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ABSTRACT 
 

Advancing the Radiation Oncology Clinic with Motion Management 
and Automatic Treatment Planning 

 

Damon Anton Sprouts 

The University of Texas at Arlington, 2022 

 

Supervising Professor(s): Yujie Chi 

 

The leading cause of premature death (death under the age of 70) is cancer. The top five 

cancers for both male and female are: lung, colorectum, pancreas, breast cancer, and prostate. In 

2020 there was an estimated 19.3 million new cases with an estimated 9.9 million deaths. The 

cancer burden is expected to grow to 28.4 million by the year 2040. Surgery, chemotherapy, and 

radiotherapy are the three pillars in the modern clinic for cancer treatment.  In radiotherapy, 

ionizing radiation particles can travel through the patient body, deposit energy along the way and 

damage the DNA Structure. There needs to be a balance between killing tumor cells and sparing 

healthy tissue.  

Intensity Modulated Radiation Therapy (IMRT) made it possible to better focus ionizing 

radiation deposition to tumors by using multi-leaf collimators (MLC). Stereotactic body 

radiotherapy (SBRT) further differentiated the radiation response between tumors and normal 

tissues with delivering a much higher dose per fraction with fewer fractions than conventional 

radiotherapy for tumors that are sensitive to fractionation. Yet, due to the complex procedure in 
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radiation clinic, including imaging, planning, treatment simulation, and patient setup, the 

effectiveness of IMRT and SBRT could be hindered. Some hindering factors include organ 

motion that introduce large uncertainties between dose delivered and dose planned, treatment 

planning hinder by the quality of each treatment plan being heavily depending on the time and 

skill of the human planner.  

In our research, we retrospectively investigated the inter-fractional and intra-fractional 

motion for patient data collected from a clinic trial in high-risk prostate cancer SBRT. Our 

investigation revealed that the relative inter-fractional pelvic to prostate motion has a small 

impact on the pelvic target dose coverage when the patient was set up with prostate site aligned. 

This was mainly due to the restrict bladder filling protocol before treatment. As for the intra-

fractional prostate motion, on average the dose to the prostate dropped by 6.5% because of the 

motion, which indicated the importance of effective motion intervention during treatment. 

We also investigated the possibility of automating the treatment planning procedure with 

reinforcement learning technique. With the use of MLC, treatment planning for radiotherapy is a 

challenging task as it requires to solve an inverse optimization problem which contains millions 

of possible solutions. Consequently, the current treatment planning process heavily relies on 

human labor to tune the planning parameters, which can be tedious, not easily reproducible and 

time consuming. With the rapid development of Artificial Intelligence (AI), there have been 

increasing efforts to automate the treatment planning process. One attracting AI technique, 

named reinforcement learning (RL), enabled the possibility to build a virtual treatment planner 

(VTP) that can mimic the human-like decision making to tune the treatment planning parameters. 

In this dissertation, I investigated two types of RL technique, named Q Learning and Actor & 
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Critic techniques for automatic treatment planning.  Q Learning is a value-based learning and I 

applied it to construct a VTP that can operate an in-house dose-volume constrained treatment 

planning system (TPS) for prostate cancer IMRT treatment planning. The VTP was successfully 

trained with 10 prostate cancer patient cases and tested with additional 50 cases. One problem for 

the Q learning is that it is hard to be trained when facing complex treatment planning task as it 

does not specify an exploration mechanism. To solve the problem, I implemented the Actor & 

Critic algorithm, which specifies the exploration by the action probabilities of the actor. The 

preliminary results indicated that the Actor/Critic network is more powerful in generating high-

quality treatment plans. Furthermore, to enable the selection of action from a continuous space 

(to continuously tune a treatment planning parameter), I am in the process of implemented the 

Proximal Policy Optimization 2 (PPO2) for automatic treatment planning, in the hope that it can 

provide more powerful tuning of the treatment planning parameters. 

Overall, I expect my work in motion management and automatic treatment planning 

would lead to a technique advancement in radiation clinic for cancer treatment. 
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Chapter 1 

INTRODUCTION 

In the 2021 estimates on global mortality data, more than three quarters of all premature 

deaths were caused by noncommunicable diseases (NCDs) (Bray et al., 2021). According to Pan 

American Health Organization (PAHO), NCD refers to diseases that are caused by an acute 

infection that results in long-term health care. Some diseases in this group are cancers, 

cardiovascular disease, diabetes, and chronic lung illnesses. According to GLOBOCAN estimates 

2020, cancer, with 19.3 million new cases worldwide in 2020, is either 1st or 2nd leading cause of 

death before the age of 70 in 112 of 183 countries, while another 23 countries have cancer ranked 

3rd or 4th of the leading cause of death (Figure 1.1) (Sung et al., 2021).  

Consequently, to improve the quality of life of the human society, there is a high need to 

improve the cancer patient survival rate and/or improve the patient quality of life with effective 

treatment methods. 

In modern clinic of cancer treatment, conventional treatment modalities include surgery, 

chemotherapy, radiotherapy, etc. (Prevention, 2021). Among them, radiotherapy that uses ionizing 

radiation to damage cancer cells, is a critical pillar. It is reported that more than 1/2 of cancer 

patients have experienced radiotherapy in their process of illness (Baskar et al., 2012). In our 

research, we are interested in improving cancer treatment through technique advancement in 

radiotherapy. I will discuss the principle and the status of radiotherapy, and our work in the field of 

radiotherapy with prostate cancer as the testbed in the rest of this dissertation content. 
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Figure 1.1. National Ranking of Cancer as a Cause of Death at Ages <70 Years in 2019. The numbers of countries 

represented in each ranking group are included in the legend. Source: World Health Organization. (Sung et al., 

2021). 

 

1.1 Physical and biological background of radiotherapy 

Radiotherapy is using high energy photons or charged particles to kill cancers (Prevention, 

2021).  More than 90% of radiotherapy in the US is by x-ray beams, which are delivered by a linear 

accelerator (LINAC). X-rays were discovered in November 8,1895 by Wilhelm Conrad Roentgen, 

and they were used in breast cancer treatment in the following January (Society, 2001).  

X-rays can interact with human body through electromagnetic interactions (Attix, 2004). There 

are five diverse types of interactions that can happen depending on the energy of the incident 

photon, which are: Rayleigh scattering, Photoelectric effect, Compton effect, Pair production and 

Photodisintegration(Attix, 2004).  

The most common of the five is Compton effect which describes the collision between an 
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incident photon and a free electron. A free electron is the one that is not tightly bounded to the 

atom nucleus. During this interaction both the photon and the electron are scattering. The scatter 

photon then moves on to interact with more electrons, but with less energy since with each 

interaction the photon loses energy that is imparted onto the electron. If the energy imparted to the 

electron is greater than the binding energy of the atom then the electron will be known as an 

ionizing electron. The energy range for the incident photon that Compton effect dominates is 25 

keV - 30 MeV (Jerrold T. Bushberg, 2012).  

In radiotherapy the therapeutic photon energy range is 6 - 20 MeV. In this range, except for 

the dominant Compton scatter effect, there are another two interactions that can happen: 

photoelectric effect and pair production. Photoelectric interaction happens when the incoming 

photon interacts with tightly bound electron and the photon energy was fully transferred to the 

electron. This process dominates photon-tissue interactions when the photon energy is in the range 

of 10 - 25 keV (Jerrold T. Bushberg, 2012). As for pair production, it describes the creation of a 

position and an electron through the energy loss of the photon. The threshold energy for pair 

production is 1.022 MeV. It dominates the interaction process when the photon energy is greater 

than 30 MeV (Jerrold T. Bushberg, 2012). 
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Figure 1.2: Compton Scattering Interaction (The Essential Physics of Medical Imaging, 

Bushberg et al,  2012) 

 

 After the energy is deposited in the body, it can also induce chemical species. When the 

interaction process happens inside a cellular nucleus, it can damage the cellular DNA 

(deoxyribonucleic acid) by direct and indirect action that leads to cell death. Direct action refers to 

the energy deposition hits the DNA molecule directly and disrupts the molecular structure. This 

leads to cell damage where mutation can be generated or even cell death (Desouky et al., 2015). 

Indirect action represents that the radiation hits water molecules and generates free radicals that 

interact with the DNA structure instead of the particles themselves (Eric Hall, 2012).  



5 

 

 

Figure 1.3: Direct and Indirect Action(The Essential Physics of Medical Imaging,  

Bushberg et al,  2012) 

 

 The guiding principle in radiotherapy is to differentiate cell survival rate between healthy 

tissue and tumor tissue. As x-ray distributes energy deposition events along its entire path, the focus 

of radiotherapy can’t just be on inducing sufficient cell death in the tumor. It also needs to consider 

protect the nearby organs at risk (OARs). There are 4 R’s principles of radiobiology to guide the 

tradeoff of the two: Repopulation, Redistribution, Repair and Reoxygenation (Eric Hall, 2012). 

Repopulation allows for the normal tissue surrounding the tumor cells to progressive through the 

cell cycle and generate new cells that replace those that die during the radiation treatment fraction. 

Redistribution is when the tumor cells progress through their cell cycle and have more cells in the 

radio sensitive phase known as mitosis (Eric Hall, 2012). This is part of the cell phase when the cell 

is actively dividing and has less protection from radiation. Repair is like repopulation that it is there 

to help the normal tissue to survive the radiation treatment. This time it allows damaged cells to try 

to repair any damage that happens during the treatment. Finally, the last R is reoxygenation. Tumors 
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are hypoxic by nature. There needs to be a proficient level of oxygen in the cell to make radiation 

the most effect. The previous fraction dose to the tumor cells generates an increase in the level of 

oxygen in the surviving tumor cells. That makes the tumor itself more radiosensitive. 

 

Figure 1.4: Dose rate effect due to the 4 R’s (Radiobiology for the Radiologist, 

Hall et al, 2012) 

 

Upon the four R’s, principle, in radiation clinic, the concept of fractionation has been applied 

to realize the goal of differentiating the cellular response between tumors and normal tissues. 

Along the practice, there have been three different types of fractionation developed: conventional, 

hyper, and hypo. Conventional fractionation is the standard one, which delivers 1.8 Gy to 2 Gy for 

5 sessions per week (Eric Hall, 2012). Hyper fractionation increases the treatment from once per 

day to twice per day with less dose in the range of 0.6- 1.2 Gy per fraction for early responding 

tissue and 0.1 Gy to 0.5 Gy per fraction for late responding tissues (Eric Hall, 2012).  Hypo 

fractionation allows the dose to increase to anything greater than 2.2 Gy per fraction and then 
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entire treatment fractions are much fewer than conventional treatment (Eric Hall, 2012).  

The model that represents this principle is the 𝛼𝛼 𝛽𝛽⁄  model where: 𝛼𝛼 represents cells killed by 

a single incident particle while the 𝛽𝛽 represents cell kills through multiple hits, i.e. two particles 

on different tracks cause damage to the DNA. Cell survival fraction (SF) can mathematically be 

represented by the following equations: 

𝑆𝑆𝑆𝑆 = exp(−𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛼𝛼2) 

𝑆𝑆𝑆𝑆𝑛𝑛 = exp�−𝑛𝑛(𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛼𝛼2)� 

𝐸𝐸 = − ln(𝑆𝑆𝑆𝑆𝑛𝑛) = 𝑛𝑛(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛼𝛼2) 

                                           𝐵𝐵𝐸𝐸𝛼𝛼 =  
𝐸𝐸
𝛼𝛼

= 𝑛𝑛𝛼𝛼 �1 +
𝛼𝛼
𝛼𝛼 𝛽𝛽⁄

�                                                   (1) 

The first equation determines what the SF is for one single dose, the following determines what 

the SF is for the whole treatment by incorporating the number of fractions. The third equation is 

the Equivalent dose of the fractional scheme. BED stands for Biological Equivalent Dose by which 

different fractionation schemes can be compared. The 𝑛𝑛𝛼𝛼 is the total dose for the whole treatment. 

The second component (1 + 𝐷𝐷
𝛼𝛼 𝛽𝛽⁄

) is the relative effectiveness of the chosen fractionation scheme 

(Eric Hall, 2012).  

The ratio of 𝛼𝛼/𝛽𝛽 has impact on what type of fractional scheme that is best for the targeted 

tumor cells. If it is a high ratio, then it is more sensitive to the radiation and less sensitive to 

fractionation. Ideal for this would be a hypo-fraction scheme. These types of tissue are known as 

early responding tissue (ERT) (Desouky et al., 2015; Eric Hall, 2012). If the ratio is low, then the 

tumor is less sensitive to radiation and would be more sensible to increasing the number of 

fractions. This would be classified as a late responding tissue (LRT). Prostate cancer is an ERT 
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that why SBRT which is a form of hypo-fractionation is a great treatment technique.   

 

Figure 1.5: Representation of α and β damage on the DNA structure 

 

1.2 Radiotherapy Treatment 

 Radiotherapy is the use of high-energy radiation to kill cancer cells and shrink tumors 

(Institute, 2019). Radiation can be one of these three categories: external beam, internal, and 

systemic radiation (Institute, 2019). The first step of radiotherapy treatment is the diagnosing and 

staging phase whereas the name suggests that it is to test and determine how far the cancer has 

progressed. For prostate cancer, one testing can be prostate-specific antigen (PSA). PSA is secreted 

by normal and cancerous cells. Some of it is also located in the blood. The threshold that 

determines if a male has a chance of having cancer is 4 ng/ml of blood (Society, 2022). After a 

male has been diagnosed with prostate cancer then a computerized tomography (CT) will be done 

to grade the tumor. Figure 1.6 shows what a CT simulator looks like in the radiation clinic. A 

physician will also grade the prostate cancer using the Gleason score, which is a grading system 
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on how abnormal the prostate cancer is (Society, 2022). 

 

Figure 1.6. Computed Tomography ( Treatment Planning in Radiation Oncology, 

Kahn et al, 2012) 

 

 During the CT scanning that information is also sent to the treatment planning system 

(TPS). Where a dosimetrist can contour all the OARs and volume of interest and set the beams as 

determined by the chosen radiation therapy techniques. CT is the most used imaging modality for 

treatment planning. CT provides both the anatomy of the patient and the electron density of 

different tissues in the body(Damon Sprouts, 2017). The electron density of the surrounding tissue 

is important to the dose calculation that is done in the TPS. Each position of the couch placement 

represents a 2D slice of the body and the images obtained during the couch motion produce the 

3D image.  

