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Abstract 

EVALUATION OF DECISION-MAKING PREDICTION MODELS 

 FOR SEWER PIPES ASSET MANAGEMENT 

 

Salar Shirkhanloo, PhD 

 

The University of Texas at Arlington, 2022 

 

Supervising Professor: Dr. Mohammad Najafi 

Wastewater collection systems deteriorate over time, requiring continuous adjustments and the 

development of asset management frameworks on the part of utility owners to maintain the performance of 

their assets. Any asset management framework should emphasize the importance of asset inspection and 

condition evaluation for efficient system operation and maintenance. Closed-circuit television (CCTV) is the 

most widely used tool in the United States for inspecting the interior of sewer pipes, which is a somewhat 

expensive and time-consuming process given the extensive inventory of pipes in a city. Due to their vast 

inventory of these pipes, no municipality can inspect every individual sanitary sewer pipe section in a short 

amount of time. Therefore, the main goal of this research is to develop prediction models that can anticipate 

the future state of sewer pipes. The results of the models can be used to rank the necessity for sanitary 

sewer pipe inspection, rehabilitation, and replacement. Combined data collected from the City of Dallas, 

Texas, and the City of Tampa, Florida, were used in this dissertation. This dataset included nine 

independent variables: pipe age, size, length, material, surrounded soil type, soil pH, depth, slope, and 

surface conditions, and one dependent variable was the condition rating of sewer pipe based on PACP 

scores from 1 to 5. Different resampling procedures were examined in this study to overcome the problem 

of the imbalanced dataset, and finally, the resampled dataset by the SVM-SMOTE method was selected. 

Various machine learning algorithms such as Logistic Regressions, k-nearest neighbors, Decision trees, 

Random Forests, AdaBoost, Gradient Boosting Tree, and XGBoost were employed to develop prediction 
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models. The other objective of this dissertation is an investigation of the efficiency of different machine 

learning methods using a resampled dataset, which was done thoroughly in this study. Various evaluation 

metrics, including precision, recall, F1-score (see Section 3.5.5), and area under the curve (AUC), were 

calculated to compare the effectiveness of developed models. The overall F1-score for the Random Forest 

model was 0.80 and for Multinomial Logistic Regression was 0.48, which were the highest and lowest, 

respectively. It was concluded that tree-based models had better performance than other models and the 

bagging approach was more efficient than boosting. Additionally, as another objective of this dissertation, 

using the best model results, it was found that pipe age and length had the highest effect on the condition 

rate of sewer pipes, while pipe location had the least impact. 

NOTE: Please refer to Appendix A for abbreviations. 
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Chapter 1 Introduction and Background 

1.1 Introduction 

The underground infrastructure networks cover thousands of kilometers and are an important part 

of the overall infrastructure of the United States (Najafi and Gokhale, 2022). Sanitary sewers are intended 

to collect sanitary sewage from residential, industrial, commercial, and public users and convey it to a 

treatment plant as part of wastewater infrastructure systems. The majority of sewer systems are gravity 

sewers, which transmit flow based on an initial slope. Over 240 million Americans are associated with 

14,748 wastewater treatment plants, with an estimated 56 million people expected to use centralized 

treatment plants by 2032 (ASCE, 2020). 

Some elements of the wastewater infrastructure in the United States are over a century old, and a 

combination of age, malfunctions, and accidents results in at least 23,000 to 75,000 sanitary sewer 

overflows per year (EPA, 2004). The American Society of Civil Engineering (ASCE) has released its 2020 

Infrastructure Report Card, which gives wastewater infrastructure a "D plus" score. According to ASCE, 

water and wastewater infrastructure in the United States are plainly aging, and a $150 billion capital budget 

deficit is expected by 2025 to keep up with the demand (ASCE, 2020). 

Sewer pipes are an important part of wastewater systems because they connect wastewater 

generating points to treatment plants. The structural and operational performance of sewer systems 

deteriorates as they age. Sewer pipe aging increases failure rates, and deteriorated pipes could have a 

variety of social, environmental, and economic consequences, including poor water quality, chemical or 

biological contamination, disease, and high maintenance costs (Opila, 2011).  

Rehabilitation techniques are critical factors in maintaining the system's operation at an acceptable 

standard of support and providing cost-effective alternatives to prevent future failures. Infrastructure asset 

management is a comprehensive and cost-effective method for keeping pipeline systems in good condition. 

Asset management programs can establish numerous ways to assist utility companies and municipalities 

in understanding the timing and related costs of pipeline maintenance, rehabilitation, and replacement 

(Najafi and Gokhale, 2022). 
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Sewer pipeline deterioration is a multi-step process that is influenced by a number of variables at 

the same time. In metropolitan locations, sewer pipes are often hidden and underground, making it difficult 

to spot pipes with a high risk of collapse. As a result, sewage pipeline inspection and monitoring have 

received increased attention in recent years in order to avoid additional collapse and failure. 

Due to financial, time, and assessment technology constraints, it is evident that monitoring and 

inspecting all sewer lines is nearly impossible. As a result, greater effort should be put into developing 

degradation models that can forecast the existing and future state of sewage systems. Several prediction 

models as well as the variables that impact the state of sewage pipelines will be thoroughly examined in 

this study. 

1.2 Research Needs 

Researchers in the United States and throughout the world have conducted hundreds of studies to 

forecast the state of sanitary sewers. Identifying the important elements influencing sewage pipe 

degradation and constructing a prediction model based on those factors are two ways to assess the 

structural integrity of a sanitary sewer pipe. It should be highlighted that the elements are studied for their 

correlations with the structural integrity of sewage pipes rather than for their causes of breakdowns. As a 

result, in order for a municipality or utility owner to use a condition prediction model, the model must be 

able to forecast the state of sanitary sewage pipes using data provided by the municipality or utility owner. 

Numerous researchers stated that sewer pipe condition prediction models need to be improved, as 

explained below: 

• More historical input variables, such as surface load, groundwater, bedding conditions, soil 

corrosion, and sewer placement, were recommended by Najafi and Kulandaivel (2005) for 

improving the neural network model for sewage pipe deterioration.  

• For creating sewage pipe condition degradation, Chughtai (2008) recommended using more 

predictors, such as soil condition, seismic variables, and so on. Future research should also look 

at the use of different prediction models. 

• Salman (2010) suggested that deterioration models be improved by considering additional 

independent factors such as soil type, groundwater level, and original construction quality. 
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• According to Opila (2011), further improvement of the condition prediction models would lead to 

more accurate failure predictions. Other prediction models might be able to deliver more accurate 

results. 

• Sousa et al. (2014) stated that machine learning and artificial intelligence models were more accu

rate than logistic regression models and that future research  

might increase findings accuracy. 

• According to Kabir et al. (2018), the established sewer structural condition prediction models may 

be enhanced further by examining the influence of various independent factors as sewer function, 

groundwater level, soil type, road class, and original construction quality. 

• Malek Mohammadi (2019) suggested that instead of changing to binary classes, a prediction model 

should be able to forecast all five condition levels separately. 

• Karthikeyan Loganathan (2021) used various supervised machine learning algorithms to predict 

sewer pipes conditions and recommended that developed model in his research should be 

validated on inspection data from a different municipality.  

         As a result, the knowledge gap in identifying essential components in sewage pipe deterioration has 

been identified, indicating the necessity for machine learning and artificial intelligence algorithms in the 

creation of condition prediction models. As a result, one of the study's main aims is to close the knowledge 

gap found. 

1.3 Research Objectives 

The first objective of this study is to establish a decision-making support tool as a condition 

prediction model for sanitary sewer asset management. Assessment of the prediction results of different 

models for the case study could help cities to design strategic plans for their sewer networks. 

The secondary objective of this dissertation is to analyze the differences of the identified significant 

factors affecting sewer pipe deterioration. Agencies and municipalities can gather fewer data points during 

inspections by identifying influencing variables. 
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1.4 Scope of Work 

The scope of this dissertation is limited to use of condition scoring system of Pipeline Assessment 

and Certification Program (PACP) developed by the National Association of Sewer Service Companies 

(NASSCO). Also, sewer pipes with any rehabilitations are excluded. Table 1-1 shows the scope of this 

dissertation.   

Table 1-1 Scope of the Study 

Included Excluded 

Sanitary sewer pipes Storm-water pipes 

Pipes inspected based on PACP manual Pipes inspected with other manuals 

Pipes without any rehabilitation Pipes with any rehabilitation 

PVC, VCP, and RC pipes Pipes made with other materials 

 

1.5 Research Methodology 

Following steps are carried as a methodology to achieve the expected outcome of the research. Figure 

1-1 presents more detail about methodology used in this research.  

• Step 1: Problem statement 

• Step 2: Comprehensive literature review 

• Step 3: Data collection 

• Step 4: Data analysis for each case study 

• Step 5: Development of prediction models for each case study 

• Step 6: Model validation for each case study 

• Step 7: Comparing artificial intelligence models for each case study 

• Step 9: Select the best model for each case study 

• Step 10: Compare the results 

• Step 11: Conclusions for decision-making  
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Figure 1-1 Research Methodology 

1.6 Expected Outcome 

The expected outcomes of this study are: 

• A condition prediction model to classify the sewer pipes into multiple classes. 

• A comprehensive comparison of the various methods that can be used to select the optimal 

forecasting model. 

•  A tool to find the most significant factors affecting the deterioration of pipes. 
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1.7 Hypothesis 

Based on the dataset used in this dissertation, pipe age, material, and length are expected to have 

the largest effect on sewer failure. In addition, tree-based models are expected to perform better than other 

statistical and machine learning methods to predict the condition of pipes. 

1.8 Chapter Summary 

This chapter presented background information on sewage pipe conditions as well as the 

significance of sewer inspection and maintenance procedures. This chapter also covered the research 

needs, objectives, scope of work, methodology, expected outcome, and hypotheses. 
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Chapter 2 Literature Review 

2.1 The United States' Sanitary Sewer System 

Municipalities began to establish sewage systems to preserve public health and prevent flooding 

during growing urbanization between 1840 and 1880 (Melosi, 2000). The first comprehensive sewer 

systems in the United States were built in Chicago and Brooklyn in the late 1850s. Construction of extensive 

urban sewage systems did not begin until the 1880s. Combined Sewer Systems (CSS) and Separate 

Sanitary Sewer and Storm Sewer System (SSS) are the two types of sanitary sewer systems used in the 

United States (EPA, 2004). 

In a combined sewer system, a single pipe transports residential, commercial, and industrial 

wastewater, as well as storm water, to a designated disposal place. During the late nineteenth century, the 

United States began to create the combined sanitary sewer, taking into account a planned network and big 

diameter sewers (Burian et al., 2000).  

At the turn of the twentieth century, concrete pipes were introduced, followed by polyvinyl chloride, 

fiberglass, high-density polyethylene, ductile iron, steel, and reinforced concrete pipes (Kulandaivel, 2004). 

According to the Environmental Protection Agency (EPA) (2010), the following materials are often used in 

the construction of sanitary and wastewater sewer systems: 

• Concrete pipe, including reinforced concrete pipe (RCP) and prestressed concrete cylinder pipe 

(PCCP). 

• Ferrous pipe, including ductile iron, cast iron, and steel. 
 

• Plastic pipe, including polyvinyl chloride (PVC) and high-density polyethylene (HDPE). 
 

• Ceramic-based pipe, including brick and vitrified clay pipe (VCP). 

2.2 Asset Management 

Asset management in the water and wastewater sector is an adapted idea from several successful 

applications in other industries such as transportation and building infrastructure management. Asset 

management was first adopted in Australia and New Zealand in the early 1990s, before spreading to other 

nations such as Canada, England, and the United States. In the United States, the Federal Highway 

Administration launched infrastructure asset management in the early 1990s, and the FHWA issued an 
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Asset Management Primer in 1999. Asset management began to be applied in the water and wastewater 

industries in the early 2000s, and the Environmental Protection Agency (EPA) played a significant role in 

providing and supporting asset management principles (Syachrani, 2010). 

 For wastewater management utilities, asset management can be defined as an inclusive plan to 

manage infrastructure capital assets to minimize the total cost of owning and operating them, while 

delivering a satisfactory level of service (EPA, 2004). The main components of Infrastructure management 

system framework are presented in Figure 2-1. 

 

Figure 2-1 Infrastructure Management System Framework 

(Malek Mohammadi, 2019) 

First step is asset inventory which is process of data collection. The collecting of data is essential 

in order to execute asset inventory. Utilities or towns in the water and wastewater industry must keep a 

comprehensive record of assets, including age, location, material, depth, length, and other critical 

information. Following data collection, information must be analyzed and ranked using condition coding 

systems. The following step is to develop prediction models to forecast the asset's future status. During this 

process, historical data is utilized to forecast the asset's future performance in time to prevent any 
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unforeseen collapse or failure. Infrastructure systems are vital for everyday operations, and municipalities 

must anticipate their future condition and remaining usable life. The outcome of condition assessment and 

prediction models leads agencies to develop a decision-making strategy for the asset's current and future 

state. Several elements, such as available funds, laws, methods of rehabilitation or replacement, and other 

essential factors, must be considered during the decision-making process. The next phase in an 

infrastructure management system is asset maintenance and rehabilitation, which is dependent on the 

outcome of the decision-making process. Finally, all of the above steps aid the government in prioritizing 

assets for future investment. In today's asset management approach, all infrastructure management 

procedures are combined with Geographic Information Systems (GIS). 

2.3 Condition Assessment of Sewers 

2.3.1 Introduction 

In the United States, millions of gallons of human and industrial waste are conveyed into 

wastewater treatment plan through underground sewer systems every day. This process takes place 

underground (out of view) and maintaining wastewater collection systems is always one of the critical 

challenges of governments. As the most municipal sewer systems are at least 60 years old, many 

communities and utilities are paying more attention to assess the condition of their underground pipes and 

associated infrastructures (EPA, 2015). 

The fundamental idea behind sewer condition assessment is to compare the existing structural and 

operational state of a sewage pipeline to that of a new or like new pipe. The comparison yields a numerical 

grade for the asset, which represents the current state of underground sewer systems. 

2.3.2 Condition Rating Methods of Sewer Pipes 

The Water Research Centre (WRc) in the United Kingdom began a five-year research project in 

1977 to adopt a technique to assess the health of sewage pipes based on a generic coding system. The 

condition rating is intended to evaluate the existing state of sewage lines objectively. The two most 

prevalent pipe condition categories are structural condition and operational condition (Chughtai and Zayed, 

2008). Structural condition evaluates the pipe defects, the physical strength of a pipe and the capability of 
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the pipe to resist external loads, and operational condition indicates the ability of the pipe to meet its service 

requirements. The result of structural conditions can be used to determine the necessity of pipe 

rehabilitation or replacement while the operational condition of a pipe indicates the need for cleaning and 

maintenance (Malek Mohammadi, 2019). 

Various methodologies have been introduced in different nations to score the status of underground 

sewage pipelines, including WRc (Water Research Center) in the United Kingdom, PACP (Pipeline 

Assessment and Certification Program ) in the United States, NRC (National Research Council Canada) in 

Canada, and WSAA (Water Service Association of Australia) in Australia (Moteleb, 2010). In the United 

States most of municipalities and agencies use the PACP methodology to assess the condition of sewer 

pipes.  

2.3.3 PACP Condition Grading Method 

Pipeline Assessment and Certification Program (PACP) is the North American Standard for pipeline 

defect identification and assessment to identify the pipe condition and manage the sewer pipe networks. In 

2001, National Association of Sewer Service Companies (NASSCO) developed the PACP in partnership 

with Water Research Center (WRc) to assess the condition of sewer pipes.  

Pipe defects and features can be classified into five categories by NASSCO coding system. The 

defect classification involves; (1) continuous defects, (2) structural defects, (3) operational and 

maintenance, (4) construction features, and (5) miscellaneous features coding (EPA, 2015). For each type 

of defect, the numeric codes are used to rank the severity of the pipe defect and capital letters define the 

type of defect. 

The final condition rating is defined from two major categories which are structural and operation 

and maintenance (O&M). The below list presents the grades and definitions of grades respectively 

(NASSCO, 2018): 

1 -  Minor defect grade 

2 -  Minor to moderate defect grade 

3 -  Moderate defect grade 
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4 -  Significant defect grade 

5 -  Most significant defect grades 

PACP assess the condition of pipes on a scale of 1 to 5 based on the result obtained from CCTV 

inspections and operator judgments. Condition 1 determines the pipe is in excellent condition and condition 

5 specifies the pipe has failed or is likely to fail. Pipe with condition rating of 5 needs immediate action for 

rehabilitation or replacement.  Table 2-1 provides the PACP condition rating, from the PACP manual. 

Table 2-1 PACP Defect Grades 

(NASSCO, 2018) 

Condition Grade Description Time to Failure 

5 

Immediate Attention 
Defects requiring immediate attention 

Pipe has failed or is 

likely to fail within the 

next five years 

4 

Poor 

Severe defects that will become Grade 5 

defects within the foreseeable future 

Pipe will probably fail in 

5- 10 years 

3 

Fair 

Moderate defects that will continue to 

deteriorate 

Pipe may fail in 10-20 

years 

2 

Good 
Defects that have not begun to deteriorate 

Pipe unlikely to fail for 

at least 20 years 

1 

Excellent 
Minor defects 

Failure unlikely in the 

foreseeable future 

 

The outcome of the PACP condition grading method is entirely dependent on the accuracy of the 

defect coding, and any error during defect identification influences the final grade result. The PACP 
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condition grading method assigns a ranking to pipe segments depending on the severity of the identified 

defects and problems. 

2.4 Factors Affecting Condition of Sewer Pipe 

2.4.1 Introduction 

             Several attempts have been made in recent years to assess the state of sewage pipes and to 

identify the factors that impact degradation. Table 2-2 shows these factors. Identification of affecting factors 

is crucial, according to Kley and Caradot (2013), for the following reasons: 

• Data collection is a very expensive process during condition assessment and gathering all the pipe 

information is not a cost-effective approach. Identification of significant factors decreases the 

number of required features and reduces data collection costs. 

• When more relevant factors are utilized in the model, high prediction accuracy may be attained. 
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Table 2-2 Factors Affecting Wastewater Pipes Deterioration 

(Davies et al., 2001; Al Barqawi and Zayed, 2006) 

Physical factors Environmental factors Operational factors 

Sewer age 

Sewer size 

Sewer depth 

Installation method 

Sewer pipe material 

Joint type 

Pipe length 

Connections 

Pipe slope 

Pipe shape 

Start invert elevation 

End invert elevation 

Rim elevation 

Bedding material 

Soil type 

Backfill type 

Surface type 

Road type 

Traffic characteristics 

Ground movement 

Groundwater level 

Root interference 

Soil corrosivity 

pH 

Soil fracture potential 

Vehicle flow 

Bus flow 

Number of trees 

Soil moisture 

Sulfate soil 

Flow velocity 

Infiltration/exfiltration 

Previous maintenance 

Sediment level 

Surcharge 

Burst history 

Debris 

Hydraulic condition 

Blockages 

Operating pressure 

(for sewer mains) 

Sewer function 

 

 

2.4.2 Pipe Age 

The difference between the pipe installation year and the date of inspection is commonly referred 

to as pipe age. The age of a pipe begins the moment it is installed (Kulandaivel, 2004). Various studies 

have shown that the age of sewer pipes has a significant impact on their condition (Ariaratnam et al. 2001, 

Kienow and Kienow 2004, Chughtai and Zayed 2008, Ana et al. 2009, Salman and Salem 2012, Laakso et 

al. 2018). As illustrated in Figure 2-2, the serviceability of pipes deteriorates with time and is separated into 

five stages (Misiunas 2005). 
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(Misiunas, 2005) 

Pipe failure is represented in the shape of a bathtub curve, according to Singh and Adachi (2013),

 which is generated when the pipe failure rate is plotted against timeThe bathtub curve comprises three s

eparate stages, as shown in Figure 2-3.  The first is the early life period, which has a high failure rate and 

displays problems soon after installation. Human factors, pipe damage during construction and installation, 

and improper pipe material can all cause to failures during this period. The second phase indicates the 

pipe's useful lifetime, with the frequency of failure rate being very low and almost constant. Failures in the 

second phase might arise in a variety of unpredictable events, such as exceptionally heavy loading, earth 

movement, settlement, or third-party interference.  Finally, due to pipe degradation and age, the third phase 

(wear-out life) has a significant failure rate (Singh and Adachi, 2013). On the other hand, few studies stated 

that the age is not a major factor in pipe deterioration (Tafuri and Dzuray, 2000; and Davies et al. 2001).  

Figure 2-2 Serviceability of a Pipe 
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Figure 2-3 The Theoretical Bathtub Curve of Buried Pipe 

(Singh and Adachi, 2013) 

2.4.3 Pipe Material 

Vitrified clay pipe (VCP), ductile iron (DI), cast iron (CI), polyvinyl chloride (PVC), reinforced 

concrete pipe (RCP), and other materials are used to make sewer pipelines. Each material has its own 

properties and failure mechanisms would differ as well (Loganathan, 2021). Concrete pipes, for instance, 

are abrasion-resistant, whereas clay pipes are acid-resistant. Plastic pipes, such as PVC or HDPE, are 

resistant to acidic and alkaline wastes, although they can deform excessively when loaded (Singh and 

Adachi, 2013). Concrete pipes behaved better in the model than bricks and clay pipes, according to Ana et 

al. (2009). Lubini and Fuamba's (2011) model included pipe material as well. They discovered that 

reinforced concrete pipes are more resistant to degradation than ordinary pipes because the conduit is 

strengthened with steel, making it robust enough to avoid structural deterioration. According to Laakso et 

al. (2018) concert and polyethylene high-density pipes were shown to be relevant in the prediction model. 

Several studies, including Malek Mohammadi (2019), stated that pipe material is a critical factor in pipe 

deterioration and is among significant parameters in developing prediction models. 

2.4.4 Pipe Diameter 

Several studies have shown that pipe diameter has an important effect on pipe’s deterioration. 

When the diameter of a sewer pipe is between 6 and 8 inches, it is categorized as a small sewer pipe, and 
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when the diameter is greater than 10 inches, it is defined as a large sewer pipe (Loganathan, 2021). Some 

condition prediction models indicated that the rate of sewer pipe deterioration reduces as pipe diameter 

increases, whereas some other studies have found that smaller diameter pipes fail more frequently (Malek 

Mohammadi, 2019). Ariaratnam et al. (2001) indicated that when pipe diameter increases the likelihood of 

a pipe being in a deficient condition decrease. Larger diameter pipes perform better than smaller diameter 

pipes, according to Lubini and Fuamba (2011), Salman and Salem (2012), and Bakry et al. (2016). Because 

bigger diameter pipes may continue to run when obstructions are encountered, but smaller diameter pipes 

lose hydraulic flow. Other studies also have found that because larger pipes are buried deeper, which may 

be the reason for their better structural condition, they have lower deterioration rates than smaller diameter 

pipes (Malek Mohammadi et al., 2020: Najafi and Gokhale, 2022). 

In contrast, Jeong et al. (2005) stated that larger pipes are more likely to deteriorate, since they 

have more surface area exposed to sewage and surrounding soil areas. Laakso et al. (2018) found a 

relatively dual behavior in the variation of pipe diameter and condition levels of sewer pipes. He concluded 

that pipes with a diameter of 12 and 60 inches were in better condition due to further careful installation 

supervision. On the other hand, some investigations such as Ana et al. (2009) stated that pipe diameter is 

not a significant variable in deterioration model. 

2.4.5 Pipe Length 

The length of a sewage pipe is defined as the distance between the entrance and exit manholes. 

According to Najafi and Gokhale (2022), shorter pipes deteriorate at a faster rate than longer pipes because 

longer pipes would have some sharp bends over their length, potentially resulting in less debris or 

obstructions. On the other hand, Malek Mohammadi (2019) indicated that long sewer pipes could have a 

greater degradation rate since their probability of flaw is higher. 

Also, some studies show a dual behavior in the condition of pipes regarding changes in pipe length. 

For instance, according to Laakso et al. (2018), sewer pipes longer than 131 feet decay more quickly than 

other pipes in the network, while pipes shorter than 131 feet have almost no effect on the pipe’s condition. 

Longer pipes have a larger risk of flaws and bending stress, which can explain this consequence. 

Furthermore, lateral connections can cause structural damage, and longer pipelines have more of them. 
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2.4.6 Pipe Slope 

According to Tran et al. (2006), pipes with steeper slopes are more likely to be vulnerable due to 

voids in the soil, soil movement, and pipe joint faults. As per Salman and Salem's (2012) prediction model, 

steeper pipes are more prone to degrade because of stability problems and high flow rates. 

In contrast, Laakso et al. (2018) found that extremely low slope was the most dangerous situation 

for sewer pipes. Extremely low slopes result in insufficient rinsing, resulting in debris accumulation and 

obstructions. On the other hand, according to the findings of Sousa et al. (2014) and Kabir et al. (2018), 

pipe slope is a non-significant factor. 

2.4.7 Pipe Depth 

A sewage pipe's depth is defined as the distance between the pipe's crown and the ground level 

(Loganathan, 2021). To determine the proper depth of sewage pipes, several elements must be addressed, 

including soil type, water table, pipe material, pipe diameter, and regulations (Malek Mohammadi, 2019). 

Pipe depth is an important variable in Khan et al. (2010)'s prediction model, and each increase in 

depth has a negative influence on sewer pipe condition level. The higher dead load over the pipes might 

be the explanation for this behavior. 

In contrast, according to some studies, sewer pipes placed at shallow depths deteriorate faster 

than those buried at deeper depths (Harvey and McBean, 2014; Gedam et al., 2016). In general, increasing 

the cover thickness above the pipes reduces the impact of surface elements like traffic and construction. 

Nevertheless, Tran et al. (2006) and Ana et al. (2009) claimed that sewer pipe depth is unimportant in 

condition prediction modeling. 

2.4.8 Sewer Location 

The applied load from the surface might have an impact on a sewage pipe. The amount of surface 

loading carried to the sewage pipe is affected by land use and traffic above the pipe. Surface loads vary in 

magnitude and frequency, making it difficult to quantify or predict their size (Kley and Caradot, 2013). 

According to statistics provided by the Federal Highway Administration (FHWA, 2011), highways often have 

more VMT (Vehicles Miles Traveled), which indicates a more pressure on the surface. 
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Only a few studies have looked at the impact of pipe location on sewage pipe degradation. Pipe 

segments beneath local streets and alleyways are less likely to deteriorate than pipe segments beneath 

gardens or any other form of roadway, according to Salman and Salem (2012). According to Bakry et al. 

(2016), sewage pipes deteriorate more quickly in industrial zones than in residential areas. In contrast, 

Micevski et al. (2002) and Tran et al. (2006) stated that the location of the pipe is not an important factor in 

their prediction model.  

2.4.9 Soil Type 

Different types of soil have different reactions with pipe material, groundwater, and other pipe 

attributes or environmental factors (Kaushal and Guleria, 2015). The underlying soil has a considerable 

influence on sewage pipe deterioration, according to Wirahadikusumah et al. (2001). When comparing 

pipes placed in stable soil to pipes installed in unstable soil, it was discovered that pipes located in unstable 

soil suffered more fluctuations in condition (Tafuri and Dzuray 2000). Furthermore, the type of soil around 

the sewage pipe is one of the most critical aspects that can impact frost heave, soil-pipe interaction strength, 

and external corrosion, all of which can contribute to failure mechanisms (Najafi and Gokhale, 2022). When 

there is not enough soil support around a sewage pipe, it might move, causing voids to form around the 

pipe, making it more prone to deform (Loganathan, 2021). However, in the prediction model developed by 

Laakso et al. (2018), soil type was not a significant parameter. 

2.4.10 Corrosivity 

Soil corrosivity is a soil property that enhances the likelihood of external corrosion on pipe surfaces 

(Malek Mohammadi, 2019). Corrosion in steel pipes is often generated by an electrochemical interaction 

between the exposed pipe's outer surface and the soil environment surrounding it. Different pipe materials 

have various degrees of corrosion resistance. The corrosion rate is observed to be impacted by a wide 

range of variables such as soil acidity, resistivity, pH content, oxidation-reduction, sulfide, moisture, 

aeration, and so forth (Loganathan, 2021). According to Najafi and Gokhale (2022), longitudinal failure can 

occur when the pipe wall deteriorates due to corrosion. It should be noted that Only a few research have 

looked at the influence of soil corrosivity on sewage pipeline deterioration. 
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2.4.11 Soil pH 

The pH of the soil affects the corrosion rate of buried pipelines, according to almost all studies in 

the field of underground corrosion (Wasim et al., 2018). According to Najafi and Gokhale (2022), soil pH is 

a good indicator of external corrosion since various pH ranges cause different corrosion processes. Alkaline 

(pH>7), natural (pH=7), and acidic (pH<7) are the different pH ranges. 

Hou et al. (2016) investigated the impact of soil pH on pipes made of various materials. according 

to the findings, in the same corrosive conditions, cast iron pipes are more likely to corrode than steel pipes. 

In contrast, some studies stated no relationship between pH and corrosion rate, such as Wasim et al. 

(2018). 

2.4.12 Groundwater Level 

Groundwater availability above sewer pipes may result in water running into the pipe (infiltration) 

through cracks and the loss of soil support (Davies et al., 2001). This infiltration might result in overflows 

and soil sediments inside the sewage pipes, leading to practical problems. Also, structural troubles are 

caused by a lack of sufficient support surrounding the pipe. Sewage pipes in places where the groundwater 

level is much higher are more likely to fail than sewer pipes in areas where the groundwater level is below 

sewer level, according to Malek Mohammadi et al. (2019). This is due to an increase in the amount of 

pressure on pipes from groundwater. It should be noted that groundwater levels are often not included in 

pipeline inventories, and it has been only utilized as a variable in a few prediction models. 

2.5 Prediction Models for Sewers 

2.5.1 Introduction 

Condition prediction models may be used to estimate the condition rating of an infrastructure using 

data from inspection databases. In general, utility companies and municipalities can estimate the future 

health of their assets by using degradation models to identify the pipes that need repair, rehabilitation, or 

replacement. The ultimate objective of many prediction models is to use an acceptable mathematical 

approach to anticipate the target variables with the maximum accuracy possible. 

Deterioration models for sewer pipelines are classified into different categories. Thus, existing 

sewer deterioration models can be classified into two groups of statistical and artificial intelligence (AI) 
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models. Statistical models include linear and logistic regressions. AI models includes various machines as 

shown in Figure 2-4 (Liu et al., 2022). 

