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ABSTRACT 

 

A HYBRID SYSTEMS MODEL FOR EMERGENCY DEPARTMENT BOARDING 

MANAGEMENT 

 

Eniola Suley, Ph.D. 

The University of Texas at Arlington, 2022 

 

Supervising Professor: Dr. Yuan Zhou 

 

 

The purpose of this research is to examine methods for minimizing the influence of boarding on 

emergency department (ED) crowding outcomes. To accomplish this purpose, this research uses a 

hybrid systems model framework by combining agent-based simulation, predictive and 

optimization models to improve ED outcomes such as length-of-stay and left-without-being-seen 

rates. For the research, different types of simulation models were examined (discrete event and 

agent-based/discrete event combination) to identify the most parsimonious for studying ED 

boarding. Predictive models using simulation output were developed to understand the factors that 

influence future boarding levels as well as generate predictions. Research has previously 

highlighted how valuable bed assignment/management strategies can be in ensuring minimal 

length-of-stays in healthcare systems. Such research is limited for EDs specifically, however. This 

research contributes by directly leveraging the predictions of future boarding levels to develop a 

bed assignment strategy that can optimize fast track bed capacity to ensure improved ED outcomes.   
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CHAPTER 1: INTRODUCTION 

Demand for all areas of healthcare, including emergency medicine, is growing globally. Different 

environmental and societal factors are driving this increased demand. These factors include an 

aging population combined with longer life spans, advancement in medicine which creates net new 

needs, a changing climate that is paving the way for pandemics via worsening air quality, and the 

widely reported increasing strain of mental health problems. Although healthcare demand is 

growing, the availability of human and material resources required to address this demand is not 

growing correspondingly, leading to an ineffectual healthcare system. This research focuses 

specifically on improving the operations of emergency departments, which are a critical artery of 

the healthcare system. In this chapter, we will introduce the emergency department (ED) and its 

place in the United States hospital system. Additionally, we will provide motivation for this 

research, introducing the key problems EDs face and the factors responsible for said problems. 

1.1 ED Process – A Brief Introduction 
Patients who require immediate medical attention access medical services where they can receive 

treatments without appointments. These services can be accessed at EDs within a hospital system 

or in primary care settings via urgent care clinics. This research focuses on the processes used by 

emergency departments in hospital systems where the relationship between the hospital and its ED 

provide complexity that result in poor patient experience and less-than-stellar operational 

performance.  

Patients originate from outside the hospital via an ambulance or personal transportation (walk, bus, 

car, etc.). Once in the hospital, these patients either directly access the ER or are referred. At the 

ED, nurses assess the patient’s medical needs using a process called “triage.” The triage process 

aims to prioritize patient care based on illness/injury, severity, prognosis, and resource availability 
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so that diagnostic/therapeutic measures can be initiated as appropriate [1]. In the US, the 

emergency severity index (ESI) is the algorithm used. ESI is a clinically relevant five-level 

stratification system that classifies patients into five groups from 1 (most urgent) to 5 (least urgent), 

based on acuity and resource needs [2].  

 

Figure 1-1: Typical ED Patient Pathway 

Patients wait their turn for medical care according to their ESI. After medical care from physicians, 

there are different pathways for the patient. The patient can be discharged home with care 

instructions. Further treatment may be needed either requiring admission to the ED’s attached 

hospital or transfer to a different hospital. For non-transfer cases, patients will wait until the 

hospital has a bed available, at which point the patient officially exits the ED to the main hospital. 

This waiting period is known as boarding and depending on the hospital’s process, patients may 
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be boarded in the ED or in the main hospital. If they are boarded in the ED, the ED typically bears 

responsibility for these patients, providing continuous care until they are admitted to the hospital. 

Figure 1-1 above provides a visualization of the ED patient pathway. 

1.2 Motivation for improving ED boarding management 
The basic structure of the process described in the previous section is similar to general queue-

based systems: customers arrive, wait for service, receive service based on some pre-determined 

criteria and then exit the system. As with most queuing systems (e.g., banks, shops, etc.), the ED 

system is a victim of crowding and long wait times. ED crowding occurs when the number of 

resources in the ED or hospital is insufficient for coping with patient volume/demand [3]. The 

most common characterization of ED crowding is long patient length of stay (LOS) [4] [5]. The 

ED-LOS is the total time from the patient’s arrival time to the ED to the time the patient is 

discharged from the ED, whether to their home or a hospital. In the US, as of September 2019, for 

patients discharged home, median ED-LOS ranged from 1.5hours in North Dakota (ND) to 

3.5hours in Maryland (MD). For those admitted to the hospital, the median ED-LOS ranged from 

2.2hours in ND to 6.5hours in MD [6]. 

The most obvious consequence of high levels of ED crowding is overall reduced patient 

satisfaction driven by long wait times [7]. According to the National Center for Health Statistics, 

27% of US ED visits in 2017 required a wait of at least 1hour to see a physician [8]. But ED 

crowding has more harmful effects. ED crowding is associated with a high number of patients 

leaving the ED without being seen (LWBS) or completing their medical treatment [9]. Aside from 

clinical implications, this LWBS phenomenon has direct financial implications, leading to $500 

lost per patient in revenue for the hospital [10]. Further, ED crowding is associated with larger 

exposure to clinical errors [11] and higher risk of mortality; with one study estimating an additional 

3% mortality risk for every 10% increase in ED bed occupancy [12]. There are also operational 
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concerns like higher ambulance diversion rates. It is estimated that each ambulance diversion hour 

results in >$5,000 in lost revenue for teaching hospitals in urban areas [13]. ED crowding also has 

harmful effects on ED staff including increased stress [14], higher risk of being assaulted [15] and 

lower rates of adherence to clinical guidelines [16]. 

There are various influencing factors associated with ED crowding. These factors can be classified 

into major components using the input-throughput-output model proposed by Asplin et al [17]. 

Input factors describe those that contribute to the demand for ED services. For instance, researchers 

in different countries have identified older patients seeking care [18] [19] [20] as a determinant for 

longer ED-LOS. Throughput factors are those related to the ED’s care processes and impact both 

efficiency and efficacy. For example, evaluation by more junior physicians (e.g. medical students, 

non-trainee residents) is associated with longer ED-LOS [21]. When combined with patient-

specific characteristics, some of these factors lead to longer LOS, like delays with laboratory or 

radiology testing or treatments by additional consultants [19] [22] [23] [24].  

The output component of Asplin’s model focuses on inefficient removal of patients from the ED 

after service is completed. There is anear-universal agreement that the inability to move admitted 

patients to hospital beds is the biggest contributor to long ED-LOS [17] [25] [26] and that 

improving this movement is the most impactful to overall ED-LOS [27] [28]. These unmoved 

patients experience boarding and thus continue consuming ED resources (beds, nurses, doctors), 

which results in the delay of new patient evaluation. This delay has consequences. A 2016 study 

[29] showed that 37% of total ED-LOS is boarding time; it also showed that every additional 

2hours boarding results in 50% higher LWBS patients.  Boarding has also been directly linked to 

the other aforementioned consequences [30]. Boarding is a product of factors impacting the ED-

hospital system. Factors such as hospital beds [31] and nurses [17] availability as well as 
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communication breakdown between ED and the hospital [32] are also cited as reasons for 

boarding. 

This research focuses on reducing harmful effects of ED crowding, particularly the impact of 

boarding by applying simulation-based operational research techniques. In the next chapter, we 

will review existing work focused on ED crowding leveraging similar techniques. We will also 

highlight the specific contribution that this research will provide to this field of study. 
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CHAPTER 2: LITERATURE REVIEW 

The problem of ED crowding is a famous area of study in literature. Understanding the factors that 

lead to ED crowding as well as identifying solutions to alleviate the problem has been actively 

researched by clinical and non-clinical researchers for the last four decades. In this section, we will 

focus on application of operations research (OR) in this field. For a detailed review of OR 

applications in ED research, please refer to Saghafin et al [33]. There are two broad categories of 

OR techniques used in ED operations analysis: descriptive and prescriptive modelling, according 

to Sinreich and Marmor [34]. The descriptive techniques are used to model and analyze ED 

operations, while prescriptive techniques focus on optimizing ED performance. In the following 

sub-sections, we will review literature related to these techniques, highlighting applications to this 

research focus of boarding. We will also review the use of predictive models, a key component of 

this research and an emerging force in this field given the recent advancements in data science.  

2.1 Descriptive Models for ED Crowding 
Descriptive models come in various forms: empirical, analytical and simulation. All these forms 

of models have been applied in modeling ED operations to improve crowding outcomes.  

2.1.1 Empirical/Statistical Models 

Empirical models are mathematical models that are generated through observations from a general 

population and experiments. These models tend to be used in analyzing the relationship between 

the performance-related factors and influencing variables related to patient flows [35]. The 

mostcommon application for this model type is in forecasting ED crowding and patient flows. 

Patient flow studies are focused on understanding patient pathways through the ED by making 

physical or process adjustments to this pathway, with the aim of reducing patient wait times 

including boarding times. Empirical techniques used in ED patient flow modelling come in various 

forms: formula-based methods [36] [37] [38], regression-based methods [39] [40] and time-series 
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analysis [41] [42] [43] [44]. Well-known empirical models for forecasting ED crowding include 

EDWIN and NEDOCS. EDWIN is a formula-based index that measures the crowding level of the 

ED by considering the number of patients per ESI class, the ED resources available and the number 

of boarding patients already in the ED. This index/measure (from 1 to 5, in ascending order of 

serious crowding) is typically taken at the point of a new patient’s arrival. In it’s introductory 

paper, Bernstein et al [36] define the aim of EDWIN as an alert mechanism for ED personnel to 

respond appropriately when the ED is approaching crisis. Comparing to physician and nurse 

assessment of ED crowding, the authors showed that EDWIN was a reasonable measure of ED 

crowding since it was strongly associated with clinician assessment.  Similarly, to forecast ED 

crowding and provide an early warning signal for ED personnel, Weiss et al [39] introduced the 

NEDOCS measure using regression methods. A mixed-effect linear regression model using 

information from eight US academic EDs was to predict crowding using variables referencing 

patient counts and wait times as well as available beds. The model was also shown to be a 

reasonable predictor of ED crowding when compared to clinician assessment of crowding. While 

these forecasting measures are very useful and accessible to ED personnel given their ability to 

easily tie performance outcomes to contributing factors, they are not perfect. Formula-based 

models are not true predictors as they are static models that mostly reflect current state. 

Conversely, regression-based models do provide predictions and are able to accommodate more 

input variables. Due to the unique patient arrival pattern and its impact on downstream processing 

however, these models fall short in accurately forecasting ED crowding. As a result, researchers 

have been working on time-series analysis and forecasting as an alternative, more accurate 

modeling technique. Eiset et al [40] recently developed a transition regression model to predict the 

number of departures and expected wait time at each step in an ED. The researchers use binominal 
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regression models to predict the probability of departure in the next time step based on input 

variables shown to be related to ED crowding. Results showed that number of arrivals and number 

of people waiting already have the largest impact to wait times. Note that forecasting models are 

also classed as predictive models which are discussed further in section 2.3. In general, these 

empirical model types are very helpful for extracting information from observational ED data to 

better understand ED patient flows which can then be used in other models. Due to some of the 

aforementionedgaps in empirical modeling, including the use of data that can differ due to 

collection methods or timing or collection sites, these models are not well suited for creating 

process improvement models. 

2.1.2 Analytical Models 

Similar to empirical models, analytical models also represent the system in terms of mathematical 

equations. In contrast, their representation specifies parametric relationships and associated 

parameter values as a function of time, space, and/or other system parameters. The most common 

analytical modelling technique used in this field of study is queueing. A queueing model is a 

mathematical description of a queuing system which makes some specific assumptions about the 

probabilistic nature of the customer arrivals and service processes, the number and type of servers, 

as well as the queue discipline and organization. Queuing models have been applied to improve 

ED operations in a variety of ways: understanding the complexities of patient arrivals [45] 

[46],managing patient flow through the implementation of different priority-based queue 

disciplines (i.e. service rules) [47] [48], and improving resource (human and bed) management 

[49] [50]. Queueing models have also been applied in understanding boarding and its effects on 

ED performance by studying the interaction between EDs and the main hospital as well as 

reviewing current decision-making practices. Lin et al [51] models the ED to hospital patient flow 
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in two streams: arrival to disposition and disposition to hospital admission. The aim is to estimate 

the ED waiting times and subsequently steady state number of ED and inpatient unit hospital (IU) 

resources needed to achieve the target waiting time recommended by the Canadian Triage and 

Acuity scale. The second stream which focuses on boarding is modeled as one with servers and 

system capacity constrained to the number of IU beds, no buffers and a first-come-first-serve 

(FCFS) queue discipline. The researchers posit that the waiting times in the ED are dependent on 

boarding time which itself is a function of the hospital inpatient LOS. This hypothesis is validated 

in an earlier study on the relationship between IU LOS and ED wait times by Broyles and Cochran 

[52]. Using data from a local hospital and adjusting ED and IU resources in analytical and Monte-

Carlo experiments based on ED arrival rates and IU LOS, they make an insightful conclusion that 

carrying buffer IU capacity is a better strategy than increasing ED size. This calls into question the 

practicality of the current state practice of boarding at the ED. 

In addition to queueing models, Markov processes/chains have also been used to model emergency 

care processes, by themselves [53] or as tools for analyzing queuing models [54]. A Markov chain 

is a stochastic model describing a sequence of possible events in which the probability of each 

event depends only on the state attained in the previous event. The nature of this probability, called 

the “Markovian property” is thus memoryless. Since patient flows through the healthcare system 

involve numerous events that evolve during the process of care, with the evolved state usually 

determined by the preceding state, modeling patient flows as Markov models is reasonable. To 

illustrate, Zhu et al [55] focuses on the handoff process from ED to IU, the process that influences 

boarding. The researchers model the handoff process as a Markov chain-based transient model 

with a FCFS queue (boarding patients) with a finite capacity and a single server. Conducting 

numerical experiments, the researchers show that waiting time (boarding) is more sensitive to 
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service rate when servers are available than it is to the rate of unavailability of servers. The authors 

postulate that communications between departments is a main determinant for this service rate and 

as such, improving communication between departments could reduce boarding time. 

Analytical modeling for EDs has thrived because of its ability to provide simple equations that 

show the relationship between variables like treatment times, bed capacity and physician 

utilization, and thus making learnings easy to apply practically [56]. However, these equations are 

often based on simplifying assumptions per the model being adopted, constraining true 

representation of the complexity of ED operations. For instance, most studies (but not all, e.g. [47]) 

assume that patients wait until service is complete, ignoring the leave-without-being-seen (LWBS) 

population, which is a criticalED operations outcome. Queueing models usually also assume that 

patients move from service-to-service based on one key server being available (bed or physician), 

simplifying the reality that service at certain points in the ED process require waiting for 

availability of multiple resources.  

2.1.3 Simulation Models 

Developing accurate models for most systems, especially for complex systems like EDs, is 

challenging as it is difficult to fully capture the stochasticity in the process. Simulation models are 

unique in their ability to imitate system behavior very closely including time-dependence and 

stochastic characteristics, thus relaxing the strictness of assumptions typically made with other 

types of models. As a result of this, simulations are useful in investigating ED operations and 

performance as well as testing improvement options. Due to their usefulness in analyzing ED 

operations, simulation modeling is a well-used technique in literature. Paul et al [57] and Salmon 

et al [58] provide detailed literature reviews of simulation model use for emergency departments. 

There are three main simulation techniques, all of which have been used in modeling ED 
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operations: system dynamics, discrete-event and agent-based. System Dynamics (SD) is a 

modeling approach that is focused on the principle that disparate components of a system are 

related and that they affect each other, effectively determining the emergent behavior of the system 

[59]. Due to their nature as well as their ability to model systems with a holistic view, SD models 

have been applied in simulating ED operations particularly with understanding the general impacts 

of patient demand, resource availability on ED performance [60] [61] [62]. Some research studies 

have used SD models in understanding boarding and its impacts. For instance, Rashwan et al [63] 

investigates the impact of boarding and delayed discharges on Irish hospitals, especially the 

influence of elderly patients on this issue to highlight the current aging population trend. The 

researchers develop an SD model to represent the flow of elderly from origin (home, nursing home) 

to their final destination (home, rehab, acute hospital) where the modeled stock are the upstream 

beds needed after ED service. The model is then used to evaluate the effectiveness of policy 

interventions on four key metrics, two of which are related to boarding counts. The research 

examines three main interventions: increase of downstream beds, increased access to community 

service and increased discharge rate from long-term care. Simulation results showed that a 

combination of all three interventions offer the lowest boarding rates. Results also showed that 

simply increasing upstream bed capacity does not improve delayed discharges, a conclusion 

validated by other researchers. This research demonstrates the strength of SD simulation: its ability 

to model highly complex systems at aggregated and strategic levels, allowing for insights into 

massive systems with interconnected systems such as EDs, hospitals and their downstream 

components. SD models are largely deterministic however and cannot fully capture all the 

complexity or stochasticity of the systems modeled [59].  
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Discrete-event simulation (DES) models system operations as a sequence of events where each 

event occurs at a specific instance of time and represents a change in the system’s state [64]. In 

DES, the objects of interest are individually represented with relevant attributes assigned to each 

individual. These attributes determine what happens to the individuals throughout the simulation 

and the individuals can be tracked throughout the simulation. This characteristic allows for 

capturing more complexity and randomness in processes/systems than the SD. As a result, DES 

has found applications in ED operations modeling from resource capacity and configuration [65] 

[66] to patient flow pattern assessments [67] [68] and crowding assessment [69] [70]. DES models 

have also been useful in analyzing patients’ waiting times to understand influencing factors [71] 

[72] including boarding times [73]. De Boeck et al [74], breaking away from the typical practice 

of modeling boarding from the perspective of the hospital, developed a DES model to analyze the 

impact of boarding patients from the perspective of the ED. The research focuses on the resource 

burden that boarding patients places on the ED, specifically examining the decisions that 

physicians have to make regarding which patients to treat first. Given the focus on physician 

decision-making, the researchers use the DES model to evaluate the best patient prioritization 

policy. Using a specific Israeli hospital as a case study, ED process flow for four types of patients 

(orthopedic, surgery, trauma, internal) is modeled from their entrance to the ED to their departure 

to the hospital. Additionally, different styles of boarding is modeled: boarding with only bed 

dependency, boarding with physician and bed dependency and boarding without resource 

dependency. Four patient prioritization policies are evaluated; three static (FCFS, boarding first, 

non-boarding first) and one dynamic (where patients are prioritized based on how long they have 

been waiting for the doctor). The researchers run several simulations under varying conditions to 

understand the impact of boarding on LOS and waiting time in physician queue. The results 
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showed that the boarding patients are not impacted by static policies; however, non-boarding 

patients are impacted by policies that prioritize boarding patients. This emphasizes the effect 

boarders have on the treatment of other patients. Further, this study highlights the many advantages 

of DES over SD especially its flexibility and ability to include detailed complexity. The researchers 

can include special patient attributes like treatment needs and boarding styles to drive different 

flows within the same model, thus allowing more process complexity to be simulated. However, 

the study also shows the limitation of DES. The physician’s decision-making is simplified using 

simple routing logic and this simplification cannot take into account any additional variables that 

real-life physicians may consider like additional high priority tasks, patient deterioration or those 

related to patient behaviors like leaving early. The model also does not consider any interactions 

that patients or physicians may have with their environment which may change the patient’s flow 

or the physician’s decision like crowding levels.  

ABS is a computational framework for simulating dynamic processes that involve agents which 

act on their own without external direction in response to environmental situations encountered 

during the simulation [75]. The key difference between ABS and DES is that ABS focuses on the 

perspective of the agent as the central part of the model. This is unlike DES, where the model is 

built around the process [76]. Agent-based simulation (ABS) is not yet as common for modeling 

ED operations as DES; only ~10% of existing ED operations’ literature over the last two decades 

used ABS [58]. Similar to DES, ABS has been used in the investigating ED staff configuration 

[77] [78] [79] as well as identifying influencing factors for ED performance [80] [81].   

There are many illustrations of ABS’ advantage in modeling complexity over other simulation 

models. One illustration is Yousefi and Ferreira [82]’s investigation of decision-making for ED 

staffing allocation. The research examines the usefulness of a self-organizing, real-time approach 
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to staff allocation compared to the traditional approach of supervisors making staffing decisions. 

The self-organizing approach is a group decision-making approach where the final decision is 

collated from individuals based on their level of experience and work in the ED. The researchers 

develop an agent-based model with several active agents that interact with each other and their 

environment to make decisions. The agents include doctors, lab technicians and nurses that can 

move through their stated tasks and participate in group-decision-making sessions. The model’s 

agents also include patients that can decide to leave the ED based on the ED’s condition. Uniquely, 

these patients also deteriorate in medical condition based on the conditions of their environment. 