1.2.1 Radiotherapy Techniques and Treatment Planning 

 Take prostate cancer as an example. There are many ways that a Radiation Oncologist 
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(RadOnc) could decide to plan on how to treat prostate cancer, which is divided into three distinct 

categories: Brachytherapy, systemic radiation therapy and external beam radiotherapy. The first 

one brachytherapy is when a radioactive source is implanted directly into the prostate (Society, 

2022). The radioactive sources used are Iodine-125, palladium-103 and iridium-192 (Burger, 

2003). In systemic radiation therapy, a radioactive substance is connected to a monoclonal 

antibody that allows for the source to pass through the blood stream and diffuse into the tissue. 

The last one is external beam therapy, where the radiation is delivered from outside of the body. 

External beam radiotherapy is most commonly delivered using a machine known as a linear 

accelerator (Linac). Linac generates electrons for thermionic emission by heating a filament. Once 

the electrons are generated they are accelerated by the accelerating waveguide. The electrons are 

bend by 270°, because the patient is located below the electron gun. After the bending the electrons 

enter the treatment head. Figure 1.7 shows what the head is with the seven components that help 

shape the beam to better cover the target volumes and spare the surrounding OARs.    

 

Figure 1.7: Treatment Head schematic  
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 Techniques for beam delivery in external beam radiotherapy include three-dimensional 

conformal radiation therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT) and 

Image guided radiation therapy (IGRT). 3D-CRT is a procedure that uses a computer to generate 

a 3D model of the tumor volume (Faiz M. Kahn, 2012). That allows for more accurate delivery of 

high dose to the tumor volume. IGRT allows you to use CT to image the tumor location before or 

during treatment to verify the location of the tumor. The below figure 1.8: is a representation of an 

on-rail CT system that allows for imaging of the tumor before and after treatment.  

 

Figure 1.8: Kahn’s example of on CT on rails 

IMRT is a sophisticated form of external beam technique that allows for more precise, 

intense, and effective doses of radiation by knowing what dose you want in the primary target 

volume (PTV) and working its way back to adjust the beam intensity to match the desire dose (Faiz 

M. Kahn, 2012) this is known as inverse treatment planning. A major component of the linac’ s 

head that allows for this is known as multi-leaf collimator (MLC). MLC became available in the 

1990’s. The below figure shows how the MLC can contour better around the tumor than the 

secondary collimator. This is achieved by pixelating the MLC position. MLC will shape the beam 

around the tumor and these pixelized beams are called beamlets. Beamlet weights can be changed 
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to change the dose in the PTV and the OARs (Faiz M. Kahn, 2012). 

 

Figure 1.9: Image of MLC leaves shape around tumor 

 

 Lastly there is Stereotactic Body Radiation Therapy (SBRT) that is like IMRT. Both can 

use many angles of the gantry to conform the dose distribution into the tumor site. The biggest 

difference is that SBRT uses a hypo-fractional scheme while IMRT using a conventional dose 

approach.  

 Once a treatment technique is chosen, the next step is to perform treatment planning which 

involves sending the pre-treatment CT to the TPS and setting the beam configuration to the desire 

position and contour the structure of interest: for instance OARs (bladder, rectum, penile bulb, left 

and right femurs, etc.…), gross tumor volume (GTV), clinical tumor volume (CTV), and the PTV. 

GTV is the palpable disease what can be felt or see in an image. CTV is the margin extended from 

the GTV that accounts for the clinical uncertainties like: beam alignment, patient positioning, 

organ motion, and organ deformation (Faiz M. Kahn, 2012).  

 Treatment planning is the most crucial part of radiotherapy once the pre-treatment imaging 
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is uploaded to the TPS. It can be divided into 7 key steps for proper and safe planning: Positioning, 

Immobilization, Localization, Field Selection, Dose Distribution, Calculation and Verification. 

For standard positioning, the patient can be prone (on the front side) or supine (on back). Key point 

for good patient positioning is that it is reproducible and minimize movement of the patient. 

Immobilizations are devices that can help with positioning, for instance in prostate cancer a 

commonly used device is called a Pelvic Form Modified. Localization is where the CT images 

come into play. It allows for the delineation of the target volumes and OARs in respect to external  

surface. Field selection greatly depends on the type of cancer being treated. It can range for one 

field to multiple fields. Beam modification is shaping or blocking the beam intensity. For instance, 

using MLC to shape the beam around the tumor is one way of beam modification. Dose distribution 

is the dose desired to distribute inside the tumor target and avoided to the organs at risk, following 

the prescription by the physician and the guideline from International Commission on Radiological 

Figure 1.10: Example of Isodose Line in the body for a SBRT prostate patient 
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Protection (ICRP). Dose distribution can be visualized through Isodose distribution lines. With a 

desired dose distribution, treatment planning system (TPS) then started the reverse treatment 

planning based on the treatment planning parameters given by a human planner to obtain the beam 

intensity and the MLC motion sequence. After that, it would compute the dose inside the patient 

body with the obtained MLC positions and beam intensity. This calculation would be repeated 

until a clinic acceptable plan was generated. The final step in the treatment planning is known as 

verification. This is done before the patient treatment to verify the treatment is deliverable and the 

planned dose is correct. It typically can be realized through iso-dose verification, film dose 

verification or software-based dose verification.   

 

 

1.3 Target Motion in Radiation Therapy 

 

Figure 1.11: Flow Chart of what makes up Treatment Planning  
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One of the current challenges in the radiation clinic is motion management due to the 

uncertainties in treatment planning, patient setup and organ motion. There are 5 main different 

target motions that are of  concern: breathing, cardiac cycle, and different filling levels at separate 

treatment fractions, soft tissue irregular motion and patient setup (Faiz M. Kahn, 2012). The two 

that generated the biggest motion is the breathing cycle which affects the tumors in the thoracic 

cavity but can be less extent to tumors in the abdominal cavity. Clinic will have different gating 

polices depending on how much the tumor moves during the breathing cycle. The breathing cycle 

is represented by a sinusoidal like graph.  

Figure 1.12: Example of a Breathing cycle  

 

Patient setup can also play a huge role in the motion of the tumor. There are two different 

types of motion: inter-fractional which is the patient setup in between fraction deliver, and intra-

fractional which is the motion during the time the fraction is delivered to the patient.  

Motion management is a critical aspect in radiotherapy for all techniques, but it is even more 

critical in the SBRT. As mentioned earlier, SBRT is a hypo-fractional treatment technique that is it 

deliver higher dose then conventional treatment technique with less fraction. Even through the dose 
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being deliver is higher in the tumor, this change doesn’t affect the radiosensitive of the surrounding 

healthy tissue. If there is any shrinkage or motion of the tumor there will be a higher dose in tissues 

that can’t handle it, so this would increase toxicities.  

Within those two types of motion there are two motion that contribute to the total motion: 

deformation and rigid motion. Deformation motion can be defined as changes in the organ or tumor 

as reference to the center of gravity this means the changes of shape itself during treatment which 

can mean shrinking or enlarging  during the delivery of treatment. Deformation needs to be 

considered when there is a large shape change during the motion. For example during the breathing 

cycle, the lung volume at the different phases can vary a lot, which could impact the accuracy of 

dose computation and delivery. In the case of prostate cancer, deformation doesn’t play a big role 

since its shape doesn’t change as greatly as lung tumors. Instead, we typically consider its rigid 

motion. Rigid motion of the tumor is the rotational and transitional movement of the tumor during 

treatment.  

In the case of prostate cancer, the rigid motion of the tumor is visible by implanting three 

fiducials by a needle using ultrasound. This is an internal surrogate for motion of the tumor. The 

reason being is that cone beam CT is hard to distinguish the difference between tissue since what 

governs the difference between the tissue is the electron density while all tissues have similar 

densities.  
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Figure 1.13: Example how Fiducals are implanted 

 

1.4 Clinic automation 

Clinic automation has become a key focus of research in medical physics to more accurately 

and efficiently accomplish tasks in the clinic with the rapid development of Artificial Intelligence. 

AI describes when a machine mimics cognitive functions that humans associate with other 

human minds, such as learning and problem solving. Two examples of AI technique are machine 

learning (ML) and deep learning (DL). ML is as a series of algorithms that analyze data, learn 

from it and make informed decisions based on those learned insights. As shown in Figure 1.14. 

ML typically extracted features from an input, applied complex algorithms to analyze the features 

and made prediction. The learning process is to minimize the error between the prediction and the 

ground truth. Different from ML, DL doesn’t need to extract features, but uses a multi-layered 

structure of algorithms called the neural network to directly learn and solve problems from input 

data.  
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Figure 1.14: Representation of both ML and DL 

 

There are currently both ML and DL in the clinic already that ranges for treatment planning, 

classification of the disease area, contouring of lesions. AI is not just in therapeutic it is also in 

diagnostic: it is used to get rid of artifacts and streaks, generate a CT from an MRI images, 

extracting breathing motion to apply breathing compensation.  

In my research, I am interested in automating the treatment planning process in radiation clinic. 

As described above, treatment planning in modern radiation clinic is to solve an inverse 

optimization problem, which can be tedious and time consuming. There are multiple efforts to 

automate this process with AI technique. These include the knowledge-based planning (KBP) 

method (Chang et al., 2016; Chanyavanich et al., 2011; Fogliata et al., 2014; Hussein et al., 2016; 

Kubo et al., 2017; Wang et al., 2017), the multicriteria optimization (MCO) method (Chen et al., 

2012; Craft et al., 2012; Thieke et al., 2007), the protocol-based automatic iterative optimization 

(PB-AIO) approach (Wang et al., 2012; Xhaferllari et al., 2013; Yan et al., 2003; Zhang et al., 

2011), etc. Key to the KBP method is to utilize historically achieved, high-quality treatment plans 
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to predict an achievable dose in a new patient of a similar population, or to generate a better starting 

point for a human planner to start with (Chang et al., 2016; Chanyavanich et al., 2011; Fogliata et 

al., 2014; Hussein et al., 2016; Kubo et al., 2017; Wang et al., 2017). In this method, the quality 

of the newly generated plan can highly depend on the historical plans or the anatomy similarity 

between the two sets of patients. Moreover, the predicted dose is not guaranteed to be achievable 

and further adjustments of the plan configurations from a human planner might be required 

(Hussein et al., 2018). Central to the MCO method is the concept of the 'pareto optimal solution', 

which denotes a plan that cannot be further improved for a given objective without degrading one 

or multiple other objectives (Chen et al., 2012; Craft et al., 2012; Thieke et al., 2007). Yet, a 'pareto 

optimal solution' may not be clinically desired. It may need to generate many plans before a clinic 

acceptable plan can be selected or interpolated, which can be computational resource or manual 

interaction demanding. As for the PB-AIO approach, script-based or fuzzy-logic-based automatic 

adjustments of the optimization objectives and constraints are established to gradually improve the 

plan quality to clinic acceptable level (Wang et al., 2012; Xhaferllari et al., 2013; Yan et al., 2003; 

Zhang et al., 2011). A concern of this approach is that it is not easy to optimize the parameter  

 

Figure 1.15: Projection image matching example: (a) query image, (b) best match (MI 

=2.8), (c) poor match (MI=1.6), (d) worst match (MI=0.8). (Chanyavanich et al., 2011) 
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adjustment process, such that the planning efficiency may not be assured (Hussein et al., 2018).  

In my study, I have been focusing on a different AI technique, reinforcement learning, for 

automatic treatment planning. In the following, I will briefly introduce the reinforcement learning 

and the specific algorithms that were used in my research study. 

1.4.1 Reinforcement Learning 

 There are many different types of learning that pertain to AI. They can be categorized as 

learning problem, hybrid learning, statistical inference, and learning technique based types. The 

group we focused on is the learning problem based, which contains supervised, unsupervised, and 

reinforcement learning (Li, 2017). Supervised learning is trained with labeled data. The models 

need to determine the mapping function to map the input variable to the output variable. Useful in 

classification and regression type problems. Unsupervised learning infers patterns from unlabeled 

input data. The main goal of this type of learning is to find the structure and patterns form the input 

data. Its ability to find patterns in the data itself. This is useful in clustering and association 

problems. The last one of the three is reinforcement learning that trains in a trial-and-error method 

and has proven to have the ability to think like a human. It first became popular in AlphaGo 

algorithm back in 2017 that was proven to beat world champion level Go players. Go is an ancient 

Chinese strategy that one needs not just to know their move, but what would be their opponent next 

move will be. Being so proficient in Go is why we decided to apply this algorithm in the treatment 

planning.  

 There are five core structures in reinforcement learning (RL): agent, environment, state, 

action, and reward(Li, 2017). The agent is the entity that performs actions in the environment and 

gets rewarded based on the action it takes. Environment is the scenario that an agent must face. 
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State refers to the current situation by the environment that the agent can act against. Action is the 

change to the current state by the agent. A reward is the immediate return given to an agent when 

it performs an action that is negative or positive by the results of the action. 

 

Figure 1.16: Layout for Reinforcement Learning 

 There are three separate ways that RL can learn: Model, Value, and Policy. Model based 

create a virtual model of each environment and the agent learns to perform in that specific 

environment. The model is updated often and is the one method of learning that has the best sample 

efficient but takes the longest to run. Value-based is known as off-policy where it maximizes a 

value function. The action that is chosen is the one that will result in the best change in the 

environment.  Policy-based learn the policy function that maps state to action. The subgroup in RL 

that this paper will focus on are Q learning and Actor/Critic techniques. 

1.4.2 Q Learning 

 Q learning is a model-free RL algorithm which doesn’t need to use transition probability 

distribution to learn. Instead, it is a value-based algorithm. It learns by the way of the state-action 
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value or Q value. To make a decision, the agent needs to follow a policy which is mapping a state 

to the probabilities of selecting each possible action given that selected state. Q Learning uses off-

policy. These types of algorithms don’t consider past state-action decisions, but instead the agent 

constantly performs the action that it believes will yield the highest reward. This process is called 

exploitation of the environment, but the agent still needs to explore the environment to make more 

informed decisions. This trade-off process is governed by epsilon-greedy policy. Epsilon is a 

parameter in the range of 0 and 1. In the training process, if epsilon is higher than a randomly 

sampled number, a random action is chosen. Otherwise, a greedy action or the highest reward action 

will be selected.  

 Markov Decision Process (MDP) is the mathematical framework for modeling the decision 

made by the agent. It allows for the assumption that the probability for an event to occur only 

depends on the current state. Yet the transition probability is hard to be known in advance. Hence, 

to estimate the likely transition from one state to another, it is reasonable to observe multiple 

transition episodes and take an average. To let the agent effectively learn which state or which 

transition is good, it is important to give the agent proper feedback after it made a decision, which 

is known as the reward 𝑟𝑟. 

