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Abstract 

LASSO Based State Transition Modeling with Interactions in Adaptive Interdisciplinary Pain 

Management 

Amith Viswanatha 

The University of Texas at Arlington, 2022 

Supervising Professors: Dr Victoria Chen, Dr Jay Rosenberger 

The Eugene McDermott Center for Pain Management at the University of Texas Southwestern Medical 

Center has an interdisciplinary pain management program for chronic pain. This program treats patients 

with a holistic view of reducing chronic pain and improving their physical, mental, and social well-being 

through treatment interventions. The development of an adaptive treatment decision tool is main goal of 

the research project. 

 This program is modeled as a two-stage adaptive treatment decision problem, with state transition 

models representing the transition of patient state, treatment, and outcome variables from stage 1 to stage 

2. Interactions between the patient state and treatments play a major role in determining a personalized 

treatment plan for individual patients. In this research, we address the challenge of modeling state-treatment 

interactions. We propose a LASSO based approach to develop the state transition models. The proposed 

approach is studied using a simulated case study structured based on the McDermott Center  data. The state 

transition models built using the proposed method are then formulated within the multi-objective two-stage 

stochastic programming optimization to obtain an optimal treatment plan.  
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1 Introduction 

Pain is a common problem that most people encounter during their lifetimes. Pain can be broadly classified 

into two types, acute and chronic. Acute pain usually occurs after an injury/accident and is treated with 

either analgesic medications or surgery followed by rehabilitation. Chronic pain on the other hand can occur 

due to multiple reasons like poor lifestyle, age, pre-existing health conditions, surgery, cancer, etc. Chronic 

pain is defined as pain that lasts more than 3 to 6 months [1]. Chronic pain is one of the main causes for 

adults seeking medical care [2]. Chronic pain that severely inhibits life or work activities is classified as 

high-impact chronic pain (HICP) [3, 4]. The Centers for Disease Control and Prevention (CDC) estimated 

that around 20.4% (50.0 million) of US adults have chronic pain, and 8.0% (19.6 million) of US adults have 

high-impact chronic pain based on the 2016 National Health Survey Interview [5].  A higher prevalence of 

chronic pain and HICP was reported among older adults and economically vulnerable adults [5].  

Chronic pain is often characterized by unrelenting and debilitating symptoms and leads to unpleasant 

physical and mental experiences [6]. Pain is very subjective, where several factors, such as the patient’s 

social and financial background, personal relations, and mental conditions,  impact the perception and 

description of their conditions. Chronic pain not only affects the patient’s quality of life, but it also affects 

family and social circles since relatives and caregivers must monitor the patient’s medication, side effects, 

and state of mind. [7]. The earlier models of chronic pain were based on a biomedical model that focused 

only on the processes within the body and assumed independence between the body and mind. This model 

favored treating the condition rather than the patient, with medications being the preferred choice of 

treatment. The development of neuroscience lead to a marked shift in the way chronic pain was viewed, 

with equal focus being given to body and mind. To understand the impact of chronic pain on a patient’s 

daily activities, mental and physical health, and social relations, the biopsychosocial model of pain (Figure 

1) was developed, which provides a holistic framework for understanding how different aspects of pain are 

related through an assessment of sensorial, cognitive, and interpersonal factors [8, 9]. 
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Figure 1: Biopsychosocial model of pain [8] 

The typical treatment for chronic pain is analgesics, opioids, and other medications. Short-term 

medications help relieve severe pain in patients, but long-term usage can be detrimental to their health [10]. 

Deyo et al. [11] found that opioids were prescribed for over 60% of patients with non-cancer pain, and 

almost 20% became long-term users.  Despite opioid therapy, a majority of the patients have persistently 

high levels of pain and poor quality of life [12]. Opioid medications also pose a significant risk of misuse 

and abuse [13]. 

Surgical interventions are another preferred treatment for chronic pain. Rajaee et al. [14] found that 

between 1998 and 2008, there was more than a 100% increase in spinal fusion surgeries for low back pain. 

There have been concerns about surgical interventions leading to high disability rates after the procedures 

[15]. 

The utility of the biopsychosocial model of pain along with the limitations of a medication-only 

treatment plan has led to the evolution of interdisciplinary treatment strategies. Interdisciplinary treatment 

includes physical therapy, psychotherapy cognitive behavioral therapy (CBT), and other procedural 

interventions along with medications to treat chronic pain. Interdisciplinary care consists of greater 
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coordination, communication among the different healthcare professionals, and active patient involvement 

to ensure effective and comprehensive treatment [16]. 

The Eugene McDermott Center for Pain Management at the University of Texas (UT) Southwestern 

Medical Center has one such interdisciplinary pain management program for chronic pain. The subjective 

nature makes it difficult to measure pain [17], but several outcome measures help quantify the patient’s 

pain experience. The McDermott Center evaluates patients on five different pain outcome measures that 

evaluate patients’ physical, psychological, and overall wellbeing. These pain outcomes are listed below: 

• Oswestry Pain Disability Index (OSW) is a measure of functional disability due to pain [18]. 

• Pain Drawing Analogue (PDA) is an analogue scale of 0-10, with 0 corresponding to no pain and 

10 corresponding to worst possible pain [19]. 

• Beck Depression Inventory (BDI) measures the severity of depression [20]. 

• Short Form Survey Physical Component Score (SF36pcs) and Short Form Survey Mental 

Component Score (SF36mcs), are general health status profile surveys designed to measure the 

physical and mental health status of the patient respectively [21]. 

 

Figure 2: Two-stage interdisciplinary pain management program [22] 

Lin et al [22] modeled this program as a two-stage adaptive treatment framework [23]. The patient 

entering the program undergoes a pre-treatment evaluation at the beginning of Stage 1, as shown in Figure 

2. Based on the pre-treatment evaluation, an initial treatment plan is prescribed by the interdisciplinary team 

of experts. The individual patient’s treatment plan depends on data including their demographic 
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information, past medical and surgical history, past treatments, and past pain outcome scores. These are 

called as patient state variables. Interactions between the state variables and treatments play a major role in 

determining a personalized treatment plan for individual patients. The initial treatment period (Stage 1) can 

last from a few weeks to months depending on the individual patient’s characteristics and the severity of 

their pain. At the end of this period the patient is evaluated again, where their pain outcome scores are 

measured. Depending on this evaluation, the team of experts continues or modifies the treatment regimen, 

if appropriate. This is called the mid-treatment evaluation, where Stage 1 ends and the patient transitions 

into Stage 2 of their treatment plan. At the end of Stage 2, the patient undergoes a post-treatment evaluation, 

which concludes the two-stage program. The patient will go through another evaluation one year after the 

completion of the program [24].  

 

Figure 3: Adaptive interdisciplinary pain management research objectives [26] 

The research in this dissertation completes the research objectives of a larger pain management project, 

shown in Figure 3. The development of an adaptive treatment decision tool is the main goal. Adaptive 

treatment strategies develop decision rules that depend on the patient’s state [23]. In an adaptive treatment 
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environment, the patient’s current state influences the treatments recommended, which in turn affect the 

patient’s future states. When clinical expertise is employed to select the treatment, the observational data 

from this adaptive treatment process involves time varying confounding, for which it is not possible to 

separate whether it is the sequence of treatments that produced the patient’s outcomes or if it is the evolution 

of the patient’s state characteristics that led to these outcomes. Consequently, time varying confounding 

leads to biased estimates of the treatment effects on pain outcomes. There are several methods to address 

time-varying confounding. For the pain management project in Figure 3, LeBoulluec et al. [25] and Ohol 

[26] addressed time-varying confounding using the Inverse Probability of Treatment Weighting (IPTW) 

technique.  

The adaptive treatment decision optimization problem has been studied in two form. Lin et al. [22] 

utilized a stochastic dynamic programming approach that conducts decision-making over multiple stages.  

Because the pain management program in Figure 2 only requires two stages, Wang et al. [28] and Iqbal et 

al. [27] formulated the decision optimization as a two-stage stochastic programming problem. The 

optimization in this dissertation is based on the formulation by Iqbal et al. [27] because they considered all 

five pain outcome measures. For both the optimization approaches, state transition models are used to 

represent the transition of patient state, treatment, and pain outcome variables from stage 1 to stage 2. While 

the prior work on the large pain management project did build state transition models, this dissertation 

specifically addresses the challenge of modeling state-treatment interactions that are critical to enable 

personalized treatment for individual patients. The methods proposed in this dissertation use a Least 

Absolute Shrinkage and Selection Operator (LASSO) [29] based technique named HierNet [30]. This state 

transition modeling approach also addresses time varying confounding by incorporating IPTW techniques 

developed by Ohol [26]. Finally, the state transition models built using the proposed method are then 

formulated within the multi-objective two-stage stochastic programming optimization to complete the 

objectives of the larger pain management project. 
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The outline of the dissertation is as follows. Chapter 2 provides a literature review on pain management 

and adaptive treatment strategies, multi-stage optimization and state transition modeling, feature, and 

interaction selection. Chapter 3 discusses the proposed LASSO based modeling approach to build state 

transition models with interactions. The performance of the proposed method on feature and interaction 

selection is evaluated on simulated pain management data. Chapter 4 discusses application of the proposed 

method to build state transition models with interactions on the pain management dataset. The state 

transition models are used in the optimization module, and the optimal treatment recommendations are 

evaluated.  
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2 Literature Review 

2.1 Pain Management Program 

Pain management programs are primarily aimed at treating and managing a patient’s pain. Over the last 

few decades, significant advances have been made in our knowledge of basic pain mechanisms. Melzack 

and Wall's gate control theory, which proposed that pain perception is determined by various psychological 

factors in addition to sensory input, was a major driving force behind rapid developments in research on 

chronic pain [31]. The improvements in understanding the underlying causes of pain and acknowledging 

the influence of social, economic, and psychological factors on an individual’s pain experience have led 

researchers and clinics to focus on holistic approaches that shift the focus from directly treating pain 

symptoms to improving patient quality of life [32, 33]. The Centers for Disease Control and Prevention 

(CDC) Guideline for Prescribing Opioids for Chronic Pain (2016) and the Department of Health and 

Human Services’ National Pain Strategy (2016) have recommended the biopsychosocial approach in the 

treatment of chronic pain [30, 35]. The CDC guideline recommends the use of cognitive behavioral therapy, 

physical therapy, and non-opioid medications as the first line of treatment [34]. This has led to the 

development of interdisciplinary and multidisciplinary pain management programs, shifting the burden of 

a patient’s pain management from primary care physicians to a specialized team of health care providers 

[36]. The American anesthesiologist John J. Bonica established one of the first multidisciplinary pain 

centers at the University of Washington in Seattle [36, 37]. 

The main difference between multidisciplinary and interdisciplinary pain management programs is the 

level of coordination between the different care providers. In multidisciplinary programs although care is 

provided by several health care providers, it may not be coordinated, resulting in parallel treatment plans 

and goals rather than an integrated approach [16, 36]. Interdisciplinary care involves greater coordination 

of services and frequent communication among health care professionals, where the different treatment 

plans complement each other [16]. The patient and their caregivers are active participants in this program 
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[16]. Interdisciplinary pain management programs have a patient-centered approach, with a focus on patient 

education and cognitive behavioral changes [38]. Short- and long-term treatment goals are discussed and 

reviewed regularly in line with the expectations of the patient, family members, and clinicians [37]. 

Several studies have shown the effectiveness of multidisciplinary/interdisciplinary programs in 

managing pain and improving patient outcomes. Flor et al. [39] conducted a meta-analytic review of sixty-

five studies on multidisciplinary treatments for chronic back pain and found that multidisciplinary 

treatments for chronic pain were superior to other treatment plans. Turk [40] found that pain rehabilitation 

programs provide a comparable reduction in pain outcomes to alternative treatment modalities, but 

significantly improve medication use, health care utilization, functional activities, and return to work among 

patients, and are more cost-effective than surgical interventions. Gagnon et al. [41] analyzed the efficacy 

of an interdisciplinary pain management program on workers’ compensation patients with chronic back 

pain and found a significant decrease in patients’ emotional stress, pain intensity, and an increase in their 

return-to-work status at program completion. The integration of physiotherapy and clinical psychology in 

pain management and its effectiveness has been reviewed by Johnson and Morales [42]. The success of 

interdisciplinary pain management programs has led to their widespread use in many clinics [16, 37]. 

The interdisciplinary pain management program follows an adaptive treatment strategy. Adaptive 

treatments can be described as a set of sequential decision rules adapted based on the patient’s 

characteristics and response to treatments over multiple stages [23]. The research on adaptive treatments is 

divided into two categories: randomized experimentation and Markov decision processes [22]. Randomized 

experimentation includes the multiphase optimization strategy (MOST) and sequential multiple assignment 

randomized trials (SMART) [43]. The adaptive treatment decision problem is formulated as a stochastic 

dynamic program (SDP), which is discussed in the next section. The adaptive treatment decision framework 

developed for the pain management program is discussed in Chapter 4. 

 



9 

 

2.2 Multi-Stage Optimization 

Multi-stage optimization involves problems where decisions must be made sequentially in stages under 

conditions of uncertainty. Multi-stage optimization has applications in energy [44, 45], finance [46], supply 

chain [47, 48, 49], manufacturing [50], healthcare [51] and other fields. For the adaptive interdisciplinary 

pain management project in Figure 3 from the previous chapter, two types of multi-stage optimization have 

been employed.  Lin et al. [22] used stochastic dynamic programming (SDP), which can handle two or 

more stages. Because the interdisciplinary pain management program at the McDermott Center can be 

modeled as a two-stage program (Figure 2), Wang et al. [28] and Iqbal et al. [27] used two-stage stochastic 

programming. Here, we discuss the adaptive interdisciplinary pain management framework of Lin et al. 

[22] using SDP since this was the first optimization framework for this problem. Later, in Chapter 4, we 

build on the work of Wang et al. [28] and Iqbal et al. [27] to construct the two-stage stochastic programming 

formulation employed for the research in this dissertation. 

Dynamic programming is a collection of mathematical tools to analyze and solve sequential decision 

problems and was first introduced by Bellman [52, 53]. These problems are most commonly modeled in 

discrete (time) stages, where a decision is made in each stage, then additional information is observed, 

followed by a subsequent decision in the next stage, and so on [54]. SDP models multi-stage optimization 

problems under conditions of uncertainty where some of the parameters in the problem are modeled as 

stochastic variables. There are five main elements in a SDP formulation: stages T, are the sequential time 

stages when decisions are made; state variables 𝑆𝑡 ∈  𝑅𝑛 , represents the state of the system at time 𝑡 before 

we make a decision; decision variables  𝑢𝑡 ∈  𝑅𝑚 , are controlled to optimize the solution; the feasible 

decision space is denoted by  𝑋𝑡,  𝑢𝑡 ∈   𝑋𝑡 , state transition functions  𝑓𝑡(∙), model the transition of state 

variables from stage 𝑡 to 𝑡 + 1; the objective function 𝐶𝑡(∙): 𝑅𝑛+𝑚+𝑙 → 𝑅𝑙, could be a cost/reward/utility 

function which may depend on the state  𝑆𝑡  and the decision  𝑢𝑡  [55].  
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An SDP formulation over T discrete time stages is shown in Equation (1) [56, 57] 

                               min
 𝑢1,𝑢2

𝐸{∑  𝐶𝑡( 𝑠𝑡 ,  𝑢𝑡 ,  𝜀𝑡)2
𝑡=1 }                                                          (1)                                                                                                   

subject to  𝑠𝑡+1 =  𝑓𝑡( 𝑠𝑡 ,  𝑢𝑡 ,  𝜀𝑡)      𝑓𝑜𝑟 𝑡 = 1, … … , 𝑇 − 1, 

( 𝑠𝑡 ,  𝑢𝑡) ∈ Γ𝑡       𝑓𝑜𝑟 𝑡 = 1, … … , 𝑇, 

      𝑢𝑡 ∈  𝑋𝑡               𝑓𝑜𝑟 𝑡 = 1, … … , 𝑇, 

where  𝜀𝑡 ∈  𝑅𝑙 is the random vector, Γ𝑡 ∈  𝑅𝑛+𝑚 is the set of constraints and  𝑋𝑡 is the feasible decision 

space. 

The pain management treatment optimization is a two-stage stochastic programming problem, a 

common type of multi-stage optimization problems. Two-stage stochastic programming problems can be 

found in healthcare [58, 59], staffing and scheduling [60, 61], energy [62] and other applications. The state, 

decision, and outcome variables in the pain management research are shown in Table 1. The state and 

decision variables are a mix of continuous and categorical variables, while the outcome variables are 

continuous.  

Table 1: Pain management variables 

State Variables Patient demographics 

  Patient medical history 

  Patient surgical history 

  Patient treatment history 

  Patient past pain outcome measures 

    

Decision Variables Pharmaceutical treatments 

  Procedural treatments 

    

Outcome Variables 

Pain outcome measures: OSW, PDA, 

BDI, SF36-mcs, and SF36-mcs 
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The two-stage stochastic programming formulation is shown in Equation (2) [63, 64] 

                                                                      min
𝑥

𝑐𝑇𝑥 + 𝐸[𝑄(𝑥, 𝑤)]                                                                          (2) 

𝑠. 𝑡. 𝐴𝑥 = 𝑏                              

   𝑥 ∈ 𝑅+
𝑛1 × 𝑍+

𝑠1                            

       𝑤ℎ𝑒𝑟𝑒  𝑄(𝑥, 𝑤) ∶=  min
𝑦

𝑞𝑇𝑦     

         𝑠. 𝑡. 𝑊𝑦 = ℎ − 𝑇𝑥                           

  𝑦 ∈ 𝑅+
𝑛2 × 𝑍+

𝑠2 ,                            

where 𝑥 and 𝑦 are the stage 1 and stage 2 decision variables, 𝑛1 , 𝑠1 are the number of continuous and integer 

variables in stage 1 decision vector and 𝑛2, 𝑠2 are the number of continuous and integer variables in stage 

2 decision vector respectively. The second stage data is uncertain and is represented by 𝑤 = (𝑞, 𝑇, 𝑊, ℎ). 

The objective is to minimize the first stage decision cost and the expected second stage decision cost. 𝑐 is 

the first stage decision cost vector and 𝑄(𝑥, 𝑤) is the second stage decision cost function. The uncertain 

data 𝑤 can be modeled as a probability function to represent a discrete finite number of scenarios 𝑤1, … , 𝑤𝑘 

with probabilities 𝑝1, … , 𝑝𝑘 respectively. The expected second stage cost function is the summation of the 

second stage cost function 𝑄(𝑥, 𝑤) over 𝑘 scenarios. The two-stage problem can then be formulated as one 

mixed integer linear programming (MILP) model, shown in Equation 3 [63, 64]  

                                                                 min
𝑥,𝑦1,…𝑦𝑘

𝑐𝑇𝑥 + ∑ 𝑝𝑘𝑞𝑘
𝑇

𝑘

𝑖=1

𝑦𝑘                                                                        (3) 

      𝑠. 𝑡. 𝐴𝑥 = 𝑏                                           

         𝑊𝑘𝑦𝑘 = ℎ𝑘 − 𝑇𝑘𝑥         𝑘 = 1, ….  , 𝑘 

𝑥 ∈ 𝑅+
𝑛1 × 𝑍+

𝑠1 , 𝑦 ∈ 𝑅+
𝑛2 × 𝑍+

𝑠2     
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The second stage scenario generation is an important topic of research since there is a tradeoff between 

computation time and solution quality. The more scenarios we generate, the better the solutions but the 

computational time increases. A survey of different sample generation methods can be found in  [65, 66]. 

The equivalent MILP problem will be solved after generating the scenarios, assuming that the cost 

functions and state transition constraints are linear. The state transition constraints correspond to the 

transition functions that map the state, decision, and outcome variables from stage 1 to stage 2. 

Lin et al. [22] used approximate dynamic program (ADP) to solve the pain management optimization 

problem and used linear regression to model the state transitions. Wang et al. [28] used the two-stage 

stochastic programming approach with stepwise regression used to build the state transition models. Since 

the regression models had interaction terms, the state transition functions were quadratic and non-convex. 

Linearization techniques using piecewise linear functions was applied to make these constraints linear and 

formulate the optimization as an MILP problem. The objective of the optimization was to minimize the 

pain outcome measure, OSW while also penalizing excessive treatment costs under the state transition 

function and treatment interaction constraints. The MILP solutions were compared with the solutions 

obtained by solving the original MINLP problem without linearizing the interaction constraints. Iqbal et 

al.[27] developed a multi-objective two-stage stochastic programming optimization approach using 

piecewise linear networks (PLN) to build the state transition functions. The objective was to minimize the 

multiple pain outcome measures along with treatment costs. The optimization problem was solved as an 

MILP problem. 

Markov decision process (MDP) is another technique to formulate sequential decision-making problems 

in discrete time steps. MDP is characterized by a finite and discrete state space, with the state transitions 

modeled as probability matrices. MDPs are based on the Markov property that future state transitions 

depend only on the current state, and decisions are independent of past states and past decisions. MDPs 

have been used in medical decision problems to determine the optimal timing of interventions [67, 68, 69]. 

Alagoz et al. [70] model an infinite horizon stationary MDP to determine the optimal timing of liver 
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transplantation. Shechter et al. [71] use MDP for optimal initiation of HIV treatment. Denton et al. [72] use 

MDP to optimize the start time of statin therapy in diabetes patients. The main advantages of MDP are that 

it allows for a simpler representation of the future states and possible transitions that may occur, and it is 

preferred over decision trees for complex problems [69].  

MDP models the state transition at the cohort level, while microsimulation (MSM) models the state 

transition at an individual level [73, 74]. MSM simulates events and outcomes at the individual level to 

provide information that can guide policy decisions [75]. The state transitions are modeled as individual 

probability matrices. MSM models are not limited by the Markovian assumptions since they simulate one 

individual at a time [76]. MSM has been used in cancer research [77], diabetes research [78], and health 

policy [79]. These models are computationally intensive and often require simulating millions of 

individuals to obtain stable outcome values [76]. MDP and MSM are structured around a set of mutually 

exclusive and exhaustive states [76], which can create a computationally intractable problem. 

MDP and MSM are suitable for discrete state space problems, while the pain management state space 

has a mix of continuous and discrete variables. Discretization techniques can be employed in the continuous 

state space, but this is not desired to avoid potential information loss. The state transition probability 

matrices also do not capture the interactions between the state and decision variables. 