 

Figure 2-4 Classification of Prediction Models 

(Liu et al., 2022) 

2.5.2 Statistical Models 

A statistical model is defined as a random variable X that represents a quantity whose outcome is 

uncertain. The probabilistic character of historical data is employed in statistical models to explain model 

output as a random variable. Estimates are "best guesses" depending on the state of the historical data in 

any statistical analysis (Coles, 2001). The parametric density function, according to Dasu and Johnson 

(2003), is used in statistical models to evaluate errors and find probabilistic correlations between dependent 

and independent variables. Statistical models' outputs and outcomes may be provided in probability values, 

making them more appropriate to predicting the existing and future state of sewage pipes than deterministic 

models, which provide quantitative results (Tran, 2007). Numerous statistical models, such as, logistic 

regression, Markov chain, ordinal regression and cohort survival model were used to predict the condition 

of sewer pipelines in previous studies. 
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2.5.2.1 Linear Regression Models 

Only one independent variable is used in the simplest linear regression model, and the dependent 

variable is predicted based on their relationship. As the value of the independent variable rises or falls, the 

real mean of the dependent variable changes at a constant pace, according to the regression model. As a 

result, the function connection between the real mean of Yi and Xi, as stated in Eq. 2.1, is represented by 

the equation of a straight line (Rawlings, 1989). 

𝑌𝑖 =  𝛽0 + 𝛽1𝑋𝑖 +  𝜖𝑖                                                                                                                         Eq.2.1 

Where: i = facility index; 

Yi = dependent variable for facility i; 

              β0 and β1 = parameters to be estimated. 

Xi = independent variable. 

ϵi = random error term 

Bakry et al. (2016a, 2016b) developed a condition prediction model for sewage pipes that have 

previously been restored using the CIPP approach, using regression analysis techniques. Closed-circuit 

television (CCTV) inspection records of Quebec CIPP rehabilitations were used to compile the information. 

The models were created based on a number of physical, operational, and environmental aspects. The 

regression models were evaluated using coefficients of multiple determinations, and the results showed 

that the accuracy ranged from 80 to 97 percent. Furthermore, mean absolute error and root mean square 

error were calculated to measure the models' correctness. Generally, the linear regression model is too 

simple to describe the probabilistic character of pipe degradation and is not suitable for predicting discrete 

condition values (Tran, 2007; Moteleb, 2010). 

2.5.2.2 Logistic Regression 

The link between many independent factors and a categorical dependent variable is studied using 

logistic regressions. The chance of an event occurring is assessed using logistic regression by fitting data 

to a logistic curve. Binary logistic regression, multinomial logistic regression, and ordinal logistic regression 

are the three types of logistic regression models (Park, 2013). When the response variable has two 

categories (success or failure), binary logistic regression is used; when there are more than two response 
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variables, multinomial logistic regression is employed. A binary logistic regression for pipeline degradation, 

for example, comprises two response variables: 0 and 1. If the result is 0, the pipe is in bad condition; 

whereas, if the response variable is 1, the pipe is in good condition. 

For a binary response variable Y and a single explanatory variable X, let π(X) = P(Y = 1 | X = x) =

1 − P(Y = 0 | X = x), the logistic regression model has linear form for the logit of this probability as shown 

in Eq. 2.2 (Agresti, 2018). 

logit [𝜋(𝑋)] = log (
𝜋(𝑋)

1−𝜋(𝑋)
) =  𝛼 + 𝛽𝑥                                                                                             Eq.2.2 

Eq. 2.3 presents the formula for the probability π(X), using the exponential function (exp(𝛼 + 𝛽𝑥) =

𝑒𝛼+𝛽𝑥). 

𝜋(𝑋) =  
exp (𝛼+𝛽𝑥)

1+exp (𝛼+𝛽𝑥)
                                                                                                                                          Eq.2.3        

And the Eq. 2.4 presents the multiple logistic regression formula when multiple explanatory 

variables are used in the model (Agresti, 2018). 

log [
𝜋

1−𝜋
] = log [

𝑃(𝑌=1 | 𝑋1,𝑋2,…,𝑋𝑝)

1−𝑃(𝑌=1 | 𝑋1,𝑋2,…,𝑋𝑝)
] =  α + β1𝑋1 + β2𝑋2 + ⋯ + β𝑝X𝑝 = α +

∑ β𝑗X𝑗
𝑝
𝑗=1                                                                                                                                                                      Eq.2.4 

 where: 

X1, X2, …, Xp are independent variables 

 α is the intercept parameter for category i 

 𝛽 is the regression coefficients 

And the probability than Y=1 can be measured using an exponential transformation as shown in 

Eq. 2.5. 

P(Y = 1 | 𝑋1, 𝑋2, … , 𝑋𝑝) =  
𝑒

α+∑ β𝑗X𝑗
𝑝
𝑗=1

1+ 𝑒
α+∑ β𝑗X𝑗

𝑝
𝑗=1

                                                                                          Eq.2.5 

An important parameter in logistic regression is odds ratio that measures the relationship between 

explanatory and response variables as shown in Eq. 2.6. 

𝜋(𝑋)

1−𝜋(𝑋)
= exp(𝛼 + 𝛽𝑥) =  𝑒𝛼(𝑒𝛽)𝑥                                                                                                     Eq.2.6 
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Multinomial logistic regression is used when multiple levels of categorical response variables are 

in the model. Eq. 2.7 shows the multinomial logistic regression formula. 

log [
𝜋

1−𝜋
] = log [

𝑃(𝑌=𝑖 | 𝑋1,𝑋2,…,𝑋𝑝)

1−𝑃(𝑌=𝑘 | 𝑋1,𝑋2,…,𝑋𝑝)
] =  α + β𝑖1𝑋1 + β𝑖2𝑋2 + ⋯ + β𝑖𝑝X𝑝 =

 ∑ β𝑖𝑗X𝑗
𝑝
𝑗=1                                                                                                                                                                     Eq.2.7 

where: 

i = 1, 2, …, K-1 correspond to categories of the dependent variable 

X1, X2, …, Xp are independent variables 

 α is the intercept parameter for category i 

 𝛽 is the regression coefficients associated with dependent category i  

Using logistic regression, Ana et al. (2009) looked into the impact of sewage physical parameters 

on sewer pipeline structural degradation. The following characteristics were considered in this study: pipe 

age, size, depth, length, slope, form, material, sewer type, building time, and location. For selecting the 

predictor variables, they employed a backward stepwise regression approach. A Wald test and a likelihood-

ratio test were used to determine the significance of the dependent variables. They also looked at how 

independent factors interact with one another. In a degradation model, the length of sewer pipes, for 

example, may be determined to be inconsequential, but when paired with another independent variable, it 

may become important. In this study, the age, material, and length of the sewers were determined to be 

important, and no validation procedure was utilized to validate the findings. 

To forecast the structural state of sewage pipes, Kabir et al. (2018) used a Bayesian logistic 

regression model. The model was created by selecting 12,728 sewage mains from Calgary's wastewater 

network. The model was constructed using the following parameters: pipe age, material, diameter, length, 

slope, depth, rim elevation, up invert, and down invert. In this study, important factors were identified using 

the Bayesian model averaging approach, and sewage pipe condition was predicted using logistic 

regression. The significance of the independent variables was assessed using the P-test, Wald Test, 

likelihood-ratio test, and Durbin-Watson test. Sewer pipe conditions were classified into two groups: 

excellent and bad. A confusion test was used to verify the model's performance. 
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Malek Mohammadi (2019) used logistic regression to predict the condition of sewer pipes for Tamp 

city, Florida. According to the result of his model, the condition of 65.8% of sanitary sewer pipes was 

predicted correctly, however, pipes in conditions levels 2, 3, and 4 were not estimated properly by 

multinomial logistic regression (Malek Mohammadi, 2019). 

2.5.3 Artificial Intelligence Models 

2.5.3.1 Introduction 

Artificial intelligence can be defined as “the study of mental faculties through the use of 

computational models” (Charniak and McDermott, 1985). In other definition, AI is “The art of creating 

machines that perform functions that require intelligence when performed by people” (Kurzweil, 1990). 

According to Luger (2009), the artificial intelligence can be decomposed into several categories as 

describes in below items: 

• Game playing 

• Automated reasoning and theorem proving 

• Expert systems 

• Natural language understanding and semantics 

• Modeling human performance 

• Planning and robotics 

• Languages and environments for AI 

• Machine learning 

• Alternative representations: neural nets and genetic algorithms 

• AI and philosophy 

In artificial intelligence models, the dependent variables are classified from a set of independent 

variables by learning from the available data. Artificial intelligence models can tackle complicated issues, 

and substantial research has been conducted in recent years to model infrastructure deterioration utilizing 

neural nets and machine learning approaches. 
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2.5.3.2 Neural Nets and Genetic Algorithms 

The objective of developing neural nets and genetic algorithms is to provide a model which works 

parallel the structure of neurons in the human brain (Luger,2009). Among the neural net and genetic 

algorithm techniques, fuzzy set theory and neural networks (NNs) were used for modeling the deterioration 

of infrastructure facilities, (Flintsch and Chen 2004; Kleiner et al. 2004, Tran, 2007). 

One of the methods used to forecast the degradation of sewage systems is Artificial Neural 

Networks. Najafi and Kulandaivel (2005) created a prediction model using an artificial neural network. The 

variables in this model were pipe length, size, material, age, depth, slope, and sewer type. The data was 

trained using backpropagation. The study revealed that using a neural network to construct a condition 

prediction model for pipelines is viable; however, model accuracy is strongly dependent on a bigger and 

more inclusive sample set. 

Tran et al. (2007) created a neural network deterioration model to forecast the serviceability of 

underground stormwater pipelines. In this work, the model was calibrated using Markov Chain Monte Carlo 

simulation. In addition, the neural network's ranking performance was compared to several discrimination 

analysis models. This model included a number of independent factors such as pipe age, size, depth, slope, 

number of trees, pipe location, soil type, and wetness. According to the findings of the study, the 

performance of a neural network calibrated using the Markov chain approach outperforms that of a neural 

network calibrated with the backpropagation method. 

Khan et al. (2010) created a structural condition prediction model to evaluate the significance and 

effect of key sewage pipe parameters. In this study, backpropagation and probabilistic neural networks 

were employed to convey the condition assessment of the pipes. The data for this model was contributed 

by the municipality of Pierrefonds, Quebec. The model was built using pipe material, diameter, depth, 

bedding material, length, and age. According to the created models, a neural network is capable of 

prioritizing inspection and restoration plans for existing sewage mains. 

2.5.3.3 Machine Learning 

Machine learning was characterized by Arthur Samuel in 1959 as a "Field of research that offers 

computers the ability to learn without being explicitly programmed" (Simon, 2013). By experimenting with 
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various prediction structures and algorithms, machine learning may learn directly from examples and 

experiences in the form of data (Bishop, 2016). 

Machine learning can be classified in three broad categories based on the nature of learning as 

described below (Bishop, 2016): 

• Supervised learning: in supervised learning models, the training data includes examples of input 

variables with their corresponding output variables. 

• Unsupervised learning: application in which the training data comprises a set of input variables 

without any corresponding output variables. 

• Reinforcement learning: same as unsupervised learning, the output variables are not given in the 

model and the targets should be predicted by trial and error. 

Another classification of machine learning can be based on the desired output of the modeling 

systems. Below items define these categories: 

• Classification: the outputs are divided into two or more classes and typically supervised learning 

are used to model this class. 

• Regression: in this category the outputs are continuous rather than discrete and a supervised 

problem. 

• Clustering: in clustering category, a set of inputs are classified into different groups. Unlike 

classification and regression, this is an unsupervised task. 

• Density estimation: the distribution of inputs is found in some space in this category. 

• Dimensionality reduction: simplifying the inputs by mapping them into a lower-dimensional space. 

Machine learning is becoming increasingly popular in a variety of industries. In the wastewater 

business, machine learning models such as support vector machine (SVM), decision trees, random forest, 

and Bayesian regressions have been used to forecast sewage network damage. 

Mashford et al. (2011) used a support vector machine to forecast sewage pipeline condition grade. 

The model's predictive performance was created using CCTV data obtained from the Adelaide wastewater 

collection network in South Australia. Sewer pipe condition was graded on a scale of 1 (excellent condition) 

to 5 (very bad condition). As input variables, pipe diameter, age, pipe location, slope, start invert, end invert, 
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material, soil type, soil corrosivity, grade, angle, sulfate soil, and groundwater level were employed. The 

study's findings revealed that the support vector machine has extremely strong prediction performance with 

91 percent accuracy and may be utilized as a novel way to simulate sewage pipe degradation. The authors 

indicated that the study's drawback was a lack of adequate condition data. 

To estimate the structural integrity of individual sanitary sewage pipes, Harvey and Mcbean (2014) 

employed a random forests model. The sewage database came from the city of Guelph in Ontario, Canada. 

The model was developed using several criteria such as pipe age, material, length, diameter, service type, 

slope, up elevation, down elevation, depth, land use, and pipe location. According to the findings, random 

forest models can accurately estimate the state of individual sewage pipes with an area under the ROC 

curve of 0.81. Random forest prediction models have the ability to cut project costs and time in half, and 

this method may be used to assess the status of uninspected sewage pipelines. 

To forecast sewage pipeline condition ratings, Laakso et al. (2018) used random forest and binary 

logistic regression. Nonetheless, the elements that influence pipe degradation were explored in this study. 

The databases for this study were gathered in southern Finland. The model was created using a variety of 

predictors, including pipe age, diameter, material, slope, depth, length, soil type, road class, distance to 

tree, intersection with stormwater or water supply pipes, and yearly sewage flow. The models' accuracy 

was 62% for binary logistic regression and 67% for random forest, respectively. The study found that both 

logistic regression and random forest models may be utilized to forecast sewage pipeline condition in the 

future. In recent years, several sewer condition prediction models were developed. Table 2-3 shows detail 

of selected studies.
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Table 2-3 Sewer Condition Prediction Models 

 Authors Year Model 
Number of 

Data 

1 Davies et al. 2001 
• Logistic regression 

12,000 

2 Ariaratnam et al. 2001 
• Logistic regression 

748 

3 Micevski et al. 2002 
• Markov chain 

497 

4 Najafi and Kulandaivel 2005 
• Neural network 1050 

5 Tran et al. 2006 
• Neural network 

583 

6 Koo and Ariaratnam 2006 
• Logistic regression 

579 

7 Tran et al. 2007 
• Neural network 

• Multiple discrimination 
analysis 

150 

8 Chughtai and Zayed 2008 
• Linear regression 

- 

9 Gat 2008 
• Markov chain 

5,262 

10 Ana et al. 2009 
• Logistic regression 

1,316 

11 Tran et al. 2009 • Neural network 

• Ordered probit model 
417 

12 Khan et al. 2010 
• Neural network 

200 

13 Mashford et al. 2011 
• Support vector machine 

1,441 

14 Salman and Salem 2012 
• Ordinal regression 

• Logistic regression 

• Binary regression 

11,373 

15 Syachrani et al.  2013 • Decision tree 

• Neural Network 
52,855 

16 Sousa et al. 2014 
• Neural network 

• Support vector machine 

• Logistic regression 

745 

17 Harvey and McBean 2014 
• Random forest 

• Decision Tree 

• Support vector machine 

1,825 

18 Bakry et al. 2016 
• Multiple regression 

84 

19 Gedam et al. 2016 
• Linear regression 

155 

20 Kabir et al. 2018 • Bayesian logistic 
regression 

12,728 

21 Laakso et al. 2018 
• Binary logistic 

regression 

• Random forest 

6,700 



29 
 

22 Hernandez et al. 2018 • Logistic regression 

• Random forest 

23,958 

4,327 

23 Malek Mohammadi 2019 
• Logistic regression 

• K-nearest neighbors 

• XGBoost 

20,282 

24 Guzman et al. 2020 
• Bayesian network 

7,968 

25 Mazumder et. al 2021 

• KNN  

• Decision tree 

• Random forest 

• AdaBoost 

• XGBoost  

• LGBoost 

• CatBoost   

959 

26 Loganathan 2021 
• Logistic regression 

• K-nearest neighbors 

• Random forest 

32,751 

27 Atambo 2021 • MLR 

• ANN 
2,616 

 

2.6 Chapter Summary 

Pipe degradation is a complicated process, as detailed in earlier sections, and no one element may 

be the cause of pipe deterioration. Furthermore, wastewater agencies and municipalities are frequently 

short on funds to examine the status of all pipes in the network on a regular basis. As a result, an alternate 

method must be adopted to cut inspection costs while still providing a thorough plan for prioritizing and 

inspection scheduling. This chapter covered a variety of degradation models as well as elements that 

influence sewage pipe deterioration. However, condition prediction models for individual sewage pipes 

have yet to be thoroughly investigated, and the majority of research has concluded that novel data analysis 

methodologies can be used to estimate future sewer conditions and behavior. 
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Chapter 3 Prediction Model Concepts 

3.1 Introduction 

Prediction models for sewer pipes are influenced by the type and quantity of independent variables 

and the type of dependent variable. It is essential to choose a predictive model capable of predicting 

dependent variables with multiple categories since the dependent variable in this study is the condition 

rating for sewer pipes divided into five groups. Hence, the most suitable models for this dissertation were 

chosen based on the model's ability to predict multi-categorical dependent variables. 

Logistic regression is the statistical model developed in this dissertation using SPSS software. The 

logistic regression model is the most popular for analyzing datasets containing two or more discrete 

outcome variables (Malek Mohammadi, 2019). 

K-Nearest Neighbors (KNN) is the second model that was developed. The KNN model in this study 

is developed using Python, one of the most widely used programming languages in the data science field. 

Python was chosen for this study because it is open-source and has a wide range of free add-on libraries. 

Tree-based models are developed as a third model. They are one of the most powerful learning 

techniques presented and are designed for classification problems. Python is used to develop these models 

too. Decision Tree, bagging approaches including Random Forest and boosting approaches including 

AdaBoost, Gradient Boosting Tree, and XGBoost are developed and discussed in this dissertation.  

3.2 Logistic Regression 

3.2.1 Introduction 

Logistic regressions analyze the relationship between multiple independent variables and a 

categorical dependent variable. In logistic regression, the probability of occurrence of an event is estimated 

by fitting data to a logistic curve. The detail of binary and multinomial logistic regressions is explained in the 

following sections. 

3.2.2 Binary Logistic Regression 

Binary logistic regression is used to develop prediction models when the output (dependent or 

response) variable is binary. A binary are variables which only take two values. For example, the output of 

the model can be true or false, success or failure and zero or one (Malek Mohammadi, 2019). Eq. 3.1 

presents the logistic regression formula when the dependent variable is binary (Hawari et al. 2017): 



31 
 

log [
π

1−π
] = Y =  ⌊

p(y=1|x1….xp)

1−p(y=1|x1….xp)
⌋ = α + β1x1 + β2x2 … . . +βpxp                                                 Eq. 3.1 

Where: 

Y = dependent variable 

X1, X2, …, Xp = independent variables 

α = intercept parameter for category i 

𝛽 = regression coefficients 

And finally, the probability of y=1 can be measured using an exponential transformation as shown 

in Eq. 3.2. 

P(y = 1 |𝑋1, 𝑋2, … , 𝑋𝑝) =  
𝑒

α+∑ β𝑗X𝑗
𝑝
𝑗=1

1+ 𝑒
α+∑ β𝑗X𝑗

𝑝
𝑗=1

                                                                                             Eq. 3.2 

π represents P (Y=1) meaning probability associated with outcome of condition 1. Consequently, 1-π 

represents P (Y=0) meaning probability of outcome of condition 0.  π/(1-π) means the odds of having (Y=1). 

Figure 3-1 illustrates logistic curve or logistic function which are used to estimate coefficient of the 

parameters in the model. In this example x varying from -4 to +4 while the y axes show the probability from 

0 to 1. 

 

Figure 3-1 Logistic Function 

(Harrell, 2016) 
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3.2.3 Multinomial Logistic Regression 

When the dependent variable is categorical and has more than two levels, multinomial logistic 

regression can be used as an extension of binary logistic regression (Hawari et al. 2017). Assuming three 

conditions for a model, equations 3.3 and 3.4 represents multinomial logistic regression for a system with 

three condition levels 0, 1 and 2. Category zero (0) is used as the reference value. The objective of 

multinomial logistic regression in this case is to estimate the probability of having each of the three 

conditions and to convey the result in terms of odd ratio for choice of different conditions. Since, one of the 

categories is used as the reference value, two logit functions are required to develop the model. To develop 

the model, p covariate and a constant term denoted by the vector x (Hosmer et al., 2013). 

g1(X) = log [
𝑃(𝑌=1 | 𝑋)

𝑃(𝑌=0 |𝑋)
] =  β10 + β11𝑋1 + β12𝑋2 + ⋯ + β1𝑝X𝑝                                                        Eq. 3.3 

g2(X) = log [
𝑃(𝑌=2 | 𝑋)

𝑃(𝑌=0 | 𝑋)
] =  β20 + β21𝑋1 + β22𝑋2 + ⋯ + β2𝑝X𝑝                                                            Eq. 3.4  

Then, Probability of each condition levels can be calculated by Eq.3.5 through 3.7. 

P (Y = 0 | 𝑋) =  
1

1+ 𝑒𝑔1(𝑋)+𝑒𝑔2(𝑋)                                                                                                           Eq. 3.5 

                P (Y = 1 | 𝑋) =  
𝑒𝑔1(𝑋)

1+ 𝑒𝑔1(𝑋)+𝑒𝑔2(𝑋)                                                                                                            Eq. 3.6 

    P  (Y = 2 | 𝑋) =  
𝑒𝑔2(𝑋)

1+ 𝑒𝑔1(𝑋)+𝑒𝑔2(𝑋)                                                                                                           Eq. 3.7 

In the next sections more information will be given regarding significance of the models and 

variables. 

3.2.4 Assumptions of Logistic Regression 

The following are the assumptions of logistic regression (McDonald, 2009): 

• Logistic regression does not assume that the independent variables are normally distributed. 

• The observations should not come from repeated measurements. 

• The correlation between independent variables should not be too high. 

• The odds ratio and independent variables have a linear relationship.  

3.2.5 Forward and Backward Stepwise Selection 

  The statistical techniques of forward and backward stepwise selection are used to screen the 

independent variables. In these methods, only variables with sufficient predictive power are retained in the 
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model, while unproductive variables are gradually removed. In forward stepwise, the intercept is chosen 

first, and then the variables that improve the model's performance are added sequentially. On the other 

hand, backward stepwise selection begins with the entire model and then deletes the variables that have 

the least influence. The variables with the lowest Z-scores should be removed from the model (Malek 

Mohammadi, 2019). A Z-score is a numerical measurement that describes a value's relationship to the 

mean of a group of values. Z-score is measured in terms of standard deviations from the mean. If a Z-score 

is 0, it indicates that the data point's score is identical to the mean score. A Z-score of +1.0 or -1.0 would 

indicate a value that is one standard deviation from the mean (Behboudian et al., 2008). 

3.2.6 Odds Ratio 

The odds ratio is a measure of association between an event occurring in one group, to the odds 

of it occurring in another group (Ana et al., 2009). For a probability of success 𝜋, the odds of success are 

given in Equation 3.8. The odds ratio is the ratio of the odds for x = 1 to the odds for x = 0 as given by the 

Equation 3.9 (Agresti, 2018). 

 

    𝑜𝑑𝑑𝑠 =
𝜋

1−𝜋
                                                                                                                                      Eq. 3.8 

𝑂𝑅 =
𝑜𝑑𝑑𝑠1

𝑜𝑑𝑑𝑠0
=

[
𝜋(1)

1−𝜋(1)
]

[
𝜋(0)

1−𝜋(0)
]

= 𝑒𝛽1                                                                                                                  Eq. 3.9 

The odds ratio is commonly used to estimated how much more likely or unlikely is the outcome to 

be present in groups where x = 1 or x = 0. Odds ratio greater than one shows that the outcome is most 

likely to occur when x = 1 and odds ratio less than one shows that the event is less likely to occur when x 

= 1 (Hosmer et al., 2013). 

3.2.7 Significance of the Coefficients 

According to Malek Mohammadi (2019), “Identifying the significant variables in the model is 

formulation and testing of a statistical hypothesis to determine if the independent variables are significantly 

related to the dependent variables. Typically, significance of the variables can be identified by comparing 

the observed dependent variables and predicted values after development of the model with and without 

independent variables. If the predicted values are more accurate by utilizing an independent variable in the 

model, then the variable is significant” (p. 90). Significance testing measures the strength of null hypothesis 
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by probability (the p-value). The significance is usually set to P-value ≤ 0.05 (95% confidence level). The 

null hypothesis assumes that coefficients (β) are zero. The alternative hypothesis assumes that not all the 

coefficients are equal to zero. Log-likelihood test and Wald test are the most common tests used in logistic 

regression to identify the significance of the variables 

3.2.7.1 Log-likelihood Test 

The log-likelihood function is used to compare the observed and predicted values. Equations 3.10 

and 3.11 show the concept of log-likelihood function. 

𝐺 = −2 ln [
(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)
]                             

𝐺 = 2 {∑[𝑦𝑖 ln 𝜋(𝑋𝑖) + (1 − 𝑦𝑖) ln(1 − 𝜋(𝑋𝑖)] − [𝑛1 ln(𝑛1) + 𝑛0 ln(𝑛0) − 𝑛 ln(𝑛)]

𝑛

𝑖=1

}    

where n1 = ∑ 𝑦𝑖 and n0 = ∑(1 − 𝑦𝑖). For big samples, the G has a degree of freedom equal to the 

estimated number of parameters, and it follows a chi-square distribution (Harrell, 2016). A chi-square 

distribution is a continuous distribution with k degrees of freedom. It is used to describe the distribution of 

a sum of squared random variables. It is also used to test the goodness of fit of a distribution of data, 

whether data series are independent, and for estimating confidences surrounding variance and standard 

deviation for a random variable from a normal distribution (Kissel et al., 2017). 

3.2.7.2 Wald Test 

A method to determine the significance of the individual variables in logistic regression models is 

the Wald test. Equation 3.12 demonstrates that the Wald test is equal to the ratio between the maximum 

likelihood estimate and its standard error. This ratio has a normal distribution (Hosmer et al., 2013).  

𝑊𝑗 = (
𝛽𝑗

𝑆𝐸(𝛽𝑗)
)                                                             

where 𝛽𝑗 is the coefficient of the predictor variable, and SE is the standard error of the coefficient. When an 

independent variable's Wald test result is zero, the variable is not significant and can be excluded from the 

model. In contrast, the variables should be part of the model if Wald is not zero. 

3.2.8 Classification Table 

The percentage of accurate predictions by the logistic regression models is displayed in 

classification tables. The outcomes of fitted logistic regression models are summarized in this table. A cut-

Eq. 3.10 

Eq. 3.11 

Eq. 3.12 
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point (c) is established (the most common value is 0.5), and it is compared to each estimated probability in 

order to produce the discrete result of the classification table. They are placed in class one if the estimated 

probability exceeds the cut-point. In contrast, they are placed in the other groups if the estimated probability 

is below the cut-point (Hosmer et al., 2013).  

3.3 k-Nearest Neighbors (k-NN) 

3.3.1 Introduction 

The k-NN algorithm is a machine learning method that can be applied to classification and 

regression issues. Both supervised and unsupervised learning approaches can use this model for 

prediction. The Nearest Neighbors method operates by locating the labels of K-nearest patterns in the data 

space.  

To create a k-NN model, only the training dataset is needed. To classify a new data point, the 

algorithm locates the nearby data points in the training dataset, or its "nearest neighbors". Based on the 

majority of the K-nearest patterns in the data space, class labels are assigned for the unknown new data, 

xj. A similarity measure based on the Minkowski metric is defined in equation 3.13 for data space (Kramer, 

2016). The norm of the difference between two vectors is the distance between them in Minkowski metric.  

‖x′ − xj‖
𝑝

=   (∑ |(𝑥𝑖)
′ − (𝑥𝑖)𝑗|

𝑝𝑞
𝑖=1 )

1/𝑝
                                                                                                      Eq. 3.13 

In the case of binary classification with set of dependent variables 𝑦 = (1, −1), KNN is defined in Equation 

3.14. 

𝑓𝐾𝑁𝑁(x′) = {
1        𝑖𝑓 ∑ 𝑦𝑖 ≥ 0𝑖∈𝑁𝑘(x′)

−1     𝑖𝑓 ∑ 𝑦𝑖 < 0𝑖∈𝑁𝑘(x′)
                                                                                              Eq. 3.14 

Where K is size of neighborhood with a set of 𝑁𝑘(x′) of K-nearest patterns. 

In its simplest configuration, the k-NN algorithm only examines one nearest neighbor, which is the 

training data point closest to the point we wish to classify (k=1). A voting technique labels the new data 

point of interest when more than one neighbor is taken into account (k>1). Voting is the total number of 

various class labels close to the data point of interest. The test data point will be placed in the class to which 

the majority of the class labels belong. Therefore, it is always advised to use an odd number for k to prevent 
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confusion when making predictions using nearest neighbors (Loganathan, 2021). Figure 3-2 illustrates the 

process for k=3. 

 

Figure 3-2 Predictions Made by the Three-Nearest-Neighbors Model 

(Müller and Guido, 2016) 

3.3.2 Evaluation of KNN 

The confusion matrix, F-1 score, ROC curve, and area under the curve (AUC) were some of the 

methods used to assess the KNN model's performance. Section 3.5 provides an explanation of these 

metrics. 

3.4 Tree-Based Models 

3.4.1 Introduction 

Tree-based models are popular for classification and regression problems. They are very powerful 

algorithms capable of fitting large datasets (Loh, 2014). They basically learn a hierarchy of if/else questions 

that leads to a decision. These questions are similar to those you might ask in a game of 20 Questions. 

Consider the following four animals mentioned in Figure 3-3. Your goal is to get to the right answer with as 

few if/else questions as possible (Müller and Guido, 2016). 
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Figure 3-3 A Decision Tree to Distinguish Among Several Animals 

3.4.2 Decision Tree 

Before we get into how a decision tree works, we should know some key terms.   

• Root node: The base of the decision tree. 

• Splitting: The process of dividing a node into multiple sub-nodes. 

• Decision node: When a sub-node is further split into additional sub-nodes. 

• Leaf node: When a sub-node does not further split into additional sub-nodes; represents possible 

outcomes. 

• Gini index: The Gini impurity index is one of the most widely used techniques for calculating the 

differences between the probability distributions of dependent variables. The Gini index calculates 

how often a random event is misidentified. As a result, a variable with a lower Gini index is 

preferable (Hastie et al., 2009). Gini index is calculated by equation 3.15 (Geron, 2017):  

  𝐺𝑖 (𝑛) = 1 − ∑ (𝑝𝑗)
22

𝑗=1                                                                                                Eq. 3.15 

The root node is the tree's base. A series of decision nodes flow from the root node, representing 

decisions to be made. Leaf nodes originate from the decision nodes to represent the consequences of 

those decisions. Each decision node represents a question or split point, and the leaf nodes that sprout 

from it represent possible answers. Leaf nodes sprout from decision nodes in the same way that a leaf 

sprouts from a tree branch. Figure 3-4 shows the elements of a decision tree. 
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Figure 3-4 Elements of a Decision Tree 

In this section, building a decision tree is explained by an example. Assume you find an iris flower 

and want to classify it. Let's look at how the tree in Figure 3-5 makes predictions (Geron, 2017). 