To examine the impact of their proposed self-organizing approach, the researchers run several 

simulations with varying staffing availability. Key performance measures (LWBS, LOS, wait time, 

number of discharged patients, wrongly discharged and deaths) were pulled and compared to a 

base model with the traditional decision-making. Overall, the self-organizing approach led to 

better outcomes in all performance measures except for number of patients that are wrongly 

discharged, a factor that relies on clinical decision-making that was not modeled. Simulation 

methods like DES and SD as well as analytical methods do not provide easy ways to model the 

behaviors like the group decision-making behavior or the effect that patients abandoning service 

early have on decision-making.  

There are additional ABS-based studies that have focused on the impact of patient decision-making 

on ED performance. Yousefi et al [83] created an in-depth agent-based model to simulate the 

behavior of patients in the ED. The study focused on the decision-making of patients that leave 

the ED without receiving the treatment they originally sought. Considering patients’ behavior, the 

study then uniquely leverages ABS and cellular automata techniques (CA) to evaluate the best 

operational policy to reduce the number of LWBS patients as well as patients’ LOS using a 
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Brazilian tertiary hospital as a case study. The patient agents can decide whether to stay in the ED 

using a 1-D CA with two behavioral parameters: the agent’s memory on their waiting time as well 

as their neighbors’ waiting time experience. During model verification, it was seen that the use of 

the CA alone improved the ability to mimic the real system’s LOS by 11%. This points out a key 

property and advantage of ABS; agent behaviors can be represented in many ways using simple 

if-then rules or probabilities or combining with more complex and flexible methods such as CA or 

reinforcement learning or neural networks.  

ABS has also been used to assess brand-new strategies for improving ED boarding. Diving into 

patient workflow re-organization, Ajmi et al [84] propose the computer orchestration of a patient’s 

workflow based on the ED’s current state. The research study focuses on the automatic direction 

and re-direction of patients through ED process steps based on specific ED performance indicators 

(PI), including cumulative wait time (CWT), LOS and measures for boarding – IU bed availability 

and availability of right patient file at the right time (PFT). The study also introduces a new PI 

called remaining patient care load (RPCL) which measures the percentage of care remaining for a 

patient i.e. if a patient is at triage, their RPCL is higher than a patient that is awaiting lab results. 

The researchers design a three-level architecture; the first level is the information layer while the 

last two layers contain an ABS model with several agents capable of communication. This ABS 

model is unique in its level of detail as workflow progression is driven on a task per patient level 

as opposed to just a patient level. The model includes several decision-making agents: reception 

and identification agent (RIA), patient workflow instance agent (PWIA), scheduling and 

orchestration agent (SOA), monitoring agent (MA) and medical staff agent (MSA). Simulation 

experiments are designed and run to evaluate the efficacy of the automatic re-direction of patients 

using the case study of a French ED: static (where patient tasks are programmed at execution) and 
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dynamic (where patient tasks can be changed during execution). In the dynamic environment, the 

SOA reorganizes the schedule of patients’ tasks in response to information on the patients or ED 

(e.g., presence of more urgent patient, lack of resources, etc.) as well as specific PIs – LOS, RPCL 

and CWT. In the scenarios with LOS and CWT driving orchestration, sub-optimal results are 

received. Here, if the ED experiences any surge of patients, the medical staff become overloaded, 

and the ED becomes overcrowded far above levels in the static orchestration. But with CWT and 

RPCL, the dynamic orchestration is shown to provide improvements over static orchestration even 

in scenarios with surges in new patient arrivals. This study shows the power of ABS, highlighting 

the technique’s prowess in modeling highly complex details as well as interactions between 

systems and their entities (homogeneous and heterogenous alike). Compared to SD and DES 

styles, ABS is great for modeling when there are many decision-making points that can drive 

system behavior and performance.  

2.2. Prescriptive Models for ED Crowding 
Prescriptive models attempt to quantify the effect of future decisions with the aim of prescribing 

the best decision under certain criteria. The main technique for prescriptive modeling is 

mathematical optimization/programming. Mathematical optimization involves minimizing or 

maximizing a real function by systematically choosing input values from a specified domain and 

finding the best available value of the function. Optimization is a large field with many techniques: 

convex, integer, quadratic, nonlinear, combinatorial, dynamic as well as goal programming, 

heuristics and optimal control theory. Several of these techniques have been applied to understand 

and optimize ED performance. Linear programming techniques have been used to identify the 

optimal ED staffing capacities [85] [86]. Mixed integer programming has been used to model EDs 

with the aim of optimizing ED staffing schedules [87] [88], patient waiting counts [89] and times 

[90] [91] [92]. Goal programming techniques have also been used to optimize ED staffing 
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schedules [93] [94]. Stochastic control theory, a subfield of optimization, has also been applied to 

ED performance problems. For instance, Lee and Lee [95] study the problem of which patients to 

admit to the ED during a surge scenario (e.g. after a natural disaster). The researchers formulate 

the problem as an admission control problem and successfully use a Markov Decision Process 

(MDP) model to make the patient admission decision. Another subfield of optimization, 

heuristic/meta-heuristic optimization has also been used to analyze ED performance. These 

techniques are different from classic optimization techniques as they focus on finding a sufficiently 

good solution to a problem, not necessarily an optimal solution. They are useful for problems 

where the problem space is large, information is incomplete or imperfect or there is limited 

computational capacity. Heuristic optimization has been used to identify ED staffing schedules 

that yield good ED performance [96] [97]; similarly meta-heuristic techniques have been used for 

the same purpose [98].  

Literature review of optimization in ED research shows that most studies are focused on the 

optimization of resources, mostly staff, to improve ED performance. Other strategies such as 

treatment priority or bed assignment are not common. Uniquely, Luscombe and Kozan [99] 

leverage heuristic, meta-heuristics and other OR techniques to provide real-time patient-bed 

assignment and task-resource allocations. The goal of the model is to assign each patient to an 

appropriate bed and schedule the treatment tasks for processing on the correct resources. The 

model considers two objectives; minimizing the weighted response time between arrival and bed 

assignment (the weight is the triage class) for patient-bed assignment and minimizing the total care 

time of all patients for task-resource allocation. The researchers create a dynamic algorithm to 

achieve this goal; the algorithm uses disjunctive graphs and tabu-search techniques to consider 

both objectives. The study shows that their proposed technique is valuable and practical by testing 
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against real-life scenarios as it was able to provide reasonable recommendations in <2seconds. An 

advantage cited for using analytical techniques over prescriptive ones is that they are easy to 

implement, particularly in real-time. This research shows that optimization techniques can provide 

real-time value to ED operations management. The study still underscores however, some of the 

other drawbacks of optimization. Not only are these techniques complex and time-consuming but 

they are mostly deterministic in nature and do not accommodate stochasticity easily. This is 

exemplified by the researcher’s acknowledgement in their conclusion that their findings are limited 

to deterministic treatment pathways which is not always the case in real-life EDs.  

2.3 Predictive Models for ED Crowding 
Predictive models are mathematical models that seek to predict future events or outcomes by 

analyzing patterns from historical data that are likely to forecast future results. The last two decades 

have seen the rapid advancement of predictive modeling through the rise of artificial intelligence 

(AI) techniques: data mining, knowledge discovery and machine learning. This advancement has 

allowed academics, public and private enterprise to embrace these techniques and proliferate them 

across all industries, including healthcare. Healthcare and AI communities have been collaborating 

for several years now across many facets of healthcare including ED study. Shafaf and Malek 

[100] provide a review of machine learning in ED-focused research. Key applications include 

prediction of general population demand for ED services [101] [102] [103], improvement of triage 

systems [104] [105] and proactive identification of patients in the ED with high risk for poor 

clinical outcomes such as patient deterioration/disease progression [106] [107] and mortality [108] 

[109]. Predictive models using AI techniques have also been used in predicting ED crowding 

measures like patient wait times [110] [111] [112] and LOS [113] [114]. Underpinning the use of 

predictive modeling for ED research is the idea that knowledge of future events or states can be 

harnessed by ED operators to make better/quicker clinical and operational decisions. For instance, 
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there are a lot of research studies focused on the prediction of ED patient disposition at the start of 

the ED process. Researchers have been able to make reasonably accurate predictions using varying 

levels of information available: simple demographic and administrative information available after 

triage [115] [116] to more complex information including patient history and clinical information 

[117] [118]. Researchers often cite the ability for this knowledge to be useful in making inpatient 

bed requests early. Golmohammadi [119] built a fairly accurate Artificial Neural Net (ANN) 

predictive model capable of identifying ED patients that would be admitted to the hospital. The 

researcher posited that knowing this prediction will quicken the process of inpatient bedding and 

consequently reduce ED boarding. Uniquely, this study also provides association rules (using data 

mining techniques) that show the relationship between high-impacting factors and likelihood of 

admission. The author provides these as rules-of-thumb that can serve as a substitute to the more 

complex ANN model. However, the research study, like similar studies using AI techniques, 

neither provides details on how the association rules or ANN model can be implemented in a real-

ED setting nor quantifies the impact of using such a prediction model on ED crowding. To further 

illustrate, Lee et al [120] consider real-life ED applicability by dealing with the progressive accrual 

of clinical information throughout the ED caregiving process for their unique predictive model 

that identifies patients admitted to four types of hospital wards. While the researchers are probably 

correct in their assertion that that this granular prediction is more useful to hospital staff for 

planning, they also do not provide any quantifications confirming this hypothesis. This is likely 

because without combining predictive models with other models, it is hard to understand their 

applicability and impact in their intended systems/problem space. Lee et al [121] emphasizes this 

point by successfully applying fork-join queuing models to predictive patient disposition models 
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to highlight and quantify the benefit of using predictive admission data to make inpatient bed 

requests, thereby reducing boarding. 

2.4 Hybrid Systems Models for ED Crowding 
According to Mustafee and Powell [122], Hybrid Systems Modelling (HSM) can be defined as the 

combined application of simulation with methods and techniques from disciplines like Applied 

Computing, Business Analytics, Computer Science, Data Science, Systems Engineering and OR. 

These methods and techniques do not necessarily have to be combined with simulation in the 

implementation / model development stage; they can be applied at any stage including planning, 

model verification, validation and experimentation. HSM is emerging in ED crowding research 

and has been used in most of the same applications as single-modeling techniques. Generally, the 

most common use of OR techniques in ED is in resource allocation/planning and as such, HSMs 

are gaining ground in this application. Examples include simulation-optimization techniques [123] 

[124] [125] [126] and simulation-queuing techniques [127] [128]. Simulation hybrid models have 

also been used in estimating ED crowding measures. Simulation-queueing models [129] and 

simulation-predictive models [130] have been used to estimate patient wait times. Harper and 

Mustafee [131] introduce a HSM that leverages the time series machine learning algorithm 

seasonal ARIMA (SARIMA) to predict the number of ED patients up to 4-hours ahead and 

discrete-event simulation to test the impact of corrective policies on these future crowding levels 

in real-time. While the research is still ongoing, the HSM introduced is expected to be valuable as 

it avoids the pitfalls of typical prediction model research by creating a holistic decision-making 

tool for controlling ED overcrowding.  

Hybrid models have also been applied to research focused on patient flow improvement. Hybrid 

models with simulation and analytical techniques (e.g., queueing theory [132]) have been used to 

propose patient treatment priorities/times. Bruballa et al [133] combine a unique analytical 
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(formula-based) model focused on patient wait times with a detailed ABS model to form an 

intelligent scheduler for non-urgent ED patients. The formula-based model presents the patient’s 

flow through the ED in stages, focusing on subsets of ED-LOS: wait time and actual service time. 

This unique model considers the impact of staff experience configuration on both the measures 

and ED throughput. Experience levels of staff is incorporated into the main outcome, theoretical 

throughput (ThP) which measures the ED’s patient attention/ response capacity. The researchers 

then develop an ABS model capable of dynamically adjusting the incoming patient pattern to 

match the ED’s ThP. The model’s scheduling algorithm works by dynamically adjusting an 

appointment scheduling table that considers a patient’s arrival hour and expecting waiting time 

using this information to “schedule” a treatment time. The researchers propose that the patients are 

informed of their treatment hours and asked to remain at home until the treatment time, improving 

patient satisfaction through a reduction in waiting time. Simulation experiments using the 

historical data from a Spanish hospital show that using the policy from the scheduler reduces wait 

times by >20% across all arrival times compared to the hospital’s traditional policy. Additional 

sensitivity experiments show that the scheduler still reduces wait times even when a high 

concentration of patients arrive in the central hours of the day or when there is an unexpected surge 

like a serious accident. The research work relies on ABS as a method of properly representing the 

complexity of the ED and uses analytical models to guide the pseudo-optimization of wait times.  

The most common HSMs are simulation-optimization models and they have also been applied to 

patient flow improvement problems [134] [135]. Allihaibi et al [136] combine a heuristic 

algorithm with a DES model to arrange the priority of bed assignment for patients arriving at the 

ED. The researchers create a patient-centric detailed DES model where patient flow through the 

ED process is dependent upon triage category and the category of clinical complaint. Three main 
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pathways are modeled in the DES model: resuscitation for high acuity patients, observation for 

low acuity patients and an acute pathway for all other patients. Each pathway represents a treatment 

area with its own resources (beds). The bed assignment heuristic algorithm focuses on minimizing 

patient wait times by reordering patients waiting for bed assignment within each pathway. The 

algorithm does this by minimizing waiting time between all pairwise patient arrivals and waiting 

time based on treatment time which is dictated by the complaint presented. Patients with higher 

waiting times are moved to the front of the bed assignment queue within their pathway. This 

research is one of the few that explicitly outlines bed assignment policy as most other researchers 

focus on physician treatment priority. Using data from an Australian hospital, the researchers 

assessed the effectiveness of the algorithm by comparing to the current hospital situation, FCFS 

policy and the policy of prioritizing patients based on the shortest anticipated treatment time. In 

all cases, the proposed bed assignment policy is superior, providing >9% improvement in patient 

wait time without degrading resource utilization (i.e., bed and clinicians).   

Less common but emerging HSMs that involve the combination of simulation and predictive 

models have also found applications in patient flow research [137] [138]. In an award-winning 

research, Lee et al [139] combine predictive modeling with a simulation-optimization model to 

optimize ED workflow through the implementation of operations improvement activities along 

with patient flow updates. Leveraging existing simulation-optimization framework (RealOpt ©), 

the researchers develop an ED ABS model. The researchers used machine learning algorithms to 

identify patients that will return to the ED as readmissions within 72hours and 30days respectively, 

based on key data patterns from demographic, socio-economic and clinical information. The ML 

algorithm is embedded within the simulation model and is used to create a flag for these patients 

so that they can be identified and observed in a CDU before exiting the ED. The ML model is 
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trained externally using historical data and then predictions are made within the simulation based 

on the predicted model. The researchers then used nonlinear mixed integer programming to 

identify global solutions for achieving best ED performance in terms of utilization, throughput and 

wait times. The identified solutions provided >9% improvement to patient wait times. This study 

provides a good template for incorporating machine learning algorithms into simulation-based 

models. Additionally, it highlights the strengths of using HSMs compared to single-model 

approaches, particularly in patient flow studies. Without the use of simulation, the 

practicality/applicability of the readmission machine learning algorithm is hard-to-evaluate. In 

general, hybrid models using simulation, optimization, analytical and machine learning techniques 

allow for more realistic modeling of the ED behavior with fewer simplifying assumptions and 

lower computational costs [140].  

2.5 Gaps in Literature  
This literature review comes to the same realization as He et al [141]: strategic optimal decisions 

based on a macroscopic view coupled with operational decisions based on a microscopic view can 

yield more efficient techniques and their application to the dynamic and complex nature of 

healthcare can potentially improve care delivery, reduce cost, and save lives. This revelation is 

likely why HSMs continue to be a growing trend in ED research.  

In addition to highlighting the strengths of existing research, the literature review also revealed 

some gaps that will be addressed in this dissertation. First, despite the consensus that boarding has 

significant negative impact to ED crowding and performance, <20% of the OR-focused literature 

reviewed explicitly model and consider boarding. Most of those that include boarding simply 

conclude that reducing boarding impact requires improvements to the hospital’s resource 

allocation/capacity or to the interaction between hospitals and the ED. Also, solutions proposed 

are typically not in control of ED administration, thus making actual implementation difficult. This 
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research focuses on developing solutions to boarding that are within the purview of the ED 

administration and can be deployed within the ED with minimal changes to the main hospital.  

Second, majority of ED research do not model the ED completely, typically opting to model the 

ED as a standalone unit and ED crowding as an ED problem rather than a hospital system problem. 

Due to this systems engineering gap in literature, currently proposed ED crowding solutions focus 

on ED resource allocation and capacity, physician prioritization of patients as well as strategies to 

reduce service times (e.g. lab turnaround). While these solutions offer relief to ED crowding, they 

often do not consider the impact of downstream inpatient care processes and as such, are limited 

in the LOS relief they provide ill patients waiting to be admitted (~13% of all patients). To counter 

this, some research have examined non-capacity planning-related bed strategies to reduce boarding 

effects. Bed management, the hospital function responsible for reviewing the status of the ED and 

the hospital (i.e. patient census and bed occupancy rates) to ensure a smooth flow from ED to 

hospital, is and indicator  has been shown in non-OR based studies to reduce boarding [142] [143]. 

There are other researches that focus on pulling forward the inpatient bed allotment decision 

(usually made by hospital bed managers) to the ED using OR models [73] [121] [144]. There are 

also novel approaches that focus on the ‘optimal’ timing for assigning a patient to an ED bed. 

Today, ED bed assignment is usually based on patient criticality as well as simple strategies like 

the longest wait time or estimated shortest processing time. Only a few research seek to optimize 

boarding or ED crowding measures like wait times based on bed assignment [99] [136] [145].  To 

address this gap, similar to [136], this dissertation will develop a heuristic algorithm for assigning 

beds to patients after triage.  

Third, this dissertation leverages ABS as a key technique in its assessment of the ED boarding 

problem. The literature review of ABS in the context of ED crowding reveals that developed 
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models are either very high-level, focusing on movement of the patient through ED process steps, 

or very specific, focusing on agent (patient/clinician) behavior while simplifying the process flow 

steps. The ABS model developed for this dissertation does both, providing a detailed view of the 

ED processes (and inpatient admission) inclusive of agent behaviors and interactions that likely 

drive system performance, which is a departure from existing literature. This approach will ensure 

that the simulation model is as close to reality in terms of stochasticity and complexity.  

Finally, forecasting ED crowding literature review reveals that using predictive models alone (as 

well as analytical/simulation models alone) is common in literature but there is a dearth of research 

on HSMs that include ED crowding forecasting models. Literature review of HSMs with predictive 

models show the ability to use predictive model results to drive process behavior and impact ED 

performance. This dissertation intends to develop a HSM that combines simulation with models 

that predict future boarding levels based on current ED and hospital crowding levels.  

To conclude, this research aims to address gaps in existing literature by modeling the crowding 

problem holistically, with the aim of identifying reasonable solutions that minimize ED crowding.  

2.6 Research Questions 
In addressing the gaps, this dissertation aims to answer the following questions: 

1. What is the value of creating a simulation model that includes detailed process steps and human 

decision-making behaviors? Does such a detailed model yield better decision-making/model 

outcomes than the typical simulation model found in literature? 

2. What are the main human and operational factors that can be used to accurately predict future 

boarding levels in an ED? 

3. How effective are bed assignment strategies compared to existing strategies at managing ED 

boarding and ensuring reasonable ED crowding levels?   
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3.1 Introduction  
Emergency Department (ED) crowding continues to be a worsening problem across the globe. In 

the United States, ED crowding has been a growing phenomenon in the last three decades. The 

study of ED crowding is important because overcrowding has been linked to detrimental effects 

like larger exposure to clinical errors [1] and a higher mortality rate [2]. Boarding has been widely 

acknowledged as the main cause for ED overcrowding [3] and as such there is a growing body of 

research on the topic. Studies range from exploratory to understand the causes of overcrowding 

[4] [5] to prescriptive where solutions for overcoming overcrowding are provided [6] [7]. 

Simulation has become a go-to tool for understanding ED crowding in general [8] [9] [10]. This is 

due to the availability of simulation tools and the relatively low barrier of entry, allowing different 

professionals from Operations Researchers to Medical Professionals to easily learn and build 

models [7] [11]. Only a few however, are focused on boarding specifically. ED systems are very 

complex, with highly unpredictable inputs and process flows and numerous feedback loops, 

making it hard to model accurately. Simulation models are useful because they can handle the 

complexity of such systems. 

In general, simulation models are abstractions of real-world systems used to reduce, yet mimic, 

the complexity of the real world. Simulation modelers are often told to keep the model small and 
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simple, focusing on creating models that match up to pre-outlined simulation/research objectives. 

This advice is sage as simulation requires data, time, and computational power to build and more 

complex models tend to require these resources that may be scarce. Simulation model complexity 

is not a well understood area and can mean different things to different people [12]. But the 

consensus is that parsimonious models (i.e., “bare minimum”) are better than complex models as 

they tend to provide better predictions [13] [14]. However, it can be difficult to identify just how 

parsimonious a model should be to get the appropriate predictive power. It is just as easy to be 

tempted to include all details as it is to be sparing.  