In this research, optimization framework is based on the multi-objective two stage stochastic 

programming approach of Iqbal et al.[27] since all the pain outcome measures were considered in that 

study. An important aspect of two-stage stochastic programs is to model the state transition functions, and 

this is discussed in the next sections. 

2.3 State Transition Models 

In any stochastic programming formulation, modeling the state and outcome transitions is an important 

step. Since the pain management data are from an observational study, we look into the literature on 

longitudinal data analysis for methods to model transition functions. Longitudinal data are data resulting 
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from observing subjects repeatedly over time [80]. They allow the researcher to track the changes in the 

response variable over time. Correlation between variables is common in longitudinal data due to the 

repeated measurements over time, and multiple treatments being prescribed together depending on the 

patient’s condition. The data structure includes baseline data (e.g., age, gender, race, etc.) and time-varying 

signals (e.g., treatments, medical conditions, outcome measures, etc.) and includes both categorical and 

continuous variables [81]. 

Random effects models have been used in longitudinal data analysis to model individual-specific 

random effects on the outcome variable in the time-varying setting [82]. The linear mixed effect model 

(LME) is one such regression-based random effects model for continuous outcome response. It is based on 

the premise that there is a subject-specific mean response profile over time, with a specific functional form 

[80]. The general LME model form for outcome 𝑌𝑖(𝑡+1) measured subsequent to the 𝑡-th time point for 𝑖 =

1, … , 𝑛  individuals have the form [80, 82, 83] shown in Equation (4) 

                                                            𝑌𝑖(𝑡+1) = 𝑋𝑖𝑡
𝑇𝛽 + 𝑍𝑖𝑡

𝑇𝑏𝑖 + 𝜀𝑖(𝑡+1),                                                               (4) 

where 𝑋𝑖𝑡 and 𝑍𝑖𝑡 are the known design matrices prior to the 𝑡-th time point for the fixed-effects and 

random-effects coefficients respectively. 𝛽 is the vector of fixed-effects coefficients, 𝑏𝑖~𝑁(0, 𝐷) is the 

vector of random effects coefficients, and 𝜀𝑖(𝑡+1)~𝑁(0, 𝜎2) is the random error. The random effects are 

assumed to be independent of the error terms 𝜀𝑖(𝑡+1) and normally distributed, with mean zero and variance-

covariance matrix D. Maximum Likelihood principles are used in estimating the model parameters. 

Generalized estimating equations (GEE) is another regression-based approach for longitudinal data 

analysis [84]. In this approach, two models are specified. The first is the regression model for mean response 

and the second is a correlation model for the within-subject correlation.  The purpose of the correlation 

model is to apply the covariance inverse weights to the observations and obtain regression coefficient 

estimates and the standard error for the estimated coefficients [85]. The drawback is that it requires large 

sample sizes to obtain unbiased and consistent estimation [86]. 
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The LME and GEE fall under a category of longitudinal study called parametric models. Kvaløy et al 

[87] and Nordseth et al [88] use a non-parametric regression method to model cardiac arrest data including 

the state history. Due to the non-parametric nature, this method can handle data under minimal assumptions. 

A detailed review of non-parametric and semi-parametric modeling methods can be found in Huang [89]. 

Hidden Markov Models [90, 91] and Gaussian Process State Space Models [92] are other approaches 

used in modeling observational health data. These methods involve complex model specifications, involve 

a large number of parameters, and require training [81]. 

The methods discussed under longitudinal data analysis are designed for studies where the covariates 

are assumed to be fixed. They do not model the effects of past treatments and past outcomes on current 

treatments and outcomes [93].  This leads to inferential challenges when one tries to apply this model with 

time-varying confounding variables [82]. These limitations make them unsuitable for building state 

transition models on the pain management dataset. 

A review of best modeling practices for state transition modeling can be found in the ISPOR-SMDM 

report [76], which states that while modeling the effectiveness of treatment interventions in observational 

studies, it is important to account for time-varying confounding. The sequential nature of the pain 

management program results in the treatment effects in a particular stage being influenced by patient state 

variables, past treatments, and past pain outcome measures. This is referred to as time-varying confounding. 

There are several methods to handle time-varying confounding and identify the true treatment effects. The 

most studied methods are propensity scores [94, 95, 96], marginal structural models [97, 98, 99, 100], g-

estimation [101, 102, 103, 104, 98] and IPTW weights [105, 106, 107, 108, 109, 110]. A detailed review 

of the different methods to handle time-varying confounding can be found in the work of LeBoulluec et al. 

[25] and Ohol [26]. Robins et al. [106] introduced Inverse Probability of Treatment Weighting (IPTW) to 

obtain unbiased estimates of treatment effects in a one-treatment setting. LeBoulluec et al.[25] extended 

the IPTW framework to multiple treatments. Ohol [26] considered the case with multiple correlated 

treatments and used MIMIC [111] to estimate the joint probability distribution of treatments. 
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It is important to perform feature selection on the state space to identify the relevant features to be used 

in the state transition function. A review of the feature selection methods is given in the next section. 

2.4 Feature and Interaction Selection 

A feature is an individual measurable property of the system being observed [112]. With the development 

of technology, data storage capacity, and computing systems, the number of features observed, and the data 

collected has increased exponentially [113]. The analysis of these data to draw meaningful insights about 

the system processes, and to build models is an important goal for researchers. Data pre-processing is the 

first step in the model-building process, where the data are processed before being presented to any learning, 

discovering, or visualizing algorithm [114]. There are three steps in data pre-processing: feature 

construction, feature extraction, and feature selection. Feature construction is the process where missing 

information about the relationship between features is discovered and the feature space is augmented by 

inferring or creating additional features [115, 116]. Feature extraction is a mapping process from the 

original feature space to a lower dimensional one [117]. Feature selection is the process of selecting a subset 

of features from the original input feature space and evaluating this subset on the research objective like 

response prediction/classification or uncovering the cause-effect relationship between features and response 

[117].  

Feature selection methods are further classified into the filter, wrapper, and embedded methods [112]. 

Filter methods rely on the characteristics of the training data to rank and select features based on certain 

relevance criteria [118] and are independent of the model-building process. There are different relevance 

criteria used to rank features [119, 120], based on statistical measures, such as Pearson’s correlation [121], 

Linear Discriminant Analysis, ANOVA, Chi-square [122], Wilcoxon Mann Whitney test [123], and Mutual 

Information [124, 125]. The faster computation time is the main advantage of filter methods and is preferred 

when the input feature space is large. Some of the ranking methods do not consider the correlation between 

the features, which leads to the selection of a redundant subset [120]. It is hard to select a suitable modeling 
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algorithm with filter methods since they do not consider the performance of the algorithm with the selected 

feature subset [126]. In feature ranking, important features that are less informative on their own but are 

informative when combined with others could be discarded [112]. Filter-based methods have been used in 

medical imaging [127, 128], DNA microarray data [129, 130] and signal processing [131, 132]. 

Wrapper methods search for an optimal feature subset along with the performance of the predictive 

algorithm on the feature subset [133]. The predictive algorithm is modeled as a black box and repeatedly 

runs on the dataset using various feature subsets. The feature subset with the best prediction is selected. 

There are broadly two search algorithms to search for the feature subset: Sequential Selection Algorithm 

and Heuristic Search Algorithms. The sequential selection algorithm starts with an empty set (full set) and 

adds features (removes features) until the optimal objective function is obtained [112]. The heuristic 

algorithm generates subsets around the search space by generating solutions to the optimization problem 

[112]. Wrapper methods have better predictive performance than the filter-based methods since the feature 

selection and prediction model building go hand in hand. The downside of a wrapper method is that it is 

computationally intensive, and the search space grows exponentially as the number of features increases 

[133]. Wrapper-based methods have been used in brain MRI studies [134, 135] and medical image 

processing [136, 137]. 

In embedded methods, the feature selection is embedded in the modeling algorithm [138]. Embedded 

methods include decision tree algorithms like CART [139] and Random Forest [140]. LASSO [29] is an 

embedded method that performs feature selection based on L1 regularization and is computationally fast. 

2.4.1 LASSO 

LASSO is a regularization technique for simultaneous estimation and feature selection [29]. The LASSO 

estimates are shown in Equation (5) 

                                                      𝛽̂ ∈ arg min
𝛽

‖𝑦 − ∑ 𝑥𝑗𝛽𝑗
𝑝
𝑗=1 ‖

2
+  𝜆 ∑ |𝛽𝑗|𝑝

𝑗=1 ,                                                     (5) 
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where y is the response vector, 𝛽𝑗 is the coefficient estimate of input feature 𝑥𝑗 , 𝑝 is the number of input 

features, and 𝜆 is the regularization parameter. The second term is called the “𝑙1 penalty”, which shrinks 

the coefficients to zero as 𝜆 increases. The LASSO estimates could be inconsistent since they apply the 

same shrinkage for all the variables estimates. They achieve consistent variable selection and optimal 

estimation, which is referred to as the oracle property, only under certain necessary conditions [141, 142, 

143].  

Adaptive LASSO was developed by using an adaptively weighted 𝑙1 penalty [143] and shown to satisfy 

the oracle property more likely than LASSO. The Adaptive LASSO estimates are calculated using Equation 

(6). 

                                          𝛽̂ ∈ arg min
𝛽

‖𝑦 − ∑ 𝑥𝑗𝛽𝑗
𝑝
𝑗=1 ‖

2
+  𝜆 ∑ 𝑤𝑗|𝛽𝑗|𝑝

𝑗=1 ,                                           (6) 

where 𝑤𝑗 =
1

|𝛽̂|
𝛾 , 𝛾 > 0 and 𝛽̂ can be Ordinary Least Squares estimates. 

The LASSO algorithm shown in Equation (3) has been modified over the years leading to the 

development of several algorithms. The most prominent among these are Elastic Net [144], Group LASSO 

[145], Adaptive Group LASSO [146], and overlapped Group LASSO [147]. Elastic Net was developed to 

perform consistent feature selection under multicollinearity. Group LASSO was an extension of LASSO to 

select groups of variables together, for example in the multifactor analysis of variance models.  Group 

LASSO was shown to have the same variable selection inconsistency as LASSO, and Adaptive Group 

LASSO was proposed, where different groups of variables were weighted differently, similar to Adaptive 

LASSO. The overlapped Group LASSO considers groups of features, allowing overlap between the groups.  

 LASSO has been widely used in high-dimensional data modeling where parsimony is desired. Zhang 

et al. [148] and Wang et al. [149] use group lasso regularization to perform feature selection for neural 

networks. They are used in the estimation of sparse graphical models and neighborhood selection, which 

find applications in molecular biology, gene expression, and network analysis [150, 151]. Farahani et al. 



19 

 

[152] demonstrated the application of LASSO based method for causal variable selection on the pain 

management data while addressing time-varying confounding.  

2.4.2 Interaction Selection 

The feature selection methods discussed so far focus mostly on the main effects, while in practice it is 

important to consider the influence of interactions between the input variables on the response variable. 

Interaction models are useful in social, political, economic, epidemiology, and genetic studies and provide 

better insight into the association between variables [153, 154]. Gunter et al. [155] discuss the importance 

of selecting interaction variables in optimal decision-making problems.  

Interaction selection/screening is a major subject of study with different methods developed to discover 

and model interactions. In statistical modeling of interactions, it is a common practice to allow interaction 

in the model only if the corresponding main effects are present in the model [156, 157, 158]. This is referred 

to as heredity, marginality, or strong hierarchy. Weak hierarchy is when an interaction is allowed in the 

model when at least one of the corresponding main effects is present in the model. 

Strong Hierarchy:  Θ̂𝑖𝑗 ≠ 0, ⇒   𝛽̂𝑖 ≠ 0 𝑎𝑛𝑑 𝛽̂𝑗 ≠ 0,    

Weak Hierarchy:   Θ̂𝑖𝑗 ≠ 0, ⇒   𝛽̂𝑖 ≠ 0 𝑜𝑟 𝛽̂𝑗 ≠ 0, 

where Θ̂𝑖𝑗 is the interaction estimate and 𝛽̂𝑖, 𝛽̂𝑗 are main effect estimates for variables 𝑖 and 𝑗 respectively.  

Several methods aim at building models while satisfying this hierarchy constraint. The multi-step 

approach is one such iterative process built on the stepwise framework, where variables are added or 

removed iteratively. The stepwise framework screens the main effects first and then searches for 

interactions between the selected main effects, thus enforcing a strong hierarchy [159, 160]. There are 

several optimization-based approaches, which formulate the hierarchy constraint as convex and non-

convex. Zhao et al. [161] introduced composite absolute penalties (CAP), a broad class of penalties that 

can achieve group and hierarchical sparsity. Choi et al. [162] formulated a non-convex optimization for 
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sparse hierarchical interaction models. Bien et al. [30] developed a method called HierNet, where they 

introduced a set of convex constraints to LASSO to satisfy the hierarchy condition and build sparse 

interaction models. Lim and Hastie [163] developed a method called Glinternet, where they formulated a 

constrained overlapped group LASSO to enforce hierarchy and solve it using an equivalent group LASSO 

formulation. Chipman [164] used the Bayesian viewpoint to build hierarchical interaction models adapting 

the stochastic search variable selection approach (SSVS) of George and McCulloch [165]. The multi-step 

procedures have computational advantages when the data dimension is large, but there have been questions 

raised over their theoretical validity [153]. Some of the optimization-based approaches have been shown to 

produce consistent estimates under the strong hierarchy condition [162, 166], but the major limitation of 

these methods is the computational cost and memory requirement with large datasets [153]. The interaction 

screening methods have been studied on genome-wide association studies, UCI spam base data, gene 

expression dataset, and Boston Housing dataset [153, 163, 167].  

2.5 Contribution 

The main objective of pain management research is to develop an adaptive decision framework to identify 

an optimal treatment regime. The different components that make up this framework are shown in Figure 

4. The highlighted section is the focus of this research work. 

 

Figure 4: Adaptive interdisciplinary pain management framework [26] 
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The pain management decision problem is formulated as a two-stage stochastic programming problem 

with an adaptive treatment framework. The data has state, decision, and outcome variables for the two 

stages. The state and outcome transition functions model the transition of these variables between the stages, 

as shown in Table 2. The interaction between the state and decision variables has a significant impact on 

the outcome variable in an adaptive treatment setting since the treatments are prescribed depending on the 

patient’s state [155]. It is therefore important to model these interactions in the transition models.  

Table 2: State and outcome Transition [25] 

 

The summary of the research work done on the pain management program is shown in Table 3. The 

proposed research work is highlighted in the table. 

Table 3: Pain Management Research Summary 

 

Paper Model type Interactions Feature selection IPTW Optimization

Lin et al. [22] Linear model
State treatment 

interactions
Stepwise least squares No SDP

LeBoulluec et al. [25] Linear model
State treatment 

interactions
Stepwise least squares Derived weights No

Ohol [26] Linear model No No Derived weights No

Farahani et al. [152] Linear model No LASSO regularization Used Ohol weights No

Wang et al. [28] Linear model
State treatment 

interactions
Stepwise least squares

Used LeBoulluec's 

weights
Two-stage SP

Iqbal et al. [27]
Piecewise Linear 

Network
Network interactions

Piecewise Linear 

Network

Used LeBoulluec's 

weights
Two-stage SP

Viswanatha Linear model
State treatment 

interactions
LASSO regularization Derived weights Two-stage SP

State Transition Modeling
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Lin et al. [22] modeled an optimization framework based on approximate dynamic programming (ADP)  

with linear regression to model the state transitions. The recommended treatment regime minimized adverse 

patient pain outcomes along with treatment costs. The adaptive and sequential nature of the pain 

management program introduces time-varying confounding, where the treatment effects are confounded by 

past treatments and patient state variables. LeBoulluec et al. [25] extended the IPTW framework to address 

this time-varying confounding in a multiple treatment setting. Ohol [26] further extended the IPTW method 

to consider correlated treatments. Farahani et al. [152] used LASSO-based regularization along with IPTW 

to perform causal feature selection. 

The stochastic dynamic programming approach of Lin et al. [22] optimizes treatments over multiple 

stages. Since the pain management program has two-stages, Wang et al. [28] and Iqbal et.al [27] formulated 

the optimization as a two-stage stochastic programming problem. Wang et al. [28] used weighted least 

squares method to develop the state transition models using the IPTW weights from LeBoulluec et al. [25].  

The state transition constraints in the optimization were non-convex as they modeled the state treatment 

interaction terms. A linearization technique using piecewise linear function was proposed to approximate 

the non-convex constraints and formulate the optimization problem as an approximated mixed integer linear 

problem (MILP). The objective of the optimization was to minimize the pain outcome measure, OSW while 

also penalizing excessive treatment costs under the state transition function and treatment interaction 

constraints. The optimization results from the approximate MILP were compared with the solutions 

obtained from the original mixed integer nonlinear problem (MINLP) formulation without linearizing the 

interaction constraints. 

Iqbal et al.[27] developed a multi-objective two-stage stochastic programming optimization approach 

using piecewise linear networks (PLN) to build the state transition functions. The objective is to minimize 

all the pain outcome measures considered in this study along with treatment costs. A survey among 

caregivers was conducted to identify the relation between the different pain outcome measures and a convex 
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quadratic programming approach was used to obtain weights to penalize the different pain measures. An 

equivalent MILP model was used to solve the optimization problem. 

     Iqbal et al. [27] was the only work that considered multi-objective optimization and included IPTW 

weights while building the state transition models. The state transition models did not include the state 

treatment interaction effects but had network interactions. In this research work, our primary research goal 

is to model the state treatment interactions while building the state transition models. The second research 

goal is to use these state transition models in the multi-objective optimization framework based on Iqbal 

et.al [27] and study the treatment recommendation patterns from the proposed approach. 

With this background, it is important to select a state transition modeling approach that identifies the 

right features from the state space. The work of Farahani et al. [152] showed that LASSO-based techniques 

can be used to build models on pain management data while achieving consistent feature selection. We 

propose to use HierNet [30], a LASSO-based interaction modeling approach while incorporating the IPTW-

based weighting technique developed by Ohol [26] to effectively model the state transition functions with 

state and treatment interaction effects. 

We evaluate the performance of the proposed HierNet-IPTW method on feature and interaction selection 

metrics in a case study designed to simulate the pain management data. This is discussed in Chapter 3. In 

Chapter 4, we use the proposed HierNet-IPTW modeling method to develop state transition models with 

state treatment interactions on pain management data. We build on the multi-objective stochastic 

programming optimization developed by Iqbal et al. [27], using the newly developed state transition 

models. The state transition functions are non-convex as they include interaction terms. Instead of 

linearizing the interaction terms and using an approximate MILP model, we use a Mixed Integer 

Quadratically Constrained Program (MIQCP) to formulate and solve the optimization problem. Optimal 

treatment recommendations are then compared with solutions obtained from state transition models without 

interactions and models without IPTW. This will help us understand the impact of including interaction 

effects and IPTW on optimal treatment recommendations. 
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Chapter 3 

LASSO Based State Transition Modeling with Interactions in 

Pain Management Simulation Case Study 

Abstract 

The Eugene McDermott Center for Pain Management at the University of Texas Southwestern Medical 

Center has an interdisciplinary pain management program for chronic pain. This program is modeled as a 

two-stage adaptive treatment decision problem, with state transition models representing the transition of 

patient state, treatment, and outcome variables from stage 1 to stage 2. 

In an adaptive treatment environment, the patient’s current state influences the treatments recommended, 

which in turn affect the patient’s future states leading to time-varying confounding and biased treatment 

estimates. Inverse Probability of Treatment Weighting (IPTW) [106] is one technique to address time-

varying confounding. Interactions between the patient state and treatments also play a major role in 

determining a personalized treatment plan for individual patients. It is important for the modeling method 

to identify the causal features and interactions. The advantage of LASSO based methods is in building 

parsimonious models and handling correlation between variables, which is not the case with least squares-

based methods. 

In this paper, LASSO based method named HierNet [30] is combined with IPTW from Ohol [26] to 

build state transition and outcome models  that enable feature selection and modeling of interaction effects 

in the presence of time-varying confounding. The proposed approach is studied using a simulated case study 

structured based on the McDermott Center  data. The proposed approach is compared on the feature and 

interaction selection metrics against the baseline method that does not use IPTW.  
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3.1 Introduction 

The objective of adaptive interdisciplinary pain management is to provide personalized pain treatment 

regime that considers non-pharmaceutical procedures as alternatives to medications. Given the wide range 

of potential treatment regimes, an adaptive treatment framework is needed to identify the optimal treatment 

regime. Of particular importance in personalizing treatment is the modeling of interactions between 

possible treatments and a patient’s pain and health characteristics [155]. Interactions capture how the 

different treatments affect the pain outcomes for patients with differing characteristics. In this paper, we 

build on past research to complete the pain management adaptive treatment framework illustrated in Figure 

5. The highlighted section in the figure shows the three modules that form the scope of the presented 

research. 

 

Figure 5: Adaptive interdisciplinary pain management research objectives [26] 

Medical records and patient information for our study were provided by the Eugene McDermott Center 

for Pain Management at the University of Texas Southwestern Medical Center at Dallas. The raw dataset 

included patient information, past medication information, past medical records, treatments, and patient 

pain outcome measures collected over the course of the program. Data cleaning and imputation via 
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regression models was done to preserve as much of the data set as possible and to prepare the data in a 

format suitable for mathematical analysis. Please refer  Lin et al. [22] for details on data preparation.  Prior 

work cited in Figure 5 provides background specifying the state variables that define a patient’s pain and 

health history, decision variables that define the categories of treatments, and pain outcome measures that 

are optimized via the adaptive treatment framework. State variables provide information about the patient 

and include past medical and surgical history, physical condition, age, gender, past medications etc. 

Decision variables are the different pharmaceutical and procedural treatments, such as analgesics, anti-

depressants, physical therapy, and cognitive behavioral therapy. Outcome measures are OSW [18], PDA 

[19],  BDI [20], sf36pcs [21] and sf36mcs [21]. The pain management program is a two-stage decision 

problem, with treatment decisions made in stages 1 and 2 respectively. Patient pain outcome measures are 

also collected at stage 1 and stage 2.  The final cleaned dataset consisted of 294 patient observations, 62 

state variables, 14 stage 1 decision variables, 13 stage 2 decision variables, and 5 stage 1 and stage 2 

outcome variables respectively. 