Bellman equation is one of the central elements of many RL algorithms that decomposes the 

value function into two parts, the immediate reward plus the discounted future values for finding 

the optimal Q value. Value function estimates how good it is to perform a given action in a given 

space by the agent. The below equation illustrations the concept mathematically The LHS Q(s,a) 

is the new Q value for the current state and action. The RHS Q(s,a) is the current  Q value. α is the 

learning rate which determines how often the Q values are updated, and the range is [0-1]. 0 means 
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it won’t update the Qvalue which in turn no learning is happening, while 1 means learning will 

happen quickly. γ is the discount factor it has the same range as α, but it models the fact that future 

rewards are worth less than immediate rewards. 𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼 is the maximum reward that can be 

attainable in next state. This is the reward for the optimal action that led to the next state.  

                 𝑄𝑄(𝑠𝑠,𝑚𝑚) = 𝑄𝑄(𝑠𝑠,𝑚𝑚) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼𝑄𝑄(𝑠𝑠′,𝑚𝑚′) − 𝑄𝑄(𝑠𝑠,𝑚𝑚)]                           (3) 

1.4.4 Deep Q Learning (DQL)    

Neural Network (NN) is a computing system that is model off human neural network hence 

the name. Policy or value in RL sometimes is complex and nonlinear. Applying a NN to QL allows 

for powerful representation of value function for QL. Another benefit of having a NN is that the 

RL algorithm would only need a state to generate as many Q value as  

 

Figure 1.17: Human Neural compared to NN 

needed. As you can see by the above figure the generalization of the NN takes the input in the front 

as synapses and structure of the inside mimic the Myelinated axon trunk and the outpoint or action 

that the network takes is the Output synapses.  

1.4.4 Actor-Critic Network 
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 The second type of algorithm that was implemented in this paper is Actor and Critic network 

(ACN). The difference between Q learning and ACN is that in Q learning, there is one network to 

determine both the action and how well that action was (Silver et al., 2016). In the case of can, there 

are two networks. One is policy-based (Actor), determining what action to pick in a giving situation. 

The other is Critic, which is a value based and tells how well the chosen action was (Timothy 

P.Lillicrap, 2016). Then the value function will send the temporal difference (TD) error into the 

policy function (Silver et al., 2016), so that the actor knows how well it did. TD is also known as 

the advantage which is the difference between the actual reward and the expected reward. 

 

 

1.5 Dissertations compositions 

 The main goal of this Dissertations was to advance the radiation oncology in two ways: 

Motion Management in prostate cancer treatment and applying reinforcement learning to automatic 

 

Figure 1.18:  Actor and Critic flowchart 
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treatment planning. Chapter describes the work on motion management, Chapter 3 is about the 

work using Deep Q Learning for automatic treatment planning. Chapter 4 gives the further 

development with Actor/Critic network for treatment planning, while Chapter 5 gives the 

conclusion and future work. 
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2.1 Introduction 

Stereotactic body radiation therapy (SBRT) (Lotan et al., 2006; Timmerman et al., 2007) has 

demonstrated its efficacy of tumor eradication in the treatment of low- to intermediate-risk prostate 

cancer (PCa) (Azzam et al., 2015; Chen et al., 2013; Cihan, 2018; Park et al., 2018; Ray, 2011). 

Yet, its safety and feasibility for high-risk PCa group is still at its early-stage investigation 

(Gonzalez-Motta & Roach III, 2018; Hannan et al., 2021; Kishan & King, 2019; Mesci et al., 

2021). Different from the low- and intermediate-risk PCa groups, the high-risk PCa patients are 

associated with a destined local or systematic recurrence after local therapy (Chang et al., 2014). 

Consequently, it can be challenging to optimize SBRT fractionation, targeting, doses, etc., for 

effective tumor control. There have been multiple SBRT strategies under exploration, ranging 

from SBRT boost (Anwar et al., 2016; H. J. Kim et al., 2017; Lin et al., 2014; Mercado et al., 

2016; Miralbell et al., 2010) to SBRT monotherapy (Alayed et al., 2018; Bauman et al., 2015; 

Bolzicco et al., 2013; Davis et al., 2015; Hannan et al., 2021; Janowski et al., 2014; Kang et al., 

2011; Kotecha et al., 2016; Lee et al., 2014; Murthy et al., 2018; Musunuru et al., 2018; 

Pinitpatcharalert et al., 2019; Ricco et al., 2016), and from prostate (and seminal vesicle) local 

therapy (Alayed et al., 2018; Bolzicco et al., 2013; Davis et al., 2015; Janowski et al., 2014; Kang 

et al., 2011; Kotecha et al., 2016; Lee et al., 2014; Mercado et al., 2016; Ricco et al., 2016) to 

pelvic lymph nodal (PLN) involvement (Alayed et al., 2018; Anwar et al., 2016; Bauman et al., 

2015; H. J. Kim et al., 2017; Lin et al., 2014; Miralbell et al., 2010; Murthy et al., 2018; Musunuru 

et al., 2018; Pinitpatcharalert et al., 2019). Among them, SBRT monotherapy with PLN irradiation 

is of especial interest, considering its overall short treatment duration and distant target coverage 

(Alayed et al., 2018; Bauman et al., 2015; Murthy et al., 2018; Musunuru et al., 2018; 
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Pinitpatcharalert et al., 2019).  

In SBRT for high-risk PCa treatment with PLN involvement, the target includes both the 

prostate and PLN. Proper image guidance technique is central to ensure dosimetric coverage to 

these targets. A commonly used practice is to set up the patient prior to treatment delivery under 

cone beam CT (CBCT) to align the prostate target with the planned geometry. However, due to 

independent motion of the pelvic region relative to the prostate, this patient positioning strategy 

may lead to large inter-fractional geometry uncertainty and hence degradation of dosimetric 

coverage of the PLN target (Baker & Behrens, 2016; Huang et al., 2015; Kershaw et al., 2018; 

Kishan et al., 2015; Tyagi et al., 2019). As for the prostate target, it is known to be subject to intra-

fractional motion, which may also affect the dosimetric coverage, even under a precise setup of 

the prostate target prior to treatment delivery (Dang et al., 2018; Kang et al., 2011; J. H. Kim et 

al., 2017; Wu et al., 2013; Zhu et al., 2009).  

It is hence of critical importance to quantify and characterize the prostate and PLN motion and 

its impact on the target dosimetric coverage in SBRT monotherapy for high-risk PCa treatment. 

This could help the development of effective motion management strategies (Franz et al., 2014; 

Keall et al., 2015; Patrick Kupelian et al., 2007; Liu et al., 2010; Poulsen et al., 2010; Su et al., 

2011; Zhu et al., 2009). The consequent target motion mitigation will positively contribute to the 

SBRT dose escalation studies, which will be correlated to an improved local control (Greco et al., 

2020; Line Krhili et al., 2019). It can also help reduce organ toxicities, and hence enhance the 

patient’s health-related quality of life (Line Krhili et al., 2019).  

Over the years, extensive studies have been devoted to quantifying motions of different types 

in PCa SBRT. Yet, there have been limited reports regarding the inter- and intra- fractional pelvic-



29 

 

prostate relative motion in the context of SBRT for high-risk PCa treatment (Kishan et al., 2015; 

Tyagi et al., 2019). At our institution, we have an ongoing phase I clinical trial (ClinicalTrials.gov: 

NCT02353819) to study the safety of dose escalation in SBRT for high-risk PCa treatment. The 

purpose of this study is to analyze the organ motion data collected in this trial to quantify and 

characterize the inter-fractional pelvic-to-prostate relative motion and intra-fractional prostate 

motion, as well as the dosimetric impacts.  

2.2 Methods and Materials 

2.2.1 Patients and treatment planning  

At our institution, we have an ongoing Phase I clinical trial on the use of SBRT for high-risk 

PCa treatment. The high-risk PCa in this trial was identified as prostate specific antigen (PSA) ≥ 

20 ng/mL, or grade group ≥ 4, or American Joint Committee on Cancer clinical/radiographic 

(AJCC) stage ≥ T3. The goal of this trial was to determine the maximum tolerated dose for the 

prostate and pelvic regions. It is composed of three-level dose escalations. Ten high-risk PCa 

patients involved in the lowest dose level were included in the current study. Institutional board 

review approval was in place for all image and dose analyses described in this paper. 

For all patients, three fiducial markers were implanted into the prostate site, and a hydrogel 

spacer (SpaceOAR; Boston Scientific, Marlborough, MA) was injected peri-rectum. A planning 

CT simulation scan was performed on a Philips CT Big Bore scanner (Philips Medical Systems, 

Boston, MA) with a 2-mm-thick slice. A diagnostic multi-parametric magnetic resonance image 

(MRI) and a planning MRI on the prostate site were obtained on a Philips MRI scanner (Philips 

Medical Systems, Boston, MA). Combining all three sets of images, a radiologist with 15 

yearsexperience in prostate imaging annotated the intra-prostatic lesion(s) (Hannan et al., 2021). 
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The planning target volume (PTV) for the prostatic lesion was then formed by a direct 0~3 mm 

expansion. After that, the prostate and proximal 1.0 cm of seminal vesicles were delineated. An 

expansion of 3 mm based on it gave the prostate PTV. As for PLN, its clinical target volume 

(CTV)N was obtained by applying the Radiation Therapy Oncology Group contouring atlas. Based 

on it, the PLN PTV was generated with a 5 mm margin. Organs at risk (OARs), including the 

femur head, bladder, rectum, sigmoid, bowel bag, urethra, etc., were all contoured. The 

prescription dose was given in five fractions, with 10 Gy/fraction to the prostatic lesion, 

9.5Gy/fraction to the prostate and 4.5 Gy/fraction to the PLN, respectively. For each target, 

treatment plan achieved minimally 95% of the PTVs covered by the prescription dose.  

2.2.2 Image acquisition, patient setup and radiation delivery 

Patients were immobilized with the stereotactic body frame. Before the CT scan and each 

treatment, a strict bladder filling protocol was followed (Hannan et al., 2021). At treatment 

positioning stage, one set of cone beam CT (kV-CBCT) was acquired for the prostate site using 

the kilovoltage imaging system equipped on a Varian Truebeam linear accelerator (LINAC). A 

second set of CBCT was acquired for the pelvic region by shifting the couch inferiorly by 10 cm. 

The field of review (FOV) on patient lateral and longitudinal directions (for each CBCT) were 45 

cm and 16 cm, respectively. The reconstructed CBCT images had 1.17 mm pixel spacing and 2 

mm slice thickness. The patient was set up by matching the positions of fiducial markers in the 

prostate on the CBCT of the prostate site to those on the planning CT. 

The treatment plan was delivered in four full arcs with volumetric modulating radiotherapy 

(VMAT), with each arc lasting about one minute. During the treatment delivery, kV triggered 

images were acquired every three seconds. After treatment, the planning CT, contours, treatment 
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plan, kV-CBCT images and kV triggered projection images were collected for further analysis. 

2.2.3 Inter-fractional motion analysis 

For each patient, after obtaining the two sets of pre-treatment CBCT images, we merged them 

into an extended-view CBCT based on the known 10 cm couch shift. We then calculated the inter-

fractional pelvic-to-prostate relative motion in a two-stage registration process. First, we registered 

the prostate in the extended-view CBCT to that in the planning CT by matching the fiducial 

markers. Only translational shifts were allowed, to follow the clinical practice. Second, due to 

limited visibility of the PLN target on the CBCT images, we used the pelvic bones (Netter & 

Colacino, 1989) as a surrogate to approximate the relative pelvic-to-prostate motion. Specifically, 

on the CBCT images that were already registered with planning CT for the prostate target, we 

selected those slices containing the pelvic bones, and then aligned the bones to those on the 

planning CT. Again, only translational shifts were considered in this bone-alignment process.  

With the relative motion between the two targets calculated, we correspondingly shifted the 

contours of the CTV and PTV of the pelvic target (CTVN and PTVN) on the planning CT to obtain 

those on the CBCT as CTVN, CBCT and PTVN, CBCT. We computed the overlap between the CTVN, 

CBCT volume and the planning PTVN volume as Vover= (CTVN, CBCT inside PTVN)/ CTVN, CBCT to 

check the tolerance of the PTV margin under the inter-fractional motion. We further estimated the 

impact on the dose coverage of the PLN target. As such, we assumed the dose distribution in the 

3D space was unchanged from the treatment plan and obtained the dose distribution to the CTVN 

at its new position CTVN, CBCT. This was repeated for each fraction. We calculated the delivered 

dose to the CTVN by accumulating doses over all fractions. The delivered dose was compared to 

the treatment planning dose using metrics of D95% (the minimum dose delivered to 95% of the PTV 
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volume) and V100% (the volume receiving the prescription dose).  

2.2.4 Intra-fractional motion analysis 

To estimate the intra-fractional prostate motion, we segmented the fiducial markers using an 

auto-segmentation algorithm developed by Mao et al.(Mao et al., 2008) from the in-treatment kV 

triggered projections. With the 2D marker positions obtained, we retrospectively reconstructed the 

3D intra-fractional prostate motion via the Projection Marker Matching Method (PM3) (Chi et al., 

2017). The 3D motion reconstruction error was also estimated while the detail of the estimation 

method and estimation results were given in Appendix A.   

After obtaining the intra-fractional prostate motion, we estimated its impact on the dose 

coverage of the prostate target (CTV of prostate target, i.e. CTVP) and intra-prostatic lesion target 

(PTV of lesion target, i.e. PTVpl). Again, we assumed that the prostate motion does not affect 3D 

dose distribution in the space. At every moment of a triggered image, we obtained the dose to the 

targets by fetching the dose in the original plan at the new CTV position, form the dose distribution 

per projection. Summing over all the moments of triggered images for one fraction yielded the 

delivered dose distribution per fraction. We also summed over the dose for one patient yielding 

the delivered dose distribution per patient. For each dose distribution (dose-per-projection, dose-

per-fraction and dose-per-patient), we compared the dose distributions with treatment planning 

dose using metrics of D95% and V100%.  

