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ABSTRACT

Towards high performance cancer staging from histology images

Ashwin Raju, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Junzhou Huang

Digital Pathology (DP) has been recently used in replacement to traditional

microscopy samples as it easy to navigate and can be analysed, processed and saved.

With the invention of Digital pathology, there has been exponential increase of au-

tomated process to make the life of Doctors easier. One such automated process is

Artificial Intelligence (AI) where the AI is used as an assistant to Humans and to

make the analysis and guide the experts. With the advent of AI and in particular

Deep Learning, research has been divided and focused to solve multiple problems

in Digital Pathology. One such important application is to analyse the Whole Slide

images (WSIs) of patients and predict Cancer stages for the patient. This is cru-

cial because the WSIs becomes too many which requires Expert knowledge and time

consuming job. This make a perfect application where Deep learning can be used.

In this dissertation, we address the problem of identifying WSIs of patients

and predict the cancer stages. We further identify several important observations to

improve the performance of WSIs. We extract the granular details of the WSIs and

capture the spatial relationship of granular features. We use these Graph of granualr

features to further classify the cancer stages of patients.
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We conduct several experiments to prove our work experimentally and make

conclusion that the proposed work can be used to predict cancer stages.
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CHAPTER 1

Introduction

1.1 A Gentle Introduction to Digital pathology and Whole Slide Image

Digital pathology (DP) has been a recent invention in medical domain to process

the human tissues in a software. The need for a digitized pathology is make to

process, analyse and store the observations of the tissues observed by the Human

experts. Since the digital pathology has been software based analysis structure, there

has been many ways to automate the software. The need for automation is to guide

the expert to make their work easier. Along with the Software to handle digital

pathology, research has been started in parallel to automate the digital pathology.

Some of the automation work involves segmentation of nuclei cells, segmentation of

tissues, analysis of cancer stages, analysis of survival rate of the patients.

The tissue that is stored in digital pathology is Whole Slide Images. Whole slide

images are the way to process the tissue with different magnification. The different

magnification levels are 5x, 10x, 20x and 40x. The need for different magnification

levels is to allow the experts to zoom into more granular information which is necessary

for solving downstream task.

1.2 Challenges and Motivation

In this section we will look into different challenges and need for automated

software for handling Whole slide images.

Firstly, the magnifications are huge which makes it difficult to incorporate the

whole slide image into to machine learning model. Research has been conducted to

1



overcome the issue of handling large magnifications into the machine learning model.

One such research area is to divide the whole slide image into different patches and

perform automated analysis on the divided patches. Later rearrange the patches into

Whole slide image to perform downstream task. There are still challenged in doing

these ways. One such challenge is that when the whole slide image are divided into

patches, the patches lose spatial relationship across the patches. This makes the

research difficult to improve the performance of the task.

With this issue, we motivate the task to incorporate spatial relationship across

patches and use granular information to improve the task of cancer staging.

Figure 1.1: Research Overview

1.3 Dissertation Structure

The rest of this dissertation is outlined as follows. Chapter 2 makes an in depth

understanding of Graph Attention Multiple instance learning. The need for Multiple

Instance learning to improve the performance of cancer staging.

Chapter 3 discusses and evaluates a task by using shape as a constraint to have

an interactive segmentation to segment nuclei cells in Whole Slide Images. Chapter 4

discusses and evaluates the task of using sub type cell features and to perform cancer

2



staging based on the subtype cell features. Finally, Chapter 5 concludes this disser-

tation with future research directions and highlights the takeaways of this research.
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CHAPTER 2

Graph Attention Multi-instance Learning for Accurate Colorectal Cancer

Staging

2.1 Introduction

Colorectal Cancer (CRC) is one of the most common cancer diagnosed in hu-

mans. Outcomes vary significantly among patients with different tumor status. Ac-

curate staging of colorectal cancer for personalized treatment is thus highly desired.

Whole slide pathological images (WSIs) serves as the gold standard for Tumour Node

Metastasis (TNM) staging. However, TNM staging for colorectal cancer relies on

labor-intensive manual discriminative patch labeling, which is not suitable and scal-

able for large-scale WSIs TNM staging. Though various methods have been proposed

to select key image patches to perform staging, they are unable to consider the struc-

ture of tissue types in biopsy samples which is a key evidence for determining tumor

status. In this paper, we propose a Graph Attention Multi-instance Learning (Graph

Attention MIL) with texture features, which encodes a spatial structure between

patches and jointly predicts the TNM staging. We evaluated our proposed method

on a large cohort of colorectal cancer dataset. The proposed framework improves the

performance over the existing state-of-the-art methods indicating the future research

towards graph based learning for TNM staging.

In this paper, we address the problem by considering the spatial relationship

of tumor with other tissue partitions by introducing a novel Graph Attention Multi-

instance learning network where multiple graphs, with each graph having nodes rep-

resenting different tissues acts as an instance. The multiple instances for a whole slide

4
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Figure 2.1: Overview of our pipeline. Given a WSI, we randomly sample 𝑘
patches and extract texture features for each patch. The texture features are grouped
into multiple graphs and each graph has features from all clusters. Here the cloud
represents a graph. The Graph Attention Multi-instance learning is used to predict
the tumor stage. (Best viewed in color).

pathological image (WSI) form a bag which aids to predict the tumor stage. We rep-

resent the node in the graph as the texture feature of an image patch. Different from

the previous state-of-the-art methods, our proposed framework considers the spatial

relationship between different texture features. To summarize our motivations, we

introduce a texture feature extraction method to encode texture for an image patch

and cluster similar texture features together. We then introduce a novel Graph At-

tention Multi-instance learning network to predict the tumor stage by considering

a bag of multiple graphs with spatial relationship between tissues invoked in each

graph. Extensive experiments verify the effectiveness of our proposed framework on

a large cohort of CRC.

2.2 Methodology

We denote the WSI dataset 𝒟ℓ = {𝑋𝑖, 𝑌𝑖}, with 𝑋𝑖 denoting the WSI and

𝑌𝑖 ∈ {0, 1, 2, 3} indicating different tumor stages. Given the rich information of a

WSI, generally in range (106× 106), we first extract random 𝑀 tissue patches at 20X

(0.5 microns per pixel) objective magnification with image size fixed to 224×224×3.

We then create a set of bags 𝐵 = {𝐵1, 𝐵2, ..., 𝐵𝑛}, where 𝐵𝑛 contains randomly

5



sampled 𝑀 tissue patches for 𝑋𝑛. The training objective is to correctly classify the

tumor stage with the given 𝐵𝑛 from 𝑋𝑛. The overview of our proposed two step

pipeline is outlined in Fig ??. The first step is a texture extractor, which projects

input raw image patches into a low-dimensional space. Motivated from [3, 4], we

propose a texture based clustering auto encoder to cluster similar features into same

cluster. Different from [5], where a pre-trained VGG model from ImageNet is used

to extract the features, we propose a texture auto encoder to extract the textures

from each patch as proposed by [4] and force the textures to be invariant to different

augmentation of the same patch. The reason for using texture based encoding is

because texture features encode domain specific information from the image patch.

In step 2, the extracted texture features for 𝐵𝑖 is used for our Graph Attention Multi-

instance learning network to classify image level label for a WSI 𝑋𝑖. We explain each

step in more details in the further sections.

Texture feature extraction. The goal here is to learn a feature representation

for a given image patch. We focus on texture based feature representation which

encodes orderless visual patterns of an image. Furthermore, we want the texture

features for similar image patches to be close to each other and for dissimilar image

patches far away from each other. To achieve this we use two main components,

1) Texture encoding network. 2) Cluster embedding network. Texture encoding

network [4], uses a novel learnable residual encoding layer, which learns an inherent

dictionary and domain specific information for a given image patch. The cluster

embedding network, clusters similar textures by using a Siamese network to train

a binary classification task, where similar textures are assigned the same class and

dissimilar patches are assigned a different class. The Siamese network shown in

Fig. 2.2 under Step I depicts how texture features are clustered and when trained

till convergence the texture features are clustered like the Embedding space shown in

6
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Figure 2.2: Step I of our architecture performs clustering of texture features. The
siamese network in step I brings the patch 𝑃𝑖 and data augmented patch 𝒯 (𝑃𝑖) to
be same and the patch 𝑃𝑖 and patch 𝑃𝑗 to be different in the embedding space.
Step II of our architecture contains many small graphs, where each graph contains
random subset of patches from all 𝐶 clusters. The feature pooled from each graph are
represented as instance from the graph to perform attention multi-instance learning
to predict the tumor Stage.

Fig. 2.2 under step I. We denote the image 𝑃𝑖 ∈ R𝐻×𝑊×3 as a randomly sampled

patch from the WSI and use ResNet50 [6] as an encoder to extract feature map

𝐸𝑖 ∈ R𝐻
𝑅
×𝑊

𝑅
×𝐶 , where 𝑅 indicates the downsampling factor and 𝐶 is the number

of features. We remap the feature map 𝐸𝑖 back to the image resolution using the

decoder proposed by [7]. We follow the deep texture encoder network [4] to encode

the visual descriptors 𝐸𝑖 = {𝑒1, .., 𝑒𝑁}, where 𝑁 is the number of spatial locations in

the feature map, to a fixed length representation 𝐹 = {𝑓1, .., 𝑓𝐾}, where 𝐾 indicates

the number of texture features.

The textures of same image under different data augmentation should be close

to each other and should be spread-out for different images. Inspired from [3], we

apply data augmentation 𝒯 (.) to slightly modify the image patch. For an instance

𝑖, where the original image 𝑃𝑖 and data augmented image 𝒯 (𝑃𝑖), denoted by 𝑃𝑖 with

their corresponding ℒ2 normalized texture features 𝑓𝑖 and 𝑓𝑖 should be classified into

7



Figure 2.3: Clustering overview. Each pixel in the colormap represents a texture
feature and representing different tissue types provided by [1].

instance 𝑖, and for other instances, 𝑗 ̸= 𝑖 shouldn’t be classified into instance 𝑖. We

train a Siamese network as proposed by [3] to achieve this objective.