3.1.1 Addressing Time-varying Confounding 

A primary challenge addressed in the work of LeBoulluec et al. [25] and Ohol [26] is conducting unbiased 

estimation of treatment effects using observational data. In order to optimize a treatment regime, it is 

essential to appropriately represent treatment effects within the decision optimization method. Ideally, a 

randomized controlled trial would be implemented to provide this information, but the availability of 

observed clinical data raises the opportunity to leverage such data. Since certain treatments are prescribed 

together and certain medical conditions are treated by specific treatments, we further observe correlation 

between some of the state variables, and between some of the state and decision variables. 

The pain management program is adaptive and sequential, where treatment effects in a particular stage 

are influenced by past patient state variables, past treatments, and past pain outcome measures. This is 

referred to as time-varying confounding or endogeneity [106]. This leads to biased estimation of the causal 

effects of the treatments on the pain outcome measures. Consider this one treatment example shown in 
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Figure 6. The treatment 𝑇1 is prescribed in stage 1 and patient outcome measure 𝑌1 is measured at the end 

of stage 1. The treatment 𝑇2 is prescribed in stage 2 and patient outcome measure 𝑌2 is measured at the end 

of stage 2. The red causal path shows the time-varying confounding effect of stage 1 patient outcome 𝑌1 

and stage 1 treatment 𝑇1 on the prescribed treatment in stage 2, 𝑇2. The effect of treatment 𝑇2 on patient 

outcome 𝑌2 is confounded by the past patient outcome and past treatments. The orange causal path shows 

the effect of patient state variables like age, gender, race, past medical history, etc. on treatments and patient 

outcomes. These are considered confounders since they are associated both with the treatments and 

outcomes. To find the impact of treatment on outcome measures, the effect of these confounders needs to 

be accounted for. In this study, the confounders are time-invariant since patient state variables are assumed 

to be constant throughout the treatment plan. The past treatments and past outcomes are time-varying 

confounders since they vary from one stage to another. 

 

Figure 6: Time-varying confounding in one treatment case [26, 168] 

There are several methods to address time-varying confounding like G-estimation [102, 103, 104], 

marginal structure models (MSM) [97, 98, 99, 100], G-computation [98, 101], inverse probability of 

treatment weighting (IPTW) [105, 106, 107, 108, 109, 110]. The IPTW approach is the preferred method 

for handling time varying confounding in an adaptive treatment setting. IPTW generates weights that can 

be conceptually thought of as creating replicates of the rare observations in the study with the goal of 

mimicking data that would be expected from clinical trials. The important assumption while calculating the 
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weights using this method is that there are no unmeasured confounders, which implies all confounders are 

accounted for in the model. 

 LeBoulluec et al. [25] extended the Inverse Probability of Treatment Weighting (IPTW) method to 

address time-varying confounding in the multiple treatment setting assuming treatment independence. Ohol 

[26] extended the IPTW method further by considering multiple correlated treatments and used the MIMIC 

[111] algorithm to estimate the joint probability distribution of treatments. Given the correlated nature of 

treatments in interdisciplinary treatment, the method of Ohol [26] is employed in the current work. 

3.1.2 Optimization Approaches for Adaptive Interdisciplinary Pain Management 

Referring back to three modules highlighted Figure 1, IPTW weights are first generated from the available 

observational data, then used to build unbiased state transition and outcome models which are finally 

incorporated into the optimization of the adaptive treatment framework.  In addition to the IPTW work of 

LeBoulluec et al.[25] and Ohol [26], the current research builds on prior work for optimization. Lin et al. 

[22] created an optimization framework based on approximate dynamic programming with linear regression 

to model the state transitions. Wang et al. [28] developed IPTW based weighted least square state transition 

models. The interactions in the state transition models were linearized using a piecewise linear 

approximation method and modeled as constraints in a two-stage stochastic programming (2SP) framework. 

Iqbal et al. [27] used piecewise linear networks (PLN) to model the state transitions in a multiple objective 

two-stage stochastic programming framework, which included all the five pain outcome measures. 

3.1.3 Contribution in State Transition and Outcome Modeling 

Both LeBoulluec et al. [25] and Ohol [26] constructed state transition and outcome models to study their 

IPTW methods, but neither considered the importance of state-treatment interactions or addressed feature 

selection. Lin et al [22] did study interaction terms and feature selection via stepwise regression but did not 

address time-varying confounding. To address causal feature selection in the presence of time-varying 

confounding, Farahani et al. [152] developed a LASSO based outcome adaptive Elastic Net algorithm for 
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main effect (no interaction) models. The advantage of LASSO based methods is in building parsimonious 

models and handling correlation between variables, which is not the case with least squares-based methods.  

In this paper, LASSO based methods are combined with IPTW from Ohol [26] to build state transition and 

outcome models  that enable feature selection and modeling of interaction effects in the presence of time-

varying confounding. This approach is studied using a simulated case study structured based on the 

McDermott Center  data with time varying confounding and various correlation structures between the 

variables. The benefit of a simulated case study is the ability to control the truth and compare the modeling 

results directly to the truth. The performance of the proposed modeling approach is compared against a 

baseline model that also attempts to model interactions but does not address time varying confounding. 

3.2 Modeling Framework 

3.2.1 HierNet 

HierNet is a LASSO-based method developed by Bien et al. [30] for finding interactions, which produces 

sparse estimates of the main and interaction effects while satisfying the strong or weak hierarchy constraint. 

The optimization problem shown in Equation (7) is solved in HierNet 

                        argmin𝜇,𝛽,𝜃
1

2
∑ (𝑦𝑖 − 𝜇 − 𝑥𝑖

𝑇𝛽 −
1

2
𝑥𝑖

𝑇Θ𝑥𝑖)2𝑛
𝑖=1 + 𝜆1𝑇(𝛽+ + 𝛽−) +

𝜆

2
‖Θ‖1,                        (7)  

                     subject to Θ = Θ𝑇, ‖Θ𝑗‖
1

≤ (𝛽𝑗
+ + 𝛽𝑗

−), 𝛽𝑗
+ ≥ 0, 𝛽𝑗

− ≥ 0,                  

where 𝑦𝑖 is the response variable, 𝑥𝑖 is the input vector, 𝛽 is the main effect vector, 𝜆 is the regularization 

parameter, 𝜇 is the fixed intercept,  𝛽𝑗 is the main effect of variable 𝑗, 𝛽𝑗
+ and 𝛽𝑗

+ are such that |𝛽𝑗| =

 (𝛽+ + 𝛽−),  Θ is the matrix of interaction effects, Θ𝑗  is the 𝑗th row of Θ. 

The constraint ‖Θ𝑗‖
1

≤ (𝛽𝑗
+ + 𝛽𝑗

−), is called the symmetry constraint and enforces strong hierarchy 

among the solutions. Weak hierarchy can be obtained by relaxing this constraint. In this study, we consider 

strong hierarchy since we want the main effects corresponding to the interactions to be in the model.  
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For this study, two important modifications were made to HierNet. They are summarized here and 

detailed in Appendix I. First, the optimization selects the optimal treatments with the objective of reducing 

patients’ pain outcomes and treatment costs. In order to enable representation of all treatment variables, the 

HierNet algorithm was modified to maintain all treatment variables. Second, to address time varying 

confounding via IPTW, the HierNet loss function was modified to utilize weighted loss function.  The 

complete iterative state transition and outcome modeling framework using IPTW and HierNet is explained 

in the next section. 

3.2.2 HierNet-IPTW Modeling Framework 

Because different weights on the observations will affect the results from feature selection, and different 

sets of features corresponding will affect the IPTW weights, an iterative process is presented in Figure 7 

that alternates between generating IPTW weights and conducting feature selection with HierNet. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: HierNet-IPTW modeling flowchart 
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The basic steps of the algorithm are as follows: 

Step 1: In the first step, the IPTW weights are obtained on the full model in which all the state and decision 

variables are included. 

Step 2:  The modified HierNet algorithm is run using the IPTW weights obtained from the full model. 

Step 3: The IPTW weights are obtained on the features identified by the HierNet algorithm in step 2. These 

weights are obtained on the reduced model using only the state and treatment variables from step 2 and are 

used to rebuild the models in step 2 in an iterative process till the stopping criteria are met. 

Step 4: The iterative process of calculating the IPTW weights and rebuilding models using HierNet is 

conducted until the stopping criteria are satisfied. In this study, the stopping criteria are the percentage 

change in weights from the previous iteration. If the maximum percentage change in weights is less than 

10%, the iterative process stops, and the selected features and interactions are output. The stopping criteria 

are shown in Equation (8). 

                                                      max
(𝐼𝑃𝑇𝑊𝑛

𝑖 −𝐼𝑃𝑇𝑊𝑛
𝑖−1)×100

𝐼𝑃𝑇𝑊𝑛
𝑖−1 < 10, ∀𝑛 ∈ 𝑁                                               (8) 

where 𝑁 is the total observations, 𝐼𝑃𝑇𝑊𝑛
𝑖 is the IPTW weight for observation 𝑛 in iteration 𝑖, and 𝐼𝑃𝑇𝑊𝑛

𝑖−1 

is the IPTW weight for observation 𝑛 in iteration 𝑖 − 1. 

The performance of the proposed HierNet-IPTW approach is compared against a baseline model, shown 

in Figure 8, that also attempts to model interactions but does not address time varying confounding. 

 

 

 

Figure 8: HierNet model flowchart 
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3.3 Pain Management Simulation Case Study 

The primary goal of this simulation case study is to evaluate the performance of the proposed HierNet-

IPTW modeling framework for identifying the true features and interactions using data with characteristics 

based on the McDermott Center data. Simulated data were created under various correlation conditions and 

time varying confounding to represent a variety of possible patterns in interdisciplinary pain management 

data. The causal diagram of the interdisciplinary pain management program is shown in Figure 9. 

 

Figure 9: Pain Management Causal Diagram [168] 

The causal diagram shows the second stage of the two-stage program, where 𝑌𝑡−1 is the pain outcome 

measured at the end of stage 1 of the program. The outcome measure 𝑌𝑡−1 becomes a state variable in stage 

2, that influences the stage 2 pain outcome measure 𝑌𝑡  and the stage 2 treatment variables 𝑋𝑇 . The spurious 

variables are 𝑋𝑆. The covariates are divided into two groups, outcome covariates 𝑋𝑂, that influence the 

stage 2 pain outcome measure 𝑌𝑡 , and confounding variables 𝑋𝑂𝑇, that influence 𝑌𝑡  and the stage 2 treatment 

variables 𝑋𝑇. The confounding variables 𝑋𝑂𝑇 also include the treatment variables prescribed in stage 1 and 

the stage 1 pain outcome measure 𝑌𝑡−1.  All the stage 2 treatment variables are assumed to be causal 

variables influencing 𝑌𝑡 . This assumption is important from the optimization perspective since to optimize 

the treatment allocation, all the treatment variables need to be in the final state transition model. The 
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treatments are binary variables that follow the probability distribution as a function of 𝑌𝑡−1 and 𝑋𝑂𝑇, shown 

in Equation (9). 

𝑃𝑡𝑟𝑡𝑡
=

𝑒𝑥𝑝(𝛽𝑇𝑋𝑇+𝛽𝑡𝑟𝑡
𝑂𝑇𝑋𝑂𝑇+𝛾𝑡−1𝑌𝑡−1) 

1+ 𝑒𝑥𝑝(𝛽𝑇𝑋𝑇+𝛽𝑂𝑇𝑋𝑂𝑇+𝛾𝑡−1𝑌𝑡−1)
                                                   (9) 

We create a covariate group, 𝑋𝐶𝑂 that includes  𝑋𝑂,  𝑋𝑂𝑇, and 𝑌𝑡−1. The pain outcome measure 𝑌𝑡  is a function 

of  𝑋𝐶𝑂, 𝑋𝑇 and interaction terms between them as shown in Equation (10) 

     𝑌𝑡 =  𝛽𝑇 𝑋𝑇 + 𝛽𝐶𝑂𝑋𝐶𝑂 + 𝛾𝐶𝑂
𝑇  𝑋𝑇𝑋𝐶𝑂 + 𝛾𝐶𝑂

𝐶𝑂  𝑋𝐶𝑂𝑋𝐶𝑂 + 𝛾𝑇
𝑇  𝑋𝑇𝑋𝑇 + 𝜀𝑖                  (10) 

where 𝛽𝑇  is the main effect of treatment 𝑋𝑇, 𝛽𝐶𝑂 is the main effect of covariates  𝑋𝐶𝑂, 𝛾𝑂𝑇
𝑇  is the interaction 

effect between treatments and covariates, 𝛾𝐶𝑂
𝐶𝑂  is the interaction effect between covariates and 𝛾𝑇

𝑇  is the 

interaction effect between treatment variables. The error term 𝜀𝑖 is selected such that the proportion of 

variance explained by the true model is 0.9. The pain management data also has a few rare outlier 

observations. To mimic these, the noise factor was increased for 10% of the observations so that the 

proportion of variance explained by the true model is 0.75.      

The second area of interest in this study is to understand the impact of different correlation structures 

between the treatments, covariates, and spurious variables on feature selection and interaction selection. The 

correlation structure used in the simulation study is shown in Figure 10, and is based on Farahani [168] 

 

Figure 10: Correlation Design for the simulation case study [168] 
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The following are the factors considered in this simulation case study: 

1. Correlation between treatments: {Low, High} The correlation between treatments were randomly 

generated to be between (0, 0.4) for low correlation and [0.5, 0.9] for high correlation. 

2. Correlation between treatments and covariates: {Low, High} The correlation between treatments 

and covariates were randomly generated to be between (0, 0.4) for low correlation and [0.5, 0.9] for 

high correlation. 

3. Correlation between treatments and spurious variables: {Low, High} The correlation between 

treatments and spurious variables were randomly generated to be between (0, 0.4) for low correlation 

and [0.5, 0.9] for high correlation. 

4. Use of IPTW: {Baseline, IPTW-MIMIC} The baseline algorithm following Figure 8 does not use 

IPTW, so it does not address time-varying confounding. The IPTW-MIMIC algorithm following Figure 

7 with IPTW using the MIMIC method from Ohol [26] to handle correlated treatments. The weights 

obtained from MIMIC are incorporated in the HierNet-IPTW model, which does the feature selection 

and model building as in Figure 7. 

A 24 full factorial experiment with 100 replications and 100 observations per replication was conducted. 

Oher factors which were fixed in the study are shown in Table 4: 

Table 4: Other factors in simulation case study 

Number of treatments (𝑿𝑻) 4 

Number of confounding variables (𝑿𝑶𝑻) 9 

Number of outcome covariates (𝑿𝑶) 4 

Number of covariates (𝑿𝑪𝑶) 13 (This is a union of  𝑋𝑂𝑇 and 𝑋𝑂) 

Number of spurious variables 8 

Number of randomly simulated interaction effects 10 
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3.4 Performance Metrics 

The performance metrics considered in this case study are classified into two groups, namely feature 

selection metrics and interaction selection metrics. 

3.4.1 Feature/Variable Selection Metrics 

The confusion matrix is primarily used to evaluate the performance of classification models and is based 

on the count of observations in the test dataset correctly and incorrectly predicted by the model [169, 170]. 

The confusion matrix concept extended to feature/variable selection is shown in Table 5.  

Table 5: Confusion matrix for feature selection [171] 

    Predicted feature classes 

    Causal feature Spurious feature 

True feature 

classes 

Causal features 𝑎: The number of causal 

features classified correctly 

𝑏: The number of causal 

features classified incorrectly 

Spurious features 𝑐: The number of spurious 

features classified incorrectly 

𝑑: The number of spurious 

features classified correctly 

 

The confusion matrix for feature/variable selection is used to evaluate the feature selection performance 

of the model based on the features correctly and incorrectly identified by the model [171]. The proportion 

of correctly classified causal features among all causal features is called sensitivity and the proportion of 

correctly classified spurious features among all spurious features is called specificity. Sensitivity and 

specificity provide specific information on feature selection with regards to causal and spurious features 

respectively.  

Sensitivity =  
𝑎

𝑎+𝑏
                                                                      (11) 
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 Specificity =  
𝑑

𝑐+𝑑
                                                                    (12) 

Sensitivity and Specificity values range between 0 and 1, with desired values closer to 1. Feature 

selection sensitivity and specificity are the two feature selection metrics used in this study. 

3.4.2 Interaction Selection Metrics 

The confusion matrix concept is extended to evaluate how the interactions are classified in the models and 

are shown in Table 6.  

Table 6: Confusion matrix for interaction selection 

    Predicted interaction classes 

    Causal interactions Spurious interactions 

True interaction 

classes 

Causal 

interactions 

𝑝: The number of causal 

interactions classified correctly 

𝑞: The number of causal 

interactions classified incorrectly 

Spurious 

interactions 

𝑟: The number of spurious 

interactions classified incorrectly 

𝑠: The number of spurious 

interactions classified correctly 

 

The proportion of correctly classified interactions among all causal interactions is called sensitivity and 

the proportion of correctly classified spurious interactions among all spurious interactions is called 

specificity. The sensitivity and specificity formulas shown in Equations (9) and (10) respectively are 

extended to the confusion matrix in Table 5. The False Discovery Rate (FDR) is the number of false 

interaction terms among all the predicted interaction terms in the model and was used by Lim and Hastie 

[163] in their study to compare the performance of Glinternet and HierNet. 

  FDR =  
𝑟

𝑝+𝑟
                                                                            (13) 
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Specificity and FDR both look at the number of spurious interactions in the model. The specificity values 

in this study would be very high since there are 25 state variables and 300 possible two-factor interaction 

effects. Both interaction sensitivity and FDR are used to compare the modeling methods in this study. 

3.5 Simulation Experiment Results 

The results of the 24 full factorial experiment conducted using pain management simulation data is analyzed 

in this section. The feature and interaction selection metrics are the outcomes of interest in this study. The 

factors controlled in the experiment are the correlation between treatments, the correlation between 

treatments and covariates, the correlation between treatments and spurious variables, and the use of IPTW.  

3.5.1 Feature Selection Sensitivity 

3.5.1.1 Preliminary Analysis 

The main purpose of the experiment is to analyze the difference in feature selection performance between 

the proposed modeling method that uses IPTW-MIMIC and the baseline method with no IPTW, under 

different correlation structures between treatments, covariates, and spurious variables.  

The boxplot in Figure 11 compares the use of IPTW under correlation between treatments. We can 

observe that with both the baseline and IPTW-MIMIC framework, the average sensitivity is higher with 

both the model frameworks when the correlation between treatments is low. We can infer that low 

correlation between treatments results in more true features being correctly identified by the model. We 

also observe a clear difference between the baseline and IPTW-MIMIC, with IPTW-MIMIC having higher 

average sensitivity than the baseline. 
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Figure 11: Feature selection sensitivity against the use of IPTW for different correlation structures 

between treatments 

The boxplot in Figure 12 compares the use of IPTW under correlation between treatments and 

covariates. Similar to the previous plot, the average sensitivity is higher with both the model frameworks 

when the correlation between treatments and covariates is higher. There is a greater variation with IPTW-

MIMIC at low correlation. A higher correlation between treatments and covariates results in more true 

features being picked by the model. The IPTW-MIMIC framework has higher average sensitivity than the 

baseline for a given correlation structure.  
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Figure 12: Feature selection sensitivity against the use of IPTW for different correlation structures 

between treatments and covariates 

The boxplot in Figure 13 compares the use of IPTW under different correlations between treatments and 

spurious variables. We do not see any clear difference between the average sensitivity at high and low 

correlation levels. With the baseline model under high correlations, there is a greater variation in specificity 

than under low correlations. The performance of IPTW-MIMIC vs. the baseline are quite similar. A possible 

explanation for this could be that since we are maintaining all the treatment variables in the model, the 

correlation between treatments and spurious variables has a lower impact on feature selection. 
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Figure 13: Feature selection sensitivity against the use of IPTW for different correlation structures 

between treatments and spurious variables 

3.5.1.2 Analysis of Variance (ANOVA) 

The correlation between treatments, the correlation between treatments and covariates, the correlation 

between treatments and spurious variables and the use of IPTW are the four factors studied in this ANOVA. 

The results of a full factorial ANOVA using SAS are shown in Table 7, with the highlighted boxes 

indicating the significant effects. The main effects of all the factors were significant. The two-factor 

interaction between the use of IPTW and the correlation between treatments and covariates was significant. 

The three-factor interaction between the use of IPTW, the correlation between treatments, and the 

correlation between treatments and covariates was significant at a significance level of α = 0.1 

From the results of the ANOVA, we can see that the feature selection sensitivity is affected by the use 

of IPTW and the different correlation structures. A Tukey multiple comparison considering the use of 

IPTW, the correlation between treatments, and the correlation between treatments and covariates is 

conducted since the interaction between these factors was found to be significant. 
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Table 7: ANOVA for feature selection sensitivity 

 

The experimental combinations are shown in Table 8, the p-value results of the Tukey analysis are 

shown in Table 9, and the 90% CI in Table 10 respectively. The Tukey line plot is shown in Figure 14. At 

significance level α = 0.1, the experimental combinations 3 and 5 highlighted in the tables and figure are 

not statistically different. With the baseline model framework, the feature selection sensitivity is not 

statistically different when either one of the correlations between treatments and the correlation between 

treatment covariates is high and the other low. All other experimental combinations are statistically 

different. 

Table 8: Tukey comparison factor combinations for feature selection sensitivity 

 

Source DF Anova SS Mean Square F Value Pr > F

Corr_Trt 1 1.60320285 1.60320285 909.37 <.0001

Corr_Trt_Cov 1 0.950625 0.950625 539.21 <.0001

Corr_Trt_Spr 1 0.04801254 0.04801254 27.23 <.0001

Use_of_IPTW 1 0.26643815 0.26643815 151.13 <.0001

Corr_Trt*Corr_Trt_Cov 1 0.00048659 0.00048659 0.28 0.5994

Corr_Trt*Corr_Trt_Spr 1 0.000625 0.000625 0.35 0.5517

Corr_Trt*Use_of_IPTW 1 0.00048659 0.00048659 0.28 0.5994

Corr_Trt_Cov*Corr_Trt_Spr 1 0.00264922 0.00264922 1.5 0.2204

Corr_Trt_Cov*Use_of_IPTW 1 0.03488106 0.03488106 19.79 <.0001

Corr_Trt_Spr*Use_of_IPTW 1 0.00017517 0.00017517 0.1 0.7526

Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr 1 0.00048659 0.00048659 0.28 0.5994

Corr_Trt*Corr_Trt_Cov*Use_of_IPTW 1 0.00654196 0.00654196 3.71 0.0542

Corr_Trt*Corr_Trt_Spr*Use_of_IPTW 1 0.00157656 0.00157656 0.89 0.3445

Corr_Trt_Cov*Corr_Trt_Spr*Use_of_IPTW 1 0.00437933 0.00437933 2.48 0.1152

Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr*Use_of_IPTW 1 0.0023551 0.0023551 1.34 0.2479
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Table 9: Tukey analysis p-value for feature selection sensitivity 

 

 

Table 10: Tukey analysis 90% CI for feature selection sensitivity 

 

 

 

 

 Figure 14: Tukey line plot for feature selection sensitivity  
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We perform a means analysis between the IPTW-MIMIC and the baseline across all the correlation 

combinations. This would give us an insight into the difference in performance with the use of IPTW. The 

results of this analysis are shown in Table 11. We can see that the difference in feature selection due to the 

use of IPTW is statistically different with the IPTW-MIMIC performing better than the baseline with higher 

average sensitivity. We can conclude that the IPTW-MIMIC enables true features to be identified by the 

modeling method better than the baseline without IPTW. 