In this study, we create two different models of the same emergency department using discrete 

event simulation (DES) and agent-based simulation (ABS) techniques. Both models are designed 

for the simulation objective of assessing ED boarding. Both models can be regarded as 

parsimonious for the objective, but DES+ABS model is denoted as more complex due to additional 

details not commonly found in existing literature. We compare the differences between the outputs 

of the model to determine if their distributions are the same. The analysis aims to address two 

questions: (1) what are the impacts on ED output predictions when more complex ED details are 

added and (2) is there an appropriate level of complexity for ED models that study boarding?  

The rest of this paper is organized as follows. “Related literature” reviews the relevant literature 

while “Methodology” presents the simulation model design, validation and statistical analysis 

form comparing the different simulation models. “Results” presents the results of our comparative 

analysis. “Discussion” discusses the main findings and potential implications for future 

simulations as well as clarifies the limitations of our study. Finally, “Conclusions” provides some 

conclusive considerations and future work. 
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3.2 Related Literature 
Research has highlighted that growing model complexity has impact on all aspects of the 

simulation process from validation and verification to correctness, ease of use, performance, and 

cost [12]. Astrup et al. [14] asserts that model size and complexity have an impact on its ability to 

predict accurately. Ahmed et al. [12] show that the concept complexity itself is hard to define as 

their interview-based research with 20 experts did not yield any consensus on definition. Ladyman 

and Wiesner [15] also show that it is difficult to define complexity as a single entity, highlighting 

features such as number of interactions between components, feedback between interactions, self-

modification, robustness and so on as measures for complexity.  

Regardless of the definition of complexity, several researchers have attempted to measure the 

impact of complexity on the effectiveness of models aimed at specific research objectives. Gasser 

et al. [16] added additional data elements to existing finite element simulation models to assess the 

risk of abdominal aortic aneurysm rupturing and they found that additional data elements improved 

predictability. De Rosa et al. [17] developed a methodology to reduce simulation model 

complexity iteratively and identified a tradeoff between output accuracy and computational 

simulation costs for residential building simulations. Their main conclusion was that the right 

tradeoff between accuracy and complexity is based on the specific application intended for the 

model. Mills et al. [18] evaluated two types of subject-specific biomechanical simulation models 

that accurately represent the ground reaction forces and kinematics that gymnasts experience 

during landings. Their study revealed that compared to muscle-driven models, torque-driven 

models, while more common and computationally cheaper, better predict results that match actual 

performances, but failed to capture the internal loading of the joints which is important to assess 

injury risk.  
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While not aimed at complexity, other studies have worked on identifying the impact of different 

modeling strategies on model performance. Majid et al. [19] evaluated which simulation modeling 

strategy (ABS vs DES) created the best representation of the women’s wear fitting room in a UK 

retailer when focused on impact of the behavior of the single server on customer waiting times. 

They found that both modeling techniques yielded good representations of reality but that there 

were differences in variability with ABS delivering variability that matched better with 

real/observed data. Halasa et al. [20] compared two different, but widely used, simulation models 

for predicting the spread and impact of cattle foot-and-mouth disease, with the aim of assessing if 

the model design had an impact on predicted financial impact of a disease epidemic. They 

identified that the different models produced statistically different results and, like Majid et al., 

observed differences in variability captured by both model designs.  

Literature review did not yield any similar studies on comparing the impact of simulation model 

complexity or simulation model strategies with regards to emergency department simulation. This 

study will provide the first of its kind comparison of the predictive nature of two different ED 

simulation models with varying details/complexities. These models aim to explore ED boarding 

and are designed with that objective in mind. To compare the predictive nature, we will examine 

typical ED metrics like length-of-stay (LOS), left-without-being-seen (LWBS) rates, boarding 

time and so on. We will assess the differences between these models looking at simulation results 

when strategies that impact ED boarding are applied. 

3.3 Methodology 
3.3.1 Study Site 

To achieve our aim, we focus on the operations of a typical mid-size level 2 trauma emergency 

department in the California. The ongoing COVID pandemic made access to hospitals for research 

difficult so for the details of our ED, we relied on information provided by administrative and 
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clinical staff from three hospitals within the same hospital group located in California metropolitan 

areas. The information provided was used to develop a simulated ED with characteristics akin in 

profile to the EDs that our panelists work in currently. Our case study ED is an urban, medium 

volume, non-teaching community hospital, with ~78,000 ED visits annually. It is attached to a 

385-bed hospital and the hospital plans for ~300 beds for non-ED related visits like elective 

surgeries. The ED has 49 treatment spaces in total, 29 fully monitored beds (4 of which are 

designated specifically for trauma care/resuscitation) and 20 additional treatment spaces, which 

are typically hallway beds or chairs/recliners. 

3.3.2 The Simulation Study 

3.3.2.1 Simulated Workflow 

Patients originate from outside the hospital either via an ambulance or by personal transportation 

(walk, bus, car, etc.). Once in the hospital, these patients are referred to the ED. At the ED, nurses 

assess the patient’s medical needs using a process called triage. The triage process aims to 

prioritize patient care based on illness/injury, severity, prognosis, and resource availability so that 

diagnostic/therapeutic measures can be initiated as appropriate [21]. In the US, the emergency 

severity index (ESI) is the algorithm used. ESI is a clinically relevant five-level stratification 

system that classifies patients into five groups from 1 (most urgent) to 5 (least urgent) based on 

acuity and resource needs [22]. Patients wait their turn for medical care according to their ESI. 

After receiving medical care from physicians, the patient is dispositioned either to be discharged 

with care instructions, admitted to the ED’s attached hospital for further treatment or transferred 

to a different hospital. For non-transfer cases, patients will wait until the hospital has a bed 

available at which point the patient officially exits the ED to the main hospital. This waiting period 

is known as boarding and depending on the hospital’s process, patients may be boarded in the ED 

or the main hospital. If they are boarded in the ED, the ED bears responsibility for these patients, 
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providing continuous care until they are admitted to the hospital. Figure 3-1 below provides a 

visualization of the ED patient pathway. 

 

Figure 3-1: Typical ED Patient Workflow  

3.3.2.2 Simulation Inputs 

The simulation inputs were derived from a combination of data available in literature as well as 

from interviews with the ED Subject Matter Expert (SME) panel. The interviews with five 

panelists focused on pre-COVID experiences to minimize the influence of COVID surges on our 

model. Our simulation relies on four categories of data inputs: patient-demographic information, 

patient-clinical information, resource availability schedules and process step times.  

For patient demographics, we chose not to include age, gender, or race in the design.  Since we 

did not model any clinical or personal decisions that would rely on them, none of these attributes 
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would influence the model behavior and study outcomes. We focused data collection with our 

panelists on patient arrival patterns which influence model behavior. The ambulance and walk-in 

patient arrival patterns details were sourced by scaling down the arrival patterns from one of our 

previous simulation studies [23]. The ED SME panel reviewed the arrival patterns (hourly, daily, 

seasonally) and deemed it to be close to the patterns observed in their respective centers.  

Relevant patient clinical information that influences model design and behavior include 

proportions of patients by ESI, chief complaint, physician disposition and patient’s use of testing, 

imaging and IV resources. To get the right input for ESI proportions, ED SME panelists were 

provided with ESI ratios seen in literature  [6] [24] [25], using this information as well as their 

own experiences, they provided data that reflected normal operations for their centers pre-COVID 

to the extent possible. The panelists provided their data independently. Then the recommendations 

were reviewed, discussed and the final data to be used for the model was selected based on the 

discussions. This same process was followed for determining the right disposition (based on 

information from [6] [23]) and patient’s chief compliant as well as use of testing, imaging and IV 

resources (based on information from [23]). 

For resource availability and process step times the panelists provided resource availability 

numbers based on their experiences also. For bedside nurses, California has a law governing nurse-

to-patient ratio, therefore nurse schedule is created based on patient arrival patterns. For process 

step times, given the nature of our data collection process, we assumed all process steps followed 

a triangular distribution. This is not unreasonable as we find that based on observed data, existing 

literature tend to use triangular and uniform distributions [25] [26]. The panelists provided their 

minimum, maximum and mode estimates for each step independently and the final numbers were 

determined using a consensus process. There is a paucity of available numbers in literature and 
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where it exists, the studies did not always include all details needed for all the process steps being 

modeled.  

3.3.2.3 Differences between the models 

We created two simulation models using AnyLogic™ 8.7.8 based on the ED workflow (Figure 1) 

and using the same simulation inputs. Our two models vary in the level of details simulated. A 

summary of these differences is provided in Table 3-1. In both models, the ED workflow is 

implemented broadly as a M/G/s/K queue with 12 sub-queues using discrete-event simulation.  

One model (DES+ABS) included the same aforementioned ED workflow, but additional details 

were added. First, for the clinical resources like nurses and doctors, process steps/tasks were given 

priority like real-life. Our study center prioritized completing treatment of existing patients as a 

way to improve throughput and as such, all tasks involving existing patients (e.g., physician 

reviews, discharge papers) are prioritized over moving new non-critical patients into beds. Note 

that for both models, moving critical/trauma patients to beds continued to be prioritized as this is 

standard clinical procedure globally. Second, the patient decision to LWBS was implemented 

using agent-based simulation. Patients decide whether to keep waiting for an ED bed based on the 

crowding status of their environment. We leverage the cellular automata LWBS decision process 

described in [27]. A patient in queue for an ED bed will wait until a tolerance point and then decide 

whether to leave or wait for more time based on how many of their neighbors (i.e., patients that 

were already in the waiting room) have been assigned a bed. Figure 3-2 shows the patient’s 

decision process. We model this process using ABS techniques. Third, we break down the 

physician orders post initial review into imaging process, point-of-care (POC) tests, non-POC tests 

and the use of IV. This is different from literature (e.g., [25]) where the use of radiological tests 

are the only resources modeled given the higher correlation to overcrowding [28] or all resources 

are combined as a single resource (e.g., [29]). Specifically, we create probabilities of patients based 
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on their chief complaints across different permutations of these resources. We make this decision 

because we observe that chief complaint is a better predictor for types of resource used compared 

to ESI as its pseudo R-squared is 10 times higher than the pseudo R-squared for ESI. The R-

squareds were obtained by running two Multinominal Logit Models with target as type of resource 

used (e.g., IV only, Imaging + IV, etc.)  and independent variables as ESI and Chief complaint 

system. 

Table 3-1: DES and DES+ABM Model Design Comparison 

Main Design Choice DES DES + ABM 

Task assignment for 

resources 

Tasks are not prioritized for 

resources; they are seized by 

the longest waiting patient in 

queue.  

Resuscitation has highest priority 

but all other tasks across all queues 

are also prioritized, and resources 

attend to patients in order of priority 

and wait time 

Clinical resources 

used 

Modeled as four types: 

consultation, radiological tests, 

point-of-care tests and all other 

resources 

Modeled as seven types: 

consultation, radiological tests, 

point-of-care tests, intravenous 

treatment (IV) and combinations of 

tests and IV  

Task assignment for 

resources 

Tasks are not prioritized for 

resources; they are seized by 

the longest waiting patient in 

queue.  

Resuscitation has highest priority 

but all other tasks across all queues 

are also prioritized, and resources 

attend to patients in order of priority 

and wait time 

Patients leaving 

before treatment 

Modeled as time-out in queue 

based on ESI since critical 

patients tend to wait longer 

Modeled using state chart of 

decisions based on waiting time and 

perceived waiting time of other 

patients in the waiting room 

Bed cleaning Not modeled Included as delay after patient leaves 

Lastly, to ensure that we capture all the variables that impact access to a bed, we added the time it 

takes to clean a bed between patients. This sub-process is not typically modeled in literature but 

studies such as [30] include it as part of their simulations since beds are not immediately available 

once a patient leaves.  
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Figure 3-2: Patient LWBS Decision Process modeled using ABS 

Note that while the second model (DES) does not consider clinical task priority or bed-cleaning, 

it does consider LWBS but it is modeled in the typical discrete-event model fashion of queue 

abandonment using the same waiting tolerance numbers as DES+ABS. The tolerance numbers 

were sourced directly from Shaikh et al.’s survey of LWBS patients  [31]. The study highlighted 

that most patients (51% and 32% respectively) are either willing to wait up to 2-hours for service 

or wait infinitely, 17% of patients will wait for times between 2-hours and 8-hours. We convert 

this behavior into a custom distribution in our model. In DES model, we also break down resources 

a little more than In literature but less than in DES+ABS model. In DES model, we simply model 

the use of imaging tests or laboratory tests and aggregate all other resource use into one bucket, 

rather than breaking into specific permutations like imaging and testing vs testing only. Note that 

in both models, we model explicitly the use of consultants given their noted impacted on patient 

length of stay [28]. 
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3.3.2.4 Verification & Validation (V/V) 

We perform V/V before we begin using the model to assess results. Verification and validation 

help us determine if a model and its results are appropriate for a specified application. Verification 

focuses on ensuring that the implementation of the model using AnyLogic is correct (e.g., no 

logical errors), while validation focuses on ensuring that the model’s results are within a reasonable 

range of accuracy consistent with the intended application of the model [32].  

Model verification was done by manually reviewing outputs at each process step where Java 

programming was used or AnyLogic default settings were updated, to ensure that the model 

behaved as expected. Additionally, the models were run for varying lengths of time (1 – 45 

simulated days) to ensure that no errors were generated as the model became larger.  

Given our unique data collection method, it was not possible to perform model validation in the 

typical method of comparing simulated output to real/observed output. Thus, for our study, we 

leverage metamorphic validation, an enhancement to the software testing technique metamorphic 

testing. Introduced by Olsen and Raunak [33], metamorphic validation calls for the design of 

metamorphic properties for the simulation model type (DES/ABS), followed by the description of 

metamorphic relations (MR), which are definitions of changing behaviors given changes in the 

model design or its parameter and finally conducting experiments to test the MRs. 

The validation experiments focus on the impact to the following metrics suggested by the ED SME 

panel: patient length of stay in the ED from arrival to departure (LOS), number of patients that left 

prior to being assigned a bed (LWBS) and bedside nurse utilization. 

We use the metamorphic validation methodology for hybrid models described in the research 

dissertation put forward by Farhan [34]. This method allows us to validate the individual DES and 

ABS sub-models as well as the overall model. As such, we conduct experiments on the DES model 

independent of ABS workflows by turning off the ability of the ABS model to enact changes to 
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the DES model flow. In this case, we are still able to count how many people make the decision to 

leave; however, the patients still remain in the system and use ED resources which does influence 

the model as ED is filled with more people than usual. 

Table 3-2: Metamorphic Relations.  

Category Code* Parameter or 

Property 

Type of change Expected 

Answer 

Experiment 

Answer 

D1 - 

Resource 

DES1 Number of 

bedside nurses 

Increase: Add 1 

nurse (under 3 

different patient 

arrival patterns 

in DES2) 

LOS decreases, 

LWBS 

decreases, 

UTIL decreases 

Both Models: 

LOS decreases, 

LWBS decreases, 

UTIL decreases. 

D2 – 

Process 

Parameters 

DES2 Inter-arrival 

time for 

patients 

Increase: Add 1 

to each hour 

between 9am – 

9pm; add 1 to 

each hour, add 2 

to each hour 

LOS increases, 

LWBS 

increases, UTIL 

increases 

UTIL stays flat 

(DES+ABS). 

UTIL increases 

(DES). 

Both Models: 

LOS increases, 

LWBS increases,  

DES3 Delay time for 

single service 

block (lab 

results waiting 

time) 

Increase: Add 1, 

2 & 3 mins to 

each parameter 

in triangular 

process time 

LOS increases, 

LWBS 

increases, UTIL 

stays flat 

Both Models: 

LOS increases but 

stays relatively flat 

between 2 and 

3mins.  

LWBS increases. 

UTIL stays flat. 

DES4 Number of 

admitted 

patients pulled 

hourly 

Increase: Add 1 

patient to each 

hour (under 3 

patient arrival 

patterns in 

DES2) 

LOS decreases, 

LWBS 

decreases, 

UTIL increases 

Both Models:  

LOS decreases. 

LWBS decreases. 

UTIL increases. 

D3- 

Workflow 

Steps 

DES5 Combine 

service blocks 

Simulate 

physician-in-

triage by 

combining triage 

nurse and initial 

physician 

assessments 

under DES2 

conditions 

LOS decreases, 

LWBS 

decreases, 

UTIL decreases 

Both Models: 

LOS decreases, 

LWBS decreases, 

UTIL decreases. 
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A4- 

Interactions 

between 

agents 

ABS1 Ratio of 

bedded to bed-

less neighbors 

Increase: 

Increase ratio 

from >1 to ≥1.5 

and ≥1.9 (under 

3 patient arrival 

patterns in 

DES2) 

LOS increases, 

LWBS 

decreases, 

UTIL stays flat 

DES+ABS only: 

LOS increases. 

LWBS decreases. 

UTIL stays flat. 

A5 – 

Interactions 

between 

agents and 

environment 

ABS2 Waiting 

Tolerance 

Time 

Decrease: 

Reduce the 

minimum 

waiting 

tolerance time to 

60mins and 

90mins (under 3 

patient arrival 

patterns in 

DES2) 

LOS decreases, 

LWBS 

increases, UTIL 

stays flat 

DES+ABS only: 

LOS decreases. 

LWBS increases. 

UTIL stays flat. 

* Note: DES coded MRs are for the discrete-event model, and ABS coded MRs are for the ABS model. 

Table 3-2 shows the results of the validation process. The categories D1 – D3 and A4 – A5 are 

property categories suggested in [33]. We assess the results by checking for the trends expected 

[34]. Both our models behave as expected and similarly in general. We notice that when more 

patients are added to DES+ABS, nurse utilization stays relatively the same. This may be attributed 

to the fact that our LWBS patients do not leave the ED and as such, they have already saturated 

bed occupancy, thus leaving no real room for patient growth for the nurses. Also, for DES+ABS, 

similarly for DES3, the model behaves as expected and an increasing trend is observed but only 

up to the addition of 3-mins. When 3-mins are added to the lab processing time, there is no increase 

observed in LOS compared to LOS when 2-mins were added. DES model shows increases across 

all time additions, but the increases seen from 2-mins to 3-mins is 80% lower than the increase 

seen from 1-min to 2-mins.  This could suggest that when it comes to lab processing times, there 

might be a saturation point with reduced impact on LOS. Patients that are admitted are more likely 

to use lab resources and their LOS is largely dependent on inpatient bed availability not lab 
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processing times. Reviewing the results with the ED SME panel, the behaviors from both models 

are similar to what is expected from a real system, so we conclude that our models are reasonable 

representations of a real ED system. 

3.3.2.5 Simulated Scenarios 

Three experimental scenarios were run for each model: one scenario is the base scenario where the 

models are run with no changes to simulate the normal behavior of our case ED. For the other two 

scenarios, we look at different ED crowding management scenarios as prescribed by Emergency 

Medicine Practice Committee [35]. These kinds of scenarios can be used to study how to relieve 

boarding as part of reducing ED crowding. The two scenarios are: (1) increasing the number of 

ED beds by 5 and (2) moving the inpatient discharge time to 8am – 4pm.  

Prior to running the experimental scenarios, we used Welch graphical method [36] to determine 

the appropriate warm-up which will ensure that we remove any bias introduced by the initial model 

states. The method showed that at 14 days, the ED bed utilization reached a steady state. In our 

subsequent model runs, we discarded all metrics collected prior to the 15th day and ran the models 

for an additional 7 days (i.e., total model run length is 21 days).  