 

Figure 3-5 Iris Decision Tree 

(Geron, 2017) 

According to Geron (2017), “You start at the root node (depth 0, at the top): this node asks whether 

the flower’s petal length is smaller than 2.45 cm. If it is, then you move down to the root’s left child node 
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(depth 1, left). In this case, it is a leaf node (i.e., it does not have any children nodes), so it does not ask 

any questions: you can simply look at the predicted class for that node and the Decision Tree predicts that 

your flower is an Iris-Setosa (class=setosa). Now suppose you find another flower, but this time the petal 

length is greater than 2.45 cm. You must move down to the root’s right child node (depth 1, right), which is 

not a leaf node, so it asks another question: is the petal width smaller than 1.75 cm? If it is, then your flower 

is most likely an Iris-Versicolor (depth 2, left). If not, it is likely an Iris-Virginica (depth 2, right). A node’s 

samples attribute counts how many training instances it applies to. For example, 100 training instances 

have a petal length greater than 2.45 cm (depth 1,right), among which 54 have a petal width smaller than 

1.75 cm (depth 2, left). A node’s value attribute tells you how many training instances of each class this 

node applies to: for example, the bottom-right node applies to 0 Iris-Setosa, 1 Iris-Versicolor, and 45 Iris-

Virginica. Finally, a node’s gini attribute measures its impurity: a node is “pure” (gini=0) if all training 

instances it applies to belong to the same class. For example, since the depth-1 left node applies only to 

Iris-Setosa training instances, it is pure and its gini score is 0. Equation 3.15 shows how the training 

algorithm computes the gini score Gi of the ith node. For example, the depth-2 left node has a gini score 

equal to 1 – (0/54)2 – (49/54)2 – (5/54)2 ≈ 0.168” (p. 179). 

Overfitting the training data is one of the most common limitations of the decision tree. Overfitting 

is a modeling error in statistics that occurs when a function is too closely aligned to a limited set of data 

points. As a result, the model is useful in reference only to its initial data set and not to any other data sets 

(Müller and Guido, 2016). There is a common strategy to prevent overfitting in decision trees called pre-

pruning. It includes limiting the tree's maximum depth and the number of leaves, but it is not always a 

solution for overfitting a decision tree. To overcome this problem, the random forest method is 

recommended.  

3.4.3 Bagging 

Utilizing a wide range of training algorithms is one technique to obtain a wide variety of classifiers. 

Another strategy is to train each predictor using the same training algorithm on various random subsets of 

the training data. Bagging (short for bootstrap aggregating) is the term used to describe sampling that 

includes replacement (Geron, 2017). Random Forest is a bagging approach. 
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3.4.3.1 Random Forest 

A random forest is a collection of decision trees, where each differs slightly from the others. The 

theory behind random forests is that each tree may perform reasonably well at predicting, but will probably 

overfit on some portions of the data. If we construct numerous trees, each of which performs admirably and 

overfits differently, we can lessen the amount of overfitting by averaging the results (Müller and Guido, 

2016). Specific guidelines are followed by RF for tree growth, tree combination, self-testing, and post-

processing which are discussed in next chapter. Figure 3-6 shows the schematic of the random forest’s 

concept. 

 

Figure 3-6 Structure of Random Forest Algorithm 

(Loganathan, 2021) 

The predictive power of classification variables is measured by the Gini index (Gi). GI is non-

parametric, which means it is independent of the distribution of the data. RF is known to be more stable 

than other machine learning techniques in the presence of outliers and in high-dimensional parameter 

spaces, making it resistant to overfitting (Loganathan, 2021). 

3.4.4 Boosting  

The ensemble method combining several weak learners into a strong learner is called boosting. 

Predictors are trained successively using boosting approaches, with each predictor attempting to correct 
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the one before. Gradient Boosting, AdaBoost (short for Adaptive Boosting), and XGBoost (short for Extreme 

Gradient Boosting) are the most popular (Geron, 2017). 

3.4.4.1 AdaBoost  

Paying attention to the training instances that the predecessor underfitted is one technique for a 

new predictor to correct its predecessor. As a result, new predictors increasingly concentrate on the 

challenging scenarios. This is the method AdaBoost employs. For example, a first base classifier (such a 

Decision Tree) is trained and used to make predictions on the training set in order to develop an AdaBoost 

classifier. The relative weight of the incorrectly classified training instances is thus raised. The updated 

weights are used to train a second classifier, which then makes predictions on the training set while utilizing 

the updated weights, and so on (Geron, 2017). Figure 3-7 illustrates AdaBoost sequential training. 

 

 

Figure 3-7 AdaBoost sequential training with instance weight updates 

(Geron, 2017) 

The learning rate of the boosting approach, in addition to pre-pruning and the number of trees in 

the ensemble, influences how strongly each tree tries to correct the errors of the preceding trees. Each tree 

can make greater corrections with a higher learning rate, enabling more complicated models (Müller and 

Guido, 2016). The decision boundaries for five consecutive predictors on the moons dataset are displayed 
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in Figure 3-8. Since the first classifier misclassifies many occurrences, their weights are increased. As a 

result, the second classifier performs better in these instances, and so on. The series of predictors is shown 

by the plot on the right, but the learning rate has been reduced by half (i.e., the misclassified instance 

weights are boosted half as much at every iteration). As you can see, AdaBoost gradually improves the 

ensemble by adding predictions to it. 

 

Figure 3-8 Decision boundaries of consecutive predictors 

(Geron, 2017) 

Equation 3.16 can be used to calculate the error rate of the training sample in the AdaBoost 

algorithm. In this equation, x is the independent variable and G(x) is a classifier that generates a prediction. 

𝑒𝑟𝑟 =
1

𝑁
∑ 𝐼(𝑦𝑖 ≠ 𝐺(𝑥𝑖))                                                    𝑁

𝑖=1                                                             Eq. 3.16 

To create a succession of weak classifiers, weak classification algorithms are constructed. Next, a 

weighted classifier combination is used to create the final prediction, which is computed using Eq. 3.17 and 

displayed in Figure 3-9. The weights are successively assigned to each training observation, and the 

classification algorithm is then applied to the weighted observations. The weights for correctly predicted 

observations are dropped towards the end, while those for incorrectly categorized observations are 

increased (Malek Mohammadi, 2019). 

𝐺(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑚𝐺𝑚(𝑥)𝑚
𝑚=1 )                                                                                                         Eq. 3.17 

 

where the contributions of classifiers are weighted and 𝛼1, 𝛼2, … , 𝛼𝑀 are calculated using the boosting 

approach. 
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Figure 3-9 Schematic of AdaBoost Algorithm 

(Hastie et al., 2009) 

3.4.4.2 Gradient Boosting Trees 

Gradient Boosting is a different widely used Boosting algorithm. Gradient Boosting operates 

similarly to AdaBoost by sequentially adding predictors to an ensemble, with each one correcting its 

predecessor. But unlike AdaBoost, which modifies the instance weights after each iteration, this approach 

aims to adapt the new predictor to the residual errors of the prior predictor (Geron, 2017). 

Boosting models use a few fundamental operations to fit an additive expansion. The format of 

fundamental function expansions is presented in equation 3.18 (Malek Mohammadi, 2019). 

(𝑥) = ∑ 𝛽𝑚 𝑏(𝑥; 𝛾𝑚)𝑀
𝑚=1                                                                                                                    Eq. 3.18 

Where 𝑏(𝑥; 𝛾𝑚) are functions defined by a given set of parameters 𝛾 , and 𝛽𝑚 are the expansion 

coefficients. In tree models, 𝛾 chooses the split variables and places the predictions at the terminal nodes 

and internal nodes, respectively. 

A loss function is typically minimized to fit the gradient boosting trees, such as the squared-error or 

a likelihood-based loss function. The performance of the model's predictions is assessed using the loss 

function, a machine learning technique. The model is unsuitable for prediction when the loss function is 

high in value. The lower value of the loss function determines the model's potential to achieve greater 
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accuracy. It is, therefore, a technique to minimize the loss function to improve the performance of the 

models. The specifics of the boosting trees' loss function minimization are presented in Equation 3.19. 

min
{𝛽𝑚,𝛾𝑚}1

𝑀
∑ 𝐿(𝑦𝑖 , ∑ 𝛽𝑚 𝑏(𝑥; 𝛾𝑚)𝑀

𝑚=1 )𝑁
𝑚=1                                                                                       Eq. 3.19                  

3.4.4.3 XGBoost 

An optimized implementation of Gradient Boosting is available in the popular python library 

XGBoost, which stands for Extreme Gradient Boosting. It aims at being extremely fast, scalable, and 

portable. Suppose you want to apply gradient boosting to a large-scale problem. In that case, it might be 

worth looking into the XGBoost package and its Python interface, which is faster than the scikit-learn 

implementation of gradient boosting on many datasets. XGBoost computes second-order gradients, i.e., 

second partial derivatives of the loss function, which provide more information about the direction of 

gradients and how to get to the minimum of our loss function. This is the main difference between XGBoost 

with Gradient Boosting. 

3.4.5 Feature Importance in Tree-Based Models 

To summarize the operation of the tree, we can extract a few useful properties. Feature importance, 

which ranks the significance of each feature for the choice a tree makes, is the most popular one. Each 

variable is represented by a value between 0 and 1, where 1 indicates that the variable completely predicts 

the target and 0 indicates that it is not used at all. Features' weight values always add up to 1 (Geron, 

2017). 

According to Biau and Scornet (2016), to assess the significance of the variables, two measures of 

significance are typically employed: Mean Decrease Impurity (MDI) and Mean Decrease Accuracy (MDA). 

MDI counts the number of times an independent variable is used to divide a node. The weighted decrease 

of impurity from splitting on the variable, averaged over all trees, is measured using the mean decrease 

impurity (MDI). On the other hand, Mean decrease accuracy (MDA) is based on averaging the variation in 

out-of-bag error estimation between before and after the permutation over all trees.  

3.4.6 Evaluation of Tree-Based Models 

The goal of supervised learning techniques, which are often trained by a set of data, is to create a 

model that can make predictions. To determine the model's quality and to identify its key parameters, the 

performance of prediction models must always be assessed. There are numerous methods for assessing 
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the effectiveness of machine learning models. In this dissertation, tree-based models are assessed using 

a confusion matrix, ROC curve, and area under the curve (AUC). These metrics are discussed in section 

3.5.  

3.5. Evaluation Metrics 

Different evaluation measures are covered in detail in this section of the dissertation. The type of 

expected output from the classification model would be used to guide the selection of a specific measure. 

3.5.1 Confusion Matrix 

The trained classifier's assigned class is compared to each test sample's actual class in a confusion 

matrix. The confusion matrix calculates the proportion of elements for each class that was correctly or 

wrongly predicted. The examples in the model that are successfully classified are determined by true 

positive or true negative (TP/TN). As shown in Figure 3-10, false positive or false negative (FP/FN) 

instances, on the other hand, indicate positive or negative examples that are wrongly categorized (Hossin 

and Sulaiman, 2015; Malek Mohammadi, 2019). 

 

 Predicted positive Predicted negative 

Positive Instances True positive (TP) False negative (FN) 

Negative Instances False positive (FP) True negative (TN) 

 

Figure 3-10 Confusion Matrix 

In a confusion matrix, the correctly classified items are arranged on the major diagonal from top left 

to bottom right, and their placement corresponds to the proportion of instances the two classes agree. In 

the confusion matrix above, TP (True Positive) stands for cases that were truly predicted to be positive, and 

TN (True Negative) stands for instances that were truly anticipated to be negative. False negative elements, 

or FNs, are those that the model predicted as negative but are actually positive, and false positives, or FPs, 

are those that the model forecasted as positive but are actually negative. For a model to perform better, it 

Predicted 
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could be noted that the amount of elements in cells other than the primary diagonal cells should be kept to 

a minimum (Loganathan, 2021). Based on the values in Figure 3-9, the measurements shown in Table 3-1 

can be calculated in the confusion matrix method (Hossin and Sulaiman, 2015): 

Table 3-1 Metrics Extracted from Confusion Matrix 

(Hossin and Sulaiman, 2015) 

Metrics Formula Evaluation Focus 

Accuracy 
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

In general, the accuracy metric 
measures the ratio of correct 
predictions over the total 
number of instances evaluated. 

Misclassification Rate (Error Rate) 
𝐹𝑁 + 𝐹𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

Misclassification error measures 
the ratio of incorrect predictions 
over the total number of 
instances evaluated. 

True Positive Rate  

(Sensitivity) (Recall) (R)  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

This metric is used to measure 
the fraction of positive instances 
that are correctly classified. 

False Positive Rate 
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

This metric is used to measure 

the fraction of positive instances 

that are wrongly classified. 

Precision (P) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Precision is used to measure the 
positive instances that are 
correctly predicted from the total 
predicted instances in a positive 
class. 

True Negative Rate (Specificity) 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

This metric is used to measure 
the fraction of negative instances 
that are correctly classified. 

False Negative Rate  
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

This metric is used to measure 

the fraction of negative instances 

that are wrongly classified. 

F-1 Score  
2 (𝑅)(𝑃)

(𝑅 + 𝑃)
 

This metric represents the 
harmonic mean between recall 
and precision values. 

 

3.5.2 ROC Curve and AUC 

The Receiver Operating Characteristic (ROC) curve depicts the ratio of true positive to false 

positive rates. The true positive rate is shown on the Y-axis of a ROC curve, while the false positive rate is 
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shown on the X-axis. The best point on the ROC curve is reached when the model correctly predicts all 

positive examples. As a result, the model has higher overall accuracy when the ROC curve is closer to the 

upper left corner. An example ROC curve can be shown in Figure 3-11 (Malek Mohammadi, 2019). 

 

Figure 3-11 ROC Curve 

The colored area under the ROC curve in Figure 3-12 is the area under the curve (AUC), another 

interesting measurement taken from the ROC curve. The AUC spans a range of 0 to 1, as the chart's 

dimension is a unit square. If the AUC were larger, it may be concluded that the model would perform better 

in predictions. The probability that a classifier would rank a randomly selected positive instance higher than 

a randomly selected negative instance is known as a classifier's AUC (Loganathan, 2021). 
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Figure 3-12 Area Under Curve (AUC) 

3.5.3 Precision 

According to Equation 3.20, the precision is the percentage of actually positive anticipated 

positives. According to the definition, a model's precision is important when the need for accuracy in the 

forecast is important. In other words, when one class of the output variable has rarer occurrences than the 

other class, the precision of a model is critical. Precision (P) would be a key evaluation parameter during 

model selection as the PACP score of 5 has proportionally fewer instances than other classes, making it 

more significant for correct prediction (Hossin and Sulaiman, 2015; Loganathan, 2021). 

𝑝 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                          Eq. 3.20 

3.5.4 Recall 

The ability of a model to capture every positive element in the dataset is measured by its Recall 

(R). According to Equation 3.21, Recall can be defined as the proportion of true positive elements to all 

positively classified elements. It is clear that Recall serves as a measure of the model's predictive power 

for the positive class. For instance, after training, a model should be able to identify all pipe segments 

having a PACP score of 5 (Hossin and Sulaiman, 2015; Loganathan, 2021). 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                           Eq. 3.21 

AUC 
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3.5.5 F1-Score 

F1-score is generated by calculating the harmonic mean of precision and recall and combining 

them into a single measure to evaluate the effectiveness of the classification model, as indicated in Equation 

3.22. The F1-score is measured on a scale from 0 to 1, with 1 indicating greater model performance and 0 

indicating worse performance. Both precision and recall contribute equally to the F1-score because it is a 

weighted average of the two. As a result, it can be used to determine the best way to trade off the two 

values. F1-score is discovered to be an essential metric to assess the effectiveness of a developed model 

based on the evaluation criteria (Hossin and Sulaiman, 2015; Loganathan, 2021). 

 𝐹1 =
2 (𝑅)(𝑃)

(𝑅+𝑃)
                                                                                                                         Eq. 3.22 

3.5.6 Confusion Matrix for a Multi-Class Classification 

All of the measures mentioned so far have been based on a binary classification confusion matrix, 

which should be noted. The pipe condition must be predicted in this study among five different 

classifications; binary classification cannot be used. Two alternative F1-scores were generated to evaluate 

multi-class classification models that must consider all classes: Micro F1-score and Macro F1-score 

(Grandini et al., 2020; Loganathan, 2021). The multi-class confusion matrix was used to assess multiple 

precision and recall for various classes to include all of the classes in the F1 score. Figure 3-13 illustrates 

a multi-class classification confusion matrix as an example. 

 

 

 

 

Figure 3-13 A Five-Class Confusion Matrix 

 1 2 3 4 5 

1 TN TN TN FP TN 

2 
TN TN TN FP TN 

3 TN TN TN FP TN 

4 FN FN FN TP FN 

5 TN TN TN FP TN 

Predicted Class 
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The confusion matrix depicted in the preceding figure has five output classes: 1, 2, 3, 4, and 5. 

Metrics are calculated using the confusion matrix, one class of interest at a time. Class 4 is regarded as the 

target class of interest in Figure 3-12, for example. Therefore, TP is equal to the number of class 4 

components successfully anticipated. FP and FN represent elements that are mistakenly categorized along 

row and column of class 4, respectively, just like a binary confusion matrix. Furthermore, last, TN is used 

to describe all other remained cells. Quantities are recalculated when an interest class is altered, and the 

confusion matrix cell labels are adjusted accordingly (Grandini et al. 2020; Loganathan, 2021). 

There are two types of F1-Scores: Micro and Macro. Equation 3.23's Micro-F1 score formula 

reveals that it is similar to the accuracy formula. The majority of classes will be given more weight because 

the approach considers the dataset as a whole. Therefore, it may be inferred that the micro F1-score is not 

a suitable metric for this study. 

          
∑ TPk

K
k=1

Grand Total
                                                                                                         Eq. 3.23 

By computing the macro-average precision and recall for each target class, the macro F1-Score is 

estimated. Equations 3.24 and 3.25 illustrate how macro-average precision and recall are directly computed 

as the arithmetic mean of the same for individual classes. Equation 3.26 demonstrates that the macro F1-

score is the harmonic mean of macro average precision and macro average recall (Grandini et al., 2020; 

Loganathan, 2021). 

Macro-Average Precision = 

∑
TPk  

TPk+FPk

K

k=1

K
                                                                 Eq. 3.24 

Macro-Average Recall = 

∑
TPk  

TPk+FNk

K

k=1

K
                                                                              Eq. 3.25 

 

Macro F1-Score = 2 * ( 
Macro Precision ∗ Macro Recall

Macro Precision + Macro Recall
 )                                                                 Eq. 3.26 
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The numerators are numbers between 0 and 1 according to the macro-average precision and recall 

formulas. This demonstrates that classes of various sizes are equally weighted and that the measure is 

unaffected by class size. In other words, the minority class will be given the same weight as the majority 

class. Therefore, it may be concluded that high Macro F1-score values show that the trained model 

performs well across all classes, but low Macro F1-score values show that classes are poorly predicted by 

the trained model (Loganathan, 2021). Consequently, Macro F1-score could be regarded for this study as 

an essential parameter for assessing the model's performance. Figure 3-14 explains calculating the Macro-

Average F1-Score of a 3-classes confusion matrix. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-14 Calculating the Macro-Average F1-Score for a 3-Classes Confusion Matrix 

 

After calculating precision and recall for each class, as shown in the figure above, Macro-Average 

Precision (P), Macro-Average Recall (R), and Macro-Average F1 are calculated as below:  

 

P = 

𝑎

𝑎+𝑑+𝑔
 + 

𝑒

𝑏+𝑒+ℎ
 + 

𝑖

𝑐+𝑓+𝑖

3
  

 

R = 

𝑎

𝑎+𝑏+𝑐
 + 

𝑒

𝑑+𝑒+𝑓
 +

𝑖

 𝑔+ℎ+𝑖

3
 

Classes 1 2 3 
Recall  

(r) 

1 a b c 
𝑎

𝑎 + 𝑏 + 𝑐
 

2 
d e f 

𝑒

𝑑 + 𝑒 + 𝑓
 

3 g h i 
𝑖

𝑔 + ℎ + 𝑖
 

Precision 

(p) 

𝑎

𝑎 + 𝑑 + 𝑔
 

𝑒

𝑏 + 𝑒 + ℎ
 

𝑖

𝑐 + 𝑓 + 𝑖
 

 

Predicted Classification 
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Macro-Average F1 = 
2𝑅𝑃

𝑅+𝑃
 

 

3.6 Chapter Summary 

This chapter thoroughly studied the details of KNN models, tree-based models, and logistic 

regression. The discussions in this chapter confirmed that statistical and artificial intelligence models could 

be used as classifiers to determine the state of sanitary sewer pipes. Also, various evaluation metrics for 

different modeling approaches were addressed. The next chapter will outline the origin of the sanitary sewer 

pipe database and the various data preparation steps. 
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Chapter 4 Data Collection, Preparation, and Analysis 

4.1 Introduction 

This chapter goes over data collection, preparation, and processing. Histograms displaying the 

frequency of variables are provided. They are used to compare the factors influencing sewer pipe 

conditions. Data descriptive statistics and correlation analysis are presented too. 

This study is based on the combined data collected from the Dallas Water Utilities Wastewater 

Collection System (Dallas, TX) and the City of Tampa's Wastewater Department (Tampa, FL). The purpose 

of combining two separate datasets was to have more diverse data about sewer pipes and their 

environmental conditions to develop a more comprehensive model. Also, increasing the data to reach a 

more accurate model was another reason for combining the datasets.  

CCTVs are widely used in the United States to inspect sewer pipes (NASSCO, 2018). They are 

employed in both cities' sanitary sewer pipes' inspection and condition assessment process. Pipeline 

Assessment and Certification Program (PACP) guidelines were used to evaluate the condition of pipes in 

both cities on a scale of 1 to 5, with 1 indicating a pipe with no or few defects and 5 indicating failing 

conditions. The inventory of the sewer system is stored using geographic information system (GIS) 

databases. The recorded database inventory includes information such as pipe installation details, pipe 

location in reference to geographical maps, and so on. 

4.2 Dataset Preparation 

The data acquired from Dallas Water Utilities (DWU) contained a total number of 3,376 individual 

manhole to manhole pipe segments. This dataset included a given unique name for future identification of 

pipe segment referred to as DWU_Key, size, installation and inspection date, material, slope, depth, length, 

surface condition, soil pH, soil type surrounding the pipe, and PACP score (Atambo, 2021; Atambo et al., 

2022). Figure 4-1 shows the location of sewer pipes in Dallas. 
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Figure 4-1 Sewer Pipe Network of City of Dallas 

(Dallas Water Utilities) 

One of the important steps in preparing data for further analysis is pre-processing. The collected 

data is processed to avoid any null values as part of the data preparation process. The dataset's null values 

were excluded from further analysis. Also, some pipes with minority materials such as asbestos-cement 

(AC), cast iron (CI), ductile iron pipe (DI), prestressed concrete cylinder pipe (PCCP), and High-density 

polyethylene pipe (HDPE), etc. were excluded to avoid any misclassification or error during model. 

Individual features such as age were calculated based on collected data as the next step in data preparation 

to include in the model development phase. Ultimately, the surface condition of each pipe segment (the 

road type that the pipe is buried beneath it) was identified using GIS and added to the dataset. Figures 4-2 

and 4-3 show the original dataset of DWU and pipe locations, respectively.  
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Figure 4-2 Original Dataset of Dallas Sewer Pipes 

 

Figure 4-3 Location of Sewer Pipes in Dallas City (Dallas Water Utilities) 

DWUKEY DIAMETER INSTALLDATE LOCATIONDESCRIPTION MATERIAL SLOPE Depth Shape_Length PH_AVG SOIL_TEX PACP_SCORE

139587 8 01-Jan-34
01094080002M-

TMP1629928M
UNK 0.4 5 602.3725565 6.5 Sand 3 - Fair

876728 8 11-Apr-00
09019020028N-

09019020027M
PVC 1.85 8 136.897473 7.5 Loam 1 - Excellent

1454949 8 13-Aug-07
TMP1454943M-

TMP1586177M
PVC 0.33 4 347.4813611 7.5 Clay 1 - Excellent

1672700 12 08-Nov-13
TMP1672695M-

TMP1672694M
PVC 0.2 5 632.749228 7.9 Clay 1 - Excellent

1265040 8 02-Apr-04
01014030065M-

01014030145M
PVC 4.2 5 399.7080588 8.2 Loam 1 - Excellent

157675 6 15-Jul-81
16049080002M-

16049080001M
PVC 1.6 10 390.2358047 7.9 Clay 1 - Excellent

115698 6 24-Feb-75
05092010003C-

05092010001M
VCT 0.6 5 613.4049029 7.9 Clay 1 - Excellent

984259 8 17-Sep-91
35027050051M-

35027050050M
PVC 1.73 4 272.1759355 8.2 Clay 1 - Excellent

1312187 8 20-Nov-04
25066000007M-

25066000004M
PVC 1.8 10 494.9968642 8.2 Clay 1 - Excellent

1258820 8 22-Jan-04
04018220016N-

04018220015M
PVC 1 7 272.2896879 8.2 Clay 1 - Excellent

1485836 8 17-Mar-09
TMP1485829M-

TMP1485827M
MULT 0.61 5 458.7938036 7.9 Clay 1 - Excellent

1154492 10 28-Jun-93
12066020005M-

12066020004M
PVC 0.3 9 87.19764267 7.9 Clay 1 - Excellent

890355 8 01-Oct-58
04022000210M-

04022000200M
CONC 0.8 6 238.2963048 7.9 Clay 2 - Good

975705 6 12-Oct-59
17007180001M-

17007000170M
VCT 0.6 8 318.4237443 7.9 Clay 2 - Good
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As a result, the final dataset for Dallas City containing 3,104 data points was used for analysis and 

model development. In the Dallas City dataset, the soil types were Sand, Loam, Clay, and Rock, and the 

pipe materials were Polyvinyl Chloride (PVC), Vitrified Clay Pipe (VCP), and Reinforced Concrete (RC). 

 In case of Tampa City dataset, the sewer inventory dataset included 5,144 manholes to manhole 

pipe segments. To make it easier to track individual pipes, each pipe segment was assigned a unique 

number (Facility ID). In addition, the dataset came with a shape file (GIS file). The dataset included pipe 

attributes such as installation date, material, diameter, length, depth, down elevation, up elevation, and 

location. Figure 4-4 illustrates location of sewer pipes in Tampa city. 

 

Figure 4-4 Sewer Pipe Network of Tampa City 

As a first step, pipes with missing information on pipe installation date, depth, material, length, and 

condition scales were excluded from the dataset. They were around 2,000 segments. Then, pipe’s ages 

and slopes were calculated based on available data. In the next step, pipe materials with a low population 

in the dataset, such as ductile iron, reinforced concrete, and plastic pipes, were removed. The total number 

of all these pipes was approximately 200. Also, using the mentioned shape file, soil data of pipes, including 



57 
 

soil pH and type of the soil surrounding pipe segments and surface conditions, were extracted. Figure 4-5 

illustrates the combination of sewer pipe’s location and soil datasets in GIS.   

 

Figure 4-5 Combination of Sewer Network and Soil Dataset 

Finally, the condition rating of each pipe was obtained from the dataset. The overall condition of 

pipes existed in this database in addition to some information such as pipe rating, quick rating, and pipe 

rating index for structural and operational conditions. The final dataset of Tamp City contains 2,944 

individual pipe segments. The soil type in Tampa city included: Sand and Gravel, and the pipe material was 

Polyvinyl Chloride (PVC) and Vitrified Clay Pipe (VCP). 

Finally, two datasets were combined into one set, and boxplot technic were used to remove outliers 

from the dataset. Outliers numerically distant from the rest of the data are frequently found in observed 

datasets. Outliers are typically larger or smaller than the observed values in the dataset. A boxplot is a 

graphical tool for displaying the variation of continuous data. The boxplot identifies the median, lower 

quartile, upper extreme, and upper extreme. Table 4-1 shows that the final dataset contains 4,803 individual 

pipe segments with various physical and environmental parameters. 
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Table 4-1 Variables Included in Sewer Pipe Dataset 

Category Variable Description 

Physical 

Age (years) 
Time difference between the installation date of the 

pipe segment and the date of inspection 

Material Type of pipes material (PVC, VCP, and RC) 

Diameter (in) Diameter of the pipe segment  

Depth (ft) Depth of overburden above the pipe segment  

Slope (%) 
Vertical displacement of the pipe segment per 

horizontal displacement  

Length (ft) Length of the pipe segment between two manholes 

Environmental 

Soil Type 
Type of soil surrounding the pipe (Sand, Gravel, 

Loam, Clay, and Rock) 

Soil pH 
A numerical expression of the relative acidity or 

alkalinity of a soil sample 

Pipe Location 
Category of the ground surface where the pipe is 

located (Highway, Street, Alley, and Easement) 

 

The final dataset for analysis consisted of nine independent variables and one dependent variable. 

Table 4-2 shows the details of each variable. They are classified based on their statistical type. 

Table 4-2 Statistical Types of Variables in Dataset 

Variable Type  Variable Data Type 

Independent  

Age 

Continuous 
Numerical 

Length 

Slope 

Diameter 

Depth 

Soil pH 

Material 

Nominal 
Categorical 

Soil Type 

Pipe Location 

Dependent 
 

Condition Rating Ordinal Categorical 
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4.3 Exploratory Data Analysis 

4.3.1 Age 

The age of a sewer pipe segment is determined by the difference between the inspection and 

installation dates. Figure 4-6 shows the distribution of sewer pipe age. The dataset contains pipes ranging 

in age from 1 to 121 years. Based on Figure 3-6, nearly 2% of the pipes are less than ten years old, 2% 

are over 80 years old, and the rest is between 10 and 80 years old. The maximum quantity is for 60-70 

years old pipes (23.18% ). Figure 4-7 depicts the age state concerning condition rating. According to Figure 

4-7, the average age of pipes with condition rating 1 is around 38 years, the average age of pipes with 

condition rating 5 is around 63 years, and so on. 

 

Figure 4-6 Frequency of Pipe Age 
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Figure 4-7 Boxplot of Age with respect to Condition Rating  

4.3.2 Length 

Pipe length is the manhole to manhole length of segments. The sanitary sewer dataset contains 

pipes ranging from 5 to 2260 feet. The pipes with a length of 200 to 300 feet have the highest frequency 

percentage, as shown in Figure 4-8. Only a small percentage of the sewer pipes were longer than 500 feet.  

