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Abstract

LASSO Based State Transition Modeling with Interactions in Adaptive Interdisciplinary Pain

Management

Amith Viswanatha

The University of Texas at Arlington, 2022

Supervising Professors: Dr Victoria Chen, Dr Jay Rosenberger

The Eugene McDermott Center for Pain Management at the University of Texas Southwestern Medical
Center has an interdisciplinary pain management program for chronic pain. This program treats patients
with a holistic view of reducing chronic pain and improving their physical, mental, and social well-being
through treatment interventions. The development of an adaptive treatment decision tool is main goal of

the research project.

This program is modeled as a two-stage adaptive treatment decision problem, with state transition
models representing the transition of patient state, treatment, and outcome variables from stage 1 to stage
2. Interactions between the patient state and treatments play a major role in determining a personalized
treatment plan for individual patients. In this research, we address the challenge of modeling state-treatment
interactions. We propose a LASSO based approach to develop the state transition models. The proposed
approach is studied using a simulated case study structured based on the McDermott Center data. The state
transition models built using the proposed method are then formulated within the multi-objective two-stage

stochastic programming optimization to obtain an optimal treatment plan.
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1 Introduction

Pain is a common problem that most people encounter during their lifetimes. Pain can be broadly classified
into two types, acute and chronic. Acute pain usually occurs after an injury/accident and is treated with
either analgesic medications or surgery followed by rehabilitation. Chronic pain on the other hand can occur
due to multiple reasons like poor lifestyle, age, pre-existing health conditions, surgery, cancer, etc. Chronic
pain is defined as pain that lasts more than 3 to 6 months [1]. Chronic pain is one of the main causes for
adults seeking medical care [2]. Chronic pain that severely inhibits life or work activities is classified as
high-impact chronic pain (HICP) [3, 4]. The Centers for Disease Control and Prevention (CDC) estimated
that around 20.4% (50.0 million) of US adults have chronic pain, and 8.0% (19.6 million) of US adults have
high-impact chronic pain based on the 2016 National Health Survey Interview [5]. A higher prevalence of

chronic pain and HICP was reported among older adults and economically vulnerable adults [5].

Chronic pain is often characterized by unrelenting and debilitating symptoms and leads to unpleasant
physical and mental experiences [6]. Pain is very subjective, where several factors, such as the patient’s
social and financial background, personal relations, and mental conditions, impact the perception and
description of their conditions. Chronic pain not only affects the patient’s quality of life, but it also affects
family and social circles since relatives and caregivers must monitor the patient’s medication, side effects,
and state of mind. [7]. The earlier models of chronic pain were based on a biomedical model that focused
only on the processes within the body and assumed independence between the body and mind. This model
favored treating the condition rather than the patient, with medications being the preferred choice of
treatment. The development of neuroscience lead to a marked shift in the way chronic pain was viewed,
with equal focus being given to body and mind. To understand the impact of chronic pain on a patient’s
daily activities, mental and physical health, and social relations, the biopsychosocial model of pain (Figure
1) was developed, which provides a holistic framework for understanding how different aspects of pain are

related through an assessment of sensorial, cognitive, and interpersonal factors [8, 9].
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Figure 1: Biopsychosocial model of pain [8]

The typical treatment for chronic pain is analgesics, opioids, and other medications. Short-term
medications help relieve severe pain in patients, but long-term usage can be detrimental to their health [10].
Deyo et al. [11] found that opioids were prescribed for over 60% of patients with non-cancer pain, and
almost 20% became long-term users. Despite opioid therapy, a majority of the patients have persistently
high levels of pain and poor quality of life [12]. Opioid medications also pose a significant risk of misuse

and abuse [13].

Surgical interventions are another preferred treatment for chronic pain. Rajaee et al. [14] found that
between 1998 and 2008, there was more than a 100% increase in spinal fusion surgeries for low back pain.
There have been concerns about surgical interventions leading to high disability rates after the procedures

[15].

The utility of the biopsychosocial model of pain along with the limitations of a medication-only
treatment plan has led to the evolution of interdisciplinary treatment strategies. Interdisciplinary treatment
includes physical therapy, psychotherapy cognitive behavioral therapy (CBT), and other procedural

interventions along with medications to treat chronic pain. Interdisciplinary care consists of greater

2



coordination, communication among the different healthcare professionals, and active patient involvement

to ensure effective and comprehensive treatment [16].

The Eugene McDermott Center for Pain Management at the University of Texas (UT) Southwestern
Medical Center has one such interdisciplinary pain management program for chronic pain. The subjective
nature makes it difficult to measure pain [17], but several outcome measures help quantify the patient’s
pain experience. The McDermott Center evaluates patients on five different pain outcome measures that

evaluate patients’ physical, psychological, and overall wellbeing. These pain outcomes are listed below:

e Oswestry Pain Disability Index (OSW) is a measure of functional disability due to pain [18].

e Pain Drawing Analogue (PDA) is an analogue scale of 0-10, with 0 corresponding to no pain and
10 corresponding to worst possible pain [19].

e Beck Depression Inventory (BDI) measures the severity of depression [20].

e Short Form Survey Physical Component Score (SF36pcs) and Short Form Survey Mental
Component Score (SF36mcs), are general health status profile surveys designed to measure the

physical and mental health status of the patient respectively [21].

Stage 1 | Stage 2 |
Treatment; Treatment:z
Pre-treatment Mid-treatment
Evaluation with Evaluation with P“S‘:l‘ eatment
Initial Treatment Modified Treatment evaluation

Figure 2: Two-stage interdisciplinary pain management program [22]

Lin et al [22] modeled this program as a two-stage adaptive treatment framework [23]. The patient
entering the program undergoes a pre-treatment evaluation at the beginning of Stage 1, as shown in Figure
2. Based on the pre-treatment evaluation, an initial treatment plan is prescribed by the interdisciplinary team

of experts. The individual patient’s treatment plan depends on data including their demographic



information, past medical and surgical history, past treatments, and past pain outcome scores. These are
called as patient state variables. Interactions between the state variables and treatments play a major role in
determining a personalized treatment plan for individual patients. The initial treatment period (Stage 1) can
last from a few weeks to months depending on the individual patient’s characteristics and the severity of
their pain. At the end of this period the patient is evaluated again, where their pain outcome scores are
measured. Depending on this evaluation, the team of experts continues or modifies the treatment regimen,
if appropriate. This is called the mid-treatment evaluation, where Stage 1 ends and the patient transitions
into Stage 2 of their treatment plan. At the end of Stage 2, the patient undergoes a post-treatment evaluation,
which concludes the two-stage program. The patient will go through another evaluation one year after the

completion of the program [24].
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IPTW framework was extended to multiple treatments by LeBoulluec et al. [23] and Ohol [26]. The IPTW weights will be
uzed to build the state transhion models.

In this research, we will be developing state transition and outcome models for multiple pain cutcome measures
using LASSO based methods to include the interaction terms.

| The two stage stochastic programming optimization model formulated by Igbal et al. [27] will be used in this research for
adaptive treatment optimization.

Figure 3: Adaptive interdisciplinary pain management research objectives [26]

The research in this dissertation completes the research objectives of a larger pain management project,
shown in Figure 3. The development of an adaptive treatment decision tool is the main goal. Adaptive

treatment strategies develop decision rules that depend on the patient’s state [23]. In an adaptive treatment



environment, the patient’s current state influences the treatments recommended, which in turn affect the
patient’s future states. When clinical expertise is employed to select the treatment, the observational data
from this adaptive treatment process involves time varying confounding, for which it is not possible to
separate whether it is the sequence of treatments that produced the patient’s outcomes or if it is the evolution
of the patient’s state characteristics that led to these outcomes. Consequently, time varying confounding
leads to biased estimates of the treatment effects on pain outcomes. There are several methods to address
time-varying confounding. For the pain management project in Figure 3, LeBoulluec et al. [25] and Ohol
[26] addressed time-varying confounding using the Inverse Probability of Treatment Weighting (IPTW)

technique.

The adaptive treatment decision optimization problem has been studied in two form. Lin et al. [22]
utilized a stochastic dynamic programming approach that conducts decision-making over multiple stages.
Because the pain management program in Figure 2 only requires two stages, Wang et al. [28] and Igbal et
al. [27] formulated the decision optimization as a two-stage stochastic programming problem. The
optimization in this dissertation is based on the formulation by Igbal et al. [27] because they considered all
five pain outcome measures. For both the optimization approaches, state transition models are used to
represent the transition of patient state, treatment, and pain outcome variables from stage 1 to stage 2. While
the prior work on the large pain management project did build state transition models, this dissertation
specifically addresses the challenge of modeling state-treatment interactions that are critical to enable
personalized treatment for individual patients. The methods proposed in this dissertation use a Least
Absolute Shrinkage and Selection Operator (LASSO) [29] based technique named HierNet [30]. This state
transition modeling approach also addresses time varying confounding by incorporating IPTW techniques
developed by Ohol [26]. Finally, the state transition models built using the proposed method are then
formulated within the multi-objective two-stage stochastic programming optimization to complete the

objectives of the larger pain management project.



The outline of the dissertation is as follows. Chapter 2 provides a literature review on pain management
and adaptive treatment strategies, multi-stage optimization and state transition modeling, feature, and
interaction selection. Chapter 3 discusses the proposed LASSO based modeling approach to build state
transition models with interactions. The performance of the proposed method on feature and interaction
selection is evaluated on simulated pain management data. Chapter 4 discusses application of the proposed
method to build state transition models with interactions on the pain management dataset. The state
transition models are used in the optimization module, and the optimal treatment recommendations are

evaluated.



2 Literature Review

2.1 Pain Management Program

Pain management programs are primarily aimed at treating and managing a patient’s pain. Over the last
few decades, significant advances have been made in our knowledge of basic pain mechanisms. Melzack
and Wall's gate control theory, which proposed that pain perception is determined by various psychological
factors in addition to sensory input, was a major driving force behind rapid developments in research on
chronic pain [31]. The improvements in understanding the underlying causes of pain and acknowledging
the influence of social, economic, and psychological factors on an individual’s pain experience have led
researchers and clinics to focus on holistic approaches that shift the focus from directly treating pain
symptoms to improving patient quality of life [32, 33]. The Centers for Disease Control and Prevention
(CDC) Guideline for Prescribing Opioids for Chronic Pain (2016) and the Department of Health and
Human Services’ National Pain Strategy (2016) have recommended the biopsychosocial approach in the
treatment of chronic pain [30, 35]. The CDC guideline recommends the use of cognitive behavioral therapy,
physical therapy, and non-opioid medications as the first line of treatment [34]. This has led to the
development of interdisciplinary and multidisciplinary pain management programs, shifting the burden of
a patient’s pain management from primary care physicians to a specialized team of health care providers
[36]. The American anesthesiologist John J. Bonica established one of the first multidisciplinary pain

centers at the University of Washington in Seattle [36, 37].

The main difference between multidisciplinary and interdisciplinary pain management programs is the
level of coordination between the different care providers. In multidisciplinary programs although care is
provided by several health care providers, it may not be coordinated, resulting in parallel treatment plans
and goals rather than an integrated approach [16, 36]. Interdisciplinary care involves greater coordination
of services and frequent communication among health care professionals, where the different treatment

plans complement each other [16]. The patient and their caregivers are active participants in this program



[16]. Interdisciplinary pain management programs have a patient-centered approach, with a focus on patient
education and cognitive behavioral changes [38]. Short- and long-term treatment goals are discussed and

reviewed regularly in line with the expectations of the patient, family members, and clinicians [37].

Several studies have shown the effectiveness of multidisciplinary/interdisciplinary programs in
managing pain and improving patient outcomes. Flor et al. [39] conducted a meta-analytic review of sixty-
five studies on multidisciplinary treatments for chronic back pain and found that multidisciplinary
treatments for chronic pain were superior to other treatment plans. Turk [40] found that pain rehabilitation
programs provide a comparable reduction in pain outcomes to alternative treatment modalities, but
significantly improve medication use, health care utilization, functional activities, and return to work among
patients, and are more cost-effective than surgical interventions. Gagnon et al. [41] analyzed the efficacy
of an interdisciplinary pain management program on workers’ compensation patients with chronic back
pain and found a significant decrease in patients’ emotional stress, pain intensity, and an increase in their
return-to-work status at program completion. The integration of physiotherapy and clinical psychology in
pain management and its effectiveness has been reviewed by Johnson and Morales [42]. The success of

interdisciplinary pain management programs has led to their widespread use in many clinics [16, 37].

The interdisciplinary pain management program follows an adaptive treatment strategy. Adaptive
treatments can be described as a set of sequential decision rules adapted based on the patient’s
characteristics and response to treatments over multiple stages [23]. The research on adaptive treatments is
divided into two categories: randomized experimentation and Markov decision processes [22]. Randomized
experimentation includes the multiphase optimization strategy (MOST) and sequential multiple assignment
randomized trials (SMART) [43]. The adaptive treatment decision problem is formulated as a stochastic
dynamic program (SDP), which is discussed in the next section. The adaptive treatment decision framework

developed for the pain management program is discussed in Chapter 4.



2.2 Multi-Stage Optimization

Multi-stage optimization involves problems where decisions must be made sequentially in stages under
conditions of uncertainty. Multi-stage optimization has applications in energy [44, 45], finance [46], supply
chain [47, 48, 49], manufacturing [50], healthcare [51] and other fields. For the adaptive interdisciplinary
pain management project in Figure 3 from the previous chapter, two types of multi-stage optimization have
been employed. Lin et al. [22] used stochastic dynamic programming (SDP), which can handle two or
more stages. Because the interdisciplinary pain management program at the McDermott Center can be
modeled as a two-stage program (Figure 2), Wang et al. [28] and Igbal et al. [27] used two-stage stochastic
programming. Here, we discuss the adaptive interdisciplinary pain management framework of Lin et al.
[22] using SDP since this was the first optimization framework for this problem. Later, in Chapter 4, we
build on the work of Wang et al. [28] and Igbal et al. [27] to construct the two-stage stochastic programming

formulation employed for the research in this dissertation.

Dynamic programming is a collection of mathematical tools to analyze and solve sequential decision
problems and was first introduced by Bellman [52, 53]. These problems are most commonly modeled in
discrete (time) stages, where a decision is made in each stage, then additional information is observed,
followed by a subsequent decision in the next stage, and so on [54]. SDP models multi-stage optimization
problems under conditions of uncertainty where some of the parameters in the problem are modeled as
stochastic variables. There are five main elements in a SDP formulation: stages T, are the sequential time
stages when decisions are made; state variables S; € R™, represents the state of the system at time ¢ before
we make a decision; decision variables u; € R™, are controlled to optimize the solution; the feasible
decision space is denoted by X;, u; € X,, state transition functions f;(-), model the transition of state
variables from stage t to t + 1; the objective function C,(-): R**™*! - R!, could be a cost/reward/utility

function which may depend on the state S; and the decision u; [55].



An SDP formulation over T discrete time stages is shown in Equation (1) [56, 57]

112111;12 E{Zgzl Ce(se, ug, &)} 1)
subject to S;41 = fi (S, ug, &)  fort=1,.... ,T —1,
(s;, up) €l fort=1,.... ,T,
us € X; fort=1,.... ,T,

where g, € R! is the random vector, I, € R™™ is the set of constraints and X, is the feasible decision

space.

The pain management treatment optimization is a two-stage stochastic programming problem, a
common type of multi-stage optimization problems. Two-stage stochastic programming problems can be
found in healthcare [58, 59], staffing and scheduling [60, 61], energy [62] and other applications. The state,
decision, and outcome variables in the pain management research are shown in Table 1. The state and
decision variables are a mix of continuous and categorical variables, while the outcome variables are

continuous.

Table 1: Pain management variables

State Variables Patient demographics

Patient medical history

Patient surgical history

Patient treatment history

Patient past pain outcome measures

Decision Variables Pharmaceutical treatments
Procedural treatments

Pain outcome measures: OSW, PDA,
Outcome Variables BDI, SF36-mcs, and SF36-mcs
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The two-stage stochastic programming formulation is shown in Equation (2) [63, 64]

rrgcin cTx +E[Q(x,w)] 2)

s.t.Ax=Db
x ERPI X Z

where Q(x,w) := minqTy
y

sstWy=h—-Tx
y ERY X Z72,

where x and y are the stage 1 and stage 2 decision variables, n,, s; are the number of continuous and integer
variables in stage 1 decision vector and n,, s, are the number of continuous and integer variables in stage
2 decision vector respectively. The second stage data is uncertain and is represented by w = (q, T, W, h).
The objective is to minimize the first stage decision cost and the expected second stage decision cost. c is
the first stage decision cost vector and Q (x, w) is the second stage decision cost function. The uncertain
data w can be modeled as a probability function to represent a discrete finite number of scenarios wy, ... , wy
with probabilities p4, ... , py respectively. The expected second stage cost function is the summation of the
second stage cost function Q(x, w) over k scenarios. The two-stage problem can then be formulated as one

mixed integer linear programming (MILP) model, shown in Equation 3 [63, 64]

k
min c"x+ > peah e 3
X,Y1,-Yk ’
i=1
s.t.Ax=b

kak=hk—Tkx k=1, ,k

n S n N
XE€R'XZyER?XZ?
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The second stage scenario generation is an important topic of research since there is a tradeoff between
computation time and solution quality. The more scenarios we generate, the better the solutions but the

computational time increases. A survey of different sample generation methods can be found in [65, 66].

The equivalent MILP problem will be solved after generating the scenarios, assuming that the cost
functions and state transition constraints are linear. The state transition constraints correspond to the

transition functions that map the state, decision, and outcome variables from stage 1 to stage 2.

Lin et al. [22] used approximate dynamic program (ADP) to solve the pain management optimization
problem and used linear regression to model the state transitions. Wang et al. [28] used the two-stage
stochastic programming approach with stepwise regression used to build the state transition models. Since
the regression models had interaction terms, the state transition functions were quadratic and non-convex.
Linearization techniques using piecewise linear functions was applied to make these constraints linear and
formulate the optimization as an MILP problem. The objective of the optimization was to minimize the
pain outcome measure, OSW while also penalizing excessive treatment costs under the state transition
function and treatment interaction constraints. The MILP solutions were compared with the solutions
obtained by solving the original MINLP problem without linearizing the interaction constraints. Igbal et
al.[27] developed a multi-objective two-stage stochastic programming optimization approach using
piecewise linear networks (PLN) to build the state transition functions. The objective was to minimize the
multiple pain outcome measures along with treatment costs. The optimization problem was solved as an

MILP problem.

Markov decision process (MDP) is another technique to formulate sequential decision-making problems
in discrete time steps. MDP is characterized by a finite and discrete state space, with the state transitions
modeled as probability matrices. MDPs are based on the Markov property that future state transitions
depend only on the current state, and decisions are independent of past states and past decisions. MDPs
have been used in medical decision problems to determine the optimal timing of interventions [67, 68, 69].
Alagoz et al. [70] model an infinite horizon stationary MDP to determine the optimal timing of liver
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transplantation. Shechter et al. [71] use MDP for optimal initiation of HIV treatment. Denton et al. [72] use
MDP to optimize the start time of statin therapy in diabetes patients. The main advantages of MDP are that
it allows for a simpler representation of the future states and possible transitions that may occur, and it is

preferred over decision trees for complex problems [69].

MDP models the state transition at the cohort level, while microsimulation (MSM) models the state
transition at an individual level [73, 74]. MSM simulates events and outcomes at the individual level to
provide information that can guide policy decisions [75]. The state transitions are modeled as individual
probability matrices. MSM models are not limited by the Markovian assumptions since they simulate one
individual at a time [76]. MSM has been used in cancer research [77], diabetes research [78], and health
policy [79]. These models are computationally intensive and often require simulating millions of
individuals to obtain stable outcome values [76]. MDP and MSM are structured around a set of mutually

exclusive and exhaustive states [76], which can create a computationally intractable problem.

MDP and MSM are suitable for discrete state space problems, while the pain management state space
has a mix of continuous and discrete variables. Discretization techniques can be employed in the continuous
state space, but this is not desired to avoid potential information loss. The state transition probability

matrices also do not capture the interactions between the state and decision variables.

In this research, optimization framework is based on the multi-objective two stage stochastic
programming approach of Igbal et al.[27] since all the pain outcome measures were considered in that
study. An important aspect of two-stage stochastic programs is to model the state transition functions, and

this is discussed in the next sections.

2.3 State Transition Models

In any stochastic programming formulation, modeling the state and outcome transitions is an important
step. Since the pain management data are from an observational study, we look into the literature on

longitudinal data analysis for methods to model transition functions. Longitudinal data are data resulting
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from observing subjects repeatedly over time [80]. They allow the researcher to track the changes in the
response variable over time. Correlation between variables is common in longitudinal data due to the
repeated measurements over time, and multiple treatments being prescribed together depending on the
patient’s condition. The data structure includes baseline data (e.g., age, gender, race, etc.) and time-varying
signals (e.g., treatments, medical conditions, outcome measures, etc.) and includes both categorical and

continuous variables [81].

Random effects models have been used in longitudinal data analysis to model individual-specific
random effects on the outcome variable in the time-varying setting [82]. The linear mixed effect model
(LME) is one such regression-based random effects model for continuous outcome response. It is based on
the premise that there is a subject-specific mean response profile over time, with a specific functional form

[80]. The general LME model form for outcome Y; ;1) measured subsequent to the ¢-th time point for i =

1, ..., n individuals have the form [80, 82, 83] shown in Equation (4)
Yier) = Xit' B+ Zy b + Ei(t+1) 4)

where X;; and Z;; are the known design matrices prior to the t-th time point for the fixed-effects and
random-effects coefficients respectively. g is the vector of fixed-effects coefficients, b;~N(0, D) is the
vector of random effects coefficients, and ;¢ 41)~N (0,0?) is the random error. The random effects are
assumed to be independent of the error terms &; ;1) and normally distributed, with mean zero and variance-

covariance matrix D. Maximum Likelihood principles are used in estimating the model parameters.

Generalized estimating equations (GEE) is another regression-based approach for longitudinal data
analysis [84]. In this approach, two models are specified. The first is the regression model for mean response
and the second is a correlation model for the within-subject correlation. The purpose of the correlation
model is to apply the covariance inverse weights to the observations and obtain regression coefficient
estimates and the standard error for the estimated coefficients [85]. The drawback is that it requires large

sample sizes to obtain unbiased and consistent estimation [86].
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The LME and GEE fall under a category of longitudinal study called parametric models. Kvalgy et al
[87] and Nordseth et al [88] use a non-parametric regression method to model cardiac arrest data including
the state history. Due to the non-parametric nature, this method can handle data under minimal assumptions.

A detailed review of non-parametric and semi-parametric modeling methods can be found in Huang [89].

Hidden Markov Models [90, 91] and Gaussian Process State Space Models [92] are other approaches
used in modeling observational health data. These methods involve complex model specifications, involve

a large number of parameters, and require training [81].

The methods discussed under longitudinal data analysis are designed for studies where the covariates
are assumed to be fixed. They do not model the effects of past treatments and past outcomes on current
treatments and outcomes [93]. This leads to inferential challenges when one tries to apply this model with
time-varying confounding variables [82]. These limitations make them unsuitable for building state

transition models on the pain management dataset.

A review of best modeling practices for state transition modeling can be found in the ISPOR-SMDM
report [76], which states that while modeling the effectiveness of treatment interventions in observational
studies, it is important to account for time-varying confounding. The sequential nature of the pain
management program results in the treatment effects in a particular stage being influenced by patient state
variables, past treatments, and past pain outcome measures. This is referred to as time-varying confounding.
There are several methods to handle time-varying confounding and identify the true treatment effects. The
most studied methods are propensity scores [94, 95, 96], marginal structural models [97, 98, 99, 100], g-
estimation [101, 102, 103, 104, 98] and IPTW weights [105, 106, 107, 108, 109, 110]. A detailed review
of the different methods to handle time-varying confounding can be found in the work of LeBoulluec et al.
[25] and Ohol [26]. Robins et al. [106] introduced Inverse Probability of Treatment Weighting (IPTW) to
obtain unbiased estimates of treatment effects in a one-treatment setting. LeBoulluec et al.[25] extended
the IPTW framework to multiple treatments. Ohol [26] considered the case with multiple correlated
treatments and used MIMIC [111] to estimate the joint probability distribution of treatments.
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It is important to perform feature selection on the state space to identify the relevant features to be used

in the state transition function. A review of the feature selection methods is given in the next section.

