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ABSTRACT 

Electrophysiological, Hemodynamic, and Metabolic Effects of 

Transcranial Photobiomodulation (tPBM) on Topographical and 

Physiological Connectivity in the Human Brain 
Sadra Shahdadian 

The University of Texas at Arlington, 2022 

Supervising Professor: Dr. Hanli Liu 

   Transcranial photobiomodulation (tPBM) targets the human brain with near-infrared (NIR) light 

and is shown to affect human cognitive performance and neural electrophysiological activity as 

well as concentration changes of oxidized cytochrome-c-oxidase (∆[CCO]) and hemoglobin 

oxygenation (∆[HbO]) in human brain. 

   Brain topographical connectivity, which shows the communication between regions of the brain, 

and its alteration can be assessed to quantify the effects of external stimuli, diseases, and cognitive 

decline, in resting-state or task-based measurements. Furthermore, understanding the interactions 

between different physiological representations of neural activity, namely electrophysiological, 

hemodynamic, and metabolic signals in the human brain, has been an important topic among 

researchers in recent decades. In my doctoral study, neurophysiological networks were constructed 

using frequency-domain analyses on oscillations of electroencephalogram (EEG), ∆[CCO], and 

∆[HbO] time series that were acquired by a portable EEG and 2-channel broadband near-infrared 

spectroscopy (2-bbNIRS). 

   Specifically, my dissertation included three aims. The first one was to examine how tPBM 

altered the topographical connectivity in the electrophysiological oscillations of the resting human 

brain. As the first step, I defined and found key regions and clusters in the EEG sensor space that 
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were affected the most by tPBM during and after the stimulation using both cluster-based power 

analysis and graph-based connectivity analysis. The results showed that the right prefrontal 1064-

nm tPBM modulates several global and regional electrophysiological networks by shifting the 

information path towards frontal regions, especially in the beta band. For the second aim, I 

performed 2-bbNIRS measurements from 26 healthy humans and developed a methodology that 

enabled quantification of the infra-slow oscillation (ISO) power and connectivity between bilateral 

frontal regions of the human brain in resting state and in response to frontal tPBM stimulation at 

different sites and laser wavelengths. As the result, several stable and consistent features were 

extracted in the resting state of 26 young healthy adults. Moreover, these features were used to 

reveal some effects of tPBM on prefrontal metabolism and hemodynamics, while illustrating the 

similarities and differences between different stimulation conditions. Finally, the third aim was to 

investigate the resting-state prefrontal physiological network and the corresponding modulation in 

response to left frontal 800-nm tPBM by determining the effective connectivity/coupling between 

each pair of the electrophysiological, hemodynamic, and metabolic ISO of the human brain. 

Complementary to the previous studies, my study showed that prefrontal tPBM not only modulates 

the information path between two locations of the prefrontal cortex, it can also induce unilateral 

alterations in interactions between neural activity, hemodynamics, and metabolism. Overall, my 

dissertation shed light on the mechanism of action of prefrontal tPBM.   
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Chapter 1 

Introduction 

1.1 Significance and Specific Aims 

A type of photobiomodulation technique known as transcranial photobiomodulation (tPBM) 

targets the human brain with near-infrared (NIR) light [1] and human performance on a variety of 

cognitive tasks has been shown to improve in several studies using tPBM with different 

wavelengths for laser and LED [2-6]. Our group has previously shown that tPBM enabled 

significant upregulation in concentrations of oxidized cytochrome-c-oxidase ([CCO]) and 

hemoglobin oxygenation ([HbO]) during and after tPBM on the right forehead using broadband 

near-infrared spectroscopy (bbNIRS) [7-9]. These studies support the hypothesis that tPBM photo-

oxidizes CCO to boost the metabolism of cells [1, 10, 11].  

   Electroencephalogram (EEG) is commonly used to monitor and record the electrical activity of 

neurons. Brain functional (topographical) connectivity, which shows the communication between 

regions of the brain, can be utilized as a measure to understand the effects of stimuli, diseases, and 

cognitive decline, in resting-state or task-based measurements [13-20]. Understanding the 

correlation between different physiological systems, namely electrophysiological, hemodynamic, 

and metabolic systems in the human brain, has been an attractive topic among researchers in recent 

decades [21-25]. In this study, Neurovascular, neurometabolic, and metabolic-vascular coupling 

is calculated using oscillations of EEG, ∆[HbO], and ∆[CCO] time series to investigate the 

connectivity between different physiological systems in a specific region of the brain. 

The goal of this study is to examine how tPBM can alter the topographical and physiological 

connectivity in the electrophysiological, hemodynamic, and metabolic systems of the human brain 
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in resting state. As the first step, I found the regions and clusters in EEG sensor space that have 

been affected the most by tPBM during and after stimulation using both cluster-based power 

analysis and graph-based connectivity analysis. In the second step, I assessed the power and 

connectivity between bilateral frontal regions of the human brain in resting state and in response 

to different conditions of tPBM using two-channel bbNIRS system. Finally, I quantified the 

modulation in metabolic-vascular and physiological network in rest and in response to left frontal 

tPBM by determining the effective connectivity between electrophysiological, hemodynamic, and 

metabolic oscillations of the human brain using a dual-modality (i.e., EEG and bbNIRS) dataset. 

1.1.1 The need for a topographical mapping of the brain’s electrophysiological network 

modulation in response to tPBM  

The electrophysiological response of the human brain to tPBM is not well studied and understood. 

All previous studies utilized either laser or LED sources of NIR light and recorded the 

electrophysiological responses using a 19-channel (i.e., the 10-20 EEG electrode placement) or 

64-channel (i.e., the 10-10 electrode placement) EEG system. Power spectral density (PSD) 

analysis and graph theory analysis (GTA) are two major data analysis methods. Graph theory is a 

branch of mathematics that can serve as a theoretical tool for quantifying the specific features of 

network architecture (topology). The outcome of GTA can provide information on the anatomical 

localization of areas responding to given stimuli or tasks (topography), or human brain functional 

connectivity and networks [26].  

Although the previous studies have consistently reported that tPBM enables alterations in EEG 

PSDs, different tPBM protocols, such as laser versus LEDs, 19- versus 64-channel electrodes, and 

PSD versus GTA analysis, have given rise to sparse and incomparable findings. For example, only 

two studies reported 64-channel EEG responses to tPBM [27, 28], but they did not examine tPBM-
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induced topological alterations in brain connectivity. On the other hand, based on 19-channel EEG, 

two recent studies reported tPBM-induced modulations of global network parameters [29] and 

alterations in brain connectivity between the two hemispheres [30], respectively. However, light 

stimulation was delivered at different cortical regions, either locally at the right forehead or at 

multiple scalp sites near the default mode network, and by LEDs. 

The distinct focus of this study was to investigate tPBM-induced modulations of EEG functional 

connectivity by performing GTA on a 64-channel EEG, followed by quantification of changes in 

brain connectivity in global network metrics and 10 nodal/local regions. Specifically, I identified 

10 cortical clusters in the sensor space that were most affected by tPBM during and after 

stimulation. Next, cluster-based permutation testing after PSD analysis was performed to identify 

topographical regions that were significantly modulated by tPBM. Then, global and nodal 

graphical measures or metrics were obtained based on GTA, revealing respective augments of 

functional connectivity, brain network, and information pathways in response to tPBM.  

1.1.2 The need for a topographical mapping of the resting state prefrontal cortex 

hemodynamic and metabolic network  

Many studies have focused on investigating the mechanism of cerebral metabolic activity and have 

found vasomotion to be a major source of metabolic and hemodynamic modulations [31-35]. 

Vasomotion is a spontaneous oscillation that originates from the blood vessel wall with an infra-

slow oscillation (ISO) of 0.005-0.2 Hz [36, 37]. In addition, a correlation is found between the ISO 

of cerebral metabolic activities and human cognitive functions [38]. Furthermore, vasomotion 

malfunction has been observed in older adults and in patients with different diseases, such as 

atherosclerosis [39], cardiovascular disease [40], and Alzheimer’s disease [41]. Thus, it may be 

beneficial to quantify and characterize cerebral metabolism in the ISO range, which may provide 
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better insight into neurophysiological mechanisms and discover features that differ between 

healthy humans and patients with brain disorders. 

In the present exploratory study [42], I hypothesized that 2-bbNIRS, along with frequency-domain 

analysis, one can quantify prefrontal cortical connectivity and coupling of ISO in the resting human 

brain. Specifically, the features analyzed from the 2-bbNIRS time series included (1) resting-state 

spectral amplitude (SA) of bilateral cortical hemodynamic and metabolic (i.e., SAHbO_i and 

SACCO_i) activities, where i represents either the left or right prefrontal region, (2) bilateral 

hemodynamic connectivity (bCONHbO), (3) bilateral metabolic connectivity (bCONCCO), and (4) 

coupling between cerebral hemodynamic and metabolic activities on the unilateral side (uCOPHbO-

CCO_i) of the prefrontal cortex over the three ISO frequency bands. Then the results support this 

hypothesis by presenting relatively stable and consistent values for these features in healthy young 

humans, revealing the translation potential of these features for future clinical applications.  

1.1.3 The need for a topographical mapping of the prefrontal cortex hemodynamic and 

metabolic network in response to different wavelengths and stimulation sites of 

tPBM 

Our group recently introduced a set of hemodynamic and metabolic characteristics quantified by 

frequency-domain spectral amplitude and connectivity analysis of hemodynamic and metabolic 

ISO activity of prefrontal cortex, assessed by a dual-channel bbNIRS setup [43]. These metrics are 

(1) bilateral hemodynamic (i.e., [HbO]) connectivity, (2) bilateral metabolic (i.e., [CCO]) 

connectivity, (3) unilateral hemodynamic-metabolic coupling on the left and (4) right side of the 

prefrontal cortex. In addition, we have demonstrated that these constant and relatively reproducible 

characteristics can be considered potential biomarkers to identify neurological disorders and 

diseases [44]. Furthermore, we have shown distinct alterations in these metrics as well as Δ[HbO] 
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and Δ[CCO] ISO spectral amplitudes across all three frequency bands in response to 1064-nm 

tPBM. Modulation of Δ[HbO] and Δ[CCO] in response to tPBM is also demonstrated to be 

wavelength-dependent in another study [12]. As reported in [12],  800-850 nm wavelengths enable 

CCO to be more stimulated with an increased concentration. On the other hand, 1064 nm laser 

have demonstrated its effect on enhancement of human cognition. 1064 nm is not at the absorption 

peak of CCO, but it has much less light scattering ability or a smaller light scattering coefficient 

than that at 800–850 nm light which leads to deeper penetration in tissue. Moreover, no behavioral 

or physiological alteration is reported in response to left prefrontal tPBM. Thus, it would be 

beneficial to investigate the effect of the laser’s wavelength and stimulation site on the alteration 

of the proposed metrics. 

In this study, young healthy human participants were at rest while ∆[HbO] and ∆[CCO] time 

series with a sampling frequency of 0.67 Hz were acquired using a 2-bbNIRS system from two 

sides of the prefrontal cortex in pre- and post-tPBM. These time series were then analyzed to 

quantify the amplitude and coherence of hemodynamic and metabolic ISO over three frequency 

bands. In the first set of analyses, I assessed the spectral amplitude of hemodynamic and metabolic 

activity (SAHbO and SACCO) over the three ISO frequency bands. Then, four physiological metrics 

were used to characterize the connectivity/coupling between each pair of signals. These measures 

include (1) bilateral hemodynamic connectivity (bCONHbO), (2) bilateral metabolic connectivity 

(bCONCCO), (3) coupling between cerebral hemodynamic and metabolic activities on the 

ipsilateral side to the stimulation (uCOPIpsi), and (4) coupling between cerebral hemodynamic and 

metabolic activities on the contralateral side to the stimulation (uCOPContra), of the prefrontal cortex 

over the three ISO frequency bands. Five separate visits with different conditions were used for 

each participant including 8 minutes of (1) Right prefrontal 800-nm laser, (2) Right prefrontal 850-
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nm laser, (3) Right prefrontal sham, (4) Left prefrontal 800-nm laser, (5) Left prefrontal sham in a 

randomized order.  

Then results support the hypothesis that hemodynamic and metabolic ISO is significantly 

modulated by tPBM. This modulation is distinct for each frequency band, can be local or 

bilateral/global, and in some cases is closely related to the wavelength and stimulation location. 

These observations can be beneficial for further investigation of the mechanism behind cerebral 

metabolism as well as wavelength- or location-specific cognitive function improvement or 

treatment of neurological disorder/disease based on the modulated metric and frequency band. 

1.1.4 The need for a physiological connectivity assessment of the brain’s 

electrophysiological, hemodynamic, and metabolic network modulation in response 

to tPBM 

Investigation of the intertwined behavior of hemodynamic and metabolic ISO activities can be 

facilitated by assessment of metabolic-vascular coupling (MVC), and utilizing EEG and bbNIRS 

in parallel opens the door to the assessment of neurometabolic coupling (NMC). Although these 

different metrics can be assessed separately, they can be observed as a semi-complex physiological 

network of a specific region in the cerebral cortex where electrophysiological (here, the beta band 

of EEG), hemodynamic, and metabolic activity are the nodes, and these coupling metrics are the 

links between them. Furthermore, the level by which the hemodynamic and metabolic activities 

on lateral sides of prefrontal cortex are interacting can be quantified by the topographical 

functional connectivity. 

In this study, a dual-mode setup (EEG and bbNIRS) was utilized to assess the topographical 

effective connectivity between lateral prefrontal hemodynamic and metabolic ISO to identify any 

directionality between these activities in young healthy human adults at rest. In addition, local 
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MVC was quantified to determine the effective coupling between hemodynamic and metabolic 

ISO. Furthermore, I constructed two local physiological networks on the lateral prefrontal cortices 

consisting of a beta band of EEG, Δ[HbO], Δ[CCO] as nodes, and NVC, NMC, and MVC as links. 

Finally, I quantified the tPBM-induced changes in the abovementioned networks and investigated 

any possible alterations in information flow among these nodes. 

Then the results support the hypothesis that resting-state interactions between 

electrophysiological, hemodynamic, and metabolic ISO is mostly bi-directionally balanced and 

they can be significantly altered by tPBM. This modulation can be local or bilateral/global. These 

observations can be beneficial for further investigation of the mechanism behind NVC, NMC, and 

MVC as well as location-specific cognitive function improvement or treatment of neurological 

disorders/diseases based on the modulated metrics. 

 

 

  



8 
 

Chapter 2 

Neuromodulation of brain topography and network 
topology by prefrontal transcranial photobiomodulation 

 

Sadra Shahdadian, Xinlong Wang, Hashini Wanniarachchi, Hanli Liu 
 

(This chapter is a manuscript that is under revision in Journal of Neural Engineering) 

2.1 Introduction   

Transcranial photobiomodulation (tPBM) is a non-invasive neuromodulation technique that 

delivers near-infrared (NIR) light to the human brain using lasers or light-emitting diode (LED) 

clusters [11, 45-47]. Recent studies have demonstrated the promising effects of tPBM in treating 

traumatic brain injuries  [47-51], psychiatric or neurological disorders [52-55], and in enhancing 

cognitive performance in normal humans [2-6, 56]. To better understand the underlying 

mechanism of tPBM, neurophysiological measurements of the human brain were performed non-

invasively from healthy human controls using an optical spectroscopy approach before, during, 

and after prefrontal tPBM. The results of these measures quantified and demonstrated tPBM-

induced increases in mitochondrial metabolism (i.e., the redox state of cytochrome-c-oxidase 

(∆[CCO])) and hemodynamic oxygenation (i.e., oxygenated haemoglobin (∆[HbO])) [7-9]. 

Moreover, it was shown that the increases in both ∆[CCO] and ∆[HbO]  were not caused by the 

thermal effects of the tPBM [57], hardware-related noise, or drift [58, 59]. All these published 

reports provide strong support that tPBM facilitates the photo-oxidization of mitochondrial CCO 

to boost the cellular metabolism of neurons [1, 10, 11].  

However, the electrophysiological response of the human brain to tPBM is not well studied 

and understood. Table 2.1 summarizes the recently published articles that reported scalp 
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electroencephalography (EEG) responses to tPBM with the respective measurement and analysis 

parameters. All studies utilized either laser or LED clusters of NIR light sources and recorded the 

electrophysiological responses using a 19-channel (i.e., the 10-20 EEG electrode placement) or 

64-channel (i.e., the 10-10 electrode placement) EEG system. Pruitt et al. [12] have shown that the 

laser and LED have different effects on the stimulated tissue in terms of changes hemodynamic 

and metabolic activity which is mainly due to significantly lower irradiance of LED sources, which 

is a result of broader bandwidth of LED compared to laser. The table also lists two major data 

analysis methods, namely, power spectral density (PSD) analysis and graph theory analysis (GTA). 

Graph theory is a branch of mathematics that can serve as a theoretical tool for quantifying the 

specific features of network architecture (topology). The outcome of GTA can provide information  

on the anatomical localization of areas responding to given stimuli or tasks (topography), or human 

brain functional connectivity and networks [26].  

Table 2.1 List of references that reported EEG responses to tPBM with related measurement and analysis parameters 

Refs. Authors Source of tPBM 
Location of 

tPBM 
# of 

Subjects 
# of Channels PSD analysis 

Graph-theory based 
connectivity analysis 

[60] 
Berman, 

et al., 2017 
Multiple LED clusters 

(1070 nm) Whole head 19 19 
No. It was based on 

qEEG analysis No 

 
[30] 

Ghaderi, 
et al., 2021 

1 cluster of LED 
(850 nm) 

Right 
forehead 

40 19  
No. 

Yes; changes in connectivity 
within each of or between two 

hemispheres 

[61] Spera, et al. 
4 clusters of LED 

(830 nm) 
Bilateral 
frontal 10 19 Yes, with topography No 

[5] 
Vargas, et al. 

2017 
Laser 

(1064 nm) 
Right 

forehead 12 19 
Yes, but no 
topography No 

[27] 
Wang, et al., 

2021 
Laser 

(1064 nm) 
Right 

forehead 46 64 Yes, with topography No 

 
[28] 

Wang, et al. 
2022 

Laser 
(1064 nm) 

Right 
forehead 

44  
64 

No. It was based on 
singular value 

decompensation 

 
No 

[29] 
Zomorrodi, et 

al., 2019 
3 clusters of LED 

(810 nm) 

3 default 
mode 

locations 
20 19 Yes, with topography 

Yes; changes in global 
connectivity parameters only 

  
Current study 

Laser 
(1064 nm) 

Right 
forehead 

45 64 Yes, with topography 
Yes; changes of connectivity in 
global network metrics and 10 

nodal regions 
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PSD is the most common method for analysing EEG data and gives rise to an absolute 

oscillation power spectrum of local electrophysiological signals in the frequency range of 0.5 to 

70 Hz or higher. Frequency-dependent PSD values facilitate a better understanding of the effects 

or impacts of external stimuli, cognitive decline, disturbances in consciousness, and certain brain 

disorders in the human brain [13, 16-20]. However, statistical analysis of multi-channel EEG is 

challenging when conducting multi-variable comparisons (e.g., 64 comparisons for 64 channels) 

[62, 63]. Cluster-based permutation testing is an established method for minimizing type-I errors 

in null hypothesis testing for these datasets. This method is based on the fact that the 

electrophysiological time series of brain oscillations is highly correlated with neighbouring 

channels [63]. Using cluster-based permutation testing, we identified topographical clusters of 

EEG channels on the human scalp template, where frequency-specific EEG oscillation powers 

were significantly altered between two different conditions (i.e., active tPBM versus sham 

intervention). Consequently, the corresponding brain regions with modulated powers were 

identified. 

Topologically, GTA is a practical and quantitative approach for characterizing functional 

connectivity and networks in the human brain [64]. In this method, a network is considered a 

mathematical representation of a real-world complex system and is defined by the composition of 

nodes (vertices) and links (edges) between pairs of nodes. The outcome of GTA measures mainly 

represents the functional integration, segregation, and centrality of the network, all of which can 

topologically characterize changes in brain functional connectivity in both global and nodal 

regions [14, 15, 65]. When GTA is used to analyse EEG data, the scalp locations of the EEG 

electrodes represent the network nodes, and the links among the electrodes represent the functional 

connections between these nodes [14]. 
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In general, both PSD and GTA-derived parameters or metrics can provide instructive 

information on functional brain networks in the resting state or under external neuromodulation. 

Because multi-channel EEG signals contain rich information in the temporal, spectral, and spatial 

domains, these pieces of information can be grouped temporally and/or spectrally to visualize brain 

activation and networks in topographical clusters and regions [66, 67].     

Although the studies summarized in Table 2.1 have consistently reported that tPBM enables 

alterations in EEG PSDs, different tPBM protocols, such as laser versus LEDs, 19- versus 64-

channel electrodes (i.e. instrument with low cost and low setup time versus high spatial resolution 

data), and PSD versus GTA analysis, have given rise to sparse and incomparable findings. For 

example, only two studies reported 64-channel EEG responses to tPBM [27, 28], but they did not 

examine tPBM-induced topological alterations in brain connectivity. On the other hand, based on 

19-channel EEG, two recent studies reported tPBM-induced modulations of global network 

parameters [29] and alterations in brain connectivity between the two hemispheres [30], 

respectively. However, light stimulation was delivered at different cortical regions, either locally 

at the right forehead or at multiple scalp sites near the default mode network, and by LEDs.  

As shown in Table 2.1, the distinct focus of this study was to investigate tPBM-induced 

modulations of EEG functional connectivity by performing GTA on a 64-channel EEG, followed 

by quantification of changes in brain connectivity in global network metrics and 10 nodal/local 

regions. Specifically, we identified 10 cortical clusters in the sensor space (scalp EEG) that were 

most affected by tPBM during and after stimulation. Next, cluster-based permutation testing after 

PSD analysis was performed to identify topographical regions that were significantly modulated 

by tPBM. Then, global and nodal graphical measures or metrics were obtained based on GTA, 
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revealing respective augments of functional connectivity, brain network, and information 

pathways in response to tPBM. 

2.2 Materials and methods 

2.2.1 Participants   

A total of 49 healthy human subjects (30 men and 19 women; 26 ± 8.8 years of age) were enrolled 

from the local community of the university. The subjects were seated on a chair with closed eyes 

in resting state during the measurement. Four subjects were removed from the dataset because of 

self-reported or observed tiredness or sleepiness (through subjects’ movement and EEG signal) 

during the measurement, resulting in 45 participants being considered for further data analysis. 

The participants were instructed to refrain from consuming any caffeinated drinks for at least 3 h 

before each experiment. All measurements were obtained with informed consent from each 

participant. 

2.2.2 Experimental setup and protocol 

In this study, tPBM and sham experiments were performed using a continuous-wave laser at 1064 

nm (Model CG-5000 Laser, Cell Gen. Therapeutics LLC, Dallas, TX, USA), which was cleared 

by the Food and Drug Administration (FDA). The laser was delivered to each participant’s right 

forehead above the eyebrow with an aperture of 4.2 cm in diameter and a period of 8 min. A sham 

experiment was performed with the laser device turned on but set to 0.1 W also for 8 min, while 

Figure 2.1 A crossover experimental protocol for tPBM and sham experiments (n=45) with 
simultaneous EEG recording. The participants were at wakeful resting state with eyes closed. 
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the laser aperture was covered with a black-colour cap. A power meter was used to confirm that 

the output power in the presence of the cap was zero. Table 2.2 lists the light irradiance (W/cm2), 

light fluence (J/cm2), and total energy (dose) (J) delivered by the 8-min active and sham tPBM, 

respectively. The participants wore protective goggles throughout the experiment.  

Table 2.2 Parameters for 8-min tPBM and sham by a 4.2-cm diameter laser at 1064 nm over the right 
eyebrow 

Stimulation 
Irradiance 

(W/cm2) 

Fluence 

(J/cm2) 

Total 

Dose (J) 

tPBM 0.25 120 1662 

sham 0 0 0 

 

EEG data were collected during the entire experiment using a 64-channel EEG instrument 

(Biosemi, Netherlands). Each subject wore an EEG cap with 64 electrodes positioned according 

to the standard 10-10 EEG electrode placement [68]. Electrode gel (MFI Medical Equipment Inc., 

CA, USA) was used to increase the signal-to-noise ratio of the recorded EEG data. The recorded 

EEG time series were directed to a desktop computer using electrical cables. 

The stimulation protocol (figure 2.1) consisted of a 2-min baseline (pre), an 8-min stimulation 

(active tPBM or sham), and a 3-min recovery (post) period. The EEG data were acquired at either 

256 Hz or 512 Hz; all 512-Hz data were down-sampled to 256 Hz during data pre-processing. 

tPBM was delivered near electrodes FP2 and AF8 under either sham or active conditions. 

The study was conducted in a single-blind crossover design, with each subject completing both 

sham and active tPBM experiments in a random order, with a minimum 5-day interval between 

the two experiments. All participants were asked whether they felt drowsy during the experiment 

and whether they noticed any heat sensations at the stimulation site.  
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2.2.3 Overview of data processing steps 

Each of the recorded EEG datasets represented a 13-min time series of 64 channels during both 

the active and sham tPBM experiments for 45 participants (after exclusion of 4 subjects). Because 

the data processing and analysis procedures included multiple steps in this study, we outline a flow 

chart of these steps in figure 2.2 to better guide the reader through them easily. Briefly, there were 

five steps in data processing: (1) data pre-processing, (2) PSD-based power analysis to obtain 

frequency-specific power topography, (3) graphical edge formation based on the “imaginary part 

of coherence” analysis, (4) GTA-based analysis to quantify global connectivity metrics altered by 

tPBM, and (5) GTA-based analysis to identify local or nodal graphical metrics changed by tPBM 

in 10 cluster regions.  