2.2.5 Statistical analysis 

Spearman’s rank correlation was used to test the correlation of the inter-fractional motion 

amplitude with the PLN target dose coverage reduction, and that between the intra-fractional 

motions and the change of prostate target dose coverage.  
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2.3 Results and Discussion 

2.3.1 Inter-fractional pelvic-prostate motion  

Figure 2.1 depicts the geometric differences between pelvic bones in the CBCT (magenta) and 

those in the planning CT (green) for a representative case. A mismatch of bones was clearly 

observed in Figure 2.1(a) for point cloud visualization and Figure 2.1(b) for slice-by-slice 

comparison. Here, the CBCT image were already registered with CT at the prostate target, so the 

difference presents the relative motion between the pelvic region and the prostate. Applying a 

translational shift, the bone structures were aligned well with each other as shown in Figures 

2.1(c)-(d).  

 

Figure 2.1: The visualization depicting the differences for pelvic bones between prostate-

registered CBCT and planning CT with a blending of magenta for CBCT and green for CT. (a) 

Point clouds before registration, (b) the corresponding slice-by-slice comparison along SI 

direction, (c) point clouds after registration using translational transformation, and (d) the 
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 We obtained the relative pelvic-prostate motion for 45 treatment fractions that had the 

CBCT images available. Among them, 44 fractions had satisfying alignment results between 

pelvic bones in CBCT images and those in CT images. Yet, there was one fraction associated with 

obvious mismatch after alignment. We excluded it from the subsequent statistical analysis, yet we 

discussed this special fraction in the discussion section. We analyzed the motion magnitudes along 

LR, AP and SI directions and the 3D motion magnitude, and summarized the mean, standard errors 

of the mean (SEMs) and ranges of the motion magnitudes in Table 2.1. The average motion 

magnitudes over fractions along LR, AP and SI directions were 1.8 mm, 3.3 mm and 0.8 mm, 

respectively, while the maximal motion magnitudes along the three directions were 4.2 mm, 8.1 

mm and 2.2 mm. The average and maximal 3D motion magnitudes were 4.1 mm and 9.2 mm.  

Based on the motion matrix, we obtained CTVN, CBCT and computed the volume overlap Vover 

between CTVN, CBCT and planning PTVN. Averaging over fractions, 98.6% of CTVN, CBCT volume 

was within the volume of the planning PTVN. The corresponding SEM was 0.3% and the range 

was 90.0% - 100.0%. Four out of 44 fractions had𝑉𝑉over < 95%, which were 94.7%, 93.6%, 93% 

and 90%, respectively. 

The inter-fractional motion was found to have a relatively small impact on the CTVN dose 

coverage. Averaging over fractions, V100% and D95% dropped by 0.9% and 0.3% respectively. 

Among the 44 treatment fractions, there was only one fraction with V100% dropping more than 5% 

(which was 9.6%). Spearman correlation test showed that the drop-off of V100% significantly 

negatively correlated to the motion magnitudes along LR and AP directions (𝑟𝑟 = −0.56 and −

corresponding slice-by-slice comparison along SI direction. 
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0.55 respectively and𝑝𝑝 < 0.001), which did not reach statistical significance in the SI direction 

(𝑟𝑟 =  −0.19 and𝑝𝑝 = 0.01).  

2.3.2 Intra-fractional prostate motion 
 

 

 

Three-thousand nine-hundred eighty-one kV triggered projections were available for these 10 

patients over 44 fractions. In Figure 2.2, we showed the intra-fractional prostate motion for a 

patient treatment fraction, which lasted for about 4 minutes. The motion was small for most of the 

treatment moments, yet there was persisting large motion (≥ 3 mm) along AP and SI directions 

for the last ~15 projection moments (~45 seconds).  

The absolute intra-fractional prostate motion for all patients was summarized in Table 2.2. The 

average magnitude of this motion was 2.5 mm. The average magnitudes over projection moments 

in the LR, AP and SI directions were 1.0 mm, 1.4 mm and 1.4 mm, respectively. Nine hundred 

Table 2.1. Statistical summary of inter-fractional pelvic-prostate motion and the corresponding impacts 

on dose distributions of pelvic target in the form of D95% and V100%. 

 Motion (mm) Dose metrics (%) of PLN target 

 LR AP SI 3D D95%(motion)/D95%(plan) V100%(motion)/V100%(plan) 

Mean 1.8 3.3 0.8 4.1 99.7 99.1 

SEM 0.2 0.3 0.1 0.3 0.1 0.2 

range 0.0-4.2 0.2-8.1 0.0-2.2 1.3-9.2 95.7-100.5 90.4-100.2 
 

Abbreviations: LR = left-right, AP = anterior-posterior, SI = superior-inferior, SEM = standard error of 

the mean, PLN = pelvic lymph node. 
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forty-two projections (23.7%) from 35 fractions had a relatively large motion range (3D motion 

magnitude > 3 mm). When averaging the motion over fractions, the average 3D motion magnitude 

and average motion magnitudes along LR, AP and SI directions were 2.6 mm, 1.0 mm, 1.4 mm 

and 1.4 mm respectively. Eight out of 44 fractions from 6 patients had an average 3D motion 

magnitude larger than 3 mm. When averaging over patients, 2 out of 10 patients had an average 

3D motion magnitude larger than 3 mm. 
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Table 2.2. Statistical summary of intra-fractional prostate motion magnitudes and the corresponding 

impacts on dose distributions of prostate target in the form of D95% and V100%. 

 Motion (mm) Dose metrics (%) of prostate (lesion) target 

  LR AP SI 3D D95%(motion)/D95%(plan) V100%(motion)/V100%(plan) 

Overall 

(3981†) 

Mean 1.0  1.4  1.4  2.5  98.3 (99.7) 96.8 (96.9) 

STD 1.4 1.1 1.2 1.7 5.6 (0.9) 6.9 (6.1) 

Range 0.0-15.5 0.0-7.0 0.0-7.5 0.1-15.5 52.5-100.1(89.7-101.5) 52.9-100.5(65.2-104.7) 
 

Abbreviations: LR = left-right, AP = anterior-posterior, SI = superior-inferior, STD = standard deviation. 

†: the number of trigger projection images. 

 

 Figure 2.2: The 3D intra-fractional prostate motion along LR, AP and SI directions 

obtained via the PM3 method for a patient treatment fraction (4 arcs with 20 projections per 

arc). 
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For the entire 3981 projection moments from the 10 patients, the intra-fractional motion 

introduced a drop-off of 1.7% and 3.2% for D95% and V100% of the prostate target on average. It 

introduced a drop-off of 0.3% and 3.1% for D95% and V100% of the intra-prostatic lesion target on 

average. The largest drop-off of D95% and V100% for the prostate target was 47.5% and 47.1%, 

which were 10.3% and 34.8% for the lesion target. The corresponding transient 3D motion 

magnitude was 15.1 mm. As for the accumulated dose per fraction, 5 and 7 out of 44 fractions 

were correlated with a drop-off of D95% and V100% larger than 5% for the prostate target, which 

were 0 and 10 fractions for the intra-prostatic lesion target. The largest drop-off for the two metrics 

were 29.3% and 28.8% for the prostate target and 3.0% and 27.3% for the lesion target. The 

average 3D motion magnitude for the corresponding fraction was 10.1 mm. As for the accumulated 

dose per patient, 2 out of 10 patients had that dose drop-off larger than 5% for the prostate target, 

which were 11.1% for D95% and 15.9% for V100% for one patient, and 8.5% for D95% and 10.2% for 

V100% for the other patient. The corresponding average 3D motion for the two patients were 5.2 

mm and 4.2 mm respectively. Only the former patient also had a drop-off of V100% for the lesion 

target larger than 5% (8.7% specifically). The less sensitivity of D95% to the motion magnitude for 

the lesion target could be partially explained by the relatively small volume of the intra-prostatic 

lesion target compared to the prostate target and the small dose difference between the two targets 

(50 Gy/fraction and 47.5 Gy/fraction, respectively. 

Spearman correlation test showed that the drop-off of D95% of the prostate target moderately 

negatively correlated to the overall 3D motion magnitude and motion magnitude along AP 

direction (𝑟𝑟 = −0.39 and − 0.44 respectively, 𝑝𝑝 < 0.001), which did not reach statistical 

significance in the LR and SI directions (𝑟𝑟 =  −0.12 and − 0.04, 𝑝𝑝 ≤ 0.01). The drop-off of 
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V100% showed a similar correlation to the intra-fractional motion magnitude.  

2.4 Discussion 

In one of the patients at one treatment fraction, it was not possible to align the pelvic bones on 

the CBCT image to that on the planning CT only using the translational rigid registration with 

adequate accuracy (mismatch > 3 mm for most bone structures). A significant tilt was observed 

between the two bone structures. We then applied the rotation-allowed point-cloud registration of 

iterative closest point (ICP) algorithm (Besl & McKay, 1992; Chen & Medioni, 1992), which was 

able to align the bone structures well. After the re-registration, we found that fraction was 

associated with V100% dropping by 2.8% and D95% dropping by 1.3%, which was dropping by 

11.1% and 5.3% under the defect translational rigid registration. We concluded that for most inter-

fractional PLN-prostate motion, a translational rigid registration could describe the motion well 

under the surrogate of the pelvic bone structure. Yet, under some circumstances, for example, 

inappropriate setup where the patient has non-negligible bone tilt, rotational motion should be 

considered. 

It is worth mentioning that uncertainties may exist in the estimation of the impact of inter-

fractional and intra-fractional motions on target dose coverage. In the inter-fractional PLN dose 

estimation, we directly mapped the planning dose on CT to CBCT based on the motion matrix. A 

more accurate way should consider the relative geometry change between the patient and the 

treatment beam. However, we argue that our estimation should still be effective to reflect the 

motion impact. For small motion range, the impact of the relative patient-beam geometry change 

should be very small. As for large motion, no matter considering the relative geometry change or 

not, the dose coverage for the PLN target should have a significant change. In the intra-fractional 
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prostate dose estimation, we used the planning dose for a whole fraction to estimate the dose 

delivered at each projection moment after considering motion. It ignored the influence of 

interactions between the multi leaf collimator (MLC) and the prostate motion at that moment, 

which may affect the dose estimation accuracy. Yet, we expect statistically our dose estimation is 

still reasonable and we will investigate the impact of the interaction of MLC and prostate motion 

in our future work. 

Besides our study, the inter-fractional PLN motion was also studied by Kishan et. al. (Kishan 

et al., 2015) and Tyagi et. al. (Tyagi et al., 2019) for high-risk PCa with IMRT/SBRT treatment 

There are two significant differences between our findings and that in the two studies. First, the 

average translational motion magnitude along SI direction in our study is much smaller than those 

from the other two studies, which is ≤ 1 mm from our study comparing to 3.4 mm in (Kishan et 

al., 2015) and -2.8 mm in (Tyagi et al., 2019). Second, the inter-fractional motion induced dose 

coverage drop-off expressed in V100% or D95% from our study is also much smaller. On average, 

V100% dropped by ~1% in our study, which is 7.4% in Kishan et. al.’s study (Kishan et al., 2015). 

D95% dropped by <0.5% in our study, while it is 4.4% in Tyagi et. al.’s study (Tyagi et al., 2019). 

The difference could be partially explained by the strict bladder filling protocol and the relatively 

large PTV margin (5-7 mm compared to 4-5 mm) applied in our study. 

There were multiple studies for the intra-fractional prostate motion tracking for PCa IMRT 

treatment (Keall et al., 2016; P. Kupelian et al., 2007; Su et al., 2011), while our study is the first 

report regarding the motion in PCa SBRT treatment. There are two consistent findings for our 

study with previous reports. In our study, the percentage of time for prostate motion ≥ 3 and 5 

mm was 24% and 8%, which is similar to that reported in (Su et al., 2011) (20% and 6%, 
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respectively) with Calypso tracking system and that in (Keall et al., 2016) (18% for motion ≥ 3 

mm) with KIM tracking method. We observed similar motion patterns as that reported in study (P. 

Kupelian et al., 2007) for the motion tracked with Calypso system and patients from five medical 

centers that is the motion was unpredictable and varied from persistent drift to transient rapid 

motion. In our study, motion ≥ 3 and ≥ 5 mm for cumulative durations of at least 30 s were during 

41% and 16% of all treatment fractions, quite comparable to that observed in study of (P. Kupelian 

et al., 2007) (41% and 15% respectively). One difference between our study and published 

literatures was that a significant positive correlation was found for prostate motion along AP and 

SI directions in (Su et al., 2011), whereas the correlation was moderate in our study (spearman  

=0.22).  

We also studied the motion impact on the dose coverage of prostate target. For transient motion 

magnitude as large as 15 mm, D95% and V100% could drop significantly by 47.5% and 47.1% 

respectively. As for the motion impact per fraction, a relatively large 3D motion of 10.1 mm was 

observed for one fraction, which resulted the dose drop-off by 29.3% and 28.8% for the prostate 

target. This finding was consistent with that reported in Azcona et. al.’s study (Azcona et al., 

2014), where V100% of the prostate target dropping below 60% for one trajectory was observed 

(dropped by more than 40%). In addition, for the first time, we reported the intra-fraction prostate 

motion impact on the dose coverage of the intra-prostatic lesion target. The drop-off of V100% for 

the lesion target was similar to that for the prostate target. The drop-off of D95% for the lesion target 

was not that significant as in this specific study, the dose difference between the lesion and prostate 

targets was within 5%. It can be expected that the larger the dose difference between the two 

targets, the more sensitive of D95% reduction was to the prostate motion magnitude. Overall, all 
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studies consistently indicated the importance of treatment intervention (e.g. monitoring, gating, 

adaptive re-planning, etc.) to reduce large intra-fractional prostate motion. 