Table 11: Comparison of  feature selection sensitivity means with the use of IPTW 

 

The next analysis was to simultaneously compare the contrasts shown in Table 12, where each contrast 

is highlighted with the same color. We are simultaneously comparing the 8 contrasts using the Bonferroni 

method. These contrasts are defined to help us compare the use of IPTW for different correlation 

combinations between treatments, covariates, and spurious variables. The result of the simultaneous 

Bonferroni comparison for these 8 contrasts is shown in Table 13. The results show that the difference in 

performance between IPTW-MIMIC and the baseline is statistically significant for all the correlation 

combinations except the case where the correlation between treatments, the correlation between treatments 

and covariates is low, and the correlation between treatments and spurious variables is high. We can 

conclude from this analysis that the IPTW-MIMIC performs as well or better than the baseline without 

IPTW under the different correlation combinations. 
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Table 12: Contrast for simultaneous Bonferroni comparison 

 

Table 13: Simultaneous Bonferroni comparison results for feature selection sensitivity 

 

The residual analysis is conducted to check the assumptions that the error terms are normally distributed 

and have constant variance. This is discussed in Appendix II. 

 

 

 

Corr_Trt Corr_Trt_Cov Corr_Trt_Spr Use_of_IPTW

High High High Baseline

High High High IPTW-MIMIC

High High Low Baseline

High High Low IPTW-MIMIC

High Low High Baseline

High Low High IPTW-MIMIC

High Low Low Baseline

High Low Low IPTW-MIMIC

Low High High Baseline

Low High High IPTW-MIMIC

Low High Low Baseline

Low High Low IPTW-MIMIC

Low Low High Baseline

Low Low High IPTW-MIMIC

Low Low Low Baseline

Low Low Low IPTW-MIMIC
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3.5.2 Feature Selection Specificity 

3.5.2.1 Preliminary Analysis 

The boxplot in Figure 15 compares the use of IPTW under different correlation between treatments. The 

average specificity is similar at high and low correlation levels, and with both the baseline and IPTW-

MIMIC. There is a greater variation in specificity with the baseline at high correlation between treatments. 

Specificity measures how many spurious variables are correctly identified as spurious by the model, the 

correlation between treatments does not directly impact specificity as all the treatment variables in the case 

study are causal variables and not spurious. That is why specificity is similar with both IPTW-MIMIC and 

baseline under different correlations between treatments. 

 

Figure 15: Feature selection specificity against the use of IPTW for different correlation structures 

between treatments 
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The boxplot in Figure 16 compares the use of IPTW under different correlation between treatments and 

covariates. The interpretation of these plots is similar to the previous figure, where we do not see major 

difference under the different correlation levels and between the use of IPTW. The effect of correlation 

between treatments and covariates on average specificity is similar between IPTW-MIMIC and the 

baseline. The variation in specificity is high with the baseline at high correlation. We can infer that the 

correlation between treatments and covariates along with the use of IPTW does not directly impact the 

selection of spurious variables in the model. 

 

Figure 16: Feature selection specificity against the use of IPTW for different correlation structures 

between treatments and covariates 

The boxplot in Figure 17 shows a clear difference in average specificity under different correlation 

between treatments and spurious variables. The average specificity is less at high correlation than at low 

correlation with both the baseline and IPTW-MIMIC. A high correlation between treatments and spurious 

variables results in more spurious variables being included in the model, and hence lower average 

specificity. The average specificity is greater with IPTW-MIMIC than the baseline indicating that it 
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performs better when there is correlation between treatments and spurious variables. The variation in 

specificity is similar across the two methods. 

 

Figure 17: Feature selection specificity against the use of IPTW for different correlation structures 

between treatments and spurious variables 

3.5.2.2 Analysis of Variance (ANOVA) 

The correlation between treatments, the correlation between treatments and covariates, the correlation 

between treatments and spurious variables and the use of IPTW are the four factors studied in this ANOVA. 

The results of a full factorial ANOVA using SAS are shown in Table 14, with the highlighted boxes 

indicating the significant effects. The significance level α = 0.1 was used in this analysis. The main effects 

of all the factors were significant. All the two-factor interaction effects except for the interaction between 

the use of IPTW with the correlation between treatments and the use of IPTW with the correlation between 

treatments and covariates were significant, which follows the inferences from the preliminary boxplot 

analysis. The three-factor interaction between the correlation between treatments, the correlation between 

treatments and covariates, and the correlation between treatments and spurious variables was significant. 
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Table 14: ANOVA for feature selection specificity

 

A Tukey multiple comparison considering all the factor combinations is conducted since the different 

significant interaction effects included all the factors. The factor combinations are shown in Table 15, the 

p-value results of the Tukey analysis are shown in Table 16, and the 90% CI in Table 17 respectively. At 

significance level α = 0.1, the highlighted cells in Table 15 indicate the factor combinations whose p-value 

is greater than 0.1, and hence are not statistically different. In the Tukey line plot, shown in Figure 18, the 

factor combinations covered by the same-colored bar are not statistically different. We can observe that 

several factor combinations are not statistically different under low correlation between treatments and 

spurious variables, while at the high correlation between treatments and spurious variables, there are more 

statistically different combinations. The factor combination with the baseline and IPTW-MIMIC with the 

corresponding correlation factors high are the only two that are statistically different from the rest of the 

factor combinations. 

 

 

Source DF Anova SS Mean Square F Value Pr > F

Corr_Trt 1 1.27266602 1.27266602 244.65 <.0001

Corr_Trt_Cov 1 0.47696289 0.47696289 91.69 <.0001

Corr_Trt_Spr 1 5.56665039 5.56665039 1070.11 <.0001

Use_of_IPTW 1 0.31290039 0.31290039 60.15 <.0001

Corr_Trt*Corr_Trt_Cov 1 0.21102539 0.21102539 40.57 <.0001

Corr_Trt*Corr_Trt_Spr 1 0.54852539 0.54852539 105.45 <.0001

Corr_Trt*Use_of_IPTW 1 0.00821289 0.00821289 1.58 0.2091

Corr_Trt_Cov*Corr_Trt_Spr 1 0.19415039 0.19415039 37.32 <.0001

Corr_Trt_Cov*Use_of_IPTW 1 0.00610352 0.00610352 1.17 0.2789

Corr_Trt_Spr*Use_of_IPTW 1 0.02954102 0.02954102 5.68 0.0173

Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr 1 0.13829102 0.13829102 26.58 <.0001

Corr_Trt*Corr_Trt_Cov*Use_of_IPTW 1 0.00165039 0.00165039 0.32 0.5733

Corr_Trt*Corr_Trt_Spr*Use_of_IPTW 1 0.00352539 0.00352539 0.68 0.4105

Corr_Trt_Cov*Corr_Trt_Spr*Use_of_IPTW 1 0.00821289 0.00821289 1.58 0.2091

Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr*Use_of_IPTW 1 0.00165039 0.00165039 0.32 0.5733
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Table 15: Tukey comparison factor combinations for feature selection specificity 

 

Table 16: Tukey analysis p-value for feature selection specificity 
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Table 17: Tukey analysis 90% CI for feature selection specificity 

 

 

Figure 18: Tukey line plot for feature selection specificity 
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A means analysis of the use of IPTW across all the correlation combinations was performed. The results 

of this analysis are shown in Table 18. We can see that the difference in average feature selection specificity 

due to the use of IPTW is statistically significant with IPTW-MIMIC having higher average specificity than 

the baseline. 

Table 18: Comparison of  feature selection specificity means with IPTW model form  

 

A simultaneous Bonferroni comparison of contrasts is performed to identify the performance of the use 

of IPTW across the different correlation combinations. The set of contrasts for comparison is shown in 

Table 12, where each contrast is highlighted with the same color. The result of the simultaneous Bonferroni 

comparison is shown in Table 19. The results show that the difference in average specificity between IPTW-

MIMIC and the baseline approach is statistically significant for all the correlation combinations except the 

two highlighted. When the correlation between treatments, and the correlation between treatments and 

spurious variables is low, the difference between IPTW-MIMIC and the baseline is not statistically 

significant. We can conclude from this analysis that the IPTW-MIMIC performs as well or better than the 

baseline without IPTW under the different correlation combinations, and the correlation between treatments 

and spurious variables is an important factor in determining model performance. 
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Table 18: Simultaneous Bonferroni comparison results for feature selection specificity 

 

3.5.3 Interaction Selection Sensitivity 

3.5.3.1 Preliminary Analysis 

The boxplot in Figure 19 shows the impact of the use of IPTW along with the correlation between treatments 

on interaction selection sensitivity. From the plot, we can observe that the average and variation in 

interaction sensitivity are similar with IPTW-MIMIC and the baseline under both low and high correlation.  

 

Figure 19: Interaction selection sensitivity against the use of IPTW for different correlation structures 

between treatments 
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The boxplot in Figure 20 shows the use of IPTW against the correlation between treatments and 

covariates. The average sensitivity values are similar across the use of IPTW and correlation combinations. 

The variation in sensitivity is also similar. This is similar to the boxplot in Figure 19. The use of IPTW 

along with the correlation between treatments or correlation between treatments and covariates does not 

show any significant difference in interaction selection. 

 

Figure 20: Interaction selection sensitivity against the use of IPTW for different correlation structures 

between treatments and covariates 

The boxplot in Figure 21 shows interaction sensitivity plotted against the use of IPTW for a given 

correlation structure between treatments and spurious variables. With IPTW-MIMIC, the average 

sensitivity is similar at low and high correlation, while with the baseline, the average sensitivity is lower at 

high correlation. The variation is similar across the boxplots. We can infer that at high correlation between 

treatments and spurious variables, the baseline approach results in less causal interaction terms being 

identified than with the IPTW-MIMIC approach. 
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Figure 21: Interaction selection sensitivity against the use of IPTW framework for different correlation 

structures between treatments and spurious variables 

3.5.3.2 Analysis of Variance (ANOVA) 

The correlation between treatments, the correlation between treatments and covariates, the correlation 

between treatments and spurious variables and the use of IPTW are the four factors studied in this ANOVA. 

The results of a full factorial ANOVA using SAS are shown in Table 20, with the highlighted boxes 

indicating the significant effects. The significance level α = 0.1 was used in this analysis. The main effects 

of all the factors were significant. The two-factor interaction effects that were statistically significant 

involved the correlation between treatments and spurious variables along with the correlation between 

treatments and the correlation between treatments and covariates respectively. A three-factor interaction 

effect between the use of IPTW, the correlation between treatments, and the correlation between treatments 

and spurious variables is significant. 
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A Tukey multiple comparison considering all the factor combinations is conducted since the different 

significant interaction effects included all the factors in the study. 

Table 20: ANOVA for interaction selection sensitivity 

 

The factor combinations for the Tukey multiple comparison are shown in Table 21, the p-value results 

of the Tukey analysis are shown in Table 22, and the 90% CI in Table 23 respectively. At significance level 

α = 0.1, the highlighted cells in Table 22 indicate the factor combinations whose p-value is greater than 0.1, 

and hence are not statistically different. In the Tukey line plot, shown in Figure 22, the factor combinations 

covered by the same-colored bar are not statistically different.  

From the Tukey Line plot, we can see different groups of factor combinations are not statistically 

different. The baseline approach with high correlation across the other factors is the only statistically 

different combination not overlapping with other groups. The two-factor and three-factor interaction effects 

between the factors could be one possible reason we have different groups of factor combinations not 

statistically different from each other. To better understand the difference between the performance of 

IPTW-MIMIC and the baseline across the different correlation factors, a means analysis is performed. 

 

Source DF Anova SS Mean Square F Value Pr > F

Corr_Trt 1 0.85100625 0.85100625 193 <.0001

Corr_Trt_Cov 1 0.58905625 0.58905625 133.59 <.0001

Corr_Trt_Spr 1 1.53140625 1.53140625 347.3 <.0001

Use_of_IPTW 1 0.40005625 0.40005625 90.73 <.0001

Corr_Trt*Corr_Trt_Cov 1 0.00075625 0.00075625 0.17 0.6788

Corr_Trt*Corr_Trt_Spr 1 0.02975625 0.02975625 6.75 0.0095

Corr_Trt*Use_of_IPTW 1 0.00030625 0.00030625 0.07 0.7922

Corr_Trt_Cov*Corr_Trt_Spr 1 0.07700625 0.07700625 17.46 <.0001

Corr_Trt_Cov*Use_of_IPTW 1 0.00050625 0.00050625 0.11 0.7348

Corr_Trt_Spr*Use_of_IPTW 1 0.00525625 0.00525625 1.19 0.2751

Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr 1 0.00390625 0.00390625 0.89 0.3467

Corr_Trt*Corr_Trt_Cov*Use_of_IPTW 1 0.00140625 0.00140625 0.32 0.5723

Corr_Trt*Corr_Trt_Spr*Use_of_IPTW 1 0.01500625 0.01500625 3.4 0.0653

Corr_Trt_Cov*Corr_Trt_Spr*Use_of_IPTW 1 0.00030625 0.00030625 0.07 0.7922

Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr*Use_of_IPTW 1 0.00950625 0.00950625 2.16 0.1422
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Table 21: Tukey comparison factor combinations for interaction selection sensitivity 

 

Table 22: Tukey analysis p-value for interaction selection sensitivity 
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Table 23: Tukey analysis 90% CI for interaction selection sensitivity 

 

 

Figure 22: Tukey line plot for interaction selection sensitivity 
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The result of the means analysis across all the correlation combinations is shown in Table 24. We can 

see that the baseline and IPTW-MIMIC are statistically different with IPTW-MIMIC having higher average 

sensitivity than the baseline. 

Table 24: Comparison of  interaction selection sensitivity means with IPTW model form  

 

A simultaneous Bonferroni comparison of contrasts is performed to identify the difference in the 

performance of the use of IPTW across the different correlation combinations. The set of contrasts for 

comparison is shown in Table 12. The results in Table 25 show that all the contrasts are statistically 

significant at a significance level of α = 0.1, indicating that IPTW-MIMIC performs better than the baseline 

model in identifying the true interaction terms under the different correlation combinations. 

Table 25: Simultaneous Bonferroni comparison results for interaction selection sensitivity 
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3.5.4 Interaction Selection FDR 

3.5.4.1 Preliminary Analysis 

The boxplot for interaction selection FDR with the use of IPTW and correlation between treatments is 

shown in Figure 23. A lower value of FDR is preferred since it implies that there are few spurious interaction 

terms in the predicted model. We can observe that with both the baseline and IPTW-MIMIC, the average 

FDR is high when the correlation between treatments is high. The average FDR value is less with IPTW-

MIMIC than the baseline. The variation in FDR values is almost similar with high and low correlation for 

the baseline model, but with IPTW-MIMIC the FDR values have higher variation at high correlation. These 

plots suggest that at high treatment correlation, more spurious interaction terms are picked up by both the 

modeling approaches, with IPTW-MIMIC performing better than the baseline. 

 

Figure 23: Interaction selection FDR against the use of IPTW for different correlation structures between 

treatments 

The boxplot in Figure 24 shows the effect of the use of IPTW along with the correlation between 

treatments and covariates on interaction FDR. The average FDR and the variation in FDR are higher with 
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the baseline than the IPTW-MIMIC. The average FDR values are high at high correlation between 

treatments and covariates, which implies more spurious interaction terms are in the prediction model when 

there is high correlation between treatments and covariates. The IPTW-MIMIC performs better than the 

baseline.  

 

Figure 24: Interaction selection FDR against the use of  IPTW for different correlation structures between 

treatments and covariates 

The boxplot in Figure 25 shows the FDR with the use of IPTW under different correlation structures 

between treatments and spurious variables. The average FDR is higher at high correlation than at low 

correlation, and the variation in FDR is also higher at high correlation. The IPTW-MIMIC has lower 

average FDR values for a given correlation structure than the baseline. The performance of IPTW-MIMIC 

is better than the baseline at both low and high correlation. The impact of high correlation between 

treatments and spurious variables is more pronounced than the correlation between treatments and 

correlation between treatments and covariates, with the difference in average FDR values being higher than 

in Figures 23 and 24.  
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Figure 25: Interaction selection FDR against the use of IPTW for different correlation structures between 

treatments and spurious variables 

3.5.4.2 Analysis of Variance (ANOVA) 

The correlation between treatments, the correlation between treatments and covariates, the correlation 

between treatments and spurious variables and the use of IPTW are the four factors studied in this ANOVA. 

The results of a full factorial ANOVA using SAS are shown in Table 26, with the highlighted boxes 

indicating the significant effects at a significance level α = 0.1. The main effects of all the factors were 

significant. All the two-factor interactions were significant except the interaction between the use of IPTW 

and the correlation between treatments and spurious variables. We can also observe this from Figure 21, 

where the difference in average FDR between high and low correlation is almost similar between the 

baseline and IPTW-MIMIC modeling approaches. All three-factor and four-factor interactions are also 

significant. 

A Tukey multiple comparison considering all the factor combinations is conducted since the four-factor 

interaction effect was significant. 
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Table 26: ANOVA for interaction selection FDR 

 

The factor combinations for the Tukey multiple comparison are shown in Table 27, the p-value results 

of the Tukey analysis are shown in Table 28, and the 90% CI in Table 29 respectively. The highlighted 

cells in Table 28 indicate the factor combinations whose p-value is greater than the significance level α = 

0.1, and hence are not statistically different. In the Tukey line plot, shown in Figure 26, the factor 

combinations covered by the same-colored bar are not statistically different.  

From the Tukey Line plot, we observe that the combination with high correlations across the groups 

with the baseline and IPTW-MIMIC are statistically different from all other combinations. The factor 

combination with IPTW-MIMIC and low correlation across the groups is also statistically different from 

all other combinations. There are other factor combinations that are not statistically different. Two such 

factor combinations of interest are the IPTW-MIMIC combination with high correlation between treatments 

and spurious variables and low correlation with the other two factors and the IPTW-MIMIC combination 

with low correlation between treatments and spurious variables and high correlation with the other two 

Source DF Anova SS Mean Square F Value Pr > F

Corr_Trt 1 0.75191704 0.75191704 1372.28 <.0001

Corr_Trt_Cov 1 0.33748692 0.33748692 615.93 <.0001

Corr_Trt_Spr 1 2.32712437 2.32712437 4247.11 <.0001

Use_of_IPTW 1 0.33427392 0.33427392 610.07 <.0001

Corr_Trt*Corr_Trt_Cov 1 0.05980143 0.05980143 109.14 <.0001

Corr_Trt*Corr_Trt_Spr 1 0.04238167 0.04238167 77.35 <.0001

Corr_Trt*Use_of_IPTW 1 0.00225512 0.00225512 4.12 0.0427

Corr_Trt_Cov*Corr_Trt_Spr 1 0.00739022 0.00739022 13.49 0.0002

Corr_Trt_Cov*Use_of_IPTW 1 0.00771801 0.00771801 14.09 0.0002

Corr_Trt_Spr*Use_of_IPTW 1 0.00000469 0.00000469 0.01 0.9263

Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr 1 0.00715449 0.00715449 13.06 0.0003

Corr_Trt*Corr_Trt_Cov*Use_of_IPTW 1 0.00243515 0.00243515 4.44 0.0352

Corr_Trt*Corr_Trt_Spr*Use_of_IPTW 1 0.002944 0.002944 5.37 0.0206

Corr_Trt_Cov*Corr_Trt_Spr*Use_of_IPTW 1 0.00420714 0.00420714 7.68 0.0057

Corr_Trt*Corr_Trt_Cov*Corr_Trt_Spr*Use_of_IPTW 1 0.00235722 0.00235722 4.3 0.0382
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factors. This shows that high correlation between treatments and spurious variables has a higher impact on 

FDR than the high correlation between treatments or between treatments and covariates. 

Table 27: Tukey comparison factor combinations for interaction selection FDR 

 

Table 28: Tukey analysis p-value for interaction selection FDR 
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Table 29: Tukey analysis 90% CI for interaction selection sensitivity 

 

 

 

Figure 26: Tukey line plot for interaction selection FDR 
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A means analysis is performed to compare the IPTW-MIMIC and baseline. The result of the means 

analysis across all the correlation combinations is shown in Table 30. We see that IPTW-MIMIC and the 

baseline are statistically different with IPTW-MIMIC having a lower average FDR than baseline. 

Table 30: Comparison of  feature selection FDR means with IPTW model form  

 

A simultaneous Bonferroni comparison of contrasts is performed to identify the performance of the use 

of IPTW across the different correlation combinations. The set of contrasts for comparison is shown in 

Table 12, where each contrast is highlighted with the same color. The results in Table 31 show that all the 

contrasts are statistically significant at a significance level of α = 0.1, indicating that IPTW-MIMIC 

performs better than the baseline by identifying fewer false interaction terms in the predicted model across 

the different correlation combinations. 

Table 31: Simultaneous Bonferroni comparison results for feature selection FDR 
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3.6 Conclusion and Future Work 

The pain management simulation case study was conducted with the primary goal of evaluating the 

proposed HierNet-IPTW modeling framework that uses HierNet for model building and IPTW with MIMIC 

algorithm to address the time-varying confounding. The proposed method was compared against the 

baseline that uses HierNet for model building and does not address time-varying confounding. The 

evaluation was done on the feature and interaction selection metrics. The different correlation structures 

between the treatments, covariates, and spurious variables were simulated to mimic the complexities found 

in the actual pain management dataset. A full factorial 24 experiment was conducted. 