2.2.4 Data pre-processing for EEG time series 

EEGLAB, an open-source software package based on MATLAB, was used to pre-process the EEG 

data. First, EEGLAB's "filtfilt" function was used to band-pass filter the 64-channel raw EEG data 

Figure 2. 2 A data processing flow chart, including steps for (1) data pre-processing (blue boxes), 
(2) PSD-based analysis and permutation tests to form power topographies (orange boxes), (3) 
graphical edge formation based on the “imaginary part of coherence” analysis, (4) GTA-based 
assessment for global graphical connectivity metrics (pink boxes), and (5) GTA-based 
assessment for nodal graphical connectivity metrics (gray boxes). 
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to ensure zero phase distortion of the time series, followed by a 60-Hz notch filter to eliminate line 

noise. Second, each EEG time series was re-referenced with respect to the voltage average over 

all the 64 channels. Next, robust PCA (rPCA) was applied to identify and remove significant signal 

artifacts and/or outliers from EEG signals [69, 70]. Finally, to further remove noise and artifacts 

[71, 72] such as eye movements, saccades, and jaw clenching, independent component analysis 

(ICA) [73, 74] was used.  

To quantify the dose-dependent responses of EEG to tPBM/sham, each artifact-free time series 

was divided into four temporal sections: (1) the last minute of the 2-min baseline before the onset 

of active or sham stimulation (pre), (2) the first 4-min stimulation period (Stim1), (3) the second 

4-min stimulation period (Stim2), and (4) the first 2-min recovery (post). The pre-processed data 

were then used for both PSD analysis and GTA-based assessment of graphical metrics during each 

temporal segment. 

2.2.5 EEG power spectral density and changes in power 

With the use of the “Pwelch” function (with a 4-sec window and 75% overlap [75]) in EEGLAB, 

a PSD curve of artifact-free time series for each EEG channel in each time section was calculated. 

The frequency-specific PSD bandwidths were then selected to cover the delta (1-4 Hz), theta (4-8 

Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-70 Hz) bands. Next, the mean power change 

at each of the five frequency bands, f, ∆mPowerf, during each of the three temporal segments 

(Stim1, Stim2, and post) was normalized to the last minute of its respective baseline (pre), as 

expressed below [27]: 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖𝑓𝑓 =
𝑃𝑃𝑃𝑃𝐷𝐷𝑓𝑓

𝑖𝑖 − 𝑃𝑃𝑃𝑃𝐷𝐷𝑓𝑓
𝑝𝑝𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃𝐷𝐷𝑓𝑓
𝑝𝑝𝑝𝑝𝑝𝑝

× 100% =
�𝑃𝑃𝑃𝑃𝐷𝐷𝑓𝑓

𝑖𝑖 − 𝑃𝑃𝑃𝑃𝐷𝐷𝑓𝑓
𝑝𝑝𝑝𝑝𝑝𝑝� × 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑃𝑃𝑃𝑃𝐷𝐷𝑓𝑓
𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

× 100% 

=
𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑓𝑓𝑖𝑖 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝
× 100%.                                                                                                       (2 − 1) 
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where superscript “f” denotes the five frequency bands, subscript “i” represents the three temporal 

segments (Stim1, Stim2, or post), subscript “pre” represents the baseline segment, fband denotes 

the bandwidth of a chosen frequency band for PSD calculations, and PSDi and PSDpre indicate 

bandwidth-averaged PSD values. Note that ∆mPower is a relative value or percentage change in 

bandwidth-averaged power caused by tPBM or sham treatment (see the first two orange boxes in 

figure 2.2). To illustrate the difference in ∆mPower between the two conditions, we further 

calculated the sham-subtracted (ss) and tPBM-induced change in power (∆mPowerss) at each 

electrode for each of the five frequency bands within each of the three temporal periods: 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑟𝑟𝑠𝑠𝑠𝑠−𝑖𝑖
𝑓𝑓 = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀−𝑖𝑖

𝑓𝑓 − 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑟𝑟𝑠𝑠ℎ𝑎𝑎𝑎𝑎−𝑖𝑖
𝑓𝑓 .                            (2− 2) 

2.2.6 Statistical analysis for EEG power topography 

Because EEG data taken at neighbouring time points and spatial channels are highly correlated, it 

is necessary to perform advanced statistical analysis to remove such correlations and for multi-

variable comparisons. For this purpose, we utilized several functions (including “ft_freqstatistics”) 

available in the FieldTrip toolbox [76, 77] to perform cluster-based permutation tests for statistical 

comparisons of changes in the EEG power (i.e., ∆mPowerss f as shown in Eq. (2-2)) among the 64 

electrodes in each of the five frequency bands within each of the three temporal periods. In 

principle, cluster‐based permutation tests have two components: The first is the cluster‐forming 

algorithm, which converts one high-dimensional observation into a quantifiable summary of its 

cluster structure. The second one creates a surrogate null distribution, against which the observed 

data is compared to obtain p-values [78].  

Following this method, we first grouped electrodes as clusters within a given scalp distance 

(e.g., 4-5 cm), followed by identification of the EEG channels whose ∆mPowerss
f values were 

significantly different from zero based on parametric or non-parametric testing for each electrode 
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at a significance level of 0.05. Second, a statistical evaluation was performed by taking the sum of 

the t-values over each cluster. Third, the summed t-value was compared to a null distribution. The 

null distribution for both permutation tests and cluster-based correction was obtained by randomly 

permuting ∆mPowerss
f values 1000 times. (see the last orange box in figure 2.) 

2.2.7 Amplitude and phase decomposition of EEG signal 

For GTA-based connectivity quantification, we determined the edges or links of a graphical 

network between all pairs of EEG electrodes. Based on the mathematical definition of the graphical 

connectivity measure, the correlation between the phases or amplitudes of these EEG channels can 

be interpreted as the functional connectivity between these points [13, 14]. Thus, we performed 

amplitude and phase decompositions of the time series for all 64 channels. The amplitude and 

phase of an EEG time point can be represented as a complex number [13, 15]. Moreover, 

multitaper power spectral density estimation is a well-known method for extracting spectral 

information from time series [79, 80]. In this study, we utilized multiple tapers, namely, Slepian 

sequences, to taper the EEG signal in the time domain before performing the Fourier transform. 

This part of the calculation was conducted using the “ft_freqanalysis” function within the FieldTrip 

toolbox to generate a complex time series [76].  

2.2.8 Imaginary part of coherence as EEG connectivity measure 

Coherence, a widely used connectivity measure, is a frequency-domain function equivalent to the 

time-domain cross-correlation function. The coherence coefficient is a normalized quantity 

between 0 and 1, and is computed mathematically for the frequency of ω as follows [13]: 

 𝑐𝑐𝑐𝑐ℎ𝑥𝑥𝑥𝑥(𝜔𝜔) = �𝑆𝑆𝑥𝑥𝑥𝑥(𝜔𝜔)�

�𝑆𝑆𝑥𝑥𝑥𝑥(𝜔𝜔)𝑆𝑆𝑦𝑦𝑦𝑦(𝜔𝜔)
=

�𝐴𝐴𝑥𝑥(𝜔𝜔)𝐴𝐴𝑦𝑦(𝜔𝜔)𝑒𝑒𝑖𝑖(𝜑𝜑𝑥𝑥(𝜔𝜔)−𝜑𝜑𝑦𝑦(𝜔𝜔))�

�𝐴𝐴𝑥𝑥2(𝜔𝜔)𝐴𝐴𝑦𝑦2 (𝜔𝜔)
 , (2-3) 
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where Sxx, Syy denote the power estimates of signals x and y, and Sxy represents the averaged cross-

spectral density term of the two signals. In addition, A and ϕ are amplitude and phase of the signals 

obtained from multitaper method. 

The main drawback of using coherence in sensor space, especially in high-density EEG, is the 

effect of volume conduction. In general, signals generated in one region of the brain can be 

detected by several electrodes because of the high electrical conductivity of the brain, which leads 

to an artificially high coherence value among these channels. To negate this effect, the numerator 

of equation (2-3) is set to zero when the phase difference between x and y signals is 0 or π. This 

method is called the ‘imaginary part of coherence’, which explicitly removes instantaneous 

interactions that are potentially spurious owing to volume conduction [13]. A study has shown that 

the imaginary part of coherence allows for excellent detection of brain interaction from rhythmic 

EEG data [81]. 

The pairwise connectivity values for all pairs of electrodes (64 in this study) can be represented 

in an n×n (i.e., 64 × 64) adjacency matrix, where n is the number of nodes (i.e., 64 channels). The 

FieldTrip toolbox facilitates the computation of the imaginary part of coherence for all pairs of 

channels using the “ft_connectivityanalysis’ (see the first two green boxes in figure 2). 

Each temporal segment was divided into 10-second epochs (i.e., 6 epochs per min), and the 

adjacency matrices generated for all epochs in each frequency band were averaged for each of the 

three temporal segments and five frequency bands for each subject individually. These averaged 

matrices were then binarized by varying the sparsity level and used for further GTA-derived global 

and nodal connectivity analysis as described in the following sections. 
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2.2.9 Global and nodal graphical metrics selected for GTA 

Graph theory analysis enables researchers to explore topological changes in brain networks 

through pair-wise functional connectivity between channels (nodes). A network and its regions 

can be characterized based on three main measures: functional segregation, functional integration, 

and centrality. A couple of previous studies have shown tPBM-induced alterations in global 

connectivity and graph measures of the brain network with different setups and protocols [29, 30]. 

However, these studies focused only on the residual modulation in post stimulation with a lower 

spatial EEG electrode placement (i.e., 19 channels). 

In this study, we utilized GRETNA [82], a widely used GTA toolbox, to quantify the global 

and nodal graphical metrics of the human brain network for individual subjects under both active 

and sham tPBM in four temporal segments and five frequency bands. This step was repeated 19 

times to assess the respective values of the chosen metrics under a sparsity range from 5% to 95% 

with an increment of 5% (see the last two green boxes in figure 2.2). 

To examine tPBM-induced effects, five global graphical measures were chosen for the 

analysis: synchronization (S), global efficiency (GE), small-worldness (SW), rich-club, and 

assortativity. However, no significant difference was observed between tPM and sham groups in 

rich-club and assortativity. The group-level values (averaged over 45 subjects) for each global 

measure at each sparsity level were statistically compared between the active tPBM and sham 

conditions using a paired t-test (see the pink boxes in figure 2.2).  

As noted in the Introduction, two publications reported tPBM-induced modulations of the 

GTA-derived brain network [29, 30]. However, they showed alterations only in global network 

metrics [29] and within each hemisphere or between two hemispheres [30], respectively. In this 

study, we aimed to detect the ability of tPBM to neural-modulate regional or local brain 
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connectivity, based on 64-channel EEG measurements. Accordingly, our analysis gave rise to five 

nodal graphical metrics, namely, nodal clustering coefficient (nCC), nodal efficiency (nE), nodal 

local efficiency (nLE), betweenness centrality (BC), and degree centrality (DC), which were 

significantly altered by tPBM across different clusters on the human scalp. It is worth noting that 

another nodal metric, i.e., shortest path length, was evaluated and no statistically significant 

difference was observed in comparison between sham and tPBM groups. The definitions or 

explanations of the three global and five local graph metrics are listed in Table A1 in the Appendix. 

2.10 Topographical clusters for nodal connectivity 

Although GTA was performed on the 64-

channel EEG, resulting in quantitative 

changes in nodal network metrics, the 64 

EEG nodal locations were too dispersed to 

locate or identify cortical and anatomical 

regions on the human scalp. Thus, we focused 

on 10 nodal/local sections according to 

several key cortical areas of the human brain, 

namely the prefrontal, central, temporal, 

parietal, and occipital regions [83]. 

Therefore, 64 nodes (i.e., EEG channels) were divided into 10 clusters based on their locations in 

the brain topography, with an average of 6-10 electrodes in each cluster. Figure 2.3 illustrates the 

topographical clusters of EEG electrodes. The 10 medial electrodes were grouped twice in both 

the left and right clusters (see the first two right gray boxes in figure 2.2). 

Figure 2. 3 A layout of 10 clusters for the 64 EEG 
electrodes. Circles represent electrodes; lines 
separate different clusters. The 10 medial 
electrodes are grouped in both left and right 
regions; the overlapped regions are marked by the 
two dashed lines. LF: Left frontal; RF: Right 
frontal; LC: Left central; RC: Right central; LP: 
Left parietal; RP: Right parietal; LT: Left 
temporal; RT: Right temporal; LO: Left occipital; 
RO: Right occipital. 



21 
 

At the subject level, each nodal graphical metric within each cluster area was obtained by 

averaging the specific metric over all electrodes within the respective region (for each of the three 

temporal segments and five frequency bands). To compare the changes induced by tPBM vs. sham, 

nodal measures for each temporal segment were baseline-normalized by subtracting the 

corresponding baseline (pre) values from those in each of the three subsequent time windows 

(Stim1, Stim2, and post). Next, for each cluster region, group-level (n=45) and baseline-subtracted 

nodal metric values were compared between the active and sham conditions using paired t tests. 

To correct for multiple comparisons, false discovery rate (FDR) correction was performed for 10 

regions with a corrected significance level of 0.05, as shown in the last two gray boxes in figure 

2.2. 

In summary, figure 2.2 outlines the processing procedures, where the first two blue boxes show 

the common pre-processing steps. The three orange blocks and arrows denote the power spectral 

analysis at the subject and group levels. The four green boxes represent the connectivity analysis 

and lead to two separate outputs: the global and nodal connectivity measures. All analysis steps, 

except statistical analysis, were applied to individual subject datasets, followed by statistical 

analysis as the last step performed at the group level.   

2.3 Results 

The EEG signals from 45 subjects in three temporal segments (Stim1, Stim2, and post) were 

analysed for both active and sham stimulation cases. The respective results are presented in the 

following three sub-sections: First, baseline-normalized, sham-subtracted topographies were 

obtained, illustrating significant differences in topographical EEG powers (∆mPowerss) between 

the two experimental conditions in the respective frequency bands. Second, three global graphical 

metrics were derived from the GTA and between the active tPBM and sham treatments compared 



22 
 

at the group level. Comparisons were made for all three temporal segments in the beta band only 

because tPBM significantly affected the chosen connectivity metrics of the beta rhythm. Finally, 

five nodal graphical metrics were characterized and presented using topographic maps. Thus, we 

revealed how the segregation, integration, and centrality of each cluster/region were significantly 

altered by tPBM at the group level. Similar to the global metrics case, it was only in the beta band 

that tPBM significantly altered the local graphical metrics.  

2.3.1 Topographic changes in power between tPBM and sham stimulations 

As shown in figure 2.2 and described in Sections 2.2.5 and 2.2.6, the baseline-normalized values 

of ∆mPowerf (see eq. (2-1)) for each group of tPBM and sham conditions among the three temporal 

segments (Stim1, Stim2, and post) and five frequency bands were calculated. Group-level 

statistical comparison to the baseline for each stimulation case was performed using a permutation 

test for each of the three temporal periods and five frequency bands, resulting in respective group-
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level topographies (n=45). However, to show clear statistical differences in ∆mPowerf between 

the two stimulation conditions, baseline-normalized and sham-subtracted topographical maps of 

∆mPowerssf (%) values (see Eq. (2-2)) over 64 channels were achieved, as shown in figure 2.4 for 

all five frequency bands. In addition, after the cluster-based permutation testing for 64-channel 

statistical comparison, the electrode sites/clusters that were significantly affected by tPBM are 

superimposed on the topographies in figure 2.4 with ‘*’ denoting p<0.01 and ‘×’ denoting p<0.05.  

These results illustrate a significant, dose-dependent increase in EEG rhythm powers at alpha 

(8-13 Hz) and beta (13-30 Hz) during the last 4 min of tPBM (i.e., Stim2). Specifically, the increase 

in alpha ∆mPowerss was shown as two major clusters of channels in the bilateral frontal and left 

parietal-occipital regions, whereas the increase in beta ∆mPowerss was mainly seen as one cluster 

of electrodes in the central/parietal region of the scalp. The enhanced alpha ∆mPowerss remained 

Figure 2.4 Topographic maps of  group-averaged (n=45), baseline-normalized, and sham-subtracted 
changes in ∆mPowerss  (see eq. (2-2)) in delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 
Hz), and gamma (30-70 Hz) bands during the first 4 minutes of tPBM (Stim1), second 4 minutes of 
tPBM (Stim2), and post tPBM period. Also, statistical results after the cluster-based permutation 
testing are superimposed in each topographical map, showing significant differences in ∆mPower 
between the tPBM and sham stimulations during respective three time segments and in five frequency 
bands with corrected significance levels of p < 0.05 (×) and p < 0.01 (*). 
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in the affected locations during the post-tPBM period, whereas significant increase in beta 

∆mPowerss ceased during the recovery time. Furthermore, delta power was reduced in the frontal, 

left temporal, and occipital regions during tPBM, and in the right frontal region during recovery. 

2.3.2  Global graphical metrics of functional connectivity altered by tPBM 

Following the steps given in Sections 2.2.7-2.2.9, adjacency matrices for all three temporal 

segments and five frequency bands were generated. These matrices were further binarized for 

different sparsity values, resulting in the GTA-derived graphical networks. In this study, we 

identified three global network metrics (S, GE, and SW) that were significantly altered by tPBM 

with respect to the sham condition and only in the beta band. As shown in figure 2.5, the three 

rows illustrate the respective global metrics during Stim1, Stim2, and the post-period under both 

active and sham stimulation. The grey bars in each panel of figure 2.5 highlight the sparsity values 

at which the corresponding graphical metrics were altered significantly by tPBM based on paired 

t-tests (p < 0.05). 

These results suggest that tPBM significantly reduces the global synchronization, global 

efficiency, and small-worldness of the network connectivity of the human brain. Specifically, 

significant decreases in synchronization and global efficiency is observed during Stim1 and the 

recovery period with more sparsity values, while a significant reduction in small-worldness 

appeared in Stim2 with more sparsity units. Additionally, we confirmed that there was no 

significant difference between the pre-stimulation baselines under tPBM and sham stimulation for 

any of the three global network metrics. 
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2.3.3  Nodal graphical metrics of functional connectivity altered by tPBM 

After performing the analysis steps given in Sections 2.2.9, cluster-averaged, baseline-

subtracted values for each of the five nodal graphical metrics (i.e., nCC, nE, nLE, BC, and DC) 

were obtained for each of the 10 spatial clusters (figure 2.3) under both tPBM and sham conditions. 

Next, after performing paired t-tests with FDR correction for 10 spatial clusters (i.e., p < 0.05, 

FDR corrected), we identified or categorized the clusters whose nodal metric values were 

significantly altered (i.e., increased or decreased) by tPBM for each of the five metrics at all three 

Figure 2.5 Three GTA-derived global graphical metrics, namely, synchronization (the 1st 
column), global efficiency (the 2nd column), and small-worldness (the 3rd column), of the EEG 
brain network in the beta band (13-30 Hz) under both active tPBM and sham stimulation during 
Stim1 (the 1st row), Stim2 (the 2nd row), and the post period (the 3rd row). In each panel, the y 
axis denotes respective metric values while the x axis presents sparsity values with an increment 
of 5%. The grey bars mark sparsity values at which the corresponding graphical metrics were 
altered significantly by tPBM with respect to sham based on paired t-tests (p < 0.05). Error bars 
represent standard error of the mean. 
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temporal periods, and only in the beta rhythm band. The topographical representations of the 

results for the five nodal metrics are shown in figure 2.6.   

Based on figure 2.6, we made the following observations. (1) During Stim1, significant 

increases in nodal efficiency, betweenness centrality, and degree centrality occurred in the right 

frontal region near the tPBM stimulation site. (2) During Stim2 and post stimulation, significant 

changes occurred in the bilateral frontal regions for all five nodal metrics. More specifically, 

tPBM significantly decreased the clustering coefficient and nodal local efficiency while the 

stimulation significantly increased the other three nodal metrics. (3) Combined temporal and 

spatial results revealed that both nodal efficiency and degree centrality were initially enhanced by 

tPBM in the right frontal region during Stim1, followed by expansion of this enhancement to the 

contralateral side during Stim2, which remained during the post-tPBM period. (4) In the case of 

betweenness centrality, unilateral enhancement in the right frontal region remained during the 

entire stimulation time (i.e., Stim1 and Stim2) and then expanded to the contralateral side in the 

post. (5) On the other hand, during Stim2 and post stimulation, significant decreases occurred in 

the bilateral frontal regions for the nodal clustering coefficient (nCC) and nodal local efficiency 

(nLE). (6) During the same time periods for the same two metrics (nCC and nLE), decreases 

occurred in the left parietal and occipital regions. (7) Moreover, the left temporal region showed 

a reduction in nodal efficiency and betweenness centrality only for Stim2. (8) The only significant 

modulation in the right occipital region was a decrease in betweenness centrality in Stim2.  
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2.4 Discussion 

In Section 2.3, we identified and showed the clusters and regions on the scalp where tPBM 

modulated EEG oscillation powers and GTA-based EEG beta network connectivity. All these 

observations provided a better topographical overview of tPBM-induced electrophysiological 

effects on brain functional connectivity in the resting state. In this section, we will further interpret 

and discuss our observations, compare our results with previous studies, and associate the 

neurophysiological changes in different brain regions with behavioural improvement by tPBM that 

have been reported by others [2-6, 46, 54, 84]. 

Figure 2.6 Comparative topographical maps of 10-Cluster-distributed nodal network metrics at the 
beta band (13-30 Hz). The comparison was made between tPBM and sham stimulation conditions 
for each of the five nodal metrics, namely, the clustering coefficient (the 1st column), nodal local 
efficiency (the 2nd column), nodal efficiency (the 3rd column), betweenness centrality (the 4th 
column), and degree centrality (the 5th column) of the EEG brain network during Stim1 (the 1st row), 
Stim2 (the 2nd row), and the post period (the 3rd row). LF: Left frontal, RF: Right frontal, LC: Left 
central, RC: Right central, LP: Left parietal, RP: Right parietal, LT: Left temporal, RT: Right 
temporal, LO: Left occipital, RO: Right occipital. Red color represents tPBM > sham; blue color 
indicates tPBM < sham with p < 0.05 (FDR corrected). 
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As shown in figure 2.4, under the eyes-closed resting-state condition, tPBM significantly increased 

the power of alpha oscillations in clusters over the bilateral frontal, left parietal, and left occipital 

regions, as well as the beta power over the bilateral central and parietal regions during the second 

4-min of stimulation. These observations agree with previous reports on eyes-open tPBM 

experiments [85, 86]. Moreover, tPBM significantly decreased the delta power during stimulation, 

followed by a residue of reduced power over a smaller region during recovery. 

2.4.1  tPBM-induced alterations on EEG ∆mPower in clusters of electrodes in 
frontoparietal network 

A significant increase in alpha power over frontal-parietal regions confirmed the ability of 

tPBM to neurally modulate the frontoparietal network, which is an executive network facilitating 

rapid instantiation of new tasks [87]. According to previous studies, alpha rhythm is thought to be 

associated with awareness [88] and cognitive functions, such as memory encoding  and attention 

[89-91]. The same experimental protocol with a 1064-nm laser has been used previously, 

demonstrating a significant improvement in cognitive performance in human participants [2-4, 46, 

84]. Moreover, the presence of stronger beta waves has been linked to better cognitive abilities, as 

reported in several studies [92, 93]. Thus, the beneficial outcome in human cognition by frontal 

tPBM can be, at least partially, attributed to its significant modulation of electrophysiological alpha 

and beta powers in the frontoparietal network. Regarding the reduction in delta power in the 

channel clusters during the stimulation period, we interpreted this observation as a result of the 

mild thermal sensation of the laser on the superficial tissue [27]. 

2.4.2 tPBM-induced alterations in global measures of functional network in beta band 

As shown in figure 2.5, tPBM significantly changed three global graph measures, namely, 

synchronization, global efficiency, and small-worldness, in the beta wave only. We discuss each 

of these changes as follows:   
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Our observation that brain network synchronization in the beta band was significantly reduced 

during Stim1 and recovery agrees with a recent study that reported the effects of tPBM on brain 

network synchronization with 850 nm LEDs [30]. In addition, a behavioural study attributed a 

decrease in synchronization in the healthy human brain to awareness and cognitive processing 

[94]. Thus, the outcome and effect of tPBM on desynchronizing EEG beta waves may be 

associated with cognitive processing. 

Similarly, the global efficiency of the brain network was significantly reduced by tPBM 

compared to sham during Stim1 and post. This reduction indicates a decrease in brain network 

integration, which may imply less efficient or more complex information paths in the network. In 

other words, from a global point of view, tPBM may increase the energy and wiring costs of the 

information flow owing to the trade-off between network efficiency, energy, and wiring costs [95, 

96]. This could be an indicator of increased brain complexity, which is related to higher cognitive 

function [97]. This observation indirectly supports the expected benefit of tPBM, namely, the 

beneficial effects of tPBM on cognitive improvement. 