2.5 Conclusion 

We have demonstrated that with applying a relatively large pelvic node PTV margin and 

following a strict bladder filling protocol, the inter-fractional relative pelvic-prostate motion had a 

limited impact on the dose coverage of pelvic nodes, even under SBRT treatment for high-risk 

PCa. We have also showed that the intra-fractional prostate motion was small in most of the 

treatment duration period. However, both persistent large drift and transient large prostate 

movement (3D motion magnitude ≥ 3 mm) was observed in a portion of patient treatment 

fractions. The large motion magnitude was significantly correlated to the drop-off of dose coverage 

on the prostate target, indicating the importance of treatment intervention on intra-fractional 

prostate motion. 
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ABSTRACT 

Although commercial treatment planning systems (TPSs) can automatically solve the 

optimization problem for treatment planning, human planners need to define and adjust the 

planning objectives/constraints to obtain clinically acceptable plans. Such a process is labor-

intensive and time-consuming. In this work, we show an end-to-end study to train a deep 

reinforcement learning (DRL) based virtual treatment planner (VTP) that can behave like a human 

to operate a dose-volume constrained treatment plan optimization engine following the parameters 

used in Eclipse TPS for high-quality treatment planning. We considered the prostate cancer IMRT 

treatment plan as the testbed. The VTP took the dose-volume histogram (DVH) of a plan as input 

and predicted the optimal strategy for constraint adjustment to improve the plan quality. The 

training of VTP followed the state-of-the-art Q-learning framework. Experience replay was 

implemented with epsilon-greedy search to explore the impacts of taking different actions on a 

large number of automatically generated plans, from which an optimal policy can be learned. Since 

a major computational cost in training was to solve the plan optimization problem repeatedly, we 

implemented a graphical processing unit (GPU)-based technique to improve the efficiency by 2-

fold. Upon the completion of training, the established VTP was deployed to plan for an 

independent set of 50 testing patient cases. Connecting the established VTP with the Eclipse 

workstation via the application programming interface, we tested the performance the VTP in 

operating Eclipse TPS for automatic treatment planning with another two independent patient 

cases. Like a human planner, VTP kept adjusting the planning objectives/constraints to improve 

plan quality until the plan was acceptable or the maximum number of adjustment steps was reached 

under both scenarios. The generated plans were evaluated using the ProKnow scoring system. The 



45 

 

mean plan score (± standard deviation) of the 50 testing cases were improved from 6.18 ± 1.75 to 

8.14 ± 1.27 by the VTP, with 9 being the maximal score. As for the two cases under Eclipse dose 

optimization, the plan scores were improved from 8 to 8.4 and 8.7 respectively by the VTP. These 

results indicated that the proposed DRL-based VTP was able to operate the in-house dose-volume 

constrained TPS and Eclipse TPS to automatically generate high-quality treatment plans for 

prostate cancer IMRT.   

 

 

3.1 INTRODUCTION 

Intensity modulated radiation therapy (IMRT) has been widely used in modern clinic for cancer 

treatment (Bortfeld, 2006). IMRT holds the potency to deliver a high therapeutic dose to the tumor 

volume while sparing the nearby organs at risk (OARs). Consequently, it provides the possibility 

to improve the local tumor control as well as to retain the patients' quality of life (Cho, 2018). 

One critical component affecting the effectiveness of IMRT is the quality of IMRT treatment 

plan, which defines the beam characteristics needed to achieve the desired radiation dose 

distribution. This is often formulated as an optimization problem in a multi-objective function and 

automatically solved by the modern treatment planning systems (TPSs) (Intensity Modulated 

Radiation Therapy Collaborative Working Group, 2001). However, depending on the specific 

objectives and constraints applied to define the plan optimization problem, the generated plan may 

not be satisfying. To obtain a clinically acceptable plan, it typically requires a human planner to 

repetitively observe intermediate optimization results and adjust the objectives/constraints to 

improve the plan quality. Such a planning process can be labor intensive and time consuming. 
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Hence, the final plan quality could highly depend on the planning experience and the planning 

time attained by the planner (Atun et al., 2015). A fully-automatic treatment planning system that 

can automatically adjust the plan objectives/constraints for high-quality IMRT treatment planning 

is then critical to advance the radiation clinic using IMRT for cancer treatment. 

 To date, there are multiple techniques developed to automate the treatment planning process 

(Hussein et al., 2018). These include the knowledge-based planning (KBP) method (Chang et al., 

2016; Chanyavanich et al., 2011; Fogliata et al., 2014; Hussein et al., 2016; Kubo et al., 2017; 

Wang et al., 2017), the multicriteria optimization (MCO) method (Chen et al., 2012; Craft et al., 

2012; Thieke et al., 2007), the protocol-based automatic iterative optimization (PB-AIO) approach 

(Wang et al., 2012; Xhaferllari et al., 2013; Yan et al., 2003; Zhang et al., 2011), etc. Key to the 

KBP method is to utilize historically achieved, high-quality treatment plans to predict an 

achievable dose in a new patient of a similar population, or to generate a better starting point for a 

human planner to start with (Chang et al., 2016; Chanyavanich et al., 2011; Fogliata et al., 2014; 

Hussein et al., 2016; Kubo et al., 2017; Wang et al., 2017). In this method, the quality of the newly 

generated plan can highly depend on the historical plans or the anatomy similarity between the 

two sets of patients. Moreover, the predicted dose is not guaranteed to be achievable and further 

adjustments of the plan configurations from a human planner might be required (Hussein et al., 

2018). Central to the MCO method is the concept of the 'pareto optimal solution', which denotes a 

plan that cannot be further improved for a given objective without degrading one or multiple other 

objectives (Chen et al., 2012; Craft et al., 2012; Thieke et al., 2007). Yet, a 'pareto optimal solution' 

may not be clinically desired. It may need to generate many plans before a clinic acceptable plan 

can be selected or interpolated, which can be computational resource or manual interaction 
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demanding. As for the PB-AIO approach, script-based or fuzzy-logic-based automatic adjustments 

of the optimization objectives and constraints are established to gradually improve the plan quality 

to clinic acceptable level (Wang et al., 2012; Xhaferllari et al., 2013; Yan et al., 2003; Zhang et 

al., 2011). A concern of this approach is that it is not easy to optimize the parameter adjustment 

process, such that the planning efficiency may not be assured (Hussein et al., 2018).  

Most recently, along with the rapid development of deep learning (Krizhevsky et al., 2012) 

and reinforcement learning (Sutton & Barto, 2018), a new architecture named "intelligent 

automatic treatment planning (IATP) framework" has been put forward (Shen, Chen, Gonzalez, et 

al., 2021; Shen, Chen, & Jia, 2021; Shen et al., 2019; Shen et al., 2020). In IATP framework, an 

intelligent virtual treatment planner (VTP) is constructed to operate the in-house TPS like a human 

planner to generate high-quality treatment plans. Specifically, Shen et. al. introduced the deep 

neural network-based reinforcement learning (Mnih et al., 2015) to automate the weighting 

parameter tuning in inverse treatment planning with a proof-of-principle study in high dose-rate 

brachytherapy for cervical cancer (Shen et al., 2019), and then extended the principle to external 

radiotherapy with developing a virtual treatment planner (VTP) for prostate cancer IMRT planning 

(Shen et al., 2020). The VTP-based treatment planning was proved to be able to generate high 

quality treatment plans with a relatively high efficiency.  

Yet, in these studies, the in-house developed TPS was relatively simple in the aspects of 

objective functions and adjusted parameters, compared to that employed in the commercial TPS. 

It brought concerns that the concept of VTP-based treatment planning may not work for complex 

TPS, for example, the commercial TPS, where dose-volume constraints were typically applied. 

Recently, a reinforcement-learning based Eclipse treatment planning was tested to be effective to 
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generate treatment plans for pancreas stereotactic body radiation therapy, yet much more efforts 

are still needed to investigate the effectiveness of IATP-based automatic treatment planning for 

broad clinical applications. Hence, it is desired to implement an in-house developed complex TPS, 

such as a dose-volume constrained TPS, to comprehensively investigate the effectiveness of VTP-

based treatment planning with a goal that once the VTP architecture was tested to be effective, it 

could be easily adapted to operate a commercial TPS.  

In this work, we implemented a dose-volume constrained TPS following the parameters used 

in Eclipse TPS for prostate cancer IMRT. We especially designed an end-to-end VTP neural 

network to operate the developed TPS. We trained and tested the VTP on two different sets of 

patient cases. We then connected the established VTP with the Eclipse workstation via the 

application programming interface (API) and tested the performance of the VTP-based Eclipse 

automatic treatment planning with another two independent patient cases. We found that the 

established IATP framework could operate the in-house dose-volume constrained TPS and Eclipse 

TPS for successful treatment planning in prostate cancer IMRT. We reported the method, results 

and discussions in the following sections. 
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3.2  METHODS AND MATERIALS 

3.2.1 The overall architecture of the IATP framework 

 

Figure 3.1: Flowchart of the intelligent automatic treatment planning (IATP) framework. VTP: 

virtual treatment planner. TPS: treatment planning system. 

 

We illustrate the overall architecture of the proposed IATP framework in Figure 3.1. As is 

shown, the TPS started the inverse treatment planning with a trivial set of treatment planning 

parameters (TPPs). The quantification system then quantified the quality of the produced treatment 

plan as a numerical score 𝑆𝑆. If 𝑆𝑆 was lower than the predefined maximum plan score, the VTP 

would observe the DVH of the current treatment plan and decided how to adjust the TPPs. After 

that, the VTP would perform the inverse treatment planning again under the updated TPPs. The 

process was repeated until a satisfying treatment plan was obtained or the VTP reached its 

maximum iteration for the TPP tuning. Compared to the conventional human-planner-based 
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treatment planning, the IATP framework features the automatic decision-making process for TPP 

adjustment with the VTP system.  

To establish an IATP framework suitable to operate a commercial TPS, we need an especial 

design of the in-house TPS system and the VTP network. The details of the IATP framework were 

discussed in the following subsections 2.2-2.6. 

3.2.2 The inverse treatment planning optimization algorithm 

We developed an in-house dose-volume constrained TPS following the detailed documentation 

of the plan optimization method for Eclipse TPS (Varian, 2014).  We especially considered the 

following features for IMRT treatment planning in Eclipse TPS: 1) upper and lower constraints 

(each constraint contains volume, thresholding dose and priority) to optimize the dose distribution 

inside the planning target volume (PTV), 2) upper constraints for the OARs, 3) dose-volume-

histogram (DVH)-based optimization, and 4) the dose deposition coefficient matrix. With 

considering points 1)-3), we formed the objective function as follows: 
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                  s. t. 𝑚𝑚 ≥ 0,  𝛼𝛼95%(𝑀𝑀𝑚𝑚) = 𝑑𝑑𝑝𝑝. 

Eq. (1) contains three terms: the first term ‖ ⋅ ‖− is the standard 𝑙𝑙2 norm that computes only 

the negative elements. It requires the dose deposited to the PTV (i.e. 𝑀𝑀𝑚𝑚) no lower than the 

prescription dose 𝑑𝑑𝑝𝑝. Meanwhile, we have 𝛼𝛼95%(𝑀𝑀𝑚𝑚) = 𝑑𝑑𝑝𝑝 as the hard lower-constraint that 95% 

of the PTV volume receives a dose no lower than the prescription dose. ‖ ∙ ‖+ in the second and 

third terms is the standard 𝑙𝑙2 norm that computes only the positive elements. 𝑉𝑉𝑃𝑃𝑃𝑃𝑉𝑉, 𝑡𝑡𝑑𝑑𝑝𝑝 and 𝜆𝜆 in 

the second term are the percent volume of PTV, the upper thresholding dose and the priority factor, 
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which together serve as the upper constraint for the PTV. Similarly, 𝑉𝑉𝑖𝑖, 𝑡𝑡𝑖𝑖𝑑𝑑𝑝𝑝 and 𝜆𝜆𝑖𝑖  in the third 

term form the upper constraint for the ith OAR. In addition, M and Mi are the dose deposition 

coefficient matrices for the PTV and 𝑖𝑖th OAR, respectively, which specified the dose delivered to 

each voxel inside the patient body from each beamlet under a unit output. In this work, they were 

extracted from the Eclipse TPS and stored in sparse matrix format.  𝑚𝑚 ≥ 0 is the beam fluence map 

to optimize. 

It is worth mentioning that in the iterative optimization process to solve Eq. (1), 𝑉𝑉𝑃𝑃𝑃𝑃𝑉𝑉 and 𝑉𝑉𝑖𝑖 

always refer to those voxels having higher dose than those non-selected voxels, following the idea 

of DVH-based treatment optimization. In all, we have the lower constraint for PTV as a hard 

constraint in our objective function and those upper constraints for PTV and OARs (𝜆𝜆, 𝜆𝜆𝑖𝑖, 𝑡𝑡, 𝑡𝑡𝑖𝑖, 

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑉𝑉𝑖𝑖) as free treatment planning parameters (TPPs) that will be tuned by the VTP. 

We took the prostate cancer IMRT as the testbed and considered cases with one target 

(prostate) and two critical OARs (the bladder and the rectum) in this work. We then had nine TPPs 

to tune in the treatment planning process: 𝜆𝜆, 𝜆𝜆bladder, 𝜆𝜆rectum, 𝑡𝑡, 𝑡𝑡bladder, 𝑡𝑡rectum, 𝑉𝑉ptv, 𝑉𝑉bladder and 

𝑉𝑉rectum. With a given set of TPPs, the optimization problem of the prostate IMRT treatment 

planning was solved using the alternating direction method of multipliers (ADMM) (Boyd, 2010), 

which alternatively updated the fluence map by enforcing the gradient of the objective function 

close to zero in each step. 

3.2.3 The virtual treatment planner network 

After building the dose-volume constrained TPS, we employed the deep reinforcement 

learning (DRL) (Mnih et al., 2015) for the VTP development, which is a combination of the deep 

neural network (Krizhevsky et al., 2012) and the reinforcement learning (Sutton & Barto, 2018). 
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Specifically, under the framework of reinforcement learning, we considered the entire treatment 

planning process as tasks that the agent (the VTP) interacted with the environment (the TPS) in a 

sequence of observations (intermediate treatment plans), actions (TPP adjustments) and rewards 

(changes in the planning score). Noting that the TPP adjustment in one step could impact the 

decision making in future steps, we made the standard assumption that the total reward at time 𝑡𝑡 

as 𝑅𝑅(𝑡𝑡) = 𝑟𝑟𝑝𝑝 + 𝛾𝛾𝑟𝑟𝑝𝑝+1 + 𝛾𝛾2𝑟𝑟𝑝𝑝+2+ . . . +𝛾𝛾𝑃𝑃−𝑝𝑝𝑟𝑟𝑃𝑃 = ∑ 𝛾𝛾𝑝𝑝′−𝑝𝑝𝑟𝑟𝑝𝑝′
𝑃𝑃
𝑝𝑝′=𝑝𝑝 . Here, 𝑟𝑟𝑖𝑖 (𝑖𝑖 = 𝑡𝑡, 𝑡𝑡 + 1, . . . ,𝑇𝑇) was 

the reward at step 𝑖𝑖, 𝛾𝛾 ∈ [0, 1] was the discount factor for future rewards and 𝑇𝑇 was the terminate 

step for the planning process. We then had the goal for the VTP that it could select those actions 

to maximize the future rewards. We applied the optimal action-value function (𝑄𝑄 value function) 

from the 𝑄𝑄-learning algorithm (CJ Watkins, 1992) to represent the maximum expected return at 

step 𝑡𝑡 as 

𝑄𝑄∗(𝑠𝑠,𝑚𝑚) = max
𝜋𝜋

𝔼𝔼(𝑅𝑅(𝑡𝑡)|𝑠𝑠𝑝𝑝 = 𝑠𝑠,𝑚𝑚𝑝𝑝 = 𝑚𝑚,𝜋𝜋).                 (2)  

Here, 𝜋𝜋 represents a policy mapping state 𝑠𝑠 to action 𝑚𝑚.  