Following the texture feature extraction, we assign cluster labels for each texture

feature. Assigning the labels to each texture feature for a WSI aids to stratify the

random patches so that each graph in our Graph Attention Multi-instance learning

network can have different distribution of tissue types. In order to assign a label for

similar image patches, we take use of tissue wise annotated CRC dataset [1] which

we call as reference dataset and randomly sample 100 patches from each tissue from

their training dataset. The reference dataset is used only to assign a label for image

patches. For a given 𝑙2 normalized texture feature 𝑓𝑖 and 𝐹 ∈ R𝑀×𝐷, where 𝑀 denotes

all the 𝑙2 normalized texture features from reference dataset [1] and 𝐷 indicates the

dimension of feature, we assign the cluster label by applying weighted 𝑘NN proposed

by [8] with 𝑘 set to 1. Fig. 2.3 shows the result of our texture features that has been

assigned to different cluster labels. Our clustering approach based on texture features

is dataset invariant and can be visually seen in Fig. 2.3.
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To optimize step I, we use mean squared error to minimize the distance between

predicted pixel and ground truth pixel. To optimize texture feature embedding in step

I, we use the loss function mentioned by [3]. The overall loss function is defined as:

𝐿𝑠𝑡𝑒𝑝1 = 𝐿𝑚𝑠𝑒 + 𝜆1𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 (2.1)

where 𝐿𝑚𝑠𝑒 is applied for each image in the batch, 𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 as defined by [3] is applied

for texture features in the batch.

Graph Attention Multi-Instance Learning. Once the patches have been

clustered into different tissue types as shown in Fig. 2.3, the next step is to use the

texture features 𝐹 from the patches randomly sampled from the WSI to predict the

tumor stage. The goal is to learn the relationship between the features from each WSI

jointly to predict the tumor stage. Graph Convolutional Network (GCN) provides

a good direction to consider information exchange between nodes and the spatial

structure of medical imaging data [9, 10, 11]. In our work, we incorporate spatial

information of different tissue features in the form of graph learning. We decompose

each WSI into multiple graphs and each graph has features from all the cluster labels

with approximately equal number of patches from each cluster. The multiple graphs

are treated as multiple instances in a bag and the bag for each WSI is used to predict

the tumor stage using attention multi-instance learning (MIL) as depicted in Fig. 2.2

(step II). We use Adaptive GraphSage proposed by [10] to create a graph of nodes

where nodes present texture features extracted from the image patches. The reason

for using Adaptive GraphSage over other graph networks is because the ability to

learn the embedding feature between nodes more effectively as mentioned in [10].

9



To construct the adjacency matrix for our graph we follow [10]. Formally, the

adjacency matrix can be written as:

𝐴𝑖𝑗 =

⎧⎪⎨⎪⎩ 1 if 𝑗 ∈ 𝐾𝑁𝑁(𝑖) and 𝐷(𝑖, 𝑗) < 𝑑

0 O𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2.2)

where 𝐷(.) is the euclidean distance, 𝑑 is the manually selected threshold, 𝐾𝑁𝑁 is

the 𝐾 nearest neighbour to the patch 𝑖. Based on the empirical analysis, here we

set the threshold for 𝑑 as 0.4. We follow the architecture proposed by [10], where

the nodes are represented as texture features and the adjacency matrix defined from

Eq(2.2) to create multiple graphs with shared weights. We use 𝑘 graphs, where 𝑘 is

set 7 based on the experiments and each graph contains randomly sampled features

from 𝐶 clusters from a WSI. Here we set 𝐶 as 9 based on the reference dataset [1].

To extract texture feature from a graph 𝒢𝑖, we use the concatenation of max

operation and mean operation on the node embeddings [12]. The feature pooling

(𝐹𝑃 ) operation can be defined as:

𝐹𝑃 =
1

𝑁

𝑁∑︁
𝑖=1

𝑥𝑖‖
𝑁

max
𝑖=1

𝑥𝑖 (2.3)

where 𝑁 is the number of nodes and 𝑥𝑖 is the output embedding feature for each node

in the graph network. From multiple graphs, we extract features {𝐹𝑃1, 𝐹𝑃2, ..., 𝐹𝑃𝑘},

where 𝐹𝑃𝑘 represents feature from the graph 𝒢𝑘. We consider the set of features as

an instances in a bag and train an attention MIL [13] to predict the tumor stage. The

learnable attention weights in the MIL gives more importance to instances in the bag

which are responsible for predicting the tumor stage. The output from the attention

MIL yields a feature vector which is connected to a linear classifier to predict the
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tumor stages. To optimize Graph Attention Multi-instance learning, we minimize the

loss function as follows:

𝐿𝑠𝑡𝑒𝑝2 =
1

𝑀

𝑀∑︁
𝑖=1

𝐻 (𝑝𝑖, 𝑞𝑖) (2.4)

where 𝑀 is the number of WSIs and 𝐻(.) is the weighted cross entropy loss between

ground truth 𝑝𝑖 and prediction 𝑞𝑖.

2.3 Experiments

Dataset description and Baselines. The data we used, Molecular and Cel-

lular Oncology (MCO) study [14, 15], is a collection of imaging, specimen, clinical and

genetic data from over 1,500 Australian individuals who underwent curative resection

for colorectal cancer from 1994 to 2010. To evaluate our models, we split the total

dataset containing 1, 345 WSIs with 115, 202, 698 and 330 stage I to stage IV cancer

WSIs into 70%, 10%, 20% for training, validation and testing, respectively. Each WSI

has been annotated with a image level label representing the tumor stage by the ex-

pert pathologist. We extracted 1000 random patches at 20X magnification from each

WSI, covering approximately 82% of tissue area. In total, 1, 345, 000 patches (more

than 1 million) patches were extracted from the dataset. We build several baselines

for comparisons. To evaluate results from directly using down-sampled WSIs, we treat

the WSI as a reduced image resolution with size (2048×2048) and then train a image

classification model. We also compare with other state-of-the-art models for WSIs

classification and survival prediction task and accordingly modify them for colorectal

cancer staging. The comparison method includes Tellez et al. [16], Gupta et al. [1]
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Table 2.1: Performance comparison of the proposed method and other existing related
methods using mean accuracy and mean F1 scores are tabulated.

Model Accuracy F1
Baseline 53.6 50.9
Tellez et al. [16] 63.2 62.8
Yao et al. [5] 66.8 65.2
Gupta et al. [1] 71.5 60.8
Yao et al. [5] with our step I 74.5 72.5
Cell graph [10] with 200
patches

69.7 67.2

Cell graph [10] with 1000
patches

79.8 77.4

Proposed 81.1 79.8

and Yao et al. [5]. We also perform ablation study on our proposed architecture in

step II with graph CNN proposed by [10].

Results and discussions. For training step I, we used Adam optimizer with

learning rate set to 0.003 and reduced the learning rate for every 20 epochs. We used

random horizontal and vertical flipping, random crop, random rotation and Gaussian

noise as transformation operation 𝒯 (.) in step I. For training step II, we used Adam

optimizer with learning rate set to 0.0003. Table 2.1 shows the performance of our

proposed method with other comparison methods. The baseline method trained on

reduced resolution with (2048× 2048) achieves the 53.6% which demonstrates down-

sampled WSIs is not useful for staging. The reason is due to the reduced resolution

loses much information and many details from the original WSI. Tellez et al. with

contrastive network, uses a time consuming encoding step to predict the image level

label whereas our proposed method extracts random patches from the WSI to predict

the image level label. Gupta et al. [1] uses a labelled patch level label to train a patch

level classifier and uses a network similar to step II proposed by Tellez et al. to

predict image level label. The step II of Gupta et al. is as time consuming as Tellez
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et al. Yao et al. [5] used kmeans clustering on 1D features extracted from pre-trained

VGG model whereas our proposed step I trains to bring similar patches closer and

dissimilar patches far from each other.

From the Table 2.1, we can see the model [5] with using k-means to cluster

features performs 0.668 on our test dataset whereas when replaced k-means with our

clustering method the performs increases by 9%. The reason for the improvement

in the performance is using texture based feature extraction and Siamese network to

make similar features close to each other and dissimilar features far from each other.

However, both the models does not perform better than our proposed method, the

reason is DeepMIL [5] does not consider relationship between node features to predict

the image level label. To predict tumor stage, the spatial relationship between features

is important. We also compared with step II architecture with a single graph proposed

by [10], to show that our proposed multi graph Attention MIL can perform better

than a single Graph network. The single graph with 1000 patches from the features

extracted from the step I of our pipeline achieves 0.7987 but is computationally slower

as the time complexity for graph CNN is 𝑂(𝑛3) [17], where 𝑛 is the number of nodes

in the graph. We also compared with 200 patches using a single graph, however it

yields a lower accuracy than the single graph with 1000 patches. We have showed

the confusion matrix of our proposed method and the cell graph with 1000 patches

in the supplementary material.

Our proposed method uses multiple graphs with each graph having randomly

sampled features from the 1000 patches for each WSI. Each graph also has features

from every tissue types represented by [1]. The time complexity of each graph is

less than a single graph and multiple graphs are considered to be instances in a

bag to predict the tumor stage. For fair comparison, we use the same Adaptive

13



GraphSage architecture as [10]. From the table 2.1, our proposed method achieves

best performance when compared to other compared methods.

2.4 Conclusion

We proposed a novel Graph Attention Multi-instance learning framework to

learn the spatial relationship between image patches. Here we also demonstrate that

the Graph network using textures result in a better performance when evaluated

with other previous state-of-the-art methods. Future research will focus on how our

proposed method can also be used on different task such as predicting Overall survival

rate of an patient.
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CHAPTER 3

Interactive Segmentation of Microscopy Images through Shape Prior

3.1 Introduction

Assessment of Haematoxylin and Eosin (H&E) stained histology slides rely on

the segmentation of nuclei cells or glands from microscopy images. Manual assessment

including segmentation suffers from low throughput and is prone to intra and inter-

observer variability. To overcome the difficulties of manual assessment, Automated

analysis of nuclei cells or tissue types from digital pathology (DP), where whole slide

images WSIs are acquired using scanning devices have become a recommended ap-

proach.