 

Figure 4-8 Frequency of Pipe Length 
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Figure 4-9 also shows that the average length of pipes with condition rating 1 is around 280 feet, 

and the average length of pipes with condition rating 5 is around 420 feet. 

 

Figure 4-9 Boxplot of Length with respect to Condition Rating 

4.3.3 Slope 

The slope of a sewer pipe segment is calculated by dividing the difference in elevation between the 

upstream and downstream manholes by the length of the inspected pipe segment. It was discovered that 

92 percent of the pipes have a slope of less than 2%. However, the maximum slope was found to be 55%. 

Figures 4-10 and 4-11 depict the slope distribution and state of pipe slope in relation to condition rating, 

respectively. 

 

Figure 4-10 Frequency of Pipe Slope 
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Figure 4-11 Boxplot of Slope with respect to Condition Rating 

4.3.4 Diameter 

Pipe diameter refers to the size of sanitary sewer pipes. The minimum and maximum sizes are 8 

and 90 in., respectively. The majority of the pipes have a diameter of 8 in., as shown in Figure 4-12. Only 

about 13% of the pipes in the dataset have a diameter larger than 12 in.. In addition, Figure 4-13 illustrates 

range of pipe size concerning condition rating. It is shown that the average size of pipes in poor condition 

is around 18 in., and the pipes with smaller average sizes are in better condition.       

 

Figure 4-12 Frequency of Pipe Size 
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Figure 4-13 Boxplot of Diameter with respect to Condition Rating 

4.3.5 Depth 

The depth of a sanitary sewer pipe is measured in ft from the top of the pipe to the backfill. 

According to Figure 4-14, the majority of the pipes were buried between 4 and 10 ft deep, with 30.8 percent 

of the pipes covered by 6 to 8 ft of backfill. Just a few pipe segments are buried under depths of fewer than 

4 ft and more than 12 ft. The average depth is 8.4 ft, and the maximum depth is 78 ft.  

 

Figure 4-14 Frequency of Depth 
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Figure 4-15 depicts the depth range for condition ratings. It can be seen that the average depth 

does not differ significantly across all conditions. 

 

Figure 4-15 Boxplot of Depth with respect to Condition Rating 

4.3.6 Soil pH 

The soil pH is a numerical expression of the relative acidity or alkalinity of a soil sample. The pH 

range can be classified as alkaline (pH>7), natural (pH=7), or acidic (pH<7). The pH distribution in the 

sanitary sewer dataset is depicted in Figure 4-16. The pH values in the available dataset range from 4 to 

8, with a mean of 6.87. Based on the histogram, 48 percent of soil areas have a pH of less than 7, indicating 

a high risk of acidity and corrosion. The average pH of each condition rating is shown in Figure 4-17. 

 

Figure 4-16 Frequency of Soil pH 
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Figure 4-17 Boxplot of Soil pH with respect to Condition Rating 

4.3.7 Material 

The dataset involved different type of pipe material such as asbestos-cement (AC), cast iron (CAS), 

ductile iron pipe (DIP), High density polyethylene pipe (HDPE), prestressed concrete cylinder pipe (PCCP), 

polyvinyl chloride (PVC),  reinforced concrete (RC), and vitrified clay pipe (VCP). In this dissertation only 

RC, PVC, and VCP pipes are included. Since other materials had a small portion of dataset, they are 

excluded to avoid any error during model development. Figure 4-18 shows vitrified clay pipes have the 

majority with 53% frequency. Based on Figure 4-19, most of PVC pipes are in good condition, while RC 

pipes have the largest share among the pipes with poor condition. 

 

Figure 4-18 Frequency of Pipe Material 
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Figure 4-19 Distribution of Material with respect to Condition Rating (CR) 

4.3.8 Soil Type  

Figure 4-20 shows the frequency distribution of sewer pipes' soil types. There are five soil types: 

clay, gravel, loam, rock, and sand. It can be seen that sand has the largest frequency with 48%, and then 

around 36% of the sewer pipe segments are installed in locations with clay soil. Sewer pipes in the gravel 

soil have the lowest frequency (2%). Figure 4-21 explains condition of pipes located in different types of 

soils. According to Figure 3-21, the most frequent condition rating of 1 belongs to pipes surrounded by rock 

which is around 80%. On the other hand, around 10% of pipes surrounded by clay have a condition rating 

of 5, the largest among five different soil types. 

 

Figure 4-20 Frequency of Soil Type 

CR 
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Figure 4-21 Distribution of Soil Type with respect to Condition Rating (CR) 

4.3.9 Pipe Location 

Figure 4-22 shows the distribution of surface conditions in the location where the pipes were buried. 

It reveals that sewer pipes located beneath streets were 66% of the total segments in the datasets. This 

was followed by sewer pipes located beneath alleys (15%), easements (11%), and Highways (8%), 

respectively, from the highest frequency to the least. According to the Federal Highway Administration 

Statistics (FHWA, 2011), highways generally have more VMT (Vehicles Miles Traveled), which shows more 

load on the surface. Then, the street, the alley, and the easement are in the following ranks, respectively. 

Furthermore, Figure 4-23 illustrates distribution of pipe locations with respect to condition rating. Based on 

it, segments beneath easements have the lowest percentage of pipes in poor condition. 
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 Figure 4-22 Frequency of Pipe Location  

 

Figure 4-23 Distribution Pipe Location with respect to Condition Rating (CR) 

4.3.10 Condition Rating 

The condition rating (dependent variable) of sewer pipes was predicted using nine different 

independent variables in this study. As previously stated, the scores range from 1 to 5, with 1 indicating 

structurally sound pipes and 5 indicating pipes on the edge of failure. Figure 4-24  illustrates the distribution 
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of pipe conditions in the dataset. Pipes with excellent conditions (rating of 1) have the highest frequency 

with 49%, followed by pipes with a rating of 3 with 38%. The lowest frequency belongs to pipes with a rating 

of 4. Interestingly, only 4.4% of pipe segments have a rating of 2. It can be seen that around 10% of pipes 

are in poor condition (ratings 4 and 5). It should also be noted that 75% of the pipes are less than 65 years 

old and around 90% are in fair condition (ratings 1,2 and 3).  

 

Figure 4-24 Frequency of Pipe Condition Rating 

4.4 Descriptive Statistics 

Descriptive statistics provide a summary of quantitative analysis for the dataset's numerical 

variables. It shows a summary of the data sample and variable characteristics in the sewer dataset. The 

descriptive statistics of numerical variables in this study are presented in Table 4-3. For example, it shows 

the minimum, maximum, and average age of pipes in the available dataset. Also, it demonstrates that 25% 

of pipes are less than 30, 50% less than 52, and 75% less than 65 years old. Std (Standard deviation) is a 

measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that 

the values tend to be close to the mean of the set, while a high standard deviation indicates that the values 

are spread out over a wider range. 
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Table 4-3 Descriptive Statistics of Numerical Variables 

  Mean Min 25% 50% 75% Max Std 

Age 47.78 1.00 30.00 52.00 65.00 121.00 20.72 

Diameter 11.26 6.00 8.00 8.00 10.00 90.00 9.18 

Slope 0.79 0.00 0.30 0.40 0.67 55.66 1.57 

Depth 8.44 0.09 7.00 8.00 10.00 78.00 3.31 

Length 282.06 5.47 159.99 261.37 337.53 2261.24 198.06 

Soil pH 6.87 4.10 5.70 7.50 8.20 8.20 1.31 

 

4.5 Correlation Analysis 

Correlation analysis is a statistical method for determining the degree of relationship between two 

different variables. This relationship can range from strong to weak, and there are times when there is no 

relationship between two variables. A strong relationship means that the value of one variable can be 

predicted based on the value of the other variable. In contrast, when the variables' relationships are weak, 

they cannot be predicted well. The correlation coefficient between variables can be positive or negative and 

can only be between -1.00 and +1.00. Incorporating highly correlated independent variables into a model 

may result in a multicollinearity problem that affects the model's outcomes. Developing a model with highly 

correlated independent variables is not advised. Most of the variables in the available dataset were not 

normally distributed in the model. As a result, spearman's rank correlation was used to examine the 

relationship between the variables. Spearman's rank correlation can be used to describe the relationship 

between nonlinearly related variables. This method makes no assumptions about the distribution of the 

variables in the model, unlike Pearson's method, which assumes the distribution of two variables is normal 

and can only describe a linear relationship between two variables. 

According to the result of Spearman rank analysis shown on Table 4-4, the highest correlation 

coefficient is between age and condition rating (+0.48). There is no strong correlation between independent 

variables which means none of them needs to be removed from the model to avoid multicollinearity. 
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Table 4-4 Correlation Analysis 

 ** Correlation is significant at the 0.01 level (2-tailed).  

4.6 Chapter Summary 

This chapter discussed data collection, data preparation, and data processing. Preliminary and 

explanatory data analysis, descriptive statistics, and correlation analysis were presented too. Model 

development using the prepared dataset is discussed in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Age Diameter Slope Depth Length Soil pH Condition Rating

Age 1 -0.018 -.221** .114** .105** -.213** .482**

Diameter -0.018 1 -.322** .049** .101** .131** -.076**

Slope -.221** -.322** 1 -.384** -.172** .313** -.265**

Depth .114** .049** -.384** 1 -0.006 -.265** .164**

Length .105** .101** -.172** -0.006 1 0.014 .119**

Soil PH -.213** .131** .313** -.265** 0.014 1 -.442**

Condition Rating .482** -.076** -.265** .164** .119** -.442** 1
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Chapter 5 Model Development Results and Comparison 

5.1 Introduction 

This chapter explains the development process of models whose concepts were discussed in 

chapter 3. The strategy to avoid overfitting and resolve imbalanced data problems is presented. The results 

of Binary and Multinomial Logistic Regressions, k-Nearest Neighbors modeling, and tree-based models, 

including Decision Tree, Random Forest, AdaBoost, Gradient Boosting Tree, and XGBoost, are thoroughly 

discussed and compared. Also, the effect of different factors extracted from the most accurate model on 

the deterioration of sanitary sewer pipes is presented.  

5.2 SPSS and Python 

The software used to develop the statistical models (Binary Logistic Regressions) was IBM SPSS 

Statistics packages (SPSS 25). SPSS (Statistical Package for the Social Sciences) is a software package 

used for the analysis of statistical data. Although the name of SPSS reflects its original use in the field of 

social sciences, its use has since expanded into other data markets. 

In this study, artificial intelligence models were developed using Python, one of the most popular 

programming languages in the data science industry. Python was utilized since it is open-source and has 

a wide variety of free add-on libraries. Some of the libraries used in this study are shown in the Table 5-1. 

Table 5-1 Python Libraries Used in the Study 

  Name of the Library Description or Functions of the Library 

1 Pandas  
To open spreadsheet files and manipulate 

numerical tables 

2 Numpy 
Used to perform a wide variety of mathematical 

operations on arrays 

3 Scikit learn 

It provides a selection of efficient tools for 

modeling including classification, regression, 

clustering, and dimensionality reduction via a 

consistence interface in Python 

4 Seaborn It is a data visualization library 

5 Matplotlib It is a cross-platform for graphical plotting 



73 
 

5.3 Cross Validation 

The most common validation method used in any prediction issue is cross-validation. The 

fundamental idea underlying cross-validation is that a portion of the input dataset is left out during model 

training and used during model testing. The entire dataset will be used for training and testing the model, a 

crucial component of the cross-validation technique (Loganathan et al., 2022; Loganathan, 2021). The main 

benefit of employing k-fold cross-validation is that it would prevent overfitting and allow for the inclusion of 

samples from all classes during model training.  

The dataset is divided into K equal-sized files, which is the main concept. For instance, if there are 

200 data points and ten folds (k=10), the dataset is divided into ten equal portions, and there will be 20 data 

points in each folder. Nine of the ten parts will be used to train the model, and one part will be used to test 

the trained model. In this study, 5-fold cross-validation was used for all models, as shown in Figure 5-1, 

because increasing the folds would reduce the number of data points in each portion. The dataset was 

divided into five folders using the Sklearn package of Python. Five separate learning experiments were 

carried out in 5-Fold cross-validation. One folder was chosen for each iteration for testing purposes, and 

the training set was constructed by combining the remaining four folders. This process performed five 

distinct iterations, and the model's output was then the average value (Malek Mohammadi, 2019). 

 

1st Iteration Test Train 

2nd Iteration Train Test Train 

3rd Iteration Train Test Train 

4th Iteration Train Test Train 

5th Iteration Train Test 

 

Figure 5-1 Five-Fold Cross Validation 
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5.4 Resampling 

In the available dataset used for this study, condition ratings of 2, 4, and 5 have much fewer 

instances than ratings of 1 and 3, which is referred to as a dataset imbalance. When imbalanced data is 

employed in classification methods, trained models may perform poorly (Loganathan, 2021; Tanha et al., 

2020; Yijing et al., 2016). The minority class must be given more consideration in prediction modeling for 

sewer pipes since the consequences of misclassifying the minority class would be significantly worse than 

for the other classes. Because it would be worse to misclassify the PACP scores of the 4 and 5 classes as 

1, they are given more importance in this study. During model development, it was found that the 

performance of models (assessed by evaluation metrics) was not much good due to an imbalanced dataset.  

Researchers and data scientists use a variety of treatment approaches to improve outcomes from an 

imbalanced dataset. There are different types of resampling, including over-sampling, under-sampling, and 

hybrid methods (Ghorbani and Ghousi, 2020): 

• Over-Sampling Method: By replicating existing minority class samples or creating new 

ones, oversampling increases the weight of the minority class. There are various over-

sampling techniques, and it's important to note that the over-sampling strategy is typically 

used more frequently than other strategies. 

• Under-Sampling Method: Under-sampling is one of the simplest methods to address the 

issue of unbalanced data. To balance the class with the minority class, this method under-

samples the majority class. When there is enough data obtained, the under-sampling 

approach is used. 

• Hybrid Method: There are several benefits and drawbacks to both over-sampling and 

under-sampling. The advantages and disadvantages of each approach can be obtained by 

combining these two techniques. 

Various methods of each resampling approach containing their description are shown in Table 5-

2.  
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Table 5-2 Different Resampling Methods 

(Ghorbani and Ghousi, 2020; Taneja et al., 2019) 

Approach Method Description 

Over-

Sampling 

SMOTE* 
Balances class distribution by synthetically generating new 
minority class instances along directions from existing minority 
class instances towards their nearest neighbors. 

Borderline-

SMOTE 
Generates the synthetic sample along the borderline of minority 
and majority classes. 

SVM-

SMOTE 
Focuses on generating new minority class instances near 
borderlines with SVM. 

ADASYN* Balances minority instances using regular SMOTE algorithm 
with adding random small values to the points. 

Under-

Sampling 

Down- 

Sampling 
Majority class instance is reduced to the size of minority class 
by eliminating randomly some majority class instances. 

Hybrid 

SMOTE-

ENN 

This method is one of the well-known methods that combines 
the SMOTE as over-sampling model and ENN (Edited Nearest 
Neighbors) as an under-sampling model to improve the results. 

SMOTE-

Tomek 

This method is another common hybrid method that connects 
the SMOTE as an over-sampling model to Tomek links as an 
under-sampling model to enhance the results. 

*SMOTE: Synthetic Minority Oversampling Technique 

* ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced 

Various over-resampling and hybrid techniques were used in this study to resolve the problem of 

imbalanced datasets such as SMOTE, SVM-SMOTE, Borderline-SMOTE, SMOTE-ENN, SMOTE-Tomek. 

The under-sampling approach was not used because we had trouble with a low number of data. Table 5-3 

lists all of the resampling techniques utilized in this study along with the values for each of their key 

parameters. These settings yield the best results. 
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Table 5-3 Methods of resampling with associated parameter settings 

Method Parameters 

SMOTE K_Neighbors = 7 

Borderline-SMOTE K_Neighbors = 7, M_Neighbors = 10 

SVM-SMOTE K_Neighbors = 7, M_Neighbors = 10 

SMOTE-ENN K (SMOTE)= 7, K (ENN) = 3 

SMOTE-Tomek K (SMOTE)= 7 

Based on the F1-score of machine learning methods using resampled datasets, it was found that 

SVM-SMOTE has a better effect. So, different models described in the following sections of the current 

chapter are based on resampled data by the SVM-SMOTE method. Section 5.4.3 explains this method’s 

details. 

5.4.1 SMOTE 

Regular SMOTE is a statistical method that produces new instances to enhance the number of 

minority samples in the dataset. This algorithm creates new samples by combining the target case's 

features with its neighbors' features after sampling the feature space for each target class and its closest 

neighbors. The new samples do not replicate the minority samples from the past (Chawla et al., 2002). 

Figure 5-2 depicts SMOTE algorithm. SMOTE follows a simple approach: 

 

Figure 5-2 SMOTE Algorithm with k=5 

(Teh et al., 2020) 
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1. Select a sample, let’s call it O (for Origin), from the minority class randomly. 

2. Find the K-Nearest Neighbors of O that belong to the same class. 

3. Connect O to each of these neighbors using a straight line. 

4. Select a scaling factor ‘z’ in the range [0,1] randomly. 

5. For each new connection, place a new point on the line (z*100)% away from O. These will be 

our synthetic samples. 

6. Repeat this process until you get the desired number of synthetic samples. 
 

5.4.2 Borderline-SMOTE  

It is an adaptation of the SMOTE. Borderline-SMOTE only creates synthetic data along the decision 

boundary between the two classes, unlike SMOTE, which generates them arbitrarily between the two data. 

In the training process, Borderline-SMOTE algorithms try to learn the borderline of each class, where these 

borderline cases and the ones adjacent are more likely to be misclassified than the ones distant from the 

borderline. In Borderline-SMOTE, all minority instances are categorized into three groups: NOISE, 

DANGER, and SAFE by calculating the K-nearest neighbors of each minority instance and the numbers of 

the majority samples (m) that were discovered in K nearest neighbors of this instance (Zheng, 2020; 

Elnahas et al., 2021). The three regions are defined according to Table 5-4.  

Table 5-4 Borderline-SMOTE Regions 

(Elnahas et al., 2021) 

Region Definition 

Noise m=k 

Safe 0 ≤ m ≤ k/2 

Danger k/2 ≤ m ≤ k 
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After all instances of the minority class are categorized, synthetic instances are then created along 

the line between DANGER instances and their nearest neighbors Figure 5-3 shows different groups of 

minority class samples and created synthetic samples by Borderline-SMOTE algorithm. 

 

Figure 5-3 Borderline-SMOTE Algorithm 

(Zheng, 2020) 

5.4.3 SVM-SMOTE 

Another variation of Borderline-SMOTE is Borderline-SMOTE SVM, or we could just call it SVM-

SMOTE. In the SVM-SMOTE, the borderline area is approximated by the support vectors after training 

SVMs classifier on the original training set. Instead of utilizing the k-nearest neighbor algorithm to identify 

79Borderline-SMOTE that uses the support vector machine (SVM) methodology (Zheng, 2020). Synthetic 

data will be randomly created along the lines joining each minority class support vector with a number of 

its nearest neighbors. What special about Borderline-SMOTE SVM compared to the Borderline-SMOTE is 

that more data are synthesized away from the region of class overlap. It focuses more on where the data 

is separated. The SVM-SMOTE focuses on developing new minority class samples close to class 
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boundaries while utilizing the SVM model to establish boundaries. By using current minority class instances 

as a guide to their closest neighbors, this approach creates new minority class instances (Ghorbani and 

Ghousi, 2020). So, it helps establish boundaries between classes while generating new instances 

simultaneously (Taneja et al., 2019). 

The resampled data is used to develop all AI models. It has a quantity of 7939 data points which 

80% of that was used to train the models (6351 data points), and 20% was used for testing the model (1588 

data points). It means that the sum of numbers contained in the confusion matrix of each model should be 

equal to 1588 because the confusion matrixes shown in the following sections are results of model testing. 

5.5 Logistic Regression 

5.5.1 Binary 

At the beginning of the model development process, to investigate the effect of different parameters 

on the condition of sewer pipes in a simple way, the state of sanitary sewer pipes in the original dataset 

was classified into two groups of 0 as good and 1 as poor condition, a binary classification. Therefore, the 

pipes with condition ratings of 1,2, and 3 were classified as group 0 and pipes with condition ratings of 4 

and 5 as group 1. Figure 5-4 shows the statistics of sewer pipes in the new category. As shown in figure 5-

4, the recoded dataset includes 90% and 10% pipes with condition levels 0 and 1, respectively. 

 

Figure 5-4 Frequency of Sewer Pipes Conditions in a Binary Classification 
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5.5.1.1 Training the Model 

Based on the characteristics of dependent variable which has only two values, one regression 

equation is generated to estimate the condition of each pipe segments as shown in Equation 5.1. the 

SPSS software was used to develop the binary model. 

𝑙𝑛 (
𝑃(𝐶=1)

1−𝑃(𝐶=1)
) =                                                                                                                               Eq. 5.1            

                                 𝛼 + 𝛽1 × 𝐴𝑔𝑒 + 𝛽2 × 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 + 𝛽3 × 𝐷𝑒𝑝𝑡ℎ + 𝛽4 × 𝑆𝑙𝑜𝑝𝑒 + 𝛽5 × 𝐿𝑒𝑛𝑔𝑡ℎ + 𝛽6 × 𝑝𝐻

+ 𝛽7 × 𝐷𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙=𝑃𝑉𝐶 + 𝛽8 × 𝐷𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙=𝑉𝐶𝑃 + 𝛽9 × 𝐷𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙=𝑅𝐶 +  𝛽10 × 𝐷𝑆𝑜𝑖𝑙=𝑆

+ 𝛽11 × 𝐷𝑆𝑜𝑖𝑙=𝐶 + 𝛽12 × 𝐷𝑆𝑜𝑖𝑙=𝐺 + 𝛽13 × 𝐷𝑆𝑜𝑖𝑙=𝐿 + 𝛽14 × 𝐷𝑆𝑜𝑖𝑙=𝑅 + 

                                 𝛽15 × 𝐷𝑅𝑜𝑎𝑑=𝑆𝑡 +  𝛽16 × 𝐷𝑅𝑜𝑎𝑑=𝐻 +     𝛽17 × 𝐷𝑅𝑜𝑎𝑑=𝐸  +  𝛽18 × 𝐷𝑅𝑜𝑎𝑑=𝐴                

where 𝛼 is intercept, 𝛽1,  𝛽2, . . . ,  𝛽18 are regression coefficients, and Di is dummy variable to 

assign different values to categorical independent variables. 

In logistic regression, if the dependent variable has N categories, one of them is chosen as the 

reference category. In this dissertation, condition level 0 was chosen as the reference category for the 

development of binary logistic regression. The binary logistic regression was trained by SPSS using 80% 

of the data. Model parameters were estimated using Maximum Likelihood Estimation (MLE). Wald test and 

P-test were used to determine the variables' significance, with a 95% confidence level. The factors with the 

highest ability to predict the state of sanitary sewer pipes were found using a backward stepwise variable 

selection. In this method, the variables with enough predictive power remain in the model, and idle variables 

are removed stepwise. Backward stepwise selection started with a complete model and took into account 

all 9 independent variables; those that had the least impact on the model were then left out. The variables 

with the highest p-score were those being considered for model removal. Table 5-5 provides parameter 

estimates for the various sanitary sewer pipe conditions. 
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Table 5-5 Parameter Estimates in Binary Logistic Regression for Condition Level 1 

Variable 
Coefficient 

(β) 

Standard 

Error 
Wald 

Sig. 

(P-Value) 

Exp(β) 

(Expected 

Value) 

Age 0.043 0.004 113.23 0 1.044 

Diameter 0.007 0.005 1.71 0.191 1.007 

Slope -0.002 0.026 0.007 0.933 0.998 

Depth -0.005 0.017 0.105 0.745 0.995 

Length 0.001 0 19.781 0 1.001 

Soil pH 0.065 0.094 0.485 0.486 1.067 

Material (VCP) 

(Reference) 
0 - - 0 - 

Material (PVC) -0.974 0.275 12.586 0 0.378 

Material (RC) -0.087 0.15 0.337 0.562 0.916 

Soil Type (Sand) 

(Reference) 
0 - - 0 - 

Soil Type (Clay) 0.442 0.246 3.236 0.072 1.556 

Soil Type (Gravel) 0.628 0.37 2.882 0.09 1.874 

Soil Type (Loam) -0.007 0.3 0.001 0.981 0.993 

Soil Type (Rock) -0.141 0.408 0.12 0.729 0.868 

Road Type (Street) 

(Reference) 
 0 - - 0.144 - 

Road Type (Alley) 0.215 0.139 2.368 0.124 1.239 

Road Type 

(Easement) 
-0.241 0.183 1.737 0.188 0.786 

Road Type (Highway) -0.124 0.198 0.396 0.529 0.883 

Constant -5.565 0.626 79.091 0 0.004 
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Table 5-6 illustrates the result of the backward stepwise method. Utilizing this method, the least 

important variables were removed from the full model. Remained parameters are the most important ones. 

As can be seen in Table 5-6, age, length, material, and soil type had the least P-values and consequently 

remained in the model. 

Table 5-6 Parameter Estimates in Binary Logistic Regression (Backward Stepwise) 

Variable 
Coefficient 

(β) 
Standard Error Wald P Value 

Age 0.043 0.004 112.913 0 

Length 0.001 0 27.094 0 

Material (VCP) 

(Reference) 
0 - 12.893 0 

Material (PVC) -0.976 0.273 12.761 0 

Material (RC) -0.12 0.143 0.02 0.887 

Soil Type (Sand) 

(Reference) 
0 - 25.911 0 

Soil Type (Clay) 0.609 0.133 20.804 0 

Soil Type (Gravel) 0.667 0.352 3.577 0.059 

Soil Type (Loam) 0.206 0.203 1.032 0.31 

Soil Type (Rock) 0.123 0.338 0.005 0.945 

Constant -5.197 0.277 351.058 0 

 
5.5.1.2 Results and Discussions 

The developed binary logistic regression provided one equation to predict the condition ratings of 

sewer pipes based on available dataset. As significant variables were found, the model created the equation 

utilizing only those variables. The results of binary logistic regression are shown in Equation 5.2. 
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𝑔(𝑥) =  𝑙𝑛 (
𝑃(𝐶=1)

1−𝑃(𝐶=1)
) =                                                                                                                      Eq. 5.2 

                                −5.197 + 0.043 𝑥 𝐴𝑔𝑒 + 0.001 𝑥 𝐿𝑒𝑛𝑔𝑡ℎ 

                                  − 0.976 × 𝐷𝑃𝑉𝐶 − 0.12 𝑋 𝐷𝑅𝐶     

                                + 0.609 𝑥  𝐷𝑐𝑙𝑎𝑦  + 0.667 𝑥  𝐷𝑔𝑟𝑎𝑣𝑒𝑙 + 0.206 𝑥  𝐷𝑙𝑜𝑎𝑚  + 0.123 𝑥  𝐷𝑟𝑜𝑐𝑘                

 

Once the odds ratio (g(x)) was calculated, the probability of pipes being in poor or good condition 

can be estimated by using Equation 5.3 and 5.4, respectively. 

𝑃(𝐶 = 1) =
1

1+𝑒−𝑔(𝑥)                                                                                                               Eq. 5.3 

𝑃(𝐶 = 0) = 1 − 𝑃(𝐶 = 1)                                                                                                        Eq. 5.4 

 

Table 5-7 shows the classification table for the developed Binary Logistic Regression Model. It is 

an evaluation of the effectiveness of this model. 20% of data has been used to test the model and create 

this table. 

Table 5-7 Classification Table for Binary Logistic Regression 

Observed 
Predicted 

Percent Correct 
Predicted 

0 1 

0 804 61 93% 

1 45 51 53% 

Overall Percentage  88% 

 

Overall, binary logistic regression was able to accurately predict 88% of the pipe conditions, 

according to the classification table. The prediction accuracy for the pipes at condition levels 0 and 1 were 

93% and 53%, respectively. Based on the table above and using equations described in section 3.5.1, it is 

possible to calculate True Positive, True Negative, False Positive, and False Negative rates. Table 5-8 and 

depicts these numerical values.  
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Table 5-8 Binary Logistic Regression Model Performance 

Rates Values 

True positive rate (TPR) 93% 

True negative rate (TNR) 53% 

False positive rate (FPR) 47% 

False negative rate (FNR) 7% 

 

The performance of the model is shown by the area under the ROC curve, where ideal models 

have an area close to 1, and weaker models have an area near to 0.5. The model is considered satisfactory 

if the area under the ROC curve is bigger than 0.7 (Malek Mohammadi, 2019; Hosmer et al., 2013). The 

ROC curve for developed Binary Logistic Regression is shown in Figure 5-5. The area under ROC curve is 

0.73 which shows binary logistic regression have had acceptable result. 

 

 

Figure 5-5 ROC Curve for Binary Logistic Regression Model 

 

AUC = 0.73 
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It is possible to create a visual representation of the likelihood that pipes are in poor or good 

condition using binary logistic regression results. The deterioration curves were created in this study to 

demonstrate how the state of sewer pipes deteriorates over time while accounting for important variables. 

According to backward selection method used in development of the binary logistic regression, age, length, 

material, and soil type were significant parameters in pipes deterioration. The mean values of the 

independent numerical variables were used to create the degradation curves. The average age of pipes in 

available dataset was 48 years old and the average length of them was 283 ft. Using equations 5.2 and 

5.3, the probability of sewer pipes being in poor conditions was visualized and is shown in Figures 5-6 to 

5-12.  

The deterioration curve of sewer pipes for three different pipe materials buried in the sand and clay, 

are shown in Figures 5-6 and 5-7. Only pipes buried in sand and clay were investigated since they are the 

majority of soil types in the dataset.  

 

Figure 5-6 Deterioration Curve for Sewer Pipes with Different Materials Buried in Sand 
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Figure 5-7 Deterioration Curve for Sewer Pipes with Different Materials Buried in Clay 

 

As may be expected, the likelihood of sewer pipes being in poor condition increased as they grew 

older. Every pipe material has a specific functional life, and its physical characteristics alter as it ages. 

Therefore, it follows that sewer pipes' corrosion rate increases with age. The previous finding supports the 

findings of various studies described in section 2.4.2. 

It can be seen that in both soils, the deterioration rate of PVC pipes is the lowest and for VCP pipes 

is the highest. Varying materials used to construct sewer pipes react differently to environmental conditions, 

such as soil type. For instance, clay pipes can withstand acids well, whereas concrete pipes resist abrasion. 

PVC and other plastic pipes are resistant to acidic and alkaline wastes, but heavy loads might cause them 

to distort excessively (Malek Mohammadi, 2019; Singh and Adachi, 2013). The above results support the 

findings of the investigations reported in section 2.4.3. 