It is known that small-worldness is dependent on the global integration and segregation of the 

network and is calculated as the ratio of normalized integration to normalized segregation [65]. 

Thus, the reduction in this metric could be attributed to a significant reduction in global integration 

(as reflected by a reduction in GE) and/or a significant increase in the global segregation of the 

brain network caused by tPBM. These observed significant effects of tPBM on small-worldness 

taking place only in Stim2 could result from the resistance of resting-state networks against 

changes in network composition, as well as the dose-dependent nature of tPBM-induced effects 

on neural activity [98, 99]. However, a possible explanation for the lack of significant alteration 
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in synchronization and global efficiency in Stim2 could be the high variability in the functional 

topography of the frontoparietal network [87].  

In summary, significant decreases in synchronization, global efficiency, and small-worldness 

can be associated with potential increases in the complexity of the brain network and the 

improvement or enhancement of human cognitive function [94, 97]. In addition, the observation 

that tPBM altered only beta-wave oscillations in the EEG graphical network was in agreement 

with other studies [30, 64]. Several publications have shown the role of the beta band in different 

brain networks [100] and cognitive functions [101, 102]. 

2.4.3 tPBM-induced alterations in nodal graphical measures in beta band 

Figure 2.6 shows how tPBM would alter nodal connectivity of the functional brain network in the 

beta band in healthy participants. Specifically, this figure illustrates that nodal clustering 

coefficient and nodal local efficiency, as measures of segregation of the brain network [103], were 

reduced significantly in bilateral frontal regions in Stim2 and post. Furthermore, these two 

segregation nodal metrics were decreased in the left parietal and left occipital regions during Stim2 

and post, respectively. All these observations implied that the clusters of nodes in these regions of 

the network became less segregated during the 2nd 4-min and post period of tPBM. In other words, 

tPBM facilitated less separation and more integration of nodal graphical connectivity. 

Consistent with the aforementioned observation, nodal efficiency, which reflects nodal 

integration, increased in the right frontal region during the first 4 min of tPBM. This increase 

indicates enhanced integrity of the nodes over this region in the information flow [103] and parallel 

information transfer. Furthermore, during the last 4 min of tPBM, the bilateral frontal regions 

showed an increase in integration into the functional network, while the integrity of the left 

temporal region in the network was significantly reduced. This phenomenon implies that the tPBM 
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stimulated more network integration at the beta rhythm in the frontal regions, with the cost of 

reducing network integration in the left temporal segment/cluster.  

 Betweenness centrality represents the fraction of all shortest paths in the network that pass 

through a particular central node [104]. A large value of betweenness centrality denotes a large 

impact of this central node on the information flow over the entire network. It is common for nodes 

at intersections of disparate parts of the network to have a high betweenness centrality [65]. It is 

clear from figure 2.6 that betweenness centrality increased in the right frontal region during Stim1 

and Stim2. Similar changes in the frontal and temporal regions of beta waves have been reported 

during cognitive training [101]. After stimulation, the effects of tPBM on betweenness centrality 

remained bilateral in the frontal regions. These observations suggest that the frontal regions, 

especially the right frontal region under tPBM, became more prominent in connecting the disparate 

parts of the network throughout the stimulation and recovery periods.  

The last nodal measure investigated was degree centrality, which quantifies the number of links 

from nodes in a specific region to other nodes in the same region or other regions [65]. An increase 

in this nodal metric was observed in the right frontal region during all three temporal segments 

and in the left frontal region during Stim2 and Post. The enhancement of this nodal parameter 

revealed that these cortical/brain regions could be prominently stimulated by tPBM for more 

information connections or links at beta wave oscillations. It has also been reported that a working 

memory task during the encoding phase triggers similar increases in degree centrality over the 

frontal regions of the beta band [102]. 

Combining all these observations, we concluded that tPBM facilitated a reduction in local 

segregation, increases in nodal integration and centrality of frontal regions, and the growth of 

connection links between nodes in these frontal regions compared to other regions. These results 
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are in agreement with the observed changes in the flow of information reported in a tPBM-evoked 

causal connectivity study [105]. 

2.4.4 The role of the beta band in tPBM-induced network modulation and its relation to 

enhancement of human cognition 

The alpha and beta powers of the human brain, especially in the frontoparietal network, are 

believed to be related to cognitive functions, such as memory encoding and attention [89-91], 

especially in the frontal, temporal, and parietal regions. Our observations (as presented in Section 

2.3.1) clearly demonstrated that tPBM enabled increases in the alpha and beta powers in the 

frontal-central-parietal regions, indicating the underlying association between tPBM and 

enhancement of human memory. 

However, our results in Sections 2.3.2 and 2.3.3 showed that tPBM altered EEG graphical 

network metrics only in the beta band, which was consistent with the results given in ref. [30]. 

Thus, an implication of the relationship between prefrontal tPBM and its effects on EEG beta-

wave network metrics was sought. Regarding the beta rhythm in the prefrontal cortex (PFC), 

“increased beta appears at the end of a trial when working memory information needs to be erased. 

A similar ‘clear-out’ function might apply during the stopping of action and the stopping of long-

term memory retrieval (stopping thoughts), where increased prefrontal beta is also observed. A 

different apparent role for beta in the PFC occurs during the delay period of working memory 

tasks: it might serve to maintain the current content and/or to prevent interference from distraction. 

[100]” Accordingly, beta oscillations in the prefrontal region appear to serve as short-term memory 

executors and focus enhancers during executable tasks. In addition, the beta rhythm in the temporal 

lobe plays an important role in long-term memory retrieval [106]. Memory retrieval starts in the 

temporal lobe, passes through different parts of the neocortex, and stops in the prefrontal cortex 

[100]. There is always a balance in information flow in this order, even during the resting state. 
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Accordingly, we speculated that tPBM enables to significant neuromodulation of beta oscillations 

and the corresponding network connectivity globally across the scalp and regionally in several 

nodal/cluster regions. The significant modulation by tPBM on beta-wave connectivity in the 

human brain may be an underlying electrophysiological mechanism and association between 

tPBM and the enhancement of human cognition.   

2.4.5 Comparisons to two other publications  

As shown in Table 2.1, only two recent papers have reported tPBM-induced modulations of global 

network metrics [29] and alterations in brain connectivity between the two hemispheres [30]. It 

would be helpful to compare the altered graphical metrics provided in these two articles with those 

found in this study. Tables 2.3 and 2.4 below summarize and compare the global and local 

graphical metrics of the three studies, respectively. 

 Upon inspection of the global metrics of the network, Table 2.3 reveals that only global 

efficiency was altered by tPBM in all three cases, regardless of stimulation conditions. However, 

a more consistent agreement exists between Ref. [30] and this study with network alterations in 

the beta band. On the other hand, Ref. [29] showed increases in GE in the alpha and gamma bands 

under 40-Hz tPBM, which should  result in alterations of the gamma waves (30-70 Hz).  
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 Table 2.4 lists several nodal network metrics for comparison with Ref. [30] and this study, 

because Ref. [29] did not provide results on tPBM-altered nodal metrics. Both studies observed 

consistent tPBM-induced alterations in beta wave connectivity between the two hemispheres [30] 

or in the prefrontal regions (in this study), whereas the modulated network metrics were different.  

  
Table 2.4 Comparisons of nodal graphical metrics among three studies 

 tPBM 
duration 

Radius of 
light size nCC nE nLE Eigenvector 

Centrality BC DC 

Ref. [30] 
(850-nm LED, 
CW; PFC) 

 
2.5 min 

 
0.67 cm - -  - 

Yes; (beta; 
between two 
hemispheres) 

- - 

This Study 
(1064-nm Laser, 

CW; PFC) 

 
8 min 

 
2.1 cm 

Yes;  
(beta; 

frontal) 

Yes;  
(beta; 

frontal) 

Yes;  
(beta; 

frontal) 
- 

Yes;  
(beta; 

frontal) 

Yes; 
(beta; 

frontal)  

Such differences could be accounted for by several experimental setting parameters, including 

wavelengths (850 nm vs. 1064 nm), light type (LEDs vs. laser), stimulation size on the forehead 

(0.67 cm vs. 2.1 cm), stimulation duration (2.5 min versus 8 min) of the tPBM. We observed that 

the right forehead tPBM using a 1064-nm laser with larger stimulation size and longer duration 

 Table 2.3 Comparisons of global graphical metrics among three studies 

 CC Characteristi
c path length GE LE Energy Entropy S SW 

Ref. [29] 
(810-nm 

LED, 40 Hz; 
DMN) 

increase 
(alpha & 
gamma) 

increase  
(alpha & 
gamma) 

increase  
(alpha & 
gamma) 

increase 
(alpha & 
gamma) 

- - - - 

Ref. [30] 
(850-nm 

LED, CW; 
PFC) 

Decrease 
(beta) - Decrease  

(beta) 
Decrease 

(beta) 
Decrease 

(beta) 
Increase 
(beta) - - 

This Study 
(1064-nm 

Laser, CW; 
PFC) 

- - Decrease  
(beta) - - - Decrease 

(beta) 
Decrease  

(beta) 
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created significant stimulations and alterations in nodal brain connectivity metrics, particularly in 

the prefrontal regions, near the stimulation site. 

2.4.6 Limitations and future work 

First, the international 10–10 electrode placement system in this study was not strictly followed 

on the human head because a clear area with 4.2 cm in diameter was needed for tPBM light 

delivery on the right forehead. The EEG cap was shifted 1–2 cm backward. There was a systematic 

shift in the electrode locations given in Figs. 2.4 and 2.6 with respect to the standard 64-electrode 

locations. However, the precision of EEG channel locations is not affecting the final results 

significantly, since we focus on the global and regional/clustered effects of tPBM. This position 

precision is most important when the collected scalp EEG data is being back-projected to the brain 

to evaluate power and connectivity modulation in specific regions of brain. Second, the power 

spectral and connectivity analyses were performed in the sensor space. Source space analysis can 

be conducted to observe specific cortical and subcortical regions in the brain affected by tPBM. 

Third, the current study was based on EEG signals of the tPBM-treated human brain in the resting 

state without the evaluation of any behavioural assessment. It is highly desirable to obtain 

concurrent assessments of changes in brain connectivity metrics and cognitive enhancement after 

tPBM. A combination of electrophysiological and behavioural measures would provide more 

informative and comprehensive views of the correlation and association between functional 

connectivity and behavioural effects of tPBM. Overall, there are few publications in the literature 

on how tPBM affects brain connectivity and the association between tPBM-induced network 

changes and cognitive improvement. It is necessary to promote and conduct more investigations 

in this line of work to make tPBM a non-invasive, portable, and low-cost intervention tool for 
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healing patients with certain brain disorders as well as for healthy aging in the rapidly growing 

aging population.    

2.5 Conclusion 

In this study, we utilized three analysis steps to identify the electrophysiological effects of tPBM 

in a healthy human brain. First, power spectral analysis revealed that alterations in EEG spectral 

powers were mainly present in the alpha and beta bands of the fronto-central-parietal regions. 

Second, a topological approach, GTA, facilitated findings on significant modulation of the EEG 

beta rhythm in the information path and enhancement of the brain network complexity at the global 

network level during and after the stimulation. Finally, assessment of the nodal measures of the 

network at the regional and cluster levels confirmed that tPBM had a major effect on the frontal 

and parietal clusters in the beta band. The information paths were enhanced during and post tPBM 

in the prefrontal regions near the stimulation site. Further studies are needed to better understand 

the relationship between tPBM-induced alteration of brain networks and improvement in human 

cognition if tPBM is to be developed as a useful tool for treating patients with brain disorders and 

for supporting healthy aging in the aging population worldwide. 
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3.1 Introduction 

3.1.1 Infra-slow Oscillation of the Human Brain   

The human brain plays a major role in oxygen and glucose consumption despite its relatively low 

weight compared to other organs [107, 108]. The high levels of consumption are due to the high 

metabolic activity of neurons, which is modulated by the oxygenated blood supply and cerebral 

metabolism  [109, 110]. Many studies have focused on investigating the mechanism of cerebral 

metabolic activity and have found vasomotion to be a major source of metabolic and hemodynamic 

modulations [31-35]. Vasomotion is a spontaneous oscillation that originates from the blood vessel 

wall with an infra-slow oscillation (ISO) of 0.005-0.2 Hz [36, 37]. In addition, a correlation is 

found between the ISO of cerebral metabolic activities and human cognitive functions [38]. 

Furthermore, vasomotion malfunction has been observed in older adults and in patients with 

different diseases, such as atherosclerosis [39], cardiovascular disease [40], and Alzheimer’s 

disease [41]. Thus, it may be beneficial to quantify and characterize cerebral metabolism in the 

ISO range, which may provide better insight into neurophysiological mechanisms and discover 

features that differ between healthy humans and patients with brain disorders. 
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Relaxation-contraction cycles of blood vessel walls have been shown to be the driving force 

for the infra-slow rhythms of cerebral hemodynamic oscillations, independent of respiration and 

heartbeat [32, 111-113]. Three intrinsic frequency components of infra-slow cerebral 

hemodynamic rhythms have been found to correspond to the specific physiological and 

biochemical activities of the vascular wall layers [114]. These frequency bands consist of (1) 

endogenic (0.005-0.02 Hz), neurogenic (0.02-0.04 Hz), and (3) myogenic (0.04-0.2 Hz) [115-117] 

rhythms. The endogenic band corresponds to dilation-contraction cycles in the endothelial layer 

affected by the release of potent vasoactive factors, such as nitric oxide (NO), free radicals, 

prostacyclin, endothelium-derived hyperpolarizing factor, and endothelin [118, 119]. Oscillation 

in releasing vasoactive ions and neurotransmitters from neurons leads to modulation of the vessel 

dilation-contraction cycles in the neurogenic band [120]. Rhythmic myogenic activity, on the other 

hand, occurs as a result of the relaxation and contraction of vascular wall smooth muscle cells 

[117]. Such hemodynamic ISO can be detected by different measurement modalities, such as 

functional magnetic resonance imaging (fMRI) [121], transcranial cerebral doppler (TCD) [122], 

and functional near-infrared spectroscopy (fNIRS) [38]. However, these methods are not capable 

of concurrently monitoring the metabolic rhythms originating in the mitochondria. As 

mitochondria play a major role in cerebral metabolism and vasomotion, detecting mitochondrial 

activity and ISO is essential important [123]. 

3.1.2 Exploration of the Prefrontal Cortical Connectivity and Coupling of ISO 

The bilateral prefrontal connectivity of the human brain with respect to certain neurophysiological 

functions reflects the level at which the lateral sides of the prefrontal cortex oscillate synchronously 

or coherently. Therefore, a higher level of connectivity represents a bilaterally or globally driven 

oscillation while a lower level of connectivity denotes locally driven activity [124]. On the other 



39 
 

hand, unilateral hemodynamic-metabolic coupling indicates how the supply demand relationship 

between local oxygenated hemodynamics and metabolism is regulated. Any impaired, abnormal, 

or diminished bilateral connectivity and/or unilateral/local coupling of the prefrontal ISO could 

reflect or result from neurological diseases or brain disorders. This is because prefrontal cortex 

activity is closely associated with human cognition; many studies have provided evidence of 

correlations between prefrontal cortex activity and human cognition [125-129]. Thus, it is 

desirable to quantify prefrontal cortical connectivity and coupling of ISO in the human brain, 

which may be closely associated with normal or abnormal brain states, and may be developed for 

clinical applications in the near future. 

3.1.3 Broadband Near-infrared Spectroscopy and Resting-State Analyses 

Broadband Near-infrared spectroscopy (bbNIRS) has been investigated for more than 2 decades 

[130-134] and accepted as a reliable tool to quantify changes of oxygenated and deoxygenated 

hemoglobin concentrations ([HbO] and [HHb], respectively) as well as redox-state cytochrome-c-

oxidase concentration ([CCO]) based on absorption and scattering of NIR light by these 

chromophores [131, 135, 136]. In particular, cytochrome-c-oxidase is the terminal enzyme in the 

mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism 

[137-140]. Because redox CCO has a light absorption peak at ~800 nm, bbNIRS can quantify 

changes in [CCO] (∆[CCO]) and enable us to reveal the metabolic state of a tissue  [131, 135, 

136]. However, since the concentration of CCO is much smaller than those of HbO and HHb in 

living tissues, accurate estimation of changes in [CCO] requires a multispectral approach [135, 

136, 141]. In the past several years, our group has successfully quantified altered redox [CCO] in 

response to photobiomodulation using 1-channel or 2-channel bbNIRS (2-bbNIRS) taken on the 

human forearm or forehead [7, 9, 12, 142].  
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However, most studies in the field of either fNIRS or bb-NIRS are based on time-domain 

analyses and are often performed under task-evoked brain states [143-145]. Numerous articles on 

fNIRS-derived resting-state connectivity have been based only on hemodynamic (HbO) 

oscillations [146-148]. Little or no report could be found on the frequency-domain analysis of bb-

NIRS measurements in the resting human brain. It is also unknown whether 2-bbNIRS can 

facilitate characterization of prefrontal connectivity and coupling in the brain. 

In the present exploratory study [42], we hypothesized that 2-bbNIRS, along with frequency-

domain analysis, enables us to quantify prefrontal cortical connectivity and coupling of ISO in the 

resting human brain. Specifically, the features analyzed from the 2-bbNIRS time series included 

(1) resting-state spectral amplitude (SA) of bilateral cortical hemodynamic and metabolic (i.e., 

SAHbO_i and SACCO_i) activities, where i represents either the left or right prefrontal region, (2) 

bilateral hemodynamic connectivity (bCONHbO), (3) bilateral metabolic connectivity (bCONCCO), 

and (4) coupling between cerebral hemodynamic and metabolic activities on the unilateral side 

(uCOPHbO-CCO_i) of the prefrontal cortex over the three ISO frequency bands. By the end of this 

exploratory study, we would support this hypothesis by presenting relatively stable and consistent 

values for these features in healthy young humans, revealing the translation potential of these 

features for future clinical applications. 

3.2 Materials and Methods 

3.2.1 Participants 

31 healthy human subjects were recruited from the local community at the University of Texas, 

Arlington. They were screened using the same inclusion criteria as those used in the previous 

studies [7, 9]. In summary, the inclusion criteria included: either sex, any ethnic background and 

in an age range of 18–40 years old. The exclusion criteria included: (1) diagnosed with a 
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psychiatric disorder, (2) history of a neurological condition, or severe brain injury, or violent 

behavior, (3) have ever been institutionalized/imprisoned, (4) current intake of any medicine or 

drug, or (5) currently pregnant. Each participant had five visits, separated by at least 7 days. 

Because of the high sensitivity of bbNIRS to motion artifacts, five subjects with excessive motion 

during one or more of the five experiments were excluded from the data. After exclusion, a total 

of 26 young and healthy humans (14 males and 12 females, mean ± SD age = 22.4 ± 2.3 years) 

participated in the 5-visit experiments. The study protocol complied with all applicable federal 

guidelines and was approved by the Institutional Review Board (IRB) of the University of Texas 

at Arlington. Informed consent was obtained from all participants. 

3.2.2 Experiment Setup and Protocol 

The data analyzed in this study were obtained from single-mode, resting-state, bilateral 

measurements with 2-channel bbNIRS, which is one of the dual-mode (i.e., bbNIRS and EEG) 

modalities. Specifically, a 2-channel bbNIRS probe (Figure 1(a)) was placed bilaterally on the 

forehead of the participants to acquire prefrontal ISO signals of Δ[HbO] and Δ[CCO] at rest. The 

2-channel system consisted of two branches of a broadband white light source (Model 3900e, 

Illumination Technologies, NY, USA) and two CCD array spectrometers (QEPRO, Ocean Optics 

Inc., Orlando, FL, USA) as light detectors (Figure 3.1(b)). The two bbNIRS recording channels 

were positioned symmetrically on the subject’s forehead (visual judgement). Each channel 

consisted of one fiber bundle for light delivery to the forehead and another for backscattered light 

collection from the brain tissue, with a source-detector separation of 3 cm. A 2-channel probe 

holder was designed and 3D printed with a flexible material to ensure comfortable and firm 

attachment of the fiber bundles to the forehead skin, accommodating each participant’s forehead 

curvature. The probe holder was fastened to each participant's forehead with hook-and-loop 
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fasteners, and adhesive medical tape was applied to the probe-skin interface to hold the probe on 

the forehead more steadily (without tightening the fastener too much), thus reducing motion 

artifacts.  

Regarding the measurement protocol, after the consent form was signed, each participant was 

instructed to sit comfortably on a chair, followed by a dual-mode probe placement on the 

participant’s head firmly. Then the 2-channel bbNIRS (and EEG) started to record data at a rate of 

1.5 sec per temporal point (i.e., 0.67 Hz) during the 7-min resting state while the participant kept 

their eyes closed without falling asleep.  

 

 

 

 

 
Figure 3. 1 (a) Dual-mode (bbNIRS and EEG) head probe setup, showing two separate channels 
with two sets of fiber bundles that were connected to (b) the 2-channel bbNIRS. While an EEG 
cap on the head is observable, the EEG data are not the topic/subject of this paper. The bbNIRS 
datasets used for this study were taken during 7-min eyes-closed conditions with the setup shown 
above. 

3.2.2 Data Analysis 

After 2-bbNIRS data acquisition, the data processing steps included both time- and frequency-

domain analyses, as outlined in Figure 3.2, in five steps. Step 1 (blue boxes in Figure 3.2) was to 

obtain the ∆[HbO] and ∆[CCO] time series after converting the raw data to ∆[HbO] and ∆[CCO] 

at each time point. Step 2 (the yellow box in Figure 3.2) involved performing frequency-domain 

analysis using the multi-taper method that facilitated the following two steps to investigate the 

cerebral hemodynamic and metabolic ISO of the human prefrontal cortex in the resting state. Step 

(a) (b) 
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3 (the orange box) was to quantify spectral amplitudes of Δ[HbO] and Δ[CCO] (i.e., SAHbO_i and 

SACCO_i) in the endogenic, neurogenic, and myogenic (E/N/M) frequency bands measured on each 

lateral prefrontal site, where the subscript of “i” labels either “L” or “R” for the left or right 

forehead. Step 4 (green box) was used to perform coherence analysis and to determine (i) bilateral 

connectivity for Δ[HbO] and Δ[CCO] (i.e., bCONHbO and bCONCCO) of the human forehead and 

(ii) unilateral cerebral hemodynamic-metabolic coupling (uCOPHbO-CCO_i) for each lateral 

prefrontal cortex. Steps 1 – 4 were repeated for each of the 26 participants and then for five sets of 

measurements. Step 5: One-way ANOVA was performed to demonstrate no significant difference 

among the five measurements for each of the bilateral SA, bilateral connectivity, or unilateral 

coupling parameters (i.e., SAHbO_i, SACCO_i, bCONHbO, bCONCCO, uCOPHbO-CCO_i) in each of the 

E/N/M bands.  

 

Figure 3. 2 A data processing flow chart with five steps. Step 1: ∆[HbO] and ∆[CCO] quantification at 
each time point and time series (blue boxes); Step 2: amplitude and phase decomposition using multi-taper 
method (yellow box); Step 3: quantification of spectral amplitudes (SA) for endogenic, neurogenic, and 
myogenic (E/N/M) frequency bands (orange box); Step 4: determination of four types of coherences for 
each E/N/M bands (green box).  Steps 1 to 4 were repeated for each of 26 participants (outlined by the 
dotted box) and then for 5 sets of the measurements (outlined by the solid box). The bottom dashed box 
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marks Step 5, showing several statistical analyses, including one-way ANOVA, paired t-tests, and two one-
sided tests (TOST) used to identify group-level features for SA and respective coherence parameters (gray 
box). 

 

3.2.2.1 Step 1: Quantification of ∆[HbO] and ∆[CCO] time series 

As mentioned in the Introduction, bbNIRS has been studied for more than two decades [130-134] 

and is well accepted as a reliable tool for quantifying cortical [HbO], [HHb], and [CCO] based on 

the modified Beer-Lambert  law (MBL) [131, 135, 136]. Following the same approach, we selected 

the spectral range of 780-900 nm from the recorded optical spectrum at each time point, and 

quantified prefrontal Δ[HbO] and Δ[CCO] based on MBL and multiple linear regression analysis  

with a low-pass filter at 0.2 Hz [143]. Detailed derivations and steps can be found in Refs. [7, 142]. 

After repeating the concentration quantification at all recorded time points, we obtained a time 

series of Δ[HbO] and Δ[CCO] for the 7-min resting-state period at a sampling frequency of 0.67 

Hz.  The spectral range of 780-900 nm estimates the chromophore concentration with a low level 

of error propagated from noise [149]. 

3.2.2.2 Step 2: Multi-taper method for spectral analysis of ∆[HbO] and ∆[CCO]  

The multi-taper method (MTM) [79, 80] is a well-known time-frequency analysis for a time series. 

Specifically, multiple tapers, mainly Slepian sequences, are used to taper the recorded signal in the 

time domain before performing the Fourier transform to provide a frequency-domain spectrum 

[79, 80]. This method maintains a reasonably high spectral resolution while reducing spectral 

noise. In this study, the MTM enabled us to decompose the amplitude and phase of the Δ[HbO] 

and Δ[CCO] time series obtained from both bbNIRS channels. Specifically, we utilized several 

functions (including “ft_freqanalysis” and “ft_connectivityanalysis”) available in the FieldTrip 

toolbox  [76, 77]  to perform MTM operations. Section B.1 in the Appendix explains the two 
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functions of “ft_freqanalysis” and  “ft_connectivityanalysis” and presents a detailed flow chart 

(Figure B1) to illustrate the calculations for SA. 

