
CHIRALITY IN QUANTUM FIELD THEORY AND ITS ROLE IN THE

STANDARD MODEL AND BEYOND

by

TIMOTHY BLAKE WATSON

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2022



Copyright © by TIMOTHY BLAKE WATSON 2022

All Rights Reserved



To my parents

For their endless love, patience, and support.



ACKNOWLEDGEMENTS

I want to thank my advisor, Dr. Zdzislaw Musielak, for his constant encourage-

ment, motivation, and help navigating the winding paths of research and discovery.

Also, for their interest in my research and for taking the time to serve on my

dissertation committee, I am grateful to Dr. Johnathan Aasadi, Dr. Andrew White,

Dr. Muhamad Huda, Dr. Alex Weiss, and Dr. Ben Jones, to whom I am particularly

indebted as it was under his instruction I first began my graduate researches and

whose questions and comments helped to improve this document.

I am deeply grateful to my family: my parents, Tim and Lee Ann Watson, my

sister Bonnie Watson and my brother Brandon Watson whose patience, encourage-

ment, and enthusiasm have been a lifelong and constant source of motivation.

Finally, for her unending love and unwavering support, I would like to express

my deepest gratitude to Emily Allen, my fiancé, who has been with me through it all

and whom I have miraculously convinced to stick around with me for the rest.

August 1, 2022

iv



ABSTRACT

CHIRALITY IN QUANTUM FIELD THEORY AND ITS ROLE IN THE

STANDARD MODEL AND BEYOND

TIMOTHY BLAKE WATSON, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Zdzislaw Musielak

Chirality as a symmetry of particle physics occupies a unique role in the stan-

dard model. It arises from general space-time principles yet remains central to the

formulation of local gauge theories. This work explores the complexities arising from a

physically comprehensive treatment of this topic. We present the origins of the prop-

erty from first principles by deriving the chiral Dirac equation (CDE). We demonstrate

how the resulting chiral degrees of freedom for spin-1/2 objects may be employed

in constructing composite chiral objects through the Bargmann-Wigner formalism,

leading to novel couplings. We then consider means by which the degrees of chiral

freedom in the standard model may be spontaneously broken through left-chiral Ma-

jorana neutrino fields. The resulting modifications to standard model processes are

explored before a final exploration of chirality in curved space-time.
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CHAPTER 1

INTRODUCTION

1.1 Brief Historical Remarks and Motivation

Many historians of physics date the inception of modern Quantum Field Theory

(QFT) to 1927. That year, Dirac’s paper on “The quantum theory of the emission

and absorption of radiation” was published [Dirac (1927)]. That paper would signal

the beginning of quantum electrodynamics (QED). Just one year later, being dis-

satisfied with previous attempts to construct a relativistic wave equation – already

Klein (1926) and Gordon (1926) had separately published their eponymous equa-

tion – Dirac published “The quantum theory of the electron” [Dirac (1928)]. In this

work, he presented the now famous equation which bears his name, forever associat-

ing him with that nascent subbranch of relativistic quantum mechanics. This branch

soon sprouted fertile fruit in the form of quantum field theory. Years later, titans of

twentieth-century physics – Wigner, Feynman, Schwinger, and others – would build

upon the theory to become the most precisely experimentally verified physical the-

ory yet devised by humans. Many complex challenges, frustrations, triumphs, and

discoveries have decorated the landscape of this nearly hundred-year-old theory. Yet,

through all these years, Dirac’s original equation remains deep-set in the foundations

of the theory.

Among the fundamental equations of QFT, the Dirac equation [Dirac (1928)]

plays a unique role. It describes the free fermionic fields of which the universe appears

principally constructed. But this utility came at the cost of a good deal of confusion.

Because Dirac had been unable to develop a first-order equation using simple numbers,
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he had been compelled to introduce four component objects called spinors (more

accurately bi-spinors). The validity of the Dirac equation was quickly established soon

after its introduction, with confidence in its predictive power buoyed by the verified

prediction of antiparticles by Anderson (1932). However, the question persisted:

What was the physical reason for the necessity of spinors?

The work of Wigner (1939) was among the first to highlight the role of group the-

ory in QFT. By classifying the irreducible representations of the Poincaré group and

identifying these as single particle states of elementary fields [Kim and Noz (2012)],

much of the cloud of confusion surrounding Dirac’s theory began to disperse. In

1954 the CPT theorem, one of the central theorems of QFT, was proven [Lüders

(1954)], which states that the physical law is invariant under the simultaneous rever-

sals of space (parity), time and charge. This seemed even more evidence in favor of

Dirac’s equation since the symmetry of parity was baked into Dirac’s spinors. Soon

after, years of mounting hints culminated in the theoretical proposal by Lee and Yang

(1956) and subsequent verification of Wu et al. (1957) parity violation in fundamental

weak interactions, challenging decades of presupposed notions. After proving their

combined action’s invariance, the universe’s discrete symmetries were now in doubt.

This dilemma brought to the fore a curious property of Dirac’s spinors known

as chirality. In the following decade, torrents of discoveries washed over the field of

particle physics, both experimental and theoretical. The work of Glashow (1959),

Salam (1964), and Weinberg (1967) finally clarified the issue of parity violation, set-

ting up chirality as a central property within the standard model of particle physics

(SM).

Today it is understood that the concept of chirality plays an important part

in QFT (e.g., Ryder (1996); Peskin and Schroeder (2018)). Still, an open question

remains: To what extent can chirality and the specification of a field’s chiral basis be
2



considered a physical property, as opposed to a convenient mathematical description?

Therefore, this dissertation’s main motivation is understanding the chiral degrees of

freedom allotted to physical states. More specifically, we will uncover where the

degrees of freedom from chirality exist within the Dirac equation and how these

might be applied to higher spin fields. We will then consider chirality in a broader

context and investigate the physical implications of chiral fixing within the Standard

Model. Lastly, we will seek to extend our knowledge from flat to curved space-time.

1.2 Aims of This Dissertation

At its core, this dissertation is an attempt to answer the following questions:

1. To what extent do the degrees of freedom introduced by isomorphic ambiguities

of the irreducible representations of the Poincaré group (e.g., chirality) affect

the fundamental laws of physics?

2. If endowed with a postulated physical significance, what are the observable

implications of extending or restricting these degrees?

3. In what ways can a comprehensive and consistent treatment of chirality advance

our knowledge of the universe?

In seeking to answer these questions, we will derive the most general set of Poincaré

invariant equations governing four-component bi-spinors and find that the specifica-

tion of the chiral basis is essential in unambiguously defining a representation. We

then extend these concepts to new equations for “chiral” vector fields and find that

the field separates into two identifiable components, one vector, and one scalar, for

misaligned chiral bases underlying the representation. Next, we will present a means

of promoting the chiral bases to a novel level of definite physical reality, resulting

in new interactions and implications for why and how neutrinos are massive. And

finally, we will conclude by exploring the possibility of applying the concepts uncov-
3



ered to quantum field theories in curved spaces, a necessary precursor to a quantum

theory of gravity.

1.3 Organization

This document is organized as follows:

Chapter 2 begins with an overview of the foundational principles and mathe-

matical tools required for the succeeding chapters.

Chapter 3 presents our published derivations of the most general Poincaré in-

variant equations governing four-component bi-spinor fields. We explore several av-

enues of deriving the chiral Dirac equation before commenting on its symmetries and

significance.

In Chapter 4, we present our published derivation of the chiral Bargmann-

Wigner equations for spin-1 massive fields and use the properties of the Clifford

basis.

Chapter 5 investigates chirality and its relation to the standard model. In

doing so, we obtain results presented here for the first time, which will follow in peer-

reviewed form shortly. We consider how symmetry violation in the form of Majorana

neutrinos might determine the local chiral basis of fermionic fields and lead to new

interactions. These interactions are then studied, and observables discussed.

In Chapter 6, we outline the difficulties of quantum field theories in curved

space-time and observe the unique position the concept of chirality holds in relation

to resolving these challenges.

Chapter 7 is devoted to conclusions.

Additionally, an appendix summarizes conventions and notation for the reader.
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CHAPTER 2

FOUNDATIONS

2.1 Symmetries of the Standard Model

The Standard Model (SM) of modern particle physics grew out of a concerted

effort in the middle of the last century to understand the structure and dynamic

evolution of matter and energy at the most fundamental level. Early in its develop-

ment, the work of Wigner, Bargmann, and others made evident that the appropriate

mathematical language for the task was that of group theory.