Figures 5-8 and 5-9 show the effect of length on the degradation of sewer pipes. Figure 5-8 

illustrates the effect of length on a 48-year-old pipe constructed with different materials buried in the sand. 

On the other hand, Figure 5-9 depicts the effect of length on the same pipe constructed from VCP (which 

is the maximum in the available dataset) buried in different soil types.  
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Figure 5-8 Effect of Pipe Length on Condition of a 48-year-old Pipe Made by Different Materials 

 

 

Figure 5-9 Effect of Pipe Length on Condition of a 48-year-old Pipe Buried in Different Soil Types 
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As is evident in the Figures above, the probability of being in poor condition increases with the 

pipes' length. The primary infiltration point is at pipe joints, and longer pipes have more potential failure 

points and areas, particularly at joints. Because defects are more likely to occur in longer sewer pipes, they 

often deteriorate faster. Additionally, blockages and sediment accumulation are more likely to occur in 

longer lines, speeding up sewer pipes' deterioration. This finding is consistent with results of some studies 

mentioned in section 2.4.5.  

Figures 5-10 to 5-12 show the effect of different types of soils on a 283-ft sewer pipe constructed 

with various materials. As explained in chapter 4, there are 5 types of soil in the available dataset, including 

sand, clay, loam, gravel, and rock.  

 

Figure 5-10 Effect of Surrounding Soil Type on Condition of a 283-ft Pipe made by PVC 
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Figure 5-11 Effect of Surrounding Soil Type on Condition of a 283-ft Pipe made by RC 

 

 

Figure 5-12 Effect of Surrounding Soil Type on Condition of a 283-ft Pipe made by VCP 
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In all figures above, the pipes surrounded by sand have the lowest deterioration rate than pipes 

surrounded by other soil types; on the other hand, pipes buried in clay have the highest deterioration rate. 

The results of investigations by Davies et al. (2001) and O'Reilly et al. (1989) support this finding. Graphs 

show that sewers surrounded by clayey soil have more problem. It could be for two reasons. 

 Firstly, clayey soils have typically more moisture content (high plasticity index) which is an indicator 

of high potential of absorbing water. Consequently, they are classified as frost-susceptible soils. According 

to Najafi and Gokhale (2022), “Frost heave is defined as the vertical expansion of soil caused by soil 

freezing and ice lens formation. Differential heave causes sections of pipe to experience non-uniform 

displacements and this results in forceful flexural stresses. Also, uniform heaving may cause a problem 

where pipe joints are not subjected to movement. In this case the pipe will experience bending stresses. 

So, failure of pipe joints could be the result of heave process” (p. 53). 

Secondly, clay generally has lower internal fraction rather than sand and gravel and consequently 

lower shear strength. This characteristic results in lower soil-pipe interaction in clayey soils. Because the 

shear strength of the interaction might change the pipeline's degree of mobility and hence increase its 

displacement, soil-pipe interaction is crucial. High soil-pipe interaction prevents the pipe from contracting, 

which causes the axial stress to increase. 

5.5.2 Multinomial Logistic Regression 

The first method developed by Python using resampled dataset was Multinomial Logistic 

Regression. As discussed earlier, Multinomial logistic regression can be used as an extension of binary 

logistic regression when the dependent variable is categorical and contains more than two levels. 

5.5.2.1 Training the Model 

Firstly, the dependent and independent variables were defined. Then, using the train_test_split 

method of Python, 80% of the data were set for training the model and 20% for testing. The 

sklearn.linear_model.LogisticRegression library of Python was used to implement the Logistic Regression 

model.  

5.5.2.2 Results and Discussions 

To be consistent with other AI methods implemented in this study, the evaluation metric for the 

developed Multinomial Logistic Regression model was selected to be the confusion matrix instead of the 
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classification table. Figure 5-13 shows the confusion matrix of this model. High values on non-diagonal cells 

of the confusion matrix below demonstrate that misclassification was high in the developed MLR prediction 

model. Specifically, pipes with condition ratings of 3 had significant misclassification with pipes having 

condition ratings of 2 and 4.  

 

Figure 5-13 Confusion Matrix of Multinomial Logistic Regression Model 

As described in chapter 3, another important metric to evaluate the performance of the developed 

modes is the ROC curve, including the AUC criteria. As it can be seen in Figure 5-14, the ROC curve of 

classes 2,3, and 4 are not close to the upper left corner. However, detailed measurements should be 

investigated to assess the model's effectiveness. They are calculated based on the confusion matrix and 

are shown in Table 5-9. 
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Figure 5-14 ROC Curves for Multinomial Logistic Regression Model 

 

Table 5-9 Precision, Recall, and F1-Score Metrics for Multinomial Logistic Regression Model 

Condition Rating Precision Recall F1 Score 

1 0.72 0.76 0.73 

2 0.39 0.23 0.29 

3 0.50 0.68 0.57 

4 0.30 0.10 0.15 

5 0.59 0.71 0.64 

Macro - Average 0.49 0.48 0.48 

 

F1-scores of pipes with condition ratings of 2 and 4 are very low, indicating the weak performance 

of the developed model in predicting these classes. A precision value of 0.59 for class 5, which is an 
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important class in sewer prediction modeling, shows that the model only correctly identified 59% of pipes 

with a condition rating of 5 out of all the pipes classified as pipes with a condition rating of 5. Finally, the 

macro-average F1-score of 0.48, the summary result of the model’s efficiency, states that the developed 

MLR model was unsuccessful. 

5.6 KNN 

5.6.1 Training the Model 

As explained before, 5-fold cross validation method was used to develop the models including 

KNN. It randomly selected 80% of data for train and 20% for testing the model. The Python Scikit-learn 

library's K neighbors classifier parameters are shown in Table 5-10. 

Table 5-10 Parameters of the Developed KNN Model 

Parameters Description 

n_neighbors Specify number of neighbors:  7 

weights weight function used in prediction: uniform, distance 

algorithm Algorithm used to compute the nearest neighbors: auto, ball_tree 

leaf_size This parameter is estimated by ball_tree 

 

To maintain the model's consistency, the weight parameter was set uniformly. Some parameters, 

including leaf size, were set to default values to create the KNN model. The nearest neighbors were 

calculated using the auto algorithm because this function tries to discover the best algorithm. The most 

crucial step in the KNN model's development is determining the number of neighbors (K). When smaller 

values for are chosen, there is generally a high danger of overfitting. This parameter can be determined 

manually. So, the model was run using different K values from 3 to 11. The K value should be odd because 

of the voting issue during the KNN model development. Therefore, using numbers 3, 5, 7, 9, and 11 as the 

value of K, various KNN models were implemented, and the highest accuracy was achieved when the 

number of neighbors was 7. Therefore, the model was developed with 7 neighbors, and the testing results 

are presented in the next section. 
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5.6.2 Results and Discussions 

The performance of the k-NN model developed using resampled data is reviewed in this section. 

The number of instances in each class in the oversampled dataset matches the dominant class. As seen 

in Figure 5-15, a confusion matrix was produced using the generated k-NN model. It should be noted that 

the confusion matrix below is based on the testing part of the developed model and is the validation of the 

model.  

 

Figure 5-15 Confusion Matrix of KNN Model 

As described in section 5.4.3, the sum of the values in the matrix should equal 1588, which is valid 

for the above table. Furthermore, as explained in chapter 3, the confusion matrix's main element is diagonal 

cells showing the model's performance for each class. Higher numbers and darker backgrounds in these 

cells show the better performance of the model for each class. Consequently, lower numbers and brighter 

backgrounds in other cells are preferred since they are misclassified instances. 

Here, to clarify the subject, an example of the status of condition rating of 1 and condition rating of 

2 from the above matrix is explained. The value of 354 on the top left of the matrix illustrates the number of 

sewer pipes that actually have the condition rating of 1 and have been predicted correctly. The value of 25 

on the second cell of the first row shows the number of pipes that actually are in the condition rating of 1, 
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but the model has predicted them wrongly as pipes with a condition rating of 2. On the other hand, the value 

of 27 on the second cell of the first column depicts the number of pipes that actually are in the condition 

rating of 2, but the model has predicted them wrongly as pipes with a condition rating of 1.  

ROC curves were plotted as shown in the Figure 5-16 in order to better understand the performance 

of the k-NN model. As discussed in section 3.5.2, the model has higher overall accuracy when the ROC 

curve is closer to the upper left corner, and consequently, the AUC value is close to 1. 

 

Figure 5-16 ROC Curves for k-NN Model 

AUC values were closer to 1 for curves corresponding to condition ratings of 4 and 5, demonstrating 

the model's high accuracy in predicting these classes. AUC was found to be 0.87, 0.86, and 0.84 for classes 

1, 2, and 3, respectively. 

Evaluation metrics, including precision, recall, and finally, F1-score, were calculated using 

generated confusion matrix and based on explanations of section 3.5.6. Table 5-11 displays the recall, 

precision, and F1-score of the developed KNN model.  
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Table 5-11 Precision, Recall, and F1-Score Metrics for k-NN Model 

Condition Rating Precision Recall F1 Score 

1 0.74 0.75 0.74 

2 0.57 0.64 0.60 

3 0.74 0.61 0.67 

4 0.66 0.74 0.70 

5 0.75 0.78 0.76 

Macro - Average 0.70 0.71 0.70 

 
To explain the table above in simple word, the metrics for pipes with a condition rating of 4 is 

explained. A precision value of 0.66 shows that the model correctly identified 66% of pipes with a condition 

rating of 4 out of all the pipes classified as pipes with a condition rating of 4. The recall value of 0.74 shows 

that the model correctly identified 74% of pipes having a condition rating of 4 out of all the pipes actually 

having a condition rating of 4. Finally, the F1 score, by combining them into a single measure, evaluates 

the model's effectiveness. An F1 score of 0.70 shows the ability of the model to predict pipes in a condition 

rating of 4.  

F1 closer to 1 shows better performance of the model. An overall macro-average F1-score of 0.70 

shows an acceptable performance of the developed KNN model for the available sewer pipes dataset. It 

was found that the KNN model had better performance for pipes with a condition rating of 5 (F1= 0.76) 

rather than others and had the lowest accuracy in predicting pipes with a condition rating of 2 (F1=0.60). 

 
5.7 Tree-Based Models 

5.7.1 Decision Tree 

To compare the performance of different machine learning methods to achieve the most accurate 

model, one of this study's main goals, the tree-based models, was developed. In the beginning, the regular 

Decision Tree classifier was tried. The concept of this method is described in section 3.4.2.  
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5.7.1.1 Training the Model 

The main parameters in training a Decision Tree model are maximum depth and splitting criterion. 

For the criterion, the Gini index was selected as default. For maximum depth, researchers suggest a trial-

and-error process or depth equal to the number of dataset’s attributes which means the number of variables 

(Geron, 2017; Müller and Guido, 2016). A trial-and-error process was done, and the maximum depth of 11 

was selected as the best.  

5.7.1.2 Results and Discussions 

This part evaluates the effectiveness of the created Decision Tree model. The resultant Decision 

Tree model was used to create a confusion matrix, as shown in Figure 5-17. The interesting point is that 

despite the model's good performance regarding classes 1 and 3, the misclassification between these two 

is a little high.  

 

Figure 5-17 Confusion Matrix of Decision Tree Model 

Figure 5-18 illustrates the ROC curve of the model. According to the figure, the model has more 

AUC for pipes with poor condition ratings (PACP 4 and 5) than for other classes, which is a good sign. 

However, other metrics such as precision, recall, and F1 scores must be estimated to evaluate the 

performance of a prediction model in detail.  
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Figure 5-18 ROC Curves for Decision Tree Model 

According to Table 5-12, the developed model performs less well for pipes with a condition rating 

of 2 than it does for other pipes. It might be because there are only a few pipes in the dataset in this situation. 

Additionally, it can be observed that pipes in class 5 have the greatest F1-scores, and the model can 

accurately forecast them. Overall, the Decision Tree classifier's model, which has an F1-score of 0.73, 

outperforms the KNN model. 

Table 5-12 Precision, Recall, and F1-Score Metrics for Decision Tree Model 

Condition Rating Precision Recall F1 Score 

1 0.74 0.74 0.74 

2 0.70 0.69 0.69 

3 0.69 0.71 0.70 

4 0.75 0.74 0.74 

5 0.77 0.80 0.78 

Macro - Average 0.73 0.74 0.73 
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5.7.2 Random Forest 

The first ensemble of the Decision Tree algorithm to be tested was the Random Forest. As 

discussed earlier, the Random Forest algorithm is based on the Bagging approach. It constructs different 

decision trees and reaches to best result by taking the average of the final results of the trees. The 

randomness in this method means that each tree is constructed with a random dataset and a random 

variable. 

5.7.2.1 Training the Model 

The main parameters for this method which should be assigned are number of decision trees 

(n_estimators) and the number of features to be analyzed in each tree (n_features). A higher number of 

constructed trees usually leads to higher accuracy (Geron, 2017). Therefore, after the trial-and-error 

process, the number of trees was set to 100. So, 100 distinct trees were constructed using 100 different 

datasets randomly selected from the original dataset.   

Next, in each tree the algorithm randomly selects a subset of the features (independent variables), 

and it looks for the best possible test involving one of these features. The number of features that are 

selected is controlled by the max_features parameter. Max_feature is a critical parameter in this method. If 

we set it equal to the number of independent variables (which in our case is 9), that means that each tree 

can look at all variables in the dataset, and no randomness will be injected into the feature selection (though 

the randomness due to the bootstrapping of data remains). If we set it to 1, the trees have no choice on 

which feature to test and can only search over for the randomly selected variable.   

As a result, a high max_features value indicates that the trees in the random forest will be relatively 

similar and easily fit the data using the most distinguishing features. The trees in the random forest will be 

significantly different if the max_features are low, and each tree may need to be very deep to adequately 

fit the data (Müller and Guido, 2016). It is possible to leave the selection of the best value for this parameter 

to the algorithm itself. Consequently, this parameter was decided to be determined by the algorithm, and it 

had been a number between 1 and 9. 

5.7.2.2 Results and Discussions 

Finally, the prediction model for sewer pipes condition assessment by RF algorithm was trained via 

Python, and the results are shown in this section. Figure 5-19 depicts the confusion matrix of the testing 
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part of the developed model. Relatively low values in the non-diagonal cells are a sign of the model's 

outstanding performance. 

 

Figure 5-19 Confusion Matrix of Random Forest Model 

ROC curves for all classes were plotted as shown in Figure 5-20. It can be seen that the AUC for 

ROC curves of condition ratings 4 and 5 are close to the unit. Generally, in sewer pipe prediction modeling, 

high values in metrics related to minority conditions (PACP 4 and 5) show the high efficiency of the model. 

ROC curves of other classes are also in excellent condition.  

 

Figure 5-20 ROC Curves for Random Forest Model 
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Table 5-13 illustrates other metrics for the developed RF model. F1-scores of classes 1, 4, and 5 

are high, indicating excellent performance in predicting them. The precision of 0.82 for class 1 reveals that 

the model correctly identified 82% of pipes with a condition rating of 1 out of all the pipes classified as pipes 

with a condition rating of 1. Since a high quantity of pipes belongs to this class, this precision value is 

considered high accuracy. Furthermore, a recall value of 0.86 for class 5 indicates that the model correctly 

identified 86% of pipes having a condition rating of 5 out of all the pipes actually having a condition rating 

of 5. It is a symbol of low misclassification of the developed model. Finally, the overall macro-average F1-

score of 0.8 shows that the model had very good performance in predicting all classes and outperforms the 

KNN and Decision Tree models. 

Table 5-13 Precision, Recall, and F1-Score Metrics for Random Forest Model 

Condition Rating Precision Recall F1 Score 

1 0.82 0.80 0.81 

2 0.80 0.72 0.76 

3 0.75 0.81 0.78 

4 0.84 0.82 0.83 

5 0.85 0.86 0.85 

Macro - Average 0.81 0.80 0.80 

 
5.7.3 AdaBoost 

AdaBoost is the first algorithm among the Boosting algorithms to be tried. To compare their findings 

to those of other tree-based models, boosting techniques were applied. AdaBoost simply calculates the 

predictions from each predictor and weighs them using the predictor weights (the higher the weight of the 

predictor, the more accurate the predictor is). The class that receives the majority of weighted votes is the 

predicted class (Geron, 2017). The number of trees and the learning rate, which controls how much each 

tree is permitted to correct the errors of the previous trees, are the two key parameters of the boosted 

models. These two factors are related because more trees are required to construct a model with a same 
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level of complexity at a lower learning rate. In boosting models, adding more estimators makes the model 

more complex, which might result in overfitting, in contrast to random forests where having more estimators 

(predictors)(trees) is always beneficial. It is usual practice to fit several estimators based on the time and 

memory budget before looking through various learning rates. A common practice is to fit number of 

estimators depending on the time and memory budget, and then search over different learning rates (Müller 

and Guido, 2016). By these explanations, the number of predictors was set to 50, and the learning rate was 

set to 1 as default. It should be noted that decreasing the learning rate would cause an increase in the 

number of trees. 

The confusion matrix of the developed model is shown in Figure 5-21. The values in non-diagonal 

cells are high, illustrating relatively high misclassification among different classes. The misclassification 

between classes 3 and 4 is higher than in others. 

 

Figure 5-21 Confusion Matrix of AdaBoost Model 

The ROC curve of this model is depicted in Figure 5-22. It can be seen that the AUC of classes 2 

and 3 are relatively low. Other metrics should be discussed to evaluate the performance of the model. 
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Figure 5-22 ROC Curves for AdaBoost Model 

Precision, recall, and F1-score of all classes are shown in Table 5-14. Low F1-score for pipes with 

a condition rating of 2 and 4 show the weak performance of the developed model for these classes. Also, 

the precision and recall values of the model for pipes with a condition rating of 5, which has always been a 

sign of the model's performance, are low. Finally, the overall macro-average F1-score of 0.57 indicates that 

AdaBoost was not a suitable model for the available dataset.   

Table 5-14 Precision, Recall, and F1-Score Metrics for AdaBoost Model 

Condition Rating Precision Recall F1 Score 

1 0.74 0.74 0.74 

2 0.49 0.33 0.39 

3 0.54 0.66 0.60 

4 0.56 0.40 0.47 

5 0.58 0.66 0.62 

Macro - Average 0.58 0.56 0.57 
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One significant drawback to this sequential learning technique is that it cannot be parallelized (or 

only partially) since each predictor can only be trained after the previous predictor has been trained and 

evaluated. As a result, it does not scale as well as bagging. The other disadvantage of boosting is that it is 

sensitive to outliers since every classifier must fix the errors in the predecessors. Thus, the method is too 

dependent on outliers (Geron, 2017; Müller and Guido, 2016). These two disadvantages could be the 

reason for the weak performance of the developed AdaBoost model. 

 
5.7.4 Gradient Boosting Tree 

Another Boosting approach tried in this study was Gradient Boosting Tree. As described in section 

3.4.4.2, this method operates similarly to AdaBoost. The only difference is that this method modifies the 

residual errors instead of modifying instance weights. Again, the main parameters are the number of trees 

and the learning rate. The learning rate was set at one as default. According to Geron (2017), “in order to 

find the optimal number of trees, you can use early stopping. simple way to implement this is to use the 

staged_predict code in the Python: it returns an iterator over the predictions made by the ensemble at each 

stage of training (with one tree, two trees, etc.). The following code trains a GBT ensemble with 120 trees, 

then measures the validation error at each stage of training to find the optimal number of trees, and finally 

trains another GBT ensemble using the optimal number of trees” (p. 208). 

The confusion matrix of the developed Gradient Boosting Trees model is shown in Figure 5-23. 

The values on diagonal elements are evidence of a relatively proper result for the developed model, 

specifically for pipes with condition ratings of 1 and 3. 
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Figure 5-23 Confusion Matrix of GBT Model 

Another tool to evaluate the developed GBT model was the ROC curve. It is shown in Figure 5-24. 

Unlike the AdaBoost model, AUC values for all classes are higher than 0.9, which indicates that the model 

had a better performance than the previous boosting model. 

 

Figure 5-24 ROC Curves for GBT Model 
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Table 5-15 explains other evaluation metrics for the GBT model. Except for pipes with a condition 

rating of 2, precision and recall values of other classes are acceptable. The calculated F1-score shows that 

this model is much more accurate than the AdaBoost model.  

Table 5-15 Precision, Recall, and F1-Score Metrics for GBT Model 

Condition Rating Precision Recall F1 Score 

1 0.81 0.79 0.80 

2 0.64 0.50 0.56 

3 0.70 0.77 0.73 

4 0.75 0.77 0.76 

5 0.77 0.80 0.78 

Macro - Average 0.73 0.73 0.73 

 

One reason for the better performance of GBT than AdaBoost could be the optimal number 

selection of trees which was set to be automatically done. The other reason could be that GBT uses a loss 

function (such as squared-error) to correct the errors of the prior tree, which had been more effective than 

the AdaBoost approach, which uses modifying instances weights to correct the previous trees. 

5.7.5 XGBoost 

As mentioned in section 3.4.4.3, the XGBoost method is the same as GBT but faster. This model's 

confusion matrix is shown in Figure 5-25. For pipes with condition ratings of 1 and 3, which are the most 

numerous, the non-diagonal cell values show no significant misclassification. This sign demonstrates that 

the model is operating within acceptable bounds.  
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Figure 5-25 Confusion Matrix of XGBoost Model 

The ROC curve of the developed XGBooost model is illustrated in Figure 5-26. It can be seen that 

the AUC of all classes is relatively high, indicating low misclassification among different classes. Macro-

average AUC value of 0.92 is close to GBT’s one. 

 

Figure 5-26 ROC Curves for XGBoost Model 
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The generated XGBoost model's final evaluation metrics are described in Table 5-16 at the end. 

Similar to the GBT model, satisfactory accomplishments for pipes with condition ratings of 1,3,4 and 5 are 

visible. Precision value of 0.80 for class 1 and recall value of 0.78 for class 5 are proofs of low 

misclassification for a crowded group of pipes which are in condition rating of 1 and high ability of the model 

to capture minority group of pipes which are in condition rating of 5, respectively. The overall F1-score of 

0.70 shows an acceptable performance of this model, finally.  

Table 5-16 Precision, Recall, and F1-Score Metrics for XGBoost Model 

Condition Rating Precision Recall F1 Score 

1 0.80 0.78 0.79 

2 0.62 0.42 0.50 

3 0.67 0.78 0.72 

4 0.73 0.70 0.71 

5 0.74 0.78 0.76 

Macro - Average 0.71 0.70 0.70 

 

5.8 Discussions and Practical Applications 

Based on a combined historical inspection dataset gathered from the cities of Tampa and Dallas, 

this study developed seven different models to predict the condition level of sewer pipes. The dataset was 

imbalanced and was resampled by the SVM-SMOTE method as described in section 5.4.3. To establish 

the prediction models, nine independent variables were included: pipe age, material, diameter, length, 

depth, slope, soil type, soil pH, and pipe location. Sewer pipe condition ratings were the target variable and 

were evaluated using the PACP method. It was intended to develop a model to anticipate each pipe's five 

condition ratings. Figure 5-27 shows the hierarchy of seven developed models using various methods. 
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Figure 5-27 Developed Models in this Study 

Discussions 

Utilizing the confusion matrix, ROC curve, and macro-average F1-score as three different validation 

techniques, all the models were tested for accuracy. The effectiveness of the models implemented in this 

investigation is shown in Figure 5-28. Overall F1-score as summary indicator of model’s performance is 

used in this figure. As it can be seen, Random Forest model had the best accuracy, with F1-score of 80%, 

whereas Multinomial Logistic Regression had the lowest accuracy (F1=48%). 
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Figure 5-28 Comparison of Model Performances 

It can be seen that tree-based models had better performance than others. However, the Bagging 

approach was more efficient rather than Boosting approach. Furthermore, determining the significant 

variables is a critical component of condition prediction modeling. These factors have a significant impact 

on sewer pipe conditions. Therefore, leaving them out of the model could reduce its accuracy. One 

advantage of tree-based models is the ability to prioritize the significance of the independent variables for 

both regression and classification goals. Generally, feature importance gives a score indicating how helpful 

a variable is in putting the model into practice. Figure 5-29 displays the relative importance of various factors 

obtained from the feature importance attribute of this study's best model (Random Forest).  
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Figure 5-29 Relative Importance of Independent Variables 

The figure above demonstrates that factors of age and length of pipes had the highest effect on 

their condition. The material was the next important parameter. Pipe size surrounded soil type, pH of 

surrounded soil, depth of buried pipe, and pipe slope had a lower impact, respectively. The pipe location 

(road type) had the least effect on the condition of sewers.  

Practical Applications 

The final selected prediction model was used separately for the cleaned dataset of Dallas and 

Tampa to use it as a support tool in the sewer asset management of both case studies. After running the 

model for those datasets, the confusion matrix for each one was created, and overall macro-average F1-

score were calculated based on the matrixes. Interestingly, the obtained F1 scores were 0.84 and 0.77 for 

Tampa and Dallas, respectively, which shows good accuracy regarding the accuracy of previously 

developed models studied in the literature review. Specifically, the F1-score for pipes with a condition rating 

of 5 was investigated. It was 0.66 for Dallas and 0.83 for Tampa. So, for Dallas city, the suggestion would 

be to design strategic investment plans in order to know the quantity of pipes that the utility should 

rehabilitate or replace because the F1-score for the pipes with a condition rating of 5 in this city shows that 

the developed model has not had high accuracy in detecting them and more inspection data is needed. On 

the other hand, for Tampa city, the suggestion would be to make decisions concerning rehabilitation plans 
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instead of more inspection since the accuracy of correctly identifying the sewers in a critical condition was 

83%, which is high (Hernandez et al., 2018). 

Furthermore, the developed Random Forest model could be utilized as a tool to identify the 

condition rating of uninspected sewer pipes. By entering the digit of numerical variables like age and length 

and the class of categorical variables like material type in this model, the model would predict the condition 

rating of the intended pipe by showing a score between 1 to 5. This result could be used in the decision-

making process for replacement or rehabilitation and inspection prioritization too. The mentioned code is 

available upon request. 

5.9 Justification of Results 

This study’s results were consistent with the results of some studies conducted by other 

researchers. The accuracy of different developed prediction models and the significant factors affecting the 

condition of sewer pipes were investigated in the current study. Tables 5-17 and 5-18 show the comparison 

of results between this study and some similar previous studies.   

Table 5-17 Similar Results Regarding Important Parameters Affecting the Condition of Sewer Pipes 

Current Study Other Studies 

Age 

• Lubini and Fuamba (2011) 

• Tscheikner-Gratl et al. (2014) 

• Laakaso et al., (2018) 

• Malek Mohammadi (2019) 

• Atambo (2021) 

Length 

• Ana et al. (2009) 

• Khan et al. (2010) 

• Malek Mohammadi (2019) 

• Atambo (2021) 

Material 

• Davies et al. (2001) 

• Lubini and Fuamba (2011) 

• Malek Mohammadi (2019) 
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Table 5-18 Comparison of Various Models' Accuracies 

Method Current Study Other Studies 

 

 

MLR 

 

 

48% 

• Salman and Salem (2012) 

• Laakaso et al., (2018) 

• Malek Mohammadi (2019) 

• Loganathan (2021) 

• Atambo (2021) 

52% 

62% 

65% 

44% 

75% 

 

KNN 

 

70% 

• Malek Mohammadi (2019) 

• Loganathan (2021) 

83% 

83% 

DT 73% • Mazumder et. al (2021) 77% 

 

RF 

 

80% 

• Laakso et al. (2018) 

• Hernandez et al. (2018) 

• Loganathan (2021) 

62% 

63% 

94% 

AdaBoost 57% • Mazumder et. al (2021) 74% 

GBT 73% • Malek Mohammadi (2019) 87% 

XGBoost 70% • Mazumder et. al (2021) 85% 

 

5.10 Chapter Summary 

This chapter presented a detailed overview of model development and model results. The 

resampling process of the dataset was thoroughly explained. The technique of cross-validation to avoid 

overfitting was described. Firstly, the development and results of Binary Logistic Regression to create 

deterioration curves were shown. Then, the training and testing process of seven algorithms, including 

Multinomial Logistic Regression, K-Nearest Neighbors, regular Decision Tree, Random Forest, AdaBoost, 

Gradient Boosting Tree, and XGBoost, were demonstrated. The confusion matrix, ROC curve, precision, 

recall, and F1-sore metrics validated their results. Also, by comparing their performance, the best model to 

predict the condition of sewer pipes was selected, and also, significant factors affecting the condition of 

pipes were identified. Finally, practical applications and results justification of this study were discussed. 
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Chapter 6 Conclusions, Limitations, and Recommendations for Future Research 

6.1 Conclusions 

The following conclusions have been drawn due to the development of the various prediction 

models investigated in this study. Separate summaries of the development process, each model's 

outcomes, and comparison findings are provided. 

Data Collection and Resampling 

• Sewer pipe network datasets of two cities, including Dallas, TX, and Tampa, FL, were 

combined in this study. The reasons for the combination were increasing the number of 

data points to increase the model's accuracy, developing a more comprehensive model 

than previous studies, and avoiding the model's overfitting. 

• The resampling was done since the available dataset was imbalanced, resulting in the poor 

performance of the models. Various resampling approaches were examined, and SVM-

SMOTE was found to be the most useful one. 

Binary Logistic Regression 

• For the test dataset, Binary Logistic Regression obtained an overall correct prediction 

percentage of 88%. The area under the ROC curve was 0.73, which was satisfactory. 

• According to results of Binary Logistic Regression, PVC pipes deteriorate slower than other 

pipe materials. Also, longer pipes are more prone to degradation. In addition, pipes buried 

in clay have the higher deterioration rate than pipes surrounded by other soils. 

Multinomial Logistic Regression 

• F1-scores of 0.29 and 0.15 for pipes with condition ratings of 2 and 4, respectively, indicate 

the weak performance of the developed Multinomial Logistic Regression model in 

predicting these classes. The overall macro-average F1-score of 0.48 states that the 

developed MLR model was not a reliable model. 

KNN 

• An overall macro-average F1-score of 0.70 shows an acceptable performance of the 

developed KNN model for the available sewer pipes dataset. It was found that the KNN 

model had better performance for pipes with a condition rating of 5 (F1= 0.76) rather than 
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others and had the lowest accuracy in predicting pipes with a condition rating of 2 

(F1=0.60). 

Decision Tree 

• F1-scores of more than 0.7 for all classes showed that the developed Decision Tree was 

a suitable model for pipes in all five condition ratings. Overall, the Decision Tree classifier's 

model, which had a macro-average F1-score of 0.73, outperformed the KNN model. 

Random Forest 

• Random Forest was a tree-based model with a bagging approach developed in this study. 