3.3.3 Comparison Between the Models 

To gain an understanding of the ED performance, the metrics in Table 3-3 were recorded at the 

end of each simulation run. The values of each output metric were averaged over 30 replications 

for each experimental scenario [37]. The values from both models were compared to each other 

using the non-parametric Wilcoxon Signed-Rank Test [38]. We aim to assess if there is any 

difference in our population medians. Our data samples are independent but the differences 

between the medians do not appear to be consistently normally distributed across all outputs, so 

we use the non-parametric test instead of the paired Student’s t-test.  
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Table 3-3:  ED Performance Metrics 

Metric Definition 

LOS Average time in minutes a patient spends in the ED from arrival to departure 

either to their home or the hospital 

ALOS Average time in minutes an admitted patient spends in the ED from arrival to 

departure to the main hospital 

Board Time Average time in minutes an admitted patient waits for an inpatient bed after 

their inpatient bed request has been placed 

DLOS Average time in minutes a discharged patient spends in the ED from arrival 

to departure home 

Bedside UTIL Average utilization of the bedside nurse 

LWBS Average number of the patients who leave the ED before being assigned a 

bed as a proportion of total number of patients who entered the ED 

Bed Wait Time Average time in minutes that a patient spends waiting to be assigned a bed 

from arrival 

We design our comparison experiment by treating DES model as a control group and DES+ABS 

as the treatment group where the additional details (ABS, resource utilization, bed cleaning and 

task prioritization) represent the variable being tested. For testing the differences between our test 

and control model outputs, we define the following hypothesis [39] and test for α = 0.05 using the 

Wilcoxon method from the SciPy library for Python 3.0:  

𝐻0 →  (𝐴𝑖 , 𝐵𝑖) 𝑎𝑟𝑒 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑖. 𝑒. (𝐴𝑖 , 𝐵𝑖) 𝑎𝑛𝑑 (𝐵𝑖 , 𝐴𝑖) ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

𝐻1 → 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜇 ≠ 0, 𝑡ℎ𝑒 𝑝𝑎𝑖𝑟𝑠 (𝐴𝑖 , 𝐵𝑖) 𝑎𝑛𝑑 (𝐵𝑖 + 𝜇, 𝐴𝑖 − 𝜇) ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

3.4 Results 
Base Scenario: When the ED process is run with no change to the basic simulation inputs, 5th, 50th 

and 95th percentiles values of the ED admit throughput observed through DES+ABS were 

respectively 497, 517 and 546 while the values from DES were respectively 497, 523 and 551 

patients. The 5th, 50th and 95th percentiles of the ED discharge throughput observed through 

DES+ABS were respectively 869, 917 and 959 while the values from DES were respectively 878, 

925 and 984 patients. We see that our DES+ABS model has slightly higher throughputs.  
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The results of our Wilcoxon tests show that except for LWBS, we reject the null hypothesis that 

DES and DES+ABS outputs are interchangeable (Table 3-4). DES predicted considerably longer 

patient length-of-stay times for both admitted and discharged patients compared to DES+ABS 

(Table 3-4). Patient boarding times were different for both model types, with DES predicting 

longer times waiting for an empty inpatient bed (Table 3-4). There was also a significant difference 

in the utilization of bedside nurses, with DES+ABS predicting that nurses are much busier than in 

DES. The only insignificant difference between both models is observed with LWBS even though 

DES predicts slightly less LWBS rates than DES+ABS (Table 3-4).  

Add Bed Scenario: When the ED’s capacity was increased by 10% (i.e., 5 additional beds), we 

observe similar results as the base scenario in terms of the significance of the differences between 

the models (Table 3-4). We see that LWBS is reduced to at least a third of the base model’s values 

in both models and that the difference between both models is still insignificant (Table 3-4). The 

one oddity observed is that while both models show an increase in LOS in general compared to 

base model, the discharge LOS in DES is lower than observed in the base model (Table 3-4). 

Similarly for bed wait model, we observe that bed wait time in DES is lower than that observed in 

the base model.  

Discharge Timing Scenario: In this scenario, when we move the start of the hospital discharge 

early and uniformly distribute the number of beds available per hour, we observe that the 

differences between both models for the outputs LWBS and Board Time are insignificant (Table 

4). The remaining outputs are deemed significant from the hypothesis testing. Across the board, 

all the observed values are higher than observed in the base model.   
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Table 3-4:  Results from Experimental Simulation Runs 

Scenario Metric DES+ABS DES 

Base LOS 205*** (192 – 221) 250 (222 – 282) 

ALOS 392*** (360 – 423) 443 (403 – 479) 

Board Time 283*  (253 – 314) 297 (269 – 315) 

DLOS 104*** (97 – 113) 149 (120 – 174) 

Bedside UTIL 80%*** (77% – 82%) 60% (59% – 61%) 

LWBS 1.9% (0.4% – 4.7%) 1.4% (0.1% - 4.2%) 

Bed Wait Time 14*** (13 – 15) 23 (16 – 32) 

Add 5 

more 

beds 

LOS 209*** (195 – 229) 251 (233 – 281) 

ALOS 399*** (370 – 432) 445 (411 – 486) 

Board Time 289** (264 – 318) 306 (274 – 325) 

DLOS 106*** (102 – 117) 145 (129 – 169) 

Bedside UTIL 81%*** (79% – 82%) 61% (59% – 62%) 

LWBS 0.5% (0.02% - 4.2%) 0.4% (0.02% - 3.8%) 

Bed Wait Time 14*** (13 – 15) 19 (15 – 30) 

Change 

discharge 

timing to 

8am – 

4pm 

LOS 252*** (238 – 267) 344 (266 – 460) 

ALOS 531*** (500 – 565) 628 (535 – 750) 

Board Time 439 (403 – 469) 447 (409 – 487) 

DLOS 92*** (85 – 95) 184 (124 – 286) 

Bedside UTIL 81%*** (78% – 82%) 65% (63% – 67%) 

LWBS 9.6% (6.4% - 14.5%) 8.4% (2.8% - 16.5%) 

Bed Wait Time 18*** (14 – 19) 61 (29 – 126) 

Model results are shown as median of output values followed by 5th and 95th percentiles. 

*** refers to a p-value <0.001,** refers to a p-value <0.01, * refers to a p-value <0.05 and no 

sign refers to p-value ≥0.05. 

3.5 Discussion 
Generally, we observe that DES, our control model, showed longer patient length-of-stay. The 

tendency for DES to predict longer LOS across all patient types is interesting and unexpected given 

that there is no extra time for bed cleaning which added at least 4-mins to the time to get a bed 

assigned. We posit that this tendency is due to the difference in modeling choice for our clinical 

resources (doctors and nurses). In DES+ABS, our clinical resources prioritize tasks to turn patients 

out of beds quicker and use this to decide which patient to attend to (aside from patient criticality 

which is accounted for in both models). For example, a non-critical patient with a lower priority 

begins waiting for a bedside nurse at 10:00am and another non-critical patient with a higher 
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priority starts waiting at 10:05am; in DES+ABS, once a bedside nurse becomes available, the 

10:05am patient will be attended to first. In DES however, the patient who was waiting at 10:00am 

will be attended to first. Focusing on the discharge LOS where process times are the biggest 

influence, we see that LOS variability is larger in DES compared to DES+ABS likely due to this 

first-come-first-served priority as any non-critical patient at any stage in the process path can pull 

a clinical resource if they arrived in the resource waiting queue ahead of another patient.  

The effect of this prioritization policy is particularly evident in the differences between bed wait 

times. DES+ABS’ bed wait times are lower and more consistent than DES’ bed wait time across 

all scenarios since DES+ABS prioritizes getting patients out of beds quicker. Also, it is likely that 

the observed difference in boarding time, even though the inpatient hospital pulls in the same 

number of patients at the same time in both models, is related to this modeling choice as patients 

in DES likely enter the inpatient admission queue at later times than in DES+ABS, meaning that 

they are more likely to wait until the next inpatient pull period.  

We observe that both models do not have significant differences in LWBS rates. This is 

particularly interesting given the stark differences in modeling styles. DES+ABS attempts to 

mimic the human interaction with their environment and the impact on the decision-making 

process while DES uses the common method of modeling queue abandonment after a specified 

time. The result shows that the additional complexity of leveraging ABS techniques for LWBS 

decision does not necessarily offer any additional value as it relates to the LWBS metric. However, 

this does not mean that ABS module does not have any influence on the overall model behavior. 

Studies specific to the influence of the ABS module will be useful to definitively conclude. 

Another interesting observation is that nurse utilization is considerably lower in DES vs 

DES+ABS, despite similar throughputs from both models. This discrepancy however could be 
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explained by our modeling choice for the resource use. In DES, patients’ resource use is captured 

as mutually exclusive in this manner: 1) no resource use at all, 2) use of imaging resources, 3) use 

of testing resources or 4) use of other resources. However, in DES+ABS, there are more 

permutations for resource use as we consider resource use independent (e.g., use of imaging and 

IV vs use of only imaging or use of all three resources.) Each resource use involving the nurse has 

a specific time for applying each resource i.e., the time to deliver POC tests and IV is the sum of 

the times to do each task. This modeling choice allows us to capture more precise service times 

rather than generalizing service times and thus impacts how much time a nurse spends with an 

individual patient. In DES, since we assume that any patient that requires imaging only uses an 

imaging resource (which still allows us to capture similar wait times as DES+ABS for results 

processing), as such the nurses in DES perform less tasks, leading to lower utilization.  

When we tested the different boarding management policies, our models generally agreed on the 

implications to ED performance metrics. When the ED was physically expanded by 10% with no 

other changes, we observe that its performance deteriorated compared to the base scenario. 

Overall, LOS did not improve but increased slightly in both models. A slight disagreement 

between models was observed here. While LOS increased for both models, for DES, there was a 

decrease in median discharge LOS that was not observed in DES+ABS. A similar disagreement is 

observed with the bed wait time metrics. In DES+ABS, the bed wait time remains flat but in DES, 

the bed wait time is reduced compared to the base scenario. This reduction in wait time is likely 

why the discharge LOS is reduced as discharged patients, who are unencumbered by waiting for 

inpatient beds, spend a little less time waiting. The lack of change in DES+ABS’ bed wait time 

highlights that the wait time is a consequence of other process considerations like flow 

management and clinical resource availability, not just physical availability of beds. Regardless of 
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this difference in wait times, both models agreed that the bed capacity increase reduces the LWBS 

by ~70%, an expected result since there are more beds for patients to be assigned. Our results 

aligned with the Han et al. study on the effect of ED capacity expansion on crowding [40], where 

it was observed that increasing the bed capacity increased both LOS and boarding times but 

reduced LWBS.  

One strategy suggested to reduce boarding is to change discharge times. Khare et al. [41] 

recommends changing hospital inpatient discharge times from 8am – 4pm with uniform discharge 

volumes. In their study, this delivered a 96% reduction in boarding hours. When we made this 

change to our model however, we observed the opposite effect in both models. The change 

deteriorated the performance of our ED in both DES and DES+ABS. Boarding times, LOS, 

LWBS, bed wait times and nurse utilization increased in both models. One noteworthy observation 

is that in DES+ABS, there is a reduction in the discharged LOS compared to the base scenario. 

The most likely reason for this observation is that there are high levels of patients leaving the 

model, at least 6%, forcing a reduction in the LOS for discharge patients. A comparable change in 

ALOS is not noticed because the LOS for any admitted patients who chooses not to leave will 

always be more influenced by boarding times. We also observed that the increased boarding times 

in both models are high but not significantly different. Another noteworthy observation is that in 

DES specifically, we observe that the variability has increased greatly compared to the variability 

of the metrics in the base model. While it is unclear why this variability has increased, it is obvious 

that the change in the discharge times causes DES performance to be less predictable. The observed 

reduced performance due to this discharge timing change does not mean that such a change is 

unimpactful to boarding. It is possible that our ED already has the optimal discharge timing or that 

there are other discharge timing configurations that work better for our ED. 
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Overall, our models agreed on the outcomes of the management policies enacted; neither is good 

for improving the performance of our specific ED regardless of the model design used. With that 

said, we observed that there were significant differences in the output metrics from each model 

design even though the general result is the same for both models. This indicates that the choice 

in model design has an influence on the results we get, but that ultimately both designs are 

sufficient for studying ED performance.  

Unfortunately, we cannot make any conclusion on which model design is better using these results. 

Given the closeness of the results, we would need to compare the outputs of both models to actual 

observed data and determine which is closest. In consulting with SMEs on the results of the 

simulations however, they state that DES+ABS’ outputs are closer to the observed reality of their 

existing EDs across all metrics. They also stated that DES’ outputs are also reasonable but that the 

nurse utilization was not reflective of reality. Neither model design consider breaks or additional 

tasks that nurses perform which is adds 10% utilization. For DES, when this is considered, 

utilization is still ~70%, far below the ~90% utilization that SMEs experience today. This means 

that while our DES model may be useful for understanding ED performance for measures like 

LWBS, it is not a good design for research focused on bedside nurse utilization.  

When conducting any modeling exercise, it is also worth considering the effort to develop the 

models and to decide on a trade-off for accuracy. For this research, including the additional details 

in DES+ABS added 6-hours to our data collection, model development and validation time 

compared to DES-only model. Given that our research focuses on boarding management and its 

impacts on LWBS, LOS and nurse utilization though, this additional effort was deemed worthy. 
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3.6 Conclusion 
In this study, we investigated whether a more complex/detailed model design creates a different 

representation of an emergency department that aims to study boarding and ED crowding in 

general compared to a less complex model. To do this, we modeled a fictional California ED using 

two different model designs. We used a fictional ED as we could not collect real data due to the 

COVID pandemic. We alternatively collected data from literature and interviews with ED 

personnel on their pre-COVID experience. We then leveraged metamorphic validation to ensure 

that our designs were representative of a real system. The validation showed that both designs are 

good representations. 

We compared the behaviors and outputs from both model designs using statistical experiments. 

These experiments compared both designs in three scenarios, one base scenario and two scenarios 

focused on changes that are expected to reduce the impact of boarding. The experiments 

highlighted that the more complex model yields statistically different outputs versus the simpler 

model except for LWBS, highlighting that either model will produce the same result in a study 

specific to LWBS but not the remaining outputs. Review with SMEs revealed that our more 

complex model is closer to observed reality since its bedside nurse utilization is more similar to 

reality than the simpler models. However, we could not conclude in this study, which design is 

closer to reality since we did not compare model output to real data. 

Our analysis related to reducing boarding revealed that our more complex model was more 

predictable when hospital discharge timing changed, a key boarding reduction strategy was 

applied, suggesting it to be a more reliable model for testing different scenarios related to boarding. 

Unless data shows that our simpler data does not mimic real/observed data well, it may be a 

reasonable design for other ED studies. From a practical point of view, our complex model requires 
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more data collection efforts than our simpler model. While both models are flexible, the simpler 

model is arguably easier to apply structural changes to than the complex model.  

In general, our study agrees with existing literature that the right model design for a problem should 

be one that is parsimonious for that problem. For instance, our work showed that to study LWBS, 

it may not be necessary to model the complexity of human decision-making via ABS, using simple 

queue timeout as part of a DES model likely suffices. To study nurse utilization though, it may be 

necessary to include task prioritization that nurses do as part of their work to get an accurate view.  

For future work, we would like to make our study more robust by including statistical analysis 

comparing to observed data. We would also like to study the individual impacts of each 

“detail/complexity” added to our complex model by comparing to the “simpler” model. This will 

allow us to conclusively decide what level of complexity/what specific detail is needed for a better 

representation of the real system. 
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4.1 Introduction  
Emergency Department (ED) crowding occurs when there are insufficient resources to meet the 

demands for emergency services. Given the unpredictable nature of emergency services, ED 

crowding is an expected outcome. The COVID-19 pandemic highlighted the fragility of this 

system as governments around the world worked to limit ED crowding and corresponding strain 

of these emergency services. But even before the pandemic, it was reported that more than 90% of 

EDs in the United States are often overwhelmed [1]. Expected or not, ED crowding has detrimental 

effects inclusive of poorer patient outcomes, higher costs and the inability of staff to adhere to 

guideline-recommended treatment [2]. Hospital administrators, physicians, nurses, and academic 

researchers have been studying this problem for decades. Prior to solving any problem, it is 

important to measure the problem accurately. A systematic review revealed more than 2000 studies 

related to ED crowding measurement; the authors thoroughly reviewed over 100 studies and 

identified eight ubiquitous measures [3]. These measures include ED occupancy, ED length of stay 

(LOS), ED volume, ED boarding time & count, waiting room count, National ED Overcrowding 

Scale (NEDOCS) and Emergency Department Work Index (EDWIN). These measures are used 

by ED administrators and staff to assess the status of their ED and decide on reactive strategies 

(e.g., ambulance diversion). However, these measures are not predictions of future state but rather 
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expressions of current state and as such, can easily be used to take proactive action. Additionally, 

five of the eight measures are focused on number of people attending the ED. Only the ED LOS 

and boarding counts & times explicitly consider the impact of waiting for a hospital bed to be 

available for admitted patients (i.e., boarding). This is relevant as other studies have established 

that boarding is the most influential cause of ED crowding [4]. Note that there are many definitions 

of boarding across literature, typically defined across different time points (e.g., 2 hours after admit 

decision) [3]. For our study, we use the American College of Emergency Physicians’ definition 

which states that boarding begins once an admit decision has been made for a patient [5]. 

 

Figure 4-1: Impact of Boarding Admitted Patients on ED Function [6] 

Figure 4-1 illustrates why understanding and planning for boarding levels is impactful to ED 

function and ultimately patient satisfaction. When the hospital cannot pull in patients from the ED 

and they “board” in the ED, it reduces the ED capacity, thus increasing the wait time for new 

patients to get serviced leading to stressors for staff.   

In this study, we introduce a new predictive ED crowding measure focused on future boarding 

counts that aims to serve as an early warning indicator for ED crowding. The goals of this study 
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are twofold. Firstly, we want to understand what easily accessible factors can be used to predict 

future boarding levels. And secondly, we evaluate the feasibility of predicting how crowded an 

ED will be in several future time steps by predicting boarding levels specifically, which is one of 

the most influential factors for crowding.  

The rest of this paper is organized as follows. “Related literature” reviews the relevant literature 

while “Predictive Analysis” presents the data used in the analysis and discusses the prediction 

strategy. “Results” presents the results of our predictive analysis. “Discussion” discusses the main 

findings and potential implications for ED management as well as clarifies the limitations of our 

study. Finally, “Conclusions” provides some conclusive considerations and future work. 

4.2 Related Literature 
Creating early warning signals for ED crowding has an important healthcare research area in the 

last two decades. Over a decade ago, Weiss et al. introduced the NEDOCS score for assessing the 

ED crowding level using statistically relevant predictors highlighted by a mixed effects linear 

regression model [7]. Emergency Department Work Index (EDWIN), a slightly older index, 

measures ED crowding by focusing on the number of patients in the ED as a ratio of resources 

available to serve the patients (physicians and licensed beds) [8]. More recently, Severely 

overcrowded-Overcrowded-Not overcrowded Estimation Tool (SONET) was developed to more 

accurately estimate crowding in high volume EDs avoiding NEDOCS’ tendency to overestimate 

severely crowded status [9]. These signals provide invaluable insight to the ED status and may 

allow administrators to avoid full crisis modes, but they are not predictive in-nature.  

More recently, predicting/forecasting ED crowding levels has been more thoroughly studied by 

clinicians and researchers. There have been studies predicting ED crowding as a measure of ED 

volume [10] [11] [12] [13], daily occupancy rate [14] [15] [16], ED LOS [17], patient wait times 
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[18] [19] and so on. A variety of techniques are leveraged in creating these forecasts including 

simulation [20] [21]. However, the most common technique for making these predictions are 

traditional univariate time series (e.g., [11], [12]) and multivariate time series (e.g., [15], [16]). 

The application of non-time series focused predictive models such as regression, decision-tree 

modeling, deep neural net learners and others is also becoming prevalent in literature (e.g., [10], 

[13], [18]). Regardless of the methods used, these studies have highlighted the ability to predict 

ED crowding ahead of time providing stronger warning signals that administrators can leverage 

well before getting into overcrowding scenarios. For instance, Hoot and Aronsky [22] investigated 

the use of logistic regression and recurrent neural net models to predict ED ambulance diversion 

status an hour into the future. The study compared the predictive power of these forward-looking 

models to the NEDOCS and EDWIN scores in the validation time period, concluding that the use 

of these models will provide early warning signals given their higher predictive power over 

NEDOCS and EDWIN.  

In our review of literature, we came across many indicators for ED crowding like ED LOS, ED 

volume, etc., but there are only a few papers explicitly predict boarding despite the influential 

nature of boarding on crowding. Hodgins et al. [23] uses logistic regression to investigate the 

operational, clinical and personal factors that whether a patient will board for more than 2hrs, 

without focusing on the use of the prediction to measure ED crowding. They identified 6 key 

factors significantly associated with boarding for more than 2 hours, including day of presentation, 

patient age and so on. Ding et al [24] use quantile regression to perform similar analysis to 

understand factors that influence boarding times. Hoot et al. [21] predict future the number of 

boarding patients (up to 8 hours ahead) using discrete-event simulation, specifically predicting 

boarding, and waiting counts as well as occupancy rates. Similarly, Asaro et al [25] predict a 
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variety of process throughput times in the ED including boarding times, focusing on understanding 

how different types of factors (patient-specific and system-specific) contribute to predictive 

performance. Our study contributes to the understudied field of predicting boarding. We assess the 

viability of predicting the number of boarding patients several hours ahead using different types 

and combinations of variables.  

4.3 Prediction – Materials and Methods 
4.3.1 Study Design and Setting 

The COVID-19 Pandemic put a strain on medical systems globally and made it difficult to conduct 

non-urgent studies. To source data for our analysis, we developed a detailed agent-based 

simulation of an ED and collected data from the model. The study ED is an urban, medium volume, 

non-teaching community hospital, with ~78,000 ED visits annually. It is attached to a 385-bed 

hospital and the hospital plans for ~300 beds for non-ED related visits like elective surgeries. The 

ED has 49 treatment spaces in total, 29 fully monitored beds (4 are designated specifically for 

trauma care/resuscitation) and 20 additional treatment spaces, typically hallway beds or 

chairs/recliners. 