2.4 Feature and Interaction Selection

A feature is an individual measurable property of the system being observed [112]. With the development
of technology, data storage capacity, and computing systems, the number of features observed, and the data
collected has increased exponentially [113]. The analysis of these data to draw meaningful insights about
the system processes, and to build models is an important goal for researchers. Data pre-processing is the
first step in the model-building process, where the data are processed before being presented to any learning,
discovering, or visualizing algorithm [114]. There are three steps in data pre-processing: feature
construction, feature extraction, and feature selection. Feature construction is the process where missing
information about the relationship between features is discovered and the feature space is augmented by
inferring or creating additional features [115, 116]. Feature extraction is a mapping process from the
original feature space to a lower dimensional one [117]. Feature selection is the process of selecting a subset
of features from the original input feature space and evaluating this subset on the research objective like
response prediction/classification or uncovering the cause-effect relationship between features and response

[117].

Feature selection methods are further classified into the filter, wrapper, and embedded methods [112].
Filter methods rely on the characteristics of the training data to rank and select features based on certain
relevance criteria [118] and are independent of the model-building process. There are different relevance
criteria used to rank features [119, 120], based on statistical measures, such as Pearson’s correlation [121],
Linear Discriminant Analysis, ANOVA, Chi-square [122], Wilcoxon Mann Whitney test [123], and Mutual
Information [124, 125]. The faster computation time is the main advantage of filter methods and is preferred
when the input feature space is large. Some of the ranking methods do not consider the correlation between

the features, which leads to the selection of a redundant subset [120]. It is hard to select a suitable modeling
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algorithm with filter methods since they do not consider the performance of the algorithm with the selected
feature subset [126]. In feature ranking, important features that are less informative on their own but are
informative when combined with others could be discarded [112]. Filter-based methods have been used in

medical imaging [127, 128], DNA microarray data [129, 130] and signal processing [131, 132].

Wrapper methods search for an optimal feature subset along with the performance of the predictive
algorithm on the feature subset [133]. The predictive algorithm is modeled as a black box and repeatedly
runs on the dataset using various feature subsets. The feature subset with the best prediction is selected.
There are broadly two search algorithms to search for the feature subset: Sequential Selection Algorithm
and Heuristic Search Algorithms. The sequential selection algorithm starts with an empty set (full set) and
adds features (removes features) until the optimal objective function is obtained [112]. The heuristic
algorithm generates subsets around the search space by generating solutions to the optimization problem
[112]. Wrapper methods have better predictive performance than the filter-based methods since the feature
selection and prediction model building go hand in hand. The downside of a wrapper method is that it is
computationally intensive, and the search space grows exponentially as the number of features increases
[133]. Wrapper-based methods have been used in brain MRI studies [134, 135] and medical image

processing [136, 137].

In embedded methods, the feature selection is embedded in the modeling algorithm [138]. Embedded
methods include decision tree algorithms like CART [139] and Random Forest [140]. LASSO [29] is an

embedded method that performs feature selection based on L; regularization and is computationally fast.
2.4.1 LASSO

LASSO is a regularization technique for simultaneous estimation and feature selection [29]. The LASSO

estimates are shown in Equation (5)

f eargminlly —3_, 8|+ 235,18 ©)

17



where y is the response vector, f; is the coefficient estimate of input feature x;, p is the number of input
features, and A is the regularization parameter. The second term is called the “l; penalty”, which shrinks
the coefficients to zero as A increases. The LASSO estimates could be inconsistent since they apply the
same shrinkage for all the variables estimates. They achieve consistent variable selection and optimal
estimation, which is referred to as the oracle property, only under certain necessary conditions [141, 142,

143].

Adaptive LASSO was developed by using an adaptively weighted [; penalty [143] and shown to satisfy

the oracle property more likely than LASSO. The Adaptive LASSO estimates are calculated using Equation

(6).
. 2
f € argﬁmin”y — Z;’:lxjﬁj” + 12?=1 w;|Bj]. (6)

where w; = ﬁ ,¥ > 0and S can be Ordinary Least Squares estimates.

The LASSO algorithm shown in Equation (3) has been modified over the years leading to the
development of several algorithms. The most prominent among these are Elastic Net [144], Group LASSO
[145], Adaptive Group LASSO [146], and overlapped Group LASSO [147]. Elastic Net was developed to
perform consistent feature selection under multicollinearity. Group LASSO was an extension of LASSO to
select groups of variables together, for example in the multifactor analysis of variance models. Group
LASSO was shown to have the same variable selection inconsistency as LASSO, and Adaptive Group
LASSO was proposed, where different groups of variables were weighted differently, similar to Adaptive

LASSO. The overlapped Group LASSO considers groups of features, allowing overlap between the groups.

LASSO has been widely used in high-dimensional data modeling where parsimony is desired. Zhang
et al. [148] and Wang et al. [149] use group lasso regularization to perform feature selection for neural
networks. They are used in the estimation of sparse graphical models and neighborhood selection, which

find applications in molecular biology, gene expression, and network analysis [150, 151]. Farahani et al.
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[152] demonstrated the application of LASSO based method for causal variable selection on the pain

management data while addressing time-varying confounding.
2.4.2 Interaction Selection

The feature selection methods discussed so far focus mostly on the main effects, while in practice it is
important to consider the influence of interactions between the input variables on the response variable.
Interaction models are useful in social, political, economic, epidemiology, and genetic studies and provide
better insight into the association between variables [153, 154]. Gunter et al. [155] discuss the importance

of selecting interaction variables in optimal decision-making problems.

Interaction selection/screening is a major subject of study with different methods developed to discover
and model interactions. In statistical modeling of interactions, it is a common practice to allow interaction
in the model only if the corresponding main effects are present in the model [156, 157, 158]. This is referred
to as heredity, marginality, or strong hierarchy. Weak hierarchy is when an interaction is allowed in the

model when at least one of the corresponding main effects is present in the model.

Strong Hierarchy: ©;; # 0, = f; # 0and f; # 0,

Weak Hierarchy: ©;; #0, = f; # 0or f; # 0,

where 0; ; Is the interaction estimate and B;, [?j are main effect estimates for variables i and j respectively.

Several methods aim at building models while satisfying this hierarchy constraint. The multi-step
approach is one such iterative process built on the stepwise framework, where variables are added or
removed iteratively. The stepwise framework screens the main effects first and then searches for
interactions between the selected main effects, thus enforcing a strong hierarchy [159, 160]. There are
several optimization-based approaches, which formulate the hierarchy constraint as convex and non-
convex. Zhao et al. [161] introduced composite absolute penalties (CAP), a broad class of penalties that

can achieve group and hierarchical sparsity. Choi et al. [162] formulated a non-convex optimization for
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sparse hierarchical interaction models. Bien et al. [30] developed a method called HierNet, where they
introduced a set of convex constraints to LASSO to satisfy the hierarchy condition and build sparse
interaction models. Lim and Hastie [163] developed a method called Glinternet, where they formulated a
constrained overlapped group LASSO to enforce hierarchy and solve it using an equivalent group LASSO
formulation. Chipman [164] used the Bayesian viewpoint to build hierarchical interaction models adapting
the stochastic search variable selection approach (SSVS) of George and McCulloch [165]. The multi-step
procedures have computational advantages when the data dimension is large, but there have been questions
raised over their theoretical validity [153]. Some of the optimization-based approaches have been shown to
produce consistent estimates under the strong hierarchy condition [162, 166], but the major limitation of
these methods is the computational cost and memory requirement with large datasets [153]. The interaction
screening methods have been studied on genome-wide association studies, UCI spam base data, gene

expression dataset, and Boston Housing dataset [153, 163, 167].

2.5 Contribution

The main objective of pain management research is to develop an adaptive decision framework to identify
an optimal treatment regime. The different components that make up this framework are shown in Figure

4. The highlighted section is the focus of this research work.
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Figure 4: Adaptive interdisciplinary pain management framework [26]
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The pain management decision problem is formulated as a two-stage stochastic programming problem
with an adaptive treatment framework. The data has state, decision, and outcome variables for the two
stages. The state and outcome transition functions model the transition of these variables between the stages,
as shown in Table 2. The interaction between the state and decision variables has a significant impact on
the outcome variable in an adaptive treatment setting since the treatments are prescribed depending on the

patient’s state [155]. It is therefore important to model these interactions in the transition models.

Table 2: State and outcome Transition [25]

Stagel Stage 2

State Variables State Variables
Decision Variables ~ Decision Variables
i__‘Outcome Variables Outcome Variables

The summary of the research work done on the pain management program is shown in Table 3. The

proposed research work is highlighted in the table.

Table 3: Pain Management Research Summary

State Transition Modeling

Paper Model type Interactions Feature selection IPTW Optimization
. . State treatment .
Lin et al. [22] Linear model ? ¢ rea_ men Stepwise least squares No SDP
interactions
. State treatment . . .
LeBoulluec et al. [25] Linear model . . Stepwise least squares | Derived weights No
interactions
Ohol [26] Linear model No No Derived weights No
Farahani et al. [152] Linear model No LASSO regularization | Used Ohol weights No
. State treatment . Used LeBoulluec's
Wang et al. [28] Linear model . . Stepwise least squares . Two-stage SP
interactions weights
Piecewise Linear . . Piecewise Linear Used LeBoulluec's
Igbal et al. [27] Network Network interactions Network weighis Two-stage SP

21



Lin etal. [22] modeled an optimization framework based on approximate dynamic programming (ADP)
with linear regression to model the state transitions. The recommended treatment regime minimized adverse
patient pain outcomes along with treatment costs. The adaptive and sequential nature of the pain
management program introduces time-varying confounding, where the treatment effects are confounded by
past treatments and patient state variables. LeBoulluec et al. [25] extended the IPTW framework to address
this time-varying confounding in a multiple treatment setting. Ohol [26] further extended the IPTW method
to consider correlated treatments. Farahani et al. [152] used LASSO-based regularization along with IPTW

to perform causal feature selection.

The stochastic dynamic programming approach of Lin et al. [22] optimizes treatments over multiple
stages. Since the pain management program has two-stages, Wang et al. [28] and Igbal et.al [27] formulated
the optimization as a two-stage stochastic programming problem. Wang et al. [28] used weighted least
squares method to develop the state transition models using the IPTW weights from LeBoulluec et al. [25].
The state transition constraints in the optimization were non-convex as they modeled the state treatment
interaction terms. A linearization technique using piecewise linear function was proposed to approximate
the non-convex constraints and formulate the optimization problem as an approximated mixed integer linear
problem (MILP). The objective of the optimization was to minimize the pain outcome measure, OSW while
also penalizing excessive treatment costs under the state transition function and treatment interaction
constraints. The optimization results from the approximate MILP were compared with the solutions
obtained from the original mixed integer nonlinear problem (MINLP) formulation without linearizing the

interaction constraints.

Igbal et al.[27] developed a multi-objective two-stage stochastic programming optimization approach
using piecewise linear networks (PLN) to build the state transition functions. The objective is to minimize
all the pain outcome measures considered in this study along with treatment costs. A survey among

caregivers was conducted to identify the relation between the different pain outcome measures and a convex
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guadratic programming approach was used to obtain weights to penalize the different pain measures. An

equivalent MILP model was used to solve the optimization problem.

Igbal et al. [27] was the only work that considered multi-objective optimization and included IPTW
weights while building the state transition models. The state transition models did not include the state
treatment interaction effects but had network interactions. In this research work, our primary research goal
is to model the state treatment interactions while building the state transition models. The second research
goal is to use these state transition models in the multi-objective optimization framework based on Igbal

et.al [27] and study the treatment recommendation patterns from the proposed approach.

With this background, it is important to select a state transition modeling approach that identifies the
right features from the state space. The work of Farahani et al. [152] showed that LASSO-based techniques
can be used to build models on pain management data while achieving consistent feature selection. We
propose to use HierNet [30], a LASSO-based interaction modeling approach while incorporating the IPTW-
based weighting technique developed by Ohol [26] to effectively model the state transition functions with

state and treatment interaction effects.

We evaluate the performance of the proposed HierNet-IPTW method on feature and interaction selection
metrics in a case study designed to simulate the pain management data. This is discussed in Chapter 3. In
Chapter 4, we use the proposed HierNet-IPTW modeling method to develop state transition models with
state treatment interactions on pain management data. We build on the multi-objective stochastic
programming optimization developed by Igbal et al. [27], using the newly developed state transition
models. The state transition functions are non-convex as they include interaction terms. Instead of
linearizing the interaction terms and using an approximate MILP model, we use a Mixed Integer
Quadratically Constrained Program (MIQCP) to formulate and solve the optimization problem. Optimal
treatment recommendations are then compared with solutions obtained from state transition models without
interactions and models without IPTW. This will help us understand the impact of including interaction
effects and IPTW on optimal treatment recommendations.
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Chapter 3

LASSO Based State Transition Modeling with Interactions in

Pain Management Simulation Case Study

Abstract

The Eugene McDermott Center for Pain Management at the University of Texas Southwestern Medical
Center has an interdisciplinary pain management program for chronic pain. This program is modeled as a
two-stage adaptive treatment decision problem, with state transition models representing the transition of

patient state, treatment, and outcome variables from stage 1 to stage 2.

In an adaptive treatment environment, the patient’s current state influences the treatments recommended,
which in turn affect the patient’s future states leading to time-varying confounding and biased treatment
estimates. Inverse Probability of Treatment Weighting (IPTW) [106] is one technique to address time-
varying confounding. Interactions between the patient state and treatments also play a major role in
determining a personalized treatment plan for individual patients. It is important for the modeling method
to identify the causal features and interactions. The advantage of LASSO based methods is in building
parsimonious models and handling correlation between variables, which is not the case with least squares-

based methods.

In this paper, LASSO based method named HierNet [30] is combined with IPTW from Ohol [26] to
build state transition and outcome models that enable feature selection and modeling of interaction effects
in the presence of time-varying confounding. The proposed approach is studied using a simulated case study
structured based on the McDermott Center data. The proposed approach is compared on the feature and

interaction selection metrics against the baseline method that does not use IPTW.
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3.1 Introduction

The objective of adaptive interdisciplinary pain management is to provide personalized pain treatment
regime that considers non-pharmaceutical procedures as alternatives to medications. Given the wide range
of potential treatment regimes, an adaptive treatment framework is needed to identify the optimal treatment
regime. Of particular importance in personalizing treatment is the modeling of interactions between
possible treatments and a patient’s pain and health characteristics [155]. Interactions capture how the
different treatments affect the pain outcomes for patients with differing characteristics. In this paper, we
build on past research to complete the pain management adaptive treatment framework illustrated in Figure
5. The highlighted section in the figure shows the three modules that form the scope of the presented

research.

Adaph\ e
-------- >  Interdisciplinary Pain }-----3
'\Iganagement Interface

Medical Records
and Information

reatment Regime
Recommendation

ata Cleaning;
Imputing, &
Preparation

-

.

IPTW framework to / " Multi-objective \
handle time varying Optimization \

confounding _ S‘rate tlallSlthIl\ ormulation and System
\-\b: and outcome -——}f\ Opﬁm]_za‘tlon /
models V4

IPTW framework was extended to multiple treatments by LeBoulluec et al. [21] and Ohol [22]. The IPTW weights will be
uzed to build the state transition models.

In this rezearch, we will be developing state transition and outeome models for multiple pain outcome measures
using LASSO based methods to include the interaction terms.

| The two stage stochastic programming optimization model formulated by Igbal et al. [23] will be used in this research for
adaptive treatment optimization.

Figure 5: Adaptive interdisciplinary pain management research objectives [26]

Medical records and patient information for our study were provided by the Eugene McDermott Center
for Pain Management at the University of Texas Southwestern Medical Center at Dallas. The raw dataset
included patient information, past medication information, past medical records, treatments, and patient
pain outcome measures collected over the course of the program. Data cleaning and imputation via
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regression models was done to preserve as much of the data set as possible and to prepare the data in a
format suitable for mathematical analysis. Please refer Lin et al. [22] for details on data preparation. Prior
work cited in Figure 5 provides background specifying the state variables that define a patient’s pain and
health history, decision variables that define the categories of treatments, and pain outcome measures that
are optimized via the adaptive treatment framework. State variables provide information about the patient
and include past medical and surgical history, physical condition, age, gender, past medications etc.
Decision variables are the different pharmaceutical and procedural treatments, such as analgesics, anti-
depressants, physical therapy, and cognitive behavioral therapy. Outcome measures are OSW [18], PDA
[19], BDI [20], sf36pcs [21] and sf36mcs [21]. The pain management program is a two-stage decision
problem, with treatment decisions made in stages 1 and 2 respectively. Patient pain outcome measures are
also collected at stage 1 and stage 2. The final cleaned dataset consisted of 294 patient observations, 62
state variables, 14 stage 1 decision variables, 13 stage 2 decision variables, and 5 stage 1 and stage 2

outcome variables respectively.

3.1.1 Addressing Time-varying Confounding

A primary challenge addressed in the work of LeBoulluec et al. [25] and Ohol [26] is conducting unbiased
estimation of treatment effects using observational data. In order to optimize a treatment regime, it is
essential to appropriately represent treatment effects within the decision optimization method. Ideally, a
randomized controlled trial would be implemented to provide this information, but the availability of
observed clinical data raises the opportunity to leverage such data. Since certain treatments are prescribed
together and certain medical conditions are treated by specific treatments, we further observe correlation

between some of the state variables, and between some of the state and decision variables.

The pain management program is adaptive and sequential, where treatment effects in a particular stage
are influenced by past patient state variables, past treatments, and past pain outcome measures. This is
referred to as time-varying confounding or endogeneity [106]. This leads to biased estimation of the causal
effects of the treatments on the pain outcome measures. Consider this one treatment example shown in
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Figure 6. The treatment T; is prescribed in stage 1 and patient outcome measure Y; is measured at the end
of stage 1. The treatment T is prescribed in stage 2 and patient outcome measure Y, is measured at the end
of stage 2. The red causal path shows the time-varying confounding effect of stage 1 patient outcome Y;
and stage 1 treatment T; on the prescribed treatment in stage 2, T,. The effect of treatment T, on patient
outcome Y, is confounded by the past patient outcome and past treatments. The orange causal path shows
the effect of patient state variables like age, gender, race, past medical history, etc. on treatments and patient
outcomes. These are considered confounders since they are associated both with the treatments and
outcomes. To find the impact of treatment on outcome measures, the effect of these confounders needs to
be accounted for. In this study, the confounders are time-invariant since patient state variables are assumed
to be constant throughout the treatment plan. The past treatments and past outcomes are time-varying

confounders since they vary from one stage to another.

Stage 1 Stage 2
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Figure 6: Time-varying confounding in one treatment case [26, 168]

There are several methods to address time-varying confounding like G-estimation [102, 103, 104],
marginal structure models (MSM) [97, 98, 99, 100], G-computation [98, 101], inverse probability of
treatment weighting (IPTW) [105, 106, 107, 108, 109, 110]. The IPTW approach is the preferred method
for handling time varying confounding in an adaptive treatment setting. IPTW generates weights that can
be conceptually thought of as creating replicates of the rare observations in the study with the goal of
mimicking data that would be expected from clinical trials. The important assumption while calculating the
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weights using this method is that there are no unmeasured confounders, which implies all confounders are

accounted for in the model.

LeBoulluec et al. [25] extended the Inverse Probability of Treatment Weighting (IPTW) method to
address time-varying confounding in the multiple treatment setting assuming treatment independence. Ohol
[26] extended the IPTW method further by considering multiple correlated treatments and used the MIMIC
[111] algorithm to estimate the joint probability distribution of treatments. Given the correlated nature of

treatments in interdisciplinary treatment, the method of Ohol [26] is employed in the current work.

3.1.2 Optimization Approaches for Adaptive Interdisciplinary Pain Management

Referring back to three modules highlighted Figure 1, IPTW weights are first generated from the available
observational data, then used to build unbiased state transition and outcome models which are finally
incorporated into the optimization of the adaptive treatment framework. In addition to the IPTW work of
LeBoulluec et al.[25] and Ohol [26], the current research builds on prior work for optimization. Lin et al.
[22] created an optimization framework based on approximate dynamic programming with linear regression
to model the state transitions. Wang et al. [28] developed IPTW based weighted least square state transition
models. The interactions in the state transition models were linearized using a piecewise linear
approximation method and modeled as constraints in a two-stage stochastic programming (2SP) framework.
Igbal et al. [27] used piecewise linear networks (PLN) to model the state transitions in a multiple objective

two-stage stochastic programming framework, which included all the five pain outcome measures.

3.1.3 Contribution in State Transition and Outcome Modeling

Both LeBoulluec et al. [25] and Ohol [26] constructed state transition and outcome models to study their
IPTW methods, but neither considered the importance of state-treatment interactions or addressed feature
selection. Lin et al [22] did study interaction terms and feature selection via stepwise regression but did not
address time-varying confounding. To address causal feature selection in the presence of time-varying

confounding, Farahani et al. [152] developed a LASSO based outcome adaptive Elastic Net algorithm for
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main effect (no interaction) models. The advantage of LASSO based methods is in building parsimonious
models and handling correlation between variables, which is not the case with least squares-based methods.
In this paper, LASSO based methods are combined with IPTW from Ohol [26] to build state transition and
outcome models that enable feature selection and modeling of interaction effects in the presence of time-
varying confounding. This approach is studied using a simulated case study structured based on the
McDermott Center data with time varying confounding and various correlation structures between the
variables. The benefit of a simulated case study is the ability to control the truth and compare the modeling
results directly to the truth. The performance of the proposed modeling approach is compared against a

baseline model that also attempts to model interactions but does not address time varying confounding.
3.2 Modeling Framework

3.2.1 HierNet

HierNet is a LASSO-based method developed by Bien et al. [30] for finding interactions, which produces
sparse estimates of the main and interaction effects while satisfying the strong or weak hierarchy constraint.

The optimization problem shown in Equation (7) is solved in HierNet
: N, A
argminy, g5 ey (v — 1 — %] B — 527 0x)? + 217 (B* + ) + 110l (7)

subject to ® = 7,

ojll, < (87 +57), B =0, By =0,

where y; is the response variable, x; is the input vector, S is the main effect vector, A is the regularization

parameter, u is the fixed intercept, f; is the main effect of variable j, [3}' and [3}“ are such that |,6’j| =

(B* + B7), 0 is the matrix of interaction effects, ©; is the jth row of @.

The constraint ||@;| LS (ﬁj' + ﬂj‘), is called the symmetry constraint and enforces strong hierarchy

among the solutions. Weak hierarchy can be obtained by relaxing this constraint. In this study, we consider

strong hierarchy since we want the main effects corresponding to the interactions to be in the model.
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For this study, two important modifications were made to HierNet. They are summarized here and
detailed in Appendix I. First, the optimization selects the optimal treatments with the objective of reducing
patients’ pain outcomes and treatment costs. In order to enable representation of all treatment variables, the
HierNet algorithm was modified to maintain all treatment variables. Second, to address time varying
confounding via IPTW, the HierNet loss function was modified to utilize weighted loss function. The
complete iterative state transition and outcome modeling framework using IPTW and HierNet is explained

in the next section.
3.2.2 HierNet-IPTW Modeling Framework

Because different weights on the observations will affect the results from feature selection, and different
sets of features corresponding will affect the IPTW weights, an iterative process is presented in Figure 7

that alternates between generating IPTW weights and conducting feature selection with HierNet.

Obtain IPTW
weights on the full
model
\ 4
Run modified Is stopping Output the selected
HierNet with IPTW criteria features and
weights satisfied? Interactions
Identlf_y the fe_atures S [ v
and interactions ) End
weights on reduced
selected by odel
modified HierNet

Figure 7: HierNet-IPTW modeling flowchart
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The basic steps of the algorithm are as follows:

Step 1: In the first step, the IPTW weights are obtained on the full model in which all the state and decision

variables are included.

Step 2: The modified HierNet algorithm is run using the IPTW weights obtained from the full model.

Step 3: The IPTW weights are obtained on the features identified by the HierNet algorithm in step 2. These
weights are obtained on the reduced model using only the state and treatment variables from step 2 and are

used to rebuild the models in step 2 in an iterative process till the stopping criteria are met.

Step 4: The iterative process of calculating the IPTW weights and rebuilding models using HierNet is
conducted until the stopping criteria are satisfied. In this study, the stopping criteria are the percentage
change in weights from the previous iteration. If the maximum percentage change in weights is less than
10%, the iterative process stops, and the selected features and interactions are output. The stopping criteria

are shown in Equation (8).

(IPTWE-IPTWE=1)x100
pTw;i1

<10,vn €N (8)

where N is the total observations, IPTW,! is the IPTW weight for observation n in iteration i, and IPTW,:~*

is the IPTW weight for observation n in iteration i — 1.

