some of parameters that were

indicated to result in relatively high sensitive output are 1. estrogen concentration, 2.

estrogen increase in the phagocytic abilities of neutrophils, and 3. estrogen increase

in the phagocytic ability of macrophages.

For apoptotic neutrophils we have 1. source of monocytes, 2. source of resting

neutrophils, 3. apoptotic rate of neutrophils, 4. intrinsic decay of apoptotic neu-

trophils, and 5. destruction of apoptotic neutrophils by neutrophils. With regards to

estrogen we have 1. estrogen concentration and 2. estrogen increase in the phagocytic

ability of macrophages.

For neutrophils we have 1. exit rate of monocytes, 2. source of monocytes,

3. apoptotic rate of neutrophils, 4. intrinsic decay of apoptotic neutrophils, and 5.

growth rate of resting neutrophils. With regards to estrogen we have 1. estrogen

concentration and 2. estrogen increase in the phagocytic ability of neutrophils.
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For M1 macrophages we have 1. exit rate of M1 macrophages, 2. source

of monocytes, 3. exit rate of monocytes, 4. exit rate of M2 macrophages, and 5.

transition rate between M1 macrophages to M2 macrophages With regards to estrogen

we have 1. estrogen concentration and 2. estrogen’s effect of he inhibition off M1

macrophages production by other M1 macrophages

For M2 macrophages we have 1. exit rate of M2 macrophages, 2. source of

monocytes, 3.transition from M2 Macrophages to M1 macrophages, 4. exit rate of

monocytes, and 5. exit rate of M1 macrophages. In regard to estrogen we have 1.

estrogen concentration and 2. estrogen’s effect of he inhibition off M1 macrophages

production by other M1 macrophages.

For total collagen we have 1. kmmpn (production of MMPs by neutrophils) 2.

kpg (growth rate of pathogens) 3. ummp (decay rate of MMPs) 4. dcn (destruction

of type III collagen by byproducts of neutrophils), and 5. sb (source of background

immune response). In regard to estrogen, we have kem (estrogen increase in the

phagocytic abilities of macrophages).

In comparison to the local sensitivity analysis conducted in Torres et al [70]

we see that source of monocytes were determined to be associated with a higher

sensitivity indice when considering the change in the peak (i.e., amplitude and peak

time) of M1 macrophages and when considering the M2 macrophage peak time (see

smr in Figure 7.1). Overall, for the Torres model, snr was the parameter associated

with the highest sensitivity calculations for all three criteria for M1 macrophages.

In contrast, the FAST index for snr was not that high (Figure 4.28), though this

parameter was determined to be one of the relatively more sensitive parameters in

regard to neutrophil output, apoptotic neutrophil output, and the average output.
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Figure 7.1: Local sensitivity analysis conducted in Torres et al [70]
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7.3 Future Work

Karavitis and Kovacs [36] discuss effects of environmental pollutants, ethanol

consumption, and cigarette smoking on macrophages phagocytosis and efferocytosis.

Futher expansion of this model could include incorporating ethanol or pollutants such

as ozone. Such applications may be of interest in investigating etiologies of health

factors for certain occupations or certain groups of people.

Phagocytic ability of macrophages can be altered by factors including exposure

to environmental pollutants, cigarette smoke, consumption of alcohol, cigarettes [36],

and current medical conditions such as HIV [1]. Hence, depending on the mechanistic

pathway that results in decrease phagocytic ability, certain rates of phagocytic ability

would be decreased, and the dynamic change in this state would be important to

elucidate.

Models can capture multifaceted elements that control outcomes, but these

models are a tool that apply results based on current knowledge. As the experimental

literature on these topics expand, the more accurate these scientific models will be as

the assumptions are updated. Moreover, the use of the model is dependent on the

specifications the model was built upon.

Model analysis is important in analyzing the behavior under a set of specified

assumptions and circumstances. Sensitivity analysis is useful for identifying which

factors are important. These findings can be used to help factor in consideration

for experimental design. For example, the analyses of this model supports that the

influx of monocytes when compared to other factors have a high sensitivity to the

different dynamics of inflammation stage. Experimental investigations of changes in

the expected inflammation output may consider monocyte recruitment. Models are
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supplemental in providing a means to elucidate outcomes and effects and can help

build integrity in the experimental literature where unavoidable limitations such as

those in in vivo vs in vitro, animal vs human research, and also the consideration

that immune response from a wound in a controlled environment may not be the

same as in a specimen that is exposed to different environments.
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