The primary outcome for the study was the hourly number of patients waiting in the ED after being 

admitted to the hospital (i.e., boarding patient counts). A patient is identified as a boarding patient 

once the admission order has been put in with the hospital. We collected the boarding counts at 

the end of the 24h of each day. We did not include a time restriction because there is no consensus 

on the right amount of waiting after admission decision. Ultimately, capacity, and other unique 

characteristics of an ED dictate how much waiting time is detrimental to its function. Our outcome 

is easily customizable to any specific ED’s definition. 

Aside from boarding patient counts, we collected the count of patients being processed at all stages 

of the ED process e.g., registration, triage, laboratory testing, etc. We collected patient specific 
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information such as their chief complaints to check for interactions with queue counts. All these 

variables are used to create the department-wide predictor variables.  

4.3.2 Data Analysis 

45days of data corresponding to 1,080hours were extracted from the simulation model for 

prediction after the appropriate simulation warm-up period. Data analysis was carried using 

various Python 3 packages. Initial graphical analysis revealed that hourly boarding counts have 

hourly and day-of-week effects as seen in Figure 4-2. We observed that the period from 11pm to 

8am (next day) has the lowest number of boarders. We also see that the weekend (Friday – Sunday) 

has a smaller number of boarders with Mondays being the busiest of days. Our observations are 

like those observed by Hodgins et al. [23], bolstering the efficacy of our simulation data.  

 

Figure 4-2: Hourly/Daily Heatmap representation of boarding counts for study data 

We further process the simulation data and create predictor variables using queue counts and 

patient characteristics as well as the utilization of key nurses and physicians. We examined the 

correlations between current boarding counts and these predictor variables in Figure 4-3. 

Specifically, the predictor variables are of two types. For the first type, we count the patients in 

each major process step as variables e.g., #PtsAwaitingScan. For the second type, we count 
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patients based on two characteristics (chief complaint and criticality of care) in two main parts of 

the process where these characteristics may be influential: waiting for next resources after initial 

doctor review (e.g. #PtsInjurySeenByDoc) and waiting for initial bed assignment, respectively 

(e.g. #PtsESI3AwaitingEDBed).  

 

Figure 4-3: Boarding Patient Counts Correlation Analysis 

We see that boarding counts have positive correlations with some of these variables such as 

patients arrived by personal transportation (walk, bus, car, etc.). or ambulance, patients waiting for 

queues related to imaging tests as well as patients with certain complaints like digestive or 

musculoskeletal issues that have already been seen by the doctor. However, current boarding 

counts are not correlated to the current utilization of any clinical staff or rate of patients leaving 
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the ED without being seen. The correlation analysis sheds light on the temporal effects; we see 

positive correlation with time of day but very weak negative correlation with the day-of-week. 

4.3.3 Predictive Analysis 

We aim to predict the count of boarding patients in future time steps so naturally our problem 

presents itself as a time series forecasting problem. However, our literature review showed that 

other approaches work for time series predictions like regression. Thus, we will examine some of 

these approaches to test their predictive ability for our problem.   

4.3.3.1 Performance Measurement 

Across all models that were trained for our forecasting problem, we compared prediction 

performance by analyzing testing errors and investigating how well the model explained the 

variance observed in our target variables (i.e., goodness-of-fit). We focused on four metrics: Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Scaled Error (MASE) 

and coefficient of determination (R-sq). The formulas for calculation are shown below: 

RMSE = √
1

𝑛
∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑛

𝑡=1  ; 

MAE =  
1

𝑛
∑ |𝑦𝑡 − 𝑦̂𝑡|𝑛

𝑡=1  ; 

MASE = 
𝑀𝐴𝐸 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑀𝐴𝐸 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑢𝑠𝑖𝑛𝑔 𝑎 𝑛𝑎𝑖𝑣𝑒 𝑚𝑒𝑡ℎ𝑜𝑑
 ; 

R-sq= 1 −  
∑ (𝑦𝑡−𝑦̂𝑡)2𝑛

𝑡=1

∑ (𝑦𝑡−𝑦̅)2𝑛
𝑡=1

 

Where 𝑦𝑡  is the observed boarding counts in the specific hour 𝑡; 𝑦̂𝑡 is its corresponding forecasted 

value,  𝑛 is the number of hours being forecasted and 𝑦̅ is the mean of the observed actuals across 

𝑛. For MASE, naïve forecast method typically refers to a one-step ahead forecast where forecast 

is simply the last observed value i.e., 𝑦̂𝑡 =  𝑦𝑡−1.  

These metrics were found to be used across literature for assessing predictive capability. We did 

not use Mean Absolute Percentage Error (MAPE) because it gives infinite or undefined results 
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when one or more time series data point equals 0, which is naturally occurring in our dataset (i.e., 

when there are no boarding patients in the system). 

Performance reported in this study was based on predictions on a test data set. The data collected 

was split into a training set and a test set. The test set represents the last week of data in the dataset 

that remains unseen by the forecasting models. As part of training, model parameters are tuned to 

identify the optimal parameters that minimize the different loss functions for each model.  

4.3.3.2 Regression Approach 

We assessed the ability of three regression-based models to predict future boarding counts. These 

models include Elastic Net Regression, Random Forest Regression and XGBoost. Specifically, the 

XGBoost models were tried after our first set of experiments revealed that Random Forest 

provided good predictions. Since we aim to understand the factors impacting our target variable, 

we opted for these models for their ability to provide feature relevance. Additionally, these models 

can deal with any issues related to correlation among our input variables which is highly likely 

given the ED process. 

Elastic Net Regression is a regularized linear regression technique that improves model 

predictiveness by constraining or shrinking the regressor coefficient estimates towards zero, 

discouraging learning a more complex or flexible model and thus avoiding overfitting. Prior to 

elastic net, regularization occurred by adding a penalty term either equal to square of the magnitude 

of the coefficients (ridge regression) or equal to absolute sum of the coefficients (lasso regression). 

Both methods have their limitations; to overcome these, Zou and Hastie [24] introduced elastic 

net, a method that adds both ridge and lasso penalty terms, which overcomes the individual 

limitations of lasso or ridge. 

For this problem, we have a multivariate linear regression model in which we observe 𝑌 = 𝑋𝛽 +

𝑒 where Y is the matrix of the boarding counts in the specified future time step; 𝑋 is a matrix 
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containing the various covariates; 𝛽 is the unknown sparse coefficients matrix and 𝑒 is the matrix 

of errors. Rather than using regular least squared estimators to estimate 𝛽, we use a regularized 

estimator that includes both lasso 𝜆1 and ridge 𝜆2 penalty terms: 

𝛽̂ =  𝑎𝑟𝑔min
𝛽

(‖𝑦 − 𝑋𝛽‖2 + 𝜆2‖𝛽‖2 + 𝜆1‖𝛽‖1) 

Random Forest Regression is a technique where multiple decision trees are “bagged” as part of 

the prediction process [25]. During the model learning process, a random sample of the training 

set made up of 𝑌 and 𝑋 as previously described is selected and a regression tree (𝑓𝑏) is trained on 

that sample. This process is carried out 𝐵 times such that each time another random sample is 

selected with replacement from the training set. After training, final predictions are made by 

averaging the predictions of all the individual regression trees: 

𝑓 =
1

𝐵
∑ 𝑓𝑏(𝑥)

𝐵

𝑏=1

 

Extreme Gradient Boosting (XGBoost) is an implementation of gradient boosted decision trees 

introduced by Tianqi Chen to execute the boosting process in a fast and resource-efficient way. 

Unlike bagging in Random Forest, the boosting process leverages results from the previous 

decision trees (weak learners) by minimizing a loss function iteratively until the most optimal 

learner has been identified.  

An initial weak learner is created using the training set where are gradients 𝑔𝑚(𝑥𝑖)and hessians 

ℎ𝑚(𝑥𝑖)calculated for the data set 𝑋, 𝑌. The optimization problem in (1) is solved and the overall 

model across 𝑚 weak learners is updated with (2). The final model (3) is the strongest learner.  

𝜙̂𝑚  =  𝑎𝑟𝑔 min
𝜙𝜖Φ

∑
1

2
ℎ𝑚(𝑥𝑖)

𝑁
𝑖=1 [−

𝑔𝑚(𝑥𝑖)

ℎ𝑚(𝑥𝑖)
− 𝜙(𝑥𝑖)]

2

    (1) 

𝑓𝑚(𝑥) = 𝛼𝜙̂𝑚(𝑥)     (2) 
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𝑓(𝑥) = 𝑓𝑀(𝑥) = ∑ 𝑓𝑀(𝑥)𝑀
𝑚=0      (3) 

Unfortunately, none of these models can predict a sequence of future values and as such, the data 

had to be preprocessed with dependent variables created. We wanted to investigate how far into 

the future we can predict so we created four dependent variables of boarding counts looking 1-

hour, 2-hours, 4-hours, and 6-hours ahead. These dependent variables were then regressed against 

different independent variables which were scaled using their means and standard deviations. Each 

model was tuned to find optimal parameters as described in 4.3.3.1.  

In the first set of experiments, we regress against the operational and personal characteristics 

mentioned in section 4.2. In the second set of experiments, we included time-based variables which 

were different lagged variables for two operational variables: boarding counts in the three previous 

time steps and number of patients pulled in by the hospital in the three previous time steps. Across 

both experiments, we leveraged cross-validation techniques to estimate the performance of each 

model during the parameter-tuning process on unseen data sets; this is impactful so that the model 

parameters that are selected are the ones most likely to predict well on unseen data sets. 

Specifically, we use a variant of 5-fold cross validation. This variant uses train/test indices to split 

time series data samples that are observed at fixed time intervals, in five train/test sets. In the kth 

split, it returns first k folds as train set and the (k+1)th fold as test set. Note that unlike standard 

cross-validation methods, successive training sets are supersets of those that come before them. 

4.3.3.3 Univariate Time Series Approach 

Univariate time series forecasting relies on the use of previously observed values of the target 

variable as the only predictor of future values. In this study, we use three algorithms to predict the 

boarding counts in future time steps as our target variable: Auto Regressive Moving Average 

(ARMA) and ExponenTial Smoothing or Error, Trend and Seasonal Model (ETS).  
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ARMA is one of the most common univariate forecasting techniques. The models typically consist 

of two polynomials for describing a time series. The first part, autoregression (AR), is a regression 

of the response variable on its own past/lagged values. The second part, moving average (MA), is 

a regression of the response variable on the lagged values of the errors from the AR model [26]. 

We can illustrate predicting future boarding counts using ARMA models as follows: 

𝑌𝑡  =  𝑐 + 𝜀𝑡  +  ∑ 𝜑𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

 +  ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

  

Where 𝑌𝑡   is the boarding count at time t, 𝑌𝑡−1 , which represents the lagged boarding counts, 𝜀𝑡 

and 𝜀𝑡−1 are the error terms, 𝑝 and 𝑞 are the orders of the AR and MA part respectively and 𝜑𝑖 and 

𝜃𝑖 are parameters for the AR and MA models, respectively. For simplicity, ARMA models are 

notated as ARMA (p, q).  

If the data to be predicted is seasonal and the period is longer than monthly, then the ARMA 

models may not perform very well as they were designed for shorter periods. To assure 

effectiveness, we include the use of models that are better suited for more complex seasonality. 

One of such techniques is dynamic harmonic regression where Fourier terms are calculated for the 

seasonal data and added to the training data with a classic ARMA model. In such a model, the 

seasonal pattern is handled by the Fourier terms and the short-term time series dynamics are 

handled by ARMA errors [27].  

ETS is the other most used forecasting technique. Also proposed in the 1950s, these models 

produce future forecasts as weighted averages of past observations, placing higher weights on 

more recent observations [28]. There are several permutations of these models depending on what 

components they focus on (e.g., trend, seasonal) and the method that they use to cancel the effect 

of random variation (e.g., additive, damped). The resulting models are state space models that 
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describe the observed data and how the unobserved components or states, like trend, change over 

time [29]. ETS models are notated as ETS (T, S) where T and S define the trend and seasonal types 

respectively. Mathematically, ETS models consists of two main equations, the first is the forecast 

equations showing how the point forecast is calculated as a combination of the error corrections, 

while the second is the smoothing equation capturing how the errors are adjusted over the process. 

So, if we assume that boarding counts have additive seasonal components, we can use the 

equations below to illustrate the ETS (N, A) model.  

𝑌𝑡  =  ℓ𝑡−1  +  𝑠𝑡−𝑚  +  𝜀𝑡      (1) 

ℓt  =  ℓt−1  +  αεt      (2) 

𝑠𝑡  =  𝑠𝑡−𝑚  +  𝛾𝜀𝑡       (3) 

In (1), the forecast equation, 𝑌𝑡  is the boarding count at time t, ℓ𝑡−1  represents the previous level 

of error correction and 𝜀𝑡 is the error term/residual. (2) and (3) are the smoothing equations where 

ℓ𝑡  is the current level of error correction, 𝑠𝑡  and 𝑠𝑡−𝑚 represent the seasonal components at time 

t and t-m respectively such that m is the length of seasonality; α and 𝛾 are smoothing parameters. 

4.3.3.4 Multivariate Approach 

Multivariate techniques involve the use of previously observed target values along with additional 

predictors that influence the target variable. These predictors, known as exogenous variables, are 

measured at time t. For multivariate forecasting in this paper, we use ARMAX models i.e., ARMA 

models that include exogenous variables (X). In this model, we regress but don’t auto-regress on 

the variables; the ensuing model can be illustrated as  

𝑌𝑡  =  𝑐 +  𝜀𝑡  + ∑ 𝜑𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

 +  ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

 +  ∑ 𝛽𝑖𝑥𝑡
𝑖

𝑛

𝑖=1

 

This representation is the same as the ARMA one with terms related to the exogenous variables 

such that there are n exogenous variables 𝑥𝑡
𝑖  defined at each time step t with coefficients 𝛽𝑖. 
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4.3.3.5 Preliminary Analysis 

Prior to applying the forecasting approaches, we need to understand the time series better so we 

can make the right model parameter decisions. First, we decompose the time series to check 

visually if our data has any trend or seasonal components. The second graph in Figure 4 shows 

that the trend component of our time series is almost straight with some spikes in the data, but 

nothing is indicative of a consistent trend. In the third graph, we see clearly that there is a seasonal 

component observed roughly every 24hrs. We further investigate this seasonality by creating a 

periodogram of our time series to identify the dominant periods. The periodogram confirms that 

24hrs are the most dominant period as they have the highest spectrum (1140), and the next highest 

spectrum of 102 is 2.667hrs.  

 

Figure 4-4: Boarding Patient Counts Time Decomposition 

The seasonality observed needs to be considered; as such, we consider this in our implementation 

of the models. For instance, we implement SARMA, a variant of ARMA models that explicitly 

considers the seasonal component of our data. SARMA models are notated as 

𝐴𝑅𝑀𝐴(𝑝, 𝑞), (𝑃, 𝑄)𝑚,where m is the number of observations per year; P and Q are the orders of 

the AR and MA parts for the seasonal component of the model respectively. 

After understanding seasonality, we assess the stationarity of our data. ARMA techniques are built 

on the assumption that the underlying data is stationary, so we need to test for stationarity and 

make any treatments prior to forecasting. Note that ETS models do not make the same assumption. 
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Stationary data must satisfy three conditions: constant mean, constant variance, and constant 

covariance between periods of identical distance. To test, we leverage the Augmented Dicky Fuller 

(ADF) test where the null hypothesis is that the time series is not stationary. Conducting the test 

using the statsmodels python package, we get a p-value (2.9 x 10-5) much less than our 5% 

significance level, allowing us to reject the hypothesis that our time series is not stationary. The 

implication of this result is that we do not need to make any treatments for stationarity during the 

modeling process like “differencing” for our ARMA models. 

4.4 Prediction Model Results 
4.4.1 Regression Results 

We predicted the boarding counts 1, 2, 4 and 6-hours ahead using two different set of regressors; 

one set included 23-hour lagged features of the boarding counts (one for each previous hour). We 

tested the model performance by predicting on a test data set of one week and collected 

performance metrics. In Table 4-1, we observe that all models offer better predictive performance 

compared to simply using historically observed variables as observed in the MASE values <1. We 

also see that RFR model generally offers the best performance, typically providing better 

performance on at least two of four metrics. We see that using lagged features did not typically 

offer better performance for RFR and XGB models except for the ENR models, providing better 

performance for 1-, 4- and 6-hours prediction. We also notice from Table 1 that we have the best 

performances when predicting 1-hour or 6-hours ahead. Surprisingly, our worst predictive 

performance is observed in predicting 2-hours ahead. Overall, we had our best performance when 

predicting 1-hour ahead with the RFR model where we achieved the lowest RMSE (1.60) and 

lowest MAE (1.26) using no lagged features compared to XGB (1.72 and 1.35, RMSE and MAE 

respectively) and ENR (1.69 and 1.39, RMSE and MAE respectively). When we predicted more 

than 2-hours ahead, we observe that the ENR model performance dropped by almost half. RFR 
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and XGB models performed similarly when predicting 2-hours and 4-hours, providing their worst 

performance compared to 1- and 6-hours predictions. 

Table 4-1: Performance comparison of different regression models  

Target Feature Set Model MAE RMSE MASE* R-sq 

Boarding 

counts 1-

hour 

ahead 

All features 

but no 

Target Lags 

Random Forest Regression  1.259 1.604 0.655 0.374 

XGBoost Regression  1.354 1.720 0.704 0.279 

Elastic Net Regression 1.386 1.696 0.721 0.300 

All features 

+ Lagged 

Target 

Random Forest Regression  1.262 1.607 0.656 0.372 

XGBoost Regression  1.530 1.720 0.704 0.280 

Elastic Net Regression 1.380 1.698 0.718 0.299 

Boarding 

counts 2-

hours 

ahead 

All features 

but no 

Target Lags 

Random Forest Regression  1.387 1.710 0.744 0.298 

XGBoost Regression  1.361 1.723 0.731 0.288 

Elastic Net Regression 1.432 1.729 0.769 0.282 

All features 

+ Lagged 

Target 

Random Forest Regression  1.386 1.716 0.744 0.294 

XGBoost Regression  1.379 1.696 0.740 0.309 

Elastic Net Regression 1.436 1.744 0.771 0.269 

Boarding 

counts 4-

hours 

ahead 

All features 

but no 

Target Lags 

Random Forest Regression  1.340 1.660 0.592 0.339 

XGBoost Regression  1.497 1.824 0.662 0.202 

Elastic Net Regression 1.605 1.919 0.710 0.116 

All features 

+ Lagged 

Target 

Random Forest Regression  1.387 1.722 0.613 0.289 

XGBoost Regression  1.510 1.830 0.668 0.196 

Elastic Net Regression 1.557 1.884 0.688 0.148 

Boarding 

counts 6-

hours 

ahead 

All features 

but no 

Target Lags 

Random Forest Regression  1.328 1.668 0.558 0.332 

XGBoost Regression  1.450 1.800 0.609 0.222 

Elastic Net Regression 1.592 1.913 0.669 0.121 

All features 

+ Lagged 

Target 

Random Forest Regression  1.365 1.706 0.573 0.301 

XGBoost Regression  1.510 1.887 0.634 0.145 

Elastic Net Regression 1.528 1.863 0.642 0.167 

*- MAE for naïve forecast at 1hour = 1.923, 2hours =1.863, 4hours =2.262 and 6hours =2.381. 

In addition to providing reasonable predictive performance, some of the models explained at least 

30% of the variability in the target variable as evidenced by the R-sq scores ranging from 0.29 – 

0.37. We investigated the model results to understand what features were driving the explanation 

of this variance by collecting feature importance from the models. We focused on the top 10 ranked 

important features from each model. In Table 4-2, we see that there are 16 of these features. Based 

on their ranked importance, we can see that some of these 16 are ranked as a top 10 feature in 
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>50% of the models. These features relate to the current hour of the day, number of walk-in arrivals 

at the top of the current hour, number of resuscitation patients, number of patients that have been 

seen by a physician, number of patients waiting to undergo imaging or receive imaging results, 

number of patients waiting for the final physician disposition, number of patient being attended to 

by a nurse for intravenous treatment or collecting blood and the lagged feature that tracks the 

boarding counts in the previous three hours.  