At first glance, the symmetries of the standard model appear to separate neatly

into two distinct classes: the induced external symmetries of space and time, which

follow locally from the observed isotropy and homogeneity of the universe, and the so-

called internal symmetries which arise from the gauge invariance of the constituent

quanta of matter. To this first class belongs the Poincaré group and the discrete

symmetries of C, P, and T, while to the second belong the gauge theories responsible

for the known forces of nature (gravity being a notable exception). Somewhere in

between these classes fall the chiral symmetries.

2.2 The Poincaré Group

The Poincaré Group is most accurately defined as the inhomogeneous group of

Lorentz transformations. Perhaps a more useful working definition is as the group of

isometric transformations of Minkowski space-time contiguous with the identity. The

general structure of the Poincaré group is P = SO(3, 1) ⊗s T (3 + 1), from which

we are led immediately to the non-invariant Lorentz subgroup SO(3, 1) of rotations
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and boosts, though the second makes apparent the role of the invariant subgroup

T (3 + 1) of space-time translations; this structure includes reversal of parity and

time. Furthermore, implicit in T (3 + 1) is the Lie algebraic structure of the group.

To begin, we consider the effects of the Poincaré group on a four-vector field

vµ(x) in Minkowski space-time. If the space-time is homogeneous, we may derive the

four-translation operators by observing that physics is invariant under the infinitesi-

mal transformation

vµ(x) → vµ(x+ δx) =

(
1 + δxν

∂

∂xν

)
vµ(x),

which for finite transformations is only approximately true. An exact expression for

a finite translation ∆xµ is obtained via Lie exponentiation through the limit

vµ(x) → vµ(x+∆x) = lim
n→∞

(
1 +

∆xν

n

∂

∂xν

)n

vµ(x)

= exp (−iPµ∆x
µ) vµ(x)

= T̂ (∆x)vµ(x)

where T̂ (∆x) is an element of T (3 + 1), and we have defined the generators of the

translations as

Pµ ≡ i
∂

∂xµ
.

Analogously, we may derive the rotation and boost operators by expanding about

the identity for infinitesimal transformations. Finite transformations are then found

using the exponential map. We find the appropriate operators to be

R(θ) = exp(−i ~J · ~θ) = 1− (i ~J · θ̂) sin θ + (i ~J · θ̂)2(1− cos θ)

B(φ) = exp(−i ~K · ~φ) = 1− (i ~K · φ̂) sinhφ− (i ~K · φ̂)2(1− coshφ)

for the matrix generators of rotations (J i) whose elements are given by

[J i]µν =
i

2
εijk(ηjµδkν − ηkµδjν)

6



and the boost matrices (Ki) given by

[Ki]µν = i(ηiµδ0ν − η0µδiν).

The definition of these generators thereby allows us to summarize the Poincaré algebra

via the commutation relations

[J i, P 0] = 0

[J i, P j] = iεijkP k

[J i, J j] = iεijkJk

[J i, Kj] = iεijkKk

[Ki, P 0] = −iP i

[Ki, P j] = iηijP 0

[Ki, Kj] = −iεijkJk

As will be shown, spinors provide an isomorphism between the Lorentz group

SO(1, 3) and the complexified special linear group SL(2,C) which allows for the

natural identification of spin-1/2 fields.

2.3 Spinors and the Weyl Equation

The study of spinors historically dates back to Cartan (1913) when it was first

appreciated that, given a complex vector ~z = znên ∈ E2N+1 for n ∈ {0, 1, 1′, ..., N ′, N}

and the associated quadratic form F = (z0)2 + z1z1
′
+ ... + zNzN

′ , then by setting

F = 0 one obtains 2N independent, linear equations of an auxiliary set of variables ζi.

These equations define both the complex 2N -component spinor ζ and the 2N × 2N

matrix Z whose elements are linear arrangements of the initial z coordinates. The

matrix Z (which acts on the spinor ζ) then serves as a representation of the vector ~z.

To understand how the statements above may be put to use, we will now con-

sider the space R3. A matrix representation of ~x may be constructed by considering
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the equation ~x · ~x = 0. To construct our linear equations for this quadratic form, we

define two complex numbers ξ1 and ξ2, which satisfy

x1 = ξ21 − ξ22

x2 = i(ξ21 + ξ22)

x3 = −2ξ1ξ2.

This allows us to write the linear system x3 x1 − ix2

x1 + ix2 −x3


ξ1
ξ2

 = (~σ · ~x) ξ = 0 (2.1)

where the object ξ is referred to as a spinor and the 2-by-2 matrix (which we will

refer to as the matrix associated with the vector ~x, ) is–not coincidentally–given

as the product of ~x with the Pauli matrices ~σ. A given vector-associated matrix

exhibits several properties which make it of mathematical utility; a few of these are

enumerated here:

1. The matrix associated with a real-valued vector is Hermitian.

2. The determinant of an associated matrix equals minus the square of its respec-

tive vector.

3. The scalar product of two vectors equals half the sum of the symmetrized prod-

uct of their associated matrices. E.g.

~x · ~y =
1

2
((~σ · ~x)(~σ · ~y) + (~σ · ~y)(~σ · ~x)) (2.2)

4. The scalar product of two vectors equals minus half the trace of the product of

their associated matrices.

Note that the last property may be derived as a corollary of the second using the

Jacobi formula for derivatives of determinants.

8



Now, because spinors are defined with respect to a fundamental quadratic form

(eg. [Eq. 2.1]), it follows that any transformation of the matrix associated with a

vector must also induce a transformation of the corresponding spinor. As an illus-

tration consider again R3. Let T be the transformation matrix corresponding to the

three-vector transformation ~a→ T̂~a. Now suppose this transformation is a symmetry

(i.e. leaves invariant) of the eigenvalue equation

(~σ · ~a)χ = λχ.

Then for the transformed vector a′ there must correspond a transformed spinor χ′

satisfying

(~σ · ~a′)χ′ = λχ′.

To solve for χ′, we operate from the left on the untransformed equation with T

[T (~σ · ~a)T †][T χ] = (~σ · ~a′)[T χ] = λ[T χ].

Thus χ′ = T χ and we say the vector transformation ~a → T̂~a has induced the trans-

formation χ → T χ. By classifying and exploiting these induced transformations, it

is possible to construct fundamental wave equations for representations of spin-half

particles.

Using the properties of the vector-associated matrices ~σ · ~x, we may derive the

relationship between rotations in three dimensional space. Given a three-vector ~x

associated with the matrix X, the rotated vector exp
(
−i ~J · ~θ

)
~x is associated with

the matrix R(θ)XR†(θ) where

R(θ) = exp

(
− i

2
~σ · ~θ

)
= cos

θ

2
− i~σ · θ̂ sin θ

2
.

The proof of the equivalence follows from the properties above, but the equality of

the algebraic representations may be deduced from the commutation properties of

the Pauli matrices, [σi, σj] = 2iεijkσk. From these, it is easily verified that the terms

9



+σi/2 generate an algebra isomorphic to that of J i. The group of spinor rotations is

SU(2) and provides a double coverage of the rotation group.

The above observations for rotations suggest representations of boosts can be

constructed by noting the isomorphism which also exists between the generators Ki

and the matrices ±iσi/2. Pulling this thread, we are led to define the spinor boost

operator

B±(φ) = exp

(
∓1

2
~σ · ~φ

)
= cosh

φ

2
∓ i~σ · φ̂ sinh φ

2

corresponding to the boost exp
(
−i ~K · ~φ

)
. There are a few apparent problems with

this definition. First, B± is clearly not unitary, which appears troubling. Second, we

have a worrying sign ambiguity in our definition. In fact, both seeming problems hint

at deeper symmetries, as will be shown. First, let us consider the following eigenvalue

equation for χ

(~σ · ~p)χ = λχ.

Since our stated aim is to use spinors to construct a fundamental quantum

mechanical wave equation–and for any equation to be considered fundamental, it

must transform covariantly under boosts and rotations–this is what we now must

verify. The rotational covariance of the above eigenvalue equation may be explicitly

demonstrated. It follows directly from the rotation operator’s unitarity and three-

dimensional spinors’ rotation properties.

(~σ · ~p)χ = λχ
Rotation−−−−−→

[
R (~σ · ~p)R†] [Rχ] = λ [Rχ]

Which reduces to
(
~σ · ~p′

)
χ′ = λχ′ for ~p′ = exp

(
−i ~J · ~θ

)
~p and χ′ = R(θ)χ.

Under our boost operator, we find the non-unitary nature of the transformation

complicates the resulting expression. We have

(~σ · ~p)χ = λχ
Boost−−−→

[
B± (~σ · ~p)B†

±

] [
B†−1
± χ

]
= λ

[
B±B†

±

] [
B†−1
± χ

]
.