The performance of the proposed HierNet-IPTW approach is compared against a baseline model, shown

in Figure 8, that also attempts to model interactions but does not address time varying confounding.

R dified Output the selected
un moditie features and End
HierNet

interactions

Figure 8: HierNet model flowchart
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3.3 Pain Management Simulation Case Study

The primary goal of this simulation case study is to evaluate the performance of the proposed HierNet-
IPTW modeling framework for identifying the true features and interactions using data with characteristics
based on the McDermott Center data. Simulated data were created under various correlation conditions and
time varying confounding to represent a variety of possible patterns in interdisciplinary pain management

data. The causal diagram of the interdisciplinary pain management program is shown in Figure 9.

Figure 9: Pain Management Causal Diagram [168]

The causal diagram shows the second stage of the two-stage program, where Y;_; is the pain outcome
measured at the end of stage 1 of the program. The outcome measure Y;_, becomes a state variable in stage
2, that influences the stage 2 pain outcome measure Y; and the stage 2 treatment variables X . The spurious
variables are Xs. The covariates are divided into two groups, outcome covariates X,, that influence the
stage 2 pain outcome measure Y;, and confounding variables X, that influence Y; and the stage 2 treatment
variables X;. The confounding variables X, also include the treatment variables prescribed in stage 1 and
the stage 1 pain outcome measure Y;_,. All the stage 2 treatment variables are assumed to be causal
variables influencing Y;. This assumption is important from the optimization perspective since to optimize

the treatment allocation, all the treatment variables need to be in the final state transition model. The
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treatments are binary variables that follow the probability distribution as a function of Y;_, and X,r, shown

in Equation (9).

exp(BTXr+Bo% Xor +Ye-1Ye-1) ©)
1+ exp(BTX7r+BOT Xor+Ve—1Ye-1)

Ptrtt =
We create a covariate group, X, thatincludes X,, Xor, and Y;_;. The pain outcome measure Y; is a function
of Xco, X and interaction terms between them as shown in Equation (10)

Y, = BT Xr + BXco + vio XrXco + VEQ XcoXco +¥1 XrXr + & (10)
where BT is the main effect of treatment X, S© is the main effect of covariates X, yJr is the interaction
effect between treatments and covariates, y&g is the interaction effect between covariates and yT is the
interaction effect between treatment variables. The error term ¢; is selected such that the proportion of
variance explained by the true model is 0.9. The pain management data also has a few rare outlier
observations. To mimic these, the noise factor was increased for 10% of the observations so that the
proportion of variance explained by the true model is 0.75.

The second area of interest in this study is to understand the impact of different correlation structures

between the treatments, covariates, and spurious variables on feature selection and interaction selection. The

correlation structure used in the simulation study is shown in Figure 10, and is based on Farahani [168]
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Figure 10: Correlation Design for the simulation case study [168]
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The following are the factors considered in this simulation case study:

1. Correlation between treatments: {Low, High} The correlation between treatments were randomly
generated to be between (0, 0.4) for low correlation and [0.5, 0.9] for high correlation.

2. Correlation between treatments and covariates: {Low, High} The correlation between treatments
and covariates were randomly generated to be between (0, 0.4) for low correlation and [0.5, 0.9] for
high correlation.

3. Correlation between treatments and spurious variables: {Low, High} The correlation between
treatments and spurious variables were randomly generated to be between (0, 0.4) for low correlation
and [0.5, 0.9] for high correlation.

4. Use of IPTW: {Baseline, IPTW-MIMIC} The baseline algorithm following Figure 8 does not use
IPTW, so it does not address time-varying confounding. The IPTW-MIMIC algorithm following Figure
7 with IPTW using the MIMIC method from Ohol [26] to handle correlated treatments. The weights
obtained from MIMIC are incorporated in the HierNet-IPTW model, which does the feature selection

and model building as in Figure 7.

A 2* full factorial experiment with 100 replications and 100 observations per replication was conducted.

Oher factors which were fixed in the study are shown in Table 4:

Table 4: Other factors in simulation case study

Number of treatments (Xr) 4

Number of confounding variables (Xo7) 9

Number of outcome covariates (Xg) 4

Number of covariates (X¢o) 13 (This is a union of X, and X,)
Number of spurious variables 8

Number of randomly simulated interaction effects | 10
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3.4 Performance Metrics

The performance metrics considered in this case study are classified into two groups, namely feature

selection metrics and interaction selection metrics.

3.4.1 Feature/Variable Selection Metrics

The confusion matrix is primarily used to evaluate the performance of classification models and is based
on the count of observations in the test dataset correctly and incorrectly predicted by the model [169, 170].

The confusion matrix concept extended to feature/variable selection is shown in Table 5.

Table 5: Confusion matrix for feature selection [171]

Predicted feature classes

Causal feature Spurious feature
True feature Causal features a: The number of causal b: The number of causal
classes features classified correctly features classified incorrectly
Spurious features | c¢: The number of spurious d: The number of spurious
features classified incorrectly | features classified correctly

The confusion matrix for feature/variable selection is used to evaluate the feature selection performance
of the model based on the features correctly and incorrectly identified by the model [171]. The proportion
of correctly classified causal features among all causal features is called sensitivity and the proportion of
correctly classified spurious features among all spurious features is called specificity. Sensitivity and
specificity provide specific information on feature selection with regards to causal and spurious features

respectively.

Sensitivity = ﬁ (11)
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Specificity = ——

ct+

(12)

Sensitivity and Specificity values range between 0 and 1, with desired values closer to 1. Feature

selection sensitivity and specificity are the two feature selection metrics used in this study.

3.4.2 Interaction Selection Metrics

The confusion matrix concept is extended to evaluate how the interactions are classified in the models and

are shown in Table 6.

Table 6: Confusion matrix for interaction selection

Predicted interaction classes

Causal interactions

Spurious interactions

True interaction

classes

Causal

interactions

p: The number of causal

interactions classified correctly

q: The number of causal

interactions classified incorrectly

Spurious

interactions

r: The number of spurious

interactions classified incorrectly

s: The number of spurious

interactions classified correctly

The proportion of correctly classified interactions among all causal interactions is called sensitivity and

the proportion of correctly classified spurious interactions among all spurious interactions is called

specificity. The sensitivity and specificity formulas shown in Equations (9) and (10) respectively are

extended to the confusion matrix in Table 5. The False Discovery Rate (FDR) is the number of false

interaction terms among all the predicted interaction terms in the model and was used by Lim and Hastie

[163] in their study to compare the performance of Glinternet and HierNet.

FDR = —

p+r
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Specificity and FDR both look at the number of spurious interactions in the model. The specificity values
in this study would be very high since there are 25 state variables and 300 possible two-factor interaction

effects. Both interaction sensitivity and FDR are used to compare the modeling methods in this study.

3.5 Simulation Experiment Results

The results of the 2* full factorial experiment conducted using pain management simulation data is analyzed
in this section. The feature and interaction selection metrics are the outcomes of interest in this study. The
factors controlled in the experiment are the correlation between treatments, the correlation between

treatments and covariates, the correlation between treatments and spurious variables, and the use of IPTW.
3.5.1 Feature Selection Sensitivity
3.5.1.1 Preliminary Analysis

The main purpose of the experiment is to analyze the difference in feature selection performance between
the proposed modeling method that uses IPTW-MIMIC and the baseline method with no IPTW, under

different correlation structures between treatments, covariates, and spurious variables.

The boxplot in Figure 11 compares the use of IPTW under correlation between treatments. We can
observe that with both the baseline and IPTW-MIMIC framework, the average sensitivity is higher with
both the model frameworks when the correlation between treatments is low. We can infer that low
correlation between treatments results in more true features being correctly identified by the model. We
also observe a clear difference between the baseline and IPTW-MIMIC, with IPTW-MIMIC having higher

average sensitivity than the baseline.
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Figure 11: Feature selection sensitivity against the use of IPTW for different correlation structures

between treatments

The boxplot in Figure 12 compares the use of IPTW under correlation between treatments and
covariates. Similar to the previous plot, the average sensitivity is higher with both the model frameworks
when the correlation between treatments and covariates is higher. There is a greater variation with IPTW-
MIMIC at low correlation. A higher correlation between treatments and covariates results in more true
features being picked by the model. The IPTW-MIMIC framework has higher average sensitivity than the

baseline for a given correlation structure.
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Figure 12: Feature selection sensitivity against the use of IPTW for different correlation structures

between treatments and covariates

The boxplot in Figure 13 compares the use of IPTW under different correlations between treatments and
spurious variables. We do not see any clear difference between the average sensitivity at high and low
correlation levels. With the baseline model under high correlations, there is a greater variation in specificity
than under low correlations. The performance of IPTW-MIMIC vs. the baseline are quite similar. A possible
explanation for this could be that since we are maintaining all the treatment variables in the model, the

correlation between treatments and spurious variables has a lower impact on feature selection.
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Figure 13: Feature selection sensitivity against the use of IPTW for different correlation structures

between treatments and spurious variables

3.5.1.2 Analysis of Variance (ANOVA)

The correlation between treatments, the correlation between treatments and covariates, the correlation
between treatments and spurious variables and the use of IPTW are the four factors studied in this ANOVA.
The results of a full factorial ANOVA using SAS are shown in Table 7, with the highlighted boxes
indicating the significant effects. The main effects of all the factors were significant. The two-factor
interaction between the use of IPTW and the correlation between treatments and covariates was significant.
The three-factor interaction between the use of IPTW, the correlation between treatments, and the

correlation between treatments and covariates was significant at a significance level of a = 0.1

From the results of the ANOVA, we can see that the feature selection sensitivity is affected by the use
of IPTW and the different correlation structures. A Tukey multiple comparison considering the use of
IPTW, the correlation between treatments, and the correlation between treatments and covariates is

conducted since the interaction between these factors was found to be significant.
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Table 7: ANOVA for feature selection sensitivity

Source DF Anova SS |Mean Square |F Value [Pr>F
Corr_Trt 1 1.60320285 (1.60320285 909.37 |<.0001
Corr_Trt_Cov 1 0.950625 [0.950625 539.21 (<.0001
Corr_Trt_Spr 1 0.04801254 (0.04801254 27.23 |<.0001
Use_of IPTW 1 0.26643815 [0.26643815 151.13 |<.0001
Corr_Trt*Corr_Trt_Cov 1 0.00048659 (0.00048659 0.28 0.5994
Corr_Trt*Corr_Trt_Spr 1 0.000625 |0.000625 0.35 0.5517
Corr_Trt*Use_of IPTW 1 0.00048659 (0.00048659 0.28 0.5994
Corr_Trt_Cov*Corr_Trt_Spr 1 0.00264922 (0.00264922 15 0.2204
Corr_Trt_Cov*Use_of IPTW 1 0.03488106 [0.03488106 19.79 |<.0001
Corr_Trt_Spr*Use_of IPTW 1 0.00017517 |0.00017517 0.1 0.7526
Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr 1 0.00048659 |0.00048659 0.28 0.5994
Corr_Trt*Corr_Trt Cov*Use_of IPTW 1 0.00654196 |0.00654196 3.71 0.0542
Corr_Trt*Corr_Trt_Spr*Use_of IPTW 1 0.00157656 [0.00157656 0.89 0.3445
Corr_Trt_Cov*Corr_Trt_Spr*Use_of IPTW 1 0.00437933 (0.00437933 2.48 0.1152
Corr_Trt*Corr_Trt_Cov*Corr_Trt Spr*Use_of IPTW |1 0.0023551 |0.0023551 1.34 0.2479

The experimental combinations are shown in Table 8, the p-value results of the Tukey analysis are

shown in Table 9, and the 90% CI in Table 10 respectively. The Tukey line plot is shown in Figure 14. At

significance level a = 0.1, the experimental combinations 3 and 5 highlighted in the tables and figure are

not statistically different. With the baseline model framework, the feature selection sensitivity is not

statistically different when either one of the correlations between treatments and the correlation between

treatment covariates is high and the other low. All other experimental combinations are statistically

different.

Table 8: Tukey comparison factor combinations for feature selection sensitivity

Corr_Trt | Corr_Trt_Cov | Use_of IPTW | Feature_3Selection_3Sensitivity LSMEAMN

LSMEAN Number

High High Baseline 0. 78176471 1
High High IPTW_MIMIC 0.21178471 z
| High Low Baseline 0.83470538 z |
High Low IPTW_MIMIC 0.85411785 4
[ Low High Baseline 083882353 5 |
Low High IPTW_MIMIC 0.87011765 &
Low L onaw Easeline 080205882 T
Low Low IPTW_MIMIC 0.01553824 5
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Table 9: Tukey analysis p-value for feature selection sensitivity

=
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Table 10: Tukey analysis 90% CI for feature selection sensitivity

Least Squares Means for effect Corr_T*Corr_T*Use_of
Pr = It] fior HO: L 5Meaniif=L 5Mean(j)

Dependent Variable: Feature_Selection_Sensitivity

1 2
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Corr_Trt | Corr_Trt_Cow | Use_of IPTW | Feature_Selection_Sensitivity LSMEAN | 90% Confidence Limits
High High Baseline 0.781785 . TTBETE 0.786651
High High IPTW_MIMIC 0811785 0.806878 0.83168851
High Low Baseline 0.834708 0.820818 0.332592
High Low IPTW_MIMIC 054118 0840231 0.35@004
Low High Baseline 0.838324 0.833037 0.343710 |
Low High IPTW_MIMIC 0.ETE118 0874231 0.884004
Low Low Baseline 0.802058 0.8a7IT2 0.206045
Low Low IPTW_MIMIC 0.815588 D.p10702 0.920475

Feature Selection Sensitivity Tukey Grouping for LS-
Means of Corr_T*Corr_T*Use_of (Alpha=0.1)

LS-means covered by the same bar are not significantly different.

Corr_Trt  Corr_Trt_Cov  Use_of_IPTW Estimate
Low Low IPTW_MIMIC 0.9156
Low Low Baseline 0.9021
Low High IPTW_MIMIC 0.8791
High Low IPTW_MIMIC 0.8541
Low High Baseline 0.B3EB
High Low Bazeline 0.8347
High High IPTW_MIMIC 08118
High High Baseline 07818

Figure 14: Tukey line plot for feature selection sensitivity
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We perform a means analysis between the IPTW-MIMIC and the baseline across all the correlation
combinations. This would give us an insight into the difference in performance with the use of IPTW. The
results of this analysis are shown in Table 11. We can see that the difference in feature selection due to the
use of IPTW is statistically different with the IPTW-MIMIC performing better than the baseline with higher
average sensitivity. We can conclude that the IPTW-MIMIC enables true features to be identified by the

modeling method better than the baseline without IPTW.

Table 11: Comparison of feature selection sensitivity means with the use of IPTW

HD:L5Mean1=L5Mean2

Use_of IPTW | Feature_35election_3Sensitivity LSMEAN Pr = |t
Baseline 0.83933824 <.0001
IPTW_MIMIC 0.BEE14708

Use_of IPTW | Feature_35election_5ensitivity LSMEAN = 30% Confidence Limits
Baseline 0.839338 0.336895 0.E41781
IPTW_MIMIC 0.855147 0.282704 0.867500

Least Squares Means for Effect Use_of_IPTW
i | | Difference Between Means | Simultaneous 30% Confidence Limits for L 3Mean(i}-L SMean(j)
1|2 -0.025808 -0.028264 -0.022354

The next analysis was to simultaneously compare the contrasts shown in Table 12, where each contrast
is highlighted with the same color. We are simultaneously comparing the 8 contrasts using the Bonferroni
method. These contrasts are defined to help us compare the use of IPTW for different correlation
combinations between treatments, covariates, and spurious variables. The result of the simultaneous
Bonferroni comparison for these 8 contrasts is shown in Table 13. The results show that the difference in
performance between IPTW-MIMIC and the baseline is statistically significant for all the correlation
combinations except the case where the correlation between treatments, the correlation between treatments
and covariates is low, and the correlation between treatments and spurious variables is high. We can
conclude from this analysis that the IPTW-MIMIC performs as well or better than the baseline without

IPTW under the different correlation combinations.
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Table 12: Contrast for simultaneous Bonferroni comparison

Corr_Trt |Co rr_Trt Cov |Co rr_Trt_Spr |Use_of_| PTW
High High High Baseline

High High High IPTW-MIMIC
High High Low Baseline

High High Low IPTW-MIMIC
High Low High Baseline

High Low High IPTW-MIMIC
High Low Low Baseline

High Low Low IPTW-MIMIC
Low High High Baseline

Low High High IPTW-MIMIC
Low High Low Baseline

Low High Low IPTW-MIMIC
Low Low High Baseline

Low Low High IPTW-MIMIC
Low Low Low Baseline

Low Low Low IPTW-MIMIC

Table 13: Simultaneous Bonferroni comparison results for feature selection sensitivity

Corr_Trt | Corr_Trt Cov | Corr_Trt_5pr | DF | Sum of Sguares | Mean Square | FValue | Pr=F

High High High 1 0.058211 0.058211 31.88 | <.0001
High High Low 1 0.035025 0350325 19.87 | <.001
High Low High 1 0022422 o242z 12.72 | 0.0004
High Low Low 1 0015571 0015571 283 | 00030
Low High High 1 0.0e2821 C.oeee3t 5G.68 | <.0001
Low High Low 1 0.064377 .054377 36.52 | <001
Low Low High 1 0.002083 002083 1.18 | 02760
Low Low Low 1 0.021194 0.021194 12.02 | 0.0005

The residual analysis is conducted to check the assumptions that the error terms are normally distributed

and have constant variance. This is discussed in Appendix Il.
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3.5.2 Feature Selection Specificity

3.5.2.1 Preliminary Analysis

The boxplot in Figure 15 compares the use of IPTW under different correlation between treatments. The
average specificity is similar at high and low correlation levels, and with both the baseline and IPTW-
MIMIC. There is a greater variation in specificity with the baseline at high correlation between treatments.
Specificity measures how many spurious variables are correctly identified as spurious by the model, the
correlation between treatments does not directly impact specificity as all the treatment variables in the case
study are causal variables and not spurious. That is why specificity is similar with both IPTW-MIMIC and

baseline under different correlations between treatments.
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Figure 15: Feature selection specificity against the use of IPTW for different correlation structures

between treatments
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The boxplot in Figure 16 compares the use of IPTW under different correlation between treatments and
covariates. The interpretation of these plots is similar to the previous figure, where we do not see major
difference under the different correlation levels and between the use of IPTW. The effect of correlation
between treatments and covariates on average specificity is similar between IPTW-MIMIC and the
baseline. The variation in specificity is high with the baseline at high correlation. We can infer that the
correlation between treatments and covariates along with the use of IPTW does not directly impact the

selection of spurious variables in the model.

09

—— - Corr_bw_trt_cov
B Low
=3 High

0.8

=
=~

pecificity

06

Feature_Selection_S

0.5

0.4

Baseling IPTW_MIMIC
Use_of IPTW

Figure 16: Feature selection specificity against the use of IPTW for different correlation structures

between treatments and covariates

The boxplot in Figure 17 shows a clear difference in average specificity under different correlation
between treatments and spurious variables. The average specificity is less at high correlation than at low
correlation with both the baseline and IPTW-MIMIC. A high correlation between treatments and spurious
variables results in more spurious variables being included in the model, and hence lower average

specificity. The average specificity is greater with IPTW-MIMIC than the baseline indicating that it
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performs better when there is correlation between treatments and spurious variables. The variation in

specificity is similar across the two methods.
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Figure 17: Feature selection specificity against the use of IPTW for different correlation structures

between treatments and spurious variables

3.5.2.2 Analysis of Variance (ANOVA)

The correlation between treatments, the correlation between treatments and covariates, the correlation
between treatments and spurious variables and the use of IPTW are the four factors studied in this ANOVA.
The results of a full factorial ANOVA using SAS are shown in Table 14, with the highlighted boxes
indicating the significant effects. The significance level a = 0.1 was used in this analysis. The main effects
of all the factors were significant. All the two-factor interaction effects except for the interaction between
the use of IPTW with the correlation between treatments and the use of IPTW with the correlation between
treatments and covariates were significant, which follows the inferences from the preliminary boxplot
analysis. The three-factor interaction between the correlation between treatments, the correlation between

treatments and covariates, and the correlation between treatments and spurious variables was significant.
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Table 14: ANOVA for feature selection specificity

Source DF|Anova SS |Mean Square |F Value [Pr>F
Corr_Trt 1 |1.27266602 |1.27266602 244.65 |[<.0001
Corr_Trt_Cov 1 ]0.47696289 |0.47696289 91.69 |[<.0001
Corr_Trt_Spr 1 |5.56665039 |5.56665039 1070.11 |<.0001
Use of IPTW 1 ]0.31290039 |0.31290039 60.15 [<.0001
Corr_Trt*Corr_Trt_Cov 1 ]0.21102539 |0.21102539  |40.57 |<.0001
Corr_Trt*Corr_Trt_Spr 1 ]0.54852539 |0.54852539 105.45 |<.0001
Corr_Trt*Use_of IPTW 1 ]0.00821289 [0.00821289 1.58 0.2091
Corr_Trt_Cov*Corr_Trt_Spr 1 ]0.19415039 |0.19415039 37.32 |<.0001
Corr_Trt_Cov*Use_of IPTW 1 0.00610352 |0.00610352 1.17 0.2789
Corr_Trt_Spr*Use_of IPTW 1 ]0.02954102 |0.02954102 5.68 0.0173
Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr 1 ]0.13829102 |0.13829102 26.58 |<.0001
Corr_Trt*Corr_Trt_Cov*Use_of IPTW 1 0.00165039 |0.00165039 0.32 0.5733
Corr_Trt*Corr_Trt_Spr*Use_of IPTW 1 ]0.00352539 |0.00352539 0.68 0.4105
Corr_Trt_Cov*Corr_Trt_Spr*Use_of IPTW 1 ]0.00821289 {0.00821289 1.58 0.2091
Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr*Use_of IPTW |1 |0.00165039 [0.00165039 0.32 0.5733

A Tukey multiple comparison considering all the factor combinations is conducted since the different

significant interaction effects included all the factors. The factor combinations are shown in Table 15, the

p-value results of the Tukey analysis are shown in Table 16, and the 90% CI in Table 17 respectively. At

significance level a = 0.1, the highlighted cells in Table 15 indicate the factor combinations whose p-value

is greater than 0.1, and hence are not statistically different. In the Tukey line plot, shown in Figure 18, the

factor combinations covered by the same-colored bar are not statistically different. We can observe that

several factor combinations are not statistically different under low correlation between treatments and

spurious variables, while at the high correlation between treatments and spurious variables, there are more

statistically different combinations. The factor combination with the baseline and IPTW-MIMIC with the

corresponding correlation factors high are the only two that are statistically different from the rest of the

factor combinations.
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0.0034
=.0001
=.0001
=.0001
=000
=000
=000
=000
=.0001
=.0001
=.0001
=.0001
=.0001
=.0001

Corr_Trt | Corr_Trt_Cowv | Corr_Trt_5pr | Use_of IPTW | Feature_Selection_5Specificity LEMEAN | LSMEAN Number

High High Baseline 050125000 1

High High IPTW_MIMIC 0.54375000 2

High Lowr Baseline 0.70500000 3

High Low IPTW_MIMIC 073125000 4

Low High Baseline 0.6037 5000 5

Low High IPTW_MIMIC 0.637H0000 i)