Table 4-2: Feature Importance Rank Comparison*  

Feature Random Forest XGBoost Elastic Net 

1hr 2hrs 4hrs 6hrs 1hr 2hrs 4hrs 6hrs 1hr 2hrs 4hrs 6hrs 

# Patients that 

have had their first 

doctor review 

queue 

1 2 3 7 1 2 5 3 4 2 21 24 

Hour of the Day (0 

– 23) 

2 5 1 4 6 6 3 1 3 4 19 4 

# Walk-in patients 

that have entered 

the ED 

4 3 4 9 7 3 9 2 2 3 7 31 

Occupancy Rate 18 7 5 8 21 20 14 6 12 10 1 3 

# Patients waiting 

for scan results 

3 4 9 11 3 5 19 5 1 28 26 2 

# Patients 

undergoing IV 

treatment and have 

had blood work 

6 19 13 29 4 7 24 27 6 18 9 9 

Day of Week = 

Friday 

38 24 8 6 36 16 12 11 14 12 12 8 

# Admitted 

patients pulled to 

inpatient beds two 

hours prior 

48 9 14 23 45 4 21 8 11 9 35 NU 

# Admitted 

patients pulled to 

inpatient beds 

three hours prior  

8 14 23 1 48 NU 7 12 5 15 5 1 

# Patients that 

have passed 

7 8 6 46 17 31 13 14 NU NU 16 NU 
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through the doctor 

disposition queue 

# Patients who 

have been 

dispositioned as 

discharged 

11 21 17 17 41 23 18 7 NU NU 17 7 

# Patients who 

have been 

dispositioned as 

admitted 

20 6 2 33 34 8 1 4 NU 11 10 NU 

# Ambulance 

patients that have 

entered by the ED 

10 10 21 40 11 14 27 41 10 7 14 NU 

# Patients actively 

being treated by a 

physician or 

consultant 

13 17 27 52 44 41 39 24 9 NU 22 NU 

Day of Week = 

Monday 

51 51 32 49 8 NU 47 24 25 19 39 32 

# Patients waiting 

to be scanned  

5 28 NU 38 9 29 45 25 8 NU NU NU 

# Resuscitation 

patients 

9 25 NU 20 10 15 22 22 7 5 18 12 

* - NU in the table means that the feature was not used by the specific model. 

 

4.4.2 Univariate Time Series Results 

We used hyperparameter tuning techniques to identify the best parameters for the models prior to 

training. Again, we examined the model performance by predicting on a test data set of one week 

and collected performance metrics. In Table 4-3, we see that the SARMA model produces the 

worst results across all performance measures, a likely indicator that there are underlying unknown 

patterns in the data. The dynamic harmonic regression method (ARMA with Fourier terms) 

provided slightly better performance (2.21 and 2.80, MAE and RMSE respectively) compared to 

the SARMA model (2.16 and 2.65, MAE and RMSE respectively). We observe that the ETS model 

provides good predictive performance across the board, like the non-traditional forecasting 

techniques (1.35, 1.72, 0.69, 0.29; MAE, RMSE, MASE and R-sq, respectively).  



85 
 

 

*Note that red lines represent the predicted values 

Figure 4-5: Univariate Time Series Forecasting Results on test data 

As expected for these models, the further into the future predictions are made, the lower the 

predictive power as evidenced by the widening of the prediction intervals in Figure 4-5. We 

observed that prediction intervals get much wider after the first ~24hours. But in the ETS model, 

we observe that prediction intervals are relatively steady until after the first ~48hours.  

For both ARMA models, two lagged forecast errors are used in prediction. However, there are a 

difference in the number of lags of the boarding counts that are used. The ARMA with Fourier use 

only the previous hour of the boarding counts, while the SARMA model uses the boarding counts 

in the previous two hours as well as the counts in the previous four hours as its seasonal component. 
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Table 4-3: Performance comparison of different time series forecasting models 

Type Model Model 

AIC 

MAE RMSE MASE* R-sq 

Univariate 

Time Series 

Forecasting 

SARMA (2, 2) x (4, 0, 24) 3833.486 2.205 2.803 1.126 -0.894 

ARMA (1, 2) with Fourier 

terms 

3798.585 2.163 2.654 1.105 -0.698 

ETS (N, A) - 1.347 1.717 0.688 0.292 

Multivariate 

Time Series 

Forecasting 

SARMAX (2, 0) x (4, 0, 24) 

with subset of features  

3445.895 1.203 1.551 0.614 0.420 

SARMAX (0, 1) x (4, 0, 24) 

with all features 

3213.995 1.139 1.462 0.582 0.485 

ARMAX (0, 1) with Fourier 

terms and subset of features 

3229.631 1.193 1.522 0.609 0.442 

ARMAX (1, 2) with Fourier 

terms and all features 

3293.694 1.167 1.495 0.596 0.460 

*- MAE for seasonal naïve forecast = 1.958 

4.4.3 Multivariate Time Series Results 

For multivariate methods, we ran two ARMA experiments by predicting using all features 

available as well as a subset of the features. The subset of the features used are the top features 

deemed to be important for future time steps prediction by >50% of the regression models as 

described in section 4.3.4.1. In Table 4-3, we can see that when subset of features is used, our best 

models required 0,1 or 2 lagged forecast errors in the moving average part and 0,1 or 2 lagged 

values of the boarding counts in the autoregressive part. Additionally, for the SARMA models, 

four lags of the boarding counts were used like the univariate model.   

Our best performing multivariate model is the SARMAX model that leverages all the available 

features to predict the boarding count when provided hourly inputs. The model offers the lowest 

MAE and RMSE, 1.1 and 1.5 patients, respectively (see Table 4-3). It also offers the best MASE 

of 0.6, meaning that we almost doubled predictive accuracy compared to just using historical 

values. Additionally, the variables used in this model can predict 49% of the variation in the future 
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boarding counts. The ARMA-Fourier model with all variables is the second-best model with 

performance metrics: 1.35, 1.72, 0.69, 0.29; MAE, RMSE, MASE and R-sq, respectively.  

From Table 4-3, we observe the value that the additional exogenous variables bring to the ARMA 

by examining the differences between AIC values for the SARMA and ARMA-Fourier when new 

variables are added. We can see that for both models, by adding the subset of features, we reduce 

AIC by 500+ points, showing that these additions offer significant improvement. Similarly, when 

all features are added, we observed AIC reduction in both models. However, for the ARMA-

Fourier model, this reduction is <100points while it is 200+ points for the SARMA model. 

Aside from performance metrics, we assessed the residuals from all fitted ARMA models for 

goodness-of-fit using the Ljung-Box Q test as well as residual and autocorrelation plots. All 

models yield Ljung-Box test statistics greater than the 95% quantile of the chi-squared distribution 

with the number of lags being tested, allowing us to accept the hypothesis that our model’s 

residuals have no autocorrelation. This was confirmed by the autocorrection plots. The residual 

plots reveal that our residuals are normally distributed, allowing us to conclude that our model 

errors are random and that our model is valid.  
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*Note that red lines represent the predicted values 

Figure 4-6: Multivariate Time Series Forecasting on Test Data 

4.5 Discussion 

In this study, we assessed the viability of predicting the number of boarding patients that will be 

present in an ED in future timesteps. Prior studies have shown the benefit of predicting future ED 

overcrowding indicators like arrivals and LOS over simply scoring current crowding. However, 

there are only a handful of studies that predict future boarding outlook, despite boarding being the 

most influential factor for ED crowding. Our study showed that future boarding levels can be 
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predicted with reasonable accuracy in different timesteps from 1-hour to 1-week ahead. These 

predictions can provide information for ED/hospital administrators to make decisions and 

preemptively alleviate over-crowding situations. For example, if there are one-week ahead 

forecasts available, they can share with the hospital administrators to create different inpatient 

discharge strategies and improve bed availability for ED patients. There are studies that have 

already validated the efficacy of this in reducing ED over-crowding [171]. Even when there are 

shorter-term forecasts such as 1-hour or 6-hours ahead, ED administrators could make different 

decisions on how patient beds are assigned “real-time” e.g., dynamic triggers of when to use 

clinical decision units to “house” and monitor patients that will need inpatient beds.   

A key objective in this study was to predict boarding levels in future time steps. We forecasted 

boarding levels up to 7 days using an exponentially additive smoothing seasonal model, with the 

variation in our model’s errors between 1.3 and 1.7 patients. We forecasted boarding levels 1-hour 

ahead using a variety of regression models and a seasonal ARMA model with exogenous variables, 

achieving variation in models’ errors as low as 1.1 patients. Using the different regression models, 

we also forecasted boarding levels 2-, 4- and 6-hours ahead, all with variation in model errors 

lower than 1.8 patients. The variation in errors we achieved are reasonable for our data set, where 

values range from 0 – 7 patients with median and average around 3 patients. All our models also 

achieved MASE lower than 1 (0.58 – 0.61), showing actual forecasts did much better out of sample 

than a naive forecast did in sample.  

We also achieved our goal on understanding the factors that are impactful to future boarding counts 

in this study. Comparing all models where 1-hour forecasts were obtained, we see that time-series 

specific factors such as historical boarding counts including any seasonality components (ETS R-

sq: 0.29) and only ED operational factors (Random Forest without lags R-sq: 0.37) could explain 
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some of the variation in future boarding counts. This additional explanation of variance makes 

sense intuitively; ED processes are highly stochastic especially when related to demand. Thus, it 

is reasonable that data showing context (e.g., patients demanding future inpatient bed use) improve 

predictability over only historical trends/seasonality. To bolster this, previous studies have shown 

that actual demand for ED services (i.e., arrivals) have been shown to be better predicted by 

including additional variables including ED operational variables [11]. A key outcome from our 

study was that it highlighted the importance of including past forecast errors as an input along with 

the other variables (SARMAX R-sq: 0.49). The relevance of these forecast errors is more obvious 

when we compare regression techniques where the lagged values of boarding counts were 

explicitly regressed on like the SARMAX model; we were only able to achieve 0.37 explanation 

of variation (Random Forest Regression with lags).  

Our regression-specific models also revealed which features were highly relevant to future 

boarding levels up to 6-hours. We observed that, for our study site, the most important factors are 

related to the current hour of the day, number of patients who have been initially reviewed by a 

physician, number of people who have walked into the ED as well as the number of patients 

waiting on results from imaging tests. Because our data was sourced from a simulation, our study 

did not use patient specific information such as age or gender which have previously been shown 

to impact boarding [23]. We did include other validated factors from literature such as triage level 

and complaint type (which drives inpatient bed need). While these factors were not deemed as 

highly relevant in our individual regression techniques, they added some predictive value (when 

included to time-series data) as evidenced by the reduction in AIC and improvement in prediction 

errors observed post-addition. It is likely that overlooked factors like patient demographics could 

continue to improve predictive performance. The same is true for unexplored factors, like inpatient 
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details, including LOS, bed availability, and nurse availability, that have been shown to also impact 

boarding.  

There are very few studies in literature like our study where there is a focus on predicting boarding 

counts and assessing the impact of certain various factors directly on boarding. Asaro et al [25] 

explained 9% of the variation in boarding time utilizing both patient (e.g., resource use) and system 

variables (e.g., arrivals, occupancy, calendar). Their paper utilizes similar but fewer variables than 

our study and compares the impact of using just patient or system variables. They show that using 

one set of variables instead of both sets offers lower explainability. This observation bolsters our 

decision to include additional queue-census, utilization measures as well as historical boarding 

information along with patient variables like chief complaint as reasonable since we achieved 

higher explainability of 29% - 49%. While our methodology differs from Hoot et al [21] where 

simulation is the prediction mechanism, we see that we generate results similar over-estimating 

errors. Comparing absolute errors for boarding counts across all sites predicted in [21] to the 

median boarding counts, we observe that over-estimation errors can range from 22% - 90% of the 

median boarding counts. Our prediction models have over-estimation ranges from 36% - 56% 

when our resulting mean absolute errors are compared to mean boarding counts. 

There are caveats worth noting prior to interpreting the results of this study. The training and 

validation data were sourced from the simulation output of a generalized ED. The ED study site 

was modeled after the processes and inputs of three different EDs operating in Southern California, 

USA. They do not represent a generalizable version of all EDs across USA. It is possible that the 

relationships drawn between operational factors and boarding counts in this study are non-existent 

in EDs that operate differently. However, the methods described in this paper for identifying 
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relationships or predicting future values are easily replicable for any type of ED if the type of data 

described in this paper can be collected.  

4.6 Conclusion and Future Work 

To mitigate the harmful effects of ED overcrowding, clinicians and administrators need to 

understand the future status and make plans. ED overcrowding is complex and multi-faceted but 

existing research has shown that its most influential factor is boarding of patients who need a 

hospital bed after the ED process has been completed. Other research related to short-term 

forecasts that can serve as a warning signal for ED overcrowding has focused on other factors such 

as ED arrivals. Research on predicting boarding specifically has either focused on understanding 

factors or simply forecasting future values. To the best of the authors’ knowledge, this is the first 

paper that defines an approach that evaluates the impact of ED operational factors on future 

boarding counts and provides relatively accurate predictions of future boarding counts from 1-hour 

to 1-week ahead. These forecasts can be used by clinicians and administrators to make decisions 

around resource allocations within the ED or across both the ED and the hospital.  

While we have achieved the good predictions for future boarding levels in this study, we want to 

explore future work. We know that there are likely more factors that impact future boarding levels 

such as inpatient ward information or patient demographics that might improve our causal 

predictions. Once healthcare systems are more stable in operations following the pandemic, we 

would like to use data sourced directly from hospital records to understand the scalability of our 

proposed approach.  
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5.1 Introduction  
Emergency Department (ED) crowding is a global healthcare problem, and the United States 

healthcare system is not an exception. According to the CDC, ~50% of EDs experience 

overcrowding (where demand for service exceeds ability to provide service). ED crowding is a 

major health care problem which leads to many undesirable outcomes such as higher number of 

medication errors (e.g., wrong dose) [1], higher mortality risk [2], likelihood of readmission 

including poor administrative outcomes like lost revenue due to patients leaving without being 

seen (LWBS) [3] and increase ED staff stress [4]. Many researchers have investigated the causal 

factors for ED crowding and agree that ED boarding, where patients who have already been 

provided emergency service but are waiting on a hospital bed, is the most influential factor [5] [6]. 

Boarding itself has been found to be directly impactful to adverse outcomes such as increased 

mortality rate in the ED [7]. Despite the plethora of research on prediction of ED crowding as a 

means to create early warning signals by predicting ED crowding measures like ED length-of-stay 

(LOS) [8], ED volume [9], daily occupancy [10], ambulance diversion [11], and so on, there are 

only a handful of research that focus on predicting boarding [12] [13], the most influential factor. 

Additionally, there are several interventions that have been proposed, studied, and validated to 

improve ED crowding in general such as physician-in-triage [14], fast-track [15], immediate 

bedding of critical patients [16], bedside registration [17], updated resource allocation [18] as well 
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as some for ED boarding management like better inpatient bed discharge [19] and inpatient bed 

reservation strategies [20]. Despite this, there are not a lot of studies dedicated to boarding 

management for EDs, largely since boarding management needs to be a systems-wide initiative 

which tend to be difficult to get support for implementation because of revenue implications. A 

particularly overlooked area of study for boarding/crowding mitigation strategies for ED is bed 

assignment. While solutions like fast-track and immediate bedding can be considered as bed 

assignment, there are only a few studies [21] [22] [23] focused on making decisions of what the 

right bed to assign a patient is especially during ED crowding. 

In this study, we want to investigate the influence of boarding on ED crowding, specifically ED 

LOS to define ED-actionable strategies that minimize the influence of boarding. Specifically, we 

want to identify an early warning signal for boarding capable of detecting boarding levels that 

result in ED crowding and its consequent adverse outcomes. We also want to evaluate a 

prescriptive strategy for bed assignment in the ED that is focused on responding to early warnings 

of future ED boarding, specifically EDs that have already invested in fast-track.  

The rest of this paper is organized as follows. “Related literature” reviews the relevant literature 

while “Simulation and Prediction Models” describes the materials, methods and results related to 

building our main simulation and prediction models. “Bed Assignment Intervention” presents our 

proposed bed assignment strategy and the results of our experiments related to this intervention. 

“Discussion” discusses the main findings from the study and potential implications for ED 

management as well as clarifies the limitations of our study. Finally, “Conclusion and Future 

Work” provides some conclusive considerations and future work. 
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5.2 Related Literature 
As predictive modelling has improved over the last couple of years, there has been a growing trend 

in ED crowding research focused on predictive modeling [24], using a variety of techniques from 

simple regression to simulations and complicated neural networks. For instance, there are several 

studies focused on predicting early warning signals of ED crowding as a measure of ED volume 

[25] [26], daily occupancy rate [27] [28], patient wait times [29] [30] [31] and others. Additionally, 

there has been research focused on predicting ED relevant factors/decisions/metrics with the intent 

of improving decision-making and ultimately reducing crowding. There are several studies on 

predicting the disposition of patients to make ED workflow decisions [32] [33] [34] and 

readmission risks to ultimately reduce future visits and managed volume [35] [36] [37]. There are 

not yet many studies around predicting boarding. Hodgins et al [12] uses logistic regression to 

investigate the operational, clinical, and personal factors that impact if a patient will board for 

>2hrs, without focusing on the use of the prediction to measure ED crowding. Hoot et al [13] 

predict the number of boarding patients (up to 8 hours ahead) using discrete-event simulation, 

specifically predicting boarding and waiting counts as well as occupancy rates. While Hoot et al 

were able to predict boarding, they did not develop an early warning signal or indicator that could 

be used to make future decisions. Our literature review did not yield any research related to 

creating boarding-specific early warning signals to manage ED crowding. Our study will 

contribute to the nascent field of boarding prediction while creating the first early warning ED 

crowding signal linked directly to boarding. 

The creation of the early warning signal, while helpful itself, is not an intervention technique that 

can influence ED crowding. Predictive models are useful but need to be implemented to make an 

impact. Researchers have found techniques that incorporate predictive modeling with other model 

types (hybrid modeling) in a technique to create more prescriptive models that can drive impact. 
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A particular growing trend in emergency department research is hybrid systems modelling (HSM). 

Hybrid Systems Modelling (HSM) can be defined as the combined application of simulation with 

methods and techniques from disciplines such as Applied Computing, Business Analytics, 

Computer Science, Data Science, Systems Engineering and OR [38]. Simulation – Optimization 

models are the most used approaches in the context of ED. In one of the few studies related to ED 

bed assignment, Allihaibi et al [23] combine a heuristic algorithm with a discrete-event simulation 

to reprioritize bed assignment for patients arriving at the ED. Bruballa et al [39] combine a unique 

analytical (formula-based) model focused on patient wait times with a detailed ABS model to form 

an intelligent scheduler for non-urgent ED patients. Chen et al [40] leverage discrete-event 

simulation model to identify the best resource allocation strategy optimizing stochastically 

constrained budgets. There are also hybrids of simulation and predictive models. Harper and 

Mustafee [41] introduce a HSM that leverages the time series machine learning algorithm seasonal 

ARIMA (SARIMA) to predict the number of ED patients up to 4-hours ahead and discrete-event 

simulation to test the impact of corrective policies on these future crowding levels in real-time. 

Hunter-Zinck et al [42] leverage a simulation model to show the impact on real ED processes for 

embedding their multilabel predictions of medical resource orders that a patient will use (e.g., labs, 

tests, etc.).  

Less common HSMs are simulation-optimization-predictive combinations. These types of models 

use machine learning/predictive modeling to enrich simulation-optimization, merging the 

efficiency of predictive modeling with the solution-finding properties of simulation-optimization. 

Lee et al [43] combine predictive modeling with a simulation-optimization model to optimize ED 

workflow. They leveraged simulation-optimization to find the optimal resource allocation 

configuration in scenarios where patients who have been flagged (by a predictive model) as 
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readmission risks are treated separately in a clinical decision unit. Yousefi and Yousefi [44] train 

predictive models on the output of an agent-based simulation model to reduce the search space 

needed during a simulation-optimization for identifying the best resource allocation that 

minimized patient’s door-to-doctor time. So far in our review of literature, HSMs that combine 

predictive, simulation and optimization have only been leveraged in resource allocation problems. 

Our study will contribute to research by introducing the first-of-its-kind predictive-simulation-

optimization HSM related to optimal bed assignment strategies.  

5.3 Simulation and Prediction Models  
5.3.1 Simulation Study Design and Setting 

For this study, we developed a simulation of a typical ED in California, USA. The study ED is an 

urban, medium volume, non-teaching community hospital, with ~78,000 ED visits annually. It is 

attached to a 385-bed hospital and the hospital plans for ~300 beds for non-ED related visits like 

elective surgeries. The ED has 49 treatment spaces in total, 29 fully monitored beds (4 are 

designated specifically for trauma care/resuscitation) and 20 additional treatment spaces, typically 

hallway beds or chairs/recliners. The ED’s workflow (shown in Figure 5-1) is typical; patients 

enter the ED either via ambulance or personal transportation (walk, bus, car, etc.), they go through 

a registration (if their condition allows for it) and then they are seen by a triage nurse who takes 

preliminary assessment to determine criticality. The patients wait for a staffed bed to be available; 

once they are in a bed, they are attended to by a physician who determines the appropriate treatment 

and sends the patient home or to the hospital. 
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Figure 5-1: Typical Patient ED Workflow 

The ED was verified by reviewing that all code worked appropriately. COVID-19 impeded our 

ability to collect data empirically for our study and as such we could not validate our simulation 

by comparing with real-life data. We successfully validated our model’s ability to represent our 

study ED using metamorphic validation [45] instead. Metamorphic validation calls for the design 

of metamorphic properties for the simulation model type (DES/ABS), followed by the description 

of metamorphic relations (MR) which are definitions of changing behaviors given changes in the 

model design or its parameter and finally conducting experiments to test the MRs.  