Since we do not know the exact form of the 𝑄𝑄 value function, we applied the deep neural 

network (DNN) architecture to parametrize it, considering the flexibility of hyper-dimensional 

representation of DNN (Mnih et al., 2015). The specific DNN architecture used in this work was 

illustrated in Figure 3.2. Specifically, we had one DNN network to be responsible for one TPP 

tuning. With 9 TPPs, we created a VTP network composed of 9 subnetworks (Figure 3.2(a)). All 

subnetworks shared the same architecture, which was illustrated in Figure 3.2(b). As is shown, it 

contained four batch normalization layers, seven Leaky Rectified Linear Unit (LeakyReLU) 

layers, four 1D convolutional layers, four 1D max-pooling layers and one flatten layer, which is 

different from that used in previous work (Shen et al., 2020).  
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Noting that the in-house TPS was DVH based, we sampled the DVH curves for the PTV 

and OARs to generate the input state for the VTP. We had three 𝑄𝑄-values as outputs for each 

subnetwork, which corresponded to action options of increasing, decreasing or retaining the TPP 

magnitude, respectively. We empirically selected the numerical values for the TPP adjustments 

(Table 3.1). We expected that the specific value selections would not affect the VTP performance, 

but only the convergence speed. After obtaining the 𝑄𝑄 values from all nine subnetworks, the action 

resulting the highest 𝑄𝑄 value would be selected and fed into the TPS for treatment plan 

optimization. 

Figure 3.2: (a) The architecture of the deep neural network for the virtual treatment planner, 

which was composed of nine subnetworks. (b) The structure of a representative subnetwork, 

which contains 20 hidden layers. 
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To reflect the effect of VTP operations on plan quality improvement, it was reasonable to 

compute the reward 𝑟𝑟 as the difference of the plan qualities after and before the TPP adjustment 

by the VTP. That is, 𝑟𝑟 = 𝜑𝜑(𝑠𝑠′) − 𝜑𝜑(𝑠𝑠).  Here, we used ProKnow (ProKnow Systems, Sanford FL, 

USA) for prostate cancer IMRT plan to obtain 𝜑𝜑(𝑠𝑠). Relevant to the treatment planning 

optimization algorithm as stated in section 2.1, nine clinical criteria in the ProKnow scoring system 

was used in this study: 𝛼𝛼PTV(0.03 cc), 𝑉𝑉bladder (80 Gy), 𝑉𝑉bladder (75 Gy), 𝑉𝑉bladder (70 Gy), 𝑉𝑉bladder 

(65 Gy), 𝑉𝑉rectum (75 Gy), 𝑉𝑉rectum (70 Gy), 𝑉𝑉rectum (65 Gy), and 𝑉𝑉rectum (60 Gy) with 79.5 Gy the 

prescription dose to 95% volume of the PTV. For each treatment plan to be evaluated, it could 

receive a score 𝑐𝑐𝑖𝑖 ∈ [0, 1] for criterion 𝑖𝑖, following the same rule as defined in Table 3.1 of 

reference (Shen, Chen, Gonzalez, et al., 2021). Hence, the total score that the plan could receive 

was 𝜑𝜑(𝑠𝑠) = ∑ 𝑐𝑐𝑖𝑖9
𝑖𝑖=1 , the maximum of which was 9 and the minimum was 0. It is worthy to mention 

that we didn't employ the ProKnow score for 𝛼𝛼95% due to that we set 𝛼𝛼95% = 79.5 Gy as a hard 

constraint for the PTV optimization in our optimization engine.   

Table 3.1: The empirical magnitude changes for different TPPs in step 𝑗𝑗 based on their values 
in step 𝑗𝑗 − 1 for different action types. 

 𝜆𝜆PTV,OAR
𝑗𝑗  𝑡𝑡PTV

𝑗𝑗  𝑡𝑡OAR
𝑗𝑗  𝑉𝑉PTV

𝑗𝑗  𝑉𝑉OAR
𝑗𝑗  

action 

1 

1.65 ∗

𝜆𝜆PTV,OAR
𝑗𝑗−1  

𝑚𝑚𝑖𝑖𝑛𝑛(1.01 ∗

𝑡𝑡PTV
𝑗𝑗−1 , 1.2) 

𝑚𝑚𝑖𝑖𝑛𝑛(1.25 ∗

𝑡𝑡OAR
𝑗𝑗−1 , 1) 

𝑚𝑚𝑖𝑖𝑛𝑛(1.4 ∗

𝑉𝑉PTV
𝑗𝑗−1, 0.3) 

𝑚𝑚𝑖𝑖𝑛𝑛(1.25 ∗

𝑉𝑉OAR
𝑗𝑗−1, 1) 

action 

2 
𝜆𝜆PTV,OAR
𝑗𝑗−1  𝑡𝑡PTV

𝑗𝑗−1  𝑡𝑡OAR
𝑗𝑗−1  𝑉𝑉PTV

𝑗𝑗−1 𝑉𝑉OAR
𝑗𝑗−1 

action 

3 

0.6 ∗

𝜆𝜆PTV,OAR
𝑗𝑗−1  

𝑚𝑚𝑚𝑚𝑚𝑚 (0.91 ∗

𝑡𝑡PTV
𝑗𝑗−1 , 1) 

0.6 ∗ 𝑡𝑡OAR
𝑗𝑗−1  0.6 ∗ 𝑉𝑉PTV

𝑗𝑗−1 0.8 ∗ 𝑉𝑉OAR
𝑗𝑗−1 
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3.2.4 Training of the VTP network 

The goal of training the established VTP network was to determine the parameters (weights) 

𝜃𝜃 such that 𝑄𝑄(𝑠𝑠,𝑚𝑚;𝜃𝜃) ≈ 𝑄𝑄∗(𝑠𝑠,𝑚𝑚). Following the idea of Bellman equation, the optimal value 

function 𝑄𝑄∗(𝑠𝑠,𝑚𝑚) could be rewritten as 

𝑄𝑄∗(𝑠𝑠,𝑚𝑚) = 𝔼𝔼𝑠𝑠′(𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄∗(𝑠𝑠′,𝑚𝑚′)),      (3) 

where the next state 𝑠𝑠′ was formed by taking an action 𝑚𝑚 for current state 𝑠𝑠, while the 

corresponding reward was 𝑟𝑟. We then obtained the optimal value for the (𝑠𝑠,𝑚𝑚) pair via taking the 

action 𝑚𝑚′ that maximized 𝑄𝑄∗ for 𝑠𝑠′. Consequently, we could train the 𝑄𝑄-network by adjusting 𝜃𝜃𝑖𝑖 at 

iteration 𝑖𝑖 to reduce the mean square error in the Bellman equation, forming the loss function 

𝐿𝐿𝑖𝑖(𝜃𝜃𝑖𝑖) at iteration 𝑖𝑖 as 

𝐿𝐿𝑖𝑖(𝜃𝜃𝑖𝑖) = 𝔼𝔼𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑠𝑠′ �𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′,𝑚𝑚′;𝜃𝜃𝑖𝑖+) − 𝑄𝑄(𝑠𝑠,𝑚𝑚;𝜃𝜃𝑖𝑖)�
2

= 𝔼𝔼𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑠𝑠′(𝑦𝑦 − 𝑄𝑄(𝑠𝑠,𝑚𝑚;𝜃𝜃𝑖𝑖))2.          (4)     

Here, 𝑦𝑦 = 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′,𝑚𝑚′;𝜃𝜃𝑖𝑖+) was the approximate target value for 𝑄𝑄∗(𝑠𝑠, 𝑚𝑚) at iteration 𝑖𝑖. 

𝜃𝜃𝑖𝑖+ were the network parameters for the target 𝑄𝑄-network. Once 𝜃𝜃𝑖𝑖+ was fixed, the loss function 

𝐿𝐿𝑖𝑖(𝜃𝜃𝑖𝑖) was well defined and could be solved via the stochastic gradient decent method (LeCun et 

al., 1998). After that, 𝜃𝜃𝑖𝑖+ could be updated based on 𝜃𝜃𝑗𝑗  (𝑗𝑗 ≤ 𝑖𝑖) such that we could alternatively 

optimize the 𝑄𝑄-network and target 𝑄𝑄-network. To reduce the potential divergence or oscillation 

for the update of the target 𝑄𝑄-network (𝑄𝑄(𝜃𝜃+)), we only updated 𝜃𝜃+ every 𝑁𝑁 steps with each 

update a clone of 𝜃𝜃 from previous 𝑄𝑄-network. To make the VTP training efficient, we employed 

the experience replay method (Lin, 1992) for the updates of 𝜃𝜃𝑖𝑖 at each iteration 𝑖𝑖, as it was known 

to break potential correlations among observation sequences. Specific to our problem, we had 𝑒𝑒𝑝𝑝 =
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(𝑠𝑠𝑝𝑝,𝑚𝑚𝑝𝑝, 𝑠𝑠𝑝𝑝+1, 𝑟𝑟𝑝𝑝) representing the experience acquired at step 𝑡𝑡 with observing an initial treatment 

plan 𝑠𝑠𝑝𝑝, applying TPP adjustment 𝑚𝑚𝑝𝑝 to the TPS system, generating a new treatment plan 𝑠𝑠𝑝𝑝+1 and 

obtaining a reward 𝑟𝑟𝑝𝑝. As 𝑒𝑒𝑝𝑝 was continuously generated during the training process, we could 

create a replay memory to place them as 𝛼𝛼 = {𝑒𝑒1, 𝑒𝑒2, . . . , 𝑒𝑒𝑝𝑝, . . . }. Each time to update 𝜃𝜃𝑖𝑖, we 

randomly sampled a minibatch of experiences with size 𝐿𝐿𝑚𝑚 from 𝛼𝛼 and applied it to solve Equation 

(4). Here, the size of 𝛼𝛼 was fixed as 𝐿𝐿𝐷𝐷 . When 𝛼𝛼 was full, we would continue to pop-in those 

newly generated 𝑒𝑒𝑝𝑝′𝑠𝑠 and pop-out those oldest elements. The minibatch size was set to be 𝐿𝐿𝑀𝑀 ,  with 

𝐿𝐿𝑀𝑀 < 𝐿𝐿𝐷𝐷 . The specific values of 𝐿𝐿𝐷𝐷 and 𝐿𝐿𝑀𝑀 were manually tuned via observing the network 

training performance. To balance the exploration and exploitation process for effective 𝑄𝑄-learning, 

we employed the 𝜀𝜀 greedy policy in the VTP network training. Specifically, at the initial training 

stage, the agent didn't have much experience to learn from and hence we set a relatively large 𝜀𝜀 

(𝜀𝜀 = 0.999) to allow it actively explore the state-action space with randomly choosing a TPP 

adjustment option for the next-step treatment planning. Along with the training time elapsed, the 

agent accumulated more and more experience from which it could exploit optimal strategies. We 

then gradually reduced 𝜀𝜀 with setting its value at the 𝑁𝑁th episode as 𝜀𝜀𝑁𝑁 = 0.999/(0.01 ∗

𝑁𝑁episode + 1). 

3.2.5 Improving training efficiency with Graphical Processing Unit parallel computing 

It took time to train the established VTP considering that it contained nine subnetworks. To 

improve the training efficiency, except for employing the replay memory strategy, we also applied 

the cProfile technique (Python build-in module) to analyze the run time for each individual step. 

We found that the most time-consuming portion was relevant to the operation of compressed 

sparse matrices, including the multiplication of a compressed sparse column (CSC) or row (CSR) 
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with a vector, the column indexing of a CSR, etc. In our algorithm, main sparse matrices were the 

dose deposition coefficient matrices 𝑀𝑀 and 𝑀𝑀𝑖𝑖 as denoted in Eq. (1), which were frequently 

operated during the treatment plan optimization process. Hence, to further improve the network 

training efficiency, we boosted the TPS system via employing the Graphical Unit Processing 

(GPU) parallel computing technique upon the Nvidia CUDA platform. To support the Pythonic 

access to the Nvidia’s CUDA parallel computation, we utilized the PYCUDA API (application 

programming interface).  

3.2.6 Case studies and evaluations under the in-house TPS and Eclipse TPS 

We collected 64 patient cases with prostate cancer IMRT. They were divided into three groups: 

10 for training, 2 for verification and the rest 52 for testing. The 𝑄𝑄-network was built upon the 

TensorFlow platform in Python language. The in-house developed TPS was constructed on top of 

the CUDA platform with PYCUDA technique. The entire algorithm was executed on a GPU server 

with 8 Intel Xenon 2.30 GHz CPU processors, 32GB memory, and 8 Tesla V100-SXM2 GPU 

Cards.   

The 𝑄𝑄-network was trained for 200 episodes with each episode containing a maximum of 30 

steps. At the beginning of each episode, we initialized the treatment plan for each training patient 

case with 7 beam angles and a uniform fluence map for each beam angle. It was then fed into the 

in-house developed TPS system with a trivial TPP setting (all TPPs = 1 except for 𝑉𝑉ptv = 0.1) to 

generate an initial treatment plan. We then sampled a random number 𝜁𝜁 ∈ [0, 1]. When 𝜁𝜁 > 𝜀𝜀, the 

DVH of the initial plan would be fed into the 𝑄𝑄-network. The 𝑄𝑄-network made a TPP adjustment 

decision and received a corresponding reward. Otherwise, a TPP adjustment option would be 

randomly picked up from the available TPP adjustment pool. After that, the new TPP was fed into 
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the TPS system for the next-round of treatment plan optimization. This process was repeated until 

reaching a maximal time step of 30 or a maximal planning score of 9. 

Meanwhile, the obtained TPP adjustment experience was placed into the replay memory for 

the update of the 𝑄𝑄-network and target 𝑄𝑄-network following the method discussed in section 2.3.  

After training each episode with ten patient cases, we verified the obtained network with the 

two verification cases. With obtaining promising results from both training and verification 

process, we comprehensively tested the network with fifty testing cases. Lastly, to test whether the 

VTP developed and trained based on the in-house TPS was effective to operate a commercial TPS, 

we connected the trained VTP with Eclipse research workstation via API and enabled the VTP-

guided Eclipse treatment planning for the rest 2 testing cases. We quantified the plan quality for 

all patient cases with the ProKnow score system. 