10



Substituting the explicit exponential form for a given φ and taking χ′ = B†−1
± χ, the

boosted eigenvalue equation may be written as

~σ ·
[
~p− φ̂(φ̂ · ~p) (1− coshφ)∓ λφ̂ sinh θ

]
χ′ =

[
λ coshφ∓ φ̂ · ~p sinhφ

]
χ′.

Lorentz covariance thereby requires any spinor eigenvector equation to have eigenval-

ues which are invariant under rotations but that transform non-trivially under boosts.

Moreover, by comparing the form of the required transformation with the transfor-

mation properties of the energy and momentum parameters under boosts given by

E → E ′ = E coshφ− φ̂ · ~p sinhφ

~p→ ~p′ = ~p− φ̂(φ̂ · ~p) (1− coshφ)− Eφ̂ sinh θ,

we find two equally valid Lorentz covariant solutions, λ = ±E. Here the sign of

the energy is contingent on the transformation properties of the spinor considered.

Employing the conventional subscripts L (for left-handed) and R (for right-handed)

to differentiate how the given spinor transforms under boosts, we define

χL → χ′
L = B†−1

− χL = exp

(
−~σ · ~φ

2

)
χL

χR → χ′
R = B†−1

+ χR = exp

(
+
~σ · ~φ
2

)
χR.

We then find two distinct Lorentz-covariant equations, which may be written as

(E + ~σ · ~p)χL = 0 (E − ~σ · ~p)χR = 0.

In promoting these to proper quantum-mechanical wave functions, all that remains

is to make the canonical substitutions for ~p and E with the generators of translations

−i∇ and i∂t, respectively. To simplify the notation we write the two-by-two identity

as σ0 and write the adjugate Pauli matrices σ̄µ = ηµµσµ. We thereby obtain the Weyl

Equations:

iσ̄µ∂µχL = 0 iσµ∂µχR = 0.

11



Note that under a parity inversion (x → −x), we find iσ̄µ∂µ → iσµ∂µ and iσµ∂µ →

iσ̄µ∂µ. Thus, the necessity of having two “types” of particles which transform op-

positely under boosts and satisfy two separate equations is no accident, but instead

a consequence of discrete symmetry conservation. This is the origin of chiral fields.

Having made these identifications we may identify the plane-wave solutions for the

right-chiral Weyl equations by taking the three-momentum to be

~p = p (cosϕ sin θ x̂ + sinϕ sin θ ŷ + cos θ ẑ).

We then obtain two solutions χR ∈ {χ+
↑ , χ

−
↓ } for

χ+
↑ =

 cos θ
2

eiϕ sin θ
2

 exp (−ipµxµ) , χ−
↓ =

e−iϕ sin θ
2

− cos θ
2

 exp (+ipµx
µ)

where the notation is such that i∂0χ±
l = ±Eχ±

l for E = |E| > 0. We may therefore

interpret χ+
↑ as a positive energy spinor and χ−

↓ as having negative energy in the

sense that ∂tχ−
↓ = −Eχ−

↓ . The physical interpretation of this negative energy state is

supplied by the Feynman-Stueckelberg interpretation [Thomson (2013)] and leads us

to consider such states as positive energy antiparticles. Observe that the left-chiral

spinor solutions are then given by χL ∈ {χ−
↑ , χ

+
↓ } which are obtained from the above

via a change in the sign of the energy.

2.4 Dirac Spinors and the Dirac Equation

As demonstrated above, Weyl spinors are eigenstates of the energy and mo-

mentum operators, which transform as three-dimensional spinors under rotations and

isomorphically to four-vectors under boosts. They also constitute masssless spin-half

representations of particles in the sense that, if χL and χR are solutions to their re-

12



spective Weyl equations, they are also solutions to the masslesss Klein–Gordon (KG)

equation1

−iσ̄ν∂ν (iσ
µ∂µχR) = ∂µ∂µχR = 0

−iσν∂ν (iσ̄
µ∂µχL) = ∂µ∂µχL = 0.

In order to introduce a mass to the fields χL and χR, we may couple these left- and

right-handed fields symmetrically. We may then write the coupled Weyl equations in

matrix form as [Peskin and Schroeder (2018)] −m iσµ∂µ

iσ̄µ∂µ −m


χL

χR

 = 0.

Ever seeking to simplify the notation, we define the Dirac gamma matrices in the

chiral basis as

γµ =

0 σµ

σ̄ 0


These matrices satisfy the Clifford algebraic anticommutation relations γµ, γν = 2ηµν .

We also define the Dirac bi-spinor as

ψ =

χL

χR

 .
These definitions allow us to identify the two, coupled Weyl equations with a sin-

gle equation for a massive Dirac fermion satisfying the Dirac Equation [Peskin and

Schroeder (2018)]

(iγµ∂µ −m)ψ = 0.

In addition to the four γ-matrices above, it is useful to define the fifth matrix

γ5 = iγ0γ1γ2γ3 which anti-commutes with all other γ-matrices. This matrix allows
1The KG equation itself follows from direct application of the canonical quantum four-momentum

operators (i∂µ) to the Einstein energy-momentum relation E2 = p2 +m2 [Maggiore (2005)].
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us to “extract” the left- and right-chiral components of a Dirac spinor through the

projection operations defined by

1

2

(
1 + γ5

)
ψ =

 0

χR

 ≡ ψR ,
1

2

(
1− γ5

)
ψ =

χL

0

 ≡ ψL.

This choice of γ-matrices are not algebraically unique, but are connected via a unitary

spin transformation to other bases. That is, physical equivalence is maintained under

the combined transformations

γµ → UγµU † ψ → Uψ

for any unitary matrix U , thereby defining the transformation of γ-basis.

Lastly, we note that the four-component Dirac spinors are not four-dimensional

spinors since they do not transform correctly under the larger class of four-dimensional

rotations. Instead, they are reducible objects transforming like composite three-

dimensional spinors under rotations and block-diagonally under boosts. For this

reason, they are often called bi-spinors. Strictly speaking, these Dirac bi-spinors

constitute induced irreducible representations of Minkowski space-time extended by

parity [Ryder (1996)]. However, as has been demonstrated, Dirac bi-spinors are re-

ducible objects in the context of more general parity considerations.

2.5 Charge, Parity, and Time

In addition to the continuous symmetries associated with the Poincare group,

there are also those which arise from discrete reversals. Parity, which has been men-

tioned above, is one such symmetry. To make the remaining symmetries explicit, we
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may define the operations of charge conjugation (C), spatial inversion (P), and time

reversal (T ) acting on a operator Ô(x, t) and bi-spinor ψ(x, t) as given by

C[Ô(x, t)ψ(x, t)]C−1 = Ô∗(x, t)ψ∗(x, t)

P [Ô(x, t)ψ(x, t)]P−1 = Ô(−x, t)ψ(−x, t)

T [Ô(x, t)ψ(x, t)]T −1 = Ô∗(x, t)ψ(x,−t).

Note that, in keeping with Wigner’s theorem [Wigner (1939)], C and P are unitary

operators while T is anti-unitary. With these operations defined, it is straightforward

to calculate their effects on the Dirac operator acting on a bi-spinor ψ.

C[(iγµ∂µ −m)ψ(x, t)]C−1 = (−i(γµ)∗∂µ −m)ψ∗(x, t)

P [(iγµ∂µ −m)ψ(x, t)]P−1 =
(
iγ0∂0 − iγk∂k −m

)
ψ(−x, t)

T [(iγµ∂µ −m)ψ(x, t)]T −1 =
(
i(γ0)∗∂0 − i(γk)∗∂k −m

)
ψ(x,−t)

It is then a matter of determining the appropriate unitary spinor transformation that

carries these equations back to the basis of the original gamma matrices. In the chiral

basis we may write these unitary matrices as

C = eiξγ2 P = eiηγ5 T = eiζγ1γ3

where the phases are arbitrary. We then find

C
{
C[(iγµ∂µ −m)ψ(x, t)]C−1

}
= (iγµ∂µ −m)ψC(x, t)

P
{
P [(iγµ∂µ −m)ψ(x, t)]P−1

}
= (iγµ∂µ −m)ψP(x, t)

T
{
T [(iγµ∂µ −m)ψ(x, t)]T −1

}
= (iγµ∂µ −m)ψT (x, t).

Where we have defined the charge-, parity-, and time-conjugated fields to be

ψC(x, t) = Cψ∗(x, t) ψP(x, t) = Pψ(−x, t) ψT (x, t) = Tψ(x,−t).

Because the free Dirac equation is invariant under each of these transformations

individually, it is also invariant under any combination of them. When interactions
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are included this is no longer true, however it is demonstrable that the simultaneous

action of C, P and T must leave any local, Lorentz-invariant quantum system invariant

[Streater and Wightman (2000)].