5.3.2 Simulation Data Analysis 

Our early warning indicator for ED crowding aims to predict “crisis” before it happens so that 

hospital staff can take proactive actions to avoid the crisis. Hospital systems typically set targets 

for ED LOS for both admitted patients (ALOS) and discharged patients (DLOS). Staying within 

these targets help ensure patient satisfaction while avoiding undesired consequences such as 

ambulance diversion. Given its correlation to bad ED outcomes, EDLOS has been used as an 

indicator for crowding in other studies [46] [47]. It has also been shown to be a reasonable indicator 
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for changing crowding conditions; in a comparative study for ED crowding measures, the 

researchers identified that LOS was just as helpful in highlighting worsening crowding conditions 

as NEDOCS and EDWIN [48]. 

We use a simulated ED for our analysis. The simulated ED was built in conjunction with healthcare 

providers from a hospital system in Southern California, USA. One month of data was extracted 

from the simulation after the appropriate simulation warm-up period. Before collecting results 

from any simulation model, it is critical that the model is run for enough time that allows all aspects 

to get into conditions that are typical of normal running conditions. We performed Welch 

Graphical method to understand this and observe that at day 10, our bed occupancy achieves steady 

state, thus we set our warm-up period for 10days and discard any results obtained prior to day 10. 

We performed data analysis to understand the relationship between boarding of patients and 

crowding levels based on LOS. Our analysis showed that when high boarding levels are high in a 

specific hour, patients experience higher LOS in subsequent hours.  We defined boarding levels in 

relation to the capacity of the main ED. 

𝐵𝑜𝑎𝑟𝑑𝑖𝑛𝑔 𝑙𝑒𝑣𝑒𝑙 (%)  =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑠𝑝𝑎𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐸𝐷
 

When we measured LOS 6-hours after an occurrence of high boarding count, we observed that 

average LOS across all patients increased by at least 1 basis points, with the highest increase 

expectedly seen in admitted patients.  

Table 5-1: Patient average EDLOS 6-hours ahead followed by current boarding levels 

Boarding Levels Average ALOS Average DLOS Average LOS 

0% - 30% 355 mins 107 mins 195 mins 

>30% - 60% 362 mins 108 mins 197 mins 

>60% 426 mins 113 mins 224 mins 
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Referring to Table 5-1, we can see that when >60% of the ED is occupied by boarding patients, 

average LOS is increased by 14%, even discharged patients experience 6% LOS increase. This 

shows that for our study site, boarding counts should be kept minimal (at least <30% of the ED’s 

capacity) to avoid the impact they have on ED LOS and crowding. 

5.3.3 Predictive Model 

We aim to predict boarding levels in the future, specifically 6 hours from the current time given 

its impact on patient EDLOS using classification techniques for our predictions. We created a 

target variable, the boarding level, as a function of hourly boarding counts 6-hours ahead based on 

current ED status. Our target variable is multi-class with three classes: 0 when boarding levels are 

<= 30% (i.e., normal boarding), 1 when boarding levels are between 31% and 60% (i.e., high 

boarding) and 2 when boarding levels are >60% (i.e., severe boarding). We extracted status of 

different parts of the ED workflow shown to influence future boarding counts from the authors’ 

previous study (Chapter 4 of this document), including counts of patients triaged, seen by the 

doctor for first review, waiting for a bed, waiting to use imaging resources and others. These 

predictors, shown in Appendix A, are accessible via most hospital electronic hospital record (EHR) 

systems. These statuses are collected on an hourly basis and serve as regressors for our supervised 

classification models. For our prediction exercise, we experiment with three algorithms: Logistic 

Regression (LR), Random Forest (RF) and Support Vector Machines (SVM). Thus, we will 

examine some of these approaches to test their predictive ability for our problem.   

5.3.3.1 Predictive Modeling Experiments 

We obtained eight weeks of data from our simulation model and pre-processed the data to obtain 

the predictor and target variables. We split our data into two: a training data set consisting of seven 

weeks of data and a test data set consisting of one week of data. Each model was trained with the 

training data set then performance was validated on the test data set. During training, each model’s 
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parameters was hyper-tuned to identify the best parameters for predicting on our data. We also use 

10-fold cross-validation techniques to ensure that prediction results can be generalized to unseen 

data sets. We measure model effectiveness using three metrics commonly used for classification 

models: precision, recall and F1-score. We calculate each of these metrics for each class in our 

target variable to examine how well our model does at identifying all boarding levels. We chose 

not to use accuracy or AUC-ROC because the classes in our target variables are not balanced 

across our data sets. Figure 5-2 shows a distribution of target variables in our data set. These 

metrics can be misleading when there is imbalance across classes. 

 

Figure 5-2: Distribution of Hourly Boarding Levels  

After hyper-parameter tuning, we get the best results from: (1) Logistic Regressor regularized with 

the L2 penalty using a regularization strength of 0.01where the cost function is solved using 

Newton-Raphson method; (2) Random Forest Classifier with 100 trees only 10 nodes deep that 

are split only when there is >4 samples available and (3) SVM Classifier using a radial basis 

function hyperplane to separate the data into groups with a hyperplane control gamma of 0.001. 

These models are run against the test dataset to evaluate their performance on unseen data. Table 

5-2 shows the results of this validation. We can see that the Random Forest Classifier performs 

best across all metrics for all classes, showing a good ability to identify the different boarding 

levels.  
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Table 5-2: Predictive Model Results Comparison 

Target Metric LR RF SVM 

0 (0% - 

30%) 

Precision 0.92 0.94 0.96 

Recall 0.97 0.99 0.99 

F1-score 0.94 0.96 0.97 

1 (31% 

- 60%) 

Precision 0.77 0.88 0.88 

Recall 0.57 0.70 0.77 

F1-score 0.65 0.78 0.82 

2 

(>60%) 

Precision 0.67 1.00 0.67 

Recall 0.67 0.67 0.67 

F1-score 0.67 0.80 0.67 

5.3.3.2 Final Predictive Model Evaluation 

To test robustness of our predictive model, we update the arrival data for the simulation to increase 

the daily patient arrivals by 10% i.e., our ED now processes 85800 visits annually. We extracted 

one week of data after the simulation warm-up period. We then predict future boarding levels using 

the trained Random Forest Classifier. The prediction results reinforced that our classifier preforms 

well: 87% overall precision, 93% overall recall and 90% overall F1-score. The performance details 

for each class of boarding level are shown in Table 5-3. 

Table 5-3: Random Forest Results for Surge Scenario 

Target Metric RF Results 

0 (0% - 30%) Precision 0.86 

Recall 0.99 

F1-score 0.92 

1 (31% - 60%) Precision 0.85 

Recall 0.73 

F1-score 0.79 

2 (>60%) Precision 1.00 

Recall 0.75 

F1-score 0.86 

5.4 Bed Assignment Intervention  
5.4.1 Fast-Track Intervention 

5.4.1.1 Simulation of Fast-Track ED 

There are many interventions that have been proposed, implemented, and shown to mitigate ED 

crowding, including bed assignment/control strategies like the implementation of immediate 

bedding, physician-in-triage, and fast-track workflows. Of these, fast-track workflow is most 
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common strategy in practice, according to a 2017 nation-wide survey of US hospitals [49]. In a 

fast-track workflow, patients deemed to be non-critical after triage (ESI 4 & 5) are assigned to a 

different treatment area in the ED. Non-critical patients typically present with conditions that 

require treatments like wound dressings and medication prescriptions. The different treatment area 

is typically called the fast-track area and has its own treatment spaces and clinical resources. In the 

fast-track area, these patients can be quickly attended to, reducing their EDLOS and their 

likelihood to leave the ED without being seen. This has healthy outcomes for the ED. Overall 

EDLOS is lowered, reducing ED crowding; LWBS rates for the ED is also lowered, reducing 

revenue loss, and improving likelihood of better patient satisfaction. 

 

Figure 5-3: Patient flow in ED with Fast Track 

In our study, we evaluate the impact of implementing a fast-track strategy for our ED. We added 

a fast-track area that contains five beds. The area is staffed by one physician and two licensed 

vocational nurses that are certified to perform IV services. The area uses the same laboratories and 



107 
 

scanning capabilities as the ED. The fast-track workflow (detailed in Figure 5-3) and staff operate 

between 10am – 10pm, the period of the day with higher arrival rates to the ED. After 10pm 

however, the fast-track beds are made available to the ED, with an additional nurse added to the 

night schedule to both comply with regulations and accommodate the increased capacity.  

5.4.1.2 Fast-Track Simulation Evaluation 

Our new simulation model is validated metamorphically to ensure that it is representative of a real 

ED with a fast-track system. We collect 30 days of data after running the model for the appropriate 

warm-up period for 30 replications and collect important ED key performance indicators (KPIs), 

such as EDLOS, LWBS rate, bedside nurse utilization and hourly throughput of discharged & 

admitted patients. In Table 5-4, we compare the results from our fast-track ED to our regular ED 

to understand how implementation of the fast-track ED impacts crowding and other KPIs. 

Table 5-4: Fast-track vs Regular ED – KPI Statistical Comparison 

KPIs Regular ED Fast-track ED 

ALOS (mins) 362 (333 – 401) 373 (342 - 392) 

DLOS (mins) 108 (97 – 120) 103 (94 - 120) * 

LOS (mins) 199 (183 – 216) 200 (179 - 209) 

LWBS (%) 2.7 (0.4 – 5.4) 1.0 (0.0 – 4.0) *** 

Bedside Nurse Utilization (%) 79.9 (76.5 – 82.8) 74.8 (73.1 – 82.8) *** 

Model results are shown as median of output values followed by their ranges. 

*** refers to a p-value <0.001,** refers to a p-value <0.01, * refers to a p-value <0.05 

and no sign refers to p-value ≥0.05. 

Given that we expect our main ED Crowding indicator (LOS) and other KPIs such as LWBS to be 

lower in the fast-track implementation as observed in literature, we performed statistical tests to 

identify if the results obtained from the fast-track ED are lower than those obtained from the 

regular ED. We leveraged the Wilcoxon-Mann-Whitney’s non-parametric test available from the 

SciPy library for Python 3.0, testing the following hypothesis at 95% significance level: 

𝐻0 → 𝑚𝑒𝑑𝑖𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐾𝑃𝐼 𝑓𝑟𝑜𝑚 𝐹𝑎𝑠𝑡 − 𝑡𝑟𝑎𝑐𝑘 𝐸𝐷 

=  𝑚𝑒𝑑𝑖𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐾𝑃𝐼 𝑓𝑟𝑜𝑚 𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐸𝐷 
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𝐻1 → 𝑚𝑒𝑑𝑖𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐾𝑃𝐼 𝑓𝑟𝑜𝑚 𝐹𝑎𝑠𝑡 − 𝑡𝑟𝑎𝑐𝑘 𝐸𝐷 

<  𝑚𝑒𝑑𝑖𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐾𝑃𝐼 𝑓𝑟𝑜𝑚 𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐸𝐷 

The results highlighted in Table 4 show that the Fast-track ED offers good improvement of LWBS 

rates, reducing by more than 50% of the values observed in Regular ED. Similar statistically 

significant reductions are observed in the bedside nurse utilization as well as DLOS. Both of which 

are logical, given that patients likely to be discharged have a different process flow and do not 

burden the “regular” ED. We observe that there are increases to ALOS and LOS in the fast-track 

ED, but these increases are insignificant and thus we can assume that fast track doesn’t influence 

the ALOS or LOS in the study ED. 

We notice that there are DLOS and LWBS reductions observed from our fast-track 

implementation; however, we observe no influence on overall LOS and ALOS. We posit this is 

because of the ESI distribution in our study. Table 5-5 shows the differences between our study 

ED’s ESI distribution, what is expected according to the ESI Implementation Handbook [50] and 

the 2017 National Hospital Ambulatory Medical Care Survey (NHAMCS) [51] observed 

distribution.  

Table 5-5: Expected and observed ESI distributions 

ESI level Study Site ESI Implementation handbook  NHAMCS 2017 

1 2.1% 1% - 3% 0.9% 

2 23.3% 20% – 30% 9.9% 

3 60.3% 30% - 40% 33.9% 

4 & 5 14.3% 20% – 35% 27.9% 

Unknown N/A N/A 22.3% 

Our study ED appears to handle a larger volume of critical patients than what is expected and as a 

result, this influences the viability of fast-track given the low proportion of ESI 4 and 5 patients. 

To evaluate this, we run a sensitivity analysis of the fast-track implementation at varying 
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proportions of ESI 4 -5 patients. We perform a similar statistical testing to validate if fast-track 

implementation offers better ED outcomes. Table 5-6 highlights the results of this testing. We 

observe that the higher the proportion of ESI 4-5 patients, the better the overall ED outcomes 

observed. Starting at 25%, all improvements are statistically significant, and the outcome 

improvements are similar to observations from literature [52]. 

Table 5-6: KPI Improvement Sensitivity Analysis at Varying Levels of ESI 4 & 5 Proportion 

KPIs 5% 10% Baseline 20% 25% 30% 35% 

ALOS (mins) 0 0 -11 0 -16 *** -10 *** -12 *** 

DLOS (mins) -3 -3 -5 * -9 *** -6 *** -8 *** -11 *** 

LOS (mins) -3 -2 -1 -8 * -6 *** -12 *** -15 *** 

LWBS (%) -1.2*** -1.8*** -1.7 *** -0.7 *** -1.9 *** -1.4 *** -1.2 *** 

Bedside Nurse 

Utilization (%) 

-0.6 -3*** -5.1 *** -7.8 *** -8.3 *** -11.0 *** -12.5 *** 

Model results are shown as differences between medians of both models’ output values 

*** refers to a p-value <0.001,** refers to a p-value <0.01, * refers to a p-value <0.05 and no 

sign refers to p-value ≥0.05. 

 

5.4.2 Fast-Track Pod Bed Assignment Intervention 

5.4.2.1 Description of Fast-Track Pod Bed Assignment 

We are proposing a bed assignment strategy to further alleviate the incidence of ED crowding. We 

want to use the knowledge of future boarding levels to drive how beds are assigned in an ED that 

has implemented fast-track. We propose that when an ED is predicted to experience any situation 

where boarding levels are predicted to be higher than 30%, some beds in the fast-track area become 

allocated to ESI 3 patients. We will refer to these beds as “pod” beds going forward. ESI 3 patients 

waiting on a bed assignment after being triaged are assigned to the first available regular or pod 

bed, based on the time they were triaged. These pod beds are available for assignment until the 

number of future boarding levels >30% over subsequent hours are at an acceptable level. After 

this, the pod beds revert to being fast-track beds. Details on the workflow are shown in Figure 5-

4.  
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Figure 5-4: Proposed Patient Workflow in ED with Fast-Track Pod Bed Assignment 

5.4.2.2 Simulating the Pod Bed Assignment Intervention 

We updated the fast-track simulated ED to include the bed assignment strategy in section 5.4.2.1. 

We embedded the trained Random Forest Classifier from section 5.1 into the updated simulation 

model using the ONNX wrapper developed by Tyler Wolfe-Adam [53]. We created a collection 

of predictor variables that are updated in real-time every hour in our simulation model. These 

predictors are fed into our classifier which then predicts the boarding levels 6-hours ahead. To 

enact the pod bed intervention, we created several variables that trigger the bed assignment process 

in the main simulation. The first variable (“var_pred”) captures the predictions from our classifier 

whether 0, 1 or 2 boarding levels. The second variable (“var_previous”) is the number of future 

boarding levels to monitor to determine when the fast-track pod bed assignment should revert to 

regular fast-track. The third variable (“var_stop”) is used to define the severity of future boarding 

levels that will trigger reverting to fast-track; it is a sum of the monitored future boarding levels 

captured by “var_previous”. A function with a binary output was created to monitor the values of 
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these variables to determine when the fast-track pod bed assignment strategy is active. The 

function is defined as: 

𝑓(𝑥𝑡) = {
0, ∑ 𝑥𝑡 ≤ 𝑣𝑎𝑟_𝑠𝑡𝑜𝑝

𝑡

𝑡+𝑣𝑎𝑟_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

1, 𝑥𝑡 ≥ 𝑣𝑎𝑟_𝑝𝑟𝑒𝑑

 

Where 𝑥𝑡 represents the predicted boarding level at hour t. 

5.4.2.3 Simulation-Based Optimization for Pod Bed Assignment 

There are multiple values for each of the variables related to triggering our bed assignment 

strategy. For instance, “var_stop” can theoretically take on values > 1. To determine the best values 

that will yield the lowest crowding scenarios, we leverage simulation-based optimization 

techniques using the inbuilt optimization engine in AnyLogic, our simulation software [54]. In 

addition to the trigger-related variables, we also need to understand the optimal number of pod 

beds that can be assigned from the fast-track pool to ensure minimal crowding. 

First, we define the optimization problem. Optimization problem typically contains a set of 

decision variables, objective functions, and a set of constraints. As mentioned earlier, to minimize 

ED crowding, the aim is to identify the best values for turning on & off our bed assignment strategy 

as well as the right number of fast-track beds to allocate to this strategy. In this study, we focus on 

EDLOS as the proxy for measuring ED crowding; thus, we want to minimize EDLOS in our study. 

Our optimization problem can thus be written as follows: 

𝑀𝑖𝑛 𝑍 =  𝑓(𝑋1, . . . , 𝑋𝑛) 

Subject to: 

𝑀𝑖𝑛 𝑌 =  𝑔(𝑋1, . . . , 𝑋𝑛)  ≤  𝑝𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝐿𝑊𝐵𝑆 𝑡𝑎𝑟𝑔𝑒𝑡 

1 ≤  𝑋1  ≤  5, 

𝑋2 = (
1

2
), 
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1 ≤  𝑋3 ≤  12, 

0 ≤  𝑋4  ≤  12, 

𝑋𝑖 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑜𝑟 𝑖 =  1, 2, . . . , 𝑛  

In our objective function, Z represents the average hourly EDLOS and 𝑋𝑛 are the decision 

variables. Z is simply the output of the simulation model after decision variables have been 

changed, there is no analytical form. 𝑋1  represents the number of beds that will be kept as fast-

track beds. 𝑋1  is bound from 1-5, meaning that at least 1 bed must always be available for fast-

track during fast-track operating hours. 𝑋2  represents our predicted boarding level “var_pred”; it 

is set as a binary choice of 1 and 2 which represent boarding levels where 31% - 60% and >60% 

of ED beds are occupied by boarding patients. We did not add class 0 as an option because we do 

not intend to trigger the bed assignment process permanently. 𝑋3  represents our monitoring 

variable, “var_previous”. We set a lower bound of 1 hour because we want to measure at least 1 

future prediction as a stop and a higher bound of 24 hours because we do not want to run the pod 

assignment throughout the day. 𝑋4  represents our stopping criteria, “var_stop” and it is bound 

between 0 (no future boarding) and 12 (future boarding every hour for 12 hours at least). Y presents 

an additional constraint related to LWBS rates. We want to make sure that we do not create a 

situation where LWBS is worse than in our current ED at least as LWBS rates have direct impact 

on our ED’s revenue.  

The full optimization problem is entered into AnyLogic’s optimization engine powered by 

OptQuest. OptQuest allows researchers to perform optimization experiments with models by doing 

parameter sweeping across the simulation space and using metaheuristic optimization and 

randomized search algorithms to explore the simulation space in search of an optimal solution 

[55]. To constrain the computational needs for our experiment, we run 300 simulations of our 
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model. We chose 300 after running the model for 1000 runs, obtaining the EDLOS standard 

deviation from these runs and calculating the required sample size to achieve 95% confidence 

interval, with an EDLOS error of 1-min using this formula 𝑛 =  (
𝑍𝜎

𝐸
)

2

; such that n = number of 

samples required to ensure 95% confidence interval; Z is the value from the standard normal 

distribution at 95% confidence interval, σ is the standard deviation of LOS obtained from 1000 

runs and E is the desired margin of error for LOS. The required sample size obtained was 283 so 

we rounded up to 300 samples for simplicity (i.e., simulations needed). 

Since there are stochastic inputs in our simulation, we also run each simulation with 2 – 30 

replications using random seeds, with the exact number of replications for each simulation 

determined by OptQuest based on achieving 95% confidence interval and 5% error rate. We set 

each simulation to run for three weeks with our warm-up period of 10 days. Model settings are 

highlighted in Figure 5-5.  