3.3 RESULTS  

3.3.1 Results for the training and verification cases 

The optimal performance of the developed VTP was found at episode 190. The corresponding 

hyperparameter settings were listed in Table 3.2.  
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Table 3.2: The hyperparameters and their values used to train the VTP. 

 

Hyperparam
eter 

Valu  Description 

learning rate  
1x

10-5 
The learning rate used by the VTP 

minibatch 
size  

16 
The number of training samples that are used to update 

𝜃𝜃𝑖𝑖 in Equation (4) 
target update 

frequency 
50

0 
The frequency with which the target parameters 𝜃𝜃+ are 

updated 
discount 

factor  
0.

7 
Discount factor 𝛾𝛾 used by the Q learning  

initial 
exploration 

0.
999 

Initial value of 𝜀𝜀 from 𝜀𝜀-greedy exploration  

final 
exploration  

0.
333 

Final value of 𝜀𝜀 from 𝜀𝜀-greedy exploration 

replay 
memory  

12
5000 

The number of state action pairs that are stored 

number of 
episodes 

20
0 

Total number of training episodes  

number of 
steps 

30 Maximum number of time steps in each episode 

In Figure 3.3, we showed a representative case to illustrate how the VTP iteratively observed 

a treatment plan DVH generated by the in-house TPS and made a TPP adjustment decision in the 

network training process. As is shown, the plan DVH at the beginning step failed to satisfy six out 

of eight criteria for OARs, resulting in a low initial plan score of 3. The VTP observed the plan 

and decided to lower the threshold dose value for the bladder (𝑡𝑡BLA in Figure 3.3(e)), which 

produced a plan with a better bladder sparing in step 1 (Figure 3.3(b)). It then lowered the threshold 

dose value and volume for rectum in the subsequent few steps, resulting in a treatment plan with 

a good sparing for both bladder and rectum but an overdose in PTV in step 8 (Figure 3.3(c)). The 

VTP then continuously boosted the weight for PTV and finally generated a plan with a full plan 

score of 9 in step 14 (Figure 3.3(d)).  
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Statistically, the average and standard deviation of the initial plan scores over the 10 training 

patient cases was 5.51 ± 2.16. After the VTP guided treatment planning with the in-house TPS, 

the average and standard deviation of the final plan scores was 8.35± 2.59. Six of them reached 

the maximum score of 9. In addition, the two verification cases had an initial score of 4.5 ± 1.50 

and ended up with a final score of 8.69 ± 0.27. These results indicated that the VTP agent was 

trained as expected. 

 

Figure 3.3: The illustration of the VTP-based treatment planning process for a representative 

training patient case. (a)-(d): the dose fluence maps and DVHs for the treatment plan before TPP 

adjustment, after one, eight and fourteen steps of TPP adjustments by the VTP, respectively. (e) 

The specific TPP adjustment made by the VTP. Here, 'BLA' means bladder and 'REC' represents 

for rectum. 
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3.3.2 Results for testing cases under the in-house TPS and Eclipse TPS 

In Figure 3.4, we illustrated the VTP based treatment planning for a representative testing 

patient case. From Figure 3.4(a), before the VTP based treatment planning, a portion of bladder 

and rectum volumes were exposed to the high prescription dose, resulting in a low initial plan 

score of 4.71. The VTP then decided to decrease the PTV volume that received a dose larger than 

the prescription dose (𝑉𝑉ptv in Eq. (1)) and decreased the threshold dose value for the rectum (𝑡𝑡rectum 

in Eq. (1)) in steps 1-2 (Figure 3.4(e)). It resulted in an effective dose sparing in the rectum while 

the bladder dose was still high (Figure 3.4(b)). The VTP then decided to decrease the threshold 

dose for the bladder (𝑡𝑡bladder in Eq. (1)) in step 3, which effectively reduced the dose exposure to 

rectum and bladder but at the expense of overdosing to PTV (Figure 3.4(c)). The VTP then 

gradually increased the weighting factor of PTV overdose term (𝜆𝜆 in Eq. (1)) in the steps 4-9, 

ending up with a nearly optimal treatment plan (plan scores 8.95 out of 9) 
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Figure 3.4: The illustration of the VTP-based treatment planning process for a representative 

testing patient case. (a)-(d): the dose fluence maps and DVHs for the treatment plan before TPP 

adjustment, after two, three and nine time-steps of TPP adjustments by the VTP, respectively. 

(e) The specific TPP adjustment made by the VTP. Here, 'BLA' means bladder and 'REC' 

represents for rectum. 

  

 We then analyzed the statistical distributions of the plan scores before and after the VTP 

based treatment planning for all 50 testing cases. Specifically, we divided the initial treatment 

plans into 8 categories. For the first 7 categories, the treatment plans satisfied 𝑚𝑚 ≤ plan score<𝑏𝑏, 

with 𝑚𝑚 = 2, 3, . . . , 8 and 𝑏𝑏 = 𝑚𝑚 + 1. As for the last category, the treatment plans were with a plan 

score equaling 9. We then performed the analysis in two ways. In the first analysis, we tracked the 

score changes after the treatment planning for all 8 categories, computed the average and standard 

deviation for each category before and after the treatment planning and showed the result in Figure 

3.5(a).  As is shown, after the VTP guided treatment planning, the average plan scores were 

significantly improved for the first seven categories, which remained the same for the last category 

(maximal plan score). This behavior indicated that the trained VTP was effective in operating the 

dose optimization engine in generating high-quality treatment plans even for those cases with 
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relatively low initial plan scores. In the second analysis, we divided the final treatment plans into 

another 8 categories based on their own plan scores. We counted the total case numbers belonging 

to each category for both initial and final treatment plans and plotted them side by side in Figure 

3.5(b). As is shown, before the VTP based treatment planning, most patient cases had a plan score 

between 5 and 6. After the plan optimization, the majority ended up with a score 8 and above. Both 

distributions showed the capability of our trained VTP in performing high-quality treatment 

planning for prostate cancer IMRT. Overall, the average and standard deviations of the 50 cases 

were 6.18 ± 1.75 and 8.14 ± 1.27 before and after the VTP based treatment plan optimization.  

We also analyzed the dose volume distributions of the 50 testing patient cases following the 

ProKnow score system. The results were listed in Table 3.3. As is shown, compared to the initial 

treatment plans, the average percent volumes exposing to doses ≥75, 70 and 65 Gy for bladder 

and that exposing to dose ≥75, 70, 65 and 60 Gy for rectum have all been significantly reduced 

after the VTP based treatment planning. On the other hand, the average percent volume of bladder 

exposing to doses ≥80 Gy and the average minimum dose that 0.03 cm3 of PTV was exposed were 

slightly increased, but still well below the criterion values. This dose volume distribution of the 

testing patient cases indicated that the trained VTP was able to make effective TPP adjustment 

decisions that could maximize its reward (planning score). 

In addition, for all 50 testing patient cases, it took the trained VTP engine less than 1 minute 

to generate the finally optimized treatment plan per patient case with the in-house TPS system. In 

comparison, it took an experienced human planner around 3 minutes to complete the same 

planning process with an average score ~8.5 (Shen, Chen, & Jia, 2021), which indicated the high 

efficiency of the VTP-guided treatment planning.  
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As for the VTP-guided Eclipse treatment planning, the DVHs of the initial, intermediate and 

final treatment plans and the corresponding TPP adjustment process for one patient case were 

illustrated in Figure 3.6. As is shown, Eclipse generated the initial treatment plan under trivial TPP 

settings (Figure 3.6(b) step 0). The plan suffered from hot PTV coverage and scored at 8 under the 

ProKnow score system. In the subsequent VTP-guided Eclipse treatment planning, the VTP 

observed the intermediate treatment plans through the established API and decided to reduce the 

priority of rectum dosing in steps 1-5. The Eclipse inverse treatment planning under the updated 

TPPs helped reduce the dose to OARs yet it did not help improve the plan score significantly. At 

step 6, the VTP decided to reduce the upper dose limit of PTV, which helped improve the plan 

score to 8.7 out of a full score of 9.  As for the other patient case, it also started at a plan score of 

8 and was improved to 8.4 after VTP-guided treatment planning. Observing the entire treatment 

planning process for both patient cases, the VTP-based automatic TPP adjustments were quite 

reasonable and helped improve the plan qualities. It indicated that the VTP established upon the 

in-house dose-volume constrained TPS was also effective in operating Eclipse TPS for high quality 

treatment planning for prostate cancer IMRT. 
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Table 3.3: The mean and standard deviation (std.) of the dose-volume values for the 50 testing 
cases. “Criterion” means the requirement from the ProKnow score system. “Before” and “After” 
represent treatment plans obtained before and after the VTP guided treatment planning. 
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Figure 3.5: The plan score distributions for the 50 testing patient cases before and after the 

VTP guided treatment planning. (a) The 50 cases were clustered into 8 groups based on their 

initial plan scores. For each group, the mean plan scores before and after the VTP based planning 

were represented by the heights of the blue and red bars. The standard deviations were plotted 

in black. (b) The number of patient cases within different plan score ranges (e.g., '3' means a 

plan score larger or equal than 3 and smaller than 4) before and after VTP based treatment 

planning (in blue and red color, respectively). 
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Figure 3.6: The illustration of the VTP-guided Eclipse treatment planning process for a 

representative testing patient case. (a): DVHs for the treatment plans obtained before, after three-

steps and after six-steps of TPP adjustments. (b) The specific TPP adjustment made by the VTP. 

 

3.4 Time performance 
As mentioned in the method section, when we implemented the in-house TPS on the CPU 

platform, sparse matrix operations were extremely time-consuming in the entire VTP guided 

treatment planning. We then reimplemented the TPS system on the CUDA platform via the 

PYCUDA technique. We compared the time performance of the VTP training before and after the 

PYCUDA acceleration and showed the results for the top 5 most time-consuming steps in Figure 

3.7. As is shown, time cost for all sparse-matrices-correlated operations ('CSC matvec', 'CSR 

matvec', 'CSR column index2', 'CSR column index1') were significantly reduced with the 

PYCUDA acceleration. As for the item relevant to Tensorflow operation ('TF 

SessionRunCallable'), its execution time was not affected as expected. Overall, the PYCUDA 

technique improved the running efficiency of the in-house TPS by around 7.1-fold. It reduced the 

VTP training time from ~80 hours to ~40 hours, increasing the efficiency by about 2-fold. These 
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results indicated that the PYCUDA technique effectively improved the VTP training efficiency.  

 

Figure 3.7. The time performance for the top 5 most time-consuming functions in the 𝑄𝑄-

network training process with incorporating the CPU-based (blue) and PYCUDA-accelerated 

(red) treatment planning optimization engine, respectively. Here, 'CSC (CSR) matvec' 

represents the multiplication between a CSC (CSR) matrix with a vector, 'CSR column index' 

stands for the column indexing of the CSR matrix, and 'TF SessionRunCallable' is a 

Tensorflow operation. 

 

3.5 DISCUSSION  

We successfully trained a deep reinforcement learning based VTP that could operate both in-

house dose-volume constrained TPS and Eclipse TPS for automatic treatment planning in prostate 

cancer IMRT. We used the ProKnow scoring system to quantify the treatment plan quality and to 

generate the reward for the VTP-based TPP adjustment. We applied the replay memory, the 𝜀𝜀-

greedy policy and the PYCUDA technique for effective and efficient VTP training. Among them, 
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the PYCUDA technique successfully reduced the VTP training time from ~80 hours to ~40 hours. 

After the VTP was trained for 200 episodes with 10 patient cases, we tested it with another 50 

patient cases. On average, it took the trained VTP less than 1 minute to operate the in-house TPS 

to generate a final treatment plan for each case, while it took an experienced human planner around 

3 minutes to complete the same planning process (Shen, Chen, & Jia, 2021). The average plan 

score was improved from 6.18 to 8.14 (full score of 9). The effectiveness of the trained VTP in 

operating Eclipse TPS for automatic treatment planning was also tested with another two 

independent cases through API connection. The corresponding plan scores were successfully 

improved from 8 to 8.4 and 8.7 respectively.  

It is worth mentioning that in the dose-volume constrained TPS, we had three adjustable 

constraints for each organ. With two OARs and one PTV considered in this work, nine adjustable 

constraints were available while the adjustment decision for each constraint was made by an 

independent set of deep-neural network. Compared to our previous work that was built upon dose 

constrained TPS (Shen et al., 2020), the networks employed in this work were almost doubled. 

Although it is more challenging to train a bigger network, with more TPPs to choose from, the 

newly-established VTP could make a better TPP adjustment decision in each step and hence be 

more efficient in obtaining a high-quality treatment plan once well-trained. More importantly, we 

found the VTP established upon the dose-volume constrained TPS was also effective in operating 

Eclipse TPS for treatment planning without any further tuning of the network. This inspired us to 

consider the dose-volume constrained TPS a good approximator of the commercial TPS and 

develop new intelligent networks upon the dose-volume constraint TPS before adapting to 

commercial TPS, as it is much more convenient to access an in-house TPS than a commercial TPS. 
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Except for the above success, we also noticed several limitations in our current work. One 

problem was that a small portion of patient cases with a low starting plan score (2-4) were not 

effectively improved after the VTP based treatment plan optimization (Figures 3.4(a) and 3.4(b)). 

One possible reason was that in our current employment of the replay memory technique, the 

memory buffer was always updated with most recent experiences without differentiating their 

levels of importance. This could make the agent insufficient in learning those rarely appearing but 

important TPP adjustment experiences. A potential solution was to employ a more complex case-

sampling strategy from the replay memory. In this way, the agent could more frequently 'saw' those 

rarely-appeared but importance experiences and rapidly learnt to make optimal TPP adjustment 

decisions when facing challenging cases. It is our next step work to explore this technique to 

improve the VTP performance. 

In addition, as discussed in our previous publication (Shen, Chen, & Jia, 2021), under the 

current IATP framework, the network parameters could increase quickly along with the increase 

of the number of TPPs. When the set of TPPs was large enough, the training of the network could 

be extremely challenging and time consuming. To solve this problem, one way was to reduce the 

network parameters via employing a hierarchy DRL that decomposed the TPP decision process 

into three subnetworks, which has been realized in (Shen, Chen, & Jia, 2021). Another possible 

way was to split the treatment planning goal into a sequence of less-challenging sub-goals. We 

then could organize a multi-level network with each subnetwork only targeting on the 

corresponding sub-goal. In this way, each subnetwork was expected to be less complex and easy 

to reach convergence. Specifically, we could employ the hierarchy actor-critic network, inspired 

by the work of (Levy, Konidaris, et al., 2017; Levy, Platt, et al., 2017). We will explore this 
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possibility in our future work. 