2.6 Electroweak Interactions and Spontaneous Symmetry Breaking

We now move from the external space-time symmetries to the internal gauge

symmetries of electroweak theory. The Electroweak model predicts the effective uni-

fication of the weak and electromagnetic fields at high energies through the gauging

of the SU(2)L×U(1)y symmetry group of weak isospin and weak hypercharge [Peskin

and Schroeder (2018), Ryder (1996)]. At low energies – such as exist naturally in the

universe today – the larger symmetry group is broken by the non-zero vacuum expec-

tation value of the Higgs field. In the standard model, the Higgs gives mass to the

mediator bosons of the weak interaction as well as the fermions. We will consider the

electroweak model for two fermion fields, (ψ1 and ψ2) which are reducible under par-

ity to two left-chiral (ψ1L, ψ2L) and two right-chiral (ψ1R, ψ2R) fields. It is helpful to

write the electroweak Lagrangian in four distinct terms as LEW = Lf +Lh+Lm+Lg.

Each term may then be written fully as [Kaku (1993)]

Lf = iΨ̄Lγ
µDµΨL + iψ̄1Rγ

µDµψ1R + iψ̄2Rγ
µDµψ2R

Lh = (DµΦ)
†DµΦ +

µ2

2
Φ†Φ− λ0

4
(Φ†Φ)2

Lm = −iλ1(Ψ̄Lσ
2Φ∗ψ1R − ψ̄1RΦ

Tσ2ΨL)− λ2(Ψ̄LΦψ2R + ψ̄2RΦ
†ΨL)

Lg = −1

4
W a

µνW
aµν − 1

4
FµνF

µν .

Here the terms µ, λ0, λ1, and λ2 are constants of the theory. The constituent sym-

metry elements of this theory are the left-chiral fermion doublet (ΨL), the complex
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scalar doublet (Φ), and the right-chiral singlet states (ψ1R, ψ2R) which we write in

our simple two-fermion formulation as

ΨL =

ψ1L

ψ2L

 =
1

2
(1− γ5)

ψ1

ψ2

, Φ =

φ+

φ0

, ψiR =
1

2
(1 + γ5)ψi.

The doublet Φ is often referred to as the “Higgs doublet”.

In addition to these fields, there are four gauge fieldsW 1,2,3 and B which appear

as connection terms in the gauge-covariant derivatives given explicitly for the fermions

by

DµΨL =

[
∂µ −

ig′yL
2

Bµ −
ig

2
~σ · ~Wµ

]
ΨL DµψiR =

[
∂µ −

ig′yiR
2

Bµ

]
for the coupling constants g′ and g, and the weak hypercharges yL and yiR. The

relationship between electric charge and the weak hypercharge parameters are given

in the pseudo Gell-Mann Nishijima relations [Weinberg (1995a)]

q1 =
1

2
+
yL
2

=
y1R
2
, q2 = −1

2
+
yL
2

=
y2R
2
. (2.3)

The corresponding field strength tensors for the gauge fields, expressing their kinetic

contributions to the energy, are

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gεabcW b

µW
c
ν

Fµν = ∂µBν − ∂νBµ.

The complete Lagrangian LEW is invariant under the set of SU(2)L×U(1)Y symmetry

transformations taken as

ΨL → exp

[
i

2
(yLβ + ~σ · ~θ)

]
ΨL ψiR → exp

[
i

2
yiRβ

]
ψiR.

It is also taken for granted that Xµ and W a
µ transform in the appropriate Yang-Mills

covariant manner. Also while we have provided definitions and transformations in

terms of ΨL and ψR, because Φ is defined as a doublet within the symmetry group it

transforms identically to ΨL throughout.
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Now, spontaneous symmetry breaking (SSB) occurs when the Higgs doublet Φ

takes on a non-zero vacuum expectation value (VEV) at the minimum of the effective

potential, given by the non-kinetic terms in Lh. The degenerate minima conditions are

satisfied for Φ†
0Φ0 = µ2/λ0. By exploiting the local isospin symmetry transformations

we may expand Φ about Φ0 at each space-time point as

Φmin(x) =
1√
2

 0

v + h(x)

 (2.4)

for the real-valued Higgs field h and the VEV v ≡
√
2µ/λ0. Next, we introduce four

new fields constructed from the linear combinations of the original gauge fields.

Aµ = cos θWBµ + sin θWW
3
µ

Zµ = cos θWW
3
µ − sin θWBµ

W±
µ =

1√
2

(
W 1

µ + iW 2
µ

)
.

Here the weak mixing angle θW may be taken as defined by the equality

cos θW =
g√

g′2 + g2

Then by substituting Φ = Φmin into Lh we obtain from the kinetic terms

(DµΦ)
†DµΦ =

1

2
∂µh∂

µh+
g2(v + h)2

8 cos2 θW
ZµZ

µ +
g2(v + h)2

8

(
W+

µ W
−µ +W−

µ W
+µ
)
.

and so find the fields W and Z have acquired the masses

MW =
vg

2
MZ =

vg

2 cos θW
=

MW

cos θW
,

while the photon (A) has remained massless. The Higgs field also obtains a mass

through self couplings in the potential and has a value of Mh = µ
√
2.

The fermion couplings to the gauge fields are now found by expanding the

covariant derivatives of Eq. (2.3) in terms of the newly defined bosons. We find the
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interaction terms separate into electromagnetic, neutral current, and charged current

interactions

LEM = −q1g sin θwAµψ̄1γ
µψ1 − q2g sin θwAµψ̄2γ

µψ2

LNC = − g

2 cos θW
Zµψ̄1γ

µ
(
cV 1 − cA1γ

5
)
ψ1 −

g

2 cos θW
Zµψ̄2γ

µ
(
cV 2 − cA2γ

5
)
ψ2

LCC = − g

2
√
2
W+

µ ψ̄2γ
µ
(
1− γ5

)
ψ1 −

g

2
√
2
W−

µ ψ̄1γ
µ
(
1− γ5

)
ψ2.

The fundamental electric charge e is now found to be given by e = g sin θw and the

axial coupling constants cV i and cAi may be written

cV 1 = +
1

2
− 2q1 sin

2 θW cA1 = +
1

2

cV 2 = −1

2
− 2q2 sin

2 θW cA2 = −1

2
.

Finally, the fermion mass terms now appear from the Yukawa couplings in Lm after

SSB as

Lm = −m1ψ̄1ψ1 −m2ψ̄2ψ2

for the mass values mi = λiv/
√
2.

2.7 Majorana Mass Terms

As has been shown, Dirac mass terms add mass through a coupling between

left- and right-chiral representations and can be derived naturally through Yukawa

couplings to the Higgs. However, this is not the only means of introducing massive

fermions. It is possible to incorporate Majorana mass terms through a self-coupling

between a field and its charge conjugate. This is most naturally expressed using Weyl

spinors, where the resulting equation of motion may be written as

iσ̄µ∂µχ+mχc = 0
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where χc is the charge-conjugated spinor field given by

χc ≡ eiξσ2χ∗

for a choice of the phase ξ. This coupling to the charge-conjugate will explicitly break

any U(1) symmetry associated with the phase of χ. In Chapter 5, this will play an

important role in the understanding of chiral-fixing.

2.8 Quantum Field Theory in Curved space-time

Quantum field theory in flat Minkowski space-time is limited by its inability to

account properly for the gravitational interaction. A first step to understanding the

quantum theory of gravitation is a consistent description of the quantum field theory

in curved spaces. In previous work, QFT in curved space-time was mainly formulated

for scalar fields (e.g., Elizalde (1987), Nicolas (1995) Strohmaier (2000)); however,

there are also exceptions when vector and spinor fields are considered (e.g., Wald

(1994), Nyambuya (2008), Alhaidari and Jellal (2015)). The background curvature

of space-time is specified and remains fixed, which means that the introduced matter

and energy in the form of fields and particles do not influence space-time. This is a

significant constraint on the theory, allowing only the so-called ‘test-fields’ or ‘test-

particles’ [Wald (1994)].

Curved space-time of GR is described by a 4D, smooth, pseudo-Riemannian

manifold M endowed with the metric ds2 = gµν(x) dx
µdxν , where gµν is the metric

tensor, µ and ν are 0, 1, 2 and 3, and the usual summation conventions are employed

[Wald (1994)]. Thus GR replaces the flat space-time of SR byM and requires that the

Poincaré group, which is the group of transformations that leave dynamical equations

invariant in SR, is replaced by a general group of coordinate transformations. This

general group is known as the diffeomorphism group and it is denoted as Diff(M) (e.g.,
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Weinberg (1972), Heller (1992)); this is a spatio-temporal group that is non-restrictive

and carries limited information [Auyang et al. (1995)]. Let us denote coordinates by

x and introduce a diffeomorphism η, which is considered to be close to the identity.