Low Low Baseline 0. 72125000 T

Low Low IPTW_MIMIC 0.74875000 g

High High Baseline 0.63375000 o

High High IPTW_MIMIC 0.GE125000 10

High Low Baseline 0.73625000 11

High Low IPTW_MIMIC 0.74750000 12

Low High Baseline 0.658125000 13

Low High IPTW_MIMIC 068375000 14

Low Low Baseline 074375000 15

Low Low IPTW_MIMIC 0.75625000 16

Table 16: Tukey analysis p-value for feature selection specificity
Least Squares Means for effect Corr*Corr*Corr*IPTW _
Pr = |t| for HD: L5Mean(ij=L SMean(j}
Dependent Variable: Feature_Selection_Specificity
2 3 4 5 B 7 ] a 10 hh! 12 13 14 15 16
0.0034 | =.0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <.0001 | =.0001
<0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0004 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001
=.0001 <0001 | <.0001 | 0.2597 | 0.0020 | <0001 | 0.5024 | 0.1445 | 0.0034 E-.OC-2C-| 07758 | 0.0142 | <0001
<0001 | 04180 <0001 | <.0001 | 0.9088 | 0.0428 | <0001 | 0.0001 | 1.0000 D.QEQ?|{.0C01 0.0004 IJ.QQT-'QIZJ.S{IQ!JI
<0001 | <0001 | <0001 0.0729 | <.0001 | =.0001 | 0.1881 | <0001 | <0001 | <0001 | <0001 | <0001 | =.0001 | <0001
<.0001 | <0001 | <.0001 | 0.O720 <.0001 | <0001 | 1.0000 | 0.0020 | <0001 | <0001 | 0.5024 | 00007 | <.0001 | <0001
<.0001 | 0.0687 | 0.0885 | <0001 | <.0001 |3.3333 <.0001 | 0.0080 | 0.0856 | 0.4180 | <.0001 | C.0221 | 0.6020 | 0.0500
<.0001 | 0.0020 | 0.0428 | <0001 | <.0001 | 0.3333 '<.C{IC-1 =.0001 | 0.0878 | 1.0000 | <.0001 | <.0001 | 1.0000 | 1.0000
<.0001 | <0001 | <0001 | 018561 | 1.0000 | <.0001 | <.0001 0.0004 | =.0001 | <0001 | 0.2338 | ¢.0001 | <.0001 | <.0001
=.0001 | 06024 | 0.0001 | <0001 | 0.0D20 | D.0080 | <0001 | 0.0004 <.0001 | =.0001 | 0.8454 | 1.0000 | <.0001 | =.0001
=.0001 | 0.1445 | 1.0000 | <0001 | <0001 | 0.8855 | 0.8879  =.0001 | <.0001 |D.9994|<_0C{|l =.0001 | 1.0000 | 0.8454
=.0001 | 0.0034 | 0.86087 | <0001 | <0001 | 04180 | 1.0000  =0001 | <0001 | O.0904 =<.0001 | <.0001 | 1.0000 | 1.0000
=.0001 | 0.0020 | <.0001 | <0001 | 0.G024 | <0001 | <0001 | 0.3335 | 0.84684 | <.0001 | <0001 |C-.693C- <=.0001 | <.0001
=.0001 | 0.7758 | 0.0004 | <0001 | Q0007 | D.0221 | <0001 | 0.0001 | 1.0000 | <.0001 | <0001 | 0.6830¢ .1.0301 <.0001
=.0001 | 0.0142 | 09879 | <0001 | <0001 | 0.6030 | 1.0000 @ =.0001 | <0001 | 1.0000 | 1.0000 | <.0001 | <0001
<.0001 | =.0001 | 0.5080 | <0001 | <0001 | 0.0500 | 1.0000 | <.0001 | =.0001 @ 0.8484 | 1.0000 | <0001 | <.0001 | 0.2072

=000

Table 15: Tukey comparison factor combinations for feature selection specificity

Least Squares Means

Adjustment for Multiple Comparisons: Tukey
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Table 17: Tukey analysis 90% CI for feature selection specificity

Corr_Trt | Com_Trt_Cov | Corr_Trt_Spr | Use_of _IPTW | Feature_Selection_Specificity LSMEAN | 30% Confidence Limits

High High High Baseline 0.501250 0459380 | 0.513120
High High High IPTW_MIMIC 0.543750 0.531880 | 0.555620
High High Low Baseline 0. 705000 0682130 | 0718870
High High Low IPTW_MIMIC 0.7231250 0.719380 | 0743120
High Low High Baseline 0.603750 0581880 | 0.615620
High Low High IPTW_MIMIC 0.637500 0625630 | 0.649370
High Low Low Bazeline 0.721250 0.709380 | 0.733120
High Low Low IPTW_MIMIC 0.748750 0.736880 | 0.780620
Low High High Baseline 0.633750 0621880 | 0.545620
Low High High IPTW_MIMIC 0.681250 0689380 | 0.683120
Low High Low Baseline 0.736250 0.724380 | 0.T48120
Low High Low IPTW_MIMIC 0. 747500 0.735830 | 0.750370
Low Low High Baseline 0.681250 0649380 | 0.673120
Low Low High IPTW_MIMIC 0.883750 0671880 | 0.605G20
Low Low Low Baseline 0.743750 0.7318580 0. 755620
Low Low Low IPTW_MIMIC 0. 756250 0.744380 | (.7G8120

Feature_Selection_Specificity Tukey Grouping for LS-Means of
Corr*Corr*Corr*Use_o (Alpha = 0.1)

LS-means covered by the same bar are not significantly different.

Corr_Trt  Corr_Trt_Cov Corr_Trt_Spr Use_of IPTW Estimate

Low Low Low IPTW_MIMIC 0.7563

High Low Low IPTW_MIMIC 0.7488

Low High Low IPTW_MIMIC 0.7475

Low Low Low Baszelineg 0.7438

Low High Low Baszeline 0.7363

High High Low IPTW_MIMIC 07313

High Low Low Baseline 0.7213

High High Low Baseline Q0.7050

Low Low High IPTW_MIMIC 0.6838

Low High High IPTW_MIMIC 08812

Low Low High Baseline 06613

High Low High IPTW_MIMIC 0.6375

Low High High Baseline 0.8337

High Low High Baseline 0.6038 I
High High High IPTW_MIMIC 0.5437 .
High High High Baseline 0.5012 .

Figure 18: Tukey line plot for feature selection specificity
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A means analysis of the use of IPTW across all the correlation combinations was performed. The results
of this analysis are shown in Table 18. We can see that the difference in average feature selection specificity
due to the use of IPTW is statistically significant with IPTW-MIMIC having higher average specificity than

the baseline.

Table 18: Comparison of feature selection specificity means with IPTW model form

HO:L 5Mean1=L5Mean2

Use_of IPTW | Feature_5election_5pecificity LSMEAN Pr = |t
Baseline 0.66328125 =.0001
IPTW_MIMIC 0.62125000

Use_of IPTW | Feature_5election_5Specificity LSMEAN | 90% Confidence Limits
Baszeline 0.863281 0.652084 0.5667472
IPTW_MIMIC 0.681250 0.687053 0625447

Least Squares Means for Effect Use_of_IPTW
i | Difference Between Means | Simultaneous 90% Confidence Limits for LS3Mean(i}-L 5Mean(j)
1|2 -0.02TeER -0033804 -0.022034

A simultaneous Bonferroni comparison of contrasts is performed to identify the performance of the use
of IPTW across the different correlation combinations. The set of contrasts for comparison is shown in
Table 12, where each contrast is highlighted with the same color. The result of the simultaneous Bonferroni
comparison is shown in Table 19. The results show that the difference in average specificity between IPTW-
MIMIC and the baseline approach is statistically significant for all the correlation combinations except the
two highlighted. When the correlation between treatments, and the correlation between treatments and
spurious variables is low, the difference between IPTW-MIMIC and the baseline is not statistically
significant. We can conclude from this analysis that the IPTW-MIMIC performs as well or better than the
baseline without IPTW under the different correlation combinations, and the correlation between treatments

and spurious variables is an important factor in determining model performance.
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Table 18: Simultaneous Bonferroni comparison results for feature selection specificity

Corr_Trt | Corr_Trt_Cov | Corr_Trt_5Spr | DF | Sum of Squares | Mean Square F Value | Pr=F
High High High 1 0080313 0080313 17.26 | <.0001
High High Lowr 1 0034453 0034453 6.8z | 0.0102
High Lo High 1 0.056853 0055853 10,85 | CLOOI0
High Low Low 1 0.037812 0037812 ¥.27 | 0.0071
Low High High 1 0112813 0112813 21.69 | <0001

| Low High Low 1 0006328 0.00E323 1.22 | 0.2702 |
Low Low High 1 0025313 0025313 487 | 0LD2TH

| Low Low Low 1 0.007812 0007812 |  1.50 | 0.2206 |

3.5.3 Interaction Selection Sensitivity

3.5.3.1 Preliminary Analysis

The boxplot in Figure 19 shows the impact of the use of IPTW along with the correlation between treatments

on interaction selection sensitivity. From the plot, we can observe that the average and variation in

interaction sensitivity are similar with IPTW-MIMIC and the baseline under both low and high correlation.
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Figure 19: Interaction selection sensitivity against the use of IPTW for different correlation structures

between treatments
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The boxplot in Figure 20 shows the use of IPTW against the correlation between treatments and
covariates. The average sensitivity values are similar across the use of IPTW and correlation combinations.
The variation in sensitivity is also similar. This is similar to the boxplot in Figure 19. The use of IPTW
along with the correlation between treatments or correlation between treatments and covariates does not

show any significant difference in interaction selection.
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Figure 20: Interaction selection sensitivity against the use of IPTW for different correlation structures

between treatments and covariates

The boxplot in Figure 21 shows interaction sensitivity plotted against the use of IPTW for a given
correlation structure between treatments and spurious variables. With IPTW-MIMIC, the average
sensitivity is similar at low and high correlation, while with the baseline, the average sensitivity is lower at
high correlation. The variation is similar across the boxplots. We can infer that at high correlation between
treatments and spurious variables, the baseline approach results in less causal interaction terms being

identified than with the IPTW-MIMIC approach.
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Figure 21: Interaction selection sensitivity against the use of IPTW framework for different correlation

structures between treatments and spurious variables

3.5.3.2 Analysis of Variance (ANOVA)

The correlation between treatments, the correlation between treatments and covariates, the correlation
between treatments and spurious variables and the use of IPTW are the four factors studied in this ANOVA.
The results of a full factorial ANOVA using SAS are shown in Table 20, with the highlighted boxes
indicating the significant effects. The significance level a = 0.1 was used in this analysis. The main effects
of all the factors were significant. The two-factor interaction effects that were statistically significant
involved the correlation between treatments and spurious variables along with the correlation between
treatments and the correlation between treatments and covariates respectively. A three-factor interaction
effect between the use of IPTW, the correlation between treatments, and the correlation between treatments

and spurious variables is significant.
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A Tukey multiple comparison considering all the factor combinations is conducted since the different

significant interaction effects included all the factors in the study.

Table 20: ANOVA for interaction selection sensitivity

Source DF Anova SS |Mean Square |F Value [Pr>F
Corr_Trt 1 0.85100625 |0.85100625 193 <.0001
Corr_Trt_Cov 1 0.58905625 |0.58905625 133.59 |<.0001
Corr_Trt_Spr 1 1.53140625 [1.53140625 347.3  |<.0001
Use_of IPTW 1 0.40005625 |0.40005625 90.73 |<.0001
Corr_Trt*Corr_Trt_Cov 1 0.00075625 |0.00075625 0.17 0.6788
Corr_Trt*Corr_Trt_Spr 1 0.02975625 |0.02975625 6.75 0.0095
Corr_Trt*Use_of IPTW 1 0.00030625 |0.00030625 0.07 0.7922
Corr_Trt_Cov*Corr_Trt_Spr 1 0.07700625 |0.07700625 17.46  |<.0001
Corr_Trt_Cov*Use_of IPTW 1 0.00050625 |0.00050625 0.11 0.7348
Corr_Trt_Spr*Use_of IPTW 1 0.00525625 |0.00525625 1.19 0.2751
Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr 1 0.00390625 |0.00390625 0.89 0.3467
Corr_Trt*Corr_Trt_Cov*Use_of IPTW 1 0.00140625 |0.00140625 0.32 0.5723
Corr_Trt*Corr_Trt_Spr*Use_of IPTW 1 0.01500625 (0.01500625 3.4 0.0653
Corr_Trt_Cov*Corr_Trt Spr*Use_of IPTW 1 0.00030625 |0.00030625 0.07 0.7922
Corr_Trt*Corr_Trt_Cov*Corr_Trt Spr*Use_of IPTW (1 0.00950625 |0.00950625 2.16 0.1422

The factor combinations for the Tukey multiple comparison are shown in Table 21, the p-value results
of the Tukey analysis are shown in Table 22, and the 90% ClI in Table 23 respectively. At significance level
a = 0.1, the highlighted cells in Table 22 indicate the factor combinations whose p-value is greater than 0.1,
and hence are not statistically different. In the Tukey line plot, shown in Figure 22, the factor combinations

covered by the same-colored bar are not statistically different.

From the Tukey Line plot, we can see different groups of factor combinations are not statistically
different. The baseline approach with high correlation across the other factors is the only statistically
different combination not overlapping with other groups. The two-factor and three-factor interaction effects
between the factors could be one possible reason we have different groups of factor combinations not
statistically different from each other. To better understand the difference between the performance of

IPTW-MIMIC and the baseline across the different correlation factors, a means analysis is performed.
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0.0:034
<0001
<0001
=.0001
<0001
=001
<001
<001
<0001
<0001
=.0001
<0001
=001
<001
<001

Table 21: Tukey comparison factor combinations for interaction selection sensitivity

High
High
High
High
Low
Low
Low
Low
High
High
High
High
Low
Low
Low

Low

0.0034

<.0001
=.0001
0.4210
=.0001
=.0001
=.0001
0.6711
<.0001
=.0001
=.0001
=.0001
=.0001
=.0001
=.0001

3
<.0001
<.0001

0.0263
0177

1.0000
0.8122
<.0001
0.0746
1.0000
0.0084
=.0001
.oz
<.0001
<.0001

Adjustment for Multiple Comparisons: Tukey

Corr_Trt_Spr | Use_of IPTW | Interaction_5electn_Sensitivity LSMEAN = LSMEAN Number
High Baseline 0. 73500000 1
High IPTW-MIMIC 077200000 2
Lo Baseline 032400000 3
Low IPTW-MIMIC 035500000 4
High Baseline 0. rago000n 5
High IPTW-MIMIC 0.31200000 G
Low Baseline 034300000 7
Lo IPTW-MIMIC 037200000 g
High Baseline 0300000 2
High IPTW-MIMIC 032700000 10
Low Baseline 025100000 11
Low IPTW-MIMIC 038700000 12
High Baseline 033700000 13
High IPTW-MIMIC 0353400000 14
Lo Baseline 038500000 15
Low IPTW-MIMIC 081100000 16
Table 22: Tukey analysis p-value for interaction selection sensitivity
Least Squares Means for effect Corr*Corr*Corr*IPTW_
Pr = |t| for HO: L5Mean(ij=L5Mean{j}
Dependent Variable: Interaction_Effects_ Sensitivity
4 5 -1 7 2 | 10 1 12 13 14 16 16
<0001 | <0001 | <0001 | <.0001 | <0001 | =0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001
<0001 | 0.4310 | <0001 | <0001 | <0001 | 08711 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001
00268 | 0.1778 | 1.0000 | 0.8122 | <0001 | 0.0745 | 1.0000| 0.0084 | <0001 | 02821 | <0001 | <.0001 | <0001
=.0001 | 0.OD36 | 02688 | 08711 | <.0001 | 0.0745 1.!]DI]CII D.1355| 06711 | 0.2884 | 0.0084 | <0001
<0001 05104 | <.0001 | <0001 | 1.0000 | 0.0746 | <0001 | <0001 | 0.O0M5 | <0001 | <.0001 | <0001
0.0036 | 0.5104 0.4310 | <.0001 | 02884 1.ZIDE{l| 0.0008 | <0001 | G.B68Z | <.0001 | <.0001 | <.C001
00889 | <0001 | 4310 0.0125 | <0001 |O.EI4E!{I 0.8682 | 0.00032 | 1.0000 | 0.0015 | =.0001 | <0001
06711 | =.0001 | <0001 | 0.0125 =.0001 | =.0001 | 0.8682 1.CIC-DD| 0.0002 1.DIIGE-I 0.2450 | 0.0528
<0001 | 1.0000 | 2884 | <.0001 | <.0001 0.0268 | <0001 | <.0001 | 0.0C03 | <.0001 | <.0001 | <.0001
0.0745 | 0.0746 | 1.0000 | 0.2450 | <0001 | O.0268 0.0258 | <0001 | 08806 | <.0001 | <.0001 | <0001
1.0000 | <0001 | 0.ODOS | 0.3632 | 08682 | <0001 | D.0268 |D.2884 04310 E-.51CI4I 0.0268 | =000
0.1356 | <.0001 | <.0001 | 0.0002 | 1.0000 | <0001 | =.0001 | 0.23234 <.0001 | 1.0000 I 1.0000 I 0.4210 |
6711 | 0.0015 | G.8582 | 1.0000 | 0.000€ | 0.0002 @ 0.9986 | 0.4310 | <0001 <.0001 | <.0001 | <0001
02384 | =.0001 | <0001 | 0.0015 | 1.0000 | <0001 | <0001 | 0.5104 | 1.0000 | <.0001 | 0.2037 | 02287
00084 | <0001 | <0001 | <.0001 | 089460  =0001 | <0001 | 0.0288 | 1.0000 | <0001 | 2BE7Y 0.2450
<0001 | =.0001 | <0001 | <.0001 | 0.0538 | =0001 | <0001 | <0001 | 0.4310 | <0001 | 2257 | 0.8460

<.0001
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High
High
High
High
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Comr_Trt_Cov | Corr_Trt_Spr
High High
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High Low
Low High
Low High
Low Low
Low Low
High High
High High
High Low
High Low
Low High
Low High
Low Low
Low Low

Table 23: Tukey analysis 90% CI for interaction selection sensitivity

Use_of_IPTW

Baseline
IFTW-RMIMIC
Baseline
IPTW-MIMIC
Baseline
IPTW-MIMIC
Baseline
IPTW-MIMIC
Baseline
IPTW-MIMIC
Baseline
IPTW-MIMIC
Baseline
IPTW-MIMIC
Baseline

IPTW-MIMIC

Interaction_3electn_Sensitivity LSMEAN

0.725000
0.772000
0.824000
0.853000
0.78E5000
0.312000
0.343000
0.872000
0.783000
0.327000
0.351000
0.387000
0.337000
0.354000
0.395000
0.811000

90% Confidence Limits

0724071
0761071
0.8313071
0347071
0785071
0208071
0832071
0258071
0782071
0218071
0250071
0878071
0.828071
0873071
0.284071
0.200071

Interaction_Selectn_Sensitivity Tukey Grouping for LS-Means of

Corr*Corr*Corr*Use_o (Alpha = 0.1)

LS-means covered by the same bar are not significantly different.

Corr_Trt  Corr_Trt_Cov  Corr_Trt_Spr
Low Low Low
Low Low Low
Low High Low
Low Low High
High Low Low
Low High Low
High High Low
High Low Low
Low Low High
Low High High
High High Low
High Low High
High Low High
Low High High
High High High
High High High

Figure 22: Tukey line plot for interaction selection sensitivity
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IPTW-MIMIC

Baseline

IPTW-MIMIC

Baseline

Baseline

IPTW-MIMIC

Baseline

Estimate

09710

0.87390

0.B810

0.8580

0.7980
0.7930
0.7720

0.72E0

0.B950

0.BE7O

0.BB40 |
0.B430

0.8370

0.B270

0.8240

0.8180

0. 745228
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0.520928
0.853028
0.539028
0.503928
0837928
0.E7T1928
0587228
0.547228
0.5040208
0.acbeze
0921222



The result of the means analysis across all the correlation combinations is shown in Table 24. We can
see that the baseline and IPTW-MIMIC are statistically different with IPTW-MIMIC having higher average

sensitivity than the baseline.

Table 24: Comparison of interaction selection sensitivity means with IPTW model form

Hil:L 5Meani=L 5Mean2

Use_of IPTW | Interaction_Selectn_Sensitivity L SMEAN Pr = [t]
Baseline 0.82300000 <.0001
IPTW-MIMIC 0.85462500

Use_of IPTW | Interaction_Selectn_Sensitivity LSMEAN = 90% Confidence Limits

Baseline 0.823000 0219128 0526284

IPTW-MIMIC 0.854825 0850761 0.258489
Least Squares Means for Effect Use_of IPTW

i ] Difference Between Means | Simultaneous 30% Confidence Limits for L SMean(i}-L SMeanij)
1|2 -0.031825 -0.037088 -0.026161

A simultaneous Bonferroni comparison of contrasts is performed to identify the difference in the
performance of the use of IPTW across the different correlation combinations. The set of contrasts for
comparison is shown in Table 12. The results in Table 25 show that all the contrasts are statistically
significant at a significance level of a = 0.1, indicating that IPTW-MIMIC performs better than the baseline

model in identifying the true interaction terms under the different correlation combinations.
Table 25: Simultaneous Bonferroni comparison results for interaction selection sensitivity

Corr_Trt | Corr_Trt_ Cov | Corr_Trt_Spr | DF  Sum of Squares | Mean Square | F Value | Pr=F

High High High 1 0.062450 0058450 15.52 | <.001
High High Low 1 0.057800 C.O5T300 13.11 | C.0O00O3
High Low High 1 0.026450 0025450 .00 | 00144
High Low Lover 1 0.054800 0054300 1470 | 0LO0O1
Low High High 1 0.057800 C.O5T300 13.11 | C.0C0O3
Low High Low 1 0.022800 0033800 76T | 0.OO5T
Low Low High 1 0.110450 0110450 25.05 | <.00M
Low Low Low 1 0.012800 0012800 2.80 | 0.0556
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3.5.4 Interaction Selection FDR
3.5.4.1 Preliminary Analysis

The boxplot for interaction selection FDR with the use of IPTW and correlation between treatments is
shown in Figure 23. A lower value of FDR is preferred since it implies that there are few spurious interaction
terms in the predicted model. We can observe that with both the baseline and IPTW-MIMIC, the average
FDR is high when the correlation between treatments is high. The average FDR value is less with IPTW-
MIMIC than the baseline. The variation in FDR values is almost similar with high and low correlation for
the baseline model, but with IPTW-MIMIC the FDR values have higher variation at high correlation. These
plots suggest that at high treatment correlation, more spurious interaction terms are picked up by both the

modeling approaches, with IPTW-MIMIC performing better than the baseline.
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Figure 23: Interaction selection FDR against the use of IPTW for different correlation structures between

treatments

The boxplot in Figure 24 shows the effect of the use of IPTW along with the correlation between

treatments and covariates on interaction FDR. The average FDR and the variation in FDR are higher with
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the baseline than the IPTW-MIMIC. The average FDR values are high at high correlation between
treatments and covariates, which implies more spurious interaction terms are in the prediction model when

there is high correlation between treatments and covariates. The IPTW-MIMIC performs better than the

baseline.
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Figure 24: Interaction selection FDR against the use of IPTW for different correlation structures between

treatments and covariates

The boxplot in Figure 25 shows the FDR with the use of IPTW under different correlation structures
between treatments and spurious variables. The average FDR is higher at high correlation than at low
correlation, and the variation in FDR is also higher at high correlation. The IPTW-MIMIC has lower
average FDR values for a given correlation structure than the baseline. The performance of IPTW-MIMIC
is better than the baseline at both low and high correlation. The impact of high correlation between
treatments and spurious variables is more pronounced than the correlation between treatments and
correlation between treatments and covariates, with the difference in average FDR values being higher than

in Figures 23 and 24.
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Figure 25: Interaction selection FDR against the use of IPTW for different correlation structures between

treatments and spurious variables

3.5.4.2 Analysis of Variance (ANOVA)

The correlation between treatments, the correlation between treatments and covariates, the correlation
between treatments and spurious variables and the use of IPTW are the four factors studied in this ANOVA.
The results of a full factorial ANOVA using SAS are shown in Table 26, with the highlighted boxes
indicating the significant effects at a significance level a = 0.1. The main effects of all the factors were
significant. All the two-factor interactions were significant except the interaction between the use of IPTW
and the correlation between treatments and spurious variables. We can also observe this from Figure 21,
where the difference in average FDR between high and low correlation is almost similar between the
baseline and IPTW-MIMIC modeling approaches. All three-factor and four-factor interactions are also

significant.