The ANOVA was conducted with feature selection sensitivity, feature selection specificity, interaction 

selection sensitivity, and interaction selection FDR as the outcome measures. From the analysis, all the 

main effect factors were found to be significant for all the outcome measures. With feature selection 

sensitivity, interaction terms involving the use of IPTW, the correlation between treatments and correlation 

between treatments and covariates were found to be significant. With feature selection specificity, 

interaction selection sensitivity, and interaction selection FDR, 2-factor and 3-factor interaction terms were 

found to be significant that covered all the factors. Tukey analysis was performed to compare all the 

experimental combinations and the combinations that were not statistically different were highlighted.  

A Bonferroni simultaneous comparison of contrasts was conducted with the contrasts defined to 

compare the use of IPTW-MIMIC against the baseline with all the possible combinations between the 

correlation factors. This analysis showed that the IPTW-MIMIC performed as well or better than the 

baseline in all the cases. 

This experimental analysis of the proposed HierNet-IPTW modeling method on the pain management 

simulation data shows that it performs better than the baseline in correctly identifying the true and spurious 

features and interactions. The next step would be to implement this modeling method on the pain 

management dataset to build state transition and outcome models. These state transition models will be 
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incorporated into the optimization module. For future work, different stopping criteria can be considered in 

the model framework.  
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Chapter 4 

Using LASSO based State Transition Model with Interactions in 

Multiple Objective Two-Stage Stochastic Programming for 

Adaptive Interdisciplinary Pain Management 

Abstract 

The Eugene McDermott Center for Pain Management at the University of Texas Southwestern Medical 

Center has a two-stage adaptive interdisciplinary pain management program for chronic pain. The program 

considers different pain outcome measures to quantify patient’s pain, physical and mental health status.  

In an adaptive treatment environment, the patient’s current state influences the treatments recommended, 

which in turn affect the patient’s future states leading to time-varying confounding and biased treatment 

estimates. Inverse Probability of Treatment Weighting (IPTW) [106] is one technique to address time-

varying confounding. Interactions between the patient state and treatments play a major role in determining 

a personalized treatment plan for individual patients. In this research, we study the effect of including state-

treatment interactions on the treatment optimization problem. 

The treatment decision optimization is formulated as a multi-objective two-stage stochastic 

programming problem based on Iqbal et.al [27]. The objective is to minimize all the pain outcome measures 

and the treatment costs. The state transition models representing the transition of patient state, treatment, 

and outcome variables from stage 1 to stage 2 are modeled using the HierNet-IPTW approach. The state 

transition functions are non-convex and quadratic since they model the interaction effects. The optimization 

is formulated and solved as a Mixed Integer Quadratically Constrained Optimization (MIQCP) problem. 

The treatment recommendations from the proposed approach are compared against other approaches that 

do not model state-treatment interactions and address time varying confounding using IPTW. 
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4.1 Introduction 

The Eugene McDermott Center for Pain Management at UT Southwestern Medical Center has an 

interdisciplinary pain management program for chronic pain. Lin et al [22] modeled this program as a two-

stage adaptive treatment framework as shown in Figure 27. 

 

Figure 27: Two-stage interdisciplinary pain management program [22] 

The observational dataset has 294 patient observations, with 62 state variables, 14 stage 1 and 13 stage 

2 treatment decision variables, and 5 pain outcome measures. A detailed description of these variables is 

provided in Appendix III. The pain outcome measures, and treatment variables used in the study are shown 

in Table 32 and Table 33, respectively. The multiple pain outcome measures help caregivers evaluate the 

patients on several different parameters. These pain outcome measures provide an insight into the physical, 

mental, and general health profile of the patients. The treatment decision variables include a mix of 

pharmaceutical and procedural interventions. 

Table 32: Pain Outcome Measures 

Pain Outcome Measure Description 

Oswestry Pain Disability Index (OSW)  A measure of functional disability due to pain [18] 

Pain Drawing Analogue (PDA)  
An analog scale of 0-10, with 0 corresponding to no pain 
and 10 corresponding to the worst possible pain [19] 

Beck Depression Inventory (BDI)  Used to measure the severity of depression [20] 

Short Form Survey Physical Component 

Score (SF36pcs)  

General health status profile surveys designed to measure 

the physical health status of the patient [21] 

Short Form Survey Mental Component Score 

(SF36mcs)  

General health status profile surveys designed to measure 

the mental health status of the patient [21] 
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Table 33: Treatment Decision Variables 

Treatments Treatment Type Description 

RxGr1 Pharmaceutical  Tramadol  

RxGr2 Pharmaceutical  NSAID 

RxGr3 Pharmaceutical  Narcotic 

RxGr4 Pharmaceutical  Muscle Relaxant 

RxGr5 Pharmaceutical  Anti-depressant 

RxGr6 Pharmaceutical  Tranquilizer 

RxGr7 Pharmaceutical  Sleeping Pill 

RxGr8 Pharmaceutical  Other 

ProcGr1 Procedural Injection 

ProcGr2 Procedural Block Procedure 

ProcGr4 Procedural Stimulation Procedure 

ProcGr9 Procedural Cognitive Behavioral Therapy 

ProcGr10 Procedural Physical Therapy 

ProcGr11 Procedural Additional Procedures 

 

 The main objective of the pain management research is to use this observational data in an adaptive 

decision framework to identify an optimal treatment regime [22]. A summary of the research work done on 

the pain management program is provided in Table 34. The proposed research work is highlighted in the 

table. 

Lin et al. [22] created an optimization framework based on approximate dynamic programming (ADP) 

with linear regression to model the state transitions. The state transition models are constructed empirically 

with the future value function approximated using state space discretization based on Latin hypercube 

design [22]. The recommended treatment regime minimized adverse patient pain outcomes along with 

treatment costs. The adaptive and sequential nature of the pain management program introduces time-

varying confounding, where the treatment effects are confounded by past treatments and patient state 

variables. LeBoulluec et al. [25] extended the IPTW framework to address this time-varying confounding 

in a multiple treatment setting. Ohol [26] further extended the IPTW method to consider correlated 
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treatments. Farahani et al. [152] used LASSO-based regularization along with IPTW to perform feature 

selection.  

Table 34: Pain Management Research Summary 

 

Wang et al. [28] and Iqbal et.al [27] formulated the optimization as a two-stage stochastic programming 

problem. Wang et al. [28] used weighted least squares method to develop the state transition models using 

the IPTW weights from LeBoulluec et al. [25].  The state transition constraints in the optimization were 

non-convex as they modeled the state treatment interaction terms. A linearization method using a piecewise 

linear function was proposed to approximate the non-convex constraints and formulate the optimization 

problem as an approximated mixed integer linear problem (MILP). The objective of the optimization was 

to minimize the pain outcome measure, OSW while also penalizing excessive treatment costs under the 

state transition function and treatment interaction constraints. The optimization results from the 

approximate MILP were compared with the solutions obtained from the original mixed integer nonlinear 

problem (MINLP) formulation without linearizing the interaction constraints. 

Paper Model type Interactions Feature selection IPTW Optimization

Lin et al. [22] Linear model
State treatment 

interactions
Stepwise least squares No SDP

LeBoulluec et al. [25] Linear model
State treatment 

interactions
Stepwise least squares Derived weights No

Ohol [26] Linear model No No Derived weights No

Farahani et al. [152] Linear model No LASSO regularization Used Ohol weights No

Wang et al. [28] Linear model
State treatment 

interactions
Stepwise least squares

Used LeBoulluec's 

weights
Two-stage SP

Iqbal et al. [27]
Piecewise Linear 

Network
Network interactions

Piecewise Linear 

Network

Used LeBoulluec's 

weights
Two-stage SP

Viswanatha Linear model
State treatment 

interactions
LASSO regularization Derived weights Two-stage SP

State Transition Modeling
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Iqbal et al.[27] formulated a multi-objective two-stage stochastic programming optimization problem 

using piecewise linear networks (PLN) to build the state transition functions. The objective is to minimize 

the multiple pain outcome measures along with treatment costs. A survey among caregivers was conducted 

to identify the relation between the different pain outcome measures and a convex quadratic programming 

approach was used to obtain weights to penalize the different pain measures. An equivalent MILP model 

was used to solve the optimization problem. 

Iqbal et al. [27] was the only work that considered multi-objective optimization and included IPTW 

weights while building the state transition models. The state transition models did not include the state 

treatment interaction effects but had network interactions.  

In this paper, we propose to use the LASSO-based HierNet-IPTW modeling method to develop state 

transition models with state treatment interactions. We use these state transition models in the multi-

objective optimization framework based on Iqbal et.al [27] and study the treatment recommendation 

patterns from the proposed approach. The state transition functions are non-convex as they include 

interaction terms. Instead of linearizing the interaction terms and using an approximate MILP model, we 

use a Mixed Integer Quadratically Constrained Program (MIQCP) to formulate and solve the optimization 

problem.  

The main objective of this research is to show the advantages of modeling interaction terms in an 

adaptive treatment setting, where the goal is optimal treatment decision-making rather than optimal 

prediction [155]. We compare the treatment decisions obtained by the proposed method against the 

treatments recommended using a linear state transition model without interactions. We also show the 

advantage of using IPTW to address time-varying confounding while building models by comparing the 

treatments recommended by the proposed method against the treatments obtained using state transition 

models with interactions modeled without using IPTW. 
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4.2 Stochastic Programming Formulation 

The objective of the research is to find the optimal treatment strategy in stage 1 and stage 2 that will 

minimize the patient’s multiple pain outcome measures and treatment cost. The objective function has two 

components [27]: the penalty function of pain outcomes and a cost function associated with treatment usage. 

The objective function ensures that the patient pain outcomes are reduced while avoiding overmedication. 

The optimization is subject to treatment interaction and state transition constraints [28]. 

The general two-stage stochastic problem formulation from Iqbal et al. [27] is shown below: 

                            𝑚𝑖𝑛 ∑ ∑ 𝐸(

𝑗∈𝑁𝑖𝑖∈𝑁

𝑃𝑢𝑖𝑗
(𝑌̅𝑖2(𝜀1, 𝜀𝑖2))) +  𝜌(∑ 𝐶(𝑥1) + ∑ 𝐸(𝐶(𝑥2(𝜀1))))                  (14.1) 

                            𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑌𝑖1(𝜀𝑖1) =  ℎ𝑖1(𝑠1, 𝑥1, 𝜀𝑖1)     ∀𝑖 ∈ 𝑁                                                                (14.2) 

                            𝑌𝑖2(𝜀1, 𝜀𝑖2) =  ℎ𝑖2(𝑠2(𝜀1), 𝑥2(𝜀1), 𝜀𝑖2)   ∀𝑖 ∈ 𝑁                                                               (14.3) 

                       (
𝑌̅𝑖1(𝜀𝑖1) = max (0, 𝑌𝑖1(𝜀𝑖1))

𝑌̅𝑖2(𝜀1,𝜀𝑖2) = max (0, 𝑌𝑖2(𝜀1, 𝜀𝑖2))
)          ∀𝑖 ∈ 𝑁                                                               (14.4) 

                         (
𝑥1

𝑝
×  𝑥1

𝑞
= 0

𝑥2
𝑝

(𝜀1) ×  𝑥2
𝑞

(𝜀1) = 0
)                                ∀𝑥𝑝 , 𝑥𝑞 ∈ Λ                                                       (14.5) 

                            𝑠2(𝜀1) =  [𝑠1, 𝑥1, 𝑌1(𝜀1)]                                                                                                           (14.6) 

                            𝑥1 ∈  Γ1, 𝑥2(𝜀1) ∈  Γ2                                                                                                                 (14.7) 

where  𝑢𝑖𝑗  is the penalty weights of pain outcome 𝑖 ∈ 𝑁  for level 𝑗 ∈ 𝑁𝑖. 𝑃𝑢𝑖𝑗
 is the penalty function on 

different levels of the multiple pain outcome measures. 𝐶() is the treatment cost function with 𝜌 as the 

treatment cost coefficient. The penalty weights 𝑢𝑖𝑗  are from Iqbal et al. [27] and the treatment cost function 

is from Wang et al. [28]. The treatment cost coefficient 𝜌 is set to 0.05 [27] and is selected so that the cost 

function does not dominate the pain outcome. 
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  The variables 𝑌𝑖1(𝜀𝑖1) and 𝑌𝑖2(𝜀𝑖1, 𝜀𝑖2) are the pain outcome measures 𝑖 in stage 1 and stage 2 with 

uncertainties 𝜀𝑖1 and 𝜀𝑖2. 𝑌1(𝜀1) and 𝜀1are the vectors associated with 𝑌𝑖1(𝜀𝑖1) and 𝜀𝑖1, ∀𝑖 ∈ 𝑁 respectively. 

𝑥𝑡
𝑝

 are the treatment decision variables 𝑝 in stage 𝑡 with the feasible decision space Γ𝑡, and 𝑠𝑡  are the state 

variables in stage 𝑡. The set Λ includes treatment interaction restrictions. 

The state transition functions for the pain outcome measures are modeled as the constraint set shown in 

Equations (14.2) and (14.3). ℎ𝑖1 and ℎ𝑖2 are the state transition models for pain outcome measure 𝑖 at stage 

1 and stage 2 respectively. Equation (14.4) uses the truncating variables 𝑌̅𝑖1(𝜀𝑖1) and 𝑌̅𝑖2(𝜀𝑖1, 𝜀𝑖2) to ensure 

that the pain outcome measures are non-negative. Equation (14.5) ensures that treatments with adverse 

interaction effects are not prescribed to patients together. The list of treatments with adverse interaction 

effects is included in Appendix IV. The state variables in stage 2 include the state variables, treatment 

variables and pain outcome measures from stage 1, along with the stage 1 uncertainties 𝜀1   . This is shown 

in Equation (14.6).  Equation (14.7) ensures that the treatment decision variables are in the feasible region.  

Iqbal et al.[27] used Piecewise Linear Network (PLN) to model the state transition functions and solved 

an MILP to optimize treatment. Wang et al. [28] used stepwise regression to model the state transition 

function with interactions. The interaction terms were linearized using a piecewise linear function and an 

approximate MILP was solved. We propose to use the HierNet-IPTW approach to build the state transition 

function with interactions. 

The state transition functions ℎ𝑖1 and ℎ𝑖2, developed using the proposed HierNet-IPTW approach are 

quadratic and non-convex since they model the state treatment interaction effects. Instead of linearizing 

these quadratic non-convex constraints and solving an approximate MILP, we formulate the optimization 

as a Mixed Integer Quadratically Constrained program (MIQCP). However, we also note that when the 

state transition models have no interactions, either because interaction terms are ignored in model 

development or the model finds no statistically significant ones, then the optimization formulation is an 

MILP.   
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In two-stage stochastic programming, uncertainty is represented using discrete sampled scenarios. Iqbal 

et al.[27] ran experiments to compare different sample sizes and selected a sample size of 25 for each stage. 

We use a sample size of 25 per stage in this research as well.  

The optimal stage 1 and stage 2 treatments recommended from the following three optimization 

approaches are compared: 

1. 2SP IQ-IPTW: The proposed MIQCP optimization approach with HierNet-based state transition 

models with interactions and with IPTW. 

2. 2SP IQ: The MIQCP optimization approach with HierNet-based state transition models with 

interactions and without IPTW. 

3. 2SP AL-IPTW: The MILP optimization approach with LASSO-IPTW-based linear state transition 

models without interactions and with IPTW.  

The purpose of the analysis is to compare the difference in treatment usage between models with 

interactions using IPTW and without IPTW, and between models using IPTW with interactions and without 

interactions.  

The stage 1 and stage 2 state transition models for the 5 pain outcome measures PDA, OSW, BDI, SF-

36pcs and SF36-mcs are developed using the above three modeling methods. The MIQCP and MILP 

formulation is done in AMPL and the Gurobi solver is used to solve the optimization problem. These models 

are included in Appendix III. 

4.3 Treatment Usage Analysis 

In this section, we analyze the stage 1 and stage 2 treatments selected by the optimization approaches. 

4.3.1 Stage 1 Treatment Analysis 

The stage 1 treatments selected by the optimization approaches are compared against each other and with 

the observed dataset. 
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4.3.1.1 Stage 1 2SP IQ-IPTW vs 2SP IQ Treatment Analysis 

The stage 1 treatment usages from 2SP IQ-IPTW, 2SP IQ, and observed data are shown in Figure 28. The 

most used treatment in the observed data is ProcGr9_1 (Cognitive Behavioral Therapy), recommended to 

76% of the patients. ProcGr9_1 is suggested to 77% of the patients in 2SP IQ-IPTW and 87% of the patients 

in 2SP IQ. The second most used treatment in the observed data, ProcGr10_1 (Physical Therapy), 

prescribed to 71% of the patients is not selected by 2SP IQ but is recommended to 22% of the patients in 

2SP IQ-IPTW. The pharmaceutical treatments RxGr4 (Muscle Relaxant)  and RxGr5 (Anti-depressant) are 

the most used treatments in 2SP IQ, recommended to 99% and 93% of the patients respectively. RxGr4 is 

the most used treatment in 2SP IQ-IPTW, recommended to 80% of the patients. In the observed dataset, 

pharmaceutical treatments RxGr2 (NSAID), RxGr3 (Narcotic), RxGr4, and RxGr5 are recommended to 

around 30% of the patients, while in 2SP IQ-IPTW, RxGr2 and RxGr5 are recommended to 21%, and 62% 

of the patients respectively and RxGr3 is not recommended. The procedural treatments ProcGr1 (Injections) 

and ProcGr4 (Stimulation Procedure) are recommended to 23% and 6% of the patients in the observed 

dataset, while they are recommended to 4% and 30% of patients in 2SP IQ-IPTW but are not used in 2SP 

IQ.  

The main difference between 2SP IQ-IPTW and 2SP IQ is the number of different treatments 

recommended by the model. The majority of patients are recommended the treatments RxGr4, RxGr5, and 

ProcGr9 by 2SP IQ, while 2SP IQ-IPTW recommends a wide range of treatments that includes more 

procedures like ProcGr1, ProcGr4, ProcGr9, and ProcGr10. 
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Figure 28: Stage 1 Treatment Usage 2SP IQ-IPTW, 2SP IQ, and observed data 

4.3.1.2 Stage 1 2SP IQ-IPTW vs 2SP AL-IPTW Treatment Analysis 

The stage 1 treatment usage from 2SP IQ-IPTW, 2SP AL-IPTW, and observed data are shown in Figure 

29. The treatments recommended by the 2SP IQ-IPTW and 2SP AL-IPTW are similar but with differences 

in the percentage of patients recommended. 2SP AL-IPTW recommends RxGr2 (NSAID), RxGr5 (Anti-

Depressant), and ProcGr9 (Cognitive Behavioral Therapy) to more patients than 2SP IQ-IPTW while the 

treatments RxGr4 (Muscle Relaxant), ProcGr4 (Stimulation Procedure) and ProcGr10 (Physical Therapy) 

are recommended to more patients in 2SP IQ-IPTW. The treatment ProcGr1 (Injection) is recommended to 

4% of the patients in 2SP IQ-IPTW while it is not used in 2SP AL-IPTW. From this analysis, we observe 

that more procedural treatments are recommended by the 2SP IQ-IPTW than 2SP AL-IPTW. 

Treatments-Stage 1 RxGr1 RxGr2 RxGr3 RxGr4 RxGr5 RxGr6 RxGr7 RxGr8 ProcGr1 ProcGr2 ProcGr4 ProcGr9 ProcGr10 ProcGr11

2SP IQ-IPTW 0% 21% 0% 80% 62% 0% 0% 0% 4% 0% 30% 77% 22% 0%

2SP IQ 1% 0% 0% 99% 93% 0% 0% 0% 0% 0% 0% 87% 0% 0%

Observed Data 15% 33% 30% 29% 33% 14% 12% 4% 23% 1% 6% 76% 71% 9%
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Figure 29: Stage 1 Treatment Usage 2SP IQ-IPTW, 2SP AL-IPTW, and observed data 

4.3.1.3 Stage 1 Treatment Analysis between low and high IPTW weight patients 

The objective of incorporating IPTW in the model framework is to identify the rare patient instances in the 

dataset, which will have higher IPTW weight. The patient dataset is divided into two groups, high IPTW 

weights, and low IPTW weights. We compare the treatment usage between the two groups to better 

understand the difference between the three approaches. The dataset has 294 patient observations, 55 of 

them have IPTW weights greater than 1 and are grouped as high IPTW weight patients while the remaining 

239 patients are grouped as low IPTW weight patients.  

The treatment recommendation pattern with 2SP IQ is shown in Figure 30. The pharmaceutical 

treatment usage pattern is similar between low and high IPTW patients while the procedural treatment 

ProcGr9 (Cognitive Behavioral Therapy) is recommended to 89% of low weight and 76% of high weight 

patients respectively. The lack of difference between the pharmaceutical treatment usage patterns shows 

Treatments-Stage 1 RxGr1 RxGr2 RxGr3 RxGr4 RxGr5 RxGr6 RxGr7 RxGr8 ProcGr1 ProcGr2 ProcGr4 ProcGr9 ProcGr10 ProcGr11

2SP IQ-IPTW 0% 21% 0% 80% 62% 0% 0% 0% 4% 0% 30% 77% 22% 0%

2SP AL-IPTW 0% 39% 0% 56% 72% 0% 0% 0% 0% 0% 16% 86% 7% 0%

Observed Data 15% 33% 30% 29% 33% 14% 12% 4% 23% 1% 6% 76% 71% 9%
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that the HierNet model without IPTW does not identify the rare patient instances and follows the same 

treatment recommendation patterns for all the patients. 

 

Figure 30: Stage 1 Treatment Usage 2SP IQ for Low and High IPTW weight patients 

The treatment usage by 2SP AL-IPTW in Figure 31 does not show major differences in treatment 

assignment between low and high IPTW patients. The treatments RxGr2 (NSAID), RxGr4 (Muscle 

Relaxant), RxGr5 (Anti-depressant), and ProcGr10 (Physical Therapy) are prescribed slightly more often 

to high weight patients while the procedural treatments ProcGr4 (Stimulation procedure) and ProcGr9 

(Cognitive Behavioral Therapy) are prescribed more to low weight patients. 