Coordinatization of Diff(M) assigns to each η a set of functions η̃ that allows us to

relate x to other coordinates x′ by the following relationship x′ = x+ η̃.

Let the coordinates systems of all observers be related by the above continuous

linear transformation between an observer with coordinates x and another with co-

ordinates x′ be called the GR observers. Using this definition of GR observers, the

principle of general covariance–used by Einstein (1915) as a basis for developing his

GR–can be established. A modern view is that general covariance is a tool but not

a principle. Specifically, Weinberg (1972) claims that ’the principle of general co-

variance is not an invariance principle.’ To make a clear distinction between general

covariance and invariance, in this dissertation, we call a physical theory covariant if

its basic equations are written in the coordinate-free form. However, we consider such

a theory invariant if its equations are left unchanged by symmetry operations.

2.9 Dark Matter

Numerous measurements of rotation curves of different galaxies were performed

(e.g., Persic et al. 1996; Boriello & Salucci 2001; Livio 2003; Bertone et al. 2005)

with the main conclusion that the galactic rotation curves can only be explained if

the existence of DM distributed in a spherical galactic halo around these galaxies

is postulated [Freeman and McNamara (2006), Navarro et al. (2011)]. Additional

strong evidence for the existence of DM was given by NASA’s WMAP [Benini et al.

(2013), Larson et al. (2011)] and by some gravitational lensing measurements [Ellis

(2010)] as well as by NASA’s Bullet Cluster [Barrena et al. (2002)]. The WMAP data
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established the total amount of DM in the Universe. The amount of ordinary matter

(OM), DM and Dark Energy (DE) found from the WMAP data was refined by the

ESA’s Planck mission, and the currently accepted values are: ΩOM = 0.049 ± 0.04,

ΩDM = 0.268 and ΩOM = 0.683 [Aghanim et al. (2020)].

Models of DM can be divided into three groups: hot, warm and cold. The main

candidates for hot DM are electron (νe), muon (νµ) and tau (ντ ) neutrinos. However,

based on the current limits on their masses, there are too few of them to solve the

DM problem, and they are too fast to be bound and so cannot explain the structure

formation in the observed Universe [White et al. (1983), Freeman and McNamara

(2006)]. Regarding the warm DM, the main candidates are sterile (right-handed)

neutrinos, which have not been discovered. Then there is the long list of candidates

for the cold DM [Sugita et al. (2008)]. An incomplete list of these candidates may in-

clude weakly interacting massive particles (WIMPs) as originally suggested by Peebles

(1982), supersymmetric (SUSY) particles like gravitino [Pagels and Primack (1982)]

or neutralino [Barbier et al. (2005)], axions [Treiman and Wilczek (1978), Rosenberg

and Van Bibber (2000)], the Klein-Kaluza particles emerging from theories with ex-

tra dimensions [Cheng et al. (2002))], and extremely light bosonic particles ELBPs

[Sin (1994)]. Detailed description of different DM candidates can be found in many

reviews, such as Overduin and Wesson (2004), Freeman and McNamara (2006) and

Sugita et al. (2008).

As of today, neither the origin of CDM nor its nature is known. Hence, this

has become one of modern science’s most urgent and challenging problems. This

dissertation presents another possible solution to the DM problem.
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CHAPTER 3

THE CHIRAL DIRAC EQUATION

3.1 Background

Since its introduction in 1928 numerous modifications of the Dirac operator

[Dirac (1928)] have been proposed resulting in a number of so-called generalized Dirac

equations. Such generalizations have been invoked for the purposes of unifying leptons

and quarks [Sogami (1981), Kruglov (2006), Marsch and Narita (2015)], accounting

for the three families of elementary particles [Pfister (1994), Kruglov (2007), 2012],

including ad hoc a pseudoscalar mass [Leiter and Szamosi (1972)], and extending the

Dirac equation to distances comparable to the Planck length [Nozari (2007)].

With the benefit of hindsight and the accumulation of experimental evidence,

it may be said that one of Dirac’s great insights was his observation that elementary

particles exhibit a quantization of both angular momentum (spin-up/spin-down) and

sign of the energy (matter/antimatter). Modern particle physics has reinforced this

picture for free particles of a given flavor independent of internal (gauge) symmetries.

Here we demonstrate how the assumption of two quantized characteristics is equiva-

lent to the chiral form of the Dirac equation (CDE), Dirac’s original equation being

a special case.

In an attempt to demonstrate these results holistically, the present chapter is

organized as follows: Section 2 presents three different methods of deriving the CDE

operator beginning with the standard group theory and Lagrange formalism deriva-

tions before presenting a novel derivation from the assumption of the existence of

independent physical states and their corresponding orthogonal idempotents (pro-
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jection operators) parameterized by physically meaningful quantities; Section 3 then

sets out a detailed investigation into the space-time (continuous) and CPT (discrete)

symmetries underlying the derived CDE, their role and constraints in the derivation

procedures, and the physical implications resulting from this equation; Section 4 is

devoted to conclusions.

3.2 Methods of Derivation

Group theoretical notions may be utilized to define a fundamental theory as

satisfying the following principles: the principle of invariance, the principle of local-

ity, and the principle of least action [Bargmann and Wigner (1948), Fushchich and

Nikitin (1994), Musielak and Fry (2009), Fry et al. (2011)]. We apply these principles

under the assumption of the Poincaré group as the fundamental symmetry group of

local space-time and demonstrate the derivation of generalized first order Poincaré-

invariant dynamical equation governing the evolution of irreducible representations

of spin-1/2 particle states containing the Dirac equation. The resulting generalized

Dirac equation extends the original Dirac equation to include chiral symmetries for

massive elementary particles and it shows that the Dirac equation is not a unique

factorization of the Klein-Gordon equation [Klein (1926), Gordon (1926)]; the pre-

sented results significantly differ from the previous attempts to generalize the Dirac

equations [Kruglov (2006), Nozari (2007), Kruglov (2012), Huegele et al. (2013)].

Since the irreps of the invariant subgroup are the irreps of the entire group

[Bargmann (1954)], the condition that a wave function transforms as one of the irreps

of the subgroup of the Poincaré group is found in the following eigenvalue equation

i∂µφ = kµφ (3.1)
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originally obtained for φ being a scalar wavefunction [Fry et al. (2011)]. As proved

by Wigner (1939), the proper irreps of spin-1/2 elementary particles that are consid-

ered here are the four-component bi-spinors ψ for which the eigenvalue equation 3.1

becomes

iAµ∂µψ = Aµkµψ , (3.2)

where Aµ is an arbitrary constant matrix of 4×4. Defining Xµ = iAµ and Y = Aµkµ,

we obtain

(Xµ∂µ + Y )ψ = 0 (3.3)

where Xµ and Y are to be determined. This equation is consistent with the fact that

the generators of translations in quantum mechanics are equivalent to the Hermitian

momentum operator (i∂µ) and that, by definition, these operators give rise to dynam-

ical equations of motion. For these reasons, we take Eq. (3.3) as our starting point.

The four-component bi-spinors are given by

ψ =

χL

χR

 , (3.4)

where χL and χR are two-component spinors.

The necessity of coupling these spinors is understood mathematically as ac-

commodating the sign ambiguity introduced in the construction of the isomorphism

between boosts in SO(3,1) and those in SU(2). As a result, we find χL and χR to

transform identically under rotations but oppositely under boosts. We may thus write

our Lorentz transformation for the bi-spinors

Λ =

ΛL 0

0 ΛR

 =

exp (− i~σ·(~θ+i~φ)
2

)
0

0 exp
(
− i~σ·(~θ−i~φ)

2

)
 (3.5)
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where ~θ and ~φ parameterize our rotations and boosts, respectively, and are related to

the transformations of four vectors via the four-by-generators ~J and ~K such that

Λ̂ = exp

(
− i ~J · ~θ − i ~K · ~φ)

)
.

Applying the Lorentz transformation of (3.5) to (3.3) and the inverse transformation

from the left yields: (
(Λ−1Λ̂ν

µX
µΛ)∂ν + (Λ−1Y Λ)

)
ψ = 0. (3.6)

This leads to the necessary conditions for invariance.

Λ̂ν
µX

µ = ΛXνΛ−1 Y = ΛY Λ−1

. Solving these, we find the most general form of our matrix coefficients written in

block form.

Xµ =

 0 xR(σ
0δµ0 + σkδµk )

xL(σ
0δµ0 − σkδµk ) 0



Y =

yLσ0 0

0 yRσ
0

.
where xR, xL, yR, and yL are free parameters.