A Tukey multiple comparison considering all the factor combinations is conducted since the four-factor

interaction effect was significant.
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Table 26: ANOVA for interaction selection FDR

Source DF Anova SS |Mean Square |F Value |Pr > F
Corr_Trt 1 0.75191704 10.75191704 1372.28 |<.0001
Corr_Trt_Cov 1 0.33748692 |0.33748692 615.93 |<.0001
Corr_Trt_Spr 1 2.32712437 |2.32712437 4247.11 |<.0001
Use_of IPTW 1 0.33427392 10.33427392 610.07 |<.0001
Corr_Trt*Corr_Trt Cov 1 0.05980143 |0.05980143 109.14 [<.0001
Corr_Trt*Corr_Trt_Spr 1 0.04238167 |0.04238167 77.35 [<.0001
Corr_Trt*Use_of IPTW 1 0.00225512 |0.00225512 4.12 0.0427
Corr_Trt_Cov*Corr_Trt_Spr 1 0.00739022 |0.00739022 13.49 |0.0002
Corr_Trt_Cov*Use_of IPTW 1 0.00771801 |0.00771801 14.09 [0.0002
Corr_Trt_Spr*Use_of IPTW 1 0.00000469 |0.00000469 0.01 0.9263
Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr 1 0.00715449 |0.00715449 13.06  [0.0003
Corr_Trt*Corr_Trt_Cov*Use_of IPTW 1 0.00243515 |0.00243515  [4.44 0.0352
Corr_Trt*Corr_Trt_Spr*Use_of IPTW 1 0.002944  |0.002944 5.37 0.0206
Corr_Trt_Cov*Corr_Trt_Spr*Use_of IPTW 1 0.00420714 10.00420714 7.68 0.0057
Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr*Use_of IPTW |1 0.00235722 |0.00235722 4.3 0.0382

The factor combinations for the Tukey multiple comparison are shown in Table 27, the p-value results
of the Tukey analysis are shown in Table 28, and the 90% CI in Table 29 respectively. The highlighted
cells in Table 28 indicate the factor combinations whose p-value is greater than the significance level a =
0.1, and hence are not statistically different. In the Tukey line plot, shown in Figure 26, the factor

combinations covered by the same-colored bar are not statistically different.

From the Tukey Line plot, we observe that the combination with high correlations across the groups
with the baseline and IPTW-MIMIC are statistically different from all other combinations. The factor
combination with IPTW-MIMIC and low correlation across the groups is also statistically different from
all other combinations. There are other factor combinations that are not statistically different. Two such
factor combinations of interest are the IPTW-MIMIC combination with high correlation between treatments
and spurious variables and low correlation with the other two factors and the IPTW-MIMIC combination

with low correlation between treatments and spurious variables and high correlation with the other two

62



factors. This shows that high correlation between treatments and spurious variables has a higher impact on

FDR than the high correlation between treatments or between treatments and covariates.

LI T - R IR S )

T e - R ]
@t b W = O

Table 27: Tukey comparison factor combinations for interaction selection FDR

Adjustment for Multiple Comparisons: Tukey

Corr_Trt | Corr_Trt_Cov | Corr_Trt_5Spr | Use_of IPTW Interaction_5Selection_FDR LSMEAN | LSMEAN Mumber
High High High Baseline 072332120 1
High High High IPTW-MIMIC 070543850 2
High High Low Baseline 083001482 3
High High Low IPTW-MIMIC 080855185 4
High Loww High Baseline 087956410 A
High Low High IPTW-MIMIC 0.54250058 g
High Low Low Baseline 080484321 T
High Low Low IPTW-MIMIC 0.55812887 B
Low High High Baseline 086319710 g
Lowr High High IPTW-MIMIC 082534738 10
Low High Low Baseline 0.583595423 11
Lowr High Low IPTW-MIMIC 055773845 12
Low Low High Baseline 084256291 13
Lowr Low High IPTW-MIMIC 081220457 14
Lowr Low Low Baseline 0.57850027 15
Lowr Low Low IPTW-MIMIC 0.54344208 15
Table 28: Tukey analysis p-value for interaction selection FDR
Least Squares Means for effect Corr*Corr*Corr*IPTW _
Pr = |t| for HD: LSMean(i)=L 5Meanij}
Dependent Variable: Interaction_Effects_FDR
1 2 3 4 5 B 7 8 ] 10 11 12 13 14 15 16
=.0001 | <.0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <.0001 | <0001 | <0001 | <0001 | <0001 | <.0001 | <.0001
=.0001 <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001
=.0001 | =.0001 <0001 | <0001 | <0001 | <0001 | <0001 :_ECIE-I <0001 | <0001 | 00147 | <0001 | <0001 | <0001
=.0001 | <0001 | <0001 <0001 | <0001 <0001 | <0001 | <0001 | <0001 | <0001 | <0001 <0001 | <0001
=.0001 | <0001 | <0001 | <0001 =.0001 | <0001 | =0001 | =.0001 | <0001 | <0001 | <0001 | <0001 | <.0001 | =.0001 | <0001
=.0001 | <0001 | <0001 | <0001 | <.0001 <.0001 | =.0001 | 0.0042 | <.0001 | <0001 | <0001 | 0.7502 | <.0001 | <.0001 | <.0001
=.0001 | <0001 | <0001 | 0.8004 | <0001 | <.0001 <.0001 | <0001 | <0001 | 0.0001 | <0001 | <0001 | L7020 | <.0001 | <0001
=.0001 | <0001 | <0001 | <0001 | <0001 | <.0001 | <0001 <.0001 | <0001 | <.0001 | 1.0000 | <.0001 | <.0001 | 0.0485 | <.0001
=.0001 | <0001 | <0001 | <0001 @ <0001 | 0.OD43 | <0001 | <.0001 =.0001 | <0001 | <0001 | <0001 | <0001 | <0001 | <0001
=.0001 | <0001 | 09205 | <0001 | <0001 | <.0001 | <0001 | <0001 | =.0001 <0001 | <0001 | <0001 | .OO74 | <0001 | <0001
=.0001 | <0001 | <0001 | <0001 | <0001 | <0001 | 00001 | <0001 | <0001 | <0001 <0001 | <.0001 | <0001 =.0001
=.0001 | =000 | <0001 | <0001 | <0001 | <0001 | <0001 | 1.0000 | <0001 | <0001 | <0001 <0001 | <.0001 | 0.0355 | <.0001
=.0001 | =0001 | 00147 | <0001 | <0001 | 07502 | <0001 | <0001 | =CO01 | <0001 | <0001 | <0001 <.0001 | =.0001 | <0001
<0001 | <0001 | <0001 | 0.9884 | <0001 | <0001 | 0.7020 | =.0001 | <0001 | 00074 | <0001 | <0C01 | <0001 <0001 | <0001
=.0001 | <.0001 | <0001 | <0001 | <0001 | <0001 | <0001 | 0.0485 | =.0001 | <0001 | 02203 | 0.0355 | <0001 | <.0001 <001
=.0001 | <0001 | <0001 | <0001 | <0001 | <.0001 | <0001 | <.0001 | <0001 | <0001 | <.0001 | <0001 | <0001 | <0001 | <.0001
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Table 29: Tukey analysis 90% CI for interaction selection sensitivity

Corr_Trt | Corr_Trt_Cov | Corr_Trt_Spr

High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low

Low

High
High
High
High
Low

Low

High
High

Low

High
High

Low

Use_of IPTW

Baseline
IPTW-MIMIC
Baseline
IPTW-MIMIC
EBaseline
IPTW-MIMIC
Baseline
IPTW-MIMIC
Baseline
IPTW-MIMIC
Baseline
IPTW-MIMIC
Baseline
IPTW-MIMIC
Baseline

IPTW-MIMIC

Interaction_5election_FDR LSMEAMN | 20% Confidence Limits

0.723321
0.705435
0.630015
0.608552
0.670564
D.G48581
D.G04844
0.568130
0.663187
0.625348
0.588855
0.567738
0.642563
0.812205
0.578500
0.543443

0.718458
0.701524
0.g26162
0.804528
0.875712
0.845738
0.801081
0.554277
0.856345
0.821485
0.584802
0.5563837
0.8638710
0.80gas52
0.5754548
0.528520

Interaction_Selectn FDR Tukey Grouping for LS-Means of

Corr_Trt  Corr_Trt_Cov  Corr_Tri_Spr
High High High
High High High
High Low High
Law High High
High Low High
Low Low High
High High Low
Low High High
Low Low High
High High Low
High Low Low
Low High Low
Low Low Low
High Low Low
Low High Low
Low Low Low

Corr*Corr*Corr*Use_o (Alpha=0.1)

LS-means covered by the same bar are not significantly different.

Figure 26: Tukey line plot for interaction selection FDR
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A means analysis is performed to compare the IPTW-MIMIC and baseline. The result of the means
analysis across all the correlation combinations is shown in Table 30. We see that IPTW-MIMIC and the

baseline are statistically different with IPTW-MIMIC having a lower average FDR than baseline.

Table 30: Comparison of feature selection FDR means with IPTW model form

HiD:L 5Mean1=L 5Mean2

Use_of IPTW | Interaction_Selection_FDR LSMEAN Pr= |t
Baseline 063825202 =.0001
IPTW-MIMIC 0.61008171

Use_of IPTW | Interaction_5election_FDR LSMEAN | 30% Confidence Limits
Baseline 0.838870 0.827808 0640332
IPTW-MIMIC 0.810082 0.808700 0.611424

Least Squares Means for Effect Use_of_IPTW
i| j | Difference Between Means | Simultaneous 30% Confidence Limits for L 5Mean(i}-L SMean(j)
1| 2 0.023808 0.026882 0.020334

A simultaneous Bonferroni comparison of contrasts is performed to identify the performance of the use
of IPTW across the different correlation combinations. The set of contrasts for comparison is shown in
Table 12, where each contrast is highlighted with the same color. The results in Table 31 show that all the
contrasts are statistically significant at a significance level of a = 0.1, indicating that [IPTW-MIMIC
performs better than the baseline by identifying fewer false interaction terms in the predicted model across

the different correlation combinations.
Table 31: Simultaneous Bonferroni comparison results for feature selection FDR

Corr_Trt | Corr_Trt_Cov | Corr_Trt_Spr DF 5Sum of Squares | Mean Square F Value | Pr=F

High High High 1 0.015823 0015223 2918 | <.00MNM
High High Low 1 0.022023 Lo2zos3 42.04 | <00
High Low High 1 0.044821 044821 21.88 | <.00MNM
High Low Low 1 0.067754 0L0GTTE4 | 123.67 | <001
Low High High 1 0.071528 0071828 130.72 | <.0001
Low High Low 1 0.021758 0021758 39.73 | <.0001
Low Low High 1 0.048031 0046081 84.10 | <00
Low Low Lover 1 0055007 0085007 118.64 | <.0001
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3.6 Conclusion and Future Work

The pain management simulation case study was conducted with the primary goal of evaluating the
proposed HierNet-IPTW modeling framework that uses HierNet for model building and IPTW with MIMIC
algorithm to address the time-varying confounding. The proposed method was compared against the
baseline that uses HierNet for model building and does not address time-varying confounding. The
evaluation was done on the feature and interaction selection metrics. The different correlation structures
between the treatments, covariates, and spurious variables were simulated to mimic the complexities found

in the actual pain management dataset. A full factorial 2* experiment was conducted.

The ANOVA was conducted with feature selection sensitivity, feature selection specificity, interaction
selection sensitivity, and interaction selection FDR as the outcome measures. From the analysis, all the
main effect factors were found to be significant for all the outcome measures. With feature selection
sensitivity, interaction terms involving the use of IPTW, the correlation between treatments and correlation
between treatments and covariates were found to be significant. With feature selection specificity,
interaction selection sensitivity, and interaction selection FDR, 2-factor and 3-factor interaction terms were
found to be significant that covered all the factors. Tukey analysis was performed to compare all the

experimental combinations and the combinations that were not statistically different were highlighted.

A Bonferroni simultaneous comparison of contrasts was conducted with the contrasts defined to
compare the use of IPTW-MIMIC against the baseline with all the possible combinations between the
correlation factors. This analysis showed that the IPTW-MIMIC performed as well or better than the

baseline in all the cases.

This experimental analysis of the proposed HierNet-IPTW modeling method on the pain management
simulation data shows that it performs better than the baseline in correctly identifying the true and spurious
features and interactions. The next step would be to implement this modeling method on the pain

management dataset to build state transition and outcome models. These state transition models will be
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incorporated into the optimization module. For future work, different stopping criteria can be considered in

the model framework.
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Chapter 4

Using LASSO based State Transition Model with Interactions in
Multiple Objective Two-Stage Stochastic Programming for
Adaptive Interdisciplinary Pain Management

Abstract

The Eugene McDermott Center for Pain Management at the University of Texas Southwestern Medical
Center has a two-stage adaptive interdisciplinary pain management program for chronic pain. The program

considers different pain outcome measures to quantify patient’s pain, physical and mental health status.

In an adaptive treatment environment, the patient’s current state influences the treatments recommended,
which in turn affect the patient’s future states leading to time-varying confounding and biased treatment
estimates. Inverse Probability of Treatment Weighting (IPTW) [106] is one technique to address time-
varying confounding. Interactions between the patient state and treatments play a major role in determining
a personalized treatment plan for individual patients. In this research, we study the effect of including state-

treatment interactions on the treatment optimization problem.

The treatment decision optimization is formulated as a multi-objective two-stage stochastic
programming problem based on Igbal et.al [27]. The objective is to minimize all the pain outcome measures
and the treatment costs. The state transition models representing the transition of patient state, treatment,
and outcome variables from stage 1 to stage 2 are modeled using the HierNet-IPTW approach. The state
transition functions are non-convex and quadratic since they model the interaction effects. The optimization
is formulated and solved as a Mixed Integer Quadratically Constrained Optimization (MIQCP) problem.
The treatment recommendations from the proposed approach are compared against other approaches that

do not model state-treatment interactions and address time varying confounding using IPTW.
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4.1 Introduction

The Eugene McDermott Center for Pain Management at UT Southwestern Medical Center has an
interdisciplinary pain management program for chronic pain. Lin et al [22] modeled this program as a two-

stage adaptive treatment framework as shown in Figure 27.

Stage 1 B Stage 2 R
Treatment: Treatment:
Pre-treatment Mid-treatment
Evaluation with Evaluation with POS:? eatment
Initial Treatment Modified Treatment evaluation

Figure 27: Two-stage interdisciplinary pain management program [22]

The observational dataset has 294 patient observations, with 62 state variables, 14 stage 1 and 13 stage
2 treatment decision variables, and 5 pain outcome measures. A detailed description of these variables is
provided in Appendix I11. The pain outcome measures, and treatment variables used in the study are shown
in Table 32 and Table 33, respectively. The multiple pain outcome measures help caregivers evaluate the
patients on several different parameters. These pain outcome measures provide an insight into the physical,
mental, and general health profile of the patients. The treatment decision variables include a mix of

pharmaceutical and procedural interventions.

Table 32: Pain Outcome Measures

Pain Outcome Measure Description
Oswestry Pain Disability Index (OSW) A measure of functional disability due to pain [18]

An analog scale of 0-10, with 0 corresponding to no pain
Pain Drawing Analogue (PDA) and 10 corresponding to the worst possible pain [19]
Beck Depression Inventory (BDI) Used to measure the severity of depression [20]
Short Form Survey Physical Component General health status profile surveys designed to measure
Score (SF36pcs) the physical health status of the patient [21]
Short Form Survey Mental Component Score | General health status profile surveys designed to measure
(SF36mcs) the mental health status of the patient [21]
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Table 33: Treatment Decision Variables

Treatments | Treatment Type | Description

RxGrl Pharmaceutical Tramadol

RxGr2 Pharmaceutical NSAID

RxGr3 Pharmaceutical Narcotic

RxGr4 Pharmaceutical Muscle Relaxant
RxGr5 Pharmaceutical Anti-depressant
RxGr6 Pharmaceutical Tranquilizer

RxGr7 Pharmaceutical Sleeping Pill

RxGr8 Pharmaceutical Other

ProcGrl Procedural Injection

ProcGr2 Procedural Block Procedure
ProcGr4 Procedural Stimulation Procedure
ProcGr9 Procedural Cognitive Behavioral Therapy
ProcGr10 Procedural Physical Therapy
ProcGrll Procedural Additional Procedures

The main objective of the pain management research is to use this observational data in an adaptive
decision framework to identify an optimal treatment regime [22]. A summary of the research work done on
the pain management program is provided in Table 34. The proposed research work is highlighted in the

table.

Lin et al. [22] created an optimization framework based on approximate dynamic programming (ADP)
with linear regression to model the state transitions. The state transition models are constructed empirically
with the future value function approximated using state space discretization based on Latin hypercube
design [22]. The recommended treatment regime minimized adverse patient pain outcomes along with
treatment costs. The adaptive and sequential nature of the pain management program introduces time-
varying confounding, where the treatment effects are confounded by past treatments and patient state
variables. LeBoulluec et al. [25] extended the IPTW framework to address this time-varying confounding

in a multiple treatment setting. Ohol [26] further extended the IPTW method to consider correlated
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treatments. Farahani et al. [152] used LASSO-based regularization along with IPTW to perform feature

selection.
Table 34: Pain Management Research Summary
State Transition Modeling
Paper Model type Interactions Feature selection IPTW Optimization
. . State treatment .
Lin et al. [22] Linear model - . Stepwise least squares No SDP
interactions
. State treatment . . .
LeBoulluec et al. [25] Linear model . . Stepwise least squares | Derived weights No
interactions
Ohol [26] Linear model No No Derived weights No
Farahani et al. [152] Linear model No LASSO regularization | Used Ohol weights No
. State treatment . Used LeBoulluec's
Wang et al. [28] Linear model - . Stepwise least squares . Two-stage SP
interactions weights
Pi ise Li . . Pi ise Li LeBoulluec'
Igbal et al. [27] lecewise Linear Network interactions ecewise Linear Used e_ oufluec's Two-stage SP
Network Network weights

Wang et al. [28] and Igbal et.al [27] formulated the optimization as a two-stage stochastic programming
problem. Wang et al. [28] used weighted least squares method to develop the state transition models using
the IPTW weights from LeBoulluec et al. [25]. The state transition constraints in the optimization were
non-convex as they modeled the state treatment interaction terms. A linearization method using a piecewise
linear function was proposed to approximate the non-convex constraints and formulate the optimization
problem as an approximated mixed integer linear problem (MILP). The objective of the optimization was
to minimize the pain outcome measure, OSW while also penalizing excessive treatment costs under the
state transition function and treatment interaction constraints. The optimization results from the
approximate MILP were compared with the solutions obtained from the original mixed integer nonlinear

problem (MINLP) formulation without linearizing the interaction constraints.
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Igbal et al.[27] formulated a multi-objective two-stage stochastic programming optimization problem
using piecewise linear networks (PLN) to build the state transition functions. The objective is to minimize
the multiple pain outcome measures along with treatment costs. A survey among caregivers was conducted
to identify the relation between the different pain outcome measures and a convex quadratic programming
approach was used to obtain weights to penalize the different pain measures. An equivalent MILP model

was used to solve the optimization problem.

Igbal et al. [27] was the only work that considered multi-objective optimization and included IPTW
weights while building the state transition models. The state transition models did not include the state

treatment interaction effects but had network interactions.

In this paper, we propose to use the LASSO-based HierNet-IPTW modeling method to develop state
transition models with state treatment interactions. We use these state transition models in the multi-
objective optimization framework based on Igbal et.al [27] and study the treatment recommendation
patterns from the proposed approach. The state transition functions are non-convex as they include
interaction terms. Instead of linearizing the interaction terms and using an approximate MILP model, we
use a Mixed Integer Quadratically Constrained Program (MIQCP) to formulate and solve the optimization

problem.

The main objective of this research is to show the advantages of modeling interaction terms in an
adaptive treatment setting, where the goal is optimal treatment decision-making rather than optimal
prediction [155]. We compare the treatment decisions obtained by the proposed method against the
treatments recommended using a linear state transition model without interactions. We also show the
advantage of using IPTW to address time-varying confounding while building models by comparing the
treatments recommended by the proposed method against the treatments obtained using state transition

models with interactions modeled without using IPTW.
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4.2 Stochastic Programming Formulation

The objective of the research is to find the optimal treatment strategy in stage 1 and stage 2 that will
minimize the patient’s multiple pain outcome measures and treatment cost. The objective function has two
components [27]: the penalty function of pain outcomes and a cost function associated with treatment usage.
The objective function ensures that the patient pain outcomes are reduced while avoiding overmedication.

The optimization is subject to treatment interaction and state transition constraints [28].

The general two-stage stochastic problem formulation from Igbal et al. [27] is shown below:

min Y " E(Pu, (aer &) + p() Cl) + ) E(CCry(e))) (14.1)
i€N jeN;
subject to: Y;;1(&;1) = hj1(S1,x1,&1) VIiEN (14.2)
Yia(e1, €i2) = hia(s2(&1), x2(e1), &) Vi€EN (14.3)
Y;1(gi1) = max (0, Y1 (g;1)) .
<7i2 (51,€i2) = max (0, Yiz(£1:£i2))> vLen (1449
xf $ Xf - P.x1 €A 14.5
<x§(el) X x3 (&) = 0> vat,xt € (14.5)
s2(&1) = [51,%1,Y1(&1)] (14.6)
x1 € T, x(e1) € T (14.7)

where u;; is the penalty weights of pain outcome i € N for level j € N;. Py; is the penalty function on

different levels of the multiple pain outcome measures. C() is the treatment cost function with p as the

treatment cost coefficient. The penalty weights u;; are from Igbal et al. [27] and the treatment cost function

is from Wang et al. [28]. The treatment cost coefficient p is set to 0.05 [27] and is selected so that the cost

function does not dominate the pain outcome.
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The variables Y;; (g;1) and Y;, (&1, €;2) are the pain outcome measures i in stage 1 and stage 2 with
uncertainties €;; and g;,. Y; (¢1) and &; are the vectors associated with Y;; (¢;;) and &;1, Vi € N respectively.
x? are the treatment decision variables p in stage ¢t with the feasible decision space I, and s, are the state

variables in stage t. The set A includes treatment interaction restrictions.

The state transition functions for the pain outcome measures are modeled as the constraint set shown in
Equations (14.2) and (14.3). h;; and h;, are the state transition models for pain outcome measure i at stage
1 and stage 2 respectively. Equation (14.4) uses the truncating variables Y;; (g;;) and Y;,(g;1, £;2) to ensure
that the pain outcome measures are non-negative. Equation (14.5) ensures that treatments with adverse
interaction effects are not prescribed to patients together. The list of treatments with adverse interaction
effects is included in Appendix V. The state variables in stage 2 include the state variables, treatment
variables and pain outcome measures from stage 1, along with the stage 1 uncertainties £; . This is shown

in Equation (14.6). Equation (14.7) ensures that the treatment decision variables are in the feasible region.

Igbal et al.[27] used Piecewise Linear Network (PLN) to model the state transition functions and solved
an MILP to optimize treatment. Wang et al. [28] used stepwise regression to model the state transition
function with interactions. The interaction terms were linearized using a piecewise linear function and an
approximate MILP was solved. We propose to use the HierNet-IPTW approach to build the state transition

function with interactions.

The state transition functions h;; and h;,, developed using the proposed HierNet-IPTW approach are
guadratic and non-convex since they model the state treatment interaction effects. Instead of linearizing
these quadratic non-convex constraints and solving an approximate MILP, we formulate the optimization
as a Mixed Integer Quadratically Constrained program (MIQCP). However, we also note that when the
state transition models have no interactions, either because interaction terms are ignored in model
development or the model finds no statistically significant ones, then the optimization formulation is an

MILP.
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In two-stage stochastic programming, uncertainty is represented using discrete sampled scenarios. Igbal
et al.[27] ran experiments to compare different sample sizes and selected a sample size of 25 for each stage.

We use a sample size of 25 per stage in this research as well.

The optimal stage 1 and stage 2 treatments recommended from the following three optimization

approaches are compared:

1. 2SP IQ-IPTW: The proposed MIQCP optimization approach with HierNet-based state transition
models with interactions and with IPTW.

2. 2SP 1Q: The MIQCP optimization approach with HierNet-based state transition models with
interactions and without IPTW.

3. 2SP AL-IPTW: The MILP optimization approach with LASSO-IPTW-based linear state transition

models without interactions and with IPTW.

The purpose of the analysis is to compare the difference in treatment usage between models with
interactions using IPTW and without IPTW, and between models using IPTW with interactions and without

interactions.

The stage 1 and stage 2 state transition models for the 5 pain outcome measures PDA, OSW, BDI, SF-
36pcs and SF36-mcs are developed using the above three modeling methods. The MIQCP and MILP
formulation is done in AMPL and the Gurobi solver is used to solve the optimization problem. These models

are included in Appendix 1.