3.2.2.3 Step 3: Quantification of SA in E/N/M Bands  

One of the outputs of MTM is the power spectral density (PSD) smoothed over a given frequency 

range. In this study, smoothed PSDs of Δ[HbO] and Δ[CCO] over a 7-min resting period were 

obtained across E/N/M frequency bands. For a 7-min measurement duration, the spectral (or 

frequency) resolution was 1/(7 min)= 1/(7 × 60 sec)= 0.0024 Hz. Accordingly, the signal spectral 

power at each PSD frequency was obtained by multiplying the PSD value by the spectral resolution 

at the respective frequency. Next, by taking the square root of the spectral power, we were able to 

attain a spectrum of ISO amplitude versus frequency between 0.005 and 0.2 Hz (as selected in 

Step 1). Finally, we obtained the mean spectral amplitudes (SA) over each ISO band for Δ[HbO] 

and Δ[CCO]. The methodological steps are expressed as follows: 

amplitude(f) =�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑓𝑓) = �𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓)×∆𝑓𝑓 (3-1) 

SAHbO_i = mean amplitude(f) of ∆[HbO] over the ith band,   (3-2) 

SACCO_i = mean amplitude(f) of ∆[CCO] over the ith band, (3-3)   

where PSD(f), power(f), and amplitude(f) are the frequency-dependent spectra of PSD, power, and 

amplitude, respectively; i represents the ith band for E/N/M frequencies (i.e., i = E, N, M) on each 

side of the participant’s forehead.   

3.2.2.4 Step 4: Hemodynamic and Metabolic Connectivity and Coupling by Coherence 

In theory, brain connectivity measures rely on the amplitude and/or phase of the signal recorded 

from each channel to quantify the level at which each pair of signals interact with each other. Based 

on the mathematical definition of the connectivity measure, the correlation between the phases 

and/or amplitudes of two time series (recorded by two respective channels) can be interpreted as 
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the functional connectivity/coupling of these time series [13, 14]. In contrast, the counterpart of 

the time-domain cross-correlation calculation is coherence in the frequency domain, which can be 

used to facilitate or quantify the cerebral connectivity in this study. The coherence coefficient is a 

normalized number between 0 and 1 without any unit, and is expressed as a function of frequency, 

ω, as follows [13]: 

 ( )
( )

( ) ( )
xy

xy
xx yy
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coh

S S

ω
ω

ω ω
=  , (3-4) 

where Sxx and Syy indicate the power estimates of the signals x and y, respectively, and Sxy represents 

the averaged cross-spectral density term of the two signals. These terms can be calculated using 

the complex values obtained from the MTM method [80, 150].    

In the next step of spectral analysis, we quantified four pairs of spectral coherence for the 

resting-state human forehead: (1) bilateral coherence of Δ[HbO] to represent bilateral 

hemodynamic connectivity (bCONHbO), (2) bilateral coherence of Δ[CCO] to represent bilateral 

metabolic connectivity of (bCONCCO), (3) unilateral coherence between Δ[HbO] and Δ[CCO] on 

the left, and (4) right side of the forehead to designate hemodynamic-metabolic coupling on the 

respective prefrontal cortex (i.e., uCOPHbO-CCO_L and uCOPHbO-CCO_R). In practice, the function of 

“ft_connectivityanalysis” available in the FieldTrip toolbox [76, 77] was used to facilitate these 

coherence spectra, followed by band averaging within each of the three (E/N/M) frequency bands 

of the ISO. The flow chart (Figure B1) in the Supplementary Material offers graphical steps for 

calculating coherence. 

Step 5: Statistical Analyses for ISO features 
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The aforementioned steps were repeated for each of the two bbNIRS channels for all subjects 

during each of the five visits. Three stages of statistical analyses were performed for SAHbO (or 

SACCO):  

(1) ANOVA was performed to prove that there was no significant difference in SAHbO (or 

SACCO) among the five measurements. This set of ANOVA tests was performed for each 

of the Δ[HbO] (or Δ[CCO]) metrics on the bilateral channels.  

(2) A set of paired t-tests was performed to compare the bilateral values of grand-averaged 

SAHbO (or SACCO) over five repeated measurements from all 26 participants at all three 

E/N/M bands.  

(3) The two one-sided tests (TOST) analysis was utilized to evaluate the equivalence of the 

features that did not show a significant difference between bilateral values for SAHbO (or 

SACCO). Details of the equivalence test using TOST can be found in Section B.2 of the 

Appendix.  

After these stages of analyses, all bilaterally equivalent values of SAHbO (or SACCO) at each 

E/N/M band were reported as features for the prefrontal hemodynamic (or metabolic) spectral 

amplitudes. 

Similar statistical analyses of the three stages were performed on four coherence metrics that 

were band-averaged over all the subjects for each of the five visits. In ANOVA tests, after 

obtaining the bilateral connectivity indices for bCONHbO (or bCONCCO) for all three E/N/M bands, 

a one-way ANOVA was performed to assess the similarity among the three bands, followed by 

Tukey’s post hoc test or TOST to detect statistically different or equivalent bCONHbO (or 

bCONCCO) indices, respectively, across the three bands. Finally, grand-averaged uCOPHbO-CCO 

indices on the two lateral (left and right) sides were compared using a set of paired t-tests for all 
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three E/N/M bands. In case of no significant difference between the left and right uCOPHbO-CCO in 

any of the three bands, TOST was performed to test and prove the equivalence of the bilateral 

values of uCOPHbO-CCO. Then, the averaged value of uCOPHbO-CCO was reported as a feature for 

prefrontal, resting-state hemodynamic-metabolic coupling. 

3.3 Results 

The hypothesis of this study was that bilateral hemodynamic and metabolic connectivity and 

unilateral coupling of the ISO in the resting human forehead can be quantified using 2-bbNIRS 

and may serve as measurable features reflecting the prefrontal brain state. To prove or support this, 

we took 7-min, resting-state, 2-bbNIRS measurements from the forehead of 26 young and healthy 

participants (after exclusion of five subjects). The analyzed results focused on (1) SAs, (2) bilateral 

coherence, and (3) unilateral coherence among four time series of ∆[HbO] and ∆[CCO] signals 

obtained from the prefrontal cortex.  

3.3.1 Time Series of ∆[HbO] and ∆[CCO] versus Their Spectral Analysis  

After fitting the MBL with the spectral data of 2-bbNIRS (Step 1), we obtained a 7-min time series 

of ∆[HbO] and ∆[CCO] from each lateral side of the forehead of each participant. As an example, 

Figures 3.3(a) and 3.3(b) show time profiles of ∆[HbO] and ∆[CCO] derived from one channel of 

one subject’s dataset; their time series fluctuated around 0 between ±0.3 µM and ±0.04 µM, 

respectively. After performing spectral analysis (Step 2) and quantification of SA (Step 3), we 

obtained SA values for both ∆[HbO] and ∆[CCO], as shown in Figures 3.3(c) and (d), respectively, 

where the three frequency bands (E/N/M) are color-shaded. In addition, Section B.3 in the 

Appendix shows an example of the ∆[HbO] time series from one channel of 2-bbNIRS of a 
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subject’s dataset. This figure illustrates how different ISO waveforms in the three E/N/M bands 

contribute to the composition of the wideband (0.005–0.2 Hz) original signal. 

 
Figure 3. 3 (a) and (b) illustrate an example of time-domain representation of ∆[HbO] and ∆[CCO] signals, 
respectively, with a frequency band of 0.005-0.2 Hz over a period of 7 min. This set of time series was 
derived after processing Step 1 from one channel of the subject’s dataset. (c) and (d) show the frequency-
domain spectral amplitudes for ∆[HbO] and ∆[CCO], respectively, quantified using Steps 2 and 3. Blue, 
green, and red indicate endogenic, neurogenic, and myogenic bands, respectively.  

3.3.2 ISO Spectral Amplitudes of Prefrontal Δ[HbO] and Δ[CCO] in the Resting Brain 

Figures 3.4(a) and 4(c) show the SAHbO and SACCO values in the E band, which are dominant over 

those in the other two bands. Furthermore, the paired t-test results demonstrated no significant 

difference in SAHbO between the two prefrontal regions across all three E/N/M bands. These 

observations are in good agreement with those of a recent and independent study by our group 

[43], which utilized a completely different bbNIRS system and setup from a different cohort of 

participants. In addition, the data processing algorithms used to obtain the SAHbO differed between 

the two studies. Similarly, SACCO values from both prefrontal cortices were statistically equivalent 
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in the M band. However, the SACCO values in the left prefrontal cortex were significantly higher 

than those in the right prefrontal cortex in both the E- and N-bands.  

 

Figure 3. 4 Resting-state prefrontal SAHbO (in µM) of the left and right forehead averaged over (a) a 
combined set of grand/total measurements (n=130) and (b) each individual set of five measurements (n=26 
per set) at endogenic (E; 0.005-0.02 Hz), neurogenic (N; 0.02-0.04 Hz), and myogenic (M; 0.04-0.2 Hz) 
frequency bands. Similarly, resting-state prefrontal SACCO (in µM) of the left and right forehead averaged 
over (c) the combined set of measurements (n=130) and (d) each individual set of five measurements (n=26 
per set) at E/N/M bands. p-values shown for each group of bars in (b) and (d) represent ANOVA results. 
All error bars are based on the standard error of the mean. *: p<0.05. I values represent intraclass 
correlation coefficients for each group. 

To evaluate the consistency and stability of the 2-bbNIRS measurements, five sets of 

derived/quantified SAHbO and SACCO values were determined and plotted in Figures 3.4(b) and 

3.4(d), respectively. One-way ANOVA was performed to assess significant differences among the 

five measurements. The analysis outcomes showed no statistically significant differences among 

the five datasets for each of the three frequency bands. In addition, intraclass correlation coefficient 
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(ICC) was calculated and reported in this figure for the 5 repeated measurements to evaluate the 

reproducibility of the feature in the subject level. 

Specifically, the second and third columns from the left of Table 3.1 represent the grand 

averages of SAHbO values (as shown in Figure 3.4) over all experiments (n=130) taken from the 

left and right prefrontal cortices of the 26 participants across the three ISO frequency bands. The 

fourth and fifth columns list the p-values and pTOST obtained from the paired t-tests and TOST 

analysis, respectively, between the left and right SAHbO values. This table indicates that left and 

right SAHbO values were statistically equivalent in each E/N/M band; thus, the bilateral average 

was calculated and is presented in the last column from the left. In addition, Table 3.2 shows the 

results of SACCO in the three E/N/M bands using the data presentation similar to Table 3.1. It is 

clear that the myogenic band was the only one with equivalent left and right prefrontal SACCO. 

Overall, four bilaterally equivalent SA values were found as ISO features to characterize prefrontal 

ISO of the resting human brain. 

Table 3. 1 Grand averages of SAHbO over all measurements (n=130) on the left and right forehead across 
three ISO frequency bands 

Frequency 
band 

SAHbO, left 

(mean ± s.d.) 
SAHbO, right 

(mean ± s.d.) 
Left vs right 

t-test (p-value) 

Left vs right 
TOST (pTOST) 

Bilateral average 
SAHbO (mean ± 

s.d.) 

Endogenic 0.16 ± 0.08 0.15 ± 0.07 0.52 < 0.01;  
bilaterally equivalent 0.16 ± 0.07 

Neurogenic 0.09 ± 0.04 0.09 ± 0.04 0.76 < 0.01;  
bilaterally equivalent 

0.09 ± 0.04 

Myogenic 0.05 ± 0.02 0.05 ± 0.02 0.99 < 0.01;  
bilaterally equivalent 

0.05 ± 0.02 

Note: p-values and pTOST were obtained using paired t-tests and TOST, respectively. See Section 
B.2 in the Supplementary Material for details on TOST.  
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Table 3. 2 Grand averages of SACCO over all measurements (n=130) on the left and right forehead 
across three ISO bands 

Frequency 
band 

SACCO, left 

(mean ± s.d.) 
SACCO, right 

(mean ± s.d.) 
Left vs right 

t-test (p-value) 
Left vs right 

TOST (pTOST) 
Bilateral average 

SACCO (mean ± s.d.) 

Endogenic 0.013±0.005 0.011±0.005 < 0.02 0.11 Left > right 

Neurogenic 0.010±0.004 0.009±0.003 < 0.04 0.08 Left > right 

Myogenic 0.007±0.002 0.007±0.002 0.72 < 0.001;  
bilaterally equivalent 0.007±0.002 

Note: p-values and pTOST were obtained using paired t-tests and TOST, respectively. See Section 

B.2 in the Supplementary Material for details on TOST.  

3.3.3 ISO Coherence of Prefrontal Δ[HbO] and Δ[CCO] in the Resting Human Brain  

Figure 3.5(a) shows the comparisons between bilateral cerebral hemodynamic connectivity and 

bilateral metabolic connectivity over the three ISO bands. Paired t-tests confirmed that bCONHbO 

was significantly stronger than bCONCCO in all the E/N/M bands. To evaluate the significant 

differences in these values, both bCONHbO and bCONCCO for bilateral connectivity were calculated 

for each set of five measurements and are plotted separately in Figure 3.5(b). After performing a 

one-way ANOVA on these five datasets, we confirmed that no statistically significant difference 

in bilateral connectivity existed among the five datasets at all three frequency bands for both 

Δ[HbO] and Δ[CCO], as evidenced by the p-values in Figure 3.5(b). In addition, intraclass 

correlation coefficient (ICC) was calculated and reported in this figure for the 5 repeated 

measurements to evaluate the reproducibility of the feature in the subject level. 
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Figure 3. 5 Resting-state prefrontal bCONHbO and bCONCCO averaged over (a) the combined set of 
measurements (n=130) and (b) each separate set of five measurements (n=26 per set) over E (0.005-0.02 
Hz), N (0.02-0.04 Hz), and M (0.04-0.2 Hz) bands. p-values shown on top of each group of the bars in (b) 
represent one-way ANOVA results. All error bars indicate the standard error of the mean. ***: p<0.001. I 
values represent intraclass correlation coefficients for each group. 

Specifically, the bCONHbO and bCONCCO values averaged over the grand group (n=130) for 

all three E/N/M bands are listed in Table 3.3, with p-values obtained from one-way ANOVA (the 

fifth column for the left) and Tukey’s post hoc test (the sixth column). A significant difference in 

bCONHbO (or bCONCCO) was observed among the three frequency bands. Next, we identified that 

bCONHbO values at the E and N bands were not significantly different using Tukey’s post hoc test 

and were statistically equivalent based on TOST. Therefore, these two indices were pooled to 

achieve an averaged connectivity value. The same statistical analysis and spectral average over the 

E and N bands were achieved for the bCONCCO values too, as listed in the rightmost column of 

Table 3.3. In this case, we found two more ISO features (i.e., bilateral hemodynamic and metabolic 

connectivity) that may be characteristic in the resting-state prefrontal human cortices. 
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Table 3. 3 Resting-state prefrontal connectivity (bCONHbO and bCONCCO) averaged over the grand data 
set (n=130) at E/N/M band 

Bilateral 
Connectivity 

Endogenic 
(mean±s.d.) 

Neurogenic 
(mean±s.d.) 

Myogenic 
(mean±s.d.) 

ANOVA over 
three bands 

(p-value) 

E vs N  
Tukey’s  
(p-value) 

E vs N 
TOST 
(pTOST) 

E, N average 
(mean ± s.d.) 

bCONHbO 0.75 ± 0.20 0.78 ± 0.16 0.71 ± 0.10 < 0.003 0.35 < 0.001; 
laterally 

equivalent 
0.77 ± 0.17  

bCONCCO 0.31 ± 0.21 0.30 ± 0.21 0.14 ± 0.06 < 0.001 0.89 
<0.04; 

laterally 
equivalent 

0.31 ± 0.21  

Note: The p-values in the 5th column from the left were obtained from one-way ANOVA to 
compare those at the E/N/M bands. The p-values in the 6th column from the left were 
obtained from Tukey’s post hoc test to compare bCON values averaged over the E and N 
bands. The pTOST values were obtained from TOST. 

Another set of coherence analyses was performed to determine the cerebral hemodynamic-

metabolic coupling on each prefrontal side. Unilateral coupling between Δ[HbO] and Δ[CCO] 

indicates the level at which hemodynamic and metabolic infra-slow oscillations are synchronized 

and coupled. Figure 3.6(a) shows the uCOPHbO-CCO values derived from the right and left channels 

in each E/N/M band. Paired t-tests revealed that the uCOPHbO-CCO values between the left and right 

prefrontal cortices were statistically identical in the E and M bands.  Figure 3.6(b) illustrates the 

unilateral coupling averaged over each measurement group for the five repeated measurements. A 

one-way ANOVA over the five readings showed no significant difference for each coupling pair 

on each lateral side, as evidenced by the p-values given at the top of Figure 3.6(b). In addition, 

intraclass correlation coefficient (ICC) was calculated and reported in the figure 3.6(b) for the 5 

repeated measurements to evaluate the reproducibility of the feature in the subject level. In the 

neurogenic band, the uCOPHbO-CCO value in the left prefrontal region was significantly higher than 

that on the right side, indicating an intrinsic lateral difference in neurogenic oscillation in resting-

state hemodynamic-metabolic coupling. 
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Figure 3. 6 Left and right resting-state prefrontal uCOPHbO-CCO obtained from (a) combined grand group 
(n=130) and (b) separate groups (n=26 each) over endogenic (0.005-0.02 Hz), neurogenic (0.02-0.04 Hz), 
and myogenic (0.04-0.2 Hz) frequency bands. p-values above each group of bars in (b) represent results 
from ANOVA test. The error bars indicate the standard error of the mean. **: p < 0.01. I values represent 
intraclass correlation coefficients for each group. 

Table 3.4 lists the uCOPHbO-CCO values over the left and right prefrontal cortices across the 

three ISO frequency bands averaged over the grand set of experiments (n=130). P-values obtained 

from the paired t-test for uCOPHbO-CCO, left vs. uCOPHbO-CCO, right are reported in the fourth column 

from the left of Table 3.4. In the case of no significant difference in uCOPHbO-CCO between the left 

and right channels in the endogenic and myogenic bands, TOST for equivalence tests were 

perfomed with the pTOST values reported in Table 3.4. Accordingly, the bilateral average of 

uCOPHbO-CCO was calculated and represented in the rightmost column. These bilaterally averaged 

uCOPHbO-CCO values at the E and M bands are the 7th and 8th features that we identified in this study 

as potential biomarkers for characterizing brain disorders in the future. 
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Table 3. 4 Prefrontal uCOPHbO-CCO values on the left and right cortical regions averaged over the grand set 
of measurements (n=130) at each of the E/N/M bands 

Frequency 
band 

uCOPHbO-CCO,left 
(mean ± s.d.) 

uCOPHbO-CCO,right 
(mean ± s.d.) 

Left vs right 
t-test (p-value) 

Left vs right 
TOST (pTOST) 

Bilateral average 
(mean ± s.d.) 

Endogenic 0.33 ± 0.22 0.29 ± 0.20 0.11 
0.02;  

laterally 
equivalent 

0.31 ± 0.21 

Neurogenic 0.31 ± 0.20 0.24 ± 0.17 < 0.01 0.7 Left > right 

Myogenic 0.20 ± 0.10 0.18 ± 0.08 0.18 
0.04; 

laterally 
equivalent 

0.19 ± 0.09 

Note: p-values and pTOST were obtained from paired t-tests and TOST, respectively, between 

the left and right uCOPHbO-CCO. 

3.4 Discussion 

NIRS-based methods have been demonstrated and reported as well-known, non-invasive 

approaches to monitor the metabolic and hemodynamic activity of the human brain, and thus 

having great potential for clinical applications [136, 151, 152]. Because NIRS quantifies only 

changes in cerebral hemodynamics, it is not applicable in clinical practice for disease diagnosis or 

monitoring when the human brain is in a resting state. For instance, diffuse correlation 

spectroscopy and functional NIRS only detect the relative blood flow index and relative changes 

in hemoglobin concentration, respectively [153].  

To address this weakness of NIRS, we developed a frequency-domain analysis to determine 

the spectral amplitudes (SA) and coherence indices for each ISO time series on both sides of the 

prefrontal cortex. While both the ∆[HbO] and ∆[CCO] time series in the resting brain expressed 

changes with respect to a baseline point, each SA of the oscillation would be an absolute value, in 

µM, and signified the respective oscillation amplitude. Because the analysis was performed in the 

frequency domain, SA values in the E/N/M bands denoted oscillation magnitudes of HbO and 
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CCO at the three respective rhythms. In addition, coherence indices are absolute values in the 

range of 0 to 1, regardless of the unit. It represents the degree of oscillatory similarity between the 

two neurophysiological rhythms. Accordingly, we developed and demonstrated a low-cost, 

portable, 2-channel bbNIRS system to record cerebral hemodynamic and metabolic ISO activity 

over the prefrontal cortex of healthy young humans with a relatively large sample size ( n=26). 

The recorded signals were analyzed using a frequency-domain approach to quantify the spectral 

amplitude and connectivity/coupling of ISO in the resting human brain. As discussed below, this 

study enabled us to prove and support our hypothesis by achieving absolute quantification of ISO-

resolved hemodynamics and metabolism in the resting-state prefrontal human cortices. The 

quantified metrics were shown to be relatively stable and thus may have great potential to be 

developed as biomarkers for the characterization, diagnosis, and monitoring of certain brain 

disorders. 

3.4.1 ISO Spectral Amplitudes of Prefrontal ∆[HbO] and ∆[CCO] as Brain-state Features 

The ISO (0.005-0.2 Hz) consists of three distinct frequency components: endogenic (0.005-0.02 

Hz), neurogenic (0.02-0.04 Hz), and myogenic (0.04-0.2 Hz). Each frequency band is associated 

with a specific neurophysiological activity in the healthy human brain [115-117, 154]. Thus, 

abnormal brain activity and neurological disorders in the human brain are associated with impaired 

or irregular patterns of cerebral hemodynamic and metabolic ISOs. Several studies have reported 

a relationship between ISO impairment and cardiovascular disease, Alzheimer’s disease, 

hypertension, and stroke [40, 41, 119]. 

In this study, we quantified ISO-resolved spectral amplitudes of prefrontal oxygenated 

hemoglobin (SAHbO) and oxidized cytochrome c oxidase (SACCO) in healthy young humans. Next, 

we demonstrated that the SAHbO and SACCO values averaged over 26 participants with five different 
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repeated measurements were relatively stable and consistent, as evidenced by the ANOVA results 

shown in Figure 3.4(b). Furthermore, as shown in Figure 3.4(a) and Table 3.1, the average SAHbO 

values over the two lateral sides of the prefrontal cortex were statistically equivalent, indicating 

similar levels of hemodynamic oscillation in the bilateral prefrontal cortices in all vasomotion-

derived ISO (i.e., E/N/M) bands. Thus, a set of standard prefrontal SAHbO values for each of the 

three ISO bands can be established and further examined as features that characterize abnormal 

brain functions. As shown in Figure 3.4(c) and Table 3.2, identical or equivalent levels of grand-

averaged SACCO between the two prefrontal cortices in the myogenic band are unambiguous, 

implying that this metric can be considered another potential prefrontal feature.  

It is worth noting that the grand-averaged SACCO indices were significantly larger on the left 

than on the right prefrontal side in both the E- and N-bands. This observation may imply higher 

metabolic activity in endogenic and neurogenic rhythms on the left side than on the right side of 

the resting prefrontal cortex. As reported by [155], the dominant source of resting-state 

lateralization in human brain activity is the default mode network (DMN), which is associated with 

internal thoughts. The study [155] provided evidence that the DMN is predominantly active in the 

left prefrontal cortex in the resting state, especially in right-handed participants. The implication 

of our observation matched well with the results of Liu et al. (2009) because most of our 

participants were right-handed and would give rise to higher anterior default-mode activity in the 

left prefrontal cortex [155, 156]. Furthermore, as illustrated in Figures 3.4(a) and 3.4(c), the 

endogenic band had higher values for SAHbO and SACCO than those of the other two bands. This 

phenomenon has also been reported in other studies that have used different NIRS systems and 

analysis algorithms as well [35, 124, 157].  
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3.4.2 Cerebral Hemodynamic and Metabolic ISO Connectivity/Coupling as Features  

As shown in Figure 3.5(a) and Table 3.3, robust bilateral connectivity of prefrontal hemodynamics 

(bCONHbO) was identified over the E/N frequency bands in 26 young healthy human subjects at 

rest, over five repeated measurements. This high level or index of connectivity may imply 

synchronized hemodynamic activity mediated by endothelial cells and inter-neurons on lateral 

prefrontal regions [158-160]. In contrast, bCONCCO showed a significantly lower level of bilateral 

functional connectivity than bCONHbO. A lower level of bCONCCO can be expected because 

unilateral [CCO] activity is locally driven by oxygen consumption and/or mitochondrial 

metabolism within neurons, has specific functions distinct from those of the other lateral prefrontal 

cortex, and has less need to link to the other side. Similar to bCONHbO, bCONCCO was statistically 

identical over the E and N frequency bands. These observations are in good agreement with those 

of a recent study by our group, which had a smaller sample size and utilized a different 2-bbNIRS 

setup and analysis methods [43]. Furthermore, Figure 3.5(b) illustrates the ANOVA-driven results 

with non-significant differences among the bCONHbO (or bCONCCO) values over 130 

measurements. These high stabilities suggest and support the possibility of using these metrics as 

new neurophysiological features to characterize the human brain state.  