Relatively small values in the non-diagonal cells of its confusion matrix demonstrated that 

this model had a low misclassification rate. AUC for ROC curves of all condition ratings 

was close to 1, showing the high efficiency of the model. Finally, the overall macro-average 

F1-score of 0.8 showed that the model had an outstanding performance in predicting all 

classes and outperformed the KNN and Decision Tree models. 

AdaBoost 

• AdaBoost was the first tree-based algorithm with a  Boosting approach to be tried. The 

values in non-diagonal cells of its confusion matrix were high, illustrating relatively high 

misclassification among different classes, specifically between classes 3 and 4. The 

precision and recall values of the model for pipes with a condition rating of 5, which has 

always been a sign of the model's performance, were low. Lastly, the overall macro-

average F1-score of 0.57 indicates that AdaBoost was not a suitable model for the 

available dataset. The interesting point was that AdaBoost was the only tree-based model 

in this research with weak performance. 

Gradient Boosting Tree 

• Another Boosting approach tried in this study was Gradient Boosting Tree. The values on 

diagonal elements disclosed a relatively suitable result for the developed model, 

specifically for pipes with condition ratings of 1 and 3. AUC values for all classes were 

higher than 0.9, which indicated that the model had a much more accuracy than the 
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previous boosting model. The calculated overall F1-score of 0.73 showed that this model 

had good performance. 

XGBoost 

• Last developed prediction model by machine learning methods was XGBoost model. 

Macro-average AUC value of 0.92 was close to GBT’s one. Precision value of 0.80 for 

class 1 and recall value of 0.78 for class 5 were proofs of low misclassification for a 

crowded group of pipes which are in condition rating of 1 and high ability of the model to 

capture minority group of pipes which are in condition rating of 5, respectively. The overall 

F1-score of 0.70 showed an acceptable performance of this model, finally. 

Comparison of Models 

• Overall macro-average F1-score as a summary indicator of the model’s performance was 

used to compare the developed models. The Random Forest model had the best accuracy 

in predicting the condition rating of pipes in all five conditions, with an F1-score of 0.8. In 

contrast, Multinomial Logistic Regression had the lowest accuracy with an F1-score of 

0.48. It could be seen that tree-based models had better performance than others. 

However, the Bagging approach was more efficient rather than Boosting approach. 

• Also, results of most accurate model developed in this dissertation (Random Forest) 

demonstrated that factors of age, length of pipes and pipe material had the highest effect 

on the condition ratings of sewers, which was consistent with results of Binary Logistic 

Regression model except surrounded soil type. On the other hand, pipe location (road type) 

had the least effect. 

6.2 Limitations of this Research 

The lack of a suitable dataset to create the models is the fundamental limitation of condition 

prediction modeling. As was previously mentioned, this dissertation's use of a merged dataset from two 

cities provided some advantages. However, one of the drawbacks is that certain environmental elements, 

such as the type of flow in pipes, which differs in each geographic location due to varying viscosity and 

population in different urban areas, would be neglected when the dataset was combined. Also, in the 



117 
 

dataset, sewer pipe segments' lengths were measured from manhole to manhole. The other important 

limitation of this study was the lack of information regarding the number of joints in each pipe section.  

6.3 Recommendations for Future Research 

Additional research studies could be accomplished to further improve the research work discussed 

in this dissertation. Potential future development could include but not limited to the following: 

• In this study, various resampling methods were discussed. Potential research could be 

manipulating the dataset by different resampling methods, developing the models by 

diverse machine learning procedures, and validating the efficiency of resampling methods 

using the testing results of each machine learning procedure. In this study, this process 

was done, but it has much more potential for further investigations.  

• Studies might involve sewer pipe segments with a maintenance activity history. 

• The number of joints in the inspected sewer pipe segment could be taken into account 

when developing the model. 

• The developed models of this study could be improved by including wastewater type and 

volumetric flow rate variables. 

• Consequences of failure could be considered in order to do the risk analysis.  

• Combining the dataset of more cities especially with various slopes, could result in more 

comprehensive prediction model. 

• In machine learning, hyperparameter optimization or tuning is choosing a set of optimal 

hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value 

controls the learning process. The potential research could be to investigate various tuning 

processes in order to increase the efficiency of sewer condition prediction models. 
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-2LL - -2 Log likelihood 

AC - asbestos-cement 

Adaboost - Adaptive Boosting 

AI – Artificial Intelligence 

ANN - Artificial Neural Network 

ASCE – American Society of Civil Engineers 

AUC – Area under the Curve 

AWWA – American Water Works Association 

BPNN - Backpropagation Neural Network 

CBD - central business district 

CCTV - Closed-circuit television 

CF – Clear Fork  

CI – Cast Iron 

CIPP – Cured-in-place Pipe 

COF – Consequence of Failure 

CSS – Combined Sewer Systems 

CUIRE - Center for Underground Infrastructure 

Research and Education 

DFW - Dallas Fort Worth 

DI - ductile iron 

DT – Decision Trees 

DWU - Dallas Water Utilities 

EPA – Environmental Protection Agency 

FHWA – Federal Highway Administration 

FN – False Negative 

FNR - False Negative Rate 

FP – False Positive 

FPR – False Positive Rate 

FRP -Fiberglass Reinforced Plastic 

ft - Feet 

GBT - Gradient Boosting Tree 

Gi – Gini Index 

GIS - Geographical Information System 

GPS – Global Positioning System 

HDPE - High Density Polyethylene 

in. - Inch 

k-NN – k-Nearest Neighbors 

LOF – Likelihood of Failure 

LR – Logistic Regression 

MCMC – Markov Chain Monte Carlo 

MDA – Mean Decrease Accuracy 

MDI – Mean Decrease Impurity 
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MLE – Maximum Likelihood Estimation 

MLR - Multinomial Logistic Regression 

MSE - Mean Squared Error 

NASSCO - National Association of Sewer 

Service Companies 

NRC – National Research Council Canada 

O&M - Operation and maintenance 

OMR – Operational Maintenance Rating 

OR – Odds Ratio 

OR – Overall Pipe Rating 

OSR - Operational Structural Rating  

PACP - Pipeline Assessment and Certificate 

Program 

PCCP - prestressed concrete cylinder pipe 

PCCP – Prestressed Concrete Cylinder Pipe 

PCP - polymer concrete pipe 

POF - Probability of failure 

PVC - Polyvinyl Chloride Pipe 

RCP – Reinforced Concrete Pipe 

RF - Random Forest 

RI – Rating Index 

RMSE - root mean squared error 

ROC – Receiver Operator Characteristic 

SBS – Sequential Backward Selection  

SE – Standard Error 

SFFS – Sequential Forward Floating Selection 

SFS – Sequential Forward Selection 

SPSS – IBM SPSS Statistics Packages 

SSS – Separate Sanitary Sewer and Storm 

Sewer System 

SVMs - Support Vector Machines 

TN – True Negative 

TN – True Negative  

TP – True Positive 

TPR – True Positive Rate 

U.S. – United States 

USEPA - United States Environmental 

Protection Agency 

UTA - The University of Texas at Arlington 

VCP - Vitrified clay pipe 

WRc – Water Research Center 

WSAA – Water Services Association of Australia 

XGBoost - Extreme Gradient Boosting
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If you need more data and/or Python code of developed models, please contact: 

salar.shirkhanloo@mavs.uta.edu. 

N Age Material Diameter Slope Depth Length Soil PH Soil Type Pipe 
Location 

Condition 
Rating 

1 69 RC 27 0.14 5.00 2261.24 7.9 Clay Street 1 

2 73 RC 54 0.16 6.00 2054.15 8.2 Loam Alley 1 

3 53 RC 21 0.03 6.00 1901.69 7.9 Clay Street 3 

4 18 RC 66 0.03 7.00 1844.36 7.9 Clay Alley 1 

5 55 RC 30 0.16 6.00 1771.92 8.2 Loam Street 1 

6 64 RC 30 0.16 6.00 1746.00 8.2 Loam Street 3 

7 74 RC 60 0.10 6.00 1714.24 7.9 Clay Street 3 

8 74 RC 90 0.07 10.00 1681.10 7.9 Clay Street 5 

9 44 RC 84 0.03 7.00 1634.70 7.9 Clay Street 1 

10 75 RC 72 0.08 10.00 1586.91 7.9 Clay Street 1 

11 18 RC 66 0.03 8.00 1584.52 7.9 Clay Alley 1 

12 64 RC 30 0.16 6.00 1533.89 8.2 Loam Street 3 

13 65 RC 54 0.20 10.00 1517.08 8.2 Loam Street 5 

14 72 RC 48 0.00 6.00 1484.47 8.2 Loam Street 3 

15 78 RC 24 0.55 7.00 1412.87 8.2 Loam Highway 5 

16 67 RC 30 0.50 6.00 1407.34 7.9 Clay Street 3 

17 57 VCP 8 0.30 12.00 1377.37 7.9 Clay Street 1 

18 67 RC 27 0.80 7.00 1288.34 8.2 Loam Street 3 

19 66 RC 8 0.48 7.00 1256.95 7.9 Clay Street 3 

20 61 RC 10 0.02 8.00 1251.44 8.2 Rock Alley 1 

21 73 RC 24 0.35 10.00 1251.28 8.2 Clay Street 1 

22 56 VCP 8 0.40 7.00 1227.89 7.9 Clay Street 2 

23 71 RC 36 0.06 7.00 1221.63 8.2 Loam Street 1 

24 66 RC 30 0.08 5.00 1216.43 8.2 Loam Street 5 

25 66 RC 8 1.12 5.00 1214.49 8.2 Clay Street 1 

26 48 RC 30 0.18 11.00 1208.03 8.2 Loam Alley 1 

27 49 RC 60 0.16 13.00 1204.24 8.2 Loam Alley 3 

28 65 RC 30 0.20 6.00 1195.22 8.2 Loam Street 3 

29 67 RC 30 0.50 6.00 1192.53 7.9 Clay Street 3 

30 61 VCP 24 0.03 12.00 1192.50 7.9 Clay Highway 2 

31 66 RC 30 0.01 7.00 1182.37 8.2 Loam Street 3 

32 74 RC 90 0.00 10.00 1166.03 7.9 Clay Street 5 

33 70 VCP 8 0.03 7.00 1164.51 8.2 Clay Street 1 

34 68 RC 33 0.46 10.00 1161.29 8.2 Loam Street 1 

35 54 VCP 21 0.32 15.00 1153.63 7.9 Clay Street 1 

36 65 RC 54 0.20 8.00 1150.44 8.2 Loam Street 3 

37 52 RC 30 0.01 6.00 1149.54 7.9 Clay Street 3 
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38 50 VCP 8 0.30 7.00 1148.24 6.8 Sand Street 1 

39 50 RC 6 0.01 7.00 1132.55 8.2 Loam Street 3 

40 50 RC 60 0.18 13.00 1124.80 8.2 Loam Alley 3 

41 64 RC 36 0.10 7.00 1119.67 8.2 Loam Highway 3 

42 65 VCP 8 0.30 7.00 1104.19 7.9 Clay Easement 3 

43 49 VCP 8 0.32 6.00 1089.25 5.8 Sand Street 3 

44 64 RC 24 0.12 10.00 1072.68 7.5 Clay Street 3 

45 54 RC 30 0.34 5.00 1070.55 8.2 Loam Highway 3 

46 25 RC 72 0.04 8.00 1069.34 7.9 Clay Highway 1 

47 73 RC 72 0.06 10.00 1064.00 7.9 Clay Street 5 

48 38 RC 78 0.11 13.00 1059.28 7.9 Clay Street 1 

49 75 RC 72 0.08 5.00 1055.30 7.9 Clay Alley 5 

50 38 RC 72 0.14 13.00 1053.40 7.9 Clay Alley 5 

51 61 RC 8 0.60 10.00 1050.04 7.9 Clay Easement 3 

52 65 RC 12 0.01 5.00 1042.53 8.2 Clay Easement 3 

53 63 VCP 15 0.20 5.00 1041.29 6.8 Sand Alley 1 

54 63 RC 12 0.20 8.00 1038.69 8.2 Loam Street 2 

55 50 VCP 15 0.20 11.00 1037.16 7.5 Loam Street 1 

56 54 VCP 12 0.01 12.00 1036.35 6.8 Sand Street 2 

57 49 RC 48 0.07 13.00 1032.81 8.2 Loam Street 5 

58 90 RC 42 0.10 5.00 1032.78 7.5 Clay Highway 3 

59 67 RC 39 0.28 20.00 1029.78 8.2 Loam Alley 1 

60 48 RC 30 0.18 11.00 1029.26 8.2 Loam Street 3 

61 36 RC 42 0.15 7.00 1024.02 7.9 Clay Street 3 

62 73 RC 54 0.16 6.00 1022.20 8.2 Loam Street 3 

63 67 RC 30 0.40 6.00 1016.10 7.9 Clay Street 3 

64 38 RC 78 0.11 13.00 1006.47 7.9 Clay Alley 1 

65 64 VCP 8 1.00 12.00 1002.05 7.9 Clay Highway 1 

66 60 VCP 10 0.20 15.00 998.52 7.5 Clay Street 5 

67 40 RC 60 0.03 10.00 997.39 7.5 Clay Street 3 

68 59 VCP 6 0.45 7.00 988.27 6.8 Sand Street 2 

69 41 RC 48 0.16 13.00 985.22 8.2 Loam Street 1 

70 38 RC 72 0.11 13.00 982.95 7.9 Clay Street 1 

71 53 VCP 6 1.60 7.00 981.42 8.2 Clay Street 2 

72 35 PVC 18 0.20 9.00 980.66 7.9 Clay Alley 1 

73 63 VCP 8 0.30 8.00 978.78 7.9 Clay Alley 3 

74 40 RC 54 0.03 10.00 973.87 7.5 Clay Street 5 

75 71 VCP 12 0.14 7.00 969.66 7.9 Clay Street 5 

76 67 VCP 24 0.03 5.00 965.51 7.9 Clay Street 4 

77 60 VCP 6 0.16 7.00 962.47 7.5 Clay Street 4 

78 71 RC 15 0.00 6.00 954.78 6.7 Sand Street 3 
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79 62 RC 30 0.07 5.00 954.07 8.2 Loam Alley 1 

80 58 VCP 10 0.40 11.00 952.08 7.9 Clay Alley 5 

81 68 RC 60 0.18 10.00 950.46 8.2 Loam Street 3 

82 18 RC 66 0.03 7.00 943.50 7.9 Clay Street 1 

83 37 RC 72 0.11 13.00 942.47 8.2 Loam Street 1 

84 37 RC 72 0.00 13.00 940.02 8.2 Loam Street 1 

85 58 VCP 8 0.40 5.00 937.11 6.8 Sand Street 2 

86 90 RC 42 0.10 5.00 935.18 6.7 Sand Street 3 

87 57 RC 42 0.14 8.00 930.82 8.2 Loam Alley 5 

88 63 RC 24 0.22 15.00 930.06 7.9 Clay Street 5 

89 67 VCP 10 0.60 7.00 928.68 7.9 Clay Street 5 

90 34 RC 48 0.08 10.00 917.06 7.5 Clay Street 3 

91 35 RC 48 0.08 10.00 916.42 7.5 Clay Street 1 

92 61 VCP 6 2.10 10.00 907.41 8.2 Clay Street 5 

93 37 RC 48 0.08 13.00 901.93 8.2 Loam Street 5 

94 61 VCP 12 0.02 5.00 892.76 8.2 Rock Street 1 

95 68 RC 42 0.00 10.00 890.39 8.2 Loam Street 3 

96 62 RC 8 0.01 10.00 890.22 8.2 Loam Alley 4 

97 38 RC 72 0.14 13.00 889.25 7.9 Clay Street 1 

98 78 VCP 6 1.64 8.00 889.19 8.2 Clay Street 3 

99 56 VCP 21 0.26 6.00 887.04 6.7 Sand Alley 2 

100 39 PVC 15 0.10 10.00 886.35 7.9 Clay Street 1 

101 57 VCP 6 0.12 12.00 872.95 7.9 Clay Street 3 

102 45 RC 54 0.14 5.00 871.57 6.7 Sand Street 5 

103 53 VCP 8 0.20 7.00 860.05 6.8 Sand Street 3 

104 64 RC 10 1.40 10.00 858.75 7.9 Clay Easement 3 

105 55 VCP 8 0.20 7.00 856.06 6.8 Sand Street 2 

106 29 PVC 8 0.01 8.00 849.35 7.9 Clay Street 1 

107 66 RC 27 0.16 15.00 844.40 7.9 Clay Street 5 

108 57 VCP 15 0.10 5.00 843.43 7.9 Clay Street 1 

109 47 VCP 15 0.01 8.00 838.65 8.2 Loam Street 2 

110 33 PVC 24 0.30 10.00 829.94 8.2 Clay Street 2 

111 73 RC 27 0.64 5.00 825.27 8.2 Clay Street 5 

112 84 RC 36 0.42 7.00 823.92 7.9 Clay Street 3 

113 64 VCP 15 0.28 7.00 823.28 7.5 Clay Street 2 

114 65 RC 30 0.20 6.00 821.42 8.2 Loam Street 3 

115 65 RC 54 0.30 10.00 816.23 8.2 Loam Alley 3 

116 50 VCP 10 2.00 7.00 815.00 8.2 Rock Alley 1 

117 58 VCP 8 0.01 5.00 812.95 7.9 Clay Street 2 

118 77 RC 18 0.84 10.00 812.32 8.2 Loam Alley 1 

119 63 RC 27 0.16 15.00 810.03 7.9 Clay Street 3 
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120 64 VCP 8 0.12 8.00 807.70 7.9 Clay Street 5 

121 64 RC 24 0.12 10.00 805.38 6.7 Sand Street 3 

122 42 PVC 15 0.01 10.00 802.72 6.5 Sand Easement 1 

123 21 PVC 18 0.07 6.00 801.57 7.9 Clay Street 1 

124 78 VCP 12 0.70 7.00 798.33 8.2 Clay Alley 1 

125 72 RC 8 1.00 7.00 796.06 7.9 Clay Alley 1 

126 71 RC 15 0.01 7.00 785.50 8.2 Clay Highway 1 

127 58 VCP 10 0.16 7.00 783.44 7.9 Clay Highway 3 

128 74 RC 78 0.06 10.00 783.29 7.9 Clay Street 5 

129 48 VCP 6 0.99 7.00 781.96 6.8 Sand Alley 1 

130 58 VCP 18 0.12 5.00 781.77 7.9 Clay Street 1 

131 74 RC 90 0.07 10.00 777.79 7.9 Clay Alley 5 

132 89 RC 6 0.60 7.00 776.67 7.9 Clay Alley 4 

133 52 VCP 6 0.02 8.00 774.65 8.2 Rock Street 5 

134 59 RC 18 0.22 7.00 773.71 6.8 Sand Street 4 

135 70 VCP 8 0.30 5.00 772.48 7.5 Clay Street 1 

136 54 VCP 8 0.20 8.00 770.75 6.8 Sand Street 1 

137 53 VCP 6 0.40 5.00 769.80 6.8 Sand Alley 1 

138 34 PVC 18 1.00 5.00 767.98 8.2 Clay Street 1 

139 66 RC 30 0.40 7.00 767.03 8.2 Loam Highway 1 

140 36 PVC 8 2.80 7.00 766.68 8.2 Clay Street 1 

141 81 RC 8 0.35 8.00 765.92 8.2 Clay Street 4 

142 56 RC 8 0.40 7.00 765.17 8.2 Clay Street 1 

143 71 RC 8 1.60 8.00 762.38 7.9 Clay Street 4 

144 65 RC 54 0.20 8.00 756.52 8.2 Loam Easement 5 

145 68 RC 33 0.10 6.00 753.54 7.5 Loam Street 4 

146 48 RC 30 0.34 11.00 752.64 8.2 Loam Easement 1 

147 39 PVC 15 0.10 10.00 752.50 7.9 Clay Street 1 

148 57 VCP 15 0.10 5.00 752.42 7.9 Clay Street 1 

149 13 PVC 24 0.75 10.00 751.95 8.2 Clay Street 1 

150 18 RC 66 0.03 7.00 751.57 7.9 Clay Street 1 

151 57 VCP 12 0.35 6.00 751.26 8.2 Clay Street 1 

152 39 RC 66 0.00 13.00 750.92 8.2 Loam Highway 1 

153 65 RC 30 0.20 5.00 749.54 8.2 Loam Street 3 

154 65 RC 10 2.20 8.00 745.24 8.2 Loam Street 5 

155 34 PVC 18 0.32 5.00 744.58 8.2 Clay Easement 1 

156 54 RC 10 0.40 10.00 741.78 8.2 Rock Street 3 

157 57 VCP 15 0.10 8.00 739.18 7.9 Clay Alley 4 

158 40 RC 66 0.09 13.00 739.03 8.2 Loam Alley 1 

159 30 PVC 10 1.00 7.00 736.11 7.9 Clay Street 1 

160 61 VCP 24 0.03 12.00 734.77 7.9 Clay Street 1 
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161 64 RC 30 0.16 6.00 733.58 8.2 Loam Street 5 

162 67 RC 39 0.26 7.00 725.50 8.2 Loam Alley 1 

163 73 RC 24 0.35 10.00 719.70 8.2 Clay Alley 5 

164 54 RC 8 0.02 7.00 713.06 5.3 Sand Alley 3 

165 62 VCP 6 0.70 12.00 710.81 7.9 Clay Street 2 

166 65 RC 8 1.60 10.00 709.79 8.2 Clay Street 3 

167 65 VCP 8 0.40 12.00 709.70 7.9 Clay Alley 3 

168 39 RC 54 0.00 13.00 709.61 8.2 Loam Street 1 

169 49 VCP 15 0.50 12.00 709.30 7.9 Clay Highway 1 

170 60 VCP 8 0.20 5.00 707.55 7.9 Clay Street 5 

171 70 VCP 12 0.01 5.00 703.58 8.2 Clay Alley 1 

172 78 VCP 12 1.20 5.00 699.96 8.2 Clay Easement 2 

173 36 PVC 24 0.66 7.00 697.45 8.2 Clay Street 3 

174 50 VCP 6 0.90 5.00 695.64 6.8 Sand Easement 3 

175 55 VCP 10 0.08 6.00 695.50 5.8 Sand Easement 3 

176 43 PVC 8 0.01 7.00 695.45 8.2 Clay Street 1 

177 71 RC 8 0.40 7.00 694.68 7.9 Clay Street 1 

178 62 VCP 8 0.60 8.00 693.58 8.2 Clay Street 1 

179 63 VCP 15 0.20 7.00 693.48 7.9 Clay Street 3 

180 43 PVC 12 0.20 7.00 692.66 6.7 Sand Street 5 

181 70 RC 48 0.20 10.00 691.70 8.2 Loam Street 5 

182 60 RC 8 0.50 5.00 691.59 8.2 Clay Highway 1 

183 61 RC 6 1.20 5.00 690.54 8.2 Clay Street 3 

184 68 RC 33 0.10 6.00 690.26 7.5 Loam Street 3 

185 56 VCP 8 0.01 5.00 686.98 6.8 Sand Street 3 

186 79 VCP 6 1.00 7.00 686.14 8.2 Clay Street 1 

187 34 PVC 8 1.16 7.00 684.95 7.9 Clay Street 1 

188 66 VCP 8 0.32 7.00 684.23 7.9 Clay Street 5 

189 27 RC 42 0.10 6.00 681.27 7.9 Clay Alley 5 

190 37 PVC 12 0.50 15.00 679.79 7.9 Clay Street 1 

191 54 VCP 8 0.02 5.00 678.01 6.8 Sand Street 5 

192 58 RC 33 0.01 6.00 677.08 8.2 Loam Street 1 

193 65 RC 27 0.48 7.00 675.57 8.2 Loam Alley 3 

194 39 PVC 8 0.40 5.00 673.57 6.8 Sand Street 1 

195 45 RC 48 0.04 10.00 671.94 6.7 Sand Easement 3 

196 38 PVC 8 0.02 5.00 668.76 8.2 Clay Street 1 

197 61 VCP 18 0.26 7.00 667.81 6.8 Sand Street 1 

198 63 RC 8 0.80 7.00 667.66 7.9 Clay Street 1 

199 59 VCP 10 0.10 5.00 666.78 6.8 Sand Alley 1 

200 18 PVC 8 0.02 5.00 665.99 8.2 Clay Easement 1 

201 70 VCP 8 0.65 10.00 665.93 8.2 Clay Street 5 
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202 44 RC 60 0.05 5.00 665.52 7.9 Clay Highway 5 

203 51 VCP 18 0.15 15.00 664.08 7.9 Clay Easement 1 

204 45 PVC 6 4.00 5.00 661.10 8.2 Clay Street 1 

205 15 PVC 10 0.30 10.00 660.26 8.2 Rock Highway 1 

206 26 PVC 8 0.75 8.00 658.14 7.9 Clay Street 1 

207 18 RC 66 0.03 7.00 657.26 7.9 Clay Street 1 

208 66 VCP 8 0.32 7.00 656.69 7.9 Clay Street 2 

209 79 RC 8 0.40 8.00 655.52 7.9 Clay Street 1 

210 65 RC 30 0.20 6.00 655.38 8.2 Loam Street 3 

211 63 RC 10 1.10 8.00 652.15 8.2 Clay Street 1 

212 42 PVC 15 0.38 10.00 651.20 7.5 Clay Street 1 

213 53 VCP 8 0.01 7.00 651.07 6.8 Sand Alley 5 

214 30 PVC 8 0.80 7.00 650.59 8.2 Clay Street 1 

215 36 PVC 8 2.20 6.00 649.95 7.9 Clay Street 1 

216 18 RC 66 0.03 5.00 649.60 7.9 Clay Highway 1 

217 73 RC 60 0.10 6.00 649.08 7.9 Clay Alley 3 

218 27 PVC 8 0.01 6.00 648.61 8.2 Clay Street 1 

219 54 VCP 8 0.30 8.00 645.89 6.8 Sand Street 5 

220 66 VCP 15 0.40 7.00 642.71 7.9 Clay Street 1 

221 70 VCP 18 0.29 7.00 639.80 7.9 Clay Street 5 

222 27 PVC 24 0.30 10.00 638.90 8.2 Loam Street 1 

223 38 PVC 10 0.33 5.00 638.31 6.8 Sand Street 4 

224 27 PVC 8 0.76 7.00 637.30 8.2 Clay Alley 5 

225 49 VCP 12 0.12 6.00 637.24 5.8 Sand Street 1 

226 21 PVC 15 0.68 7.00 635.53 8.2 Loam Street 1 

227 39 PVC 6 0.65 7.00 633.20 6.8 Sand Highway 1 

228 66 VCP 12 0.24 7.00 632.89 7.9 Clay Street 1 

229 8 PVC 12 0.20 5.00 632.75 7.9 Clay Street 1 

230 78 RC 8 0.40 8.00 629.51 8.2 Clay Street 5 

231 62 RC 6 0.01 8.00 624.96 8.2 Loam Street 1 

232 62 VCP 8 0.01 5.00 624.89 6.8 Sand Street 5 

233 29 PVC 18 0.01 8.00 624.73 7.9 Clay Street 1 

234 64 RC 12 1.00 8.00 623.66 8.2 Clay Alley 1 

235 65 RC 8 0.40 10.00 622.54 8.2 Rock Street 5 

236 66 VCP 15 1.20 7.00 622.35 7.9 Clay Street 1 

237 31 PVC 12 0.30 5.00 621.14 7.9 Clay Alley 1 

238 74 RC 90 0.05 10.00 620.09 7.9 Clay Street 5 

239 66 RC 27 0.30 6.00 619.34 7.9 Clay Street 1 

240 80 RC 10 0.02 10.00 618.42 8.2 Clay Street 3 

241 59 RC 12 0.90 13.00 617.19 8.2 Rock Alley 1 

242 64 VCP 8 0.12 8.00 617.01 7.9 Clay Street 5 
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243 50 RC 60 0.16 6.00 616.85 7.9 Clay Street 1 

244 67 RC 10 1.00 10.00 616.47 8.2 Clay Street 1 

245 61 VCP 8 0.02 7.00 615.41 8.2 Clay Alley 5 

246 24 PVC 8 1.00 7.00 613.81 8.2 Clay Street 1 

247 46 VCP 6 0.60 5.00 613.40 7.9 Clay Street 1 

248 61 RC 8 0.03 10.00 612.48 8.2 Loam Street 1 

249 47 VCP 15 0.78 8.00 612.37 8.2 Loam Street 2 

250 62 RC 8 0.36 5.00 611.44 7.9 Clay Highway 3 

251 61 VCP 6 0.40 8.00 610.54 8.2 Clay Street 1 

252 49 VCP 10 1.10 10.00 609.09 8.2 Rock Street 1 

253 61 RC 15 0.02 13.00 607.95 8.2 Rock Highway 1 

254 67 VCP 24 0.07 7.00 607.54 7.9 Clay Street 4 

255 72 RC 8 1.00 7.00 603.61 8.2 Clay Street 1 

256 33 PVC 8 0.60 5.00 602.72 6.5 Sand Alley 5 

257 73 RC 60 0.09 10.00 602.52 7.9 Clay Street 3 

258 41 PVC 12 0.01 5.00 600.51 8.2 Loam Easement 1 

259 57 RC 18 0.01 7.00 599.68 8.2 Loam Highway 3 

260 47 VCP 6 0.02 8.00 599.11 8.2 Rock Street 2 

261 12 PVC 18 0.12 7.00 599.09 7.9 Clay Street 1 

262 72 RC 8 0.50 7.00 598.26 8.2 Clay Street 1 

263 61 VCP 18 0.20 7.00 597.65 6.8 Sand Highway 1 

264 67 VCP 27 0.50 7.00 596.99 7.9 Clay Street 1 

265 37 PVC 6 0.50 5.00 595.06 7.9 Clay Street 1 

266 27 PVC 8 1.00 10.00 594.46 7.9 Clay Highway 1 

267 65 RC 10 0.25 5.00 594.25 8.2 Loam Street 1 

268 16 PVC 24 0.40 7.00 594.21 7.9 Clay Street 1 

269 10 PVC 12 0.50 5.00 594.16 8.2 Clay Alley 1 

270 69 RC 10 0.20 7.00 593.98 7.9 Clay Street 3 

271 68 VCP 10 0.20 8.00 593.76 7.5 Clay Street 4 

272 23 PVC 8 0.45 5.00 592.54 8.2 Clay Easement 1 

273 67 RC 33 0.24 16.00 591.69 8.2 Loam Highway 3 

274 27 PVC 12 2.17 10.00 590.95 8.2 Loam Easement 1 

275 63 VCP 8 0.50 10.00 589.71 7.9 Clay Street 1 

276 67 VCP 8 0.00 10.00 589.56 8.2 Rock Street 5 

277 40 PVC 8 1.60 5.00 588.21 8.2 Clay Street 1 

278 11 PVC 18 0.11 5.00 588.20 8.2 Loam Street 1 

279 67 RC 24 0.82 10.00 587.89 8.2 Loam Street 3 

280 37 PVC 8 0.60 7.00 586.93 8.2 Clay Alley 1 

281 64 RC 24 0.12 6.00 586.34 7.5 Clay Street 3 

282 77 RC 8 0.01 8.00 584.49 8.2 Rock Street 5 

283 29 PVC 8 1.36 8.00 584.43 8.2 Clay Alley 1 
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284 24 PVC 12 0.20 8.00 583.69 7.9 Clay Street 1 