Deep learning (DL) approaches have become state-of-the-art methods in nearly

all computer vision tasks recently. In medical imaging, DL approaches are used

to tackle a wide range of problems. However, there are considerable requirements

for DL approaches to be successful in the medical domain. Firstly, DL methods

are computationally expensive and secondly, they are data-hungry. To solve the

computation resource constraint, several methods have been proposed to use fewer

memory resources without sacrificing performance. On the other hand, to handle the

data requirement constraint, several methods have been proposed to synthetically

expand the dataset [18]. However, research shows that synthetically expanding the

dataset or performing any data augmentation on the given dataset does not generalize

the DL method. If DL methods are trained from one particular domain then they over-

fit on that domain and do not generalize on all domains. This becomes a bottleneck

when DL methods are to be deployed to production where a wide range of datasets
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are to be tested based on the trained model. Hence, to have a generalized model

which could perform significantly well on all different domains, one needs to consider

training on different datasets.

Collecting annotations for several domain datasets is labor-intensive and in-

volves expert knowledge. In particular, for collecting segmentation labels, one has to

classify each pixel into one of the respective class labels. To be more specific, annotat-

ing one nucleus takes 5s, a visual field containing 100 nuclei takes 17 minutes which

is a considerably tedious process [1]. Therefore, gathering a large dataset for training

different domains is a tedious task. To solve labor-intensive problem, research has

been conducted to use semi-supervised approaches or weakly supervised approaches

[19, 20]. Semi-supervised approaches use partial annotation available to segment

dataset from unlabelled datasets. In this way, the accumulation of new dataset to the

training datasets is reduced which tries to solve the problem of domain specification.

However, the performance of semi-supervised and weakly supervised approaches are

not on par with supervised approaches [21]. The efficient and better strategy is to

use semi-supervised approaches in an interactive way. Semi-supervised approaches

with user interactions are recommended due to the following. Firstly, User has the

control over the region of interest for which the segmentation model needs to segment

the nuclei cells or glands. The segmentation model uses a trained model where the

region of interest is provided by the user. Secondly, the user has the control to alter

the segmentation result if needed to make sure the segmentation prediction is close to

the desired results. Semi-supervision using user interactions, therefore, reduces the

time taken to annotate the H&E images as well as produce high quality segmentation

ground truth. Research has focused on how to introduce minimum user interactions

and get high quality annotation labels. Even with the recent advancement in interac-

tive semi-supervised segmentation, the approaches uses labelled dataset to train the
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(a) (b)

Figure 3.1: Figures in column (a) shows the region of interest provided by the user.
Figures in column (b) shows the segmentation masks predicted by our segmentation
model.

models. To do this the annotations have to be provided by the experts to train the

DL methods, which is indeed a time consuming process. In this paper, we focus on

using minimum user interaction and weak supervision without burdening the anno-

tators to label any new segmentation masks for training the interactive segmentation

model. We do this by invoking shape prior to the architecture and allowing the seg-

mentation model to predict a segmentation mask that is similar to the shapes from

the pre-collected dataset. Overall, our main contribution in this paper is as follows:

• We propose a unified interactive segmentation by using shape priors to segment

the region of interest.

17



• Our extensive experiments shows that by using our proposed user interactive

segmentation model, the annotation time is reduced significantly and is able to

produce high quality annotation results.

• We perform an extensive ablation study to show the need for a simple bounding

box user interaction as a preferred way rather than other existing approaches.

3.2 Related Works

3.2.1 Nuclei cell and gland segmentation

Several automated methods have been proposed to segment nuclei cells and

glands from H&E slides. Before the era of DL methods, [22] used threshold to obtain

certain markers and the energy landscape as input for the watershed to extract nuclei

cells. Similarly, [23] uses graph based learning to segment a gland structure within the

region of interest. However, these methods do not generalize on different H&E slides

and particularly when H&E images are noisy. After DL methods became popular

in computer vision, several automated methods were proposed to segment nuclei

cells and glands from various modalities [24, 25, 26]. Unlike other medical image

segmentation, segmenting nuclei cells or glands is a hard problem due to the following

reasons. Firstly, nuclei cells or glands are of different shapes and sizes and some are

hard enough which makes the segmentation model to miss. Secondly, the nuclei cells

or glands overlap with each other making the segmentation model to focus on how

to separate the overlapping objects from each other. [26, 27] uses contour based

learning as an added cue to separate overlapping cells in H&E. These methods use

fully convolutional networks (FCN) based architecture which maps pixel to pixel.

Research has also been focused on treating nuclei cells or glands as instance. Cell-

RCNN [28] uses Mask-rcnn [29] based framework to detect each nuclei and segment
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the cropped nuclei. Cell-RCNN can be directly be imported to predict glands in

microscopy images. Our proposed method uses instance segmentation framework

following Cell-RCNN [28] feature backbone. Our architecture uses bounding box as

an user input and crop the features within the bounding box. These cropped features

are used to segment the object thus making the architecture similar to Mask-rcnn.

3.2.2 Interactive segmentation

A wide range of interactive segmentation approaches has been proposed using

machine learning in the medical imaging domain [30]. In some methods [31, 32]

interactive segmentation is formulated as energy minimization on a graph defined

over objects. [33] uses interactive segmentation with active learning to segment 3D

images. With the advancement of DL, research has been focused on using DL to

interactively segment objects in medical imaging. In order to reduce the annotation

time of users, several methods have been proposed to use extreme points [34, 35],

scribbles [36, 37], boundary points [38], single point [39] to segment the objects from

the image. In extreme points, Users are required to input 4 extreme points in the

case of 2D or 6 extreme points in the case of 3D as an additional input to segment the

required object. In scribbles, the user has to point to the area that needs to be focused

in the form of a scribble. All these approaches need the supervised signal to guide the

interactive segmentation. Therefore, there is a requirement for collecting supervised

datasets for these tasks. In our proposed approach, we use a simple bounding box

as a user input but we do not use any pixel wise supervision. We rather make

the segmentation model output the shape that resembles the shape of the dataset

collected.
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1/0

Adversarial Learning

Segmentaion module 

Feature Backbone

Shape data Shape mask

prediction

Figure 3.2: Overview of our proposed model. Latent feature map for a given bounding
box is extracted using a feature backbone. The segmentation module predicts the segmen-
tation for the given feature map. The adversarial shape loss is computed with the predicted
segmentation mask and with the shape dataset.

3.2.3 Adversarial Domain Adaptation

Adversarial domain adaptation (ADA) for segmentation has received a recent

attention in medical imaging [40]. The main idea of domain adaptation is to align the

predictions or feature space of the segmentation module to that of the shape dataset.

Here the shape dataset generally refers to a database of ground truth annotation

masks collected from various sources. In [41], semi-supervised adversarial learning

network is performed with a deep atlas prior and the network is trained to map

the predictions to the annotation dataset. Similarly, [42] uses predictions from the

target dataset (un-labeled) to map to the predictions of the source dataset (labeled).

Different research have been used to adapt the output from segmentation to the source

or defined dataset. [43] uses entropy to regularize the errors between source and target

domain. The advantage of using adversarial domain adaptation is that the domain of

input need not be from the same dataset. Since the domain adaptation tries to map

the predictions, the input can be captured from different domains. In our proposed

method, we use ADA as a signal to make the predictions of the segmentation module

to be the same as that of the shape dataset.
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3.3 Methods

In this section, we explain the proposed framework for interactive segmentation.

Figure 3.2 summarizes the architecture.

3.3.1 Segmentation input

The input to our interactive segmentation framework is an image 𝑋 𝑖 from

dataset 𝐷 = {𝑋 𝑖}; 𝑖 = 1, 2, ..., 𝐾, where 𝐾 is the total number of images in the train-

ing dataset. For each input we randomly choose bounding boxes 𝐵𝑖; 𝑖 = 1, 2, ...,𝑀 ,

where there can be 𝑀 bounding boxes for each input 𝑋 𝑖. The goal of the segmen-

tation model is to input the image 𝑋 𝑖 and random bounding boxes from the set 𝐵𝑖

and output a segmentation for each bounding box in 𝐵𝑖. We also have a large set of

ground truth masks 𝐺 = {𝑌 𝑗}, 𝑗 = 1, 2, ..., 𝑁 , where 𝑁 is a fairly large ground truth

masks extracted from several datasets to induce shape priors to segmentation model.

3.3.2 Feature Backbone

The goal for the feature backbone is to have a 𝑓(𝑋 𝑖, 𝐵𝑖), where 𝑓 is a feature

backbone that outputs a latent feature map of size 𝐵 × 𝐶 ×𝐻 ×𝑊 , where 𝐵 is the

batch size, 𝐶 is the number of channels, 𝐻 and 𝑊 are height and weight of feature

map. The number of feature maps is based on the number of bounding boxes fed to

the framework provided by the user. In our experiment, we fix height and width as

14 respectively and the number of channels as 256. For Feature backbone, we use

a resnet101 with feature pyramid networks (FPN)[28] and initialize the pre-trained

weights for feature backbone trained from [28]. We then freeze the layers of feature

backbone i.e, the gradients are not passed to the feature backbone while training the

interactive segmentation, making the feature backbone as a feature representation
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network. The features corresponding to each bounding box are cropped and aligned

using RoIAlign [29] to resample to an unified height and width. In figure 3.2, under

feature backbone section shows that each bounding box provided by the user in

cropped using RoIAlign.

3.3.3 Segmentation Backbone

The goal of the segmentation backbone in our interactive segmentation is to

input the feature maps cropped and aligned using RoIAlign for the given bounding

box in an image. The output of the segmentation model is segmentation probability

prediction with size 𝐵 × 1 × 𝐻 × 𝑊 , where 𝐵 is the number of bounding boxes

provided by the user for an image, 𝐻 and 𝑊 are height and width of the segmentation

prediction. We use 𝐻 and 𝑊 as 28 similar to [28]. Unlike feature backbone, we do

not initialize the weights from pre-trained model and do not freeze the segmentation

architecture.