As the final metric, the unilateral hemodynamic-metabolic coupling (uCOPHbO-CCO) in the 

right and left channels is plotted in Figure 3.6(a). As shown in this figure and reported in Table 

3.4, no significant difference in uCOPHbO-CCO between the two lateral sides existed at both the E 

and M bands; thus, bilaterally pooled coupling indices at both E/M bands could be achieved. 

Similar to the other metrics shown above, Figure 3.6(b) illustrates the ANOVA-driven results of 

the statistically non-significant uCOPHbO-CCO values/indices bilaterally over 130 measurements in 
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the E and M bands. Thus, prefrontal uCOPHbO-CCO in the E and M bands can be included and tested 

as resting-state features in future clinical applications. 

In contrast, the neurogenic component of uCOPHbO-CCO was significantly higher in the left 

prefrontal cortex than in the right prefrontal cortex. This observation may imply a higher vascular-

metabolic interactivity on the left prefrontal cortex than on its contralateral side. Given that most 

of our participants were right-handed, higher hemodynamic-metabolic coupling in the left 

prefrontal cortex would be expected [155, 156].  

As mentioned in the Introduction, relaxation-contraction cycles of blood vessel walls are 

expected to be the driving force for the ISO rhythms of cerebral hemodynamics. However, the 

driving force of the ISO for CCO is unclear. A recent study using fMRI and PET demonstrated a 

strong correlation between slow oscillations (0.01-0.1 Hz) of hemodynamics and metabolism in 

the brain [161]. Specifically, the authors concluded that metabolic demand for glucose and oxygen 

regulates low-frequency hemodynamic fluctuations. Because of the strong correlation and thus 

close coupling between HbO and CCO constituents, we speculated that the three E/N/M 

oscillations originating from slow vasomotion may be passed or translated to mitochondrial (CCO) 

oscillations at the E/N/M rhythms. 

3.4.3 Eight Measurable Features of Prefrontal ISO   

In Section 3.3, we confirmed our hypothesis that prefrontal cortical connectivity and coupling 

of the ISO can be quantified using 2-bbNIRS as features that reflect the brain state. Specifically, 

through the aforementioned content, we demonstrated several stable or consistent metrics based 

on prefrontal bilateral connectivity and unilateral coupling of ISO. Based on the analyses and 

discussions given in Sections 3.4.1 and 3.4.2, we list eight metrics as measurable features in Table 

3.5. These features can be further studied and validated using a larger sample size of both healthy 
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human participants and patients with certain brain disorders. In addition, the ICC values for 

different features demonstrated that the subject-level reproducibility needs to be improved and 

more robust methodology must be obtained by modifying the current method. 

Table 3. 5 Measurable ISO features for characterization of the prefrontal human brain at rest 

ISO features (frequency band) Average over two lateral sides (µM) 

SAHbO (E) 0.16±0.07 
SAHbO (N) 0.09±0.04 
SAHbO (M) 0.05±0.02 
SACCO (M) 0.007±0.002 

ISO features (frequency band) connectivity between two lateral sides  

bCONHbO (E/N) 0.77±0.20 
bCONCCO (E/N) 0.31±0.18  

ISO features (frequency band) Average over two lateral sides 

uCOPHbO-CCO (E) 0.31±0.21 
uCOPHbO-CCO (M) 0.19 ± 0.09 

3.4.4 Limitations  

First, the relatively low sampling frequency and short data collection duration (i.e., 7-min) 

prevented us from achieving high-frequency resolution, which may have led to low accuracy in 

spectral amplitude and coherence calculations in the low-frequency range, especially in the 

endogenic band. It is suggested to have a longer measurement duration, for example, 10 min or 

longer.  Second, our bbNIRS system was sensitive to motion; the eyes-closed resting-state protocol 

may have caused sleepiness in the participants during the measurements. Finally, our quantified 

results or metrics may be contaminated by the extracranial layers of the human head. It is known 

that fNIRS signals obtained over the scalp of human participants are contaminated by extracranial 

layers, namely, the human scalp and skull. To minimize this potential confounding factor, 

additional optical channels of fNIRS with a short source-detector (S-D) separation (commonly 

~0.8-1.2 cm) have been used for systemic noise removal in task-evoked hemodynamic studies 
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[162-166], where a cortical region was activated by stimulating tasks. However, most fNIRS-based 

studies for quantifying resting-state functional connectivity (RSFC) have not developed an 

appropriate methodology to remove this confounding effect [147, 148]. It is reported only recently 

that RSFC can be quantified more accurately with a short S-D reading correction than without 

correction [167].  

3.4.5 Future work 

In future work, to enable a longer-period and less-artifact recording from the human brain, 

modifications or improvements are needed in the bbNIRS setup, measurement protocol, and 

computational methods to reduce movement artifacts and systemic/physiological noises. In 

addition, it is necessary to consider the implementation of short-distance channels in bbNIRS to 

remove the possible contamination of extracranial layers from the determined/interpreted results. 

The current study included only healthy controls without any disease-related patients; thus, it 

was an exploratory study [42]. While we believe that the identified ISO features are good 

neurological representations of the human brain, proof-of-principle or confirmatory research must 

be conducted for these features to become biomarkers of neurological diseases. Such studies 

include two parts. First, the features need to be stable, reliable, and with known or tested 

dependence on age, sex, and brain state. All of these quantifications need to be obtained using a 

statistically large sample size of healthy controls. Second, the features must be efficient in 

significantly classifying controls and patients with selected neurological disorders. Third, since the 

final verified biomarkers will be used to identify physiological disorders in individual subjects, 

more robust methodology needs to be developed to obtain consistent biomarkers with high 

reproducibility for each subject.  
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In addition, the observed differences between left and right prefrontal cortices in features such 

as SACCO and uCOPHbO-CCO needs to be further investigated to understand the physiological and 

functional mechanism behind these features in different locations of PFC. 

3.5. Conclusion 

In this study, we hypothesized that 2-bbNIRS, along with frequency-domain analysis, enables the 

quantification of prefrontal cortical connectivity and coupling of ISO in the resting human brain.  

To test this hypothesis, we implemented 2-channel bbNIRS and performed bilateral, prefrontal, 7-

min measurements in an eyes-closed resting state in vivo from 26 young and healthy participants, 

repeated 5 times over 5 weeks. The measured time series were analyzed using a frequency-domain 

approach to detect cerebral hemodynamic and metabolic ISO in three endogenic, neurogenic, and 

myogenic frequency bands at rest. Specifically, coherence analysis facilitated the quantification of 

bilateral connectivity and unilateral hemodynamic-metabolic coupling in the human prefrontal 

regions. Accordingly, we identified eight stable resting-state ISO-specific metrics or features, 

including bilaterally averaged SAHbO in all three bands, bilaterally averaged SACCO in the M band 

only, and bilaterally connected network metrics for both bCONHbO and bCONCCO, each of which 

were statistically identical in the E and N frequency bands, respectively.  The last two features 

were the bilaterally averaged coupling indices of uCOPHbO-CCO over the E- and M-bands, given 

that the coupling indices were statistically equivalent for both bands. All eight metrics as features 

showed a statistically stable level for 130 measurements. In short, this exploratory study developed 

a quick, low-cost, and effective methodology for exploring several prefrontal cortical connectivity 

and coupling features in the resting, healthy, and young human brains. The framework reported in 

this paper has demonstrated the potential of ISO features to be translatable for future clinical 
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applications, while further confirmatory studies are needed before these features become effective 

biomarkers to identify certain neurological disorders.   

3.6. Effect of Gender on Measurable Features of Prefrontal ISO  

After separating the female and male groups, the proposed measurable features were compared 

between these groups using paired t-test and TOST. The features with similar value between male 

and female groups are represented in table 3.6.  

Table 3. 6 Measurable ISO features for characterization of the prefrontal human brain at rest with similar 
values between male and female groups (the reported values are average of all measurements, including 

male and female subjects) 

ISO features (frequency band) Average over two lateral sides (µM) 

SAHbO (E) 0.16±0.07 

ISO features (frequency band) connectivity between two lateral sides  

bCONHbO (E/N) 0.77±0.20 
bCONCCO (E/N) 0.31±0.18  

ISO features (frequency band) Average over two lateral sides 

uCOPHbO-CCO (E) 0.31±0.21 
uCOPHbO-CCO (M) 0.19 ± 0.09 
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Chapter 4 

Wavelength- and Site-Specific Effects of Prefrontal 
Photobiomodulation in vivo on Bilateral Metabolic 

Connectivity and Unilateral Metabolic-Hemodynamic 
Coupling in Humans 

Sadra Shahdadian, Xinlong Wang, Shu Kang, Caroline Carter, Akhil Chaudhari, Hanli 
Liu 

(This chapter is a manuscript that is ready to be submitted soon) 

4.1 Introduction 

The central nervous system, and in particular, the brain, is one of the dominant consumers of 

oxygen and glucose in the human body due to comparably high levels of metabolism even at rest. 

Furthermore, neural oxidative respiration, which is closely related to the level of the oxygen 

supply, modulates the energy metabolism in the neurons. Furthermore, previous studies have 

demonstrated the role of intrinsic vascular wall rhythmic relaxation-contraction (i.e., vasomotion) 

in human cerebral metabolic and hemodynamic activity. These spontaneous infra-slow oscillations 

(ISO), which are dominant in frequencies between 0.005 and 0.2 Hz, have been related to different 

human brain functions such as cognitive function. In addition, disturbances in vasomotion have 

been associated with aging and neurological disorders and diseases such as atherosclerosis [39], 

cardiovascular disease [40], and Alzheimer’s Disease [41]. In other studies published by our group 

[43, 44], we have shown that the vasomotion and its characteristics over the prefrontal cortex in 

rest can be quantified as biomarkers for healthy humans. 

The infra-slow vasomotion, which is independent of respiration and heartbeat, consists of three 

distinct physiologically/biochemically-sourced components. Briefly, oscillation in releasing 



66 
 

potent vasoactive factors, such as nitric oxide (NO), free radicals, prostacyclin, endothelium-

derived hyperpolarizing factor, and endothelin lead to rhythmic physiological activities in the 

endogenic frequency band (0.005-0.02 Hz) which corresponds to relaxation-contraction cycles in 

the endothelial layer of the vascular wall. The neurogenic component (0.02-0.04 Hz), on the other 

hand, is sourced in released vasoactive ions and neurotransmitters from neurons, and myogenic 

activity (0.04-0.2 Hz), is representing the dilation-contraction of the smooth muscle cells on the 

vessel wall [117].  

Functional Near-Infrared Spectroscopy (fNIRS) [38], functional Magnetic Resonance Imaging 

(fMRI) [121], and transcranial cerebral doppler (TCD) [122] are the common methods for 

detecting the hemodynamic ISO. Nevertheless, a better understanding of the mechanism behind 

human cerebral metabolism requires sophisticated methods of simultaneous monitoring of 

hemodynamic and metabolic activity in the region of interest. Mitochondrial activity and its 

oscillations can be quantified as a direct method to monitor metabolic ISO [123]. The metabolic 

state of living tissue can be detected by the concentration of redox-state cytochrome c oxidase 

(CCO) which is the terminal enzyme in the mitochondrial respiratory chain [137-140]. 

Previous studies have demonstrated the capability of broadband near-infrared spectroscopy 

(bbNIRS) in the detection and quantification of changes in concentration of oxygenated 

hemoglobin (i.e., Δ[HbO]), deoxygenated hemoglobin (i.e., Δ[HHb]), and redox-state cytochrome 

c oxidase (i.e., Δ[CCO]). The concentration quantification in this method is based on the 

absorption and scattering characteristics of these chromophores in the living tissue [130-134]. Due 

to the lower concentration of Δ[CCO] in comparison to Δ[HbO] and Δ[HHb], multiple 

wavelengths are required in the NIRS system to optimally quantify the changes in absorption and 

scattering characteristics of the tissue [135, 136, 141]. 
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Transcranial photobiomodulation (tPBM), as a non-invasive method of neuromodulation [47, 

168], is shown to alter cerebral hemodynamic and metabolic states [7, 9, 169]. This method in 

which a low-intensity laser or light-emitting diode (LED) is employed to deliver light to the human 

brain, is shown to improve human cognitive activity or treat different neurological disorders [2, 

47, 168]. Previous studies demonstrated the dose-dependent nature of tPBM in the modulation of 

Δ[HbO] and Δ[CCO], especially in the human prefrontal cortex [7, 9, 169]. Furthermore, 1064 nm 

tPBM delivered to the right prefrontal cortex can alter the brain's hemodynamic, metabolic, 

electrophysiological functional connectivity at rest [43, 105, 170].  

Our group recently introduced a set of hemodynamic and metabolic characteristics quantified by 

frequency-domain spectral amplitude and connectivity analysis of hemodynamic and metabolic 

ISO activity of prefrontal cortex, assessed by dual-channel bbNIRS setup [43]. These metrics are 

(1) bilateral hemodynamic (i.e., [HbO]) connectivity, (2) bilateral metabolic (i.e., [CCO]) 

connectivity, (3) unilateral hemodynamic-metabolic coupling on the left and (4) right side of the 

prefrontal cortex. In addition, we have demonstrated that these constant and highly reproducible 

characteristics can be considered potential biomarkers to identify neurological disorders and 

diseases [44]. Furthermore, we have shown distinct alterations in these metrics as well as Δ[HbO] 

and Δ[CCO] ISO spectral amplitudes across all three frequency bands in response to 1064-nm 

tPBM. Modulation of Δ[HbO] and Δ[CCO] in response to tPBM is also demonstrated to be 

wavelength-dependent in other studies [12]. However, no behavioral or physiological alteration is 

reported in response to left prefrontal tPBM. Thus, it would be beneficial to investigate the effect 

of the laser’s wavelength and stimulation site on the alteration of the proposed metrics. 

In this study, young healthy human participants were at rest while ∆[HbO] and ∆[CCO] time series 

with a sampling frequency of 0.67 Hz were acquired using a 2-bbNIRS system from two sides of 
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the prefrontal cortex in pre- and post-tPBM. These time series were then analyzed to quantify the 

amplitude and coherence of hemodynamic and metabolic ISO over three frequency bands. In the 

first set of analyses, we assessed the spectral amplitude of hemodynamic and metabolic activity 

(SAHbO and SACCO) over the three ISO frequency bands. Then, four physiological metrics were 

used to characterize the connectivity/coupling between each pair of signals. These measures 

include (1) bilateral hemodynamic connectivity (bCONHbO), (2) bilateral metabolic connectivity 

(bCONCCO), (3) coupling between cerebral hemodynamic and metabolic activities on the 

ipsilateral side to the stimulation (uCOPIpsi), and (4) coupling between cerebral hemodynamic and 

metabolic activities on the contralateral side to the stimulation (uCOPContra), of the prefrontal cortex 

over the three ISO frequency bands. Five separate visits with different conditions were used for 

each participant including 8 minutes of (1) Right prefrontal 800-nm laser, (2) Right prefrontal 850-

nm laser, (3) Right prefrontal sham, (4) Left prefrontal 800-nm laser, (5) Left prefrontal sham.  

In the end, we would support the hypothesis that hemodynamic and metabolic ISO is significantly 

modulated by tPBM. This modulation is distinct for each frequency band, can be local or 

bilateral/global, and in some cases is closely related to the wavelength and stimulation location. 

These observations can be beneficial for further investigation of the mechanism behind cerebral 

metabolism as well as wavelength- or location-specific cognitive function improvement or 

treatment of neurological disorder/disease based on the modulated metric and frequency band. 

4.2 Materials and Methods 

4.2.1 Participants 

The dataset used for this study was the same as our previous study (i.e., chapter 3) [44]. 31 healthy 

human participants were recruited from the local community of the University of Texas at 
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Arlington. They were screened by the same inclusion criteria as those in Wang et al. [142, 171]. 

Since bbNIRS system was highly sensitive to motion artifacts, 5 subjects with excessive motion 

during the experiment were excluded from the analyzed data. After exclusion, a total of 26 young 

healthy humans (14 males and 12 females, mean ± SD age = 22.4 ± 2.3 years) participated in 5 

visits separated by at least 7 days to minimize post-tPBM residual effects. Each participant was 

subject to (1) Right prefrontal 800-nm tPBM (R800), (2) Right prefrontal 850-nm tPBM (R850), 

(3) Right prefrontal sham (RS), (4) Left prefrontal 800-nm tPBM (L800), (5) Left prefrontal sham 

(LS) stimulation and the sequence of these five experiments were randomly assigned to each 

subject. The Institutional Review Board of the University of Texas at Arlington approved all 

experimental procedures. All measurements were conducted with informed consent from each 

participant. 

4.2.2 Experiment Setup and Protocol 

The original dataset consists of a dual-mode dataset (i.e., bbNIRS and EEG). However, in this 

study, we used the bbNIRS section of the dataset. The dual-channel bbNIRS system, as described 

in our previous study [44] was assembled and used to measure the changes in the broadband optical 

spectrum on the bilateral prefrontal locations of the participants under pre tPBM/sham stimulation 

(resting-state) and post tPBM/sham stimulations. Δ[HbO] and Δ[CCO] were then quantified based 

on the absorption and scattering coefficients of major chromophores in the tissue. The 

experimental setup including the dual-mode bbNIRS and EEG is shown in Figure 4.1(a). Two 

separate bbNIRS channels, each with a 3-cm source-detector separation, were placed on the 

subject’s forehead before and after tPBM/sham was delivered to the prefrontal location. The 

bbNIRS holder and fibers were removed during the stimulation period. In the case of right 

prefrontal stimulation, the right channel (Ch1 in figure 4.1(a)) is the ipsilateral channel and the left 
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channel (Ch2 in figure 4.1(a)) is the contralateral channel and vice versa for the left prefrontal 

stimulation. This setup enabled us to simultaneously measure the optical spectrum in both 

ipsilateral and contralateral to the stimulation side. For the detailed setup information see figure 

4.1(b) and [44]. 

The experimental protocol for tPBM and sham experiments is shown in Figure 4.1(c). The total 

measurement/recording time was 22 minutes, including a 7-min pre-stimulation (rest), an 8-min 

randomized tPBM/sham, and a 7-min post-stimulation period. The participants were asked to 

comfortably sit on a sofa chair. Also, they were asked to close their eyes during the whole 

experimental procedure without falling asleep. For eye protection, participants and experimenters 

wore a pair of laser-protection goggles during both tPBM and sham stimulation.  

 

Figure 4. 1 (a) Experiment setup including two channels of bbNIRS on the lateral forehead and EEG cap. 
The electrophysiological data collected by EEG is not used in this paper. (b) 2-bbNIRS light source, 
spectrometer, and bundle setup illustration. (c) Protocol for this study consists of 5 visits with 7-minute 
eyes-closed pre-stimulation, 8 minutes of randomized tPBM (R800, L800, or R850) or sham (RS or LS), 
and 7-minute post-stimulation. The bbNIRS data is collected pre- and post-stimulation. 

In this study, the device/hardware and dosage of tPBM were the same as those published 

previously [12]. 800 and 850 nm laser parameters for active tPBM and sham are presented in Table 

4.1. A sham measurement was performed with the laser device turned on but set to 0.1 W for 8 

minutes of stimulation while the laser aperture was sealed with a black-color cap. A power meter 

was used to confirm that the real output power in presence of the cap was zero. 
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Table 4. 1 Laser stimulation parameters for active tPBM and sham 

Stimulation Beam Diameter 
(mm) 

Power density 
(W/cm2) 

Delivered Power 
(W) 

Time 
(min) 

Total Dose 
(J) 

tPBM 
(800nm/850nm) 42 0.25 3.5 8 1680 

Sham 42 0 0 8 0 

4.2.3 Data Analysis 

Each 7-minute data collection period consists of 280 time points (i.e., 0.67 Hz) with an optical 

spectrum recorded in each time point. The recorded spectrum wavelength was 740-1100 nm. 

However, previous studies have shown that the 780-900 nm band is sufficient to estimate the 

chromophores’ concentration efficiently with a relatively low level of error propagated from noise 

[172]. Thus, Modified Beer-Lambert law was used in the wavelength of 780-900 nm to estimate 

Δ[HbO] and Δ[CCO] for each time point [58].  

In this study, our main interest was to investigate photobiomodulated prefrontal hemodynamic and 

metabolic activities in comparison to the baseline. As we demonstrated in our previous study, 

resting-state hemodynamic and metabolic characteristics (obtained from the pre-stimulation 

period) investigated in this study are relatively constant among groups of healthy humans. 

Therefore, the post-stimulation ISO Δ[HbO] and Δ[CCO] metrics can represent the physiological 

effects of tPBM.  

A set of frequency analyses were performed to quantify prefrontal hemodynamic and metabolic 

ISO activity. As the first step, Δ[HbO] and Δ[CCO] ISO amplitudes (i.e., SAHbO, SACCO) were 

calculated on lateral sides over three frequency bands (E/N/M). The second analysis was to 

estimate the coherence between pairs of Δ[HbO]right, Δ[HbO]left, Δ[CCO]right, and Δ[CCO]left time 

series. The physiologically interpretable pairs of these signals are bilateral hemodynamic 
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connectivity (bCONHbO), bilateral metabolic connectivity (bCONCCO), unilateral hemodynamic-

metabolic coupling ipsilateral (uCOIpsi) or contralateral (uCOPContra) to stimulation. 

4.2.3.1 Amplitude and Phase Decomposition 

The first set of ISO metrics investigated in this study is the pre- and post-stimulation spectral 

amplitudes of Δ[HbO] and Δ[CCO] time series. To extract the amplitude and phase of each signal, 

we used the multi-taper method fast Fourier transform (mtm-fft). In this method, to obtain a 

frequency spectrum with relatively high resolution and low noise, Slepian sequences were used to 

taper time series in the time domain followed by the Fourier transform [79, 80]. The decomposed 

amplitude and phase in this step can be represented as a complex number [13, 15] which was used 

in the connectivity quantification (see section 4.2.3.2). 

To assess the tPBM-induced modulations in hemodynamic and metabolic rhythms, we normalized 

the post-stimulation amplitudes in respect to pre-stimulation amplitudes by subtracting and 

dividing the respective 7-min baseline values:  
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Where c denotes the chromophore, namely, HbO and CCO, i represents the frequency band 

including endogenic (E), neurogenic (N), and myogenic (M) bands, j indicates the stimulation 

condition, namely, R800, L800, R850, RS, LS, and SAc,i,j,pre and SAc,i,j,post denote the amplitude 

during the 7-min baseline/pre-stimulation and 7-min post-stimulation period, respectively. Finally, 

ΔSAc,i,j, is the normalized change in ISO amplitude at each of three frequency bands for different 

stimulation conditions in percentage. This process was repeated for all four signals of Δ[HbO] and 

Δ[CCO] on lateral sides. Furthermore, the ΔSAc,i,j values for 3 tPBM conditions were sham 
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subtracted by subtracting the sham amplitude value (i.e., ΔSAc,i,sham) from the corresponding tPBM 

(i.e., ΔSAc,i,tPBM) on the corresponding side: 

 (4-2) 

The sham-subtracted spectral amplitudes of Δ[HbO] and Δ[CCO] on lateral sides were then tested 

with a one-sample t-test for each stimulation condition to identify the significant effects of tPBM 

in each frequency band separately. It is worth noting that one-sample t-test for comparison between 

sham-subtracted values of tPBM and zero is equivalent to paired t-test for comparison between 

tPBM and sham group. 

4.2.3.2 Hemodynamic and Metabolic Connectivity/Coupling Quantification 

Connectivity measures, in principle, express the level by which two signals oscillate 

synchronously. Different methods are introduced focusing on the amplitude and/or phase of the 

signals [13, 14]. One of the widely used connectivity measures is coherence, a phase-based 

frequency-domain analysis that is quantified as a normalized value between 0 and 1. The 

mathematical representation of coherence for a specific frequency of ω is [13]: 
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where Sxx and Syy are the power estimates of signals x and y, and Sxy is the averaged cross-spectral 

density of two time series. These terms are calculated using the complex values obtained from the 

mtm-fft method (see section 4.2.3.1 and Appendix B.2). 