 

Figure 31: Stage 1 Treatment Usage 2SP AL-IPTW for Low and High IPTW weight patients 
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The 2SP IQ-IPTW treatment recommendation pattern in Figure 32 shows that certain treatments are 

prescribed to a greater percentage of high weight patients than to low weight patients. The procedural 

treatment ProcGr10 (Physical Therapy) is recommended to 53% of high IPTW weight patients while it is 

suggested to only 15% of low weight patients. The procedural treatments ProcGr1 (Injection) and ProcGr4 

(Stimulation Procedure) are also recommended more often to high weight patients. The treatments RxGr4 

(Muscle Relaxant) and ProcGr9 (Cognitive Behavioral Therapy) are recommended similarly to around 80% 

of both low and high weight patients. The pharmaceutical treatments RxGr2 (NSAID) and RxGr5 (Anti-

depressant) are recommended to 36% and 69% of high weight patients, while it is recommended to 18% 

and 60% of low weight patients, respectively.  

 

Figure 32: Stage 1 Treatment Usage 2SP HierNet-IPTW for Low and High IPTW weight patients 

The comparison of treatment assignment to low and high IPTW patients between 2SP IQ-IPTW, 2SP 

AL-IPTW, and 2SP IQ is shown in Figures 33(a) and 33(b) respectively. The 2SP IQ-IPTW approach 

recommends more treatments to high IPTW weight patients than the 2SP AL-IPTW and 2SP IQ approaches. 

The treatment RxGr2 (NSAID) is recommended by 2SP IQ-IPTW to a smaller percentage of low weight 

patients than by 2 SP AL-IPTW, but its recommendation to high weight patients is increased by 2SP IQ-

IPTW. The treatments ProcGr1 (Injection), ProcGr4 (Stimulation Procedure), and ProcGr10 (Physical 

Therapy) are recommended to similar percentages of low weight patients by 2SP AL-IPTW and 2SP IQ-

IPTW, while we see a significant increase in their recommendation to high weight patients by 2SP IQ-



81 

 

IPTW. This analysis shows that accounting for both time-varying confounding using IPTW and the 

interaction effects while building the state transition models results in the optimal treatment allocation being 

more adaptive to rare patients in stage 1. 

 

Figure 33(a): Stage 1 treatment assignment comparison for low IPTW weight patients 

 

 

Figure 33(b): Stage 1 treatment assignment comparison for high IPTW weight patients 

 

4.3.2 Stage 2 Treatment Analysis 

The stage 2 treatments selected by the optimization approaches are analyzed in this section. 

4.3.2.1 Stage 2 2SP IQ-IPTW vs 2SP IQ Treatment Analysis 

The stage 2 treatment usage from 2SP IQ-IPTW, 2SP IQ, and observed data are shown in Figure 34. The 

procedural treatments ProcGr9 (Cognitive Behavioral Therapy) and ProcGr10 (Physical Therapy) are the 

most recommended treatments in the observed dataset, prescribed to 59% and 53% of the patients 
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respectively. ProcGr9 is recommended to 99% of the patients in 2SP IQ and 89% of the patients in 2SP IQ-

IPTW, while ProcGr10 is not recommended in either. The 2SP IQ approach recommends treatments RxGr7 

(Sleeping Pills), ProcGr1 (Injection), and ProcGr2 (Block Procedure) to 97%, 97%, and 99% of the patients, 

while 2SP IQ-IPTW recommends these treatments to 67%, 76% and 84% of the patients respectively. In 

the observed dataset, RxGr7 is recommended to 11% of the patients, while ProcGr1 and ProcGr2 are 

prescribed to 22% and 2% of the patients respectively. This analysis shows that the 2SP IQ approach 

recommends a few select treatments to the majority of the patients, while the 2SP IQ-IPTW approach 

recommends a wide range of treatments in stage 2. 

 

 

Figure 34: Stage 2 Treatment Usage 2SP IQ-IPTW, 2SP IQ, and observed data 

4.3.2.2 Stage 2 2SP IQ-IPTW vs 2SP AL-IPTW Treatment Analysis 

The stage 2 treatment recommendations from 2SP IQ-IPTW, 2SP AL-IPTW, and observed data are shown 

in Figure 35. The major difference between the two approaches is in the recommendation of RxGr4 (Muscle 

Relaxant), ProcGr4 (Stimulation Procedure), and ProcGr9 (Cognitive Behavioral Therapy). While 2SP AL-

IPTW recommends the treatments RxGr4 and ProcGr4 to 41% and 38% of the patients, 2SP IQ-IPTW uses 

Treatments-Stage 2 RxGr1 RxGr2 RxGr3 RxGr4 RxGr5 RxGr6 RxGr7 RxGr8 ProcGr1 ProcGr2 ProcGr4 ProcGr9 ProcGr10

2SP IQ-IPTW 2% 0% 14% 19% 0% 0% 67% 0% 76% 84% 7% 89% 0%

2SP IQ 3% 0% 0% 0% 0% 0% 97% 3% 97% 99% 0% 99% 0%

Observed Data 15% 28% 16% 27% 29% 13% 11% 3% 22% 2% 9% 59% 53%
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them in 19% and 7% of the patients respectively. ProcGr9 is not recommended to any patients in 2SP AL-

IPTW while it is recommended to 89% of the patients in 2SP IQ-IPTW. The treatments RxGr3, RxGr7, 

ProcGr1, and ProcGr2 followed similar recommendation patterns with both approaches. 

 

 

Figure 35: Stage 2 Treatment Usage 2SP IQ-IPTW, 2SP AL-IPTW, and observed data 

4.3.2.3 Stage 2 Treatment Analysis between low and high IPTW weight patients 

The treatment recommendation patterns with 2SP IQ for low and high weight patients are similar as shown 

in Figure 36. The treatments RxGr7 (Sleeping Pill), ProcGr1 (Injection), and ProcGr9 (Cognitive 

Behavioral Therapy) are recommended slightly more often to low weight patients than high weight patients 

while RxGr1 (Tramadol) and RxGr8 (Other) are recommended marginally more to high weight patients. 

The treatment ProcGr4 (Stimulation Therapy) is similarly recommended to low and high weight patients. 

Treatments-Stage 2 RxGr1 RxGr2 RxGr3 RxGr4 RxGr5 RxGr6 RxGr7 RxGr8 ProcGr1 ProcGr2 ProcGr4 ProcGr9 ProcGr10

2SP IQ-IPTW 2% 0% 14% 19% 0% 0% 67% 0% 76% 84% 7% 89% 0%

2SP AL-IPTW 0% 0% 18% 41% 0% 0% 55% 0% 72% 87% 38% 0% 0%

Observed Data 15% 28% 16% 27% 29% 13% 11% 3% 22% 2% 9% 59% 53%
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Figure 36: Stage 2 Treatment Usage 2SP IQ for Low and High IPTW weight patients 

 The treatment recommendations with the 2SP AL-IPTW approach are shown in Figure 37. The 

pharmaceutical treatments RxGr3 (Narcotic), RxGr4 (Muscle Relaxant), and RxGr7 (Sleeping Pill) are used 

similarly in low and high weight patients. The procedural treatments ProcGr1 (Injection) and ProcGr4 

(Stimulation Procedure) are recommended more to low weight patients, while ProcGr2 (Block Procedure) 

is recommended more to high weight patients. 

 

Figure 37: Stage 2 Treatment Usage 2SP AL-IPTW for Low and High IPTW weight patients 

The treatment recommendations using the 2SP IQ-IPTW approach are shown in Figure 38. ProcGr4 

(Stimulation Procedure) is predominantly recommended to high weight patients. The treatments RxGr1 
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(Tramadol), RxGr3 (Narcotic), RxGr4 (Muscle Relaxant), RxGr7 (Sleeping Pill), ProcGr2 (Block 

Therapy), and ProcGr9 (Cognitive Behavioral Therapy) are recommended slightly more frequently to the 

high weight patients. The treatment ProcGr1 (Injection) is recommended similarly to both low and high 

weight patients. 

 

Figure 38: Stage 2 Treatment Usage 2SP IQ-IPTW for Low and High IPTW weight patients 

The comparison of the treatment assignment to low and high IPTW patients between 2SP IQ-IPTW, 

2SP AL-IPTW, and 2SP IQ is shown in Figures 39(a) and 39(b), respectively. The treatment ProcGr4 

(Stimulation Therapy) is recommended to a greater percentage of high weight patients, while it is 

recommended to a very small percentage of low weight patients by 2SP IQ-IPTW.  The treatment ProcGr1 

(Injection) is recommended to the same percentage of low weight patients by 2SP AL-IPTW and 2SP IQ-

IPTW, while it is recommended to a greater percentage of high weight patients by 2SP IQ-IPTW. The 

recommendation of treatment RxGr4 (Muscle Relaxant) is also greater to the high weight patients by 2SP 

IQ-IPTW. This analysis shows that the 2SP IQ-IPTW approach recommends more treatments to the high 

weight patients than the other two methods. The 2SP IQ-IPTW approach is more adaptive than the other 

two approaches and by recommending more treatments to high weight patients than the low weight patients, 

so it reduces over-medication to more common patients with low IPTW weights. 
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Figure 39(a): Stage 2 treatment assignment comparison for low IPTW weight patients 

 

 

Figure 39(b): Stage 2 treatment assignment comparison for high IPTW weight patients 

 

4.4 Conclusion and Future Work 

This research proposes the 2SP IQ-IPTW MIQCP optimization approach using the state transition models 

developed using the HierNet-IPTW method, which uses IPTW to address time-varying confounding and 

models the state treatment interaction effects. The treatment decisions recommended by the proposed 2SP 

IQ-IPTW approach are compared against treatments recommended by the 2SP IQ approach, which does 

not use IPTW, and those from the 2SP AL-IPTW approach, which does not model interaction effects.  

The analysis of stage 1 and stage 2 treatment recommendations show that the 2SP IQ approach 

recommends fewer treatments to most of the patients, and the recommendation pattern is similar between 
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low and high IPTW weight patients. The 2SP AL-IPTW approach recommends more treatments than 2SP 

IQ recommends, and the patterns are similar between low and high IPTW weight patients. The 

pharmaceutical treatments recommended by the 2SP IQ-IPTW approach are similar to those of the 2SP 

AL-IPTW approach, but the 2SP IQ-IPTW approach recommends more procedural treatments. The 2SP 

IQ-IPTW approach also recommends certain treatments to a greater percentage of the high IPTW weight 

patients than the low IPTW weight patients. 

The inclusion of IPTW and state treatment interaction effects in building the state transition models 

results in more adaptive treatment decisions being made by the optimization module. The optimization 

recommends more treatments to the high IPTW weight patients that represent rare patient instances in the 

dataset. This avoids overprescribing certain medications to all the patients.  

The difference in treatment recommendations between the optimization and the observed dataset needs 

to be studied further. The proposed 2SP IQ-IPTW approach uses LASSO-based HierNet modeling to build 

state transition models with interactions. We can consider other modeling techniques to build state transition 

models with interactions and compare them against the 2SP IQ-IPTW treatment recommendations. In 

preliminary research, we considered Glinternet, another LASSO-based modeling method with interactions. 

This method can be explored in future work. The results from the simulation case study in the preliminary 

research are included in Appendix V. 
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Chapter 5 

Discussion and Future Work 

 

The main aim of this research is to develop state transition models on the pain management dataset while 

addressing the challenge of including state-treatment interactions that are critical to enable personalized 

treatment plan for patients. In Chapter 3, we propose a method named HierNet-IPTW, where HierNet, a  

LASSO based method is combined with IPTW from Ohol [26] to build state transition and outcome models  

that enable feature selection and modeling of interaction effects in the presence of time-varying 

confounding. This approach is studied using a simulated case study structured based on the McDermott 

Center  data with time varying confounding and various correlation structures between the variables. The 

performance of the proposed HierNet-IPTW approach is compared against the baseline method that does 

not address time varying confounding. The evaluation was done on the feature and interaction selection 

metrics.  The ANOVA conducted on the experimental data showed that the proposed HierNet-IPTW 

approach performed better than the baseline in correctly identifying the true feature and interaction terms. 

In Chapter 4, we build state transition models on the pain management dataset. These models are used 

in a multi-objective two stage stochastic optimization problem formulated as a MIQCP problem named 2SP 

IQ-IPTW. The treatment recommendations from the proposed 2SP IQ-IPTW approach were compared 

against the treatments recommended from the 2SP AL-IPTW and 2SP IQ approach. The results showed 

that the inclusion of IPTW and state treatment interaction effects in building the state transition models 

results in more adaptive treatment decisions being made by the optimization module. The proposed 

approach recommends more treatments to the high IPTW weight patients that represent rare patient 

instances in the dataset. This avoids overprescribing certain medications to all the patients.  

The comparison of the final patient pain outcome measures using the different first stage treatment 

policies generated from the optimization is a subject of future work. This comparison is difficult since the 
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policies were generated under different state transition and outcome models. This can be done using an 

evaluation framework that is closer to the ground truth. In this study, we cannot conclusively tell that a 

particular state transition model is closer to the ground truth. We can assume that the state transition models 

used in the 2SP IQ-IPTW framework generated using the proposed HierNet-IPTW are closer to the ground 

truth since it captures more information from the given data. In future work, the different treatment policies 

shall be evaluated using the 2SP IQ-IPTW evaluation framework.  

The difference in treatment recommendations between the optimization and the observed dataset needs 

to be studied further. The proposed 2SP IQ-IPTW approach uses LASSO-based HierNet modeling to build 

state transition models with interactions. In future work, we can consider other modeling techniques to 

build state transition models with interactions and compare them against the 2SP IQ-IPTW treatment 

recommendations. 
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Appendix I: Modifications in HierNet to force treatments and incorporate IPTW weights 

The optimization problem shown in Equation (15) is solved in HierNet 

                        argmin𝜇,𝛽,𝜃
1

2
∑ (𝑦𝑖 − 𝜇 − 𝑥𝑖

𝑇𝛽 −
1

2
𝑥𝑖

𝑇Θ𝑥𝑖)2𝑛
𝑖=1 + 𝜆1𝑇(𝛽+ + 𝛽−) +

𝜆

2
‖Θ‖1,                       (15)  

                     subject to Θ = Θ𝑇, ‖Θ𝑗‖
1

≤ (𝛽𝑗
+ + 𝛽𝑗

−), 𝛽𝑗
+ ≥ 0, 𝛽𝑗

− ≥ 0,                  

In order to force the treatments in the model, the constraint 𝛽𝑗𝑇
+ + 𝛽𝑗𝑇

− ≥  𝜀 is added where 𝛽𝑗𝑇
+   and 𝛽𝑗𝑇

−  

are the treatment main effect co-efficients. 𝜀 is set to 0.05 in this study. In the HierNet R package, this 

modification is incorporated in the ONEROW function. 

The loss function is modified as shown in  Equation (16), where 𝑤𝑖 are the weights obtained from IPTW 

                                           argmin𝜇,𝛽,𝜃
1

2
∑ 𝑤𝑖(𝑦𝑖 − 𝜇 − 𝑥𝑖

𝑇 𝛽 −
1

2
𝑥𝑖

𝑇 Θ𝑥𝑖)2𝑛
𝑖=1                                         (16) 

Appendix II: Residual analysis: Checking model assumptions 

Feature Selection Sensitivity 

The error terms have constant variance:  The residual vs experimental treatments plot in Figure 40 does 

not show the presence of  a funnel shape, and we can conclude that the error terms have constant error 

variance. 

 

Figure 40: Residuals versus experiment treatments feature selection sensitivity 
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The error terms are normally distributed: The normality plot shown in Figure 41,  shows that the 

residuals are along the normal distribution line. We can conclude that the error terms are normally 

distributed. 

 

Figure 41: Normal Probability Plot (Q-Q Plot) feature selection sensitivity 

Feature Selection Specificity 

The error terms have constant variance:  The residual vs experimental treatments plot in Figure 42 does 

not show the presence of  a funnel shape, and we can conclude that the error terms have constant error 

variance. 

 

Figure 42: Residuals versus experimental treatments for feature selection specificity 
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The error terms are normally distributed: The normality plot shown in Figure 43,  shows that the 

residuals are along the normal distribution line. We conclude that the error terms are normally distributed. 

 

Figure 43: Normal Probability Plot (Q-Q Plot) feature selection specificity 

Interaction Selection Sensitivity 

The error terms have constant variance:  The residual vs experimental treatments plot in Figure 44 does 

not show the presence of  a funnel shape, and we conclude that the error terms have constant error variance 

 

Figure 44: Residuals versus experimental treatments for interaction selection sensitivity 
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The error terms are normally distributed: The normality plot (Figure 45) shows that the residuals are 

symmetrical with shorter upper and lower tails. We conclude that the normality assumption is not satisfied. 

 

Figure 45: Normal Probability Plot (Q-Q Plot) interaction selection sensitivity 

Interaction Selection FDR 

The error terms have constant variance:  The residual vs experimental treatments plot in Figure 46 does 

not show the presence of  a funnel shape, and we conclude that the error terms have constant error variance. 

 

Figure 46: Residuals versus experimental treatments for interaction selection FDR 
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The error terms are normally distributed: The normality plot (Figure 47) shows that the residuals are 

symmetrical with longer upper and lower tail. We conclude that the normality assumption is not satisfied. 

 

Figure 47: Normal Probability Plot (Q-Q Plot) interaction selection FDR 
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Appendix III 

The different levels of the pain outcome measures indicating the severity of pain, depression, and general 

health status. 

 

Figure 48: Different Pain Outcome Measures and their levels [27] 
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The description and type of the state, treatment and outcome variables in the pain management study is 

shown in Table 35. 

Table 35: Description of state, treatment, and outcome variables in pain management dataset [27]  
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The two-way adverse treatment interaction constraints are shown in Table 36. 

Table 36: Adverse Treatment Interaction Constraints [27] 

 

Appendix IV 

The stage 1 and stage 2 state transition models for five pain outcome measures are shown in the following 

tables. 

Table 37: Stage 1 Pain Outcome Transition Models 2 SP AL-IPTW 

Variable mid_PDA mid_OSW mid_BDI mid_sf36pcs mid_sf36mcs 

Intercept 4.312 10.983 11.212 27.569 34.82 

RxGr1_1 0.027 0.507 0.011 -0.205 -0.475 

RxGr2_1 -0.156 -0.561 -0.171 0.539 0.329 

RxGr3_1 -0.003 -0.061 0.373 -0.2 -0.255 

RxGr4_1 -0.322 -1.52 -0.281 0.582 0.626 

RxGr5_1 -0.526 -2.24 -0.645 1.141 0.903 

RxGr6_1 0.038 -0.048 -0.054 -0.073 0.047 

RxGr7_1 0.055 0.012 0.008 -0.353 -0.02 

RxGr8_1 0.007 0.012 -0.055 0.003 -0.135 

ProcGr1_1 -0.006 -0.056 -0.021 -0.049 -0.208 

ProcGr2_1 0.029 0.122 -0.015 -0.436 -0.009 

ProcGr4_1 -0.081 -0.273 -0.123 0.319 0.117 

ProcGr9_1 -0.371 -1.853 -0.962 1.422 1.102 

ProcGr10_1 -0.0618 -0.206 -0.107 0.275 0.073 

ProcGr11_1 -0.041 0.033 0.052 0.141 -0.033 

ProcGr1_0 0.318 0 0 0 -0.422 

RxGr2_0 0.685 0 0.894 0 -1.398 

RxGr3_0 0.196 0.431 0 -2.678 0 
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phydx6 0.344 0 0 -1.286 0 

phydx12 0.459 0 0 -0.66 -1.728 

phydx14 0.777 0 0 0 0 

pastdx4 0.268 0 0 -1.167 0 

pastdx12 0.104 0 0 0 -1.715 

pre_PDA 0.297 0 0 0 0 

race_1 0.07 0 0 0 0 

age 0.025 0 0 0 -0.06 

ProcGr4_0 0 0.293 0.101 0 0 

ProcGr10_0 0 -0.119 0 0 0 

phydx4 0 1.875 0 0 0 

phydx31 0 2.009 0 0 -2.35 

pastdx6 0 0.769 1.19 0 0 

pastdx7 0 1.457 0 0 0 

pastdx11 0 1.274 0 0 0 

SghxGr3 0 2.686 0 -2.349 0 

pre_OSW 0 0.291 0 0.103 0 

marital_1 0 1.141 0 0 0 

onset 0 0.094 0 0 0 

gender 0 0.79 0 0 0 

ProcGr9_0 0 0 -0.179 0 0.275 

phydx7 0 0 1.357 0 0 

phydx20 0 0 2.268 0 0 

pastdx32 0 0 0.834 0 0 

SghxGr6 0 0 1.259 0 -2.423 

pre_BDI 0 0 0.221 0 0 

status 0 0 0.834 0 0 

ProcGr11_0 0 0 0 -0.017 0 

RxGr4_0 0 0 0 -0.017 0 

pre_sf36pcs 0 0 0 0.18 0 

pre_sf36mcs 0 0 0 0 0.214 

duration 0 0 0 0 -0.07 
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Table 38: Stage 2 Pain Outcome Transition Models 2 SP AL-IPTW 