3.3.4 Adversarial Domain Adaptation

Once the segmentation produces a segmentation output, the goal of adversarial

learning is to make sure that the segmentation output adapts the shape of annotation

labels from the shape dataset. We collect the shape dataset from various nuclei cells

and glands from different sources. The shape data is resampled using RoIAlign to

the size same as the segmentation output size. The ADA component in our segmen-

tation model adapts the distribution of the shape dataset and incurs loss when the

predictions of the segmentation module looks different from the shape dataset. More
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formally, let 𝑑(.) be defined as an FCN discriminator, then the discriminator loss can

be expressed as

ℒ𝑑 =
1

𝑁ℓ

∑︁
𝒟ℓ

ℓ𝑐𝑒(𝑑(𝑌𝑠),1) +
1

𝑁𝑢

∑︁
𝒟𝑢

ℓ𝑐𝑒(𝑑(𝑌𝑡,0)), (3.1)

ℒ𝑎𝑑𝑣 =
1

𝑁𝑢

∑︁
𝒟𝑢

ℓ𝑐𝑒(𝑑(𝑌𝑡,1)), (3.2)

Where 𝐷ℓ and 𝐷𝑢 represent the data from a different domain and the shape dataset

acquired from various sources respectively, ℓ𝑐𝑒 represents a pixel-wise cross entropy.

The discriminator loss ℒ𝑑 distinguishes between the segmentation output from shape

dataset and from the segmentation model. The adversarial loss ℒ𝑎𝑑𝑣 fools the seg-

mentation model to classify the segmentation output to be the same as the shape

dataset.

3.4 Implementation details

In this section, we look into the implementation details and time analysis for

our proposed model.

We use detectron2 [44] to implement the proposed framework. Some of the

important hyper-parameters which needs to be carefully tuned while training the

model are the learning rate of adversarial (𝜆𝑙) and discriminator (𝜆𝑑). We set the

𝜆𝑙 as 0.001 and 𝜆𝑑 as 0.0001 based on the experiments and stability. We use SGD

optimizer to train adversarial learning and a batch size of 32. We set the height and

width of RoIAlign output to be 14 and the output height and width of segmentation

output to be 28. For discriminator network, we pass the segmentation predictions
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and ground truth mask. We allow the discriminator to predict if the output comes

from the target or source respectively. Table 3.1 shows the architectural structure for

the discriminator.

We analyze the time taken during the inference stage for our proposed model.

The average time taken for a single region of interest provided by the user to get the

segmentation result is 0.2s, which is 30 times better than the time taken to annotate

each pixel manually. The average time taken to annotate an image slide of size

256×256 with an average of 200 nuclei cells is around 10s whereas it takes an average

of 7 minutes to annotate through pixel wise manually. All evaluations are done using

RTX 1 × 1080 Ti GPU.

Table 3.1: Discriminator architec-
ture: Here Conv refers to convolu-
tion + batch normalization + relu,
FC refers to dense layer.

Model Input size Output size

Conv1 1 × 28 × 28 32 × 14 × 14
Conv2 32 × 14 × 14 64 × 7 × 7
Conv3 64 × 7 × 7 128 × 7 × 7
AvgPool 128 × 7 × 7 128 × 1 × 1
FC 128 1

3.5 Experiments

In this section, we will look into datasets that are used in our experiments and

the state-of-the-art methods that are used to compare with our proposed model.
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3.5.1 Datasets

To evaluate the proposed method, we need a shape dataset which contains

nuclei cells and gland segmentation masks. We also need dataset which is different

from shape dataset and which does not contain segmentation masks. To do this, we

explain the datasets that we use in the following:

Shape dataset: To extract the nuclei cells and glands, we use the nuclei

cells segmentation datasets [2], extracted at 40× magnitude. The aggregated dataset

contains 495, 179 nuclei cells. For gland dataset, we use Gland Segmentation Chal-

lenge Contest in MICCAI 2015 (also named as Warwick-QU dataset) [45]. Totally

our shape dataset contains nuclei cells as well as gland masks. To experiment on

the shape dataset, we split the images into 70/10/20 with training, validation and

testing.

CRC dataset: CRC [46], which contains 139 images taken from WSIs repre-

senting colorectal cancer. The images are divided into normal, low grade and high

grade based on the degree of gland category. To conduct the experiment, we separate

the dataset into 70/10/20 with training, validation and testing images respectively.

For each images, we allow the annotator to provide bounding boxes for random nuclei

cells and glands. For validation and testing, we allow the users to segment random

sample of regions to evaluate the performance of the proposed model.

BACH dataset: BACH [47], which contains 400 slides extracted from WSIs

representing breast cancer. The images are divided into normal, benign, in-situ and

invasive cancer types. Similar to CRC dataset, we split the dataset into 70/10/20

with training, validation and testing images respectively.
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3.5.2 Comparison Methods

To compare with other state-of-the-art segmentation methods, we consider both

fully supervised methods as well as interactive segmentation methods. Even though

our proposed approach is focused on interactive segmentation, we compare it with few

state-of-the-art fully supervised methods. For fully supervised methods, we consider

the following methods.

DCAN [26] is a popular segmentation model for medical image segmentation

similar to UNet [24] architecture. DCAN uses contour as an aid to separate the

overlap between glands. The output of the DCAN model is a pixel level class which

is same as that of the input size.

Cell-RCNNV3 [28] is a panoptic based instance segmentation model. It uses

a two-stage pipeline to propose the proposals and segment the object.

To compare with interactive segmentation methods, we compare with the fol-

lowing.

DexTR [34] is an interactive segmentation method which uses extreme points

as the additional input to guide the segmentation. The segmentation backbone is the

deeplab-v3 which is used as similar to architecture proposed in DexTR.

DeepCut [38] uses bounding box as an user input which acts as a region of

interest to crop the region and perform segmentation for the region of interest.

Scribble [36] uses scribble as an user input which allows the segmentation

model as an additional guidance to segment the area of scope.

Nu-Click [39] uses a single click as the user input to allow the segmentation

model to focus on the area of interest provided by the user.

IFCN [48] uses multiple user clicks as the user input to allow the segmentation

model to segment the object.
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The state-of-the-art comparison methods uses fully supervised dataset to train

the segmentation model whereas, our proposed method does not rely on any super-

vised dataset, rather it relies on the shape dataset with pre-defined shapes that can

be extracted from various domains.

Table 3.2: Quantitative results on
Nuclei cell dataset. For HD, lower
the better.

Model DSC HD

DCAN 84.1 ± 8.6 9.1 ± 5.4
Cell-RCNNV3 86.3 ± 7.9 8.7 ± 5.7
DexTR 80.3 ± 5.6 11.2 ± 7.2
DeepCut 79.5 ± 5.1 10.4 ± 6.5
Scribble 78.4 ± 6.3 12.3 ± 5.6
Nu-Click 83.7 ± 7.5 8.3 ± 5.1
IFCN 84.9 ± 7.1 8.4 ± 4.8
Ours 85.3 ± 9.2 8.3 ± 4.6

Table 3.3: Quantitative results on
CRC dataset. For HD, lower the
better.

Model DSC HD

DCAN 83.3 ± 7.6 8.9 ± 3.4
Cell-RCNNV3 85.2 ± 6.4 8.3 ± 3.9
DexTR 80.3 ± 8.9 12.2 ± 4.2
DeepCut 79.5 ± 9.5 11.3 ± 4.1
Scribble 79.4 ± 8.9 12.3 ± 3.9
Nu-Click 83.9 ± 6.7 8.5 ± 3.4
IFCN 84.5 ± 5.9 8.4 ± 4.1
Ours 86.1 ± 5.4 8.1 ± 4.3
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Table 3.4: Quantitative results on
BACH dataset. For HD, lower the
better.

Model DSC HD

DCAN 79.2 ± 5.6 10.3 ± 5.6
Cell-RCNNV3 80.3 ± 6.3 9.5 ± 4.9
DexTR 77.3 ± 6.3 10.1 ± 6.1
DeepCut 78.1 ± 5.4 9.4 ± 5.3
Scribble 76.5 ± 7.5 9.9 ± 5.6
Nu-Click 79.8 ± 7.4 8.9 ± 5.1
IFCN 78.3 ± 6.9 8.8 ± 6.4
Ours 81.2 ± 5.6 8.6 ± 6.1

3.5.3 Observations

We can see from the table 3.2, that our proposed model outperforms the com-

petitor interactive methods in both dice similarity coefficient (DSC) and Hausdorff

Distance (HD) in the shape dataset. This makes us understand the need for shape

prior to the segmentation model. The supervised method (Cell-RCNNV3) performs

better than interactive segmentation on the sshape dataset. The reason is that, the

supervised segmentation model is trained and tested on the same domain [2] and

supervised methods are designed to perform better when trained and tested on the

same domain. However, our interactive segmentation performs on par with the Cell-

RCNNV3. We also report the scores evaluated on the CRC and BACH dataset in

tables 3.3 and 3.4 respectively. As CRC and BACH images are not present in the

shape dataset, we treat this particular problem as domain generalization. In CRC

dataset, our proposed model outperforms both supervised segmentation model as

well as other interactive segmentation models. Similarly, our proposed model also

outperforms in BACH dataset in both supervised as well as interactive segmentation

models.
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Figure 3.3: Intraobserver variability.

3.6 Ablation study

In this section, we will look into each component and its need for our proposed

method.

3.6.1 Need for bounding box interaction

We analyze the need for bounding box interaction as a user input to facilitate

the annotation process. Figure 3.5 shows the average time taken to annotate the

slides. The average time is taken across the test dataset from CRC dataset with the

approximately 100 nuclei cells in each slide. We find that the DSC of our proposed
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Table 3.5: Our proposed method
without the shape constraint and
treating as a fully supervised
method outperforms when trained
and tested on the same domain.
However, it fails to outperform
when tested on the images from
different domain.

Model Domain A Domain B

Ours w/o ADA 84.4 ± 3.1 80.6 ± 7.4
Ours 83.5 ± 4.1 82.1 ± 3.8

method is 86.1 which is significantly better than the state-of-the-art interactive seg-

mentation methods. The reason for relatively less time to annotate is because we use

4 points to compute the segmentation mask. We can also find that Nu-Click takes

less time to annotate as it needs 1 point to annotate the nuclei cell, however, the DSC

of Nu-Click is not better than our proposed method.