In this study, we quantified the coherence in two time segments separately; namely, baseline (i.e., 

pre-stimulation) and post-stimulation. The coherence studied in pairs of signals include: (1) 

Δ[HbO]Ipsi-Δ[HbO]Contra (i.e. bilateral hemodynamic connectivity, bCONHbO), (2) Δ[CCO]Ipsi-

, , , , , ,c i ss c i tPBM c i shamSA SA SA∆ = ∆ −∆



74 
 

Δ[CCO]Contra (i.e. bilateral metabolic connectivity, bCONCCO), (3) Δ[HbO]Ipsi-Δ[CCO]Ipsi (i.e. 

ipsilateral prefrontal hemodynamic-metabolic coupling, uCOPIpsi), and (4) Δ[HbO]Contra-

Δ[CCO]Contra, (i.e. contralateral prefrontal hemodynamic-metabolic coupling, uCOPContra). The 

obtained values were then divided into the three ISO frequency bands (E/N/M). The tPBM/sham-

induced changes in coherence values can be identified by baseline normalization. In this method, 

since the baseline coherence in some cases are close to zero, the division in the normalization 

process is not practical. Therefore, the baseline subtraction approach was used for coherence 

indices (COH), as: 

ΔCOHi,j = COHi,j,post – COHi,j,pre   (4-4) 

where i represents the frequency band including endogenic (E), neurogenic (N), and myogenic (M) 

bands, j indicates the stimulation condition, and COHi,j,pre and COHi,j,post denote the coherence 

during the 7-min baseline/pre-stimulation and 7-min post-stimulation period, respectively. Finally, 

ΔCOHi,j, is the baseline-subtracted change in ISO coherence at each of three frequency bands for 

different stimulation conditions. This process was repeated for all four coherence indices between 

bilateral Δ[HbO], bilateral Δ[CCO], and unilateral Δ[HbO]-Δ[CCO] on lateral sides of the 

prefrontal cortex. Furthermore, the ΔCOHi,j values for 3 tPBM conditions (i.e., R800, L800, and 

R850) were sham subtracted by subtracting the sham amplitude value (i.e., ΔCOHi,sham) from the 

corresponding tPBM (i.e., ΔCOHi,tPBM) on the corresponding side: 

 ΔCOHi,ss = ΔCOHi,tPBM – ΔCOHi,sham   (4-5) 

As mentioned above, computed coherence (COH) can be categorized as either bilateral 

connectivity (bCON) or unilateral coupling (uCOP). The sham-subtracted coherence values were 

then tested with one-sample t-tests for each stimulation condition to identify the significant effects 

of tPBM in each frequency band separately.  
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4.2 Results 

This study hypothesized that prefrontal tPBM can alter the spectral amplitude of cortical ISO as 

well as bilateral hemodynamic and metabolic connectivity and their unilateral coupling of 

hemodynamic and metabolic rhythms in the resting human forehead. To support this hypothesis, 

we recruited 26 young and healthy participants (after the exclusion of 5 subjects). The experiment 

consisted of 5 separate visits, three for active tPBM (i.e., R800, L800, R850) and two for sham 

stimulation (i.e., RS and LS). During all visits, we took 2-bbNIRS readings during the 7-min pre- 

and 7-min post-stimulation. ISO amplitude and connectivity/coupling indices were quantified and 

the changes in response to different laser wavelengths and stimulation sites were studied for each 

condition. 

4.2.3 tPBM-induced Alterations in Spectral Amplitude of Δ[HbO] and Δ[CCO] ISO 

As the first step, hemodynamic and metabolic ISO amplitudes in 7-minute pre- and 7-minute post-

stimulation temporal segments were calculated for all five stimulation conditions separately. Then, 

the tPBM-induced changes in Δ[HbO] and Δ[CCO] (ΔSAc,i,j) were computed for five stimulation 

conditions (see equation (4-1)). Moreover, to better compare the effects of tPBM on amplitude 

measures, the sham-subtracted values (ΔSAc,i,ss) were quantified over the three ISO bands (E/N/M) 

as described in equation (4-2). 

Figure 4.2(a) shows that compared to sham, all tPBM conditions significantly enhanced ΔSAHbO 

in the endogenic band, in the prefrontal cortex ipsilateral to the stimulation site. A similar effect 

was reported in a recent study using a 1064-nm laser [43]. However, the 800-nm tPBM delivered 
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to the right forehead (R800) was the only stimulation with a contralateral effect on ΔSAHbO in this 

frequency component. Wavelength- and location-dependent modulation of ΔSAHbO is evident in N 

and M bands as R850 and L800 are the only stimulations with a significant effect on this metric. 

In addition, as illustrated in figure 4.2(b), the common effect of different tPBM conditions on 

ΔSACCO is the decrease of metabolic activity amplitude in the E band on the contralateral side of 

the stimulation. Furthermore, similar to ΔSAHbO, tPBM-induced ΔSACCO was wavelength- and 

location-dependent. This figure shows how an 850-nm laser delivered to the right prefrontal cortex 

modulated ΔSACCO in the ipsilateral prefrontal cortex over E and M bands and in the contralateral 

prefrontal cortex over the N band. 

 

Figure 4. 2 Sham-subtracted tPBM-induced (a) SAHbO,SS and (b) SACCO,SS (in percent) over the ipsilateral 
and contralateral sides of the prefrontal cortex for different tPBM conditions, namely, R800, L800, R850  
at endogenic (E; 0.005-0.02 Hz), neurogenic (N; 0.02-0.04 Hz), and myogenic (M; 0.04-0.2 Hz) frequency 
bands. Error bars represent the standard error of the mean (n=26). *: p<0.05, **: p<0.01 obtained from one-
sample t-test. 

4.2.4 tPBM-induced Alterations in ISO Coherence of Prefrontal Δ[HbO] and Δ[CCO]  

To assess the tPBM-induced alterations in cerebral hemodynamic or metabolic connectivity and 

hemodynamic-metabolic coupling, as described in 2.3.2, the coherence method was utilized. COH 

values were calculated for 7-min pre- and post-stimulation periods for all 5 tPBM/sham conditions 

over three ISO components separately. The stimulation-induced relative change in coherence 

indices (ΔCOHi,j) was then obtained by baseline normalization as described in equation (4-4). 
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Finally, to evaluate the effect of tPBM on the connectivity and coupling in comparison to the sham 

stimulation these values were sham-subtracted by the corresponding sham location (see equation 

(4-5)).  The sham-subtracted indices were then tested using one-sample t-tests to distinguish 

statistically significant effects of different stimulation wavelengths and locations. Coherence 

indices (COH) can be interpreted as different connectivity/coupling metrics according to the pair 

of time series that have been examined. As elaborated in 2.3.2, these metrics are: (1) bilateral 

hemodynamic connectivity (bCONHbO), (2) bilateral metabolic connectivity (bCONCCO), (3) 

ipsilateral hemodynamic-metabolic coupling (uCOPIpsi), and (4) contralateral hemodynamic-

metabolic coupling (uCOPContra) 

According to figures 4.3(a) and (b), 800-nm laser illumination on the right prefrontal cortex is the 

only stimulation affecting both hemodynamic and metabolic bilateral connectivity by increasing 

bCONHbO and bCONCCO significantly over the E band. In the case of bCONHbO, as illustrated in 

figure 4.3(a), all tPBM conditions induce a desynchronization between bilateral hemodynamic 

activities in the M component of ISO. On the other hand, all three tPBM conditions lead to 

desynchronization of bilateral metabolism in the N frequency band (see figure 4.3(b)). 

Furthermore, the M band is the frequency band where the effect of the wavelength and location of 

tPBM on bCONCCO is evident. In this ISO component, Right and left 800 nm stimulation showed 

opposite effects on bCONCCO. The R800 resulted in a decrease in bilateral metabolic connectivity; 

whereas the L800 boosted this connectivity. On the contrary to 800 nm, 850 nm laser did not 

induce any alterations to this metric. 
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Figure 4. 3 Sham-subtracted tPBM-induced prefrontal (a) bCONHbO,SS and (b) bCONCCO,SS for different 
tPBM conditions, namely, R800, L800, R850  at endogenic (E; 0.005-0.02 Hz), neurogenic (N; 0.02-0.04 
Hz), and myogenic (M; 0.04-0.2 Hz) frequency bands. Error bars represent the standard error of the mean 
(n=26). *: p<0.05, **: p<0.01 obtained from one-sample t-test. 

Sham-subtracted unilateral hemodynamic-metabolic coupling on ipsilateral and contralateral sides 

of the prefrontal cortex (i.e., uCOPIpsi,SS and uCOPContra,SS, respectively) were another set of metrics 

examined in this study. As shown in Figures 4.4(a) and (b), different stimulation conditions only 

affected this metric in the prefrontal cortex ipsilateral to the stimulation site. Figure 4.4(a) reveals 

the fact that the ipsilateral increase in endogenic hemodynamic-metabolic coupling was 

independent of the wavelength and stimulation site. Moreover, 800nm laser on either side of the 

prefrontal cortex enhanced the uCOPIpsi,SS in the M frequency band; whereas, this metric was not 

altered by R850 laser illumination. Another metric in which the location- and wavelength-

dependence of tPBM is evident, is the N band of uCOPIpsi,SS where R850 tPBM led to no significant 

alteration in this metric while right and left 800nm tPBM resulted in opposite modulation of this 

metric. In this sub-band, R800 induced an increase in the ipsilateral coupling; however, L800 

tPBM decoupled ipsilateral hemodynamic-metabolic activities. 
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Figure 4. 4 Sham-subtracted tPBM-induced prefrontal (a) uCOPIpsi,SS and (b) bCONContra,SS for different 
tPBM conditions, namely, R800, L800, R850  at endogenic (E; 0.005-0.02 Hz), neurogenic (N; 0.02-0.04 
Hz), and myogenic (M; 0.04-0.2 Hz) frequency bands. Error bars represent the standard error of the mean 
(n=26). *: p<0.05, **: p<0.01 obtained from one-sample t-test. 

4.3 Discussions 

NIRS-based methods, as widely-adopted low cost and non-invasive methods of monitoring the 

hemodynamic and metabolic states of the human brain [136, 151, 152], have faced a limitation in 

resting-state experiments due to their nature of measuring the relative changes of the 

chromophores’ concentration in the tissue  [173]. However, our group recently developed a dual-

channel bbNIRS system and computational methodology measuring resting-state bilateral 

prefrontal metabolic and hemodynamic ISO spectral amplitude and connectivity/coupling as 

quantifiable absolute values. In previously reported studies, we have shown how these metrics are 

stable and reproducible among young healthy humans leading to a great potential framework for 

resting-state bbNIRS studies detecting early-stage neurophysiological disorders [43, 44].  

In section 4.2, we demonstrated several hemodynamic and metabolic metrics to quantify prefrontal 

spectral amplitude, bilateral connectivity, and unilateral coupling of cerebral ISO in the resting 

human brain. In this section, we would discuss the reported results in section 4.3 regarding the 

effects of prefrontal tPBM with different wavelengths and stimulation sites on the metrics over 

lateral prefrontal cortices. 
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4.3.3 Alterations in ISO Prefrontal SAHbO and SACCO in Response to Different tPBM 

Conditions 

The significant increase in oxyhemoglobin ISO spectral amplitude (SAHbO) over the endogenic 

band in response to all three tPBM conditions (figure 4.2(a)) ipsilateral to stimulation, implies that 

tPBM can significantly excite cerebral hemodynamic activity originated in endothelial oscillations 

over the stimulation site. This observation, which is independent of laser wavelength and location 

is in great agreement with several studies showing an increase in Δ[HbO] and its ISO spectral 

amplitude during and after tPBM with various laser/LED wavelengths and tissues [9, 12, 43, 170, 

174]. We have also shown in another study that the upregulation of SAHbO in the endogenic band 

is because tPBM (specifically 1064nm laser) releases nitric oxide (NO) leading to vessel dilation 

[175] which seems to be the case for all examined wavelengths and locations in this study. As 

illustrated in this figure, different stimulation conditions tend to alter contralateral prefrontal cortex 

SAHbO differently. Specifically, R800 and R850 excited the contralateral cerebral hemodynamic 

activity sourced in vascular endothelial and smooth muscle cells oscillations, respectively; 

whereas, L800 inhibited the contralateral hemodynamic activity sourced in inter-neurons 

oscillations. These observations can be another step towards understanding the mechanism behind 

different photobiomodulation conditions, especially in cortical regions. 

As shown in figure 4.2(b), the other common effect of various tPBM conditions; namely, R800, 

L800, and R850, was the inhibition of metabolic ISO activity (measured by SACCO) over the 

contralateral prefrontal cortex sourced in endothelial cells oscillations. This phenomenon, which 

was observed in this study for the first time, implies that despite the significantly different behavior 

of these stimulation conditions over the illumination site, they alter the contralateral metabolic ISO 

spectral amplitude relatively identically. The outstanding tPBM condition in this figure/metric is 
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the L800. This condition is the only tPBM altering SACCO from inter-neurons and smooth muscles 

oscillations where an increase in this metric is evident over ipsilateral and contralateral sites, 

respectively. On the other hand, the inhibitory effect of this type of tPBM is noticeable in the E 

band. Finally, the only modulation induced by R850 is the increase in this metric based on vascular 

endothelial oscillations ipsilateral to the stimulation site. These observations and in particular, the 

difference between R800 and L800, imply a location-dependent nature of tPBM. Moreover, it 

reveals the need for a more in-depth study of the laser modulation mechanism behind different 

wavelengths and stimulation locations. To the best of our knowledge, the cognitive effects of 

prefrontal tPBM are only reported from right prefrontal stimulation and no significant behavioral 

effect is reported from left prefrontal stimulation to this date. 

It is noteworthy that the effects reported in this paper are based on the temporally averaged metrics 

of the 7-min post-stimulation compared to 7-min pre-stimulation periods. As reported in other 

studies, different laser/LED-based tPBM methods have various temporal effects on the 

hemodynamic and metabolic activities during and post-stimulation. For instance, Pruitt et al. [12] 

reported a decrease/recovery in upregulated Δ[CCO] immediately after 1064 nm and 850 nm 

tPBM stop. Thus, the lack of alteration in any of the metrics reported in this study should not be 

extrapolated to a lack of excitement/inhibition of that activity during stimulation. 

4.3.4 Alterations in ISO Prefrontal bCON and uCOP in Response to Different tPBM 

Conditions 

Bilateral connectivity represents the level of synchronization or coherence of oscillations in the 

concentration of a specific chromophore (i.e., Δ[HbO] or Δ[CCO]) over lateral prefrontal cortices. 

This functional connectivity reflects whether cerebral activity (i.e., hemodynamic or metabolic) is 

mainly driven bilaterally/globally or locally [124]. Moreover, a change in this metric in response 
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to a neurological disorder or stimulation can imply how this regulation is disturbed or boosted. In 

addition, unilateral coupling between hemodynamic and metabolic activities on the same lateral 

side denotes how the demand (measured by Δ[CCO]) and supply (measured by Δ[HbO]) is 

regulated in that specific region. Previous studies from our group have revealed a remarkably 

stable level of this metric in young healthy adults. However, similar to bilateral connectivity, it 

might be disturbed as a result of irregularities in the supply-demand relationship which leads to 

neurological impairment. The prefrontal cortex is shown to be closely associated with cognitive 

functions; thus, many cognitive impairments or disorders are sourced from neurological 

malfunctioning of this cortical region [125-129].  

As shown in figures 4.3(a) and (b), an 800-nm laser delivered to the right prefrontal cortex is the 

only condition increasing bilateral hemodynamic (bCONHbO) as well as metabolic (bCONCCO) 

connectivity in the endogenic band. This enhancement of bilaterally/globally driven hemodynamic 

and metabolic activity, which was not reported in the study with 1064-nm right prefrontal tPBM 

[43], is another indication of wavelength- and location-specific effects of tPBM. On the other hand, 

as illustrated in figure 4.3(a), all three stimulation conditions induce a reduction/desynchronization 

in bilateral hemodynamic connectivity in the myogenic band. This phenomenon is in agreement 

with the 1064-nm tPBM [43] indicating a more locally-driven hemodynamic ISO originated from 

vascular smooth muscle cells oscillations in response to tPBM (independent of wavelength and 

location). In addition, the same effect is observed in the neurogenic band of bCONCCO. This 

desynchronization is supported by the locally-driven nature of photo-oxidation of CCO in 

mitochondria [176-178], especially in axon terminals of the cortical neurons where the release of 

neurotransmitters modulates the oscillation in the neurogenic band. Another indication of the 

location-related effect of tPBM is the myogenic band of bCONCCO where the right and left 800-
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nm lasers resulted in opposite modulation of bilateral metabolic connectivity. In other words, the 

right 800-nm laser desynchronized the smooth muscle-sourced oscillations of Δ[CCO] and 

perturbed it towards more locally-driven (more segregated) activity; whereas, the left 800-nm laser 

boosted the integration of bilateral metabolic activities over prefrontal cortices. This phenomenon 

can be a result of the information flow direction in resting-state networks. The relationship between 

tPBM location and modulation is beyond our current knowledge about the tPBM mechanism and 

requires further investigation. 

As the final metric, unilateral hemodynamic-metabolic coupling was only photobiomodulated on 

the ipsilateral side and no significant changes were observed on the contralateral side of the 

prefrontal cortex (see figures 4.4(a) and (b)). uCOPIpsi shows an increase in the endogenic 

component of ISO indicating an enhanced and more robust oxygen supply-demand relationship in 

the mitochondrial ATP synthesis cycle mediated by endothelial oscillations. Right and left 800-

nm tPBM show the same upregulation of the coupling sourced from vascular smooth muscle 

oscillations. However, the right 850-nm laser does not modulate the coupling in this frequency 

band. Finally, another indication of the location-related effect of tPBM is the neurogenic band of 

uCOPIpsi where the right and left 800-nm lasers resulted in opposite modulation of unilateral 

hemodynamic-metabolic coupling. Specifically, the right 800-nm laser boosted the coupling in 

neurotransmitter-driven oscillations of Δ[HbO] and Δ[CCO]; whereas, the left 800-nm laser 

decoupled these two activities.  

4.3.5 Application of Different tPBM Conditions 

Studies have shown that each ISO frequency component is associated with a specific 

neurophysiological activity in the healthy human brain [115-117, 154]. Therefore, an impaired or 

diminished infra-slow activity in cerebral hemodynamic and metabolic functions can be identified 
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as a potential indicator for neurological or metabolic disorders. Several studies have shown the 

relation between this impairment and cardiovascular disease, Alzheimer’s disease, hypertension, 

and stroke [40, 41, 119].  

As suggested by our group in previous studies [43, 44], the proposed resting-state metrics are very 

stable with a high reproducibility among young, healthy humans. These spectral amplitudes and 

connectivity/coupling metrics have been suggested as biomarkers for neurophysiological disorders 

and ongoing studies are focusing on the assessment of these parameters as a framework for early-

stage diagnosis of diseases. The abundance of metrics investigated in separate physiologically 

distinct frequency bands enables us to identify the source of the hemodynamic and/or metabolic 

impairment in resting-state humans non-invasively. Furthermore, as discussed above, they help to 

better understand the mechanism behind different types of tPBM. As the ultimate goal, these 

demonstrated metrics can be utilized to associate the potential tPBM-based treatment to 

neurological impairment or disorder based on the disease-specific deficiencies in amplitude and 

connectivity/coupling of hemodynamic and metabolic ISO component. 

4.3.6 Limitations and Future Work 

First, to obtain sufficient space on the participants’ forehead for the 42-mm diameter laser, we had 

to remove the bbNIRS holder during the stimulation. Therefore, it took a few minutes (< 5 minutes) 

to set up the bbNIRS holder and the frontal channels of the EEG cap on the forehead after 

stimulation and we might have missed some information. Second, we monitored the participants’ 

movement and EEG signal during measurement for sleepiness and they were asked if they felt 

drowsy and the excessive sleepy subjects’ data were excluded as outliers. However, the eyes-

closed resting state may have caused sleepiness in all subjects, especially in the post-stimulation 

period. The bbNIRS system used in this study was sensitive to motion and sleepiness may have 
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caused some unintentional movements. Last, our quantified metrics may be potentially 

contaminated by extracranial layers of the human head, namely, the scalp and skull. Extra short 

source-detector (S-D) separation channels have been used in task-evoked hemodynamic studies 

[162-166] to minimize this potential confounding factor. However, no applicable methodology to 

remove this contaminating noise in fNIRS-based resting-state studies was developed until a recent 

report [167].  

As for future work, modifications in protocol, bbNIRS system, and the developed algorithm are 

needed to minimize the abovementioned artifacts and noises, especially motion artifacts and 

extracranial layers contaminations. 

4.4 Conclusion 

In this study, we hypothesized that the tPBM-induced alterations in the bilateral prefrontal 

neurophysiological states can be monitored and quantified by the spectral amplitudes of 

hemodynamic and metabolic activity ipsilateral and contralateral to the stimulation site, bilateral 

hemodynamic and metabolic connectivity, and unilateral hemodynamic-metabolic coupling 

ipsilateral and contralateral to the stimulation site. To assess this hypothesis, we implemented 2-

channel bbNIRS measurements including 7-min pre- and 7-min post-stimulation at eyes-closed 

resting state from 26 young healthy participants. The measurement was repeated 5 times for all 

participants over 5 weeks with different 8-min stimulation conditions, namely, (1) Right prefrontal 

800-nm tPBM, (2) Right prefrontal 850-nm tPBM, (3) Right prefrontal sham, (4) Left prefrontal 

800-nm tPBM, (5) Left prefrontal sham stimulation.  

The 7-min post-stimulation dual-channel bbNIRS measurements enabled us to identify the 

wavelength- and location-independent tPBM-induced alterations such as (1) excitement of 
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ipsilateral hemodynamic spectral amplitude in E band, (2) inhibition of contralateral metabolic 

spectral amplitude in E band, (3) decrease of bilateral hemodynamic connectivity in M band, (4) 

decrease of bilateral metabolic connectivity in N band, and (5) increase of unilateral 

hemodynamic-metabolic coupling in E band. Furthermore, the reported observations reveal that 

despite high levels of similarities among different tPBM conditions, there still are differences in 

some details regarding the wavelength and stimulation site.  
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Chapter 5 

Prefrontal transcranial photobiomodulation alters the 
physiological network in the prefrontal cortex of healthy 

adults; A directed neurovascular, neurometabolic, and 
metabolic-vascular coupling analysis 

Sadra Shahdadian, Xinlong Wang, Shu Kang, Caroline Carter, Akhil Chaudhari, Hanli Liu* 

(This chapter is a manuscript to be submitted soon) 

5.1 Introduction 

Neuronal and vascular activities in the central nervous system (CNS) interact with each other bi-

directionally. This interaction, which is mainly observed in dynamic changes in these activities, is 

referred to as neurovascular coupling (NVC) [179, 180]. The mechanism behind NVC is not fully 

understood; however, studies have shown that it is mediated by the hemodynamic supply and 

metabolic demand of oxygen and glucose. In addition, the spontaneous fluctuation in the 

vasculature wall (i.e., vasomotion) is thought to play a significant role in regulating metabolic and 

hemodynamic activities by utilizing the chemical and mechanical effects of different regulatory 

components of the CNS. These components are (1) the endothelial layer of cerebral vasculature 

and astrocyte glial cells as a part of the blood-brain barrier (BBB), (2) neurons, and (3) smooth 

muscles on the blood vessel wall [23]. These components were shown to have a modulatory effect 

in the infra-slow oscillations (ISO, i.e., 0.005-0.2 Hz) of hemodynamic, metabolic, and 

electrophysiological activities of the cerebral tissue. Three intrinsic frequency components of the 

infra-slow cerebral hemodynamic rhythms have been found in correspondence to specific 

physiological/biochemical activity of vascular wall layers [114]. These frequency bands consist of 

(1) endogenic (0.005-0.02 Hz), neurogenic (0.02-0.04 Hz), and (3) myogenic (0.04-0.2 Hz) [115-
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117] rhythms. The endogenic band corresponds to the dilation-contraction cycles in the endothelial 

layer affected by releasing potent vasoactive factors, such as nitric oxide (NO), free radicals, 

prostacyclin, endothelium-derived hyperpolarizing factor, and endothelin [118, 119]. Oscillation 

in releasing vasoactive ions and neurotransmitters from neurons leads to modulation of the vessel 

dilation-contraction cycles in the neurogenic band [120]. Rhythmic myogenic activity, on the other 

hand, occurs as a result of the relaxation and contraction of the vascular wall smooth muscle cells 

[117]. In addition, disturbances in vasomotion have been associated with aging and neurological 

disorders and diseases such as atherosclerosis [39], cardiovascular disease [40], and Alzheimer’s 

Disease [41]. In other studies published by our group [43, 44], we have shown that vasomotion 

and its characteristics over the prefrontal cortex at rest are stable and reproducible for young 

healthy humans.  

To assess the coupling between different physiological activities of the brain, a multimodal 

combination of distinct neuroimaging techniques must be utilized. For instance, 

electroencephalography (EEG) and magnetoencephalography (MEG) for electrophysiological 

activity, functional magnetic resonance spectroscopy (fMRI), and functional near-infrared 

spectroscopy (fNIRS) for hemodynamic activity, and fluorodeoxyglucose positron emission 

tomography (FDG-PET) and broadband near-infrared spectroscopy (bbNIRS) for metabolic 

activity. Each of the modalities mentioned above has advantages and limitations. Thus, researchers 

tend to assemble a low-cost and portable multi-modal combination with adequate temporal, spatial, 

and spectral resolution.  