We may simplify this by taking the Dirac γ matrices in the chiral basis.

γ0 =

 0 σ0

σ0 0

 γk =

 0 σk

−σk 0


and identifying the chiral projection operators as

PL =

σ0 0

0 0

 PR =

0 0

0 σ0

.
Then, the equation becomes(

(xLPR + xRPL)γ
µ∂µ + (yLPL + yRPR)

)
ψ = 0 (3.7)
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Now, under the assumption that xL and xR are nonzero, we are free to multiply from

left with i(xLPR + xRPL)
−1, and obtain(
iγµ∂µ + i

(
yL
xR
PL +

yR
xL
PR

))
ψ = 0 (3.8)

which leads naturally to the Hamiltonian

Hψ = −iγ0
(
γk∂k +

(
yL
xR
PL +

yR
xL
PR

))
ψ (3.9)

Calculating the Hamiltonian squared operator, we find

H2ψ =

(
∂k∂k −

yLyR
xLxR

)
ψ (3.10)

Note the propagation mass term

m ≡ ±i
√
yLyR
xLxR

(3.11)

arises naturally from our degrees of freedom in (3.9). Additionally, we observe the

restriction of the square of (3.11) to positive real numbers is equivalent to the physical

restriction of the Einstein energy-momentum relationship.

Let us point out that an immediate consequence of (3.8) is the simultaneous

permissibility of both fundamental scalar and pseudoscalar mass terms. We may see

this explicitly by expanding PL and PR in terms of γ5 ≡ iγ0γ1γ2γ3 and collecting

terms (
iγµ∂µ −M − M̃γ5

)
ψ = 0 (3.12)

where we have defined the scalar mass

M ≡ − i

2

(
yR
xL

+
yL
xR

)
(3.13)

and the coefficient of the pseudoscalar mass

M̃ ≡ − i

2

(
yR
xL

− yL
xR

)
(3.14)

The propagation mass then takes the form

m =

√
M2 − M̃2 (3.15)
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3.3 Chiral symmetries

To understand the degrees of freedom in the generalized equations, let us con-

sider a global chiral rotation of the field variable

ψ → ψ′ = e
i
2
γ5αψ. (3.16)

At this point, it will be both more natural and more convenient to discuss the chiral

transformation of (3.16) in the context of the Lagrangian formalism. The Lagrangian

(3.12) may now be written as

L = iψ̄γµ∂µψ − ψ̄(M + M̃γ5)ψ. (3.17)

Under the transformation of (3.16) The Lagrangian (3.17) becomes

L = iψ̄γµ∂µψ − ψ̄(M + M̃γ5)eiγ
5αψ (3.18)

so we find the effect of (3.16) is equivalent to the rotation of our mass parametersM ′

iM̃ ′

 =

cosα − sinα

sinα cosα


M
iM̃

 (3.19)

Significantly, this is precisely the transformations required to leave invariant the prop-

agation mass in Eq. (3.15). Thus we find that a chiral rotation of a massive field

is equivalent to a choice of factorization of the Klein-Gordon equation (i.e., the Ein-

stein energy relationship). We may thus consider the chiral angle as determining the

fraction of mass distributed between our field’s left- and right-chiral components. To

our knowledge, these observations were first made by Leiter and Szamosi (1972), but

without physical motivation for introducing pseudoscalar terms. The present work

differs substantially from all those previous in that we have demonstrated how both

scalar and pseudoscalar terms arise as the necessary consequence of considering fun-

damental physical symmetries in flat space-time. Therefore, we must conclude that
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the existence (or non-existence) of such terms is wholly determined by those physical

mechanisms governing the generation of fermion masses.

3.4 Derivation from Lagrangian formalism

The Lagrangian formalism is a powerful and independent way to derive a dy-

namical equation. The Lagrangian for the Dirac equation (α = 0 in Eq. 3.3) is

very well-known and presented in textbooks (e.g., [Ryder (1996), Frampton (2008)])

without derivation. In fact, the Lagrangian was not a part of Dirac’s original paper

where the equation first appeared [Dirac (1928)]. An interesting attempt to obtain

the Dirac Lagrangian is presented and discussed in [Doughty (2018)]. Let us briefly

review the main points of this attempt and then use them to obtain the Lagrangian

for Eq. (3.3).

In case α = 0, Eq. (3.3) reduces to the Dirac equation

(iγµ∂µ −m)ψ = 0 , (3.20)

which describes a free, massive, non-chiral and spin 1/2 relativistic elementary par-

ticle [Dirac (1928), Doughty (2018), Frampton (2008),Ryder (1996)]. To obtain the

Lagrangian density for this equation, we follow [Doughty (2018)] and require that

the Lagrangian is a Hermitian, single-valued proper scalar or pseudo-scalar in ψ and

∂µψ. Since ψ has the double-valued properties under rotations, the terms in the La-

grangians must have even numbers of ψ. The simplest proper scalar is ψ̄ψ, where ψ̄ is

the Dirac adjoint. Now, the construction of a scalar kinetic term has to be done with

caution as ∂µψ requires saturation of the index µ, which another derivative cannot do

since the result would be a second-order equation. Therefore, the Dirac matrices γµ

are used to saturate the index µ, and write the kinetic term as iψ̄γµ∂µψ. Since the

physical units of the kinetic term are different from ψ̄ψ, the latter must be multiplied
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by an inverse length dimension, which in natural units is mass. Then, the Dirac

Lagrangian can be written in the following form

LD =
1

2
ψ̄(iγµ∂µ −m)ψ − 1

2
ψ̄(iγµ ~∂µ +m)ψ = 0 . (3.21)

This fully symmetric form of the Lagrangian shows that when evaluated along a

stationary path, the Dirac Lagrangian vanishes [Doughty (2018)]. Both the Dirac

equation and its Lagrangian are Poincaré invariant.

Using the above procedure, the Lagrangian for the CDE (see Eq. 3.3) can also

be obtained and written as

LCD =
1

2
ψ̄(iγµ∂µ −me−iαγ5

)ψ − 1

2
ψ̄(iγµ ~∂µ +me−iαγ5

)ψ = 0 . (3.22)

Similarly to LD, the Lagrangian is also fully symmetric, hermitian and single-valued

proper scalar or pseudo-scalar, and it vanishes when evaluated along a stationary

path. Moreover, the CDE and its Lagrangian are Galilean-invariant. By substituting

LCD into the Euler-Lagrange equation for variations with respect to ψ̄, the CDE given

by Eq. (3.3) is obtained. This method of deriving the CDE is independent of the

group theory derivation and demonstrates that the equation satisfies a least-action

principle requisite of any fundamental theory. Our derivation based on projection

operators is now presented.

3.5 Derivation from Orthogonal Idempotents

We may define a set of projection operators operating on an N -dimensional

complex vector space with any set of N -by-N orthogonal idempotent matrices satis-

fying

P̂iP̂j = P̂jP̂i = δijP̂i

N∑
i=1

P̂i = 1 (3.23)
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with the total number of projection operators of a given vector space is maximally

equal to the dimensions of the space considered. Therefore, for N = 2, we may

expand the most general operators acting on a spinor in terms of the Pauli matrices

and the two-by-two identity matrix. Let

P̂1 = a0I2 + ~σ · ~a P̂2 = b0I2 + ~σ ·~b . (3.24)

Then enforcing the orthogonal idempotent conditions, we obtain the following con-

straints.

a0 = b0 =
1

2
~a · ~a = ~b ·~b = 1

4
~a = −~b . (3.25)

Solving this, we find two projection operators for our symmetry group whose degrees

of freedom may be parameterized in terms of the unit vector â. We write these

projection operators succinctly as

P̂±(â) =
1

2
(I2 ± ~σ · â) . (3.26)

For a fixed â, these operators allow us to define two types of objects in our two-

dimensional vector space. For any such element χ ∈ C2 we may define χ±(~a) ≡

P̂±(â)χ(~a). It necessarily follows that

(~σ · â)χ±(~a) = ±χ±(~a) . (3.27)

It is then a simple matter to extend these projection operators to projections in

2N -dimensional vector spaces. In general, we may write

P̂s1,s2,...sN (â1, â2, ...âN) =
N⊗
i=1

P̂si(âi) , (3.28)

for si ∈ {±}. It is easy to see that these projection operators satisfy our orthogonal

idempotent constraints. We then similarly define our set of eigenvectors.

χs1,s2,...sN (~a1,~a2, ...~aN) =
N⊗
i=1

χsi(~ai) . (3.29)
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By restricting our considerations to the vector space of spinors, we can give these

abstract considerations physical significance. Recall that the rotation operator cor-

responding to a rotation of θ about the axis defined by â for the vector space of

two-component spinors takes the form

R̂(θ, â) = cos
θ

2
+ i(~σ · â) sin θ

2

= e
iθ
2 P̂+(â) + e−

iθ
2 P̂−(â) .