Our simulation-optimization problem of finding the optimal decision for achieving minimum 

EDLOS by searching through combinations of our parameters is a single-stage stochastic 

optimization problem. OptQuest attempts to find a specific decision x among a domain of all 

feasible decisions (X) that minimizes EDLOS while maintaining low LWBS rates. Because we can 

only ever know LWBS rate after we’ve made the decision, we can note that we receive random 

information on LWBS and denote that as 𝜁. We can thus say that we are aiming to minimize a 

random function 𝐹(𝑥, 𝜁). Given the random nature of 𝜁, we can’t directly optimize this function 

and so we will minimize its expected value, 𝔼[𝐹(𝑥, 𝜁)]. Thus, the objective for OptQuest becomes: 

𝜍∗  =  𝑚𝑖𝑛
𝑥 ∈ 𝑋

{ 𝑓(𝑥)  =  𝔼[𝐹(𝑥, 𝜁)] } 

Where there is a set of optima 𝑆∗ =  {𝑥 ∈ 𝑋 ∶  𝑓(𝑥)  =  𝜍∗} in an assumed convex X decision space. 
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Figure 5-5: Simulation-based Optimization Model Settings 

After the simulation-optimization process was completed, the model identified an optimal solution 

(minimum average LOS of 181mins) showed in Figure 5-6. We can see that the best solution that 

fulfills all our optimization constraints is one where we turn on the pod best assignment strategy 

when the predictive model first identifies a severe boarding level (i.e., predicted value = 2). To 

achieve low crowding, 3 beds must still be available for fast-track meaning we can only set aside 

2 pod beds. The optimal solution also shows that we should monitor future predictions of boarding 
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levels up to 5 hours ahead and turn off the pod assignment intervention only when there are no 

predicted high boarding levels in the future.  

 

Figure 5-6: Pod Bed Assignment Optimization Results 

5.4.2.4 Pod Bed Assignment Influence on ED Outcomes  

We configured our fast-track pod assignment simulation model to the optimal parameters 

identified in section 5.4.2.3. We ran 30 replications and collected values of KPIs after two weeks 

of running past the appropriate warm-up. We used the Wilcoxon-Mann-Whitney test to compare 

these KPIs to previously collected KPIs from running the fast-track and regular ED workflows. 

We aimed to understand if the KPIs from the pod workflow were lower (i.e., better) than those 

from the other two workflows.  

Table 5-7: Pod Bed Assignment Intervention Results   

KPIs Pod Fast-track ED + Compared to 

Regular ED ++ 

Compared to Fast-

track ED ++ 

ALOS (mins) 362 (346 - 411) 0 -11 * 

DLOS (mins) 101 (93 - 110) -7 *** -2 ** 

LOS (mins) 195 (180 - 216) -4 * -4 * 

LWBS (%) 1.3 (0.3 – 3.3) -1.4 *** -0.3 

Bedside Nurse 

Utilization (%) 
75.2 (73.6 – 76.7) 

-4.7 *** -0.4 

+ - Model results are shown as median of output values followed by their ranges. 

++ - Results are shown as differences between medians of both models’ output values 

*** refers to a p-value <0.001,** refers to a p-value <0.01, * refers to a p-value <0.05 and 

no sign refers to p-value ≥0.05. 
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The results in Table 5-7 highlight that our pod bed assignment intervention yields statistically 

significant better ED crowding outcome compared to fast-track implementation at our study site, 

providing 4 mins reduction in overall average LOS (11 mins reduction in ALOS and 2 mins 

reduction in DLOS). We also observe that LWBS rates are similar across fast-track and pod 

interventions, meaning that the implementation of pod does not interfere significantly (0.3% 

decrease) with the benefits of traditional implementation of fast-track in our ED. The same 

observation is made with the bedside nurse utilization. Compared to the study site directly, we 

observe statistically significant improvements across all KPIs, except for ALOS. 

We also performed sensitivity analysis like section 5.4.1.2 to understand how the implementation 

of the currently optimized pod bed assignment would impact ED outcomes if different ESI 4 & 5 

patient proportions were observed. Our results in Table 5-8 show that pod bed assignment offers 

statistical improvement over the regular ED configuration regardless of the proportion of ESI 4&5 

patients in the system. However, this improvement cannot be isolated from the fast-track 

implementation for all metrics except bedside nurse utilization. This is confirmed when our pod 

assignment implementation is compared to the results from the fast-track implementation. Our 

statistical tests show that we must accept the null hypothesis that the medians from both models 

are not different for LWBS and ALOS in some cases, and as such, there is likely no additional 

improvement that the pod bed assignment will offer in these scenarios. We do observe that when 

the proportion of ESI 4&5 are lower, LOS is statistically lower compared to fast-track 

implementation. The overall result when compared to fast-track is not surprising as our pod bed 

assignment strategy was optimized specific to our study site’s original ESI distribution and would 

likely need to be readjusted to offer any additional benefit. 
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Table 5-8: Pod Bed Assignment Sensitivity to Varying ESI 4 & 5 Proportion 

ED 

Type 

KPIs 5% 10% Baseline  20% 25% 30% 35% 

Fast-

Track  

ALOS (mins) -3 -5.5 -6 -6 +1  -2  0  

DLOS (mins) -3.9* -3.6* 0  0  -1  +5  +6  

LOS (mins) -1.3* -3.3* -2  -2  +1  +1  +4  

LWBS (%) +0.7 +0.1 +0.2  +0.2  +0.8  +0.5  +0.7 

Bedside Nurse 

Utilization (%) 

-1.1 

*** 

-1.3 

*** 

-0.5* -0.5* -0.9* -0.4* -1.3* 

Regular ALOS (mins) -3 -4.1* -6 * -6 * -15 *** -12 *** -22 *** 

DLOS (mins) -6.9 

*** 

-5.6 

*** 

-9 *** -9 *** -7 *** -8 *** -5 * 

LOS (mins) -8.3 

*** 

-5 *** -10 *** -10 *** -13 *** -11 *** -11 *** 

LWBS (%) -1.4 

*** 

-1.7 

*** 

-0.5 *** -0.5 

*** 

-1.1 

*** 

-0.9 

*** 

-0.5 ** 

Bedside Nurse 

Utilization (%) 

-1.7 

*** 

-4.3 

*** 

-8.3 *** -8.3 

*** 

-9.2 

*** 

-11.4 

*** 

-13.7 

*** 

Model results are shown as differences between medians of both models’ output values 

*** refers to a p-value <0.001, ** refers to a p-value <0.01, * refers to a p-value <0.05 and no 

sign refers to p-value ≥0.05. 

 

To validate this, we run another experiment focused on understanding if improvement over fast-

track implementation can be observed at high ESI 4&5 proportions. First, we set the ESI 

proportions to match NHAMCS’s distribution in Table 5-5 where ESI 4 & 5 represent >27% of 

the population (vs 14% in study site) and ESI 3 represents ~44% (vs 60% in study site). Next, we 

optimize the pod bed assignment strategy specific to this new proportion. Then, we run the pod 

best assignment strategy at the optimized parameters for 30 replications to collect one month of 

KPIs. We do a similar set of runs with the fast-track implementation. Finally, we perform similar 

Wilcoxon-Mann-Whitney test to understand if pod bed assignment offers better outcomes.  

The results from the optimization (Figure 5-7) show that number of pod beds to allocate is only 1 

and that this bed is made available when the first severe boarding level (i.e., boarding level is 2) is 

detected and only turned off if the predicted severity of boarding for the next 4 hours is less than 
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11. Since the highest boarding level is 2, in practice, this means that there must not be four 

consecutive severe boarding levels before the pod bed is reallocated to fast-track. 

 

Figure 5-7: Pod Bed Assignment Optimization for NHAMCS ESI Distribution 

The results of the statistical tests are highlighted in Table 5-9. We observe that for overall EDLOS, 

while pod bed assignment offers a smaller range, there is no statistical significance but the medians 

from both models are the same. DLOS from both models are similar also; however, ALOS is 

statistically lower from the pod assignment strategy than the fast-track implementation.  

Table 5-9: KPI Comparison between Pod Bed and Fast Track for NHAMCS ESI Distribution 

KPIs Pod ED Fast Track ED 

ALOS (mins) 335 (310 - 370) * 344 (307 - 391) 

DLOS (mins) 95 (84 - 106) 92 (82 - 106) 

LOS (mins) 161 (142 - 178) 161 (145 - 182) 

LWBS (%) 0.4 (0.1 – 1.6) 0.2 (0.0 – 0.7) 

Bedside Nurse Utilization (%) 65.2 (62.5 – 66.3) 64.8 (62.0 – 65.6) 

Model results are shown as median of output values followed by their ranges. 

*** refers to a p-value <0.001, ** refers to a p-value <0.01, * refers to a p-value 

<0.05 and no sign refers to p-value ≥0.05. 
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5.5 Discussion 

 In this study, we focused on the impact of boarding on ED crowding levels (defined as high 

EDLOS) and aimed to understand how the knowledge of future boarding levels could be used to 

make operational decisions. There are a lot of studies focused on ED crowding and ED LOS, with 

a few dedicated to understanding boarding specifically and much fewer attempting to predict 

boarding levels. Our study verified what other literature has already verified, that boarding 

influences ED LOS. Specifically, we showed that boarding in a particular hour has implications 

for ED crowding in future hours. We observed that for our study site, a simulated ED, every 30% 

increase in the proportion of boarding patients occupying the ED leads to a 1% - 14% increase in 

overall EDLOS. This increase in EDLOS was shown not to only impact patients waiting for 

hospital admission (2% - 20% increase) but also patients that are discharged home (1% - 6% 

increase). We posited that this relationship signifies that future boarding levels can be used as an 

early warning indicator for ED crowding, driving ED/hospital administrators to make decisions 

and avoid over-crowding situations. We stratified our boarding levels as normal (when ≤30% of 

ED is occupied by boarding patients), high (when 31% - 60% of ED is occupied) and severe (when 

>60% of ED is occupied). 

A key objective for this study was to show how an early warning signal can be derived using 

operational data that is typically available from EHR systems. We were able to use details on queue 

volumes along major steps of a patient’s journey in an ED (e.g., number of patients triaged, number 

of patients waiting on a bed, etc.) as well as other information such as utilization of resources 

(nurses, doctor, beds) and calendar information to predict boarding levels (i.e., normal, high and 

severe) 6-hours ahead. We chose to predict 6-hours ahead because we wanted to ensure that there 

was ample time for corrective action to take place. While we can predict next hour with higher 
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accuracy as highlighted in our previous work, there is likely not enough time for ED staff to take 

actions. For our boarding level prediction, we evaluated three different well-validated algorithms 

(logistic regression, random forest, and support vector machines) to perform multi-class 

predictions. All three models offered good results, with F1 scores ranging from 0.67 to 0.97 for 

each boarding level. F1 scores represent a good balance between precision (reducing false 

positives) and recall (reducing false negatives). Typically scores above 0.8 are considered good 

predictive performance [56] and our tuned Random Forest Classifier was able to achieve 0.8 scores 

across all three boarding levels. To validate that our classifier would behave reasonably for our 

study site, we implemented a surge scenario (i.e., increased patient volumes) and we were still able 

to achieve 0.8 scores across all three levels, indicating that our classifier was well trained and not 

under- or over-fitting. This early warning indicator can be used by ED staff to drive different 

actions to manage crowding. For example, if possible, the early warning signal can be used to 

determine when to use inpatient hallways to house boarding patients and free up ED capacity.  

To achieve the main research goal of understanding how the boarding early warning indicator can 

be used to alleviate ED crowding, we develop a novel bed assignment protocol based on the 

existing and commonly used fast-track protocol. This protocol, called pod bed assignment, is 

available to EDs where fast-track has been implemented and has shown value and for EDs where 

fast-track is being considered for implementation because there is perceived value. Our pod bed 

assignment protocol calls for carving out some of the fast-track capacity when there are predicted 

future high or severe boarding levels for the treatment of ESI 3 patients to alleviate the pressures 

on the regular ED process. Fast-track implementation is used by ED/hospital administrators largely 

because it offers better LWBS rate (and consequently higher revenues directly and through reduced 

ambulance diversion), it is important that the implementation of pod bed assignment did not take 
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away this value while providing better ED LOS outcomes. As such, we formulated an optimization 

problem to minimize ED LOS without impacting LWBS rates. We used simulation-based 

optimization to solve this problem and identify the best parameters for our study site to implement 

the pod bed assignment. We were able to find an optimal configuration that leverages the predicted 

boarding levels to allocate fast-track beds to ESI 3. We conducted statistical tests which showed 

that compared to implementing in our study site, we could alleviate LOS by 4 mins (2% reduction) 

across all patients while reducing LWBS rates by >50%. When we compared the pod 

implementation to fast-track, we observed that while it did not yield any additional benefit to 

LWBS rates or bedside nurse utilization, it offered 2% improvement for ALOS, DLOS and LOS, 

highlighting its efficacy. It is worth noting that while these improvements seem small, they likely 

offer high ROI as the cost of implementing this protocol is relatively low if the ED has already 

committed to fast-track layout construction. The entire protocol is driven by data that is likely 

already available and doesn’t require additional investment. The advent of machine learning-as-a-

service makes it easy to create these predictions. The biggest upfront cost is the resource 

(time/person) to develop the predictive algorithm and identify/implement the best protocol trigger 

parameters for the specific ED.  

We also evaluated the robustness of our technique by simulating different scenarios where an ED 

treats more non-critical patients (i.e., ESI 4 & 5) than our study ED. We observed that our pod 

assignment protocol, even after re-optimization for the new ESI distribution, offers better ALOS 

compared to only implementing fast-track (3% improvement), but little to no benefit for other 

measures such as DLOS or LWBS. Prior to re-optimization, we observe that at levels higher than 

20% of non-critical patients in the ED, there is almost no benefit to using the pod assignment 

protocol compared to simply using all fast-track beds for non-critical patients. ESI distributions 
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vary from ED to ED as shown in [57] from as little as 6% for non-critical patients to as high as 

37%. In our study where non-critical patient population is lower than 20%, the pod bed assignment 

was proven to reduce ED crowding. This could be applicable in scenarios such as flu seasons or 

the ongoing pandemic where ED visits tend to skew towards higher criticality. 

Our study is limited by several factors. First, due to the ongoing pandemic, we did not have access 

to actual data directly, so we leverage simulation output for our analyses. While we validated that 

the ED is representative, we acknowledge that this poses some limitations in direct applicability 

to our results. Second, the study is still a single center study as we only built one representative 

simulation, as a result, we are not sure of its direct applicability to other types of EDs with different 

processes, workflows, patient, building and staff characteristics. Lastly, our implementation of 

fast-track is specific. We assumed that our fast-track implementation is such that it is open 24 

hours but serves as a true fast-track only during specific hours. This type of implementation has 

implications on hospital billing practices in the US (i.e., Type A vs Type B Medicare billing 

practices). Our pod bed assignment protocol was designed and tested on this implementation and 

in this study, we did not provide any cost analysis focused on the financial implications of 

leveraging our proposed pod bed assignment protocol.  

5.6 Conclusion and Future Work 

ED crowding is an ongoing global crisis that has been shown to have several detrimental impacts 

on healthcare outcomes including higher risk for adverse events. Research has already highlighted 

that boarding is the most influential factor related to ED crowding. However, there is not a lot of 

research related to manage boarding as it relates to ED crowding. While it is acknowledged that 

boarding is really an upstream supply problem which can best be addressed by the inpatient portion 

of the hospital, necessary systems-wide interventions are not typically made, and the ED continues 
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to bear the brunt of boarding’s impact. In this study, we accomplished three objectives related to 

easing the impact of boarding on ED. First, we showed how current boarding levels influence 

future ED LOS, a measure of ED crowding. Second, we created early warning signals based on 

predicting boarding levels 6-hours ahead, allowing ED administrators ample time to plan 

mitigation strategies. Lastly, we developed a novel bed assignment strategy for EDs that have 

implemented fast-track. This strategy provides an effective way to assign beds during fast-track 

operational hours that yields lower EDLOS while still providing lower LWBS rates associated 

with fast-track implementation.  

To the best of the authors’ knowledge, this study is the first of its kind across all three objectives. 

We achieved good results across our descriptive, predictive, and prescriptive models and we want 

to explore future work. In this study, we want to explore deep-learning techniques for our 

predictions of future boarding levels. These techniques have been shown to outperform techniques 

such as Random Forest and SVM that we used in this study. Additionally, our single-center study 

was based on a simulated ED; we want to conduct a multi-center study to understand the scalability 

of our approach leveraging data and partnerships from EDs with varying processes, layouts, 

workflows, and other characteristics.  Access to more data will help in our goal to improve the 

prediction model and refine our early warning signal. Lastly, we want to partner with an emergency 

department to validate, analyze and improve the impact of our proposed bed assignment approach 

on ED outcomes. 
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CHAPTER 6: CONCLUSION 

This dissertation contributes uniquely to the growing body of Operations Research (OR) in 

healthcare literature, particularly the application of simulation techniques for studying ED 

boarding. First, the research addresses the issue of the appropriate amount of complexity required 

for a simulation of an emergency department to study complex subprocesses such as boarding and 

early abandonment of treatment. The dissertation contributes to simulation modeling by evaluating 

the differences between a discrete-event simulation (DES) and combined agent-based (ABM) and 

DES for modeling the interactions between patients and emergency department resources. It also 

contributes by leveraging Metamorphic validation, a technique still new to simulation literature, 

in the validation of its simulation models. Second, it highlights the applicability of a growing body 

OR techniques called Hybrid Systems Models (HSM) to drive impactful improvement in highly 

stochastic and complex processes such as emergency department processes. Using hybrid 

simulation-predictive-optimization models, the research examines how early warning about future 

boarding levels in an ED can be operationally used to make bed assignment decisions for patients 

that are not severely ill/injured and ultimately achieve better ED crowding outcomes. The 

dissertation also contributes to literature on machine learning in emergency departments by 

demonstrating how various machine learning techniques can be used in the predictive modeling 

for future ED boarding.  

The dissertation aimed to address three research questions (highlighted at the end of Chapter 2). 

The answers to these questions are summarized below: 

❖ What is the value of creating a simulation model that includes detailed process steps and 

human decision-making behaviors? Does such a detailed model yield better decision-

making/model outcomes than the typical simulation model found in literature? 

Using the same data, two simulation models were developed: a “simple” DES (similar to 

simulation models described in existing literature) and a “complex” DES+ABM model that 
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more closely mimicked human behavior and included additional process decisions. When 

results obtained from both models were compared, it was observed that not all model 

outcomes were similar. Outcomes such as patient length-of-stay (LOS) showed statistically 

significant differences greater than 40mins (p <0.001) and bedside nurse utilization showed 

differences around 20% (p <0.001). Similar statistically significant differences were 

observed for boarding and bed wait times. However, left-without-being-seen (LWBS) 

outcome showed differences between 0.1% - 0.5% that were deemed not statistically 

significant (p >0.05). This showed that the additional human behavior details related to 

waiting and abandoning queues did not add any additional value in understanding LWBS 

rates. Thus, it is reasonable to conclude that the use of a simple or complex model should 

be driven by study intent. For studies where LWBS is the objective, the DES model would 

suffice but studies where LOS and its influencing factors are of interest, then the more 

complex DES+ABM simulation would be more appropriate. 

❖ What are the main human and operational factors that can be used to accurately predict 

future boarding levels in an ED? 

 

This question was answered by exploring several techniques for predicting hourly boarding 

levels in the ED using operational factors such as counts of patients in queues, utilization 

of resources and human factors like complaints presented. Regression-based techniques 

such as random forest, regularized linear regression (elastic net) and XGBoost as well as 

time-series forecasting techniques like Autoregressive Moving Average and Exponential 

Smoothing were explored. The models achieved good predictive performance with mean 

absolute scaled errors from accepted models ranging from 0.56 – 0.69, showing an ability 

to reduce prediction errors by almost half when compared to using naïve previous hour 

forecasts. The models offered insights into significance of various factors and were able to 
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offer good explanation of future boarding (coefficient of determination: 0.29 – 0.49). The 

predictive analysis showed that calendar information (time/day), queue-based information, 

utilization of resources such as beds and lagged values of boarding are the most relevant 

for predicting boarding 1 – 6 hours ahead. 

❖ How effective are bed assignment strategies compared to existing strategies at managing 

ED boarding and ensuring reasonable ED crowding levels? 

 

This dissertation proposed a novel dynamic bed assignment strategy that leveraged early 

warning signals of future ED crowding (indicated by high LOS). The efficacy of this 

strategy was examined by comparing to a well-known/validated strategy for managing ED 

crowding: Fast-Track. The strategy proposed by this research leverages a simulation-

predictive-optimization HSM to predict when ED LOS will be impacted due to current 

boarding levels and trigger a change in bed assignment policy in real-time as a response to 

avert the impact of the future boarding levels. The bed assignment policy was shown to 

statistically drive improved LOS by 2% reduction across all patients compared to fast-

track, while reducing LWBS rates by >50% overall for EDs. For EDs that already leverage 

fast-track, this new policy is an inexpensive way to optimize existing fast-track bed 

capacity as it doesn’t require additional physical infrastructure or staffing investment, 

especially if the ED’s visits are similar to the study site where volumes of critical patients 

are greater than 80%. 

 

 

 

 

 