285 34 PVC 8 0.72 10.00 583.22 7.9 Clay Highway 1 

286 71 RC 8 0.02 5.00 581.43 8.2 Clay Street 4 

287 59 RC 8 0.03 8.00 581.34 8.2 Rock Street 5 

288 14 PVC 8 0.61 15.00 581.22 7.9 Clay Alley 1 

289 55 RC 6 0.80 7.00 580.97 6.8 Sand Street 3 

290 66 RC 33 0.10 6.00 580.41 8.2 Clay Street 1 

291 36 PVC 10 0.60 6.00 580.11 7.9 Clay Street 1 

292 36 PVC 15 0.10 10.00 579.79 7.5 Loam Street 1 

293 12 PVC 12 0.15 7.00 578.88 7.9 Clay Street 1 

294 22 PVC 12 0.40 7.00 577.62 7.5 Loam Street 1 

295 68 VCP 8 0.20 5.00 576.69 7.5 Clay Street 1 

296 50 VCP 8 0.01 5.00 576.66 6.7 Sand Street 1 

297 77 RC 18 0.70 10.00 576.44 8.2 Loam Easement 1 

298 59 VCP 10 0.10 6.00 575.35 7.5 Clay Alley 1 

299 43 RC 54 0.07 5.00 572.12 8.2 Loam Alley 5 

300 30 PVC 24 0.36 7.00 569.47 7.5 Clay Street 1 

301 90 RC 42 0.10 7.00 569.08 6.7 Sand Street 1 

302 34 PVC 15 0.16 10.00 568.70 6.85 Loam Street 1 

303 91 RC 33 0.68 5.00 568.68 8.2 Loam Street 3 

304 84 RC 36 0.42 7.00 567.80 7.9 Clay Alley 3 

305 38 PVC 6 1.60 7.00 564.72 6.8 Sand Street 1 

306 27 PVC 10 0.36 16.00 564.62 7.9 Clay Street 1 

307 72 RC 8 0.03 5.00 563.93 8.2 Clay Street 5 

308 25 PVC 8 1.65 5.00 563.77 8.2 Clay Street 1 

309 52 VCP 15 0.10 6.00 563.68 5.8 Sand Street 1 

310 77 RC 6 0.09 7.00 563.34 8.2 Rock Street 5 

311 21 PVC 12 0.47 5.00 562.40 7.9 Clay Alley 1 

312 61 VCP 24 0.03 11.00 561.36 7.9 Clay Street 1 

313 55 VCP 8 0.60 10.00 560.86 6.8 Sand Street 5 

314 36 PVC 12 0.20 8.00 559.28 7.9 Clay Alley 1 

315 74 RC 72 0.08 10.00 558.93 7.9 Clay Street 5 

316 78 RC 18 0.36 7.00 557.48 8.2 Loam Street 5 

317 43 PVC 6 0.02 5.00 557.43 8.2 Clay Highway 1 

318 75 RC 8 1.60 7.00 557.20 8.2 Clay Easement 1 

319 35 PVC 10 0.30 15.00 557.03 7.9 Clay Highway 1 

320 66 RC 8 0.40 8.00 556.72 7.9 Clay Alley 3 

321 65 RC 54 0.20 10.00 555.85 8.2 Loam Easement 3 

322 50 VCP 12 1.20 7.00 555.51 5.3 Sand Street 1 

323 70 VCP 10 0.20 15.00 554.27 7.5 Clay Street 5 

324 62 VCP 10 0.20 7.00 554.05 6.8 Sand Alley 2 
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325 21 PVC 12 0.47 5.00 553.82 7.9 Clay Highway 1 

326 89 VCP 6 1.00 5.00 552.17 8.2 Clay Street 4 

327 66 VCP 8 0.02 5.00 549.57 8.2 Rock Street 1 

328 20 PVC 18 0.50 5.00 549.45 8.2 Loam Street 1 

329 15 PVC 20 0.20 10.00 548.95 7.9 Clay Street 1 

330 59 RC 15 1.06 10.00 548.55 8.2 Loam Street 1 

331 51 VCP 12 0.40 10.00 547.87 7.9 Clay Alley 3 

332 81 RC 8 0.33 7.00 546.95 7.9 Clay Highway 5 

333 24 PVC 8 0.42 6.00 546.61 7.5 Clay Highway 1 

334 48 VCP 6 2.20 10.00 546.56 8.2 Rock Street 4 

335 40 PVC 15 0.30 10.00 545.52 7.5 Loam Street 1 

336 24 PVC 8 0.40 7.00 544.73 8.2 Clay Street 1 

337 70 RC 33 0.01 7.00 544.65 8.2 Loam Alley 5 

338 51 VCP 8 0.00 5.00 542.81 8.2 Clay Street 5 

339 66 RC 24 0.42 7.00 542.17 8.2 Loam Street 1 

340 25 PVC 8 0.50 7.00 541.99 7.9 Clay Street 4 

341 41 PVC 10 0.40 15.00 541.76 7.9 Clay Highway 1 

342 22 PVC 8 2.20 7.00 540.73 8.2 Clay Street 1 

343 90 RC 42 0.10 7.00 540.48 6.7 Sand Street 3 

344 59 RC 6 0.06 7.00 539.73 8.2 Rock Easement 2 

345 11 PVC 42 0.21 7.00 537.98 8.2 Loam Street 3 

346 25 PVC 30 0.08 7.00 536.83 8.2 Loam Street 1 

347 50 VCP 8 0.30 11.00 535.96 6.7 Sand Street 1 

348 63 RC 8 0.02 7.00 535.91 8.2 Rock Street 1 

349 66 RC 24 0.60 7.00 535.00 8.2 Loam Highway 3 

350 51 RC 8 0.50 10.00 534.84 7.9 Clay Street 1 

351 35 PVC 8 0.80 10.00 534.67 6.8 Sand Street 1 

352 34 PVC 8 0.40 15.00 533.31 7.9 Clay Street 1 

353 35 PVC 8 0.50 7.00 532.46 8.2 Clay Easement 1 

354 48 VCP 12 2.40 7.00 532.37 6.7 Sand Street 1 

355 60 RC 6 1.20 8.00 531.80 8.2 Clay Easement 3 

356 66 RC 30 0.08 5.00 531.44 8.2 Loam Street 1 

357 18 PVC 8 0.40 8.00 530.72 8.2 Clay Street 1 

358 54 VCP 15 0.30 10.00 530.38 7.9 Clay Street 1 

359 36 PVC 24 0.76 5.00 530.35 8.2 Clay Street 1 

360 40 PVC 6 0.48 7.00 529.50 7.9 Clay Street 1 

361 25 PVC 8 1.20 5.00 529.08 7.9 Clay Highway 1 

362 59 VCP 12 0.14 13.00 526.98 7.9 Clay Street 1 

363 38 PVC 8 1.33 5.00 526.54 8.2 Clay Street 1 

364 71 VCP 8 0.20 8.00 526.02 7.5 Clay Alley 1 

365 24 PVC 8 0.46 7.00 525.14 7.9 Clay Alley 1 
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366 16 PVC 8 0.33 7.00 524.91 8.2 Clay Street 1 

367 49 VCP 6 0.02 10.00 524.30 8.2 Clay Street 1 

368 29 PVC 8 0.02 5.00 523.00 7.9 Clay Street 1 

369 45 VCP 12 0.36 10.00 522.94 7.9 Clay Street 1 

370 26 VCP 30 0.20 14.06 522.59 5.4 Gravel Alley 1 

371 23 PVC 8 0.50 5.00 522.41 8.2 Clay Street 1 

372 10 PVC 8 0.84 7.00 522.39 7.9 Clay Street 1 

373 64 RC 36 0.10 7.00 521.94 8.2 Loam Street 1 

374 24 PVC 8 2.20 7.00 521.35 8.2 Clay Street 1 

375 54 VCP 15 0.30 10.00 520.96 7.9 Clay Street 1 

376 25 PVC 8 1.23 5.00 520.08 8.2 Clay Highway 1 

377 22 PVC 12 0.40 7.00 519.95 7.5 Loam Street 1 

378 47 VCP 15 1.80 10.00 519.32 8.2 Loam Highway 1 

379 16 PVC 12 0.20 7.00 518.74 7.9 Clay Easement 5 

380 68 RC 8 1.06 7.00 518.68 7.9 Clay Highway 5 

381 27 PVC 8 0.90 8.00 517.74 7.5 Clay Alley 1 

382 74 RC 36 0.20 10.00 517.18 6.7 Sand Street 3 

383 22 PVC 8 0.34 6.00 516.97 7.9 Clay Street 1 

384 45 VCP 15 0.01 7.00 516.47 7.5 Loam Street 1 

385 48 VCP 12 0.20 11.00 515.93 7.9 Clay Street 3 

386 37 PVC 6 0.80 12.00 515.79 7.5 Clay Street 1 

387 47 VCP 8 0.02 8.00 515.12 8.2 Rock Street 5 

388 51 VCP 8 3.00 7.00 514.20 6.5 Sand Street 3 

389 46 VCP 6 0.60 7.00 513.94 8.2 Clay Alley 1 

390 23 PVC 8 0.66 5.00 512.87 8.2 Loam Street 1 

391 61 RC 54 0.40 8.00 512.62 8.2 Loam Highway 3 

392 58 RC 21 3.60 10.00 512.07 7.9 Clay Street 5 

393 41 PVC 8 0.52 10.00 511.24 7.9 Clay Street 1 

394 90 RC 42 0.10 7.00 510.76 7.5 Clay Street 3 

395 89 VCP 8 0.30 10.00 509.07 8.2 Clay Alley 5 

396 75 RC 42 0.10 5.00 508.57 7.5 Clay Street 5 

397 17 PVC 8 1.40 5.00 507.55 8.2 Clay Street 1 

398 40 VCP 10 0.30 10.00 507.48 6.85 Loam Street 1 

399 63 RC 6 0.60 8.00 507.32 8.2 Loam Street 1 

400 17 PVC 8 1.40 15.00 506.69 7.9 Clay Alley 1 

401 67 VCP 27 0.50 7.00 506.57 7.9 Clay Alley 1 

402 73 RC 15 0.36 5.00 506.46 8.2 Clay Street 1 

403 22 PVC 12 0.40 7.00 506.22 7.9 Clay Street 1 

404 48 VCP 6 0.50 7.00 504.82 8.2 Loam Highway 3 

405 23 PVC 8 0.56 8.00 504.64 7.9 Clay Street 1 

406 18 PVC 8 2.30 8.00 504.53 8.2 Rock Easement 1 
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407 61 VCP 8 0.30 10.00 503.57 7.9 Clay Street 1 

408 67 RC 27 0.58 7.00 503.25 8.2 Loam Highway 3 

409 23 PVC 8 1.00 5.00 503.01 7.9 Clay Street 2 

410 35 PVC 8 0.40 15.00 502.66 7.9 Clay Street 1 

411 15 PVC 8 0.40 6.00 501.27 7.9 Clay Street 1 

412 53 RC 39 0.47 11.00 501.18 8.2 Loam Street 1 

413 12 PVC 8 2.08 8.00 500.78 8.2 Clay Street 1 

414 73 RC 54 0.16 6.00 500.73 8.2 Loam Street 5 

415 11 PVC 8 0.35 8.00 500.45 8.2 Clay Street 1 

416 40 PVC 6 0.60 10.00 500.39 6.85 Loam Street 1 

417 70 VCP 8 0.02 7.00 500.36 8.2 Clay Highway 5 

418 8 PVC 12 0.20 7.00 500.24 6.8 Sand Alley 1 

419 18 PVC 8 0.00 19.54 500.02 6.5 Sand Highway 3 

420 12 PVC 8 1.66 8.00 499.88 8.2 Clay Street 5 

421 11 PVC 8 3.80 8.00 499.71 8.2 Clay Highway 1 

422 21 PVC 8 2.00 5.00 499.62 8.2 Clay Street 1 

423 14 PVC 8 2.00 5.00 499.32 7.9 Clay Street 1 

424 33 PVC 10 1.28 10.00 499.09 8.2 Clay Street 1 

425 21 PVC 8 0.28 7.00 498.80 7.5 Clay Street 1 

426 14 PVC 8 0.48 7.00 498.76 7.5 Clay Alley 1 

427 18 PVC 12 1.78 7.00 498.25 8.2 Clay Street 1 

428 27 PVC 8 0.45 5.00 497.98 8.2 Clay Street 1 

429 24 PVC 8 1.90 6.00 497.60 8.2 Clay Street 1 

430 13 PVC 8 1.50 7.00 497.33 8.2 Clay Street 1 

431 14 PVC 12 1.06 7.00 497.11 6.7 Sand Street 1 

432 47 VCP 8 1.30 10.00 496.91 7.9 Clay Street 5 

433 47 VCP 12 0.60 7.00 496.84 8.2 Loam Street 1 

434 18 PVC 8 1.50 5.00 496.83 7.9 Clay Street 2 

435 18 PVC 12 0.30 5.00 496.73 8.2 Clay Street 1 

436 60 VCP 21 0.10 7.00 495.92 7.9 Clay Highway 1 

437 21 PVC 10 0.50 7.00 495.81 7.5 Clay Street 1 

438 18 RC 66 0.03 8.00 495.76 7.9 Clay Street 3 

439 35 PVC 15 0.60 10.00 495.72 7.5 Clay Street 1 

440 66 VCP 8 3.50 7.00 495.71 8.2 Rock Alley 1 

441 10 PVC 8 0.50 7.00 495.70 8.2 Clay Street 1 

442 44 PVC 8 0.30 10.00 495.56 8.2 Loam Street 1 

443 48 VCP 6 4.03 8.00 495.54 8.2 Clay Street 1 

444 14 PVC 12 1.12 5.00 495.46 8.2 Clay Street 1 

445 17 PVC 8 1.80 10.00 495.00 8.2 Clay Alley 1 

446 21 PVC 8 1.40 5.00 493.73 7.9 Clay Highway 1 

447 35 PVC 8 1.20 5.00 493.69 6.8 Sand Alley 1 
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448 59 RC 12 0.62 13.00 493.55 8.2 Rock Street 3 

449 67 VCP 8 0.30 7.00 492.53 7.5 Clay Street 2 

450 47 VCP 6 0.60 8.00 492.44 8.2 Clay Alley 1 

451 49 VCP 10 0.30 5.00 492.14 6.8 Sand Easement 1 

452 17 PVC 8 1.58 7.00 491.74 8.2 Clay Street 1 

453 55 RC 15 1.20 7.00 491.61 8.2 Loam Street 3 

454 11 PVC 8 3.00 6.00 491.35 7.9 Clay Street 1 

455 20 PVC 8 1.91 10.00 491.27 7.9 Clay Street 1 

456 35 PVC 8 0.80 10.00 491.22 8.2 Rock Street 1 

457 65 RC 24 0.50 7.00 491.16 8.2 Loam Alley 1 

458 63 VCP 15 0.12 5.00 491.07 6.8 Sand Street 3 

459 42 PVC 15 0.26 10.00 490.96 7 Loam Street 1 

460 78 RC 21 0.70 10.00 490.61 8.2 Loam Easement 1 

461 20 PVC 8 1.42 5.00 490.60 7.9 Clay Alley 1 

462 61 VCP 24 0.03 12.00 489.57 7.9 Clay Street 1 

463 56 VCP 8 0.25 7.00 488.22 7.5 Loam Alley 4 

464 62 RC 8 0.36 8.00 486.77 7.9 Clay Alley 3 

465 66 RC 10 0.36 5.00 486.47 8.2 Loam Street 1 

466 47 VCP 15 0.83 10.00 486.35 7.9 Clay Street 1 

467 29 PVC 8 0.02 10.00 486.22 7.9 Clay Alley 1 

468 11 PVC 8 1.06 7.00 486.18 6.8 Sand Street 1 

469 23 PVC 8 0.81 8.00 485.71 8.2 Clay Street 1 

470 22 PVC 12 0.56 7.00 485.49 7.9 Clay Street 1 

471 14 PVC 8 0.35 5.00 485.07 8.2 Clay Street 1 

472 21 PVC 8 0.72 7.00 484.74 8.2 Loam Highway 1 

473 65 RC 54 0.20 6.00 484.41 8.2 Loam Street 3 

474 54 RC 18 0.48 15.00 484.14 7.9 Clay Street 1 

475 45 VCP 10 0.18 6.00 482.81 5.5 Sand Alley 1 

476 36 PVC 6 2.40 8.00 482.53 6.8 Sand Street 1 

477 63 VCP 8 5.00 7.00 481.48 8.2 Clay Street 1 

478 64 VCP 8 0.30 15.00 481.15 7.5 Clay Street 4 

479 12 PVC 8 0.33 5.00 481.09 6.7 Sand Street 1 

480 29 PVC 48 0.20 10.00 480.49 8.2 Loam Street 1 

481 43 PVC 12 0.24 15.00 480.16 6.7 Sand Street 1 

482 9 PVC 12 0.20 8.00 479.98 6.7 Sand Street 1 

483 18 PVC 8 1.69 7.00 479.96 8.2 Clay Street 5 

484 54 VCP 18 0.48 15.00 479.87 7.9 Clay Street 1 

485 36 PVC 15 0.40 10.00 478.68 8.2 Loam Street 1 

486 17 PVC 10 0.26 5.00 478.65 7.5 Clay Street 1 

487 40 PVC 10 0.01 6.00 476.89 5.8 Sand Easement 5 

488 22 PVC 8 0.60 5.00 476.76 7.9 Clay Alley 1 
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489 72 RC 8 0.02 7.00 476.64 7.9 Clay Street 1 

490 70 VCP 12 0.01 7.00 476.43 8.2 Clay Street 5 

491 21 PVC 8 1.12 7.00 476.27 7.9 Clay Street 1 

492 44 PVC 12 0.08 6.00 475.21 5.8 Sand Street 1 

493 61 VCP 6 0.71 5.00 474.62 6.8 Sand Street 5 

494 67 VCP 8 0.30 10.00 474.52 7.9 Clay Highway 5 

495 12 PVC 8 0.33 5.00 474.40 6.7 Sand Street 1 

496 25 PVC 8 1.51 8.00 474.02 8.2 Loam Street 1 

497 75 RC 8 1.20 7.00 473.27 7.9 Clay Street 1 

498 12 PVC 8 0.75 6.00 472.75 7.9 Clay Street 1 

499 66 RC 30 0.16 7.00 472.61 7.9 Clay Alley 4 

500 18 PVC 8 2.24 8.00 472.54 8.2 Clay Highway 1 

501 53 VCP 10 1.00 10.00 472.49 7 Loam Easement 1 

502 71 RC 12 0.60 10.00 472.14 6.7 Sand Alley 1 

503 13 PVC 15 0.15 8.00 471.09 7.9 Clay Alley 1 

504 12 PVC 18 0.12 10.00 470.92 7.9 Clay Street 1 

505 20 PVC 8 1.39 4.00 470.81 8.2 Clay Street 1 

506 84 RC 36 0.42 7.00 470.72 7.9 Clay Easement 3 

507 18 PVC 8 0.40 7.00 470.40 7.9 Clay Street 1 

508 57 VCP 10 0.50 8.00 469.73 8.2 Loam Street 1 

509 59 RC 10 0.40 7.00 469.38 6.8 Sand Alley 2 

510 58 RC 6 0.60 10.00 468.93 7.9 Clay Street 1 

511 26 PVC 8 0.01 6.00 467.72 8.2 Clay Street 1 

512 18 PVC 10 0.25 5.00 467.36 7.9 Clay Street 1 

513 67 RC 30 0.64 8.00 467.06 8.2 Loam Easement 3 

514 30 PVC 8 0.50 6.00 466.75 7.9 Clay Street 1 

515 43 PVC 8 0.34 8.00 466.12 7.9 Clay Street 1 

516 17 PVC 8 0.75 15.00 465.77 7.9 Clay Highway 1 

517 73 VCP 8 0.40 7.00 465.64 6.7 Sand Street 1 

518 56 VCP 10 1.70 7.00 465.60 8.2 Loam Street 1 

519 64 RC 24 0.12 10.00 465.47 6.7 Sand Alley 1 

520 54 VCP 21 0.34 15.00 464.55 7.9 Clay Street 1 

521 51 VCP 8 1.00 7.00 464.39 7.9 Clay Alley 1 

522 24 PVC 8 0.60 3.00 463.68 8.2 Clay Street 1 

523 15 PVC 8 0.40 5.00 463.09 6.8 Sand Street 1 

524 68 VCP 8 0.40 7.00 462.26 8.2 Loam Street 2 

525 64 VCP 8 0.28 8.00 462.17 8.2 Loam Street 5 

526 72 VCP 8 0.03 5.00 461.81 8.2 Loam Street 5 

527 54 VCP 8 0.20 5.00 461.68 6.8 Sand Street 1 

528 62 VCP 12 0.50 12.00 461.06 7.9 Clay Street 3 

529 56 VCP 8 0.20 5.00 461.05 6.8 Sand Highway 1 
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530 40 PVC 6 1.20 7.00 460.90 8.2 Loam Street 2 

531 50 VCP 15 0.01 7.00 459.81 6.8 Sand Street 1 

532 16 PVC 8 1.33 5.00 458.70 7.9 Clay Street 1 

533 43 RC 54 0.06 8.00 458.60 7.9 Clay Easement 5 

534 67 VCP 24 0.03 8.00 458.33 7.9 Clay Street 3 

535 21 PVC 8 0.50 5.00 457.96 7.9 Clay Easement 1 

536 24 PVC 8 0.73 6.00 457.95 7.5 Clay Street 1 

537 23 PVC 8 1.10 6.00 457.64 7.9 Clay Street 1 

538 72 RC 8 0.35 7.00 457.58 7.9 Clay Street 5 

539 70 VCP 8 1.76 7.00 457.42 8.2 Clay Street 4 

540 25 PVC 8 0.60 7.00 457.11 7.5 Clay Alley 1 

541 79 RC 30 0.06 5.00 456.84 7.9 Clay Street 1 

542 15 PVC 8 0.75 10.00 456.62 7 Loam Street 1 

543 33 PVC 8 0.74 6.00 456.34 7.9 Clay Street 1 

544 13 PVC 15 0.60 7.00 456.20 7.9 Clay Street 1 

545 23 PVC 8 1.12 8.00 455.93 7.9 Clay Street 1 

546 61 RC 6 0.60 10.00 455.76 8.2 Clay Street 1 

547 35 PVC 18 0.50 15.00 454.85 7.5 Clay Easement 1 

548 63 RC 27 0.32 6.00 452.92 7.9 Clay Street 1 

549 15 PVC 8 0.40 7.00 452.52 7.9 Clay Street 1 

550 46 VCP 6 2.40 8.00 451.90 8.2 Loam Easement 1 

551 55 VCP 10 0.60 7.00 451.50 7.9 Clay Street 1 

552 67 RC 30 0.20 15.00 451.14 7.9 Clay Street 5 

553 15 PVC 18 0.30 5.00 450.84 8.2 Loam Easement 1 

554 41 PVC 6 2.20 8.00 450.82 8.2 Rock Street 1 

555 59 VCP 10 0.90 5.00 450.58 6.8 Sand Street 3 

556 23 PVC 8 0.35 5.00 450.41 7.9 Clay Street 1 

557 67 VCP 8 0.29 11.59 450.00 7.4 Sand Street 3 

558 10 PVC 8 0.50 8.00 449.96 8.2 Loam Street 1 

559 14 PVC 8 0.34 7.00 449.78 7.9 Clay Alley 2 

560 48 VCP 8 0.01 8.00 449.69 7.9 Clay Street 5 

561 12 PVC 8 0.75 5.00 449.14 7.9 Clay Street 3 

562 13 PVC 8 4.47 10.00 449.05 8.2 Clay Street 1 

563 63 VCP 15 0.18 10.00 448.70 6.8 Sand Street 1 

564 83 RC 36 0.26 7.00 448.40 7.9 Clay Easement 1 

565 78 RC 21 0.70 10.00 448.30 8.2 Loam Street 1 

566 8 PVC 8 0.33 6.00 447.34 8.2 Clay Street 1 

567 62 VCP 12 0.20 12.00 447.05 7.9 Clay Alley 3 

568 12 PVC 8 1.90 7.00 446.75 8.2 Clay Street 1 

569 23 PVC 8 0.84 5.00 446.53 8.2 Clay Street 2 

570 11 PVC 8 0.50 7.00 445.67 8.2 Clay Street 1 
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571 16 PVC 8 0.40 8.00 445.31 6.8 Sand Highway 1 

572 65 VCP 8 0.36 10.00 445.29 8.2 Clay Alley 3 

573 60 VCP 12 0.20 7.00 444.74 7.9 Clay Highway 2 

574 27 PVC 24 1.15 10.00 443.92 8.2 Loam Street 1 

575 111 VCP 8 1.14 7.00 443.70 5.3 Sand Street 4 

576 48 VCP 12 0.30 8.00 443.01 6.7 Sand Street 1 

577 23 PVC 8 2.80 5.00 442.43 8.2 Clay Street 1 

578 14 PVC 8 2.00 7.00 441.48 6.8 Sand Street 1 

579 21 PVC 8 0.40 8.00 440.42 7.5 Clay Alley 1 

580 48 VCP 15 0.84 12.00 440.33 7.9 Clay Street 1 

581 70 RC 10 0.80 7.00 439.70 8.2 Loam Street 3 

582 62 VCP 12 0.20 12.00 439.62 7.9 Clay Street 1 

583 21 PVC 8 0.40 6.00 439.25 7.9 Clay Street 1 

584 25 PVC 12 1.00 8.00 438.84 8.2 Clay Street 1 

585 52 RC 6 0.90 8.00 438.41 6.8 Sand Alley 1 

586 59 VCP 8 0.25 5.00 438.05 7.9 Clay Street 1 

587 75 RC 8 0.60 7.00 437.56 7.9 Clay Street 5 

588 36 PVC 10 1.50 10.00 437.49 8.2 Loam Street 1 

589 31 PVC 18 0.32 7.00 437.44 7.9 Clay Street 1 

590 23 PVC 8 0.37 5.00 436.95 7.9 Clay Street 1 

591 56 VCP 8 0.25 6.00 436.65 7.5 Clay Street 1 

592 67 RC 8 0.03 7.00 436.14 7.9 Clay Street 3 

593 71 VCP 8 0.30 11.32 435.58 5.7 Sand Street 3 

594 30 PVC 8 0.30 8.00 435.45 7.9 Clay Highway 1 

595 17 PVC 8 3.20 8.00 435.43 8.2 Clay Alley 1 

596 32 PVC 8 0.80 5.00 435.26 7.9 Clay Street 1 

597 61 RC 18 0.50 10.00 434.91 8.2 Clay Street 3 

598 12 PVC 8 1.08 9.00 434.89 8.2 Rock Street 1 

599 21 PVC 8 1.42 7.00 434.28 7.9 Clay Street 1 

600 22 PVC 8 3.20 5.00 434.10 8.2 Clay Street 1 

601 46 PVC 8 0.52 7.00 433.16 7.9 Clay Street 1 

602 62 RC 8 0.90 5.00 432.81 8.2 Rock Street 3 

603 11 PVC 8 2.99 7.00 432.25 8.2 Clay Street 1 

604 95 VCP 12 0.30 5.00 431.76 7.9 Clay Street 1 

605 57 VCP 12 0.02 7.00 431.61 8.2 Clay Street 1 

606 62 VCP 6 0.60 8.00 431.50 7.9 Clay Alley 1 

607 29 PVC 8 1.73 6.00 430.64 8.2 Clay Street 1 

608 24 PVC 8 1.30 8.00 430.19 8.2 Clay Street 1 

609 18 PVC 8 1.00 5.00 430.00 8.2 Clay Street 1 

610 91 RC 33 0.72 7.00 429.80 8.2 Loam Easement 3 

611 16 PVC 8 1.26 5.00 429.57 8.2 Clay Street 1 
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612 70 VCP 8 1.80 7.00 429.47 7.9 Clay Easement 4 

613 56 RC 8 1.30 7.00 429.40 8.2 Clay Street 1 

614 39 RC 18 0.10 6.00 429.23 8.2 Clay Street 3 

615 95 VCP 12 0.30 5.00 429.09 7.9 Clay Street 1 

616 62 VCP 12 0.50 8.00 428.70 7.9 Clay Alley 2 

617 95 VCP 12 0.30 5.00 428.56 7.9 Clay Easement 1 

618 20 PVC 8 0.33 7.00 428.40 7.9 Clay Street 1 

619 26 PVC 8 1.50 8.00 428.29 8.2 Clay Alley 1 

620 73 RC 72 0.06 10.00 428.14 7.9 Clay Street 3 

621 17 PVC 10 0.88 5.00 427.69 6.8 Sand Street 1 

622 69 RC 30 0.30 6.00 427.57 7.9 Clay Street 5 

623 90 RC 42 0.40 5.00 427.53 6.7 Sand Street 5 

624 19 PVC 10 0.26 7.00 427.26 7.9 Clay Street 1 

625 29 PVC 16 0.40 16.00 426.91 7.9 Clay Alley 1 

626 22 PVC 12 0.40 8.00 426.69 7.9 Clay Easement 1 

627 12 PVC 8 0.03 7.00 425.70 8.2 Clay Highway 1 

628 58 VCP 8 0.69 0.64 425.40 5.7 Sand Street 3 

629 63 RC 10 0.40 10.00 425.35 8.2 Loam Street 2 

630 22 PVC 8 1.06 7.00 425.31 8.2 Clay Street 1 

631 17 PVC 8 1.06 5.00 425.20 8.2 Clay Street 1 

632 73 RC 10 0.93 10.00 424.31 7.9 Clay Alley 1 

633 24 PVC 8 4.35 6.00 424.17 8.2 Clay Easement 1 

634 20 PVC 8 0.99 5.00 423.85 7.9 Clay Street 1 

635 53 VCP 10 0.30 15.00 423.77 7.3 Clay Street 3 

636 37 PVC 12 0.50 15.00 423.64 7.9 Clay Street 1 

637 34 PVC 8 0.40 5.00 423.58 6.8 Sand Street 1 

638 36 PVC 8 3.98 5.00 423.54 6.8 Sand Street 1 

639 40 PVC 10 0.10 6.00 423.28 5.8 Sand Street 1 

640 18 PVC 8 0.40 7.00 423.25 8.2 Clay Street 1 

641 46 VCP 8 0.50 7.00 423.25 7.5 Clay Street 1 

642 58 VCP 10 0.30 7.00 423.01 7.9 Clay Highway 2 

643 64 VCP 8 0.28 7.00 422.98 8.2 Loam Street 2 

644 23 PVC 8 0.50 7.00 422.70 8.2 Loam Street 1 

645 33 PVC 8 0.80 7.00 422.49 6.5 Sand Alley 1 

646 14 PVC 8 0.36 8.00 422.43 7.5 Loam Street 1 

647 35 PVC 15 2.20 11.00 422.30 7.5 Clay Easement 1 

648 14 PVC 8 0.33 8.00 421.71 7.5 Clay Street 1 

649 75 RC 27 1.00 5.00 421.07 8.2 Clay Highway 5 

650 50 VCP 10 0.10 15.00 421.04 6.7 Sand Street 1 

651 77 RC 18 0.55 8.00 420.43 8.2 Loam Street 1 

652 45 VCP 8 0.20 6.00 420.35 6.5 Sand Street 1 
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653 35 PVC 8 0.50 5.00 420.03 8.2 Clay Highway 1 