(3.30)

It follows that eigenstates of our projection operators P̂±(â) are physically invariant

under rotations about â, differing only by a phase. We therefore identify P̂±(â) as

projecting out the portion of the state vector with spin parallel (+) or anti-parallel

(−) to the â-axis. By choosing ~a = ~p, where ~p is the three-momentum of the particle,

we find P̂±(p̂) to be the helicity projection operators. This most neatly encapsulates

the experimental observance of binary spin states in mathematical terms. We now

wish to use our projection operator methodology to classify states of positive and neg-

ative energies, e.g., matter/anti-matter. Including an additional two-valued quantum

property necessitates (at minimum) a four-dimensional vector space. We, therefore,

construct the projection operators of the form

P̂s1,s2(q̂, p̂) = P̂s1(q̂)⊗ P̂s2(p̂) , . (3.31)

We have introduced the vector q̂ about which we will have more to say shortly. For

the time being, q̂ is simply a set of three complex numbers and satisfies q̂ · q̂ = 1.

Next, we define the operand

χs1,s2(q̂, p̂) = χs1(q̂)⊗ χs2(p̂) . (3.32)

The corresponding generalization of Eq. (3.27) yields

(~σ · q̂ ⊗ I2)χs1,s2(q̂, p̂) = s2χs1,s2(q̂, p̂) (3.33)

(I2 ⊗ ~σ · p̂)χs1,s2(q̂, p̂) = s1χs1,s2(q̂, p̂) . (3.34)
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Exploiting the fact that s1 = ±s2, we may construct the equations

(~σ · q̂ ⊗ I2 + I2 ⊗ ~σ · p̂)χ±,∓(q̂, p̂) = (~σ · q̂ ⊕ ~σ · p̂)χ±,∓(q̂, p̂) = 0 (3.35)

(~σ · q̂ ⊗ I2 − I2 ⊗ ~σ · p̂)χ±,±(q̂, p̂) = (~σ · q̂ 	 ~σ · p̂)χ±,±(q̂, p̂) = 0 . (3.36)

We now identify the set of gamma matrices in the chiral representation.

γ0 = σ1 ⊗ I2

γk = iσ2 ⊗ σk

satisfying the Clifford algebra

{γµ, γν} = 2ηµνI4 .

Taking the usual definition γ5 = iγ0γ1γ2γ3 as the matrix that anticommutes with all

γµ, let us write
iγ5γ0 = σ2 ⊗ I2

−γ5 = σ3 ⊗ I2

which give

(~σ · q̂ ⊗ I2) =
1

|~q|
γ0γ5(γ5q1 − iI4q2 + γ0q3) (3.37)

(I2 ⊗ ~σ · p̂) = − 1

|~p|
γ0γ5~γ · ~p . (3.38)

Rewriting the operators of Eqs. (3.31) and (3.32) in terms of the gamma matrices,

we find

(~σ · q̂ ⊕ ~σ · p̂) = 1

|~p||~q|
γ0γ5(γ0|~p|q3 − |~q|~γ · ~p+ γ5|~p|q1 − iI4|~p|q2)

(~σ · q̂ 	 ~σ · p̂) = 1

|~p||~q|
γ0γ5(γ0|~p|q3 + |~q|~γ · ~p+ γ5|~p|q1 − iI4|~p|q2) .

It is our goal to identify the vector ~q with our physical quantities. Scaling these

operators from the left with ±|~p||~q|γ5γ0, we now restrict ~q and ~p to be of equal-
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magnitude (this is equivalent to the on-mass-shell asssumption). We then obtain

equivalent equations to Eqs. (3.31) and (3.32) of the form

(−γ0q3 + ~γ · ~p+ γ5q1 − iI4q2)χ±,∓ = 0 (3.39)

(+γ0q3 + ~γ · ~p− γ5q1 + iI4q2)χ±,± = 0 . (3.40)

It is now possible to make the identifications with our physical quantities explicit.

For the vector ~q, we identify:

q1 = im sinα q2 = −im cosα q3 = p0 = E (3.41)

The identification of q3 = E (E > 0) is chosen to align with our definition of the Dirac

gamma matrices though equivalent linear combinations of the vector may be found

through unitary transformations. It may appear curious upon first inspection that

the vector ~q is seemingly compelled to take on imaginary values in two components

and real values in the third. It is, however, a simple matter to absolve ourselves of

this inhomogeneity by performing a Wick-rotation of the energy axis in the complex

plane and thereby considering the four vectors of Minkowski space-time in purely

Euclidean terms. In this way, the connection between our projection operators as

a basis of SL(2,C) and the Lorentz group SO(1, 3) may be made explicit. These

simplifications notwithstanding, we will continue to consider real-valued energies in

Minkowski space-time. Substituting our terms of Eqs. (3.41), into Eqs. (3.39) and

(3.40) we obtain

(−γ0E + γkpk +meiαγ
5

)χ±,∓ = 0 (3.42)

(+γ0E + γkpk −meiαγ
5

)χ±,± = 0 . (3.43)
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It is clear that Eqs. (3.42) and (3.43) are the momentum-space analogues of the CDE

for positive and negative energies and therefore are equivalent to plane wave solutions

of Eq. (3.3). The eigenstates therefore satisfy

E2χs1,s2 = (p2 +m2)χs1,s2 . (3.44)

The method of projection operators for deriving fundamental equations has the po-

tential to extend beyond the C4 vector space of bi-spinors. While outside the scope at

present, the possibility of extending the concepts and methodologies presented here

to investigate the algebraic structure inherent in three particle flavors and their mass

spectrum remains a tantalizing possibility.

3.6 Space-Time Symmetries

From the Special Theory of Relativity, we know that for an equation to be

considered fundamental, it must remain invariant in all inertial frames of reference.

Such frames may be defined as those frames in which the symmetries of Minkowski

space-time are agreed to hold. These symmetries are represented by the Poincaré

group P = SO(3, 1) ⊗s T (3 + 1) consisting of rotations, boosts, and translations

in space and time (see Section 2.1) which carry one inertial frame to another. We

may therefore refer to the class of inertial observers to whom fundamental equations

must remain invariant as Poincaré observers. It follows as a necessary condition for

any equation to be considered fundamental that it preserve its form for all Poincaré

observers and hence remain invariant with respect to all transformations given by

P . Only such equations can make physical predictions about which all Poincaré

observers will agree. It is easy to verify that the derived CDE above is one such

Poincaré invariant equation, and so satisfies a necessary condition to be called a

fundamental equation of physics.
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The other characteristics required of a fundamental theory may be summarized

as locality, gauge invariance, and the satisfaction of a least-action principle (equivalent

to the existence of Lagrangian density for the equation). Since the CDE is a first-

order partial differential equation, it is local. Here only free particles are considered,

and gauge invariance is not included. Above, we demonstrated that the Lagrangian

density for the CDE exists and may be written in the fully symmetric form given

by Eq. (3.22). In general, Lagrangians possess less symmetry than the dynamical

equations resulting from them due to the assumptions on which the Noether theorem

is based [Hojman (1984), Hojman (1992)]. The best-known example is the law of

inertia, whose dynamical equation is Galilean invariant but whose Lagrangian is not

[Landau and Lifshitz (2000), Lévy-Leblond (1969)]. However, a method to restore

Galilean invariance of the Lagrangian was developed and applied to the law of inertia

[Musielak and Watson (2020)].

We followed [Doughty (2018)] to construct the Dirac Lagrangian, which is al-

ready Poincaré invariant. Similarly, the Lagrangian for the CDE equation is also

Poincaré invariant. Therefore the form of the CDE equation and its Lagrangian, as

well as theoretical predictions resulting from them, are the same for all observers

who accept the Principle of Relativity underlying the Special Theory of Relativity

and its Poincaré group P . Therefore, the presented results combined with the above

discussion imply that any theory of physics based on the CDE and its Lagrangian

may be rightly called a fundamental equation of physics.