Variable post_PDA post_OSW post_BDI post_sf36pcs post_sf36mcs 

Intercept 4.31 9.548 10.1 24.623 30.461 

RxGr1_2 0.259 0.077 0.071 -0.149 -0.033 

RxGr2_2 0.207 0.039 0.056 -0.076 -0.043 

RxGr3_2 -0.113 -0.66 -0.956 0.835 0.438 

RxGr4_2 -0.374 -1.119 -1.08 1.236 0.671 

RxGr5_2 0.079 -0.047 -0.183 -0.029 0.211 

RxGr6_2 0.201 -0.024 0.436 0.046 -0.254 

RxGr7_2 -0.707 -1.876 -1.378 1.805 1.016 

RxGr8_2 0.066 0.047 -0.053 -0.513 -0.671 

ProcGr1_2 -0.438 -1.849 -1.881 2.04 1.523 

ProcGr2_2 -0.609 -2.177 -2.134 2.488 2.215 

ProcGr4_2 -0.146 -1.39 -0.927 0.782 1.161 

ProcGr9_2 -0.005 -0.131 -0.107 -0.385 0.208 

ProcGr10_2 0.179 -0.02 0.475 -0.261 0.091 

ProcGr9_1 -0.376 -1.137 -0.55 0.655 1.029 

RxGr2_1 -0.19 0 0 0 0 

RxGr4_1 -0.218 -0.546 0 0.436 0 

RxGr2_0 0.723 0 0.697 0 -0.314 

ProcGr10_0 -0.002 0 -0.066 0 0.208 

ProcGr4_0 -0.007 0 0 -0.115 0 

marital_2 -0.034 0 0 0 0 

mid_PDA 0.463 0.119 0 0 0 

gender 0.423 0 0 0 0 

age 0.037 0 0.007 0.012 0 

phydx6 0.518 0 0 0 -1.343 

phydx12 1.033 0 1.349 -1.054 0 

pastdx4 0.115 0 0 -0.63 -1.211 

pastdx6 0.228 0 0 0 0 

SghxGr3 0.123 1.332 1.211 -0.697 -1.883 

onset 0.018 0 0 0.083 0 

race_1 0.116 0 0.347 0 0 

RxGr5_1 0 -0.729 -0.624 0.504 0.651 

ProcGr1_0 0 -0.133 0 0.16 0 

ProcGr11_0 0 -0.206 0.765 0 0 

RxGr3_0 0 0.269 0 -2.018 0 

RxGr5_0 0 0.584 0.365 0 -0.254 

phydx4 0 1.172 0 0 0 

phydx7 0 0.827 0.966 0 0 
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phydx31 0 2.365 0 0 -0.607 

mid_OSW 0 0.252 0.021 0.172 0 

pre_OSW 0 0.129 0 0 0 

pastdx7 0 0.711 2.038 0 0 

pastdx11 0 0.535 0 0 0 

SghxGr6 0 0.868 0 0 -0.565 

duration 0 0.074 0 0 0.054 

litigat 0 0.007 0 0 0 

ProcGr10_1 0 0 -0.142 0 0 

ProcGr4_1 0 0 -0.203 0 0 

phydx20 0 0 1.069 0 0 

mid_sf36mcs 0 0 0.082 0 0.124 

mid_BDI 0 0 0.248 0 0 

RxGr1_0 0 0 0 -1.131 0 

RxGr6_0 0 0 0 -2.209 0 

phydx11 0 0 0 -2.082 0 

mid_sf36pcs 0 0 0 0.308 0.017 

pastdx12 0 0 0 0 -2.204 

 

Table 39: Stage 1 Pain Outcome Transition Models 2 SP IQ-IPTW 

Variable mid_PDA mid_OSW mid_BDI mid_sf36pcs mid_sf36mcs 

Intercept 4.017 8.615 10.406 25.216 30.612 

RxGr1_1 0.06 0.86 -0.078 -0.05 -0.119 

RxGr2_1 -0.197 -0.379 -0.05 0.317 -0.05 

RxGr3_1 0.244 0.952 -0.05 -1.428 -0.05 

RxGr4_1 -0.547 -2.667 -0.752 1.883 2.895 

RxGr5_1 -0.399 -1.62 -0.414 0.764 1.554 

RxGr6_1 -0.05 -0.05 -0.05 -2.739 -0.05 

RxGr7_1 -0.05 -0.05 -0.05 -0.05 -0.05 

RxGr8_1 0.205 -0.05 0.772 -0.05 -0.05 

ProcGr1_1 -0.125 -0.05 -0.102 0.159 0.454 

ProcGr2_1 -0.05 -0.05 -0.05 -0.05 -0.138 

ProcGr4_1 -0.236 -0.265 -0.158 0.623 0.027 

ProcGr9_1 -0.581 -1.792 -0.87 1.291 1.81 

ProcGr10_1 -0.05 -0.412 -0.255 0.36 0.07 

ProcGr11_1 -0.05 -0.05 -0.05 -0.632 -0.05 

phydx14 0.581 0 0 0 0 

pastdx7 0.142 0 1.08 0 0 

onset 0.049 0 0 -0.019 0 
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phydx6 0.134 0 1.073 0 0 

pastdx4 0.13 0 0 0 0 

pre_PDA 0.383 0 0 0 0 

age 0.061 0.021 0 0 0 

RxGr5_0 -0.155 0 0 0 0 

ProcGr10_0 -0.186 -1.129 -0.296 0 0 

RxGr3_0 0.458 0 0 0 0 

ProcGr4_1:RxGr5_0 -0.258 0 0 0 0 

ProcGr9_1:ProcGr10_0 -0.443 0 0.12 0 0 

RxGr2_1:pastdx7 -0.17 0 0 0 0 

RxGr3_1:onset -0.109 0 0 0 0 

RxGr4_1:phydx6 -0.32 0 0 0 0.375 

RxGr5_1:RxGr3_0 -0.203 0 0 0 0 

RxGr8_1:pre_PDA 0.452 0 0 0 0 

age:phydx14 0.17 0 0 0 0 

onset:pastdx7 0.227 0 0 0 0 

age:onset 0.104 0 0 0 0 

RxGr5_0:phydx6 -0.067 0 0 0 0 

age:ProcGr10_0 -0.005 0 0 0 0 

RxGr3_0:pre_PDA 0.003 0 0 0 0 

age:pre_PDA 0.004 0 0 0 0 

RxGr5_0:pastdx4 -0.078 0 0 0 0 

phydx14:pastdx7 0.134 0 0 0 0 

RxGr3_0:ProcGr10_0 0.065 0 0 0 0 

phydx6:pre_PDA 0.002 0 0 0 0 

phydx4 0 3.92 0 0 0 

pastdx6 0 0.996 0 0 0 

race_1 0 0.076 0 0 0 

marital_4 0 -0.125 0 0 0 

SghxGr3 0 -0.014 0 -0.423 0 

RxGr2_0 0 0.012 1.478 0 0 

pre_OSW 0 0.314 0 0.024 0 

ProcGr9_1:RxGr2_0 0 -1.43 0 0 0 

ProcGr10_1:SghxGr3 0 -0.246 0 0 0 

RxGr1_1:race_1 0 0.434 0 0 0 

RxGr2_1:marital_4 0 -0.311 0 0 0 

RxGr4_1:ProcGr10_0 0 -1.209 0 0 0 

RxGr4_1:pastdx6 0 -0.072 0 0 0 

RxGr4_1:pre_OSW 0 -0.071 0 0 0 

RxGr5_1:phydx4 0 -0.128 0 0 0 

race_1:pre_OSW 0 0.009 0 0 0 
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phydx4:pastdx6 0 0.149 0 0 0 

RxGr2_0:pastdx6 0 0.721 0 0 0 

ProcG10_0:pastdx6 0 1.979 0 0 0 

RxGr2_0:SghxGr3 0 0.388 0 0 0 

pastdx6:SghxGr3 0 0.234 0 -0.437 0 

RxGr2_0:phydx31 0 0.256 0 0 0 

ProcGr10_0:race_1 0 -0.056 0 0 0 

phydx4:pre_OSW 0 0.011 0 0 0 

age:pre_OSW  0 0.01 0 0 0 

phydx4:SghxGr3 0 0.952 0 0 0 

SghxGr3:marital_4 0 -0.44 0 0 0 

age:phydx4 0 0.038 0 0 0 

age:SghxGr3 0 0.078 0 0 0 

phydx20 0 0 0.214 -1.36 0 

marital_1 0 0 -0.034 0 0.615 

SghxGr11 0 0 0.118 0 0 

ProcGr11_0 0 0 -0.102 0.443 -1.002 

pre_BDI 0 0 0.223 0 0 

status 0 0 0.052 0 0 

ProcGr4_1:phydx20 0 0 -0.443 0 0 

ProcGr9_1:pre_BDI 0 0 -0.125 0 0 

ProcGr10_1:phydx12 0 0 -0.079 0 0 

RxGr4_1:RxGr2_0 0 0 0.142 0 0 

RxGr8_1:pastdx7 0 0 1.414 0 0 

pastdx7:SghxGr11 0 0 0.926 0 0 

ProcGr10_0:phydx6 0 0 -0.626 0 0 

phydx20:SghxGr11 0 0 0.312 0 0 

phydx20:pastdx7 0 0 0.104 0 0 

ProcGr11_0:pastdx7 0 0 0.824 0 0 

RxGr6_0:SghxGr11 0 0 0.217 0 0 

phydx20:pastdx5 0 0 0.409 0 0 

ProcGr2_0:phydx6 0 0 -0.659 0 0 

RxGr2_0:ProcGr11_0 0 0 0.045 0 0 

status:ProcGr10_0 0 0 0.01 0 0 

phydx12 0 0 0 -0.348 -1.687 

pastdx5 0 0 0 -1.035 0 

gender 0 0 0 -0.014 0 

pre_sf36pcs 0 0 0 0.216 0 

ProcGr1_1:pastdx20 0 0 0 0.792 0 

ProcGr4_1:phydx12 0 0 0 0.377 0 

ProcGr11_1:pastdx6 0 0 0 0.192 0 
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RxGr1_1:SghxGr3 0 0 0 -0.714 0 

RxGr5_1:ProcGr1_0 0 0 0 0.94 0 

onset:SghxGr3 0 0 0 0.016 0 

phydx12:SghxGr3 0 0 0 -0.048 0 

ProcGr1_0:pastdx6 0 0 0 0.952 0 

pre_OSW:pre_sf36pcs 0 0 0 0.01 0 

gender:phydx12 0 0 0 -0.984 0 

ProcGr1_0:phydx12 0 0 0 1.048 0 

ProcGr1_0:phydx20 0 0 0 0.236 0 

phydx31 0 0 0 0 -0.349 

pastdx3 0 0 0 0 -1.027 

SghxGr5 0 0 0 0 -1.266 

pastdx12 0 0 0 0 -0.345 

pre_sf36mcs 0 0 0 0 0.238 

ProcGr9_0 0 0 0 0 -0.375 

ProcGr2_0 0 0 0 0 -1.402 

ProcGr9_1:phydx31 0 0 0 0 1.965 

RxGr1_1:pastdx12 0 0 0 0 -1.402 

phydx12:pre_sf36mcs 0 0 0 0 -0.466 

phydx31:SghxGr5 0 0 0 0 -0.375 

ProcGr9_0:SghxGr5 0 0 0 0 0.266 

ProcGr2_0:ProcGr11_0 0 0 0 0 -0.14 

pastdx12:marital_1 0 0 0 0 -0.375 

ProcGr2_0:marital_1 0 0 0 0 -0.615 

RxGr8_0:phydx5 0 0 0 0 -1.1 

 

Table 40: Stage 2 Pain Outcome Transition Models 2 SP IQ-IPTW 

Variable post_PDA post_OSW post_BDI post_sf36pcs post_sf36mcs 

Intercept 4.798 8.721 11.627 28.216 32.063 

RxGr1_2 -0.081 -0.102 0.206 -0.05 -0.05 

RxGr2_2 -0.05 0.211 -0.05 -0.05 -0.05 

RxGr3_2 -0.162 -0.279 -0.866 1.069 1.437 

RxGr4_2 -0.153 -0.633 -1.054 1.215 1.298 

RxGr5_2 -0.05 -0.05 -0.05 -0.05 -0.254 

RxGr6_2 -0.05 -0.05 -0.05 -0.079 -0.05 

RxGr7_2 -0.5 -1.19 -1.803 2.586 2.446 

RxGr8_2 -0.05 -0.05 -0.05 -0.217 -0.05 

ProcGr1_2 -0.339 -1.328 -2.252 0.675 1.499 

ProcGr2_2 -0.467 -1.692 -2.217 1.154 2.344 
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ProcGr4_2 -0.05 -0.175 -1.27 0.079 0.575 

ProcGr9_2 -0.268 -2.08 -3.627 1.871 2.475 

ProcGr10_2 -0.05 0.66 -0.05 -0.05 0.108 

RxGr4_1 -0.249 -0.58 -0.715 0.967 1.14 

RxGr5_1 -0.162 0 0 0.699 0 

ProcGr10_0 -0.062 0.441 0.596 0 -0.312 

RxGr3_0 0.201 0 0 0 0 

phydx12 0.228 0 0 -1.183 -2.263 

phydx4 0.147 1.871 0 0 0 

pastdx7 0.228 0 1.006 2.04 0 

SghxGr3 0.304 0 0.884 -1.182 -4.476 

pre_PDA 0.004 0 0 0 0 

mid_PDA 0.58 0.129 0 0 0 

age 0.008 0 0 0 0 

race_1 0.258 0.41 0 0 0 

ProcGr1_2:ProcGr2_2 -0.339 0 0 0 0 

ProcGr1_2:ProcGr10_0 -0.112 0 0 0 0 

ProcGr2_2:SghxGr3 -0.203 0 0 0 0 

ProcGr9_2:RxGr4_1 0.013 -1.138 0 0 0 

RxGr3_2:phydx4 -0.146 0 0 0 0 

RxGr4_2:pastdx7 -0.142 0 0 0 0 

RxGr7_2:mid_PDA -0.033 0 0 0 0 

RxGr4_1:pre_PDA 0.008 0 0 0 0 

phydx4:pastdx4 0.354 0 0 0 0 

SghxGr3:pre_PDA 0.013 0 0 0 0 

mid_PDA:pre_PDA 0.003 0 0 0 0 

RxGr5_1:SghxGr3 0.126 0 0 0 0 

ProcGr10_0:phydx12 0.339 0 0 0 0 

pastdx7:SghxGr3 0.213 0 0 0 0 

ProcGr9_1 0 -0.121 -1.043 1.161 1.455 

RxGr2_1 0 -0.188 0 0 0 

RxGr2_0 0 0.843 0.469 0 0 

pre_OSW 0 0.11 0 0 0 

mid_OSW 0 0.35 0 0.045 0 

pastdx6 0 1.311 0 1.242 -1.093 

mid_sf36pcs 0 0.02 0 0.34 0.074 

pastdx12 0 1.381 0.384 1.176 0 

phydx6 0 1.46 1.567 0 -1.173 

SghxGr5 0 3.898 0 0 0 

onset 0 0.006 0 0 -0.122 

ProcGr2_2:ProcGr9_1 0 -1.493 0 0 0 
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ProcGr4_2:phydx4 0 -0.987 0 0 0 

RxGr1_2:SghxGr5 0 -0.544 0 0 0 

RxGr2_2:race_1 0 0.089 0 0 0 

RxGr3_2:RxGr2_1 0 -0.386 0 0 0 

RxGr4_2:RxGr2_0 0 -0.608 0 0 0 

RxGr7_2:phydx6 0 -1.283 0 0 0 

mid_OSW:pre_OSW 0 0.007 0 0 0 

phydx4:mid_OSW 0 0.076 0 0 0 

pastdx12:SghxGr5 0 0.069 0 0 0 

RxGr4_1:RxGr2_0 0 0.484 0 0 0 

ProcGr10_0:phydx6 0 0.055 0.659 0 0 

phydx6:SghxGr5 0 2.915 0 0 0 

race_1:mid_OSW 0 0.009 0 0 0 

onset:race_1 0 0.017 0 0 0 

onset:pastdx12 0 0.004 0 0 0 

phydx6:pre_OSW 0 0.05 0 0 0 

RxGr2_0:pre_OSW 0 0.097 0 0 0 

ProcGr10_0:pastdx12 0 0.634 0 0 0 

ProcGr10_1 0 0 -0.355 0 0.649 

RxGr8_0 0 0 0.335 0 0 

phydx20 0 0 0.39 -1.524 0 

SghxGr6 0 0 3.556 0 0 

pre_BDI 0 0 0.071 0 0 

status 0 0 0.044 0 0 

phydx8 0 0 0.441 0 0 

mid_BDI 0 0 0.26 0 0 

ProcGr2_2:phydx6 0 0 -1.293 0 0 

ProcGr9_2:ProcGr4_0 0 0 -1.469 0 0 

ProcGr9_2:phydx20 0 0 -0.138 0 0 

RxGr1_2:RxGr8_0 0 0 0.052 0 0 

RxGr7_2:RxGr2_1 0 0 -1.199 0 0 

RxGr8_2:RxGr7_0 0 0 0.527 0 0 

ProcGr9_1:mid_BDI 0 0 -0.067 0 0 

phydx8:SghxGr3 0 0 0.367 0 0 

RxGr2_0:pastdx12 0 0 1.221 0 0 

phydx6:pastdx7 0 0 0.543 0 0 

ProcGr10_0:mid_BDI 0 0 -0.002 0 0 

status:phydx6 0 0 0.075 0 0 

pastdx12:SghxGr3 0 0 0.949 0 0 

ProcGr11_0 0 0 0 -1.601 0 

phydx31 0 0 0 -0.258 0 
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pastdx5 0 0 0 -2.496 0 

gender 0 0 0 -0.191 0 

pre_sf36pcs 0 0 0 0.12 0 

ProcGr1_2:pastdx6 0 0 0 1.177 1.327 

ProcGr2_2:phydx12 0 0 0 1.446 0 

ProcGr9_2:SghxGr3 0 0 0 1.31 0 

RxGr4_2:ProcGr4_1 0 0 0 0.953 0 

RxGr7_2:mid_OSW 0 0 0 0.158 0 

phydx12:pastdx6 0 0 0 -0.689 0 

pastdx6:SghxGr3 0 0 0 -0.346 2.947 

pastdx12:mid_sf36pcs 0 0 0 -0.158 0 

ProcGr11_0:gender 0 0 0 -0.36 0 

RxGr4_1:mid_sf36pcs 0 0 0 0.023 0 

phydx20:pastdx12 0 0 0 -1.128 0 

ProcGr4_1 0 0 0 0 0.505 

ProcGr2_0 0 0 0 0 -1.366 

pastdx4 0 0 0 0 -1.326 

marital_1 0 0 0 0 -0.311 

mid_sf36mcs 0 0 0 0 0.116 

ProcGr2_2:ProcGr10_0 0 0 0 0 1.09 

ProcGr9_2:mid_sf36mcs 0 0 0 0 0.073 

RxGr7_2:phydx12 0 0 0 0 1.263 

phydx12:pastdx4 0 0 0 0 -0.283 

ProcGr10_0:onset 0 0 0 0 -0.054 

mid_sf36mcs:marital_1 0 0 0 0 0.061 

ProcGr9_1:phydx6 0 0 0 0 1.855 

ProcGr2_0:ProcGr10_0 0 0 0 0 -1.137 

pastdx4:pastdx6 0 0 0 0 -3.284 

 

Table 41: Stage 1 Pain Outcome Transition Models 2 SP IQ 

Variable mid_PDA mid_OSW mid_BDI mid_sf36pcs mid_sf36mcs 

Intercept 4.738 13.222 11.696 29.158 36.25 

RxGr1_1 -0.179 -0.05 -0.05 -0.05 -0.05 

RxGr2_1 -0.05 1.034 -0.05 -0.05 -0.05 

RxGr3_1 -0.05 -0.05 -0.05 -0.05 -0.05 

RxGr4_1 -0.852 -3.851 -1.329 3.315 2.75 

RxGr5_1 -0.561 -2.977 -0.662 2.436 1.359 

RxGr6_1 -0.05 -0.05 -0.05 -0.05 -0.05 

RxGr7_1 -0.05 -0.05 0.136 -0.05 -1.443 
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RxGr8_1 -0.05 -0.05 -0.05 -3.607 -0.05 

ProcGr1_1 -0.05 -0.05 0.125 -0.05 -1.295 

ProcGr2_1 0.259 -0.05 -0.05 -0.378 -0.05 

ProcGr4_1 -0.05 -0.05 -0.05 -0.152 -0.05 

ProcGr9_1 -0.469 -2.352 -0.959 2.671 2.024 

ProcGr10_1 0.103 -0.052 -0.05 -0.05 -0.05 

ProcGr11_1 -0.05 -0.05 -0.05 -0.05 -0.05 

phydx6 0.499 0 0 0 0 

pastdx7 0.138 0 0 0 0 

pre_PDA 0.34 0 0 0 0 

age 0.002 0.042 0 0 0 

RxGr3_0 0.103 0 0 0 0 

RxGr4_0 -0.076 0 0 0 0 

pastdx12 0.084 0 0 -0.902 -0.861 

ProcGr9_1:ProcGr10_0 -0.079 0 -0.457 0 0 

RxGr4_1:phydx6 -0.208 0 0 0 0 

RxGr5_1:RxGr3_0 -0.151 0 0 0 0 

RxGr5_1:pastdx7 -0.076 0 0 0 0 

age:phydx6 0.048 0 0 0 0 

RxGr3_0:pre_PDA 0.003 0 0 0 0 

age:pre_PDA 0.004 0 0 0 0 

RxGr4_0:pastdx12 0.013 0 0 0 0 

RxGr4_0:pastdx7 -0.048 0 0 0 0 

age:RxGr4_0 -0.003 0 0 0 0 

RxGr3_0:pastdx12 0.172 0 0 0 0 

pastdx12:pre_PDA -0.025 0 0 0 0 

phydx4 0 1.157 0 0 0 

pastdx6 0 0.52 1.913 -1.42 0 

marital_4 0 0.136 0 0 0 

SghxGr3 0 0.132 0 -0.822 0 

RxGr2_0 0 -0.198 0 0 0 

pre_OSW 0 0.285 0 0.057 0 

phydx31 0 1.634 0 0 -1.043 

pastdx20 0 0.301 0 0 0 

ProcGr9_1:RxGr2_0 0 -0.868 0 0 0 

ProcGr10_1:SghxGr3 0 0.113 0 0 0 

RxGr2_1:phydx4 0 0.276 0 0 0 

RxGr4_1:pastdx6 0 -0.634 0 0.367 0 

RxGr4_1:SghxGr3 0 -0.388 0 0 0 

RxGr5_1:RxGr2_0 0 -0.289 0 0 0 

RxGr2_0:pastdx6 0 0.775 0 0 0 
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pastdx6:SghxGr3 0 3.012 0 0 0 