3.6.2 Number of bounding boxes per input

We analyze the impact of the number of bounding boxes that are needed to

improve the performance scores in the test dataset. We do this by considering the

annotated segmentation masks performed by the user interaction as a part of the

training dataset and train a segmentation model. We see that, as the number of

annotation bounding boxes increases the DSC of segmentation model increases in the

test dataset.

3.6.3 Intraobserver variability

We analyze the intraobserver variability across different interactive segmenta-

tion models. To do this, we allow 5 users to annotate the H&E slides. We compare
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the acDSC results of 5 users to understand the generalizability of our proposed model.

Figure 3.3 shows the box and whisker plot of the intraobserver variability. We can see

that the variation among 5 users for our proposed interactive segmentation is signifi-

cantly lesser than the competitor methods. The reason for the less variance is because

we make the segmentation prediction to resemble the shape of the pre-defined shape

dataset. However, the user interactions such as scribbles need expert knowledge on

the boundary as the nuclei cells or glands overlap with each other.

3.6.4 Need for shape constraint

We analyze the need for an adversarial learning mechanism to learn the seg-

mentation model through shape loss rather than simple supervised learning. To do

this, we test our proposed model by replacing the adversarial learning component.

We replace the adversarial learning component with fully supervised learning. We

see that the supervised learning component do increase the DSC of the test dataset

taken from the same domain but when tested on a different domain, the fully super-

vised learning fails to perform better. On the other hand, our proposed model with

adversarial learning component generalizes across various domains. Table 3.5 shows

the DSC evaluation on two datasets. When adversarial learning is not used in our

segmentation model, we train and test on dataset taken from Domain A as well as

train in Domain A and test in Domain B.

3.7 Conclusion

In this work, we show an interactive segmentation architecture which is easy

to use and takes comparatively lesser time to use when compared to state-of-the-art

interactive segmentation methods. We also show that our proposed method outper-

forms the competitor methods in both DSC and HD metrics. We do this by allowing
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the model to learn the shape of the nuclei cells rather than a simple pixel-wise seg-

mentation. With the shape learning mechanism, our model is able to generalize with

different image domains. We perform several ablation studies to further prove the

importance of each component in our segmentation model. In the future, we aim to

use the proposed interactive segmentation model on volumetric datasets.
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DexTR DeepCut Scribble Nu-Click Ours

Figure 3.4: Qualitative comparison of our proposed model. The first two rows are
taken from CRC dataset and second to the fourth row are taken from BACH dataset.
We show that our proposed model is able to segment the region of interest provided
by the user. For simplicity, we only allow the user to segment some of the nuclei cells
or glands randomly in an image.
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Figure 3.5: Average inference time comparison. Time is denoted in minutes
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CHAPTER 4

Towards accurate histology image classification through subtype granular

information

4.1 Introduction

Histopathological analysis is a crucial procedure in the early diagnosis of dis-

eases such as cancer. Pathologists typically analyze the histological properties in the

digitized tissue samples called WSIs to search for cancerous regions. However, these

histology images are significantly larger as each image may contain thousands of cells

which can be time-consuming and subjective [10]. Computer Aided Diagnosis (CAD)

systems can be used to alleviate the procedure by providing objective analysis to the

pathologists.

With the advent of deep learning, Convolutional Neural Networks (CNNs) have

been widely used in medical imaging to achieve state-of-the-art-results in various

tasks. In pathology, CNNs are widely used to produce promising results in nuclei cell

segmentation [49, 28], cancer region segmentation [50, 51], survival analysis [52, 11],

cancer staging [53, 54, 55]. Cancer staging or tumor classification requires high-

resolution cellular level information to capture the micro-environment. In general,

WSIs are processed in a multi-resolution format with the highest resolution reaching

up to 106 × 106 pixels at 0.25 mm containing millions of cells. To cope up with the

large size of WSI, the automated methods sample image patches from WSI to perform

any downstream tasks. However, these methods come with multiple drawbacks. First,

sampling patches from WSIs lose spatial relationships with each other. Due to the

lack of contextual information between tissues which is the key essential for cancer
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grading/ tumor classification, the underlying tissue architecture is missed. Second,

there is a direct correlation between patch size and context information. The Larger

the patch size, the more context information is provided to the automated methods.

However, the large patch size leads these automated methods difficult to capture the

granular information and cell-level information in an image. Large patch size further

adds computational burden to CNNs. To overcome the loss of spatial information,

methods [53, 55, 56] use context aggregation mechanism to encode neighboring tissue

information in WSI. However, these methods require encoding each image patch size

into a latent vector which loses cell-level interaction information.

Different types of cells and their interactions play an important role in initiation,

development and deducting therapeutic response for tumor. In [57], Histopathology

analyses show that variable amount of infiltrating immune cells are found in and

around the tumor region. Similarly, Macrophages, mast cells are found surrounding

the tumor cells and lymphocytes are not randomly distributed but located in spe-

cific areas which indicates a specific cancer type. With the importance of cell level

interaction to predict the cancer staging/tumor type, the research focus is how to

make automated methods efficiently use cellular features into their frameworks. In

[10, 58, 59], different cell-graphs are proposed to encode the cell-level interaction to

predict tumor grades. These methods demonstrated the performance improvement

by encoding cell-level interactions. Motivated by the evidence of different cell types

in and around the tumor region to predict tumor grades [57, 60] and the benefits of

cell-graph modeling, we propose a novel framework to embed cell subtype features in a

cell-graph to predict different tumor types/tumor grades. We propose a discriminative

latent feature extractor to represent different nuclei cells, by this way we eradicate the

use of handcrafted features for nuclei cells. We further build a framework to predict

the tumor types based on the learnt cell features. We present numerous experimental
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results to show the benefit of using subtype nuclei cell features to represent as nodes

in cell-graph and the advantage of the proposed for improving the performance to

predict the tumor types/tumor grades.

Overall, our main contribution in this paper is as follows:

• We propose a novel transformer based instance segmentation framework to clas-

sify different types of nuclei cells more accurately.

• We propose a Graph based Attention Multiple Instance learning framework

for histology images which builds a cell-graph based on nuclei cell features to

effectively represent the histology images to perform the downstream task.

• Our extensive experiments shows the need of using the subtype cell-interaction

for cancer staging/tumor classification and Graph Attention Multiple Instance

Learning framework to improve the performance for tumor classification.

4.2 Related work

4.2.1 Nuclear instance segmentation and classification

Several automated methods have been proposed to segment and classify nuclei

cells from H&E stained images. Before the era of deep learning, popular methods

were based on thresholding and performing morphological operations to segment the

nuclei cells [61, 62]. These methods fail to generalize or accurately segment the nu-

cleus. Recently, Deep neural networks have shown promising results in segmenting

and classifying nuclei cells in a more complex background [49, 63, 64]. However,

automatically segmenting nuclei cells at the instance level still remain challenging

due to the following reasons. Firstly, nuclei cells tend to be vastly occluded which

makes the automated methods difficult to segment at the instance level leading to

poor morphological measurements. Secondly, due to the subtle morphological dif-
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ference between several types of nuclei cells, the automated methods have difficulty

in classifying different types of nuclei cells. To address the first issue, hover-net [49]

proposed an architecture to measure the horizontal and vertical distances of nuclei

to their center of mass. These distances are used to segment occluded nuclei cells.

BPR-Net [65] proposed an architecture to segment and refine its boundary in par-

allel. These proposed methods are computationally expensive and still suffer from

overlapping issue. To address the second issue, on top of instance segmentation [49]

performs pixel-level classification to identify different types of nuclei. Cell-RCNNV3

[63] uses Mask-RCNN inspired classification head and panoptic segmentation to seg-

ment and classify nuclei cells. However, due to the poor discriminative features, these

models produce low precision. To overcome the aforementioned issues, our proposed

segmentation model is light-weight and produces higher performance when compared

to the state-of-the-art methods in terms of both segmentation and classification.

4.2.2 Tumor subtyping

Various automated methods have been proposed to categorize histology images

into several types based on the appearance of tumors in the WSIs. Due to the

expensive cost of labelling the in WSI, methods have been developed to use weak

labels such as image-level class label. In general, methods rely on patch-wise feature

extraction and then aggregating the features to perform the downstream task. In

[66], is used on the features extracted by CNN to classify different tissue types.

In [55], Context aware feature aggregation module is used to aggregate the features

extracted from CNN. These proposed methods rely on compressing the image patch

into a latent vector, which loses granular information related to the patch. Recently,

methods have been proposed to include granular information to predict the tumor

subtypes. CGC-Net [10], uses morphological features of nuclei cells instead of patch-
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Figure 4.1: Overview of our proposed segmentation framework (TranSeg). The image
is first split into patch embeddings and then passed to several transformer blocks. The
output of decoder blocks are used for FCOS loss. The proposals are computed and
extracted from decoder outputs which are used to output segmentation mask.

wise features to predict the tumor grades given a WSI. Further, [59] proposed a

statistical network analysis method to describe the complex network structure of

tissue micro-environment for image classification. HACT-Net [58], improved over

CGC-Net by combining hierarchically the granular nuclei cell features and patch-

wise features to predict different types of cancer from breast tissues.

Our proposed method differs from these methods in two ways. First, the

proposed method uses subtype nuclei cell CNN features rather than morphologi-

cal/handcrafted features, thereby capturing a deep latent vector which empirically

shows a better performance than previous methods. Second, it uses multiple graph

representations to describe a WSI and use MIL to predict the tumor types.
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4.3 Proposed Method

In this section, we explain the proposed framework for segmentation and tumor

grade classification respectively. Figure 4.1 and figure 4.4 summarizes the segmenta-

tion and classification architecture respectively.

4.3.1 Segmentation Input

The input to our segmentation framework is an image 𝑋 from dataset 𝐷 =

{𝑋 𝑖, 𝑌 𝑖}; 𝑖 = 1, 2, ..., 𝐾, where 𝐾 is the total number of images in the training dataset.

Each 𝑌 𝑖 contains labels from 1, 2, ..., 𝐶, where 𝐶 is the total number of classes. The

goal of the segmentation model is to input the image 𝑋 𝑖 and output a segmentation

output with the same image size as 𝑋 𝑖 where each pixel is labeled into one of the 𝐶

classes.