4.3 Treatment Usage Analysis

In this section, we analyze the stage 1 and stage 2 treatments selected by the optimization approaches.
4.3.1 Stage 1 Treatment Analysis

The stage 1 treatments selected by the optimization approaches are compared against each other and with

the observed dataset.
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4.3.1.1 Stage 1 2SP 1Q-IPTW vs 2SP 1Q Treatment Analysis

The stage 1 treatment usages from 2SP 1Q-IPTW, 2SP 1Q, and observed data are shown in Figure 28. The
most used treatment in the observed data is ProcGr9_1 (Cognitive Behavioral Therapy), recommended to
76% of the patients. ProcGr9_1 is suggested to 77% of the patients in 2SP 1Q-IPTW and 87% of the patients
in 2SP 1Q. The second most used treatment in the observed data, ProcGrl0_1 (Physical Therapy),
prescribed to 71% of the patients is not selected by 2SP 1Q but is recommended to 22% of the patients in
2SP 1Q-IPTW. The pharmaceutical treatments RxGr4 (Muscle Relaxant) and RxGr5 (Anti-depressant) are
the most used treatments in 2SP 1Q, recommended to 99% and 93% of the patients respectively. RxGr4 is
the most used treatment in 2SP 1Q-IPTW, recommended to 80% of the patients. In the observed dataset,
pharmaceutical treatments RxGr2 (NSAID), RxGr3 (Narcotic), RxGr4, and RxGr5 are recommended to
around 30% of the patients, while in 2SP 1Q-IPTW, RxGr2 and RxGr5 are recommended to 21%, and 62%
of the patients respectively and RxGr3 is not recommended. The procedural treatments ProcGrl (Injections)
and ProcGr4 (Stimulation Procedure) are recommended to 23% and 6% of the patients in the observed

dataset, while they are recommended to 4% and 30% of patients in 2SP 1Q-IPTW but are not used in 2SP

Q.

The main difference between 2SP 1Q-IPTW and 2SP 1Q is the number of different treatments
recommended by the model. The majority of patients are recommended the treatments RxGr4, RxGr5, and
ProcGr9 by 2SP 1Q, while 2SP 1Q-IPTW recommends a wide range of treatments that includes more

procedures like ProcGrl, ProcGr4, ProcGr9, and ProcGr10.
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Figure 28: Stage 1 Treatment Usage 2SP IQ-IPTW, 2SP 1Q, and observed data

4.3.1.2 Stage 1 2SP 1Q-IPTW vs 2SP AL-IPTW Treatment Analysis

The stage 1 treatment usage from 2SP IQ-IPTW, 2SP AL-IPTW, and observed data are shown in Figure

29. The treatments recommended by the 2SP 1Q-IPTW and 2SP AL-IPTW are similar but with differences

in the percentage of patients recommended. 2SP AL-IPTW recommends RxGr2 (NSAID), RxGr5 (Anti-

Depressant), and ProcGr9 (Cognitive Behavioral Therapy) to more patients than 2SP 1Q-IPTW while the

treatments RxGr4 (Muscle Relaxant), ProcGr4 (Stimulation Procedure) and ProcGrl0 (Physical Therapy)

are recommended to more patients in 2SP 1Q-IPTW. The treatment ProcGrl (Injection) is recommended to

4% of the patients in 2SP 1Q-IPTW while it is not used in 2SP AL-IPTW. From this analysis, we observe

that more procedural treatments are recommended by the 2SP 1Q-IPTW than 2SP AL-IPTW.
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Figure 29: Stage 1 Treatment Usage 2SP 1Q-IPTW, 2SP AL-IPTW, and observed data

4.3.1.3 Stage 1 Treatment Analysis between low and high IPTW weight patients

The objective of incorporating IPTW in the model framework is to identify the rare patient instances in the

dataset, which will have higher IPTW weight. The patient dataset is divided into two groups, high IPTW

weights, and low IPTW weights. We compare the treatment usage between the two groups to better

understand the difference between the three approaches. The dataset has 294 patient observations, 55 of

them have IPTW weights greater than 1 and are grouped as high IPTW weight patients while the remaining

239 patients are grouped as low IPTW weight patients.

The treatment recommendation pattern with 2SP 1Q is shown in Figure 30. The pharmaceutical

treatment usage pattern is similar between low and high IPTW patients while the procedural treatment

ProcGr9 (Cognitive Behavioral Therapy) is recommended to 89% of low weight and 76% of high weight

patients respectively. The lack of difference between the pharmaceutical treatment usage patterns shows
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that the HierNet model without IPTW does not identify the rare patient instances and follows the same

treatment recommendation patterns for all the patients.
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Figure 30: Stage 1 Treatment Usage 2SP IQ for Low and High IPTW weight patients

The treatment usage by 2SP AL-IPTW in Figure 31 does not show major differences in treatment
assignment between low and high IPTW patients. The treatments RxGr2 (NSAID), RxGr4 (Muscle
Relaxant), RxGr5 (Anti-depressant), and ProcGr10 (Physical Therapy) are prescribed slightly more often
to high weight patients while the procedural treatments ProcGr4 (Stimulation procedure) and ProcGr9

(Cognitive Behavioral Therapy) are prescribed more to low weight patients.
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Figure 31: Stage 1 Treatment Usage 2SP AL-IPTW for Low and High IPTW weight patients
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The 2SP IQ-IPTW treatment recommendation pattern in Figure 32 shows that certain treatments are
prescribed to a greater percentage of high weight patients than to low weight patients. The procedural
treatment ProcGr10 (Physical Therapy) is recommended to 53% of high IPTW weight patients while it is
suggested to only 15% of low weight patients. The procedural treatments ProcGr1 (Injection) and ProcGr4
(Stimulation Procedure) are also recommended more often to high weight patients. The treatments RxGr4
(Muscle Relaxant) and ProcGr9 (Cognitive Behavioral Therapy) are recommended similarly to around 80%
of both low and high weight patients. The pharmaceutical treatments RxGr2 (NSAID) and RxGr5 (Anti-
depressant) are recommended to 36% and 69% of high weight patients, while it is recommended to 18%

and 60% of low weight patients, respectively.
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Figure 32: Stage 1 Treatment Usage 2SP HierNet-IPTW for Low and High IPTW weight patients

The comparison of treatment assignment to low and high IPTW patients between 2SP 1Q-IPTW, 2SP
AL-IPTW, and 2SP 1Q is shown in Figures 33(a) and 33(b) respectively. The 2SP 1Q-IPTW approach
recommends more treatments to high IPTW weight patients than the 2SP AL-IPTW and 2SP 1Q approaches.
The treatment RxGr2 (NSAID) is recommended by 2SP 1Q-IPTW to a smaller percentage of low weight
patients than by 2 SP AL-IPTW, but its recommendation to high weight patients is increased by 2SP 1Q-
IPTW. The treatments ProcGrl (Injection), ProcGr4 (Stimulation Procedure), and ProcGrl0 (Physical
Therapy) are recommended to similar percentages of low weight patients by 2SP AL-IPTW and 2SP 1Q-

IPTW, while we see a significant increase in their recommendation to high weight patients by 2SP 1Q-
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IPTW. This analysis shows that accounting for both time-varying confounding using IPTW and the
interaction effects while building the state transition models results in the optimal treatment allocation being

more adaptive to rare patients in stage 1.
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Figure 33(a): Stage 1 treatment assignment comparison for low IPTW weight patients
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Figure 33(b): Stage 1 treatment assignment comparison for high IPTW weight patients

4.3.2 Stage 2 Treatment Analysis
The stage 2 treatments selected by the optimization approaches are analyzed in this section.
4.3.2.1 Stage 2 2SP 1Q-IPTW vs 2SP 1Q Treatment Analysis

The stage 2 treatment usage from 2SP 1Q-IPTW, 2SP 1Q, and observed data are shown in Figure 34. The
procedural treatments ProcGr9 (Cognitive Behavioral Therapy) and ProcGr10 (Physical Therapy) are the

most recommended treatments in the observed dataset, prescribed to 59% and 53% of the patients
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respectively. ProcGr9 is recommended to 99% of the patients in 2SP 1Q and 89% of the patients in 2SP 1Q-
IPTW, while ProcGr10 is not recommended in either. The 2SP 1Q approach recommends treatments RxGr7
(Sleeping Pills), ProcGrl (Injection), and ProcGr2 (Block Procedure) to 97%, 97%, and 99% of the patients,
while 2SP 1Q-IPTW recommends these treatments to 67%, 76% and 84% of the patients respectively. In
the observed dataset, RxGr7 is recommended to 11% of the patients, while ProcGrl and ProcGr2 are
prescribed to 22% and 2% of the patients respectively. This analysis shows that the 2SP 1Q approach
recommends a few select treatments to the majority of the patients, while the 2SP 1Q-IPTW approach

recommends a wide range of treatments in stage 2.
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Figure 34: Stage 2 Treatment Usage 2SP 1Q-IPTW, 2SP 1Q, and observed data

4.3.2.2 Stage 2 2SP 1Q-IPTW vs 2SP AL-IPTW Treatment Analysis

The stage 2 treatment recommendations from 2SP 1Q-IPTW, 2SP AL-IPTW, and observed data are shown
in Figure 35. The major difference between the two approaches is in the recommendation of RxGr4 (Muscle
Relaxant), ProcGr4 (Stimulation Procedure), and ProcGr9 (Cognitive Behavioral Therapy). While 2SP AL-

IPTW recommends the treatments RxGr4 and ProcGr4 to 41% and 38% of the patients, 2SP 1Q-IPTW uses
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them in 19% and 7% of the patients respectively. ProcGr9 is not recommended to any patients in 2SP AL-
IPTW while it is recommended to 89% of the patients in 2SP 1Q-IPTW. The treatments RxGr3, RxGr7,

ProcGr1, and ProcGr2 followed similar recommendation patterns with both approaches.
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Treatments-Stage 2 |RXGrl |RXGr2 [RxGr3 |RxGr4 |RxGr5 [RXGr6 |RXGr7 [RxGr8 |ProcGrl |ProcGr2 |ProcGr4 |ProcGr9 |ProcGrl0
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Figure 35: Stage 2 Treatment Usage 2SP 1Q-IPTW, 2SP AL-IPTW, and observed data

4.3.2.3 Stage 2 Treatment Analysis between low and high IPTW weight patients

The treatment recommendation patterns with 2SP 1Q for low and high weight patients are similar as shown
in Figure 36. The treatments RXGr7 (Sleeping Pill), ProcGrl (Injection), and ProcGr9 (Cognitive
Behavioral Therapy) are recommended slightly more often to low weight patients than high weight patients
while RxGrl (Tramadol) and RxGr8 (Other) are recommended marginally more to high weight patients.

The treatment ProcGr4 (Stimulation Therapy) is similarly recommended to low and high weight patients.
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Figure 36: Stage 2 Treatment Usage 2SP 1Q for Low and High IPTW weight patients

The treatment recommendations with the 2SP AL-IPTW approach are shown in Figure 37. The
pharmaceutical treatments RxGr3 (Narcotic), RxGr4 (Muscle Relaxant), and RxGr7 (Sleeping Pill) are used
similarly in low and high weight patients. The procedural treatments ProcGrl (Injection) and ProcGr4

(Stimulation Procedure) are recommended more to low weight patients, while ProcGr2 (Block Procedure)

is recommended more to high weight patients.
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Figure 37: Stage 2 Treatment Usage 2SP AL-IPTW for Low and High IPTW weight patients

The treatment recommendations using the 2SP 1Q-IPTW approach are shown in Figure 38. ProcGr4

(Stimulation Procedure) is predominantly recommended to high weight patients. The treatments RxGrl
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(Tramadol), RxGr3 (Narcotic), RxGr4 (Muscle Relaxant), RxGr7 (Sleeping Pill), ProcGr2 (Block
Therapy), and ProcGr9 (Cognitive Behavioral Therapy) are recommended slightly more frequently to the
high weight patients. The treatment ProcGrl (Injection) is recommended similarly to both low and high

weight patients.
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Figure 38: Stage 2 Treatment Usage 2SP 1Q-IPTW for Low and High IPTW weight patients

The comparison of the treatment assignment to low and high IPTW patients between 2SP 1Q-IPTW,
2SP AL-IPTW, and 2SP 1Q is shown in Figures 39(a) and 39(b), respectively. The treatment ProcGr4
(Stimulation Therapy) is recommended to a greater percentage of high weight patients, while it is
recommended to a very small percentage of low weight patients by 2SP 1Q-IPTW. The treatment ProcGrl
(Injection) is recommended to the same percentage of low weight patients by 2SP AL-IPTW and 2SP 1Q-
IPTW, while it is recommended to a greater percentage of high weight patients by 2SP 1Q-IPTW. The
recommendation of treatment RxGr4 (Muscle Relaxant) is also greater to the high weight patients by 2SP
IQ-IPTW. This analysis shows that the 2SP 1Q-IPTW approach recommends more treatments to the high
weight patients than the other two methods. The 2SP IQ-IPTW approach is more adaptive than the other
two approaches and by recommending more treatments to high weight patients than the low weight patients,

S0 it reduces over-medication to more common patients with low IPTW weights.
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Figure 39(a): Stage 2 treatment assignment comparison for low IPTW weight patients
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Figure 39(b): Stage 2 treatment assignment comparison for high IPTW weight patients

4.4 Conclusion and Future Work

This research proposes the 2SP 1Q-IPTW MIQCP optimization approach using the state transition models
developed using the HierNet-IPTW method, which uses IPTW to address time-varying confounding and
models the state treatment interaction effects. The treatment decisions recommended by the proposed 2SP
IQ-IPTW approach are compared against treatments recommended by the 2SP 1Q approach, which does

not use IPTW, and those from the 2SP AL-IPTW approach, which does not model interaction effects.

The analysis of stage 1 and stage 2 treatment recommendations show that the 2SP 1Q approach

recommends fewer treatments to most of the patients, and the recommendation pattern is similar between
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low and high IPTW weight patients. The 2SP AL-IPTW approach recommends more treatments than 2SP
IQ recommends, and the patterns are similar between low and high IPTW weight patients. The
pharmaceutical treatments recommended by the 2SP 1Q-IPTW approach are similar to those of the 2SP
AL-IPTW approach, but the 2SP 1Q-IPTW approach recommends more procedural treatments. The 2SP
IQ-IPTW approach also recommends certain treatments to a greater percentage of the high IPTW weight

patients than the low IPTW weight patients.

The inclusion of IPTW and state treatment interaction effects in building the state transition models
results in more adaptive treatment decisions being made by the optimization module. The optimization
recommends more treatments to the high IPTW weight patients that represent rare patient instances in the

dataset. This avoids overprescribing certain medications to all the patients.

The difference in treatment recommendations between the optimization and the observed dataset needs
to be studied further. The proposed 2SP 1Q-IPTW approach uses LASSO-based HierNet modeling to build
state transition models with interactions. We can consider other modeling techniques to build state transition
models with interactions and compare them against the 2SP 1Q-IPTW treatment recommendations. In
preliminary research, we considered Glinternet, another LASSO-based modeling method with interactions.
This method can be explored in future work. The results from the simulation case study in the preliminary

research are included in Appendix V.
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Chapter 5

Discussion and Future Work

The main aim of this research is to develop state transition models on the pain management dataset while
addressing the challenge of including state-treatment interactions that are critical to enable personalized
treatment plan for patients. In Chapter 3, we propose a method named HierNet-IPTW, where HierNet, a
LASSO based method is combined with IPTW from Ohol [26] to build state transition and outcome models
that enable feature selection and modeling of interaction effects in the presence of time-varying
confounding. This approach is studied using a simulated case study structured based on the McDermott
Center data with time varying confounding and various correlation structures between the variables. The
performance of the proposed HierNet-IPTW approach is compared against the baseline method that does
not address time varying confounding. The evaluation was done on the feature and interaction selection
metrics. The ANOVA conducted on the experimental data showed that the proposed HierNet-IPTW

approach performed better than the baseline in correctly identifying the true feature and interaction terms.

In Chapter 4, we build state transition models on the pain management dataset. These models are used
in a multi-objective two stage stochastic optimization problem formulated as a MIQCP problem named 2SP
IQ-IPTW. The treatment recommendations from the proposed 2SP 1Q-IPTW approach were compared
against the treatments recommended from the 2SP AL-IPTW and 2SP 1Q approach. The results showed
that the inclusion of IPTW and state treatment interaction effects in building the state transition models
results in more adaptive treatment decisions being made by the optimization module. The proposed
approach recommends more treatments to the high IPTW weight patients that represent rare patient

instances in the dataset. This avoids overprescribing certain medications to all the patients.

The comparison of the final patient pain outcome measures using the different first stage treatment

policies generated from the optimization is a subject of future work. This comparison is difficult since the
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policies were generated under different state transition and outcome models. This can be done using an
evaluation framework that is closer to the ground truth. In this study, we cannot conclusively tell that a
particular state transition model is closer to the ground truth. We can assume that the state transition models
used in the 2SP 1Q-IPTW framework generated using the proposed HierNet-IPTW are closer to the ground
truth since it captures more information from the given data. In future work, the different treatment policies

shall be evaluated using the 2SP 1Q-IPTW evaluation framework.

The difference in treatment recommendations between the optimization and the observed dataset needs
to be studied further. The proposed 2SP 1Q-IPTW approach uses LASSO-based HierNet modeling to build
state transition models with interactions. In future work, we can consider other modeling techniques to
build state transition models with interactions and compare them against the 2SP 1Q-IPTW treatment

recommendations.
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Appendix I: Modifications in HierNet to force treatments and incorporate IPTW weights

The optimization problem shown in Equation (15) is solved in HierNet
. — A
argmin, g o > ¥, (y; — i — [ B — 5x7 0x)2 + 1T (B* + ) + 2@y, (15)

subject to © = 07,

ojll, < (B +B;7), Bf =0, i =0,

In order to force the treatments in the model, the constraint ﬁjfT + Bjr = ¢ is added where ,8]-‘} and Bjr

are the treatment main effect co-efficients. ¢ is set to 0.05 in this study. In the HierNet R package, this

modification is incorporated in the ONEROW function.

The loss function is modified as shown in Equation (16), where w; are the weights obtained from IPTW
. 1 1
argminy, g o > X1y wi(y; — = x] f — 5] Ox;)? (16)
Appendix I1: Residual analysis: Checking model assumptions

Feature Selection Sensitivity

The error terms have constant variance: The residual vs experimental treatments plot in Figure 40 does
not show the presence of a funnel shape, and we can conclude that the error terms have constant error

variance.

2 4 6 8 0 12 9 16
Experiment Treatments

Figure 40: Residuals versus experiment treatments feature selection sensitivity
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The error terms are normally distributed: The normality plot shown in Figure 41, shows that the
residuals are along the normal distribution line. We can conclude that the error terms are normally

distributed.
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Figure 41: Normal Probability Plot (Q-Q Plot) feature selection sensitivity

Feature Selection Specificity

The error terms have constant variance: The residual vs experimental treatments plot in Figure 42 does
not show the presence of a funnel shape, and we can conclude that the error terms have constant error

variance.
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Figure 42: Residuals versus experimental treatments for feature selection specificity

91



The error terms are normally distributed: The normality plot shown in Figure 43, shows that the

residuals are along the normal distribution line. We conclude that the error terms are normally distributed.

Residuals
o
=}

Normal Scores

Figure 43: Normal Probability Plot (Q-Q Plot) feature selection specificity

Interaction Selection Sensitivity

The error terms have constant variance: The residual vs experimental treatments plot in Figure 44 does

not show the presence of a funnel shape, and we conclude that the error terms have constant error variance
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Figure 44: Residuals versus experimental treatments for interaction selection sensitivity
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The error terms are normally distributed: The normality plot (Figure 45) shows that the residuals are

symmetrical with shorter upper and lower tails. We conclude that the normality assumption is not satisfied.

Residuals
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Figure 45: Normal Probability Plot (Q-Q Plot) interaction selection sensitivity

Interaction Selection FDR

The error terms have constant variance: The residual vs experimental treatments plot in Figure 46 does

not show the presence of a funnel shape, and we conclude that the error terms have constant error variance.
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Figure 46: Residuals versus experimental treatments for interaction selection FDR

93



The error terms are normally distributed: The normality plot (Figure 47) shows that the residuals are

symmetrical with longer upper and lower tail. We conclude that the normality assumption is not satisfied.
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Figure 47: Normal Probability Plot (Q-Q Plot) interaction selection FDR
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Appendix 111

The different levels of the pain outcome measures indicating the severity of pain, depression, and general

health status.

s T
Oswestry(OSW) : : Fain Drawing Analogue(PDA):
4 Measure of functional Marking label of pain in 3 10-cm visu 3l scde

disability Bed
bound
sore 3 | L I 1 L L L 1 L L L )
label Mo Severe 0 1 2 3 4 5 6 7 8 9 10
treatment investigation
2 b Details
i : investigation b o pain—t A little pain—t— considensble paint——Lots of pain—t—wors st mir?
1

Conservative
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10 20 an 40 50
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} Beck Depression 2 Mot good
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2 F normal Moderate [’: :J:I
: depressian =
1 il

depression 20 40 60 80 100
10 11 14 El] =] 5f36pcs/mes score
BDIscore
(c¢) BDI label (d) SF36pes/mes label

Figure 48: Different Pain Outcome Measures and their levels [27]
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The description and type of the state, treatment and outcome variables in the pain management study is

shown in Table 35.

Table 35: Description of state, treatment, and outcome variables in pain management dataset [27]

Variable Variable Description Values
type MName
pre_PDA PDA measure at the initial point Continuous
pre_OSW OSW measure at the initial point Continuons
pre_BDI B measure at the initial point Continuons
pre_SF36- SF36-pes measure at the nitial point Continuous
pcs
pre_SF36- SF36-mes measure at the initial point Continuons
mes
Age Patient’s age Continuons
Children Children Continuous
Onset Time (in months) since the first onset of pain | Continuous
Duration Duration Continuous
Status Status of condition 1:  acute (< 3
months), 2:acute
(< 6 months),
Jacute (= 0O
months)
Rare_1 Race of Patient (:no, 1:Cancasian
Race 2 Race of Patient (:no, 1: African
American
State Litizate Pending litigation related to pain? (o, 1:yes
Variables
Gender Patient’s gender (:male, 1:female
phvdxl Physical Dixl /Facial 784.0 Omo, 1:yes
phydx3 Physical Dx3/Headache 784.0 ino, 1iyes
phvdxd Phys=ical Dxd/Cervical 723.1 (o, 1:yes
phyvdxh Physical Dxb/Thoracic 724.1 Omo, 1:yes
phydxi Physical Dx6/Lumbar 724.2 ino, 1iyes
phvdx7T Physical Dx7/Myofascial-Fibromyalgia 720.1 | Omo, 1:yes
phydx8 Physical DxE/Abdominal 789.0 (no, 1iyes
phyvdx1] Physical Dx11/Upper Extremity 720.5 (o, 1:yes
phyvdx12 Physical Dx12/Low Extremity 720.5 (o, 1:yes
phydx14 Physical Dixl4 /Ostecarthritis 716.9 (no, 1iyes
phyvdx15 Physical Dxl5/Sacro-illitis 724.6 (o, 1:yes
phydx20 Phy=ical Dx20/Neuralgia, Neuritis, Unspeci- | 0o, 1:yes
fied
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Variable Variable Description Values
type MName
phydx3] Physical Dx/Cervical Spondylosis W/0 | (ino, 1:yes

Myelopathy (721.0)

ProcGrl 0 Injection in stage 0 o, 1:ves
ProcGr2 0 Block Procedure in stage () (o, 1:yves
ProcGrd 0 Stimulation Procedure in stage 0 (ino, 1:yes
ProcGraf Pavchotherapy in stage 0 (o, 1:yes
ProcGrl10.0 | Physical Therapy in stage Omo, 1:yes
ProcGr11_0 | Number of Additional Procedures mn stage 00 | (no, 1iyes
pastdxd Past Dx3 /Headache T84.0 (o, 1:yes
pastdxd Past Dxd /Cervical 723.1 Omo, 1:yes
pastdxh Past Db/ Thoracic 724.1 (rno, 1iyes
pastdxh Past D6 /Lumbar 724.2 (o, 1:yes
pastdx7 Past Dix7 /Myofascial-Fibromyalgia 729.1 (ino, 1:yes
pastdxs Past Dx8/Abdominal 780.0 (rno, 1iyes
pastdx11 Past Dx11/Upper Extremity 729.5 (o, 1:yes
pastdx12 Past Dx12/Low Extremity 729.5 (ino, 1:yes
pastdxld Past D14/ Osteoarthritis 716.9 o, 1:ves
pastdx 15 Past D15/ 8acro-illitis 724.6 (o, 1:yves
pastdx20 Past D20/ Neuralgia, Neuritiz, Unspecified | (ino, 1:yes
pastdxd2 Past Do /Number of Additional Diagnoses o, 1:ves
SehxGrl Surgical History/Unspecified discectomy (o, 1:yves
SehxGrd Surgical History/Percutaneous discectomy (ino, 1:yes
Sehx(Gro Surgical History,/ Unspecified fusion (o, 1:yes
Sehx(Gri Surgieal History/Anterior fusion Omo, 1:yes
SehxGrll Surgical History/Hardware removal (rno, 1iyes
RxGri_0 Tramadol in stage 0 Ono, 1, 2.3
RxGr20 NSAIDs in stage 0 Ono, 1, 2.3
RxGri MNarcotic in stage O (oo, 1, 2,3
RxGrd 0 Muscle Relaxant in stage () Ono, 1, 2.3
RxGr50 Antidepressant in stage () (oo, 1, 2,3
RxGri_0 Tranquilizer in stage 0 Ono, 1, 2.3
RxGr7_0 Sleeping Pills in stage O Ono, 1, 2.3
RxGri_0 Others m stage 0 Ono, 1, 2.3
marital_l Marital Status of Patient (rno, 1:single
marital 2 Marital Status of Patient (rno, 1:married
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Variable Variable Diescription Values
type MName
marital 3 Marital Status of Patient (rno, 1:divoreed
marital_4 Marital Status of Patient (o, Liwidow
ProcGrl_l Injection in stage 1 Omo, 1:yes
ProcGr2_1 Block Procedure in stage 1 ino, 1iyes
Proc(Grd_1 Stimulation Procedure in stage 1 (o, 1:yes
ProcGri_l Psyvchotherapy in stage 1 (no, 1iyes
ProcGrl0_1 | Physical Therapy in stage 1 (o, 1:yes
Decision ProcGrll_l | Number of Additional Procedures in stage 1 | (ino, 1:yes
Variables
RxGri_1 Tramadol in stage 1 Omno, 1, 2
RxGr2_1 MNSAID= in stage 1 Ono, 1, 2, 3
RxGri_l Marcotic in stage 1 Ono, 1,2, 3
RxGr4_1 Muscle Relaxant in stage 1 Ono, 1, 2, 3
RxCGri_l Antidepressant in stage 1 Omno, 1, 2, 3
RxGri_1 Tranquilizer in stage 1 Ono, 1,2, 3
RxGr7_1 Sleeping Pills in stage 1 Omno, 1, 2
RxGra_l Others in stage 1 Omo, 1, 2
ProcGrl 2 Injection in stage 2 ino, 1iyes
ProcGr2 2 Block Procedure in stage 2 (o, 1:yes
ProcGrd 2 Stimulation Procedure in stage 2 (no, 1iyes
ProcGri_2 Psvchotherapy in stage 2 ino, 1iyes
ProcGr10_2 | Physical Therapy in stage 2 (no, 1iyes
RxGri 2 Tramadaol in stage 2 Ono, 1, 2, 3
RxGr2_2 MNSAIDs in stage 2 Ono, 1, 2, 3
RxGr3 2 Marcotic in stage 2 Ono, 1,2, 3
RxGr4_ 2 Muscle Helaxant in stage 2 Ono, 1, 2, 3
Rx(Grs 2 Antidepressant in stage 2 Ono, 1, 2, 3
RxGri 2 Tranquilizer in stage 2 Ono, 1,2, 3
RxGr7_2 Sleeping Pills in stage 2 Omno, 1, 2
Rx(Gri_2 (Others in stage 2 Omo, 1, 2.3
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The two-way adverse treatment interaction constraints are shown in Table 36.