ProcGr10_0:race_1 0 -1.375 0 0 0 

age:pre_OSW  0 0.091 0 0 0 

SghxGr3:marital_4 0 1.97 0 0 0 

age:phydx4 0 0.118 0 0 0 

phydx31:SghxGr3 0 -0.023 0 0 0 

pastdx20:marital_4 0 -0.141 0 0 0 

RxGr2_0:pastdx20 0 0.207 0 0 0 

phydx31:pastdx20 0 0.369 0 0 0 

age:phydx31 0 0.392 0 0 0 

RxGr1_0 0 0 0.893 0 0 

marital_1 0 0 2.829 0 0 

SghxGr11 0 0 0.49 0 0 

ProcGr11_0 0 0 0 -0.78 0.043 

ProcGr10_0 0 0 -0.372 0 0 

pre_BDI 0 0 0.175 0 0 

status 0 0 0.667 0 0 

phydx20 0 0 2.307 0 0 

ProcGr4_1:phydx20 0 0 -0.35 0 0 

ProcGr9_1:pastdx6 0 0 -1.368 0 0 

RxGr4_1:RxGr1_0 0 0 -0.242 0 0 

ProcGr10_0:pastdx6 0 0 0.986 0 0 

phydx20:SghxGr11 0 0 1.52 0 0 

ProcGr11_0:pastdx6 0 0 1.155 0 0 

phydx20:pastdx6 0 0 0.398 0 0 

RxGr1_0:ProcGr11_0 0 0 0.202 0 0 

status:ProcGr10_0 0 0 -0.043 0 0 

phydx20:status 0 0 0.745 0 0 

ProcGr10_0:phydx20 0 0 -0.243 0 0 

RxGr1_0:marital_1 0 0 1.566 0 0 

phydx12 0 0 0 -1.296 -0.089 

gender 0 0 0 -0.408 0 

ProcGr1_0 0 0 0 0.572 0 

pre_sf36pcs 0 0 0 0.189 0 

ProcGr11_1:pastdx6 0 0 0 -0.136 0 

RxGr4_1:ProcGr1_0 0 0 0 0.562 0 

RxGr5_1:phydx12 0 0 0 0.219 1.043 

RxGr8_1:onset 0 0 0 -0.75 0 

ProcGr11_0:SghxGr3 0 0 0 -0.948 0 

pastdx12:SghxGr3 0 0 0 -0.482 0 

ProcGr1_0:pastdx6 0 0 0 0.204 0 
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pre_OSW:pre_sf36pcs 0 0 0 0.007 0 

gender:phydx12 0 0 0 -0.761 0 

phydx12:SghxGr3 0 0 0 -0.279 0 

ProcGr1_0:phydx20 0 0 0 0.196 0 

gender:pastdx6 0 0 0 -0.045 0 

pastdx6:pre_OSW 0 0 0 0.007 0 

SghxGr5 0 0 0 0 -1.056 

ProcGr9_0 0 0 0 0 0.053 

pre_sf36mcs 0 0 0 0 0.144 

race_1 0 0 0 0 -0.548 

ProcGr9_1:race_1 0 0 0 0 1.407 

phydx12:pre_sf36mcs 0 0 0 0 -0.618 

ProcGr9_0:SghxGr5 0 0 0 0 0.789 

pastdx12:marital_1 0 0 0 0 -0.829 

RxGr8_0:phydx5 0 0 0 0 -0.83 

ProcGr11_0:phydx31 0 0 0 0 -0.953 

pastdx12:pre_sf36mcs 0 0 0 0 0.003 

phydx12:SghxGr5 0 0 0 0 -0.23 

 

Table 42: Stage 2 Pain Outcome Transition Models 2 SP IQ 

Variable post_PDA post_OSW post_BDI post_sf36pcs post_sf36mcs 

Intercept 5.098 9.822 10.344 25.115 29.063 

RxGr1_2 -0.05 -0.182 -0.05 -0.429 -0.05 

RxGr2_2 -0.05 -0.05 -0.05 -0.05 -0.05 

RxGr3_2 -0.05 0.254 -0.05 -0.05 -0.05 

RxGr4_2 -0.05 -0.05 -0.05 -0.755 -0.05 

RxGr5_2 -0.05 -0.05 -0.144 -0.05 -0.05 

RxGr6_2 -0.05 0.013 -0.05 -0.05 -0.722 

RxGr7_2 -1.117 -1.491 -2.758 2.029 2.163 

RxGr8_2 0.195 -0.05 0.256 -0.05 -0.847 

ProcGr1_2 -0.94 -1.027 -2.123 1.773 2.487 

ProcGr2_2 -0.958 -1.331 -2.744 3.726 2.178 

ProcGr4_2 -0.05 -0.05 -0.05 0.113 -0.05 

ProcGr9_2 -1.058 -1.412 -2.981 2.749 2.923 

ProcGr10_2 -0.05 -0.05 -0.05 -0.05 -0.684 

RxGr1_1 -0.204 0 0 0.262 0 

RxGr4_1 -0.387 -0.972 0 2.009 1.844 

RxGr9_1 1.281 0 0 0 0 

ProcGr10_0 -0.124 0 0.255 0 -0.297 
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RxGr2_0 0.794 0.013 0 0 -0.631 

phydx6 -0.072 0 1.428 0 -1.923 

phydx12 0.458 0 0 -1.867 0.772 

pastdx7 0.773 0 2.648 0 -0.504 

pastdx11 0.367 0 0 0 0 

SghxGr3 0.716 0 0 -1.5 -0.235 

mid_PDA 0.63 0.113 0 0.015 0 

race_1 0.522 0 0 0 0 

ProcGr1_2:ProcGr2_2 -0.259 0 0 0 0 

ProcGr2_2:RxGr2_0 -0.361 0 0 0 0 

ProcGr9_2:phydx6 -0.173 0 0 0 1.39 

RxGr7_2:mid_PDA -0.008 0 0 0 0 

SghxGr3:mid_PDA 0.022 0 0 0 0 

phydx12:pastdx7 0.301 0 0 0 0 

RxGr1_1:pastdx11 -0.366 0 0 0 0 

RxGr2_0:ProcGr10_0 0.779 0 0 0 -0.576 

RxGr4_1:phydx6 -0.154 0 0 0 0 

phydx6:SghxGr3 0.557 0 0 0 0 

race__1:mid_PDA 0.018 0 0 0 0 

ProcGr9_1 0 -1.7 -1.067 0 1.208 

RxGr5_1 0 -0.839 0 1.197 0 

ProcGr1_0 0 -0.042 0.313 0 0 

mid_OSW 0 0.382 0 0 0 

phydx4 0 1.07 0 0 0 

phydx7 0 2.129 1.907 0 0 

mid_sf36pcs 0 0.084 0 0.395 0 

pastdx12 0 1.425 0 -0.918 0 

pastdx4 0 0.043 0.837 -0.326 -1.622 

SghxGr5 0 0.587 0 0 0 

age 0 0.019 0 0 0 

ProcGr1_2:ProcGr1_0 0 -0.503 -0.497 0 0 

ProcGr2_2:ProcGr9_1 0 -0.609 0 0 0 

ProcGr9_2:phydx4 0 -0.77 0 0 0 

RxGr1_2:SghxGr5 0 -0.434 0 0 0 

RxGr7_2:age 0 -0.306 0 0 0 

pastdx4:pastdx12 0 0.315 0 0 0 

phydx4:SghxGr5 0 1.237 0 0 0 

age:mid_PDA 0 0.025 0 0 0 

RxGr4_1:RxGr2_0 0 -0.909 0 0 0 

ProcGr9_1:phydx7 0 -0.551 0 0 0 

phydx4:mid_OSW 0 0.16 0 0 0 
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phydx7:pastdx4 0 2.375 0 0 0 

age:SghxGr5 0 0.194 0 0 0 

RxGr2_0:pastdx4 0 1.075 0 0 0 

ProcGr10_1 0 0 -0.464 0 0.684 

RxGr1_0 0 0 0.563 0 0 

phydx20 0 0 1.49 -1.986 0 

phydx31 0 0 2.634 0 -2.004 

SghxGr1 0 0 2.281 0 0 

SghxGr6 0 0 0.668 0 0 

mid_BDI 0 0 0.383 0 0 

status 0 0 0.036 0 0 

ProcGr2_2:phydx7 0 0 -0.656 0 0 

ProcGr9_2:ProcGr10_0 0 0 -0.513 0 0 

RxGr7_2:phydx6 0 0 -0.483 0 0 

phydx6:pastdx7 0 0 0.966 0 0 

SghxGr1:mid_BDI 0 0 0.011 0 0 

phydx7:SghxGr6 0 0 0.597 0 0 

ProcGr10_0:mid_BDI 0 0 0.102 0 0 

status:phydx6 0 0 0.033 0 0 

ProcGr10_0:phydx31 0 0 0.917 0 0 

pastdx7:SghxGr1 0 0 0.535 0 0 

ProcGr11_0 0 0 0 -0.629 0 

pastdx6 0 0 0 -0.629 0 

pre_sf36pcs 0 0 0 0.186 0 

onset 0 0 0 -0.041 0 

ProcGr1_2:pastdx6 0 0 0 1.327 0 

ProcGr9_2:SghxGr3 0 0 0 0.732 0 

RxGr7_2:ProcGr11_0 0 0 0 1.297 0 

RxGr7_2:phydx12 0 0 0 0.833 0 

mid_sf36pcs:pre_sf36pcs 0 0 0 0.004 0 

pastdx6:SghxGr3 0 0 0 -1.418 0 

RxGr4_1:mid_sf36pcs 0 0 0 0.015 0 

phydx20:pastdx12 0 0 0 -0.988 0 

onset:SghxGr3 0 0 0 -0.218 0 

pastdx4:pre_sf36pcs 0 0 0 0.013 0 

marital_1 0 0 0 0 -0.103 

pre_sf36mcs 0 0 0 0 0.046 

mid_sf36mcs 0 0 0 0 0.143 

ProcGr1_2:pastdx7 0 0 0 0 0.629 

ProcGr2_2:ProcGr10_0 0 0 0 0 1.049 

RxGr7_2:pre_sf36mcs 0 0 0 0 0.258 
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pastdx4:SghxGr3 0 0 0 0 -1.299 

mid_sf36mcs:marital_1 0 0 0 0 0.023 

ProcGr10_1:phydx12 0 0 0 0 -0.838 

phydx6:pastdx4 0 0 0 0 -0.722 

phydx31:SghxGr3 0 0 0 0 -0.932 

phydx12:marital_1 0 0 0 0 -0.302 
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Appendix V 

A section of the preliminary simulation case study conducted as part of the dissertation proposal is included 

here. We compare the modeling methods Glinternet, Elastic Net and HierNet on the feature selection 

metrics. Since Elastic Net builds only linear models without interactions, we compare Glinternet and 

HierNet on the interaction selection metrics. The experimental factors included the number of observations, 

number of variables, proportion of causal variables, correlation between causal variables, correlation 

between causal and spurious features, magnitude of coefficients, and the signal to noise ratio. 

Elastic Net 

Elastic Net is a regularization and variable selection method, where the elastic net penalty function is a 

convex combination of the LASSO and ridge penalty, shown in Equation (17) [144]. 

𝐿(𝜆1, 𝜆2, 𝛽) =  |𝑦 − 𝑋𝛽|2 +  𝛼|𝛽|2 + (1 − 𝛼)|𝛽|1,                                              (17)   

where 𝑦 is the response vector, 𝑋 is the input matrix, 𝛽 is elastic net estimator, 𝛼|𝛽|2 + (1 − 𝛼)|𝛽|1 is the 

elastic net penalty, 𝛼 ∈ [0, 1). When 𝛼 = 1, the elastic net penalty becomes a simple ridge regression 

penalty, and at 𝛼 = 0, it becomes a LASSO penalty. Elastic Net can only build linear models without 

interactions and is mainly used for feature selection in a correlated input space. The quadratic part of the 

penalty encourages the grouping effect, which means it can select groups of correlated variables in the 

model unlike LASSO, which selects just one variable from the correlated group and drops the others. Elastic 

Net is considered in this case study to compare the feature selection performance against the other two 

methods that model interactions. 

Glinternet 

Glinternet is a LASSO based method developed by Lim and Hastie [163] for learning pairwise interactions 

in a linear regression or logistic regression model that satisfies strong hierarchy. The formulation of 

Glinternet shown in Equation (18) is equivalent to a constrained overlapped group LASSO. Glinternet can 
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build models on continuous and categorical variables. As an example, consider two categorical variables 

𝐹1 𝑎𝑛𝑑 𝐹2 with 𝐿1 𝑎𝑛𝑑 𝐿2 levels respectively. The indicator matrices for 𝐹1 𝑎𝑛𝑑 𝐹2 are represented as 

𝑋1 𝑎𝑛𝑑 𝑋2 respectively. 

argmin𝜇,𝛼,𝛼̃

1

2
‖𝑌 − 𝜇 − 𝑋1𝛼1 − 𝑋2𝛼2 − [𝑋1 𝑋2 𝑋1:2] [

𝛼̃1

𝛼̃2

𝛼1;2

]‖

2

2

 

                                      +𝜆 (‖𝛼1‖2 + ‖𝛼2‖2 + √𝐿2‖𝛼̃1‖2
2 + 𝐿1‖𝛼̃2‖2

2 + ‖𝛼1:2‖2
2),                      (18) 

subject to ∑ 𝛼1
𝑖

𝐿1

𝑖=1

= 0, ∑ 𝛼2
𝑗

𝐿2

𝑗=1

= 0, ∑ 𝛼̃1
𝑖

𝐿1

𝑖=1

= 0, ∑ 𝛼̃2
𝑖

𝐿2

𝑗=1

= 0 

and ∑ 𝛼1:2
𝑖𝑗

𝐿1

𝑖=1

= 0 𝑓𝑜𝑟 𝑓𝑖𝑥𝑒𝑑 𝑗, ∑ 𝛼1:2
𝑖𝑗

𝐿2

𝑗=1

= 0 𝑓𝑜𝑟 𝑓𝑖𝑥𝑒𝑑 𝑖,   

where 𝑌 is the response vector,  𝜇 is the fixed intercept term, the main effect of variable 𝐹1 and 𝐹2 are (𝛼1 +

𝛼̃1) and (𝛼2 + 𝛼̃2)  respectively. The interaction effect is 𝛼1;2, 𝜆 is the regularization parameter. The 

constrained overlapped group lasso is solved by using an equivalent unconstrained group lasso formulation. 

The term √𝐿2‖𝛼̃1‖2
2 + 𝐿1‖𝛼̃2‖2

2 + ‖𝛼1:2‖2
2 in the Glinternet penalty ensures that the estimates satisfy 

strong hierarchy. The main difference between Glinternet and HierNet is that Glinternet can handle both 

continuous and categorical variables, while HierNet can only accommodate continuous and binary variables 

[163]. Glinternet has a faster computation time and can handle large problems compared to HierNet. 

Glinternet identifies interactions strictly under strong hierarchy while HierNet can identify interactions 

under both strong and weak hierarchy. 

Simulation Case Study 

The simulation case study is designed to evaluate the performance of the modeling methods under different 

conditions. The true response variable, 𝑌 is generated by the Equation (19).  



117 

 

                                                                 𝑌 =  ∑ 𝛽𝑗𝑋𝑗
𝑝
𝑗=1 +  ∑ ∑ 𝛾𝑗𝑘𝑋𝑗𝑋𝑘

𝑝
𝑘>𝑗

𝑝−1
𝑗=1 + 𝜖0 ,                                       (19) 

where 𝛽𝑗 is the main effect of input variable 𝑋𝑗, 𝛾𝑗𝑘 is the interaction effect between variables 𝑋𝑗 and 𝑋𝑘, 𝑝 

is the number of input variables, 𝜖0 is the error term, which is selected such that 𝑉𝑎𝑟(𝜖0) =
𝑉𝑎𝑟(𝑓(𝑋))

𝑆𝑁𝑅
,  

SNR is the signal to noise ratio and 𝑓(𝑋) =  ∑ 𝛽𝑗𝑋𝑗
𝑝
𝑗=1 +  ∑ ∑ 𝛾𝑗𝑘𝑋𝑗𝑋𝑘

𝑝
𝑘>𝑗

𝑝−1
𝑗=1  

The following are the factors considered in this simulation case study 

1. Number of input variables: {10,20} 

2. Proportion of causal variables among all the input variables: {0.3, 0.5}. The interactions 

simulated in the case study are based on strong hierarchy. Depending on the number of causal 

variables, a fixed number of interactions between randomly selected causal variables is generated. 

If the number of causal variables is less than or equal to three, one interaction term is generated and 

in all other cases three interactions are generated. 

3. Number of observations: {150, 375}. The number of observations is further divided into training 

and testing dataset, with 2/3 of the observations used for training, and 1/3 for testing. 

4. Magnitude of co-efficients 𝜷𝒋, 𝜸𝒋𝒌: {[0.4, 0.6] and [0.8, 1.0]}.The magnitude of the co-efficients 

is a randomly generated number between 0.4 and 0.6 for level [0.4,0.6] and between 0.8 and 1 for 

level [0.8, 1.0]. 

5. Correlation between causal and spurious variables: {High, Medium, Low}. High correlation 

level has a correlation randomly generated between [0.7, 0.9]. Medium and low correlation has 

correlation randomly generated between [0.4, 0.6] and (0.0, 0.3] respectively. 

6. Correlation between causal variables: {High, Medium, Low}.  

7. Signal to Noise Ratio (SNR): {3, 9}. SNR  levels are selected so that the proportion of variance 

explained by 𝑓(𝑋), referred to as 𝑃𝑉𝐸(𝑓) is 0.75 and 0.9. The relation between SNR and 𝑃𝑉𝐸(𝑓) 

is shown in Equation (20) [172]. 
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                                                         𝑃𝑉𝐸(𝑓) =
𝑆𝑁𝑅

(1+𝑆𝑁𝑅)
                                                               (20) 

At SNR values of 3 and 9, the proportion of variance explained by 𝑓(𝑋) is 0.75 and 0.9 respectively. 

With the above factors and their corresponding levels, we have 𝟐 × 𝟐 × 𝟐 × 𝟐 × 𝟑 × 𝟑 × 𝟐 = 𝟐𝟖𝟖 

cases. For each simulated case, we generate 100 replications. 

Simulation Results 

Feature Selection sensitivity and specificity  

High Correlation between causal and spurious variables 

The average sensitivity, shown in Figure 49, can be used to compare the different methods on how 

accurately they classify the causal variables. The sensitivity is higher for low and medium correlation 

between causal variables but drops slightly at high correlation for Glinternet and HierNet. With Elastic Net, 

sensitivity increases from low to high correlation. HierNet Strong and HierNet Weak perform almost 

similarly and better than the other methods. 

 

 

Figure 49: Average feature selection Sensitivity for high correlation between causal and spurious 

variables 
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The comparison of average specificity is shown in Figure 50. This shows if the methods are correctly 

classifying spurious variables. The specificity is low for the low and medium correlation cases indicating 

that due to the high correlation between causal and spurious variables, more spurious variables are selected 

in the predicted models. Glinternet performs better than the others in correctly classifying spurious variables 

in the predicted model. 

 

Figure 50 : Average feature selection Specificity for high correlation between causal and spurious 

variables 

Medium Correlation between causal and spurious variables 

The comparison of average sensitivity is shown in Figure 51. The average sensitivity for HierNet Strong 

and HierNet Weak is slightly better than the other methods at medium and high correlation, but is 

significantly better at low correlation. This implies HierNet based methods are better at classifying causal 

variables compared to the other methods.  The average sensitivity for all the methods is lowest at low 

correlation and highest at medium correlation.  
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Figure 51: Average feature selection Sensitivity for medium correlation between causal and spurious 

variables 

The comparison of average specificity in Figure 52, shows that Glinternet performs slightly better than 

the other methods on this metric. For high correlation between causal variables, the specificity is almost 

close to 1 for Glinternet and HierNet Strong, implying these methods correctly classify almost all the 

spurious variables. The specificity values are low at around 0.2 for low correlation between causal variables, 

implying spurious variables are selected in the predicted model due to the correlation between causal and 

spurious variables. 

 

Figure 52: Average feature selection Specificity for medium correlation between causal and spurious 

variables 
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Low Correlation between causal and spurious variables 

The average sensitivity is shown in Figure 53. The different methods correctly classify almost all the causal 

variables in the predicted model, with the sensitivity values ranging between 0.9 – 0.99. The sensitivity for 

Glinternet drops marginally when there is high correlation between the causal variables. 

 

Figure 53: Average feature selection Sensitivity for low correlation between causal and spurious variables 
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Figure 54: Average feature selection Specificity for low correlation between causal and spurious variables 

Interaction Selection sensitivity and FDR  

The interaction selection sensitivity and FDR are compared on the LASSO based methods that model 

interactions, namely Glinternet and HierNet. Elastic Net is not included in this analysis since it handles 
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High Correlation between causal and spurious variables 

The average sensitivity plot is shown in Figure 55. HierNet based methods perform better than Glinternet 
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Figure 55: Average interaction selection Sensitivity for high correlation between causal and spurious 

variables 

The False Discovery Rate (FDR) gives a picture of the number of spurious interactions in the predicted 

model. It is the proportion of spurious interactions among all the interactions in the predicted model. A 

lower average FDR value is better, as this indicates that the predicted model does not have many spurious 

interactions. From the Figure 56, we see that Glinternet has lower FDR values than the HierNet based 

methods. The FDR analysis is consistent with the specificity analysis since specificity is a measure of the 

number of spurious interactions correctly identified as spurious in the predicted model. 

 

Figure 56: Average FDR for high correlation between causal and spurious variables 
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Medium Correlation between causal and spurious variables 

The average sensitivity, shown in Figure 57, shows that HierNet Weak and HierNet Strong have better 

sensitivity than Glinternet. The sensitivity is least when correlation between causal variables is high. This 

shows that high correlation between the variables in the interaction term reduces the chances of correctly 

classifying them. 

 

Figure 57: Average interaction selection Sensitivity for medium correlation between causal and spurious 

variables 

The average FDR plot in Figure 58, shows that Glinternet performs better than HierNet. It has higher 

FDR value at high correlation than medium correlation. This can be explained by the sensitivity being low 

at high correlation, resulting in the proportion of spurious interactions in the predicted model to go up. 

 

Figure 58: Average FDR for medium correlation between causal and spurious variables 
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Low Correlation between causal and spurious variables 

The average sensitivity plot in Figure 59 shows similar trends as the average G-mean plot shown above, 

with the sensitivity values dropping at high correlation between causal variables, and HierNet based 

methods performing better than Glinternet. 

 

Figure 59: Average interaction selection Sensitivity for low correlation between causal and spurious 

variables 

The average FDR in Figure 60 shows that Glinternet is better than the HierNet based methods, but its 

False Discovery Rate goes up from low to high correlation between causal variables, while HierNet based 

methods have almost similar FDR across the correlation levels. 

 

Figure 60: Average FDR for low correlation between causal and spurious variables 
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Discussion 

The simulated case study had a number of factors, with the correlation structure between the variables being 

the important one. The feature selection performance of both Glinternet and HierNet were comparable or 

better than Elastic Net, which is the preferred feature selection method under multi collinearity. HierNet 

was better at correctly identifying the causal features and causal interactions, while Glinternet was better at 

correctly identifying the spurious features and spurious interactions. HierNet can handle both strong and 

weak hierarchy while Glinternet can handle only strong hierarchy. If the application places more importance 

on identifying the causal features and interactions than identifying the spurious ones, HierNet would be the 

better option, but if the application demands not including spurious terms in the model, Glinternet would 

be the better modeling method. 
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