4.3.2 Segmentation Encoder

Segmentation Encoder used in our framework consists of a hierarchical trans-

former to generate coarse-grained to fine-grained features. Given an image size of

𝐻 × 𝑊 × 3, we divide the image size into patches of 4 × 4. We use the overlap-

ping patches into a hierarchical transformer to output multi-resolution feature maps

of stride {1/4, 1/8, 1/16, 1/32}. We use Encoder which is inspired from SegFormer

[67]. We use MIT-B3 as the encoder due to its complexity and fast inference. Each

hierarchical transformer consists of 𝑁 blocks of Efficient Self-Attention module and

Mix-Feed Forward Network. The output features are then merged using Overlap

Patch Merging to produce features with the same size as the non-overlapping pro-

cess. The Efficient Self-Attention layer reduces the multi-head self-attention process

time complexity 𝑂(𝑁2) to 𝑂(𝑁
2

𝑅
), where 𝑅 is a hyper-parameter set across different
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stages from stage-1 to stage-4. The multi-head attention with heads 𝑄, 𝐾, 𝑉 having

the dimensions 𝑁 × 𝐶, where 𝑁 = 𝐻 × 𝑊 is the length of the sequence with 𝐶

features is written as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(
𝑄𝐾𝑇

√
𝑑ℎ𝑒𝑎𝑑

)𝑉, (4.1)

The efficient self-attention used in [67] reduces the sequence process as follows:

�̂� = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(
𝑁

𝑅
,𝐶 ·𝑅)(𝐾)

𝐾 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝐶 ·𝑅,𝐶)(�̂�), (4.2)

Where 𝐾 is the sequence to be reduced and 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 function reshapes 𝐾 to (𝑁
𝑅
, 𝐶 ·𝑅).

The result 𝐾 has the dimensions 𝑁
𝑅
× 𝐶. The Mix-FFN is specifically designed for

segmentation which alleviates the problems faced by in [67]. The Mix-FFN uses a

3 × 3 convolution to provide positional information for Transformers and is written

as follows:

𝑥𝑜𝑢𝑡 = 𝑀𝐿𝑃 (𝐺𝐸𝐿𝑈(𝐶𝑜𝑛𝑣3×3(𝑀𝐿𝑃 (𝑥𝑖𝑛)))) + 𝑥𝑖𝑛, (4.3)

where 𝑥𝑖𝑛 is the output from self-attention module, 𝑀𝐿𝑃 is a linear function, 𝐶𝑜𝑛𝑣3×3

is the 3 × 3 convolution and 𝐺𝐸𝐿𝑈 is the activation function [68].

4.3.3 Light-weight Feature Pyramid Networks

The goal of Feature Pyramid Networks is to use the multi-resolution feature

maps generated from the segmentation encoder to have semantics from low to high

levels. For this, we build a pyramid hierarchy network where each pyramid has

features from all multiple levels. The dotted lines in Figure 4.1 shows the multi-level
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feature aggregation at each pyramid level. The feature pyramids which we name from

Decoder1-Decoder4, at any point of time takes features from multiple resolutions to

output the resolution of the same resolution. To do this, we scale the feature maps to

the corresponding feature scale and then concatenate the feature maps from multiple

resolutions. We then use a to merge the concatenated features to output a feature

map of the desired size.

4.3.4 FCOS

To perform instance segmentation, our framework is required to propose bound-

ing boxes which are used to predict segmentation output. Most object detectors such

as Faster-RCNN [69], YOLO [70] use pre-defined anchor box which needs hyper-

parameter tuning. To eradicate the need for hyper-parameter tuning, we use FCOS

[71], which directly predicts bounding boxes and classification labels. In this way, we

reduce the complexity in computing anchor boxes which reduces memory consump-

tion and computation cost. Further, FCOS uses the “center-ness” branch to find the

deviation of pixel to the center of its corresponding bounding box which improves the

detection performance.

4.3.5 Occlusion Aware Instance segmentation

One of the important problems in nuclei cell segmentation is handling the over-

lapping nuclei cells. We handle the overlapping nuclei cells by decoupling overlapping

objects in the same RoI into two distinct modules (occluder-occludee) where occludee

is segmented under the guidance from shape and location of the occluder. The archi-

tecture of occluder-occludee is shown in figure 4.2(b) which is inspired from [72]. The

input to the segmentation branch is a cropped RoI feature maps that are generated

from Adaptive Feature Pooling [73]. The reason for using the Adaptive Feature Pool-
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ing network is to use features from multi-resolution feature pyramid levels. In FPN

[74], feature pyramid level is selected based on the size of the proposal box. How-

ever, the size of nuclei cells makes the level selector to always select from the lowest

level. By using Adaptive Feature Pooling network, we allow the network to use all

levels for each proposal and fuse them for downstream task. The occluder branch

from figure 4.2(b) uses layer followed by two FCN to detect the occluder’s mask and

contour. The occluder’s features are used as guidance to detect the occludee’s mask

and contour. The occludee’s feature branch is the same as occluder.

The module of occluder is designed similarly to [72], where we have one 3 × 3

convolutional layer followed by a and a FCN. The output of the FCN is passed

to an up-sampling layer and a 1 × 1 convolutional layer to jointly output boundary

and segmentation mask respectively. The occludee follows the similar architecture as

occluder with addition to the output from FCN in occluder branch. The input to the

occluder and occludee branch has feature map the size of 14× 14 and the output has

the size of 28 × 28.

We further improve the mask quality predicted from the occludee branch by

using a mask quality branch. The segmentation output from occludee branch 1 ×

28×28 is concatenated with the RoIs of size 256×14×14 by performing max pooling

operation on the segmentation output. Mask quality branch contains 3 convolutional

layers with kernel size 3×3 followed by 3 fully connected layers to predict the quality

of mask, which is a float value in (0, 1). We use the dice score between the predicted

segmentation mask from occludee and ground truth segmentation mask as the ground

truth mask quality score. The mask quality score is defined as:

𝑆𝑔𝑡 = 2 * |𝑀𝑝 ∩𝑀𝑡|
|𝑀𝑝| + |𝑀𝑡|

(4.4)
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where 𝑀𝑝 is the predicted segmentation mask and 𝑀𝑡 is the ground truth mask.

We use 𝑙2 loss between 𝑆𝑔𝑡 and predicted mask quality. The predicted mask quality

is used during the inference stage to filter the masks.

4.3.6 Classification Head

In general, Classification head used in object detectors use based heads [69]

where is performed on the . However, when the classes have a subtle difference

between them and the power of becomes sub-optimal. The based module loses

location, sizes and shape features due to the average operation performed on the . As

shown in figure 4.2(a), we use cross-attention based classification head for subtype

nuclei cell classification that implicitly learns the shape, location and inherent features

representing the nuclei cells.

𝐺𝑞1 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑛(𝐺𝑞, 𝐸, 𝐸)

𝐺𝑞2 = 𝐹𝐹 (𝐺𝑞1)

𝐿𝑜𝑔𝑖𝑡𝑠 = 𝐺𝑟𝑜𝑢𝑝𝐹𝐶(𝐺𝑞2)

(4.5)

Where 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑛 is the cross-attention used from [75] with 𝐺𝑞 as the in-

put group queries, 𝐸 as the image embeddings, 𝐹𝐹 is the feed-forward layer and

𝐺𝑟𝑜𝑢𝑝𝐹𝐶 is the grouped fully connected layer proposed in [76]. The input to the

classification head is the with feature map size 256 × 7 × 7 and the output of the

classification head is 𝑁 ×𝐶, where 𝑁 is the number of proposals in an image and 𝐶

is the number of classes.

4.3.7 Panoptic Instance segmentation

The instance segmentation framework produces segmentation masks from the

boxes proposed by FCOS module. However, FCOS might generate or . To overcome
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this, we propose a feature fusion mechanism to incorporate semantic level features

with instance level features.

We fuse the instances predicted with the semantic features following the algo-

rithm ??, where 𝑟𝑒𝑠𝑖𝑧𝑒 is a function to scale each instance mask to its corresponding

predicted width and height, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 is a function to normalize the output semantic

feature map so that the sum of probabilities across classes equals 1.

4.3.8 Segmentation Loss function

As shown in figure 4.1, total loss function required to train the segmentation

model is defined as:

𝐿𝑠𝑒𝑔 = 𝐿𝑓𝑐𝑜𝑠−𝑐𝑒𝑛𝑡𝑒𝑟 + 𝜆1𝐿𝑓𝑐𝑜𝑠−𝑖𝑜𝑢 + 𝐿𝑓𝑐𝑜𝑠−𝑙1

+ 𝐿𝑓𝑐𝑜𝑠−𝑐𝑙𝑠 + 𝜆2𝐿𝑚𝑎𝑠𝑘−𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑟+

+ 𝜆3𝐿𝑏𝑜−𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑟𝜆4𝐿𝑚𝑎𝑠𝑘−𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒+

+ 𝜆5𝐿𝑏𝑜−𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 + 𝐿𝑚𝑎𝑠𝑘−𝑞𝑢𝑎

+ 𝜆6𝐿𝑠𝑒𝑚𝑠𝑒𝑔 (4.6)

For object localization task, 𝐿𝑓𝑐𝑜𝑠−𝑐𝑒𝑛𝑡𝑒𝑟 are the binary cross entropy loss be-

tween normalized ground truth centers and predicted centers, 𝐿𝑓𝑐𝑜𝑠−𝑐𝑙𝑠 are the binary

cross entropy loss to detect if a nuclei is present in a pixel. 𝐿𝑓𝑐𝑜𝑠−𝑖𝑜𝑢 are the loss and

𝐿𝑓𝑐𝑜𝑠−𝑙1 are 𝑙1 regression loss between ground truth bounding boxes and predicted

bounding boxes respectively.