3.6 CONCLUSION 

We successfully implemented DRL intelligence with 𝑄𝑄-learning technique to operate an in-

house dose-volume constrained TPS for high-quality treatment planning in prostate cancer IMRT. 

The established DRL network was also found to be considerably effective in operating commercial 

Eclipse TPS for high-quality treatment planning. In both situations, the DRL network was able to 

make reasonable parameter-adjustment decisions when facing given intermediate treatment plans. 

We consider the in-house dose-volume constrained TPS a good approximator for commercial TPS, 

which provides a convenient environment to test newly-developed intelligent treatment planning 

architectures before adapting to commercial TPS. 
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CHAPTER 4 

Applying a Policy and Value Based Network for a More Efficient Treatment Planning  

4.1 INTRODUCTION 

In our previous work, we established a deep reinforcement learning (DRL) network that could 

operate a dose-volume-constrained treatment planning system for IMRT(Damon Sprouts, 2022). 

The DRL network was Q learning that is value-based reinforcement learning. This work has shown 

great promise in generating useable treatment plan for the clinic. Not only in plans that started off 

with poor OARs sparing but it also shows improvement in actual treatment plans in the clinic 

(Damon Sprouts, 2022). Even with this performance it still couldn’t investigated all the possible 

treatment planning parameters (TPPs) at once. The network itself could only discretely tune and 

needed 9 subnetworks one for each of the possible TPPs. There were 3 volumes that were used 

Planning Target Volume (PTV), Bladder, and Rectum. These 3 volumes each had 3 parameters 

with 3 different type actions.  It took about 3 days to reach an episode that had acceptable weights 

and bias for the network. That could allow for the virtual treatment planner (VTP) to generate 

acceptable plans. Given that the previous paper was only using a simple prostate testbed and didn’t 

consider all the actual organs at risk (OARs) and target volumes that are needed for a real prostate 

cancer treatment.  (Damon Sprouts, 2022; Shen, Chen, Gonzalez, et al., 2021; Shen, Chen, & Jia, 

2021; Shen et al., 2020). The current network to run all the needed contours would add a lot more 

computation time for the network to achieve an acceptable weight and would decrease the overall 

efficiency of the network. In this paper we propose using another  reinforcement learning algorithm 

that has shown great promise in not just training in continuous space, but also being able to train 

with looking at all possibilities. That algorithm is Actor & Critic network (ACN) has two main 
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components to it: Actor which is responsible for choosing the action and Critic which tells how 

well that state is mapped to the selected action. It gives instance feedback to the agent when making 

decision, which helps make the training more efficient and quicker as compared to the previous 

effort (Damon Sprouts, 2022). Applying an ACN into our intelligent automatic treatment planning 

(IATP) framework would allow for an even more human-like tuning process. That give the agent 

a chance to look at all TPPs before deciding on how to tune the parameters.  

In this study we follow the same principle of end-to-end VTP neural network that can operate 

a dose-volume constrained TPS.  

4.2 METHODS AND MATERIALS 

4.2.1 Optimization engine and Treatment Planning Parameters 

 Similar to our previous paper, we train the VTP on an in-house developed dose-volume 

constrained TPS that follow the detailed documentation of the plan optimization method for 

Eclipse TPS. The inverse plan optimization engine TPS by adjusting TPS by solving the below 

fluence map optimization.   
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                  s. t. 𝑚𝑚 ≥ 0,  𝛼𝛼95%(𝑀𝑀𝑚𝑚) = 𝑑𝑑𝑝𝑝. 

‖ ⋅ ‖− and ‖ ∙ ‖+ are 𝑙𝑙2 norms that only computed for the negative and positive elements, 

respectively x ≥ 0 gives the beam fluence map to be determined, while Mx, Mix indicates the dose 

deposition matrices for PTV and ith OARs. λ and λi are the weighting factors that can penalize the 

overdose region for the PTV and ith OARs and lastly t and ti are the dose threshold for PTV and 
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OAR. Alternating direction method of multipliers (ADMM) was how the above optimization 

problem was solved.  

4.2.2 Actor and Critic VTP network 

 The new network is a four-layer dense connected with a rectified linear unit(ReLU) as the 

activation function. This allows for only positive value to pass from layer to layer. This design is 

for both the actor and critic network beside the final output layer. The number of output nodes and 

what type of activation function layer that is used before the output layer is the different between 

the two networks. The actor has 27 possible actions as its output that corresponds to the nine TPPs 

and the three actions that can happen. The activation function for the output layer is a softmax that 

gives the probability for that action to be chosen. The critic only as one output that is the Q value 

for the quality of that action. 

 

As in the above figure shows the actor will decide how and what TPPs to tune and then the 

critic will determine how well that action was by taking in the current state and reward generating 

 

Figure 4.1: Layout of the Actor Critic Network 
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a Q value. The TD error will be feed to the actor to know how well the action. TD is known as 

temporal difference that compares the actual reward to what the estimated reward is. It keeps the 

policy function separate from the value function(Shablabh Bhatnagar, 2009).  Also known as 

advantage the loss function wants the advantage to be zero. This means that the actor is picking 

the best action to generate the best state. There are two common ways that ACN can be layout for 

our project we used the one above another option would have been keeping input and decoder 

sperate.  A key difference between previous papers that use DQN is that ACN doesn’t need replay 

buffer to store the state, action, reward, and next state pair, but does its learning from the previous 

pair at every next step. This means that the model is actively learning from all steps and not 

randomly selected pair from the replay memory buffer.  

 Another adding feature to the IATP was the additional of using gymAI to the framework 

which is usually used for testing reinforcement algorithms. We used it in this project to better 

organize the running of the ACN environment where we combine both the TPS with the reward 

function. The VTP can operate the TPS much in the same way like in the previous papers. Where 

the whole process of treatment planning is a task that the agent completes by interacting with the 

TPS and looking at intermediate DVHs and if it meets the stopping criteria of a perfect planScore 

then it will stop.  

4.2.3 Training VTP Actor Critic  

 The training of the network still follows a ten-patient case, after running for 5 episodes 

then it would be validated with two patients. If good scoring validation cases were founded, then 

it would be tested with 50 never before seen cases. The loss function that governs the learning of 

Actor and Critic was a combined of Actor and Critic Loss function.  
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𝐿𝐿𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑟𝑟 = −�𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝛳𝛳(
𝑃𝑃

𝑝𝑝=1

𝑚𝑚𝑝𝑝|𝑠𝑠𝑝𝑝)[𝐺𝐺(𝑠𝑠𝑝𝑝,𝑚𝑚𝑝𝑝) − V𝜃𝜃(𝑠𝑠𝑝𝑝)]      

The above equation is the loss function for the actor. The first component is that of the policy 

is the probability of 𝑚𝑚𝑝𝑝 generate 𝑠𝑠𝑝𝑝. Where t is the current timestep during the running of the 

network. 𝐺𝐺(𝑠𝑠𝑝𝑝,𝑚𝑚𝑝𝑝)-V(𝑠𝑠𝑝𝑝) is the pervious mention advantage The G component is what generate 

from the actor network it is the expected return from the network and V(𝑠𝑠𝑝𝑝) is the results from the 

critic component after it has been parameterized by ϴ. Just like the DQN it following bellman 

equation.  Finally, the negative term is there to make sure that it maximizes the probabilities of the 

actions yielding higher rewards by minimizing the total loss of the network.  

𝐿𝐿𝑎𝑎𝑟𝑟𝑖𝑖𝑝𝑝𝑖𝑖𝑎𝑎 = 𝑡𝑡𝑑𝑑𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡𝑡𝑡𝑝𝑝
2−𝑄𝑄𝑝𝑝𝑎𝑎𝑣𝑣𝑣𝑣𝑡𝑡2 

For the critic loss function it is the squared difference of the actual Q value that the critic 

network generated minus what is expected that is represented by the 𝑡𝑡𝑑𝑑𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡𝑡𝑡𝑝𝑝 . TD is the reward 

from the previous DVHs minus the current DVHs’ planscore plus the discount factor of how to 

weight future value times the Qvalue predicted for the next state.  

𝐿𝐿𝑝𝑝𝑎𝑎𝑝𝑝𝑎𝑎𝑣𝑣 = 𝐿𝐿𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑟𝑟 + 𝐿𝐿𝑎𝑎𝑟𝑟𝑖𝑖𝑝𝑝𝑖𝑖𝑎𝑎 

The network will combine the two losses and take the total loss is what updates the network. 

The entire algorithm was run on a GPU server with 8 Intel Xenon 2.30 GHz CPU processors, 32 

GB memory, and 8 Tesla V100-SXM2 GPU Cards. The TensorFlow 2.62 was used to take 

advantage of gradient tape, so that sess run didn’t need to be run every time. 

4.3 RESULTS 

4.3.1 Results from VTP Actor Critic Network  

Below are the results for the two validation cases that run every 5 epochs to see how the 

training, Figure 4.2 shows the scoring from the initial to the last step of the tunning. Planscore is 
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the normal scoring from ProKnow IQ while PlanScore_fine is a special weighted to favor the PTV.  

 

PAT 12 is one of the more difficult cases for the VTP to tune do to the fact that it has high 

overlapping region between the OARs and the PTV. For ACN it takes less epochs to generate a 

PAT 12 planScore of eight in the previous paper it took longer for the network to genereate a plan 

at this level.While PAT 17 is more of an average reprentation of the patient datasets. Another thing 

different with these results of planScore for this low of an epoch there is a lot more difference 

between the steps.  

 

Figure 4.2: Showing the PlanScore and PlanScore_fine of the vaildation cases 
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In the first couple of steps VTP determines that the main concern for PAT 12 is dealing 

with the rectum which out of the two OARs is the most radiosenitive and has the strongest dose 

constriants against it. Once the VTP puts the extra dose in the bladder it becomes consider of the 

bladder which is reasonable with a human planner. That OARs should be the tune first and avoid 

as much as possible. In the corresponding figure it can be see that the high dose get concentrated 

  

Figure 4.3: The resulting intermediate step DVHs and the weight tunning for Patient 12  
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into the rectum from the first column to the second column.  

 As for PAT 17 the VTP tune lambda PTV first which help with getting the PTV from over 

dosing, and it has show in previous iterations of the IATP to be an very important weight to be 

tune, but it didn’t take many steps before the agent  become more concern for the OARs. It is still 

balancing act between the two OARs which one the agent wants to tune. The resulting dosemap 

show how the VTP wants to save the bladder but end up putting too much dose in the rectum, so 

to overcome this the next steps were to push more dose back into the bladder to resolve the high 

dose. 

 

 
Figure 4.4: The resulting intermediate step DVHs and the weight tunning for Patient 17 
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Chapter 5 

SUMMARY AND FUTURE WORK 

Cancer being the leading cause of early death that being cause of death before the age of 

70.. There needs to be efficient motion management and reproducible treatment planning for the 

Radiation Oncology clinic. In order to advance the clinic we investigated motion management of 

prostate cancer in late stage cancer when the diseases has spread to the lymph nodes. To make the 

treatment planning more efficient and reproducible we investigate in three different types of deep 

reinforcement learning: deep Q learning and actor critic.  

The first direction of efficient motion management was looking into SBRT monotherapy 

PLN. SBRT has been used for years in the early-stage prostate where the disease is all located in 

the prostate, and it was easier to send higher dose without worry about motion due to filling policy 

of the instructions and using immobilization device. Once the monitoring of motion was moved to 

the PLN region there needing to be a way to measure the motion of intra-fractional and inter-

fractional. Inter-fractional motion has to do with the motion difference between the fraction given 

i.e., day to day motion. This was the motion of the hip bones since they were used for surrogate of 

the PLN. Intra-fractional motion has to do with the motion in treatment was given. This motion is 

the motion of the prostate due to the filling of the bladder or rectum. The motion was track by 

applying a rotation and translational matrix due to the prostate and hip bones respectfully and 

recorded what the dose coverage was to the PLN. 

We prove that applying a large pelvic node PTV margin and following what the bladder 

filing protocol that your institution has in place. The inter-fractional pelvic-prostate motion had 
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limited impact on the dose coverage of the pelvic nodes even when using SBRT treatment of the 

late-stage prostate cancer. For the intra-fractional prostate motion in most case there was a small 

drift, but in those cases that showed a motion management greater than  3mm there was a 

significant drop off in dose. 

The second direction of this dissertation was automating the treatment planning process for 

IMRT prostate cancer. Being a simple testcase that both currently A.I. software and dosimetrist 

could treatment plan easy making it a good test bed. In this direction we also used two different 

algorithms: Deep Q Learning which is value-based learning that takes maximum output value and 

does the corresponding action. The second algorithm we use was the Actor Critic method that has 

both policy and value-based learning. This type of learning learns the state-action value or Q value. 

It acts by choosing the best action in the state or highest Q value. The actor part of the network 

uses policy-based which learn the stochastic policy function that maps the state to the chosen 

action. The critic part of the network uses value-based like deep Q learning. Even though we 

investigated two different deep reinforcement algorithms the framework which is IATP was the 

same. That means the TPSs, and reward functions were the same.  

We implement a DRL intelligence with Q learning technique to operate an in-house 

developed dose-volume constrained TPS for useable treatment plans in the prostate cancer IMRT. 

The trained VTP shown that it was effective in operating commercial Eclipse TPSs. The train VTP 

was able to make reasonable adjustments in both the in-house and commercial TPSs. In this 

direction we also moved the in-house developed dose-volume constrained from the CPU to the 

GPU by using PYCUDA. This allows for an eight-fold increases in the running of the TPS and a 

two-fold increases in the whole training process.  
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In the case of applying the actor critic network we were able to decrease the total number 

of subnetworks from 9 to only 1 network. This change allows for the agent be able to tune and 

look at all the TPPs at once. This has show promise on allow the agent to get feedback quicker and 

find the optimal weight for the VTP. The ACN takes the discrete tuning of the network and makes 

the action into continuous environment.  

Now IATP is operating under ACN instead of DQN. This is allowing for the 

implementation of hierarchal ACN (HACN). HACN would be a simple three-layer hierarchy that 

takes the initial DVHs and try to achieve s subgoal at each layer to more efficiently handle the 

increase number of contours for IMRT prostate cancer.  
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