EEG, as a portable, low-cost neuroimaging technique, is widely used in clinical practice and 

research studies and can collect electrophysiological signals of the brain with a very high temporal 

and spectral resolution. In addition, bbNIRS as a more recently developed technique enables 
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researchers to monitor hemodynamic and metabolic activities simultaneously as indirect measures 

of brain activity. This method utilizes distinct absorption and scattering characteristics of 

oxygenated hemoglobin (i.e., Δ[HbO]), deoxygenated hemoglobin (i.e., Δ[HHb]), and redox-state 

cytochrome c oxidase (i.e., Δ[CCO]) to quantify the changes in concentration of these 

chromophores in the living tissue [130-134]. Studies have demonstrated the requirement of a 

broadband NIRS system due to the lower concentration of Δ[CCO] in comparison to Δ[HbO] and 

Δ[HHb] [135, 136, 141, 172]. The relatively slow fluctuations of these metrics help to collect the 

data with very low-cost NIRS-based equipment even in clinical setups. Investigation of the 

intertwined behavior of hemodynamic and metabolic ISO activities can be facilitated by 

assessment of metabolic-vascular coupling (MVC), and utilizing EEG and bbNIRS in parallel 

opens the door to the assessment of neurometabolic coupling (NMC). Although these different 

metrics can be assessed separately, they can be observed as a semi-complex physiological network 

of a specific region in the cerebral cortex where electrophysiological (here, the beta band of EEG), 

hemodynamic, and metabolic activity are the nodes, and these coupling metrics are the links 

between them. Furthermore, the topographical functional connectivity of the same physiological 

ISO activity on different regions of the cerebral cortex can reveal the level by which the neuronal 

activity, hemodynamics, and metabolism of these regions are correlated. 

Topographical connectivity and physiological coupling of two or more time-series can be 

investigated by directed (effective) or undirected (functional) connectivity measures. Strong uni-

directional connectivity between two signals implies an effective relationship from one signal to 

the other. Several bivariate and multivariate algorithms are developed to unveil the effective 

connectivity between nodes in a network. It is noteworthy that bivariate measures of connectivity 

such as cross-correlation, coherence, and Granger causality (GC) only determine the connectivity 
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between an isolated pair of signals from the network at a time; whereas, multivariate measures 

such as directed transfer function (DTF) and partial directed coherence (PDC) account for the 

whole multivariate structure of a network using multivariate autoregressive model (MVAR). Due 

to the shortcomings and pitfalls of each method, more robust methods have been developed such 

as generalized partial directed coherence (GPDC).  

Several non-invasive neural modulations such as transcranial photobiomodulation (tPBM) are 

shown to alter cerebral electrophysiological, hemodynamic, and metabolic activity of the human 

brain separately [7, 9, 169]. In addition, improvement in cognitive activity and treatment of 

different neurological disorders have been reported during and after the employment of low-

intensity light-emitting diode (LED) or laser on the human brain, especially on the prefrontal 

cortex [2, 7, 9, 47, 168, 169]. Furthermore, it is shown that tPBM with different wavelengths and 

locations can alter the brain's hemodynamic, metabolic, and electrophysiological functional 

connectivity and MVC at rest  [43, 105, 170, 181]. 

In this study, a dual-mode setup (EEG and bbNIRS) was utilized to assess the topographical 

effective connectivity between lateral prefrontal hemodynamic and metabolic ISO to identify any 

directionality between these activities in young healthy human adults at rest. In addition, local 

HMC was quantified to determine the effective coupling between hemodynamic and metabolic 

ISO. Furthermore, we constructed two local physiological networks on the lateral prefrontal 

cortices consisting of a beta band of EEG, Δ[HbO], Δ[CCO] as nodes, and NVC, NMC, and MVC 

as links. Finally, we quantified the tPBM-induced changes in the abovementioned networks and 

investigated any possible alterations in information flow among these nodes. 

In the end, the results would support the hypothesis that resting-state interactions between 

electrophysiological, hemodynamic, and metabolic ISO is mostly bi-directionally balanced and 
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they can be significantly altered by tPBM. This modulation can be local or bilateral/global. These 

observations can be beneficial for further investigation of the mechanism behind NVC, NMC, and 

MVC as well as location-specific cognitive function improvement or treatment of neurological 

disorders/diseases based on the modulated metrics. 

5.2 Materials and Methods 

The dataset used for this study was the same as our previous study (i.e., chapter 3) [44]. 26 healthy 

human participants were recruited from the local community of the University of Texas at 

Arlington. They were screened by the same inclusion/exclusion criteria as those in Wang et al. 

[142, 171]. 4 subjects with excessive motion during the experiment were excluded from the 

analyzed data. After exclusion, a total of 22 young healthy humans (14 males and 8 females, mean 

± SD age = 22.6 ± 2.7 years) participated in 5 visits separated by at least 7 days. In two of these 5 

visits, each participant was subject to either left prefrontal 800-nm tPBM (L800) or left prefrontal 

sham (LS) stimulation and the sequence of these two among the whole 5-visit experiments were 

randomly assigned to each subject. The Institutional Review Board of the University of Texas at 

Arlington approved all experimental procedures. All measurements were conducted with informed 

consent from each participant. 

5.2.1 Experiment Setup and Protocol 

The dataset consists of a dual-mode dataset, namely, a 2-channel bbNIRS and 19-channel EEG 

systems. The dual-channel bbNIRS system, as described in our previous study was assembled and 

used to measure the changes in the broadband optical spectrum on the bilateral prefrontal locations 

of the participants under pre-tPBM/sham stimulation (resting-state) and post-tPBM/sham 

stimulations. Δ[HbO] and Δ[CCO] were then quantified based on the absorption and scattering 

coefficients of major chromophores in the tissue. The experimental setup including the dual-mode 
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bbNIRS and EEG is shown in Figure 5.1(a). Two separate bbNIRS channels, each with a 3-cm 

source-detector separation, were placed on the subject’s forehead before and after tPBM/sham was 

delivered to the prefrontal location. In the case of left prefrontal stimulation, the left channel 

(bbNIRS Ch2 and EEG channel Fp1 in figure 5.1(a)) is the ipsilateral channel and the right channel 

(bbNIRS Ch1 and EEG channel Fp2 in figure 5.1(a)) is the contralateral channel or the left 

prefrontal stimulation. This setup enabled us to simultaneously measure the optical spectrum in 

both ipsilateral and contralateral to the stimulation side. For the detailed setup and information see 

figure 5.1(b). 

EEG data were collected during the entire experiment using a 19-channel dry EEG instrument 

(Quick-20, CGX – Cognionics, CA, US). Each subject wore an EEG cap with 19 electrodes 

positioned according to the standard 10-20 EEG electrode placement [68]. The recorded EEG time 

series were directed to a laptop computer via a wireless connection.  

The experimental protocol for tPBM and sham experiments is shown in Figure 5.1(c). The 

total measurement time was 22 minutes, including a 7-min pre-stimulation (rest), an 8-min 

randomized tPBM/sham, and a 7-min post-stimulation period. The participants were asked to 

comfortably sit on a sofa chair. Also, they were asked to close their eyes during the whole 

experimental procedure without falling asleep. For eye protection, participants and experimenters 

wore a pair of laser-protection goggles during both tPBM and sham stimulation. The bbNIRS 

holder and fibers were removed and the EEG channels Fp1 and Fp2 were displaced during the 

stimulation period and were positioned back in place for the post-stimulation period. 
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Figure 5. 1 (a) Experiment setup including two channels of bbNIRS on the lateral forehead and EEG cap. 
The electrophysiological data collected by EEG is not used in this paper. (b) 2-bbNIRS light source, 
spectrometer, and bundle setup illustration. (c) Protocol for this study consists of 5 visits with 7-minute 
eyes-closed pre-stimulation, and in two visits followed by 8 minutes of randomized tPBM (L800) or sham 
(LS), and 7-minute post-stimulation. The bbNIRS and EEG data are collected pre- and post-stimulation. 

In this study, the device/hardware and dosage of tPBM were the same as those published 

previously [12]. 800 nm laser with a beam diameter of 42 mm and power density of 0.25 W/cm2 

was utilized for 8 minutes to provide a total dose of 1680 J. A sham measurement was performed 

with the laser device turned on but set to 0.1 W for 8 minutes of stimulation while the laser aperture 

was sealed with a black-color cap. A power meter was used to confirm that the real output power 

in presence of the cap was zero. 

5.2.2 Overview of data processing steps 

Several steps are required to quantify the topographical connectivity and physiological coupling 

of the recorded biological signals. Because the data processing and analysis procedures included 

multiple steps in this study, we outline a flow chart of these steps in figure 5.2 to better guide the 

reader through them easily. In summary, these steps consist of (1) bbNIRS raw spectral data 

preprocessing and quantification of ∆[HbO] and ∆[CCO] time series, (2) EEG data preprocessing, 

(3) EEG data down-sampling, (4) Topographical (i.e., bilateral) directed hemodynamic and 

metabolic connectivity calculation, (5) Neurovascular, neurometabolic, and metabolic-vascular 

coupling quantification and physiological network construction, (6) tPBM-induced modulations 

in connectivity, coupling, and physiological network. 
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Figure 5. 2 A data processing flow chart, including steps for (1) EEG data analysis (blue boxes), (2) 
bbNIRS data analysis (orange boxes), (3) bilateral hemodynamic and metabolic connectivity (yellow 
boxes), and (4) integrated EEG-bbNIRS data analysis including epoch synchronization and unilateral 
physiological network analysis (green boxes). 

5.2.3 bbNIRS data preprocessing 

Each 7-minute data collection period consists of 280 time points (i.e., 0.67 Hz) with an optical 

spectrum recorded in each time point. The recorded spectrum wavelength was 740-1100 nm. 

However, previous studies have shown that the 780-900 nm band is sufficient to estimate the 

chromophores’ concentration efficiently with a relatively low level of error propagated from noise 

[172]. Modified Beer-Lambert law then was used to estimate Δ[HbO] and Δ[CCO] for each time 

point [58, 135, 136], and the time series of Δ[HbO] and Δ[CCO] was constructed. These time 

series were then filtered into the three ISO components (i.e., E/N/M). 
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5.2.4 EEG data preprocessing 

EEGLAB, an open-source software package based on MATLAB, was used to pre-process the EEG 

data. First, the 19-channel raw EEG data was band-pass filtered from 1 to 55 Hz. Second, each 

EEG time series was re-referenced to the voltage average over all the 19 channels. Next, to remove 

noise and artifacts [71, 72] such as eye movements, saccades, and jaw clenching, independent 

component analysis (ICA) [73, 74] was used, and finally, artifact subspace reconstruction (ASR) 

was used to reconstruct bad epochs using principal component analysis (PCA) [182]. Then, clean 

EEG signals from electrodes Fp1 and Fp2 were selected and band-pass filtered in the 13-30 Hz 

range to obtain beta-band temporal activity in the prefrontal area. 

5.2.5 Multivariate autoregressive (MVAR) model and GPDC 

As mentioned in the introduction, MVAR enables us to take into account all the links (i.e., 

interactions) between nodes in a network simultaneously. In this method, for a k-node process of 

X(t) we have:  

 ( ) ( ) ( ) ( )( )1 2, ,  , kX t X t X t X t= …  , (5-1) 

The model takes the form: 
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where A is the k × k-sized matrix of coefficients, E(t) is a prediction error vector of size k, and p 
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where Aij(f) is an element of A(f) – a Fourier transform of MVAR model coefficients A(t) [183]. 

Thus, the output adjacency matrix is a k × k-sized nonsymmetrical matrix with elements of GPDCj,i 

where the element in column j and row i denotes the effective (directed) connectivity from node j 

to node i. 

5.2.5 EEG data down-sampling 

In order to integrate two datasets with significantly different sampling frequencies (i.e., 0.67 Hz 

and 500 Hz for bbNIRS and EEG, respectively), EEG data was down-sampled to match the 

sampling rate of bbNIRS data as was done in [184]. Therefore, the EEG data were segmented into 

1.5-s epochs (i.e., the data acquisition rate of the bbNIRS signal) and the power spectrum density 

(PSD) of the EEG signal was obtained for each epoch using a single-tapered fast Fourier transform. 

The area under the curve of PSD in the beta frequency band (13-30 Hz) was calculated and used 

to construct a time series of EEG beta power with 1.5-s temporal resolution (0.67 Hz, 280 time 

points). This down-sampled EEG time series was then filtered into the main ISO band (i.e., 0.005-

0.2 Hz). Figure 5.3 is a schematic illustration of the down-sampling process of the EEG data.  
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Figure 5. 3 Schematic illustration of the process for down-sampling EEG data. (a) EEG time series 
segmented in 1.5-s epochs. (b) power spectral density (PSD) obtained from each epoch. The area under the 
curve in the beta band is calculated and used to construct (c) down-sampled EEG time series. 

5.2.6 Topographical directed hemodynamic and metabolic connectivity  

To investigate the effective interaction between similar physiological signals over the bilateral 

prefrontal cortex (i.e., Δ[HbO]right - Δ[HbO]left, Δ[CCO]right - Δ[CCO]left) over the frequency band 

of ISO, multivariate autoregressive (MVAR) model followed by GPDC was used. Based on the 

Akaike information criterion (AIC), a method to evaluate the goodness of fit, the order of the 

MVAR model was set to 1. The MVAR model followed by GPDC was used to quantify the 

bilateral connectivity between the same signal in presence of other physiological signals.  

5.2.7 physiological network construction 

In order to investigate the causal interaction between different physiological representations of 

local brain activity (i.e., left or right prefrontal cortex), hemodynamic, metabolic, and 

electrophysiological signals were integrated to construct a 3-node physiology network consisting 

of (1) Δ[HbO], (2) Δ[CCO], and (3) EEG beta band. To obtain the links connecting these nodes, 
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GPDC was calculated for all 3×3 possible connections, and the physiological network was 

constructed for each ISO frequency band.  

5.2.8 tPBM-induced modulation in metabolic-vascular and physiological network 

In this study, our primary interest was to investigate the photobiomodulated prefrontal 

physiological network in comparison to the baseline. Therefore, the post-stimulation MVC and 

physiology network metrics compared to the control group (sham stimulation) can represent the 

physiological effects of tPBM. This comparison consists of baseline subtraction and statistical 

testing. Baseline subtraction of post-stimulation GPDCj,i values for MVC and physiological 

network was performed as expressed below: 

 ΔGPDC fj,i = GPDC fj,i,post – GPDC fj,i,pre   (5-4) 

where f is the ISO frequency component (i.e., E/N/M). 

The obtained ∆GPDC j,i was then statistically examined using paired t-test for left 800-nm 

laser (L800) vs left sham (LS).  

To simplify the representation of the physiological network matrix, sham-subtracted values of 

unilateral coupling were calculated based on the following equation: 

 ΔGPDC fj,i,ss = ∆GPDC f j,i,tPBM – ∆GPDC f j,i,sham  (5-5) 

These values were then utilized to illustrate the difference between sham and active tPBM 

stimulation conditions. 

The obtained values from the GPDC method are grouped into two main categories: bilateral 

(topographical) connectivity (i.e., bCON) between the same signals from different channels, and 

unilateral (physiological) coupling (i.e., uCOP) between different signals recorded from the same 

channel/electrode. 
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5.3 Results 

5.3.1 Resting-state prefrontal metabolic-vascular network 

As described in materials and methods and illustrated in figure 5.2 (orange boxes), the 2-channel 

bbNIRS data recorded for each subject was used to estimate two pairs of hemodynamic and 

metabolic signals, namely, Δ[HbO]right, Δ[CCO]right, Δ[HbO]left, and Δ[CCO]left from 110 

measurements (i.e., 22 subjects and 5 visits for each) 

These signals were then used to construct the metabolic-vascular network for each ISO 

frequency band in the resting state consisting of 4 signals as the nodes (yellow boxes in figure 5.2). 

As shown in figure 5.4, this network assesses the level of bilateral connectivity for HbO and CCO 

as well as the unilateral coupling of HbO-CCO on each side of the prefrontal cortex. This figure 

consists of three main boxes for E/N/M frequency bands each of which includes the color-coded 

adjacency matrix and graphical representation of the network. As illustrated in this figure, bilateral 

hemodynamic connectivity plays a prominent role in this network's overall ISO frequency bands; 

especially, in the myogenic band. 

 

Figure 5. 4 Adjacency matrices and graphical illustration of resting state metabolic-vascular network on 
the prefrontal cortex obtained from 2-bbNIRS. Three boxes represent (a) endogenic, (b) neurogenic, and 
(c) myogenic components of ISO. The nodes in the network are HbOleft, CCOleft, HbOright, and CCOright. 

A notable unilateral HbO-CCO coupling is also observed in endogenic and neurogenic bands 

where HbO activity is leading CCO. However, no significant metabolic connectivity or metabolic-

vascular coupling is observed in the myogenic band. 
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Figure 5.5 represents the bilateral connectivity of HbO and CCO, extracted from the adjacency 

matrices represented in figure 5.4. This figure helps to investigate the directionality between lateral 

sides of PFC in the resting state. 

 

Figure 5. 5 Directed bilateral hemodynamic and metabolic connectivity between left and right prefrontal 
cortex in endogenic, neurogenic, and myogenic bands. Error bars represent the standard error of the mean. 
*: p-value < 0.05. 

As illustrated in this figure, the directed connectivity from CCOright to CCOleft is statistically 

higher than in the opposite direction in neurogenic and myogenic bands. On the other hand, 

HbOleft-HbOright shows a higher GPDC index than HbOright-HbOleft. 

5.3.2 Resting-state unilateral physiological network  

3 different physiological signals, namely, HbO, CCO, and EEG collected from the same prefrontal 

region (i.e., left or right PFC), were used to construct the physiological network (PN) over that 

region in different ISO frequency bands utilizing the MVAR model followed by GPDC. As 

illustrated in figure 5.6, the myogenic band, compared to the other bands, represents significantly 

lower levels of coupling between cerebral hemodynamic, metabolic, and electrophysiological 
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activities on both lateral PFC. On the other hand, high levels of coupling between all three 

components are observed in the endogenic band denoting a closely coupled activity between three 

nodes of the network on both lateral PFC. In addition, the physiological network reveals a highly 

synchronized HbO-CCO and HbO-EEG in the neurogenic component of ISO, while the CCO-

EEG causal coupling is comparably low in this frequency band over both lateral PFC. 

 

Figure 5. 6 Adjacency matrices and graphical illustration of resting state physiological network on the 
prefrontal cortex obtained from dual-mode 2-bbNIRS and EEG dataset. Three columns represent (a) 
endogenic, (b) neurogenic, and (c) myogenic components of ISO over left and right PFC. The nodes in the 
network are HbO, CCO, and EEG. 

5.3.3 tPBM-induced directed alterations in bilateral metabolic and hemodynamic 

connectivity 

As elaborated above, one of the major aims of this study was to investigate the effects of left frontal 

800-nm laser stimulation on bilateral metabolic and hemodynamic connectivity. To quantify this 

effect, as described in equation (5-4), baseline normalized values of GPDC (i.e., ∆GPDC) obtained 

from the metabolic-vascular network were calculated for each frequency band. Changes in 

directional bilateral connectivity for HbO and CCO (i.e., ∆bCONHbO and ∆bCONCCO) were then 

extracted and represented in figure 5.7. As shown in this figure, left prefrontal stimulation with an 

800-nm laser induces an increase in directed hemodynamic and metabolic connectivity from left 

to right PFC in the endogenic band, accompanied by a decrease in the same metric in the 
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neurogenic band. The other significant effect of tPBM in the endogenic band is the decrease in 

∆bCONHbO from right PFC to left compared to sham stimulation. In addition, an increase in left to 

right ∆bCONHbO and right to left ∆bCONCCO is observed. 

 

Figure 5. 7 Changes in directed bilateral (a) hemodynamic and (b) metabolic connectivity between left and 
right prefrontal cortex in endogenic, neurogenic, and myogenic bands in response to left prefrontal 800-nm 
tPBM. Error bars represent the standard error of the mean. *: p-value < 0.05, **: p-value < 0.01. 

5.3.4 tPBM-induced directed alterations in unilateral physiological network 

Following equation (5-5), the sham-subtracted values of ∆GPDC (i.e., ∆GPDCss) were 

calculated and represented as color-coded adjacency matrices in figure 5.8. Since no significant 

connectivity/coupling except bCONHbO was identified in the myogenic band, and this band does 

not represent any electrophysiological-related phenomenon, only ∆GPDCss for endogenic and 

neurogenic bands are reported in this figure. In addition to adjacency matrices, a graphical 

representation of the network is provided to help visualize changes in the network by color-coding 

statistically significant links (i.e., uCOP). This figure shows an increase in directed coupling from 

HbO and CCO to EEG in the endogenic band over ipsilateral PFC (i.e., left), while there is a 

significant decrease in the bidirectional coupling of HbO and CCO. In addition, left PFC shows an 

increased bidirectional coupling between electrophysiological and hemodynamic activity in the 

neurogenic band, while the leading effect of EEG and HbO on CCO has a significant reduction. 
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On the contralateral side of PFC, only a decrease in effective coupling is observed, namely, a 

reduction of effective coupling from HbO to CCO in the endogenic band, as well as a decrease in 

this metric from CCO to EEG, and bidirectional coupling of CCO and HbO.  

 

Figure 5. 8 Adjacency matrices and graphical illustration of changes in unilateral coupling in the 
physiological network on the prefrontal cortex in response to left 800-nm tPBM. Three columns represent 
(a) endogenic and (b) neurogenic components of ISO over left and right PFC. The nodes in the network are 
HbO, CCO, and EEG. Drawn links are the ∆uCOPj,i,ss in which ∆uCOPj,i,tPBM and ∆uCOPj,i,sham return a p-
value less than 0.05. 

5.4 Discussion 

5.4.1 Resting-state prefrontal metabolic-vascular network 

Figure 5.4 illustrated the resting state metabolic-vascular network constructed from ISO 

hemodynamic and metabolic activity on lateral sides of PFC obtained from 110 measurements 

from 22 young healthy adults. The strength of links in directed connectivity in these networks 

denotes the level by which the activity of a node (signal) affects the activity of another. The links 

in the metabolic-vascular network in each ISO frequency band consist of directed (1) bilateral 

hemodynamic connectivity (bCONHbO), (2) bilateral metabolic connectivity (bCONCCO), (3) 

unilateral metabolic-vascular coupling on the left PFC (MVCLeft) and (4) unilateral metabolic-

vascular coupling on the right PFC (MVCRight).  
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As reported in figure 5.4, bCONHbO is the strongest link in all three frequency bands, especially 

in the myogenic band where no other strong link is observed between other nodes. This 

phenomenon is in agreement with the previously studied sources of each frequency band. For 

instance, the fluctuation in the myogenic band is mediated by the smooth muscle of the vasculature 

where the relaxation-contraction cycles are mainly controlled by hormones in the bloodstream and 

autocrine/paracrine agents [185] and the effect of local CCO concentration in the neurons are 

minimally affecting the smooth muscle oscillations. Smooth muscle cells are also responsible for 

the contraction and dilation of cerebral vessels to maintain blood pressure in a specific range; thus, 

the contraction-relaxation cycles in different regions of the brain are highly synchronized. In 

contrast to the myogenic band, bCONHbO in the endogenic and neurogenic bands are accompanied 

by comparable MVC on both lateral PFC. On the other hand, bCONCCO is at a minimal level in 

each network which is in agreement with the local nature of CCO activation in neurons. The levels 

of MVC in endogenic and neurogenic bands are in a similar range where the unilateral information 

flow is mainly from HbO to CCO. The unilateral coupling of HbO and CCO will be discussed in 

detail in the physiological network analysis where the effect of electrophysiological activity is 

considered in the network construction. 

To better understand the directionality of the bilateral hemodynamic and metabolic 

connectivity, bCONHbO and bCONCCO values were extracted from figure 5.4 and represented in 

figure 5.5. In this figure, the effective connectivity of bCONHbO and bCONCCO from left PFC to 

right PFC is statistically compared to the opposite direction. As shown in this figure, no statistically 

significant differences are observed in bCONHbO over endogenic and neurogenic bands. However, 

the effective connectivity in the myogenic band from HbOleft to HbOright is significantly higher 

than in the opposite direction. In addition, bCONCCO has no statistically significant directionality 
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in the endogenic band; whereas, the causal connectivity in the neurogenic and myogenic bands 

from CCOright to CCOleft is significantly higher than in the opposite direction. To the best of our 

knowledge, the observed directionalities in the resting state are being reported for the first time, 

and no similar study is done to assess directed hemodynamic and metabolic connectivity between 

bilateral PFC. 

5.4.2 Resting-state prefrontal unilateral physiological network  

Figure 5.6 illustrated the resting state physiological network constructed from ISO hemodynamic, 

metabolic, and electrophysiological activity on lateral sides of PFC obtained from 110 

measurements from 22 young healthy adults. The links in the physiological network in each ISO 

frequency band over each lateral PFC consist of directed (1) unilateral neurovascular coupling 

(NVC), (2) unilateral neurometabolic connectivity (NMC), and (3) unilateral metabolic-vascular 

coupling (MVC).  

As shown in figure 5.6, there is a balanced coupling between all three nodes of the 

physiological network in the endogenic band in the resting state. This observation is in agreement 

with the physiological source of the endogenic band oscillation where the contraction and 

relaxation of the endothelial layer of the vessel wall, as a prominent component of the blood-brain 

barrier, regulates the hemodynamics and metabolism as well as neural activity. In other words, the 

oxygen supply-demand balance between neural activity, metabolism, and hemodynamics is mainly 

controlled in this frequency band bidirectionally.  