Similarly, for training segmentation task, 𝐿𝑚𝑎𝑠𝑘−𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑟 and 𝐿𝑏𝑜−𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑟 are the

binary cross entropy loss for masks and contours of overlapping nuclei cells respec-

tively. 𝐿𝑚𝑎𝑠𝑘−𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 and 𝐿𝑏𝑜−𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 are binary cross entropy loss for the current

nuclei. 𝐿𝑚𝑎𝑠𝑘−𝑞𝑢𝑎 is 𝑙2 regression loss between predicted mask quality and ground
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Figure 4.2: Figure (a) shows the classification head where they key and value are
image embeddings and query are the non-learnable vectors. Figure (b) shows the
occlusion-aware segmentation head where occluder and occludee branches interact to
output occlusion free mask.

truth mask quality. Finally, 𝐿𝑠𝑒𝑚𝑠𝑒𝑔 is the cross entropy loss between ground truth

segmentation map and predicted segmentation. The weights of 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 and

𝜆6 are set to 1.25, 0.25, 0.5, 1.0, 0.5, 0.1 respectively and these hyper parameters were

chosen based on heuristics.

During inference, we multiply the mask quality and bounding box score to filter

the masks as final instances for an image.

4.3.9 Tumor grade classification

In this section, we discuss the tumor grade classification performed with the

nuclei features extracted from TranSeg.
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4.3.9.1 Cell-graph representation

We infer TranSeg on the tumor classification datasets and extract the subtype

nuclei cell features along with their normalized spatial coordinates for each WSI.

Each node contains 71 dimensions where 64 dimensions are extracted from TranSeg

and 7 dimension represents a one-hot vector denoting each class. To create a graph

topology, we utilize that spatially close cells have stronger interactions when compared

to distant cells. We build the cell-graph by using the euclidean distance between nuclei

centroids in the image space. Nuclei close to each other will have a distance close to

1 and distant nuclei will have a distance close to 0.

4.3.9.2 Cell-graph Architecture

For simplicity, we follow the graph architecture used in HACT-Net [58]. The

graph architecture used in our framework uses PNA [77] operator within the frame-

work of message passing neural network [78] obtaining the following GNN layer:

𝑋 𝑡+1
𝑖 = 𝑈

⎛⎝𝑋
(𝑡)
𝑖 ,

⨁︁
(𝑗,𝑖)∈𝐸

𝑀
(︁
𝑋

(𝑡)
𝑖 , 𝐸𝑗→𝑖, 𝑋

(𝑡)
𝑗

)︁⎞⎠ (4.7)

for a node 𝑋𝑖, the set of neighboring nodes 𝑋𝑗 is concatenated and passed to a

fully-connected layer 𝑀 to produce a set of neighborhood-aware embeddings. Then

multiple aggregators with degree scalars
⨁︀

is applied to a set of neighborhood em-

bedding. The node feature 𝑋𝑖 is then concatenated with the result and then passed

to a fully-connected layer to update the node embedding. Details of
⨁︀

is borrowed

from PNA [77]. The features from each PNA layers are aggregated and reduced to a

latent vector using LSTM module [58].
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4.3.9.3 Graph Attention Multiple Instance Learning

We create multiple graphs, where each graph contains nuclei cells extracted

using [10] as the nodes. The method chooses subset of nuclei, where each nuclei

has the farthest distance to the selected nuclei collection. Each graph generates a ℎ𝑖,

where 𝑖 = 1, 2, ..., 𝐾 with 𝐾 is the total number of graphs. We then merge ℎ𝑖 by

following equation 4.8 followed by a fully-connected layer to predict 𝑁 ×𝐶 where 𝑁

is the batch size and 𝐶 is the number of classes. Figure 4.4 shows the architecture of

Cell-Graph and MIL combined together.

𝑧 =
𝐾∑︁
𝑖=1

𝛼𝑖ℎ𝑖, (4.8)

𝛼𝑖 =
𝑒𝑥𝑝{𝑤𝑇 𝑡𝑎𝑛ℎ(𝑉 ℎ𝑇

𝑖 )}∑︀𝐾
𝑗=1 𝑒𝑥𝑝{𝑤𝑇 𝑡𝑎𝑛ℎ(𝑉 ℎ𝑇

𝑗 )}
, (4.9)

4.4 Datasets & Performance Measures

In this section, we explain the dataset details used for nuclei subtype cell seg-

mentation and tumor classification. We then explain the performance metrics used

for evaluation.

4.4.1 Datasets

We evaluate the segmentation framework on the lizard dataset [2] which con-

tains colon cancer. The dataset is collected from 6 different sources which contains

image regions extracted from WSIs. The colon image regions are sampled from orig-

inal data sources at 20× objective magnification. The dataset contains 495, 179 nu-

clei with 101, 413 lymphocytes, 28, 466 plasma cells, 4, 824 neutrophils and 3, 604

eosinophils, 112, 309 connective cells and 244, 563 epithelial cells. The image patch
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size used for training and testing is 256 × 256 pixels. We split the dataset into 4 fold

cross validation with 70% training and 10% validation and 20% testing dataset. We

report the average of 4 fold cross validation in table 4.1.

We evaluate the tumor classification framework on two challenging datasets.

First, we use [58] which contains 2080 RoIs acquired from 106 H&E stained breast

carcinoma WSIs. The WSIs are scanned at 0.25 um/pixel for 40× magnification.

The RoIs are annotated as Normal, Benign, Atypical, Ductal carcinoma, in situ and

Invasive. The dataset contains 305 Normal, 462 Benign, 387 Atypical, 503 Ductal

carcinoma, 423 Invasive. To have fair comparison, we use 4 fold cross validation

similar to [58]. We also evaluate on another dataset that is focused on colon cancer

[46]. The dataset contains 139 images with an average size of 4500 × 7500 pixel

size taken at 20× magnification. Each RoI is classified into one of the three classes

(Normal, low-grade, high-grade). The dataset contains 71 Normal, 33 low-grade and

35 high-grade RoIs. We split the dataset into three folds and use the entire RoI for

cell network construction.

4.4.2 Performance measures

We discuss the performance measures used for subtype nuclei cell segmentation

and tumor tissue classification. For fair comparison, we use binary Dice score to

measure the separation of all nuclei from background, AJI, and multi-class for

instance segmentation. For measuring tumor tissue classification, we use weighted

F1-scores and accuracy.

4.5 Implementation Details

To train the segmentation method, we use detectron2 codebase built on top

of PyTorch [44]. We first normalize each image with the mean and standard devia-
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Model DICE AJI PQ multi-PQ
Cell profiler 62.3 ± 8.2 37.6 ± 5.4 31.2 ± 4.9 23.5 ± 5.6

U-Net 77.4 ± 5.2 54.1 ± 7.8 52.9 ± 4.5 33.2 ± 4.3
Hover-Net 81.3 ± 3.2 60.2 ± 3.9 58.2 ± 3.8 44.5 ± 4.1
CIA-Net 82.3 ± 3.3 60.8 ± 3.8 57.3 ± 3.6 42.1 ± 3.9
CD-Net 83.5 ± 2.9 63.4 ± 3.4 61.1 ± 3.4 46.2 ± 3.8

Mask-RCNN 81.2 ± 4.1 58.3 ± 3.5 55.8 ± 4.1 43.1 ± 3.9
Cell-RCNNV3 83.4 ± 3.8 61.2 ± 3.8 60.8 ± 3.1 44.1 ± 3.0
BRP-Net [65] 85.1 ± 3.1 64.9 ± 3.2 62.8 ± 2.9 46.9 ± 2.1

TranSeg 87.2 ± 2.7 70.1 ± 2.3 69.9 ± 1.3 50.1 ± 0.9

Table 4.1: Comparative results on Lizard dataset [2].

tion from the training dataset. We then augment the training dataset with random

cropping, flipping, color jittering, random copying nuclei cells as shown in figure and

mosaic augmentation as shown in figure. As shown in figures 4.3 (a) and (b), adding

mosaic and random ”copy and paste” of nuclei cells significantly improves the perfor-

mance. For copy and paste, we paste the nuclei cells to balance the class imbalance.

All images are cropped to size 256 × 256 before using them as input to segmenta-

tion model. We use the AdamW [79] optimizer for training. The number of training

epochs is set to 600 epochs. The initial learning rate is set to 0.0001 and ”Poly”

learning rate schedule with a decay factor as 0.1. The segmentation model is trained

on server 4× RTX1080 Ti with batch size of 16.

To train , we run TranSeg on two datasets and extract subtype nuclei cell

features for each nuclei and its corresponding spatial coordinates. We use 7 graphs

and each graph has 500 subtype nuclei cells extracted. We perform this operation

after every 10 epochs to make sure that the observes different graphs.
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Model F1 Normal Benign UDH FEA ADH DCIS Invasive
CA-CNN 52.8 ± 1.9 50.3 ± 0.9 44.3 ± 1.2 41.3 ± 2.4 31.6 ± 3.3 51.6 ± 3.0 57.3 ± 0.9 86.0 ± 1.4
Patch-GAMIL 59.7 ± 1.3 55.5 ± 0.7 46.3 ± 1.5 44.7 ± 2.1 39.1 ± 3.0 68.2 ± 2.8 61.8 ± 1.2 84.1 ± 1.2
CGCNet 43.6 ± 0.5 30.8 ± 5.3 31.6 ± 4.6 17.3 ± 3.3 24.5 ± 5.2 58.9 ± 3.5 49.3 ± 3.4 75.3 ± 3.2
CG-GNN 55.9 ± 1.0 58.7 ± 6.8 40.8 ± 3.0 46.8 ± 1.9 39.9 ± 3.5 63.7 ± 10.4 53.8 ± 3.8 81.0 ± 3.3
HACT-Net 61.5 ± 0.8 61.5 ± 2.1 47.4 ± 2.9 43.6 ± 1.8 40.4 ± 2.5 74.2 ± 1.4 66.4 ± 2.5 88.4 ± 0.1
GAMIL w/o SNC 60.2 ± 1.2 64.5 ± 3.9 46.5 ± 2.3 45.2 ± 2.4 43.9 ± 1.6 72.1 ± 1.2 65.7 ± 1.8 86.3 ± 0.8
GAMIL 63.4 ± 0.5 63.6 ± 2.1 49.4 ± 2.1 48.2 ± 2.1 45.9 ± 1.1 77.5 ± 0.9 68.5 ± 1.3 89.9 ± 0.8

Table 4.2: BRACS: Mean of weighted F1 scores across four folds and for each class
across four folds. GAMIL w/o SNC refers to out proposed method without using
subtype nuclei cell features. Results are shown in %.