Table 36: Adverse Treatment Interaction Constraints [27]
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Appendix IV

The stage 1 and stage 2 state transition models for five pain outcome measures are shown in the following

tables.

Table 37: Stage 1 Pain Outcome Transition Models 2 SP AL-IPTW

ariaple d PDA a O d BD 0 op 0 0
Intercept 4.312 10.983 11.212 27.569 34.82
RxGrl 1 0.027 0.507 0.011 -0.205 -0.475
RxGr2 1 -0.156 -0.561 -0.171 0.539 0.329
RxGr3 1 -0.003 -0.061 0.373 -0.2 -0.255
RxGr4 1 -0.322 -1.52 -0.281 0.582 0.626
RxGr5 1 -0.526 -2.24 -0.645 1.141 0.903
RxGr6 1 0.038 -0.048 -0.054 -0.073 0.047
RxGr7 1 0.055 0.012 0.008 -0.353 -0.02
RxGr8 1 0.007 0.012 -0.055 0.003 -0.135
ProcGrl 1 -0.006 -0.056 -0.021 -0.049 -0.208
ProcGr2 1 0.029 0.122 -0.015 -0.436 -0.009
ProcGr4 1 -0.081 -0.273 -0.123 0.319 0.117
ProcGr9 1 -0.371 -1.853 -0.962 1.422 1.102
ProcGri0 1 -0.0618 -0.206 -0.107 0.275 0.073
ProcGril 1 -0.041 0.033 0.052 0.141 -0.033
ProcGrl 0 0.318 0 0 0 -0.422
RxGr2 0 0.685 0 0.894 0 -1.398
RxGr3 0 0.196 0.431 0 -2.678 0
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phydx6 0.344 0 0 -1.286 0
phydx12 0.459 0 0 -0.66 -1.728
phydx14 0.777 0 0 0 0
pastdx4 0.268 0 0 -1.167 0
pastdx12 0.104 0 0 0 -1.715
pre_ PDA 0.297 0 0 0 0
race 1 0.07 0 0 0 0
age 0.025 0 0 0 -0.06
ProcGr4 0 0 0.293 0.101 0 0
ProcGr10 0 0 -0.119 0 0 0
phydx4 0 1.875 0 0 0
phydx31 0 2.009 0 0 -2.35
pastdx6 0 0.769 1.19 0 0
pastdx7 0 1.457 0 0 0
pastdx11 0 1.274 0 0 0
SghxGr3 0 2.686 0 -2.349 0
pre_ OSW 0 0.291 0 0.103 0
marital 1 0 1.141 0 0 0
onset 0 0.094 0 0 0
gender 0 0.79 0 0 0
ProcGr9 0 0 0 -0.179 0 0.275
phydx7 0 0 1.357 0 0
phydx20 0 0 2.268 0 0
pastdx32 0 0 0.834 0 0
SghxGr6 0 0 1.259 0 -2.423
pre BDI 0 0 0.221 0 0
status 0 0 0.834 0 0
ProcGrll 0 0 0 0 -0.017 0
RxGr4_0 0 0 0 -0.017 0
pre_sf36pcs 0 0 0 0.18 0
pre_sf36mcs 0 0 0 0 0.214
duration 0 0 0 0 -0.07
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Table 38: Stage 2 Pain Outcome Transition Models 2 SP AL-IPTW

ariaple DO PDA

DO O DO BD DO op DO 0
Intercept 4.31 9.548 10.1 24.623 30.461
RxGrl_2 0.259 0.077 0.071 -0.149 -0.033
RxGrz2_2 0.207 0.039 0.056 -0.076 -0.043
RxGr3_2 -0.113 -0.66 -0.956 0.835 0.438
RXGré_2 -0.374 -1.119 -1.08 1.236 0.671
RxGrs5_2 0.079 -0.047 -0.183 -0.029 0.211
RxGr6_2 0.201 -0.024 0.436 0.046 -0.254
RXxGr7_2 -0.707 -1.876 -1.378 1.805 1.016
RxGr8_2 0.066 0.047 -0.053 -0.513 -0.671
ProcGrl_2 -0.438 -1.849 -1.881 2.04 1.523
ProcGr2_2 -0.609 -2.177 -2.134 2.488 2.215
ProcGr4_2 -0.146 -1.39 -0.927 0.782 1.161
ProcGr9_2 -0.005 -0.131 -0.107 -0.385 0.208
ProcGr10_2 0.179 -0.02 0.475 -0.261 0.091
ProcGr9_1 -0.376 -1.137 -0.55 0.655 1.029
RxGr2_1 -0.19 0 0 0 0
RxGrd_1 -0.218 -0.546 0 0.436 0
RxGr2_0 0.723 0 0.697 0 -0.314
ProcGr10_0 -0.002 0 -0.066 0 0.208
ProcGr4_0 -0.007 0 0 -0.115 0
marital_2 -0.034 0 0 0 0
mid_PDA 0.463 0.119 0 0 0
gender 0.423 0 0 0 0
age 0.037 0 0.007 0.012 0
phydx6 0.518 0 0 0 -1.343
phydx12 1.033 0 1.349 -1.054 0
pastdx4 0.115 0 0 -0.63 -1.211
pastdx6 0.228 0 0 0 0
SghxGr3 0.123 1.332 1.211 -0.697 -1.883
onset 0.018 0 0 0.083 0
race_1 0.116 0 0.347 0 0
RXGr5 1 0 -0.729 -0.624 0.504 0.651
ProcGrl 0 0 -0.133 0 0.16 0
ProcGrll 0 0 -0.206 0.765 0 0
RxGr3 0 0 0.269 0 -2.018 0
RXGI5 0 0 0.584 0.365 0 -0.254
phydx4 0 1.172 0 0 0
phydx7 0 0.827 0.966 0 0




phydx31 0 2.365 0 0 -0.607
mid_OSW 0 0.252 0.021 0.172
pre_OSW 0 0.129 0 0
pastdx7 0 0.711 2.038 0
pastdx11 0 0.535 0 0
SghxGr6 0 0.868 0 0 -0.565
duration 0 0.074 0 0 0.054
litigat 0 0.007 0 0
ProcGr10_1 0 0 -0.142 0
ProcGr4 1 0 0 -0.203 0
phydx20 0 0 1.069 0
mid_sf36mcs 0 0 0.082 0 0.124
mid_BDI 0 0 0.248 0
RxGrl 0 0 0 0 -1.131
RxGr6_0 0 0 0 -2.209
phydx11 0 0 0 -2.082
mid_sf36pcs 0 0 0 0.308 0.017
pastdx12 0 0 0 0 -2.204

Table 39: Stage 1 Pain Outcome Transition Models 2 SP 1Q-IPTW

arlable 0 PDA o N0 d BU O bp O

Intercept 4.017 8.615 10.406 25.216 30.612
RxGrl 1 0.06 0.86 -0.078 -0.05 -0.119
RxGr2_1 -0.197 -0.379 -0.05 0.317 -0.05
RxGr3 1 0.244 0.952 -0.05 -1.428 -0.05
RxGr4_1 -0.547 -2.667 -0.752 1.883 2.895
RxGr5 1 -0.399 -1.62 -0.414 0.764 1.554
RxGr6_1 -0.05 -0.05 -0.05 -2.739 -0.05
RxGr7_1 -0.05 -0.05 -0.05 -0.05 -0.05
RxGr8_1 0.205 -0.05 0.772 -0.05 -0.05
ProcGrl 1 -0.125 -0.05 -0.102 0.159 0.454
ProcGr2_1 -0.05 -0.05 -0.05 -0.05 -0.138
ProcGr4 1 -0.236 -0.265 -0.158 0.623 0.027
ProcGr9 1 -0.581 -1.792 -0.87 1.291 1.81
ProcGr10 1 -0.05 -0.412 -0.255 0.36 0.07
ProcGrll 1 -0.05 -0.05 -0.05 -0.632 -0.05
phydx14 0.581 0 0 0 0
pastdx? 0.142 0 1.08 0 0
onset 0.049 0 0 -0.019 0
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phydx6 0.134 0 1.073 0 0
pastdx4 0.13 0 0 0 0
pre_ PDA 0.383 0 0 0 0
age 0.061 0.021 0 0 0
RxGr5_0 -0.155 0 0 0 0
ProcGr10 0 -0.186 -1.129 -0.296 0 0
RxGr3_0 0.458 0 0 0 0
ProcGr4 1:RxGr5 0 -0.258 0 0 0 0
ProcGr9 1:ProcGrl0 0 -0.443 0 0.12 0 0
RxGr2_1:pastdx7 -0.17 0 0 0 0
RxGr3_1:.onset -0.109 0 0 0 0
RxGr4_1:phydx6 -0.32 0 0 0 0.375
RxGr5 1:RxGr3 0 -0.203 0 0 0 0
RxGr8 1:pre PDA 0.452 0 0 0 0
age:phydx14 0.17 0 0 0 0
onset:pastdx7 0.227 0 0 0 0
age:onset 0.104 0 0 0 0
RxGr5_0:phydx6 -0.067 0 0 0 0
age:ProcGr10 0 -0.005 0 0 0 0
RxGr3 0:pre PDA 0.003 0 0 0 0
age:pre PDA 0.004 0 0 0 0
RXxGr5_0:pastdx4 -0.078 0 0 0 0
phydx14:pastdx7 0.134 0 0 0 0
RxGr3_0:ProcGrl0 0 0.065 0 0 0 0
phydx6:pre PDA 0.002 0 0 0 0
phydx4 0 3.92 0 0 0
pastdx6 0 0.996 0 0 0
race 1 0 0.076 0 0 0
marital 4 0 -0.125 0 0 0
SghxGr3 0 -0.014 0 -0.423 0
RxGr2_0 0 0.012 1.478 0 0
pre_ OSW 0 0.314 0 0.024 0
ProcGr9 1:RxGr2 0 0 -1.43 0 0 0
ProcGr10 1:SghxGr3 0 -0.246 0 0 0
RxGrl 1:race 1 0 0.434 0 0 0
RxGr2_1:marital 4 0 -0.311 0 0 0
RxGr4 1:ProcGrl0 0 0 -1.209 0 0 0
RxGr4 _1:pastdx6 0 -0.072 0 0 0
RxGr4 1:pre OSW 0 -0.071 0 0 0
RxGr5_1:phydx4 0 -0.128 0 0 0
race_1:pre OSW 0 0.009 0 0 0
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phydx4:pastdx6 0 0.149 0 0 0
RxGr2_0:pastdx6 0 0.721 0 0 0
ProcG10_0:pastdx6 0 1.979 0 0 0
RxGr2_0:SghxGr3 0 0.388 0 0 0
pastdx6:SghxGr3 0 0.234 0 -0.437 0
RxGr2_0:phydx31 0 0.256 0 0 0
ProcGr10 O:race 1 0 -0.056 0 0 0
phydx4:pre_ OSW 0 0.011 0 0 0
age:pre_ OSW 0 0.01 0 0 0
phydx4:SghxGr3 0 0.952 0 0 0
SghxGr3:marital_4 0 -0.44 0 0 0
age:phydx4 0 0.038 0 0 0
age:SghxGr3 0 0.078 0 0 0
phydx20 0 0 0.214 -1.36 0
marital 1 0 0 -0.034 0 0.615
SghxGrll 0 0 0.118 0 0
ProcGrll 0 0 0 -0.102 0.443 -1.002
pre_BDI 0 0 0.223 0 0
status 0 0 0.052 0 0
ProcGr4 1:phydx20 0 0 -0.443 0 0
ProcGr9 1:pre BDI 0 0 -0.125 0 0
ProcGrl10 1:phydx12 0 0 -0.079 0 0
RxGr4 1:RxGr2 0 0 0 0.142 0 0
RxGr8 1:pastdx? 0 0 1.414 0 0
pastdx7:SghxGrll 0 0 0.926 0 0
ProcGrl10 0:phydx6 0 0 -0.626 0 0
phydx20:SghxGril 0 0 0.312 0 0
phydx20:pastdx7 0 0 0.104 0 0
ProcGrll O:pastdx7 0 0 0.824 0 0
RxGré 0:SghxGrll 0 0 0.217 0 0
phydx20:pastdx5 0 0 0.409 0 0
ProcGr2_0:phydx6 0 0 -0.659 0 0
RxGr2 0:ProcGrll 0 0 0 0.045 0 0
status:ProcGr10 0 0 0 0.01 0 0
phydx12 0 0 0 -0.348 -1.687
pastdx5 0 0 0 -1.035 0
gender 0 0 0 -0.014 0
pre_sf36pcs 0 0 0 0.216 0
ProcGrl_1:pastdx20 0 0 0 0.792 0
ProcGr4_1:phydx12 0 0 0 0.377 0
ProcGrll_1:pastdx6 0 0 0 0.192 0
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RxGrl_1:SghxGr3 0 0 0 -0.714 0
RxGr5_1:ProcGrl 0 0 0 0 0.94 0
onset:SghxGr3 0 0 0 0.016 0
phydx12:SghxGr3 0 0 0 -0.048 0
ProcGrl 0:pastdx6 0 0 0 0.952 0
pre_ OSW:pre sf36pcs 0 0 0 0.01 0
gender:phydx12 0 0 0 -0.984 0
ProcGrl 0:phydx12 0 0 0 1.048 0
ProcGrl 0:phydx20 0 0 0 0.236 0
phydx31 0 0 0 0 -0.349
pastdx3 0 0 0 0 -1.027
SghxGr5 0 0 0 0 -1.266
pastdx12 0 0 0 0 -0.345
pre_sf36mcs 0 0 0 0 0.238
ProcGr9 0 0 0 0 0 -0.375
ProcGr2 0 0 0 0 0 -1.402
ProcGr9 1:phydx31 0 0 0 0 1.965
RxGrl 1:pastdx12 0 0 0 0 -1.402
phydx12:pre_sf36mcs 0 0 0 0 -0.466
phydx31:SghxGr5 0 0 0 0 -0.375
ProcGr9_0:SghxGrb 0 0 0 0 0.266
ProcGr2_0:ProcGrll 0 0 0 0 0 -0.14
pastdx12:marital 1 0 0 0 0 -0.375
ProcGr2_0:marital_1 0 0 0 0 -0.615
RxGr8 0:phydx5 0 0 0 0 -1.1
Table 40: Stage 2 Pain Outcome Transition Models 2 SP 1Q-IPTW

ariaple DO PDA DO O DO =1D, DO op DO 0
Intercept 4.798 8.721 11.627 28.216 32.063
RxGrl 2 -0.081 -0.102 0.206 -0.05 -0.05
RxGr2_2 -0.05 0.211 -0.05 -0.05 -0.05
RxGr3 2 -0.162 -0.279 -0.866 1.069 1.437
RxGr4 2 -0.153 -0.633 -1.054 1.215 1.298
RXGr5 2 -0.05 -0.05 -0.05 -0.05 -0.254
RXxGr6_2 -0.05 -0.05 -0.05 -0.079 -0.05
RXGr7_2 -0.5 -1.19 -1.803 2.586 2.446
RxGr8 2 -0.05 -0.05 -0.05 -0.217 -0.05
ProcGrl 2 -0.339 -1.328 -2.252 0.675 1.499
ProcGr2_2 -0.467 -1.692 -2.217 1.154 2.344
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ProcGr4 2 -0.05 -0.175 -1.27 0.079 0.575
ProcGr9 2 -0.268 -2.08 -3.627 1.871 2.475
ProcGr10 2 -0.05 0.66 -0.05 -0.05 0.108
RxGr4 1 -0.249 -0.58 -0.715 0.967 1.14
RXGr5 1 -0.162 0 0 0.699 0
ProcGr10 0 -0.062 0.441 0.596 0 -0.312
RxGr3 0 0.201 0 0 0 0
phydx12 0.228 0 0 -1.183 -2.263
phydx4 0.147 1.871 0 0 0
pastdx? 0.228 0 1.006 2.04 0
SghxGr3 0.304 0 0.884 -1.182 -4.476
pre PDA 0.004 0 0 0 0
mid PDA 0.58 0.129 0 0 0
age 0.008 0 0 0 0
race 1 0.258 0.41 0 0 0
ProcGrl 2:ProcGr2 2 -0.339 0 0 0 0
ProcGrl 2:ProcGrl0 0 -0.112 0 0 0 0
ProcGr2_2:SghxGr3 -0.203 0 0 0 0
ProcGr9 2:RxGr4 1 0.013 -1.138 0 0 0
RxGr3 2:phydx4 -0.146 0 0 0 0
RxGr4 2:pastdx7 -0.142 0 0 0 0
RXxGr7_2:mid_PDA -0.033 0 0 0 0
RxGr4 1:pre PDA 0.008 0 0 0 0
phydx4:pastdx4 0.354 0 0 0 0
SghxGr3:pre PDA 0.013 0 0 0 0
mid PDA:pre PDA 0.003 0 0 0 0
RXGr5 1:SghxGr3 0.126 0 0 0 0
ProcGrl10 0:phydx12 0.339 0 0 0 0
pastdx7:SghxGr3 0.213 0 0 0 0
ProcGr9_1 0 -0.121 -1.043 1.161 1.455
RxGr2_1 0 -0.188 0 0 0
RxGr2_0 0 0.843 0.469 0 0
pre_ OSW 0 0.11 0 0 0
mid_OSW 0 0.35 0 0.045 0
pastdx6 0 1.311 0 1.242 -1.093
mid_sf36pcs 0 0.02 0 0.34 0.074
pastdx12 0 1.381 0.384 1.176 0
phydx6 0 1.46 1.567 0 -1.173
SghxGr5 0 3.898 0 0 0
onset 0 0.006 0 0 -0.122
ProcGr2_2:ProcGr9 1 0 -1.493 0 0 0
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ProcGr4_2:phydx4 0 -0.987 0 0 0
RxGrl_2:SghxGr5 0 -0.544 0 0 0
RxGr2 2:race 1 0 0.089 0 0 0
RxGr3_2:RxGr2_1 0 -0.386 0 0 0
RxGr4_2:RxGr2_0 0 -0.608 0 0 0
RXGr7_2:phydx6 0 -1.283 0 0 0
mid_OSW:pre_OSW 0 0.007 0 0 0
phydx4:mid_OSW 0 0.076 0 0 0
pastdx12:SghxGr5 0 0.069 0 0 0
RxGr4 1:RxGr2 0 0 0.484 0 0 0
ProcGrl10 0:phydx6 0 0.055 0.659 0 0
phydx6:SghxGr5 0 2.915 0 0 0
race_1:mid OSW 0 0.009 0 0 0
onset:race 1 0 0.017 0 0 0
onset:pastdx12 0 0.004 0 0 0
phydx6:pre_ OSW 0 0.05 0 0 0
RxGr2_0:pre_OSW 0 0.097 0 0 0
ProcGr10 0:pastdx12 0 0.634 0 0 0
ProcGr10 1 0 0 -0.355 0 0.649
RxGr8 0 0 0 0.335 0 0
phydx20 0 0 0.39 -1.524 0
SghxGr6 0 0 3.556 0 0
pre BDI 0 0 0.071 0 0
status 0 0 0.044 0 0
phydx8 0 0 0.441 0 0
mid_BDI 0 0 0.26 0 0
ProcGr2_2:phydx6 0 0 -1.293 0 0
ProcGr9 2:ProcGr4 0 0 0 -1.469 0 0
ProcGr9_2:phydx20 0 0 -0.138 0 0
RxGrl 2:RxGr8 0 0 0 0.052 0 0
RXxGr7_2:RxGr2_1 0 0 -1.199 0 0
RXxGr8 2:RxGr7_0 0 0 0.527 0 0
ProcGr9 1:mid BDI 0 0 -0.067 0 0
phydx8:SghxGr3 0 0 0.367 0 0
RxGr2_0:pastdx12 0 0 1.221 0 0
phydx6:pastdx? 0 0 0.543 0 0
ProcGr10 _0:mid_BDI 0 0 -0.002 0 0
status:phydx6 0 0 0.075 0 0
pastdx12:SghxGr3 0 0 0.949 0 0
ProcGrll 0 0 0 0 -1.601 0
phydx31 0 0 0 -0.258 0

107




pastdx5 0 0 0 -2.496 0
gender 0 0 0 -0.191 0
pre_sf36pcs 0 0 0 0.12 0
ProcGrl 2:pastdx6 0 0 0 1.177 1.327
ProcGr2_2:phydx12 0 0 0 1.446 0
ProcGr9 2:SghxGr3 0 0 0 1.31 0
RxGr4 _2:ProcGr4 1 0 0 0 0.953 0
RXxGr7_2:mid_OSW 0 0 0 0.158 0
phydx12:pastdx6 0 0 0 -0.689 0
pastdx6:SghxGr3 0 0 0 -0.346 2.947
pastdx12:mid_sf36pcs 0 0 0 -0.158 0
ProcGrll_0:gender 0 0 0 -0.36 0
RxGr4 _1:mid_sf36pcs 0 0 0 0.023 0
phydx20:pastdx12 0 0 0 -1.128 0
ProcGr4 1 0 0 0 0 0.505
ProcGr2_0 0 0 0 0 -1.366
pastdx4 0 0 0 0 -1.326
marital_1 0 0 0 0 -0.311
mid_sf36mcs 0 0 0 0 0.116
ProcGr2_2:ProcGr10 0 0 0 0 0 1.09
ProcGr9_2:mid_sf36mcs 0 0 0 0 0.073
RxGr7_2:phydx12 0 0 0 0 1.263
phydx12:pastdx4 0 0 0 0 -0.283
ProcGrl10 0:onset 0 0 0 0 -0.054
mid_sf36mcs:marital 1 0 0 0 0 0.061
ProcGr9 1:phydx6 0 0 0 0 1.855
ProcGr2_0:ProcGr10 0 0 0 0 0 -1.137
pastdx4:pastdx6 0 0 0 0 -3.284