The neurogenic band, on the other hand, reflects the ISO of vasculature in response to the 

neural stimulations via neurotransmitters. The neurogenic physiological network represented in 

figure 5.6(b) also denotes a high level of NVC and MVC. Furthermore, directed connectivity from 

EEG to HbO and from EEG to CCO is observed and the lowest effective coupling is corresponding 
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to the link from CCO to EEG in this frequency band over both lateral PFCs. These observations 

reveal a directed information flow from electrophysiological activity to the highly coupled 

metabolism and hemodynamics.  

As expected from the definition of the myogenic band, and seen in figure 5.6(c), the strength 

of coupling among all nodes of the physiological network is significantly lower than the other 

frequency bands. This phenomenon, as justified in the last section, emphasizes the fact that the 

dominant component of connectivity/coupling in this frequency band is the very robust bilateral 

connectivity between hemodynamic activity on the lateral PFCs originating from the smooth 

muscle contraction-relaxation cycles, and these oscillations are not affected by local 

electrophysiological and/or metabolic activity of the cerebral cortex. 

5.4.3 Alterations in bilateral metabolic and hemodynamic connectivity, modulated by 

prefrontal tPBM 

Baseline-normalized values of bilateral connectivity (see equation (5-4)) for two groups (i.e., sham 

vs tPBM, n=22) are represented in figure 5.7. As shown in figures 5.7(a) and 5.7(b), the left 

prefrontal 800-nm laser induces an increase in effective connectivity of both HbO and CCO from 

the stimulation site (i.e., left PFC) to the contralateral side (i.e., right PFC) in the endogenic band 

compared to the sham group. This observation is in agreement with previous studies reporting the 

local and global (bilateral) effects of prefrontal tPBM on connectivity and spectral amplitude of 

HbO and CCO. The other modulation in the endogenic band is the decrease in the ∆bCONHbO from 

right to left sides. This phenomenon reveals a significant disturbance in the balance of bilateral 

information flow between ISO of endothelium leading to a highly uni-directional effective 

connectivity from the ipsilateral side of the tPBM to the contralateral side. 
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The effect of left frontal tPBM on the bilateral hemodynamic and metabolic connectivity in 

the neurogenic band is similar, where the causal connectivity from left PFC to right PFC 

significantly decreases in response to left tPBM compared to sham. Since the neurogenic band 

mainly represents the neurally-regulated oscillations of the blood vessel wall, and consecutively 

blood flow and HbO concentration, changes in this frequency band reveal an 

electrophysiologically-induced alteration in the oscillations of HbO and CCO. The decline in 

effective connectivity from left to right HbO and CCO highlights the fact that the hemodynamic 

and metabolic activity on the contralateral PFC is less influenced by left HbO and CCO and 

mediated more by a neural regulatory measure. A more detailed investigation of this phenomenon 

can is done in the next section. 

The myogenic frequency band, in addition, shows a boosted directionality in bilateral 

hemodynamic and metabolic connectivity where an increase in the left to right bCONHbO and right 

to left bCONCCO is observed. This phenomenon emphasizes the effect of tPBM on strengthening 

the natural uni-directional connectivity between hemodynamics and metabolism activity mediated 

by the oscillations in smooth muscles in the cerebral vasculature. 

5.4.4 Alterations in the unilateral physiological network, modulated by prefrontal tPBM 

Sham- subtracted values of the physiological network (i.e., ∆GPDCss, see equation (5-5)) 

constructed from endogenic and neurogenic hemodynamic, metabolic, and electrophysiological 

activity on lateral sides of PFC obtained from 22 young healthy adults were reported in figure 5.8. 

The links in the physiological network in each ISO frequency band over each lateral PFC consist 

of directed (1) unilateral neurovascular coupling (NVC), (2) unilateral neurometabolic 

connectivity (NMC), and (3) unilateral metabolic-vascular coupling (MVC). This figure clearly 

shows that the major effect of tPBM on the physiological network on the ipsilateral side of the 
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stimulation is in the endogenic band where CCO and HbO lose coupling and both lead EEG more 

strongly in parallel to each other. This observation supports the current hypothesis that tPBM 

stimulates both hemodynamic and metabolic activity [43]. The former is done by releasing nitric 

oxide (NO) which leads to alteration in contraction-dilation of the endothelial layer [186] and the 

latter is done by photo-oxidizing cytochrome c oxidase in the neurons’ mitochondria [174]. Since 

the tPBM is acting on the HbO and CCO activity independently, the coupling between these two 

signals decreases. However, each of them plays a more robust role in the modulation of the 

electrophysiological activity of the neurons (EEG).  

The reduction in MVC is observed in both frequency bands over both channels, especially 

from HbO to CCO which can be interpreted as a perturbation in the balance of information flow 

between hemodynamic and metabolic activity. 

In the neurogenic band, however, the NVC is enhanced bidirectionally, meaning that the 

information flow between neuronal and hemodynamic activity is significantly increased while 

metabolism is less mediated by hemodynamics and electrophysiological activity (the CCO is 

activated independently from HbO and EEG). A similar effect of left prefrontal tPBM on NMC 

and MVC is observed over the contralateral side of the stimulation (i.e., right PFC) where MVC 

and NMC are significantly decreased bidirectionally and from CCO to EEG, respectively. 

5.4.5 Combination of dual-mode data and MVAR model-based connectivity analysis 

In this study, by utilizing a dual-mode data collection setup and a multivariate connectivity 

measure that focuses only on the direct connectivity of the signals, we could identify and quantify 

directed (effective) connectivity between different aspects of the cerebral cortex as potential 

features of resting-state activity. These features can be further investigated in different groups of 

interest. For instance, the effect of age, gender, neurological disorders, or diseases on the proposed 
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networks can be assessed. The methodology developed in this study also opens the door to 

identifying potential biomarkers for early-stage diagnosis of neurophysiological diseases such as 

dementia, Alzheimer’s disease, etc. Furthermore, this methodology helped us to evaluate the 

separately hypothesized mechanisms of action of tPBM in one semi-complex network.  

5.4.6 Limitations and future works 

First, the relatively low sampling frequency of the bbNIRS data and short data collection duration 

prevented us to achieve a high-frequency resolution, which may lead to low accuracy in spectral 

amplitude and coherence in the low-frequency range, especially in the endogenic band. Second, 

our bbNIRS system was sensitive to motion; the eyes-closed resting-state protocol may have 

caused the sleepiness of the participants during the measurements. Last, our quantified results or 

metrics may be potentially contaminated by extracranial layers of the human head. It is known that 

fNIRS signals obtained over the scalp of the human participants are contaminated by the 

extracranial layers, namely, the human scalp and skull. To minimize this potential confounding 

factor, extra optical channels of fNIRS with a short source-detector (S-D) separation (commonly 

~0.8-1.2 cm) have been used for systemic noise removal in task-evoked hemodynamic studies 

[162-166], where a cortical region was activated by stimulating tasks. However, most fNIRS-based 

studies for the quantification of resting-state functional connectivity (RSFC) did not develop an 

appropriate methodology to remove this confounding effect until a recent report, which confirmed 

that RSFC can be quantified more accurately with a short S-D reading correction than without 

correction [167].  

As for future work, to enable a longer and less-artifact recording from the human brain, 

modifications or improvements are needed on the bbNIRS setup, measurement protocol, and the 

computational methods for reducing movement artifacts and systemic/physiological noises. Also, 
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it is necessary to consider the implementation of short-distance channels in bbNIRS for removing 

possible contamination of extracranial layers to the determined/interpreted results. The networks 

developed in this exploratory study are considered the first step in the investigation of 

physiological network quantification. These networks can be extended to other EEG frequency 

bands and the quantified features of physiological coupling can be assessed further to propose 

potential biomarkers to diagnose different neurological disorders. 

5.5 Conclusion 

In this study, we hypothesized that prefrontal cortical connectivity and coupling of ISO in the 

resting human brain can be quantified using dual-mode (i.e., 2-bbNIRS and EEG) and may serve 

as features to reflect brain state. To prove this hypothesis, we implemented the dual-mode setup 

and performed bilateral, prefrontal, 7-min measurements at the eyes-closed resting state from 22 

young and healthy participants, repeatedly 5 times over 5 weeks. The measured time series were 

analyzed to detect cerebral hemodynamic, metabolic, and electrophysiological ISO at rest. MVAR 

model followed by GPDC was utilized to construct the bilateral metabolic-vascular and unilateral 

physiological networks. We defined and investigated several ISO-specific metrics, including 

bilateral connectivity for both hemodynamic and metabolic activity, and unilateral MVC, NVC, 

and NMC at rest. The essential rationale of the proposed biomarkers was that the success of 

separating the three ISO components of prefrontal hemodynamics and metabolism would enable 

us to detect and distinguish neurophysiological disorders (e.g., age-related cognition impairments, 

cardiovascular disease, Alzheimer’s disease, hypertension, and stroke) based on sources of 

impaired or abnormal signals (e.g., endothelium, inter-neuron, or smooth muscle). 

The 7-min post-stimulation dual-modality measurements enabled us to identify the ISO 

frequency-specific tPBM-induced alterations such as (1) excitement of effective metabolic and 
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hemodynamic connectivity from left to right PFC in the E band, (2) inhibition of effective 

metabolic and hemodynamic connectivity from left to right PFC in the N band, (3) decrease of 

unilateral causal coupling between HbO and CCO connectivity in E and N band over ipsilateral 

and contralateral PFCs, (4) increase of unilateral effective coupling from HbO to EEG and CCO 

to EEG in E band, and (5) enhancement of unilateral coupling between HbO and EEG in E band. 

The reported observations prove the complex mechanism of action of tPBM where it 

simultaneously affects the hemodynamics and metabolism directly which leads to an increase in 

the electrophysiological activity. Based on the ongoing studies focusing on the neurophysiological 

disorder and their corresponding changes in each metric, we suggest that tPBM can be considered 

as a potential method to reverse the neurophysiological deficiency. 
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Chapter 6 

Conclusion 
 

6.1 Summary of the Dissertation 

As the first aim of my dissertation, I utilized three analysis steps to identify the electrophysiological 

effects of tPBM in a healthy human brain. First, power spectral analysis revealed that alterations 

in EEG spectral powers were mainly present in the alpha and beta bands of the fronto-central-

parietal regions. Second, a topological approach, GTA, facilitated findings on significant 

modulation of the EEG beta rhythm in the information path and enhancement of the brain network 

complexity at the global network level during and after the stimulation. Finally, assessment of the 

nodal measures of the network at the regional and cluster levels confirmed that tPBM had a major 

effect on the frontal and parietal clusters in the beta band. The information paths were enhanced 

during and post tPBM in the prefrontal regions near the stimulation site.  

In the second aim, as represented in chapter 3, I hypothesized that 2-bbNIRS, along with 

frequency-domain analysis, enables the quantification of prefrontal cortical connectivity and 

coupling of ISO in the resting human brain.  To test this hypothesis, I implemented 2-channel 

bbNIRS and performed bilateral, prefrontal, 7-min measurements in an eyes-closed resting state 

in vivo from 26 young and healthy participants, repeated 5 times over 5 weeks. The measured time 

series were analyzed using a frequency-domain approach to detect cerebral hemodynamic and 

metabolic ISO in three endogenic, neurogenic, and myogenic frequency bands at rest. Specifically, 

coherence analysis facilitated the quantification of bilateral connectivity and unilateral 

hemodynamic-metabolic coupling in the human prefrontal regions. Accordingly, I identified eight 

stable resting-state ISO-specific metrics or features, including bilaterally averaged SAHbO in all 
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three bands, bilaterally averaged SACCO in the M band only, and bilaterally connected network 

metrics for both bCONHbO and bCONCCO, each of which were statistically identical in the E and N 

frequency bands, respectively.  The last two features were the bilaterally averaged coupling indices 

of uCOPHbO-CCO over the E- and M-bands, given that the coupling indices were statistically 

equivalent for both bands.  

As the third aim, I hypothesized that the tPBM-induced alterations in the bilateral prefrontal 

neurophysiological states can be monitored and quantified by the spectral amplitudes of 

hemodynamic and metabolic activity ipsilateral and contralateral to the stimulation site, bilateral 

hemodynamic and metabolic connectivity, and unilateral hemodynamic-metabolic coupling 

ipsilateral and contralateral to the stimulation site. To assess this hypothesis, I implemented 2-

channel bbNIRS measurements including 7-min pre- and 7-min post-stimulation at eyes-closed 

resting state from 26 young healthy participants. The measurement was repeated 5 times for all 

participants over 5 weeks with different 8-min stimulation conditions, namely, (1) Right prefrontal 

800-nm tPBM, (2) Right prefrontal 850-nm tPBM, (3) Right prefrontal sham, (4) Left prefrontal 

800-nm tPBM, (5) Left prefrontal sham stimulation.  

The 7-min post-stimulation dual-channel bbNIRS measurements enabled to identify the 

wavelength- and location-independent tPBM-induced alterations such as (1) excitement of 

ipsilateral hemodynamic spectral amplitude in E band, (2) inhibition of contralateral metabolic 

spectral amplitude in E band, (3) decrease of bilateral hemodynamic connectivity in M band, (4) 

decrease of bilateral metabolic connectivity in N band, and (5) increase of unilateral 

hemodynamic-metabolic coupling in E band. Furthermore, the reported observations reveal that 

despite high levels of similarities among different tPBM conditions, there still are differences in 

some details regarding the wavelength and stimulation site. 
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In the fourth aim, as presented in chapter 5, I showed that prefrontal cortical connectivity and 

coupling of ISO in the resting human brain can be quantified using dual-mode (i.e., 2-bbNIRS and 

EEG) and may serve as features to reflect brain state. The measured time series were analyzed to 

detect cerebral hemodynamic, metabolic, and electrophysiological ISO at rest. MVAR model 

followed by GPDC was utilized to construct the bilateral metabolic-vascular and unilateral 

physiological networks. Then, I defined and investigated several ISO-specific metrics, including 

bilateral connectivity for both hemodynamic and metabolic activity, and unilateral MVC, NVC, 

and NMC at rest. The essential rationale of the proposed biomarkers was that the success of 

separating the three ISO components of prefrontal hemodynamics and metabolism would enable 

to detect and distinguish neurophysiological disorders (e.g., age-related cognition impairments, 

cardiovascular disease, Alzheimer’s disease, hypertension, and stroke) based on sources of 

impaired or abnormal signals (e.g., endothelium, inter-neuron, or smooth muscle). 

The 7-min post-stimulation dual-modality measurements enabled to identify the ISO 

frequency-specific tPBM-induced alterations such as (1) excitement of effective metabolic and 

hemodynamic connectivity from left to right PFC in the E band, (2) inhibition of effective 

metabolic and hemodynamic connectivity from left to right PFC in the N band, (3) decrease of 

unilateral causal coupling between HbO and CCO connectivity in E and N band over ipsilateral 

and contralateral PFCs, (4) increase of unilateral effective coupling from HbO to EEG and CCO 

to EEG in E band, and (5) enhancement of unilateral coupling between HbO and EEG in E band. 

The reported observations prove the complex mechanism of action of tPBM where it 

simultaneously affects the hemodynamics and metabolism directly which leads to an increase in 

the electrophysiological activity.  
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6.2 Limitations and Future Works 

Regarding 64-channel EEG study, the international 10–10 electrode placement system in the EEG 

study was not strictly followed on the human head because a clear area with 4.2 cm in diameter 

was needed for tPBM light delivery on the right forehead. The EEG cap was shifted 1–2 cm 

backward. There was a systematic shift in the electrode locations given in Figs. 4 and 6 with respect 

to the standard 64-electrode locations. Second, the power spectral and connectivity analyses were 

performed in the sensor space. Source space analysis can be conducted to observe specific cortical 

and subcortical regions in the brain affected by tPBM. Third, the current study was based on EEG 

signals of the tPBM-treated human brain in the resting state without the evaluation of any 

behavioural assessment. It is highly desirable to obtain concurrent assessments of changes in brain 

connectivity metrics and cognitive enhancement after tPBM. A combination of 

electrophysiological and behavioural measures would provide more informative and 

comprehensive views of the correlation and association between functional connectivity and 

behavioural effects of tPBM. Overall, there are few publications in the literature on how tPBM 

affects brain connectivity and the association between tPBM-induced network changes and 

cognitive improvement.  

In the case of bbNIRS-based studies, the relatively low sampling frequency and short data 

collection duration (i.e., 7-min) prevented us from achieving high-frequency resolution, which 

may have led to low accuracy in spectral amplitude and coherence calculations in the low-

frequency range, especially in the endogenic band. It is suggested to have a longer measurement 

duration, for example, 10 min or longer.  Second, our bbNIRS system was sensitive to motion; the 

eyes-closed resting-state protocol may have caused sleepiness in the participants during the 

measurements. Finally, our quantified results or metrics may be contaminated by the extracranial 
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layers of the human head. It is known that fNIRS signals obtained over the scalp of human 

participants are contaminated by extracranial layers, namely, the human scalp and skull. To 

minimize this potential confounding factor, additional optical channels of fNIRS with a short 

source-detector (S-D) separation (commonly ~0.8-1.2 cm) have been used for systemic noise 

removal in task-evoked hemodynamic studies [162, 163] [164] [165, 166], where a cortical region 

was activated by stimulating tasks. However, most fNIRS-based studies for quantifying resting-

state functional connectivity (RSFC) have not developed an appropriate methodology to remove 

this confounding effect [147, 148]. It is reported only recently that RSFC can be quantified more 

accurately with a short S-D reading correction than without correction [167].  

In future work, to enable a longer-period and less-artifact recording from the human brain, 

modifications or improvements are needed in the bbNIRS setup, measurement protocol, and 

computational methods to reduce movement artifacts and systemic/physiological noises. In 

addition, it is necessary to consider the implementation of short-distance channels in bbNIRS to 

remove the possible contamination of extracranial layers from the determined/interpreted results. 

The current study included only healthy controls without any disease-related patients; thus, it was 

an exploratory study [42]. While we believe that the identified ISO features are good neurological 

representations of the human brain, proof-of-principle or confirmatory research must be conducted 

for these features to become biomarkers of neurological diseases. It is also necessary to promote 

and conduct more investigations in this line of work to make tPBM a non-invasive, portable, and 

low-cost intervention tool for healing patients with certain brain disorders as well as for healthy 

aging in the rapidly growing aging population.    
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Appendix A 

Table A1 Description of global and local graphical metrics significantly altered by tPBM ([65, 82]) 

Global graphical metrics 
Description of graph theory metrics significantly altered by 

tPBM  

Synchronization (S) 

The S is the average of weighted or binarized functional 
connectivity index between all nodes in the network.  It represents 
how likely it is that all nodes fluctuate in the same wave pattern. It 
ranges between 0 and 1. 

Global Efficiency (GE) 

The GE measures the efficiency of parallel information transfer in 
a network globally. It is inversely correlated with the characteristic 
shortest path of the network. The characteristic shortest path is the 
average of routes between all pairs of nodes with minimum number 
of edges. Also, the GE is associated with the level of integration and 
efficiency of parallel information transfer in a network. It ranges 
between 0 and 1. 

Small-worldness (SW) 

Small-world networks have a shorter characteristic path length than 
regular networks (which have high clustering and long path lengths) 
but greater local interconnectivity than random networks (which 
have low clustering coefficient and short path lengths). The SW 
supports both specialized/ modularized and integrated/distributed 
information processing and maximizes the efficiency of 
information transfer at a relatively low wiring cost. 

Nodal Graphical metrics Description of graph theory metrics significantly altered by 
tPBM  

Nodal Clustering 
Coefficient 

(nCC) 

The nCC of a given node is associated with the numbers of triangles 
around that node. One triangle around a node will be constructed 
when two neighbors of the given node are connected. If all 
neighbors are connected, C = 1 (the maximum value of nCC). In 
short, the nCC measures the likelihood that its neighborhoods are 
connected to each other. 

Nodal Local Efficiency 
(nLE) 

The nLE is the average of efficiency of local nodes. This index 
displays the level of segregation in the graph (comparable with the 
nCC). The nLE of a given node measures how efficient the 
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communication is among the first neighbors of this node when it is 
removed. 

Nodal Efficiency (nE) 

The nE for a given node characterizes the efficiency of parallel 
information transfer of that node in the network. It is inversely 
correlated with the characteristic shortest path of one node to all 
other nodes in the network. It is associated with the level of 
integration of one node in the graph.  

Betweenness Centrality 
(BC) 

The BC represents the fraction of all shortest paths in the network 
that pass through a given node. The BC for a given node 
characterizes its effect on information flow between other nodes. 

Degree Centrality (DC) 

The DC is the number of connections between one node and all 
other nodes in the network. Nodes with a high degree are interacting 
with many other nodes in the network. The DC of a given node 
reflects its information communication ability in the functional 
network. 
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Appendix B 

B.1 Steps for Frequency-Domain Data Analysis of Prefrontal ∆[HbO] and ∆[CCO] at Rest 

Figure B1 shows a detailed flow chart and demonstrates the frequency analysis steps for a pair of 

signals, namely, ∆[HbO] and ∆[CCO]. These steps consist of two major functions available in the 

FieldTrip toolbox [76, 77], namely, “ft_freqanalysis” for amplitude and phase quantifications of 

each signal, and “ft_connectivityanalysis” for coherence quantification between the two signals. 

 As illustrated in this figure, the input for function “ft_freqanalysis” can be a single time series 

of two signals, followed by frequency-domain analysis using the multi-taper method (mtm) with 

k tapers. In this step, each tapered time series was subjected to a fast Fourier transform (FFT) to 

obtain the first set of outputs for this function. A total of k tapers resulted in k sets of complex 

numbers with their respective amplitudes and phases in the frequency range of the signal. Next, 

the mtm-based power spectral density (mtm-PSD) and spectral power were obtained for the input 

signal by averaging k sets of spectral powers. Accordingly, the respective spectral amplitude (SA) 

was calculated by taking the square root of the mtm-derived spectral power of the input time series 

(i.e., ∆[HbO] or ∆[CCO]) in the frequency band of interest. These steps are outlined by blue and 

orange boxes in Figure B1 for ∆[HbO] and ∆[CCO], respectively.  

In addition, the outputs of k complex members from “ft_freqanalysis” are used as the inputs 

for function “ft_connectivityanalysis.” This function quantifies the coherence index between the 

ith tapered output of the first signal and the corresponding (i.e., the ith) tapered output of the second 

signal. Each spectral coherence between a pair of temporal signals with the same kth taper was 

averaged over all k tapers, leading to the quantification of bilateral connectivity (i.e., bCONHbO 

and bCONCCO) and unilateral coupling (i.e., uCOPHbO-CCO) in all three E/N/M frequency bands, as 

marked by the three green boxes in the figure.  
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Figure B1 Schematic flow chart of spectral analysis for the quantification of SA and coherence. For 
demonstration, two time series, Δ[HbO] and Δ[CCO], are used as separate input signals with a time period 
of ‘t’. Blue and orange blocks represent frequency analysis steps operated on signal 1 (i.e., Δ[HbO]) and 
signal 2 (i.e., Δ[CCO]), using “ft_freqanalysis” function (outlined by black dashed boxes). The word of 
“double” and “complex” indicates a real number with double precision and a complex number, respectively. 
Furthermore, green blocks represent connectivity analysis steps operated on the frequency-domain outputs 
of the two signals, using “ft_connectivityanalysis” function (red dashed box).  

B.2 Statistical Analysis for the Test of Equivalence Using the Two One-Sided Tests (TOST)  

The two one-sided tests (TOST) analysis was utilized to evaluate the equivalence of the features 

that did not show a significant difference between right and left (for SAHbO, SACCO, and uCOPHbO-

CCO) or between endogenic and neurogenic (for bCONHbO and bCONCCO).  

In each set of tests, the null hypothesis was that the means of the two samples were not 

equivalent. In principle, TOST returns two p-values (one for each side of the test). Thus, if both p-

values obtained from this test are lower than the significance level threshold (i.e., 0.05), we can 

reject the null hypothesis and conclude that the means of the two samples are equivalent. In this 

method, a pair of lower and upper bounds for the feature must be determined, which is closely 
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related to the hypothesis or the predefined effect size. In our study, for each feature in each 

frequency band, we defined the upper and lower bounds for the equivalence test as M×(1 ± 0.2), 

where M is the average value of the two means of the two samples. In the case of statistically 

significant equivalence between the two samples (i.e., pTOST < 0.05), the average of the tested 

features was also reported. A function of “TOST” in MATLAB was used in our analysis for TOST 

in this step of analysis [187].  

 

B.3 Decomposition of a [HbO] Time Series into Three ISO Frequency Bands   

Figure B2(a) shows an example of the ∆[HbO] time series from one channel of 2-bbNIRS in the 

dataset of a subject. Figures B2(b) to S2(d) were obtained after applying a Butterworth band-pass 

filter to the trace in Figure B2(a) using separate bandwidths of three endogenic (E:0.005-0.02 Hz), 

neurogenic (N:0.02-0.04 Hz), and myogenic (M:0.04-0.2 Hz) frequency ranges. This set of figures 

illustrates how different ISO components contribute to the composition of the wideband (0.005–

0.2 Hz) original signal, as shown in Figure B2(a).  

 

Figure B2 (a) A 7-min time series of ∆[HbO] derived from one channel of 2-bbNIRS of a subject’s dataset. 
The three panels on the right were obtained after Butterworth band-pass filtering of the original signal in 
the three predefined E/N/M bands, namely, 0.005-0.02 Hz, 0.02-0.04 Hz, and 0.04-0.2 Hz, respectively. 
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