654 18 PVC 8 1.00 5.00 419.48 8.2 Clay Street 1 

655 26 PVC 8 0.02 6.00 419.40 8.2 Clay Alley 1 

656 37 VCP 15 0.14 15.70 418.92 4.8 Sand Street 3 

657 60 VCP 6 1.00 5.00 418.58 6.8 Sand Street 1 

658 14 PVC 8 0.40 5.00 418.27 7.9 Clay Street 1 

659 38 PVC 12 3.82 7.00 418.21 5.3 Sand Highway 1 

660 38 PVC 8 0.40 10.00 416.77 8.2 Rock Street 1 

661 17 PVC 8 0.80 8.00 416.27 8.2 Clay Easement 1 

662 73 RC 60 0.06 10.00 415.93 7.9 Clay Street 3 

663 57 VCP 6 0.50 7.00 415.48 8.2 Clay Highway 1 

664 23 PVC 8 0.86 7.00 415.34 6.8 Sand Street 1 

665 62 VCP 12 0.50 8.00 414.95 7.9 Clay Street 3 

666 58 VCP 8 0.32 10.77 414.79 5.4 Sand Street 4 

667 77 VCP 6 2.20 7.00 414.62 8.2 Clay Street 5 

668 39 PVC 15 0.10 6.00 414.50 7.9 Clay Street 1 

669 8 PVC 12 0.65 5.00 414.03 8.2 Clay Street 1 

670 14 PVC 8 2.60 7.00 414.02 8.2 Clay Alley 1 

671 18 PVC 8 0.72 7.00 413.66 8.2 Clay Street 1 

672 20 PVC 8 0.50 6.00 412.83 7.9 Clay Street 1 

673 62 RC 6 0.60 12.00 412.76 7.9 Clay Street 1 

674 74 RC 8 0.40 10.00 412.63 8.2 Clay Street 4 

675 72 VCP 8 0.35 8.00 412.29 7.5 Clay Highway 1 

676 41 PVC 12 1.00 10.00 411.71 8.2 Loam Street 1 

677 101 VCP 8 0.30 7.00 411.51 8.2 Clay Street 5 

678 103 VCP 8 0.30 5.00 410.96 8.2 Clay Street 3 

679 67 RC 10 0.80 8.00 410.18 8.2 Loam Street 3 

680 45 VCP 8 0.40 8.58 410.00 4.8 Sand Alley 3 

681 53 RC 8 0.40 7.00 408.49 8.2 Rock Street 1 

682 38 PVC 8 1.34 10.00 408.30 8.2 Loam Street 3 

683 62 RC 30 0.60 7.00 407.91 8.2 Loam Street 3 

684 42 PVC 8 0.30 10.00 407.72 7 Loam Street 1 

685 50 VCP 8 0.40 8.58 407.35 5.4 Sand Street 2 

686 41 PVC 10 0.98 5.00 407.30 8.2 Loam Street 1 

687 23 PVC 8 0.35 5.00 407.09 7.9 Clay Street 1 

688 53 VCP 8 0.40 5.00 407.07 7.9 Clay Street 1 

689 10 PVC 12 0.20 6.00 406.98 5.8 Sand Street 1 

690 44 PVC 12 0.08 6.00 406.96 5.8 Sand Street 1 

691 38 PVC 8 0.50 12.00 406.80 7.5 Clay Street 1 

692 8 PVC 12 0.45 5.00 406.43 8.2 Clay Street 1 

693 77 RC 21 0.85 7.00 406.09 8.2 Loam Street 1 
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694 16 PVC 8 0.44 7.00 406.06 8.2 Clay Easement 1 

695 69 VCP 8 0.22 13.51 405.89 4.8 Sand Street 3 

696 9 PVC 8 1.20 5.00 405.86 6.8 Sand Street 1 

697 36 PVC 15 0.60 10.00 405.80 7.5 Loam Street 1 

698 24 PVC 8 1.60 7.00 405.72 8.2 Clay Street 1 

699 51 RC 6 0.60 5.00 405.37 6.8 Sand Highway 1 

700 13 PVC 8 1.74 8.00 404.43 7.9 Clay Street 1 

701 29 PVC 8 0.80 8.00 403.97 7.9 Clay Street 1 

702 54 RC 21 0.05 7.00 403.69 8.2 Clay Alley 1 

703 93 VCP 8 0.60 7.00 403.40 6.7 Sand Street 5 

704 13 PVC 8 1.00 5.00 402.95 8.2 Clay Street 1 

705 18 PVC 8 0.03 8.00 402.80 8.2 Clay Street 1 

706 18 PVC 8 0.33 6.00 402.79 8.2 Clay Street 1 

707 101 VCP 6 3.70 7.00 402.74 8.2 Clay Street 5 

708 17 PVC 8 1.10 7.00 402.69 8.2 Clay Street 1 

709 43 RC 27 0.32 7.00 402.65 8.2 Clay Street 1 

710 55 RC 8 0.84 7.00 402.38 6.8 Sand Street 1 

711 46 VCP 8 0.34 10.22 402.17 5.4 Sand Street 3 

712 24 PVC 8 1.50 5.00 402.15 8.2 Clay Highway 1 

713 38 PVC 8 1.32 12.00 401.85 7.5 Clay Alley 1 

714 13 PVC 12 2.50 7.00 401.83 8.2 Loam Street 1 

715 13 PVC 18 0.15 7.00 401.74 6.8 Sand Highway 1 

716 58 RC 15 1.88 10.00 401.69 8.2 Loam Street 1 

717 59 RC 6 1.00 10.00 401.61 8.2 Clay Street 3 

718 15 PVC 12 0.40 5.00 401.58 8.2 Rock Street 1 

719 42 VCP 8 0.27 12.14 401.49 6.5 Sand Street 3 

720 22 PVC 8 0.36 6.00 401.46 7.9 Clay Alley 1 

721 51 VCP 12 0.30 10.00 401.40 6.7 Sand Street 1 

722 57 VCP 8 0.41 8.31 401.39 5.4 Sand Street 3 

723 57 VCP 8 0.62 2.55 401.30 6.9 Sand Easement 3 

724 57 VCP 8 0.46 6.94 401.00 4.1 Sand Street 3 

725 57 VCP 8 0.39 8.85 400.99 7.4 Sand Highway 3 

726 60 VCP 8 0.38 7.00 400.94 6.8 Sand Alley 1 

727 46 VCP 8 0.46 6.94 400.93 5.4 Sand Street 3 

728 63 VCP 15 0.20 7.00 400.88 7.9 Clay Street 1 

729 50 VCP 8 0.60 15.00 400.76 7.9 Clay Street 1 

730 67 VCP 8 0.40 7.00 400.69 8.2 Loam Street 1 

731 58 VCP 10 0.31 11.05 400.59 5.7 Sand Street 3 

732 58 VCP 10 0.23 13.24 400.49 5.7 Sand Street 3 

733 58 VCP 8 0.31 11.05 400.49 5.4 Sand Street 3 

734 62 VCP 8 0.36 9.00 400.42 7.9 Clay Street 2 
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735 69 VCP 8 0.34 10.22 400.10 4.8 Sand Highway 3 

736 21 PVC 8 2.50 7.00 400.06 8.2 Loam Street 1 

737 71 VCP 8 0.30 11.32 400.00 5.7 Sand Alley 3 

738 52 VCP 8 0.47 6.66 400.00 5.7 Sand Highway 3 

739 69 VCP 8 0.30 11.32 399.99 7.9 Sand Street 3 

740 69 VCP 8 0.36 9.68 399.99 5.4 Sand Street 3 

741 49 VCP 8 0.40 8.58 399.99 5.4 Sand Alley 1 

742 58 VCP 8 0.47 6.66 399.99 5.4 Sand Street 3 

743 11 PVC 8 1.40 8.00 399.98 8.2 Clay Street 1 

744 69 VCP 8 0.40 8.58 399.97 4.8 Sand Street 3 

745 43 PVC 8 0.40 10.00 399.88 7.9 Clay Street 3 

746 46 VCP 8 0.34 10.22 399.86 5.8 Sand Alley 3 

747 17 PVC 8 4.20 5.00 399.71 8.2 Loam Street 1 

748 69 VCP 8 0.40 8.58 399.57 5.4 Sand Street 3 

749 57 VCP 8 0.47 6.66 399.49 5.4 Sand Alley 3 

750 24 PVC 8 0.40 10.00 399.47 7.9 Clay Street 1 

751 16 PVC 8 1.60 6.00 399.33 8.2 Clay Street 1 

752 69 VCP 8 0.35 9.95 399.17 5.7 Sand Easement 3 

753 58 VCP 10 0.28 11.87 399.00 5.5 Sand Highway 3 

754 58 VCP 8 0.52 5.29 398.99 5.4 Sand Street 3 

755 23 PVC 8 3.15 5.00 398.70 8.2 Clay Street 1 

756 70 RC 8 0.86 7.00 398.69 7.9 Clay Street 1 

757 37 PVC 8 0.50 10.00 398.67 7.9 Clay Street 1 

758 54 VCP 8 0.38 9.13 398.60 5.7 Sand Alley 3 

759 69 VCP 8 0.00 19.54 398.46 6.5 Sand Easement 3 

760 46 VCP 8 0.45 7.21 398.34 4.1 Sand Street 3 

761 67 RC 42 0.24 10.00 398.18 8.2 Loam Street 5 

762 8 PVC 8 0.40 15.00 398.04 7.9 Clay Street 1 

763 46 VCP 8 0.48 6.39 398.00 6.5 Sand Street 3 

764 57 VCP 8 0.48 6.39 397.99 6.5 Sand Alley 3 

765 19 PVC 8 2.61 5.00 397.68 8.2 Clay Alley 4 

766 25 PVC 8 2.05 8.00 397.59 8.2 Clay Street 1 

767 73 RC 18 0.01 5.00 397.53 8.2 Clay Street 1 

768 16 VCP 8 0.00 19.54 397.52 5.4 Sand Highway 1 

769 25 PVC 8 3.02 6.00 397.09 8.2 Clay Easement 1 

770 21 PVC 8 0.50 5.00 396.86 6.8 Sand Street 1 

771 65 RC 8 0.02 7.00 396.22 8.2 Clay Alley 1 

772 48 VCP 8 0.03 10.00 396.19 8.2 Loam Street 1 

773 56 VCP 8 0.39 8.85 396.09 5.7 Sand Street 4 

774 26 PVC 8 0.50 5.84 395.99 4.8 Sand Easement 3 

775 10 PVC 8 0.77 7.00 395.94 7.9 Clay Alley 1 



146 
 

776 23 PVC 8 0.90 8.00 395.89 8.2 Clay Alley 1 

777 58 VCP 18 0.12 7.00 395.52 7.9 Clay Street 1 

778 45 VCP 8 0.28 11.87 394.99 5.4 Sand Street 3 

779 58 VCP 8 0.43 7.76 394.99 5.7 Sand Easement 3 

780 49 VCP 6 0.40 12.00 394.98 8.2 Loam Street 2 

781 22 PVC 8 3.36 7.00 394.51 8.2 Clay Street 1 

782 83 RC 6 2.80 7.00 394.50 8.2 Clay Street 5 

783 42 PVC 6 0.60 8.00 394.49 7.9 Clay Alley 1 

784 31 PVC 8 0.50 7.00 394.48 8.2 Clay Easement 3 

785 58 RC 6 1.80 8.00 394.43 8.2 Clay Highway 3 

786 58 VCP 8 0.42 8.03 394.31 5.5 Sand Street 3 

787 20 PVC 8 4.00 5.00 393.99 8.2 Loam Street 1 

788 10 PVC 8 5.10 5.00 393.82 8.2 Rock Street 1 

789 42 PVC 8 0.40 8.00 393.47 7.9 Clay Street 1 

790 19 PVC 10 1.18 5.00 393.24 7.9 Clay Street 1 

791 56 VCP 8 0.32 10.77 393.04 5.8 Sand Easement 3 

792 13 PVC 8 0.56 8.00 392.96 6.5 Sand Street 1 

793 46 VCP 8 0.69 0.64 392.84 5.7 Sand Street 3 

794 65 RC 30 0.38 7.00 392.67 8.2 Loam Easement 3 

795 24 VCP 12 0.00 19.54 392.53 4.8 Sand Highway 3 

796 58 VCP 8 0.39 8.85 392.49 5.7 Sand Street 3 

797 32 PVC 8 0.40 7.00 392.35 7.9 Clay Street 1 

798 24 PVC 8 1.01 7.00 392.09 8.2 Clay Street 1 

799 19 PVC 8 0.85 5.00 391.10 7.9 Clay Street 1 

800 59 VCP 30 0.02 18.99 390.80 5.7 Gravel Street 1 

801 75 VCP 8 0.40 10.00 390.68 8.2 Clay Street 3 

802 58 VCP 8 0.31 11.05 390.31 5.4 Sand Alley 3 

803 40 PVC 6 1.60 10.00 390.24 7.9 Clay Street 1 

804 63 VCP 8 0.30 7.00 390.22 7.5 Clay Street 3 

805 57 VCP 8 0.48 6.39 390.10 5.4 Sand Street 3 

806 14 PVC 8 0.30 7.00 390.09 7.9 Clay Street 1 

807 45 VCP 8 0.39 8.85 390.00 5.4 Sand Easement 3 

808 49 VCP 8 0.15 15.43 389.99 4.8 Sand Street 1 

809 14 PVC 24 0.14 7.00 389.92 8.2 Loam Street 1 

810 57 VCP 8 0.39 8.85 389.89 4.8 Sand Street 3 

811 22 PVC 10 0.28 11.00 389.81 7.9 Clay Street 1 

812 76 RC 8 1.28 5.00 389.64 8.2 Rock Street 5 

813 18 PVC 8 0.55 7.00 389.62 8.2 Clay Street 1 

814 14 PVC 8 0.40 7.00 389.07 7.5 Loam Street 1 

815 35 PVC 21 0.50 15.00 388.99 7.5 Clay Street 1 

816 46 VCP 8 0.31 11.05 388.29 5.5 Sand Street 3 
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817 61 RC 12 0.72 10.00 388.05 7.9 Clay Street 3 

818 57 VCP 8 0.42 8.03 387.90 4.8 Sand Alley 3 

819 58 RC 12 1.00 5.00 387.75 6.8 Sand Street 3 

820 55 VCP 8 0.20 5.00 387.51 6.8 Sand Street 1 

821 28 PVC 10 0.30 6.00 387.00 7.9 Clay Street 1 

822 17 PVC 8 0.36 7.00 386.40 7.9 Clay Street 1 

823 46 VCP 8 0.31 11.05 386.19 5.4 Sand Street 3 

824 91 RC 33 0.72 8.00 385.89 8.2 Loam Easement 3 

825 101 VCP 8 0.30 8.00 385.54 8.2 Clay Street 5 

826 95 VCP 6 2.18 7.00 385.54 8.2 Clay Easement 5 

827 60 RC 18 0.50 7.00 385.26 8.2 Clay Easement 3 

828 28 PVC 8 0.50 5.00 385.17 8.2 Clay Highway 1 

829 32 PVC 8 2.46 8.00 384.67 8.2 Rock Street 1 

830 60 VCP 24 0.12 6.00 384.61 6.5 Sand Street 3 

831 22 PVC 8 0.33 10.00 384.40 6.7 Sand Street 1 

832 67 VCP 10 0.30 7.00 384.39 8.2 Clay Street 1 

833 57 VCP 8 0.42 8.03 383.80 4.1 Sand Street 4 

834 14 PVC 24 0.51 5.00 383.62 8.2 Loam Easement 1 

835 32 PVC 8 0.26 8.00 383.54 7.9 Clay Street 1 

836 22 PVC 8 0.70 7.00 383.42 6.8 Sand Easement 1 

837 65 RC 24 0.72 15.00 383.37 7.9 Clay Street 5 

838 57 VCP 8 0.41 8.31 383.09 5.7 Sand Street 3 

839 67 VCP 8 0.94 5.00 382.89 7.5 Clay Street 5 

840 61 RC 36 0.03 12.00 381.86 7.9 Clay Street 1 

841 60 RC 36 0.07 10.00 381.83 8.2 Loam Street 1 

842 64 VCP 8 0.40 7.00 381.42 7.9 Clay Street 1 

843 21 PVC 15 0.15 8.00 381.39 7.9 Clay Street 1 

844 55 VCP 8 0.40 8.58 381.35 4.8 Sand Easement 3 

845 60 RC 36 0.07 10.00 381.32 8.2 Loam Alley 1 

846 50 VCP 8 1.20 5.00 380.90 8.2 Clay Highway 1 

847 35 PVC 8 0.30 8.00 380.88 8.2 Clay Alley 5 

848 57 VCP 24 0.18 14.61 380.71 4.8 Gravel Easement 4 

849 66 VCP 8 0.24 12.96 380.27 4.8 Sand Street 3 

850 37 PVC 15 0.30 10.00 380.24 7.5 Loam Highway 1 

851 55 VCP 10 0.20 7.00 380.21 6.8 Sand Highway 2 

852 53 VCP 8 0.37 9.40 380.00 5.4 Sand Street 3 

853 69 RC 12 0.20 5.00 379.84 8.2 Clay Street 1 

854 62 VCP 8 0.35 6.00 379.67 7.5 Loam Street 3 

855 20 PVC 8 1.15 8.00 379.40 8.2 Clay Easement 1 

856 59 VCP 18 0.40 12.00 379.03 7.9 Clay Street 1 

857 11 PVC 8 2.40 7.00 379.03 7.9 Clay Street 1 
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858 63 VCP 10 0.14 5.00 378.99 7.9 Clay Street 2 

859 45 PVC 8 0.30 5.00 378.95 8.2 Loam Easement 2 

860 65 RC 12 0.50 5.00 378.87 7.9 Clay Highway 3 

861 60 RC 6 0.30 12.00 378.79 7.9 Clay Street 1 

862 54 VCP 8 0.63 2.28 378.36 6.5 Sand Easement 1 

863 16 PVC 8 1.19 5.00 377.18 8.2 Clay Street 1 

864 17 PVC 10 0.47 8.00 376.89 7.9 Clay Street 1 

865 16 PVC 8 3.80 7.00 376.57 8.2 Rock Street 1 

866 51 RC 6 0.70 7.00 376.48 7.9 Clay Street 1 

867 60 RC 15 0.04 10.00 375.90 8.2 Rock Easement 1 

868 13 PVC 15 0.65 8.00 375.89 7.9 Clay Street 1 

869 72 VCP 8 0.59 3.38 375.70 4.8 Sand Street 1 

870 18 PVC 8 1.12 7.00 375.52 7.9 Clay Street 1 

871 18 RC 66 0.03 7.00 375.49 7.9 Clay Easement 1 

872 32 PVC 8 0.34 10.22 375.30 5.4 Sand Street 3 

873 60 VCP 8 0.42 8.03 375.07 4.8 Sand Street 3 

874 16 PVC 8 2.84 7.00 375.05 8.2 Clay Street 1 

875 50 VCP 8 0.38 9.13 374.99 6.5 Sand Street 3 

876 40 PVC 12 0.80 12.00 374.92 7.9 Clay Street 1 

877 18 PVC 8 0.80 7.00 374.71 8.2 Clay Street 1 

878 15 PVC 8 3.59 5.00 374.70 8.2 Loam Alley 1 

879 39 VCP 8 0.68 0.91 374.38 5.7 Sand Street 1 

880 13 PVC 16 0.26 5.00 374.21 8.2 Clay Street 1 

881 47 VCP 10 0.81 10.00 374.18 7.9 Clay Alley 1 

882 12 PVC 8 0.50 9.00 373.66 7.9 Clay Easement 1 

883 17 PVC 8 0.40 7.00 373.65 8.2 Clay Highway 1 

884 64 VCP 8 0.39 8.85 373.59 4.8 Sand Easement 3 

885 38 RC 27 0.20 10.00 373.55 8.2 Loam Street 3 

886 18 PVC 15 0.15 10.00 373.40 8.2 Loam Street 1 

887 54 VCP 15 0.30 10.00 372.95 7.9 Clay Street 1 

888 57 VCP 12 0.01 5.00 372.85 8.2 Clay Street 1 

889 46 VCP 8 0.38 9.13 372.85 6.5 Sand Easement 3 

890 22 PVC 8 3.10 8.00 372.08 8.2 Rock Street 1 

891 53 VCP 8 0.56 4.20 371.99 4.8 Sand Street 3 

892 10 PVC 8 8.00 6.00 371.97 8.2 Rock Street 1 

893 18 PVC 8 0.40 8.00 371.63 8.2 Clay Street 1 

894 41 PVC 8 0.40 6.00 371.54 5.8 Sand Easement 1 

895 31 PVC 18 0.32 8.00 371.48 7.9 Clay Easement 1 

896 22 PVC 12 0.50 7.00 371.13 7.9 Clay Street 1 

897 62 RC 27 1.00 5.00 371.06 8.2 Clay Street 5 

898 23 PVC 8 4.29 6.00 370.56 8.2 Loam Street 1 
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899 28 PVC 10 0.30 10.00 370.48 7.9 Clay Street 1 

900 47 VCP 6 0.50 7.00 370.27 5.3 Sand Street 1 

901 63 RC 6 1.30 8.00 370.22 8.2 Loam Easement 2 

902 67 VCP 8 3.35 7.00 370.08 8.2 Clay Street 1 

903 58 VCP 8 0.37 9.40 370.00 4.8 Sand Street 3 

904 57 VCP 8 0.11 16.53 369.80 5.7 Sand Street 3 

905 59 RC 10 0.20 5.00 369.79 7.9 Clay Street 3 

906 79 VCP 6 0.60 7.00 369.53 8.2 Clay Highway 3 

907 58 VCP 8 0.42 8.03 368.99 4.8 Sand Easement 3 

908 13 PVC 8 0.70 7.00 368.70 7.9 Clay Highway 1 

909 63 RC 8 0.02 12.00 368.38 7.9 Clay Street 3 

910 37 PVC 10 0.80 15.00 368.19 7.9 Clay Street 1 

911 21 PVC 8 0.39 8.85 368.04 5.4 Sand Street 3 

912 29 PVC 10 0.80 16.00 367.12 7.9 Clay Alley 1 

913 18 PVC 8 1.30 10.00 367.07 8.2 Clay Street 1 

914 75 RC 8 0.50 8.00 366.87 8.2 Clay Street 1 

915 54 VCP 15 0.32 7.00 366.48 7.9 Clay Street 1 

916 22 PVC 8 0.38 7.00 366.19 7.9 Clay Alley 1 

917 46 VCP 8 0.32 10.77 365.99 6.9 Sand Street 3 

918 39 VCP 8 0.34 10.22 365.99 5.5 Sand Street 3 

919 65 VCP 12 0.50 5.00 365.97 7.9 Clay Street 3 

920 40 PVC 12 0.34 8.00 365.91 7.9 Clay Street 1 

921 25 PVC 8 0.24 10.00 365.86 7.9 Clay Street 1 

922 16 PVC 8 0.75 7.00 365.80 8.2 Rock Easement 1 

923 16 PVC 8 0.38 5.00 365.76 7.9 Clay Street 1 

924 38 RC 27 0.20 10.00 365.08 8.2 Loam Street 3 

925 59 VCP 18 0.40 12.00 365.07 7.9 Clay Street 1 

926 37 VCP 18 0.21 13.79 365.06 5.8 Gravel Alley 3 

927 18 PVC 8 0.33 7.00 364.86 7.9 Clay Street 1 

928 65 VCP 15 0.52 5.29 364.80 5.4 Sand Street 3 

929 58 VCP 6 0.70 5.00 364.08 8.2 Clay Street 1 

930 29 PVC 8 0.38 7.00 364.04 8.2 Clay Easement 1 

931 23 PVC 8 2.80 5.00 363.93 8.2 Clay Alley 1 

932 75 RC 15 0.15 7.00 363.76 7.5 Loam Street 1 

933 14 PVC 8 0.50 8.00 363.76 7.9 Clay Street 1 

934 58 VCP 8 0.40 8.58 363.75 5.7 Sand Alley 3 

935 15 PVC 8 0.78 7.00 363.68 7.9 Clay Street 1 

936 22 PVC 12 0.46 7.00 363.36 7.9 Clay Street 1 

937 24 PVC 8 1.20 10.00 363.18 8.2 Clay Street 1 

938 41 PVC 15 1.40 5.00 363.17 8.2 Loam Street 1 

939 43 RC 27 0.00 7.00 362.85 8.2 Clay Street 1 
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940 19 PVC 8 0.35 7.00 362.53 8.2 Clay Street 1 

941 20 PVC 8 0.87 12.00 361.75 7.9 Clay Street 1 

942 30 PVC 8 0.30 11.32 361.70 5.4 Sand Easement 3 

943 57 VCP 8 0.42 8.03 361.60 5.7 Sand Street 5 

944 37 VCP 21 0.18 14.61 361.54 4.8 Gravel Street 1 

945 50 VCP 8 0.39 8.85 361.54 4.8 Sand Street 3 

946 41 VCP 8 0.31 11.05 361.22 4.8 Sand Alley 1 

947 69 RC 8 1.34 8.00 361.11 7.9 Clay Street 1 

948 43 PVC 6 1.00 10.00 360.87 8.2 Clay Easement 1 

949 58 VCP 8 0.01 10.00 360.83 8.2 Clay Street 1 

950 54 VCP 15 0.30 10.00 360.76 7.9 Clay Street 1 

951 65 VCP 8 1.20 13.00 360.59 7.9 Clay Alley 3 

952 49 VCP 8 1.28 6.00 360.37 6.7 Sand Street 1 

953 20 PVC 8 1.50 5.00 360.33 8.2 Clay Alley 1 

954 71 RC 8 0.33 7.00 360.32 7.9 Clay Street 3 

955 60 RC 10 0.01 7.00 360.28 8.2 Clay Street 1 

956 18 PVC 8 0.60 10.00 360.22 6.85 Loam Street 1 

957 13 PVC 15 0.20 7.00 360.22 7.9 Clay Street 1 

958 23 PVC 8 1.62 10.00 360.06 8.2 Clay Street 1 

959 45 VCP 8 0.39 8.85 360.00 5.4 Sand Easement 3 

960 45 VCP 8 0.39 8.85 360.00 4.8 Sand Street 3 

961 36 VCP 8 0.40 8.58 360.00 5.4 Sand Street 3 

962 46 VCP 8 0.50 5.84 359.99 5.4 Sand Alley 3 

963 83 RC 36 0.26 7.00 359.83 7.9 Clay Alley 1 

964 29 PVC 18 0.74 8.00 359.82 7.9 Clay Street 1 

965 59 VCP 10 0.50 7.00 359.80 8.2 Rock Street 3 

966 40 PVC 10 0.30 7.00 359.53 8.2 Loam Street 1 

967 6 PVC 8 0.14 15.70 359.45 5.4 Sand Street 3 

968 50 VCP 8 0.36 9.68 359.22 6.5 Sand Easement 3 

969 19 PVC 10 0.38 7.00 358.85 8.2 Clay Street 1 

970 71 RC 42 0.04 6.00 358.81 7.9 Clay Easement 5 

971 47 VCP 8 0.17 14.88 358.59 4.8 Sand Highway 3 

972 64 RC 10 2.20 10.00 358.51 8.2 Loam Street 3 

973 25 PVC 8 3.75 8.00 358.41 8.2 Loam Street 1 

974 46 VCP 8 0.31 11.05 358.31 4.8 Sand Street 3 

975 71 VCP 10 0.22 10.00 358.06 6.8 Sand Street 5 

976 49 PVC 8 0.48 6.39 358.06 6.5 Sand Alley 3 

977 21 PVC 8 0.29 11.59 357.98 5.8 Sand Street 3 

978 71 VCP 8 0.44 7.48 357.94 6.9 Sand Street 3 

979 73 RC 27 0.48 5.00 357.84 8.2 Clay Easement 3 

980 84 VCP 12 1.10 5.00 357.74 8.2 Clay Street 3 
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981 6 PVC 24 0.30 5.00 357.72 8.2 Loam Alley 1 

982 49 VCP 6 1.00 7.00 357.61 8.2 Clay Alley 2 

983 64 VCP 8 0.55 4.47 357.49 4.8 Sand Highway 3 

984 35 PVC 8 1.00 7.00 357.41 8.2 Clay Street 1 

985 65 RC 8 0.03 7.00 357.26 8.2 Clay Street 1 

986 58 VCP 8 0.59 3.38 356.99 5.5 Sand Street 3 

987 64 VCP 10 0.24 10.00 356.96 8.2 Rock Highway 1 

988 38 VCP 8 0.38 9.13 356.95 5.4 Sand Street 1 

989 21 PVC 8 0.42 8.03 356.94 5.4 Sand Street 3 

990 43 VCP 8 0.42 8.03 356.60 5.4 Sand Highway 3 

991 41 VCP 8 0.32 10.77 356.57 5.4 Sand Alley 3 

992 72 VCP 15 0.14 15.70 356.20 7.4 Sand Alley 1 

993 45 VCP 8 0.39 8.85 355.99 5.4 Sand Street 3 

994 71 VCP 8 0.30 11.32 355.90 5.7 Sand Street 4 

995 59 RC 12 0.64 13.00 355.75 8.2 Rock Street 1 

996 68 RC 48 0.20 10.00 355.75 8.2 Loam Street 3 

997 23 PVC 8 0.02 5.00 355.67 8.2 Clay Street 1 

998 29 PVC 48 0.20 8.00 355.65 8.2 Loam Street 1 

999 22 PVC 12 0.60 7.00 355.63 7.9 Clay Street 1 

1000 42 PVC 10 2.50 10.00 89.96 8.2 Loam Street 1 
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