Table 41: Stage 1 Pain Outcome Transition Models 2 SP 1Q

Variable mid_ PDA mid_OSW mid_BDI mid_sf36pcs mid_sf36mcs
Intercept 4.738 13.222 11.696 29.158 36.25
RxGrl 1 -0.179 -0.05 -0.05 -0.05 -0.05
RxGr2 1 -0.05 1.034 -0.05 -0.05 -0.05
RxGr3 1 -0.05 -0.05 -0.05 -0.05 -0.05
RxGr4 1 -0.852 -3.851 -1.329 3.315 2.75
RxGr5 1 -0.561 -2.977 -0.662 2.436 1.359
RxGré6 1 -0.05 -0.05 -0.05 -0.05 -0.05
RxGr7 1 -0.05 -0.05 0.136 -0.05 -1.443
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RxGr8 1 -0.05 -0.05 -0.05 -3.607 -0.05
ProcGrl_1 -0.05 -0.05 0.125 -0.05 -1.295
ProcGr2_1 0.259 -0.05 -0.05 -0.378 -0.05
ProcGr4 1 -0.05 -0.05 -0.05 -0.152 -0.05
ProcGr9_1 -0.469 -2.352 -0.959 2.671 2.024
ProcGr10_1 0.103 -0.052 -0.05 -0.05 -0.05
ProcGrll 1 -0.05 -0.05 -0.05 -0.05 -0.05
phydx6 0.499 0 0 0 0
pastdx? 0.138 0 0 0 0
pre PDA 0.34 0 0 0 0
age 0.002 0.042 0 0 0
RxGr3 0 0.103 0 0 0 0
RxGr4 0 -0.076 0 0 0 0
pastdx12 0.084 0 0 -0.902 -0.861
ProcGr9 1:ProcGrl0 0 -0.079 0 -0.457 0 0
RxGr4_1:phydx6 -0.208 0 0 0 0
RxGr5 1:RxGr3 0 -0.151 0 0 0 0
RxGr5_1:pastdx7 -0.076 0 0 0 0
age:phydx6 0.048 0 0 0 0
RxGr3 0:pre PDA 0.003 0 0 0 0
age:pre PDA 0.004 0 0 0 0
RxGr4 0:pastdx12 0.013 0 0 0 0
RxGr4_0:pastdx? -0.048 0 0 0 0
age:RxGr4 0 -0.003 0 0 0 0
RxGr3 0:pastdx12 0.172 0 0 0 0
pastdx12:pre PDA -0.025 0 0 0 0
phydx4 0 1.157 0 0 0
pastdx6 0 0.52 1.913 -1.42 0
marital 4 0 0.136 0 0 0
SghxGr3 0 0.132 0 -0.822 0
RxGr2_0 0 -0.198 0 0 0
pre_ OSW 0 0.285 0 0.057 0
phydx31 0 1.634 0 0 -1.043
pastdx20 0 0.301 0 0 0
ProcGr9 1:RxGr2 0 0 -0.868 0 0 0
ProcGr10 1:SghxGr3 0 0.113 0 0 0
RxGr2_1:phydx4 0 0.276 0 0 0
RxGr4 _1:pastdx6 0 -0.634 0 0.367 0
RxGr4_1:SghxGr3 0 -0.388 0 0 0
RxGr5 1:RxGr2 0 0 -0.289 0 0 0
RxGr2_0:pastdx6 0 0.775 0 0 0
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pastdx6:SghxGr3 0 3.012 0 0 0
ProcGrl0 O:race 1 0 -1.375 0 0 0
age:pre_OSW 0 0.091 0 0 0
SghxGr3:marital 4 0 1.97 0 0 0
age:phydx4 0 0.118 0 0 0
phydx31:SghxGr3 0 -0.023 0 0 0
pastdx20:marital 4 0 -0.141 0 0 0
RxGr2_0:pastdx20 0 0.207 0 0 0
phydx31:pastdx20 0 0.369 0 0 0
age:phydx31 0 0.392 0 0 0
RxGrl 0 0 0 0.893 0 0
marital 1 0 0 2.829 0 0
SghxGrll 0 0 0.49 0 0
ProcGrll 0 0 0 0 -0.78 0.043
ProcGrl0 0 0 0 -0.372 0 0
pre_BDI 0 0 0.175 0 0
status 0 0 0.667 0 0
phydx20 0 0 2.307 0 0
ProcGr4_1:phydx20 0 0 -0.35 0 0
ProcGr9_1:pastdx6 0 0 -1.368 0 0
RxGr4 1:RxGrl 0 0 0 -0.242 0 0
ProcGr10 0:pastdx6 0 0 0.986 0 0
phydx20:SghxGril 0 0 1.52 0 0
ProcGrll 0:pastdx6 0 0 1.155 0 0
phydx20:pastdx6 0 0 0.398 0 0
RxGrl 0:ProcGrll 0 0 0 0.202 0 0
status:ProcGr10 0 0 0 -0.043 0 0
phydx20:status 0 0 0.745 0 0
ProcGrl10 0:phydx20 0 0 -0.243 0 0
RxGrl O:marital 1 0 0 1.566 0 0
phydx12 0 0 0 -1.296 -0.089
gender 0 0 0 -0.408 0
ProcGrl 0 0 0 0 0.572 0
pre_sf36pcs 0 0 0 0.189 0
ProcGrll 1:pastdx6 0 0 0 -0.136 0
RxGr4 1:ProcGrl 0 0 0 0 0.562 0
RxGr5_1:phydx12 0 0 0 0.219 1.043
RxGr8 1:onset 0 0 0 -0.75 0
ProcGrll 0:SghxGr3 0 0 0 -0.948 0
pastdx12:SghxGr3 0 0 0 -0.482 0
ProcGrl_0:pastdx6 0 0 0 0.204 0
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pre_OSW:pre_sf36pcs 0 0 0 0.007 0
gender:phydx12 0 0 0 -0.761 0
phydx12:SghxGr3 0 0 0 -0.279 0
ProcGrl 0:phydx20 0 0 0 0.196 0
gender:pastdx6 0 0 0 -0.045 0
pastdx6:pre_ OSW 0 0 0 0.007 0
SghxGr5 0 0 0 0 -1.056
ProcGr9_0 0 0 0 0 0.053
pre_sf36mcs 0 0 0 0 0.144
race 1 0 0 0 0 -0.548
ProcGr9 1:race 1 0 0 0 0 1.407
phydx12:pre_sf36mcs 0 0 0 0 -0.618
ProcGr9_0:SghxGr5 0 0 0 0 0.789
pastdx12:marital 1 0 0 0 0 -0.829
RxGr8 0:phydx5 0 0 0 0 -0.83
ProcGrll 0:phydx31 0 0 0 0 -0.953
pastdx12:pre_sf36mcs 0 0 0 0 0.003
phydx12:SghxGr5 0 0 0 0 -0.23
Table 42: Stage 2 Pain Outcome Transition Models 2 SP 1Q
ariapble DO PDA DO O DO 21D DO op DO 0
Intercept 5.098 9.822 10.344 25.115 29.063
RxGrl 2 -0.05 -0.182 -0.05 -0.429 -0.05
RxGr2_2 -0.05 -0.05 -0.05 -0.05 -0.05
RxGr3 2 -0.05 0.254 -0.05 -0.05 -0.05
RxGr4 2 -0.05 -0.05 -0.05 -0.755 -0.05
RXxGr5 2 -0.05 -0.05 -0.144 -0.05 -0.05
RxGr6_2 -0.05 0.013 -0.05 -0.05 -0.722
RXxGr7_2 -1.117 -1.491 -2.758 2.029 2.163
RxGr8 2 0.195 -0.05 0.256 -0.05 -0.847
ProcGrl 2 -0.94 -1.027 -2.123 1.773 2.487
ProcGr2_2 -0.958 -1.331 -2.744 3.726 2.178
ProcGr4 2 -0.05 -0.05 -0.05 0.113 -0.05
ProcGr9 2 -1.058 -1.412 -2.981 2.749 2.923
ProcGr10 2 -0.05 -0.05 -0.05 -0.05 -0.684
RxGrl 1 -0.204 0 0 0.262 0
RxGr4 1 -0.387 -0.972 0 2.009 1.844
RxGr9 1 1.281 0 0 0 0
ProcGr10 0 -0.124 0 0.255 0 -0.297
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RxGr2_0 0.794 0.013 0 0 -0.631
phydx6 -0.072 0 1.428 0 -1.923
phydx12 0.458 0 0 -1.867 0.772
pastdx? 0.773 0 2.648 0 -0.504
pastdx11 0.367 0 0 0 0
SghxGr3 0.716 0 0 -1.5 -0.235
mid_PDA 0.63 0.113 0 0.015 0
race 1 0.522 0 0 0 0
ProcGrl_2:ProcGr2 2 -0.259 0 0 0 0
ProcGr2_2:RxGr2 0 -0.361 0 0 0 0
ProcGr9 2:phydx6 -0.173 0 0 0 1.39
RxGr7_2:mid_PDA -0.008 0 0 0 0
SghxGr3:mid_PDA 0.022 0 0 0 0
phydx12:pastdx7 0.301 0 0 0 0
RxGrl_1:pastdx11 -0.366 0 0 0 0
RxGr2 0:ProcGri0 0 0.779 0 0 0 -0.576
RxGr4_1:phydx6 -0.154 0 0 0 0
phydx6:SghxGr3 0.557 0 0 0 0
race_ 1:mid PDA 0.018 0 0 0 0
ProcGr9 1 0 -1.7 -1.067 0 1.208
RxGr5_1 0 -0.839 0 1.197 0
ProcGrl 0 0 -0.042 0.313 0 0
mid_OSW 0 0.382 0 0 0
phydx4 0 1.07 0 0 0
phydx7 0 2.129 1.907 0 0
mid sf36pcs 0 0.084 0 0.395 0
pastdx12 0 1.425 0 -0.918 0
pastdx4 0 0.043 0.837 -0.326 -1.622
SghxGr5 0 0.587 0 0 0
age 0 0.019 0 0 0
ProcGrl 2:ProcGrl 0 0 -0.503 -0.497 0 0
ProcGr2_2:ProcGr9 1 0 -0.609 0 0 0
ProcGr9_2:phydx4 0 -0.77 0 0 0
RxGrl 2:SghxGr5 0 -0.434 0 0 0
RxGr7_2:age 0 -0.306 0 0 0
pastdx4:pastdx12 0 0.315 0 0 0
phydx4:SghxGr5 0 1.237 0 0 0
age:mid_PDA 0 0.025 0 0 0
RxGr4_1:RxGr2 0 0 -0.909 0 0 0
ProcGr9_1:phydx7 0 -0.551 0 0 0
phydx4:mid_OSW 0 0.16 0 0 0
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phydx7:pastdx4 0 2.375 0 0 0
age:SghxGrb 0 0.194 0 0 0
RxGr2_0:pastdx4 0 1.075 0 0 0
ProcGrl0_1 0 0 -0.464 0 0.684
RxGrl_0 0 0 0.563 0 0
phydx20 0 0 1.49 -1.986 0
phydx31 0 0 2.634 0 -2.004
SghxGrl 0 0 2.281 0 0
SghxGré 0 0 0.668 0 0
mid_BDI 0 0 0.383 0 0
status 0 0 0.036 0 0
ProcGr2_2:phydx7 0 0 -0.656 0 0
ProcGr9_2:ProcGrl0_0 0 0 -0.513 0 0
RxGr7_2:phydx6 0 0 -0.483 0 0
phydx6:pastdx7 0 0 0.966 0 0
SghxGrl:mid_BDI 0 0 0.011 0 0
phydx7:SghxGré 0 0 0.597 0 0
ProcGr10_0:mid_BDI 0 0 0.102 0 0
status:phydx6 0 0 0.033 0 0
ProcGrl10_0:phydx31 0 0 0.917 0 0
pastdx7:SghxGrl 0 0 0.535 0 0
ProcGrll 0 0 0 0 -0.629 0
pastdx6 0 0 0 -0.629 0
pre_sf36pcs 0 0 0 0.186 0
onset 0 0 0 -0.041 0
ProcGrl 2:pastdx6 0 0 0 1.327 0
ProcGr9 2:SghxGr3 0 0 0 0.732 0
RxGr7_2:ProcGrll 0 0 0 0 1.297 0
RXGr7 2:phydx12 0 0 0 0.833 0
mid_sf36pcs:pre _sf36pcs 0 0 0 0.004 0
pastdx6:SghxGr3 0 0 0 -1.418 0
RxGr4 1:mid_sf36pcs 0 0 0 0.015 0
phydx20:pastdx12 0 0 0 -0.988 0
onset:SghxGr3 0 0 0 -0.218 0
pastdx4:pre_sf36pcs 0 0 0 0.013 0
marital 1 0 0 0 0 -0.103
pre_sf36mcs 0 0 0 0 0.046
mid_sf36mcs 0 0 0 0 0.143
ProcGrl 2:pastdx7 0 0 0 0 0.629
ProcGr2 2:ProcGrl0 0 0 0 0 0 1.049
RxGr7_2:pre_sf36mcs 0 0 0 0 0.258
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pastdx4:SghxGr3 0 0 0 0 -1.299
mid_sf36mcs:marital_1 0 0 0 0 0.023
ProcGrl10 1:phydx12 0 0 0 0 -0.838
phydx6:pastdx4 0 0 0 0 -0.722
phydx31:SghxGr3 0 0 0 0 -0.932
phydx12:marital 1 0 0 0 0 -0.302
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Appendix V

A section of the preliminary simulation case study conducted as part of the dissertation proposal is included
here. We compare the modeling methods Glinternet, Elastic Net and HierNet on the feature selection
metrics. Since Elastic Net builds only linear models without interactions, we compare Glinternet and
HierNet on the interaction selection metrics. The experimental factors included the number of observations,
number of variables, proportion of causal variables, correlation between causal variables, correlation

between causal and spurious features, magnitude of coefficients, and the signal to noise ratio.
Elastic Net

Elastic Net is a regularization and variable selection method, where the elastic net penalty function is a

convex combination of the LASSO and ridge penalty, shown in Equation (17) [144].

LAy, 22, 8) = ly = XBI* + alBl* + 1 — )B4, (17)

where v is the response vector, X is the input matrix, g is elastic net estimator, a|8|?> + (1 — a)|p|; is the
elastic net penalty, « € [0,1). When a = 1, the elastic net penalty becomes a simple ridge regression
penalty, and ata = 0, it becomes a LASSO penalty. Elastic Net can only build linear models without
interactions and is mainly used for feature selection in a correlated input space. The quadratic part of the
penalty encourages the grouping effect, which means it can select groups of correlated variables in the
model unlike LASSO, which selects just one variable from the correlated group and drops the others. Elastic
Net is considered in this case study to compare the feature selection performance against the other two

methods that model interactions.
Glinternet

Glinternet is a LASSO based method developed by Lim and Hastie [163] for learning pairwise interactions
in a linear regression or logistic regression model that satisfies strong hierarchy. The formulation of

Glinternet shown in Equation (18) is equivalent to a constrained overlapped group LASSO. Glinternet can
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build models on continuous and categorical variables. As an example, consider two categorical variables
F; and F, with L; and L, levels respectively. The indicator matrices for F; and F, are represented as

X, and X, respectively.

2

a
. 1 o
argmin q.z 5 Y —p—Xia — Xy, — [X1 Xp X12] | @2 ]
a1;2 2
2 <||a1||2 gl + [Lall i+ Lozl + o ), (18)
Lq Ly Ly Ly
subject to z al =0, z ag =0, @t =0, @ =0
i=1 =1 i=1 =1
Lq Ly
and z ai{z =0 for fixed j, z ai{z =0 for fixed i,
i=1 j=1

where Y is the response vector, u is the fixed intercept term, the main effect of variable F; and F, are (a; +
@) and (a, + @,) respectively. The interaction effect is a;.,, A is the regularization parameter. The

constrained overlapped group lasso is solved by using an equivalent unconstrained group lasso formulation.

The term /L& 13 + L111&,113 + lla;.,113 in the Glinternet penalty ensures that the estimates satisfy
strong hierarchy. The main difference between Glinternet and HierNet is that Glinternet can handle both
continuous and categorical variables, while HierNet can only accommodate continuous and binary variables
[163]. Glinternet has a faster computation time and can handle large problems compared to HierNet.
Glinternet identifies interactions strictly under strong hierarchy while HierNet can identify interactions

under both strong and weak hierarchy.

Simulation Case Study

The simulation case study is designed to evaluate the performance of the modeling methods under different

conditions. The true response variable, Y is generated by the Equation (19).
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Y= X0 BiX; + ZP0 X Vi XiXie + o (19)

where f; is the main effect of input variable Xj, y; is the interaction effect between variables X; and X, p

is the number of input variables, €, is the error term, which is selected such that Var(e,) =

Var(f(X))
SNR '

SNR is the signal to noise ratio and f(X) = X7_, B;X; + Zf;ll ks Vit XX

The following are the factors considered in this simulation case study

1.

2.

Number of input variables: {10,20}

Proportion of causal variables among all the input variables: {0.3, 0.5}. The interactions
simulated in the case study are based on strong hierarchy. Depending on the number of causal
variables, a fixed number of interactions between randomly selected causal variables is generated.
If the number of causal variables is less than or equal to three, one interaction term is generated and
in all other cases three interactions are generated.

Number of observations: {150, 375}. The number of observations is further divided into training
and testing dataset, with 2/3 of the observations used for training, and 1/3 for testing.

Magnitude of co-efficients B, yjx: {[0.4, 0.6] and [0.8, 1.0]}.The magnitude of the co-efficients

is a randomly generated number between 0.4 and 0.6 for level [0.4,0.6] and between 0.8 and 1 for
level [0.8, 1.0].

Correlation between causal and spurious variables: {High, Medium, Low}. High correlation
level has a correlation randomly generated between [0.7, 0.9]. Medium and low correlation has
correlation randomly generated between [0.4, 0.6] and (0.0, 0.3] respectively.

Correlation between causal variables: {High, Medium, Low}.

Signal to Noise Ratio (SNR): {3, 9}. SNR levels are selected so that the proportion of variance
explained by f(X), referred to as PVE(f) is 0.75 and 0.9. The relation between SNR and PVE(f)

is shown in Equation (20) [172].
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SNR

PVE(f) = (1+SNR)

(20)

At SNR values of 3 and 9, the proportion of variance explained by f(X) is 0.75 and 0.9 respectively.

With the above factors and their corresponding levels,wehave 2 X 2 X 2 X2 x 3 X3 x 2 = 288

cases. For each simulated case, we generate 100 replications.

Simulation Results

Feature Selection sensitivity and specificity

High Correlation between causal and spurious variables

The average sensitivity, shown in Figure 49, can be used to compare the different methods on how
accurately they classify the causal variables. The sensitivity is higher for low and medium correlation
between causal variables but drops slightly at high correlation for Glinternet and HierNet. With Elastic Net,
sensitivity increases from low to high correlation. HierNet Strong and HierNet Weak perform almost

similarly and better than the other methods.

= Glinternet HierNet Strong HierNet Weak Elastic Net
1 0.92 . 0:92 0.95 0.96 0.94 593
0.8 — 0.92 0.92

> 0.82 0.85 0.89

= 06 :

S 04 0.56

)

% 0.2

g 0 | |

Low Medium High

Correlation between causal variables

Figure 49: Average feature selection Sensitivity for high correlation between causal and spurious

variables
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The comparison of average specificity is shown in Figure 50. This shows if the methods are correctly
classifying spurious variables. The specificity is low for the low and medium correlation cases indicating
that due to the high correlation between causal and spurious variables, more spurious variables are selected
in the predicted models. Glinternet performs better than the others in correctly classifying spurious variables

in the predicted model.
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Figure 50 : Average feature selection Specificity for high correlation between causal and spurious

variables

Medium Correlation between causal and spurious variables

The comparison of average sensitivity is shown in Figure 51. The average sensitivity for HierNet Strong
and HierNet Weak is slightly better than the other methods at medium and high correlation, but is
significantly better at low correlation. This implies HierNet based methods are better at classifying causal
variables compared to the other methods. The average sensitivity for all the methods is lowest at low

correlation and highest at medium correlation.
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Figure 51: Average feature selection Sensitivity for medium correlation between causal and spurious

variables

The comparison of average specificity in Figure 52, shows that Glinternet performs slightly better than
the other methods on this metric. For high correlation between causal variables, the specificity is almost
close to 1 for Glinternet and HierNet Strong, implying these methods correctly classify almost all the
spurious variables. The specificity values are low at around 0.2 for low correlation between causal variables,
implying spurious variables are selected in the predicted model due to the correlation between causal and

spurious variables.
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Figure 52: Average feature selection Specificity for medium correlation between causal and spurious
variables
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Low Correlation between causal and spurious variables

The average sensitivity is shown in Figure 53. The different methods correctly classify almost all the causal
variables in the predicted model, with the sensitivity values ranging between 0.9 — 0.99. The sensitivity for

Glinternet drops marginally when there is high correlation between the causal variables.
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Figure 53: Average feature selection Sensitivity for low correlation between causal and spurious variables

The average specificity is shown in figure 54. The average specificity is very high and almost similar
for all the methods when there is high correlation between causal variables. At low and medium correlation
between causal variables, HierNet based methods perform poorly with low specificity values compared to

Glinternet and Elastic Net, indicating they are selecting more spurious variables in the predicted model.
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Figure 54: Average feature selection Specificity for low correlation between causal and spurious variables

Interaction Selection sensitivity and FDR

The interaction selection sensitivity and FDR are compared on the LASSO based methods that model
interactions, namely Glinternet and HierNet. Elastic Net is not included in this analysis since it handles

only linear additive terms.

High Correlation between causal and spurious variables

The average sensitivity plot is shown in Figure 55. HierNet based methods perform better than Glinternet
at classifying true interactions. The sensitivity for all the methods drops at high correlation between causal

variables.
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Figure 55: Average interaction selection Sensitivity for high correlation between causal and spurious

variables

The False Discovery Rate (FDR) gives a picture of the number of spurious interactions in the predicted
model. It is the proportion of spurious interactions among all the interactions in the predicted model. A
lower average FDR value is better, as this indicates that the predicted model does not have many spurious
interactions. From the Figure 56, we see that Glinternet has lower FDR values than the HierNet based
methods. The FDR analysis is consistent with the specificity analysis since specificity is a measure of the

number of spurious interactions correctly identified as spurious in the predicted model.
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Figure 56: Average FDR for high correlation between causal and spurious variables
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Medium Correlation between causal and spurious variables

The average sensitivity, shown in Figure 57, shows that HierNet Weak and HierNet Strong have better
sensitivity than Glinternet. The sensitivity is least when correlation between causal variables is high. This
shows that high correlation between the variables in the interaction term reduces the chances of correctly

classifying them.
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Figure 57: Average interaction selection Sensitivity for medium correlation between causal and spurious

variables

The average FDR plot in Figure 58, shows that Glinternet performs better than HierNet. It has higher
FDR value at high correlation than medium correlation. This can be explained by the sensitivity being low

at high correlation, resulting in the proportion of spurious interactions in the predicted model to go up.
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Figure 58: Average FDR for medium correlation between causal and spurious variables
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Low Correlation between causal and spurious variables

The average sensitivity plot in Figure 59 shows similar trends as the average G-mean plot shown above,
with the sensitivity values dropping at high correlation between causal variables, and HierNet based

methods performing better than Glinternet.
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Figure 59: Average interaction selection Sensitivity for low correlation between causal and spurious

variables

The average FDR in Figure 60 shows that Glinternet is better than the HierNet based methods, but its
False Discovery Rate goes up from low to high correlation between causal variables, while HierNet based

methods have almost similar FDR across the correlation levels.
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Figure 60: Average FDR for low correlation between causal and spurious variables
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Discussion

The simulated case study had a number of factors, with the correlation structure between the variables being
the important one. The feature selection performance of both Glinternet and HierNet were comparable or
better than Elastic Net, which is the preferred feature selection method under multi collinearity. HierNet
was better at correctly identifying the causal features and causal interactions, while Glinternet was better at
correctly identifying the spurious features and spurious interactions. HierNet can handle both strong and
weak hierarchy while Glinternet can handle only strong hierarchy. If the application places more importance
on identifying the causal features and interactions than identifying the spurious ones, HierNet would be the
better option, but if the application demands not including spurious terms in the model, Glinternet would

be the better modeling method.
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