4.6 Experimental Results

4.6.1 Segmentation Results

For segmentation, we compare our proposed method with both semantic seg-

mentation and instance segmentation. For fair comparison, we perform the same data

augmentation on all the competitor methods. We perform 4 fold cross validation and

report the average results across 4-folds. All competitor methods where tuned to

perform best on the lizard dataset [2]. Cell Profiler is a software based cell analysis

method, which uses thresholding and series of post processing methods. U-Net [24]

is a semantic segmentation model where each pixel predicted belongs to one of the

classes. HoVer-Net [49] is a semantic segmentation model, which predicts horizontal

and vertical gradient maps to separate the neighbouring boundaries. CD-Net [64]

unlike HoVer-Net, predicts centripetal directions from the center of nucleus. CIA-

Net [80] uses a contour-aware mechanism to separate the neighbouring nuclei cells.

In the instance segmentation framework, we use Mask-RCNN [81] which is a two

stage pipeline, where pre-defined anchors are generated in the first stage and segmen-

tation is performed on the later stage. Celll-RCNNV3 [28], similar to Mask-RCNN,

uses panoptic attention based merging to use the semantic and instance level capabil-
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ities. In BRP-Net [65], boundary and segmentation masks are predicted in parallel

and fused to segment overlapping nuclei cells. Finally, Our proposed TranSeg uses

transformer based encoder and classification head to predict the nuclei cell classes for

each proposed nuclei. From table 4.1 shows the overall improvement in all metrics

when compared to the competitor methods. We also show the box-whisker plot in fig-

ure 4.5, where TranSeg results in a skewed distribution when compared to competitor

methods.

4.6.2 Classification Results

For tumor grade classification, we compare our proposed method with methods

that use only tissues, only nuclei cells and both tissues and nuclei cells as features.

Table 4.2 shows the comparative results of BRACS dataset and table 4.3 shows

the results of CRC dataset. We compare the proposed method with the following

competitor methods and tune the hyper-parameters to achieve the best performance

for each method.

CA-CNN [55] is a patch based classification method which uses context-

aggregation module. Patch-GAMIL [53] is a patch based classification method,

where multiple graphs are constructed with random patches of size 224×224. Patch-

GAMIL uses Multi Instance Learning to classify the tumor class. CGC-Net [10]

is a Cell Graph CNN. We construct the graph with nuclei cell hand-crafted features

extracted using HoVer-Net. CG-GNN [58] is a Cell Graph with GNN as the graph

architecture unlike CGC-Net, where Adaptive GraphSage is used as the architecture.

HACT-Net [58] combines Tissue Graph and Cell graph in a hierarchical approach.

For our proposed method, first we do not use the subtype nuclei cell features

extracted from TranSeg which we call GAMIL w/o SNC. Rather we use nuclei cell

features extracted from HoVer-Net, similar to HACT-Net. Finally, we use GAMIL
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with subtype nuclei cell features extracted from TranSeg. For BRACS dataset, in

table 4.2 shows that improves the state-of-the-art HACT-Net by over 1.9% and for

CRC dataset, improves by over 1.8%.

4.6.3 Computational time and memory analysis

We report the computational time taken to run TranSeg on a 1000×1000 image

tile over 10 runs with other competitor methods. We use 1× RTX 1080Ti with 12 GB

RAM to report the time complexity. The time taken by Mask-RCNN for segmentation

and classification is 103.4 seconds. We also report the time complexity of HoVer-Net,

which is 11.04 seconds. Meanwhile, our proposed method (TranSeg) takes 11.98

seconds which is similar to Hover-Net. The reason for having approximately 10×

faster computation than Mask-RCNN is that we do not use Anchor based approach

to generate proposal boxes. We also use a simple encoder and decoder architecture

when compared to HoVer-Net, which allows our proposed method to perform similar

to HoVer-Net. We also emphasize that, our model generates nuclei cell latent features

that HoVer-Net does not generate. The number of learnable parameters consumed by

HoVer-Net on a 256 × 256 image is 52.84 million parameters whereas, our proposed

method consumes 61.26 million parameters.

The time complexity of a general non-sparse graph is 𝑂(𝑛2) [77] where 𝑛 is

the number of nodes in the graph. In our proposed we consider multiple subsets of

graphs which make the time complexity 𝑘 ·𝑂(𝑚2), where 𝑚 ≪ 𝑛. Time taken to run

is 2.18 seconds.
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Model Acc Normal Low-grade High-grade
CA-CNN 95.1 97.4 93.2 96.2

Patch-GAMIL 97.1 97.9 95.6 97.2
CGCNet 95.9 97.8 94.2 95.8

HACT-Net 97.3 98.2 96.2 96.8
GAMIL w/o SNC 97.2 97.3 95.8 96.9

GAMIL 99.1 99.2 98.4 99.4

Table 4.3: CRC: Mean of Accuracy scores across four folds and for each class across
four folds. Acc refers to Accuracy. Results are shown in %.

4.7 Ablation studies

4.7.1 Need for subtype nuclei cell features

We first look into the need for subtype nuclei cell features for classifying different

tumor tissue types. To do this, we use our subtype nuclei cell features directly into

the architectures which were built based on nuclei cells. For this, we use HACT-

Net [58], CGC-Net [10], CG-GNN [58] by replacing their nuclei cell features by our

subtype nuclei cells features generated from the classification head of the segmentation

network. Table 4.4 shows the performance improvement when subtype nuclei cell

features are used as node in the cell-graph of their respective architectures in BRACS

dataset.

4.7.2 Classification Head

We investigate different classification heads to empirically find the need for cross-

attention based classification head. We compare with , and ML-Decoder classification

heads. The difference between ML-Decoder and is the removal self-attention layer

and non-learnable queries in ML-Decoder. In table 4.6, we see that GAP uses no
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Model weighted F1 w/o SNC weighted F1 w SNC
HACT-Net 61.5 ± 0.8 62.9 ± 2.5
CGC-Net 43.6 ± 0.5 50.1 ± 1.8
CG-GNN 55.9 ± 1.0 59.2 ± 2.1

Table 4.4: Need for subtype nuclei cell features on BRACS dataset. SNC refers to
subtype nuclei cell features.

Segmentation Head PQ Params (Millions)
Mask-RCNN 59.12 ± 3.98 1.86

Cell-RCNNV3 64.29 ± 4.1 2.56
BRP-Net 62.67 ± 3.76 10.72

Occlusion-aware 68.12 ± 3.45 0.56

Table 4.5: Ablation study on segmentation heads on lizard dataset.

additional learnable parameters and ViT [82] uses 9.56 million parameters which is

10× more than Ml-Decoder which is used as our classification head. ML-Decoder

reduces the number of parameters as well as improves the multi-class on lizard

dataset.

4.7.3 Segmentation Head

Classification Head multi-PQ Params (Millions)
43.12 0

[82] 45.76 9.56
ML-Decoder 49.71 0.28

Table 4.6: Ablation study on classification heads on lizard dataset.
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We explore different segmentation heads used in nuclei cell instance segmentation.

We compare with Cell-RCNNv3 [28], Mask-RCNN [81], BRP-Net [65] with occlu-

sion aware segmentation head. To have a fair comparison, we use the segmentation

head from the competitor methods into our segmentation framework keeping other

components fixed. We use multi- metric to measure the performance as we are inter-

ested in how the segmentation head performs on overlapping nuclei cells. Occlusion

aware segmentation head adds a little overhead on the computation but significantly

improves multi- over the competitor methods.

4.8 Conclusion

In this work, we show that by using subtype nuclei cell features improves the

tumor grade classification performance. To do this, we have proposed a subtype

nuclei cell segmentation framework that can accurately segment overlapping nuclei

cells and classify each nuclei cell into different subtypes more accurately. We have

extensively evaluated the proposed segmentation method with state-of-the-art seg-

mentation methods and show the significant performance improvement mainly in

multi-PQ metric. We have also proposed a Graph based Attention Multiple Instance

Learning method that uses subtype nuclei cell features and evaluated on tumor grade

classification datasets. Using , we show that tumor grade classification performance

increases when compared with state-of-the-art classification methods.
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(a) (b)

Figure 4.3: We show random mosaic data augmentation in (a), where random patches
from 4 images are clubbed together to form a new image and random ”copy and paste”
of nuclei cells in (b).
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LSTM

LSTM

LSTM

Figure 4.4: :Each graph contains random sampling of nuclei cell features and each
graph outputs a embedding vector from LSTM. The embedding vectors from each
graph is used to predict the class output.
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Figure 4.5: Box-whisker plot of multi-PQ on the lizard dataset.
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CHAPTER 5

Concluding Remarks and Future Directions

5.1 Concluding Remarks

This dissertation focuses on improving the performance of cancer staging from

histology images. To this end, we are the first to our knowledge to use granular infor-

mation to perform cancer staging. To this end, we observe and conduct experiments

on using sub type cell features as granular information to predict the cancer stage.

We have focused our research on ways to extract, gather and expand the sub type

nuclei cell dataset.

To do this, we have divided the experimental study into three sections. In

the first section, we investigate the spatial relationship of the tissue to understand

if the spatial relationship helps. In the second section, we create a framework to

use shape constraint and segment the nuclei cells which resembles the shape of the

training dataset. In the third section, we create a framework to use the extracted

nuclei cell features and use the spatial relationship to build a graph structure that

can be used to do cancer staging. We show through series of experiments that the

proposed framework are used to improve the performance of the cancer staging.

5.2 Future Directions

This research shows the roadmap on how to improve the performance of cancer

stages from the histology images. We have shown that by using granular information

such as subtype cell information, we could improve the performance of cancer staging.
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On the future directions, one could easily adapt the granular features such as subtype

cell features to perform survival rate of the patient.

The survival rate of the patient refers to identifying the survival of the patients

given the Whole slide images of the patient. The survival rate is a down stream task

which is very similar to that of the cancer staging where granular features plays a very

important cue to improve the performance. One could easily replace the classification

head of the cancer staging with that of the survival rate analysis task.
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