3.7 CPT symmetries

Beyond the symmetries of the Poincaré group, we may also inquire into which

discrete symmetries of nature hold for the CDE. From the discrete operations of charge

conjugation (C), spatial inversion (P), and time-reversal (T ) given in Chapter 2, we
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may determine the parity-conjugated forms of the CDE. Defining D̂(α) = iγµ∂µ −

meiαγ, taking the symmetry operation U ∈ {C,P , T }, and writing the corresponding

unitary transformation acting on the spinor indices Û ∈ {Ĉ, P̂ , T̂}, we obtain

Û [UD̂(α)U−1]Û †ψU(x, t) = 0 (3.45)

where ψU(x, t) ≡ Û [Uψ(x, t)U−1]. Then, the resulting transformations may be sum-

marized as

Ĉ[CD̂(α)C−1]Ĉ† = D̂(α∗) (3.46)

P̂ [PD̂(α)P−1]P̂ † = D̂(−α) (3.47)

T̂ [T D̂(α)T −1]T̂ † = D̂(−α∗) , (3.48)

and the following conditions can be identified:

1. If ψ exhibits C-invariance (ψ = ψC), then α ∈ R.

2. If ψ exhibits CP-invariance (ψ = ψCP ), then α ∈ I.

3. If ψ exhibits CPT-invariance (ψ = ψCPT ), then α ∈ C.

These conditions, combined with the CPT theorem, reinforce our conclusion that the

Dirac equation with chiral freedom is the most general first-order differential equation

derivable from the irreps of the Poincaré group. While it is quite conceivable that

the constraints imposed by observed classes of discrete symmetries in interactions

(and their fundamental violations) may contribute to constraints on the CDE, it is

essential to emphasize that the regimes of validity presented here are derived for free

particles in the absence of interactions and therefore a result of extrinsic and not

intrinsic symmetries. In this way, the above discrete constraints are foundational for

any extended theoretical considerations.
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Figure 3.1. A diagrammatic representation of the effects of a unitary chiral rotations
on the set of solutions to the Dirac equation (α = 0) and the general form (α 6= 0)
presented in the text. The bijectivity of the unitary transformation results in positive
energy solutions of mixed parity in the general case. The chiral Dirac equation is
thereby seen to be a special case in which eigenstates of intrinsic parity and energy
align. (Note the antiparticle diagram follows via a reversal of the parity signs..

3.8 On the Distinctions of the Dirac Equation and its Chiral Form

A regrettable amount of confusion has historically plagued the literature sur-

rounding attempts to include ad hoc pseudoscalar mass terms, particularly as regards

the relationship between the resulting solutions and those of the Dirac equation [Leiter

and Szamosi (1972), Da Silveira (1976), Trzetrzelewski (2011)]. For the purpose of

clarifying the matter, we will now set out to sketch a proof of the physical inequiva-

lence between the representations related by a chiral rotation.

Given the Dirac equation

(iγµ∂µ −m)ψ = 0

We define a particle state in the chiral basis α = 0 as the positive-energy (+E)

solutions:

ψ+ (x, t; 0) = us (p; 0) e
−ip·x

Similar antiparticle spinors we take to be given by the +E solutions:

ψ− (x, t; 0) = vs (p; 0) e
+ip·x
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Now, there will always exist a unitary transformation which allows one to transform

the Dirac equation into the CDE, and vice versa. It is given by

ψ → Uψ = e
iα
2
γ5

ψ

and constitutes an alternate choice of chiral basis1. Applying the unitary chiral

rotation operator above to our +E Dirac solutions, we find

ψ+ (x, t; 0) → ψ+ (x, t;α) = e
iα
2
γ5

ψ+ (x, t) = us (p;α) e
−ip·x

and

ψ− (x, t; 0) → ψ− (x, t;α) = e
iα
2
γ5

ψ− (x, t) = vs (p;α) e
+ip·x

for

us (p;α) ≡
[
cos

α

2
us (p; 0) + i sin

α

2
v3−s (p; 0)

]
vs (p;α) ≡

[
cos

α

2
vs (p; 0) + i sin

α

2
u3−s (p; 0)

]
These chiral-rotated states now satisfy the CDE of the form:(

iγµ∂µ −me−iαγ5
)
ψ± (x, t;α) = 0

In investigating the parity properties of these representations, recall that the intrinsic

parity of a fermionic field is defined by the action of the parity operator (P̂ = γ0) on

the at-rest solutions. Because a chiral rotation is not a unitary spin transformation,

P̂ remains invariant. Therefore, in the rest frame the CDE equations reduce to:

P̂ us (0;α) = +e−iαγ5

us (0;α)

P̂ vs (0;α) = −e−iαγ5

vs (0;α)

1Unlike all previously considered transformations, U is not a unitary spin transformation of the

type ψ → V ψ and γµ → V γµV †. Rather, U acts only on the composite bi-spinor
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and so us (p;α) and vs (p;α) are not generally eigenstates of parity. This is significant

as it implies a unitary chiral rotation will carry +E, parity-eigenstate solutions of the

DE into +E solutions of the CDE with mixed parity.

We are, of course, free to construct states with well-defined intrinsic parity in

the α 6= 0 basis. These are not difficult to obtain and are given simply in the rest

frame by:

ψA (x, t;α) = e−iαγ5/2us (0;α) e
−imt = us (0; 0) e

−imt

ψB (x, t;α) = e−iαγ5/2vs (0;α) e
+imt = vs (0; 0) e

+imt

However, as we are currently working in the basis where α 6= 0, these parti-

cle/anti-particle states are related to the solutions in the basis where α = 0 via the

inverse transformation U † = exp (−iαγ5/2). Hence the parity eigenstates ψA (x, t;α)

and ψB (x, t;α) correspond in the α = 0 basis to the at-rest solutions given by:

ψA (x, t;α) → ψA (x, t; 0) = e−iαγ5/2ψA (x, t;α) = e−iαγ5

us (0; 0) e
−imt

=
(
cos

α

2
us (0; 0)− i sin

α

2
v3−s (0; 0)

)
e−imt

ψB (x, t;α) → ψB (x, t; 0) = e−iαγ5/2ψB (x, t;α) = e−iαγ5

vs (0; 0) e
+imt

=
(
cos

α

2
vs (0; 0)− i sin

α

2
u3−s (0; 0)

)
e+imt

Note the appearance of v3−s (p; 0) e
−imt and u3−s (p; 0) e

+imt. These are not

identifiable as positive energy states in the α = 0 basis and so must taken as negative

energy solutions. Thus, we have proven the following:

No unitary transformation exists which connects the set of positive-energy,

parity-eigenstate solutions of the Chiral Dirac Equation to the set of positive-energy

solutions of the Dirac Equation.2

2The only exception to this is the trivial case of the identity matrix when α = 0.
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The implications of this statement are physically meaningful when taken in

conjunction with the requirement that any well-defined QFT should possess only

states with bounded energies. It is then the combination of these facts that amount

to the physical inequivalence of the representations. This is the central point which

many authors have failed to properly appreciate, and is the reason we argue the CDE

constitutes a non-trivial generalization of the Dirac Equation whose solutions form

physically inequivalent irreducible representations of the Poincaré group.

3.9 Summary

The goal of this Chapter has been to highlight the importance of chirality in

the context of identifying physically foundational theories. We began, motivated by

underappreciated degrees of freedom present in the standard representations of the

Poincaré group, with the derivation of the chiral form of the Dirac equation. The

presence of chiral mass terms raised intriguing possibilities. The second half of the

chapter was then devoted to employing heuristic methodologies and new techniques

in deriving the chiral Dirac equation, with the Dirac equation proving to be a special

case. Finally, a discussion regarding the discrete symmetries of nature was undertaken

to assess the validity of our results.

41



CHAPTER 4

THE CHIRAL BARGMANN-WIGNER EQUATIONS

4.1 Background

In the previous chapter, we derived a generalized form of the Dirac equation

exhibiting an internal degree of chiral freedom using the irreducible representations

(irreps) of the Poincaré group P = SO(3, 1) ⊗s T (3 + 1), with SO(3, 1) being

the group of rotations and boosts and T (3 + 1) an invariant subgroup of space-time

translations [Kim and Noz (2012)]. The derived chiral form of the Dirac equation

(CDE) [Watson and Musielak (2020)] may be written as

D̂ψ ≡ (iγµ∂µ −me−2iαγ5

)ψ = 0 , (4.1)

where α is the chiral angle specifying the basis and ψ represents a four-component

spinor that transforms as one of the irreps of T (3+1) ∈ P , and each of its components

satisfies the Klein-Gordon equation [Klein (1926),Watson and Musielak (2020)]. We

demonstrated that the chiral rotation of a massive field is equivalent to an alternative

choice of chiral basis and that the Dirac equation is obtained by factorization of

the Klein-Gordon equation if, and only if, a specific selection of chiral basis is made

[Watson and Musielak (2020),Watson and Musielak (2021b)].

In the present chapter, we extend the chiral-asymmetric form of the Dirac

equation beyond spin-1/2 particles utilizing the Bargmann-Wigner (BW) formalism

[Bargmann and Wigner (1948)] in which all possible relativistic equations (with the

exception of spin zero) are derived through the unitary representations of the Poincaré

group as classified by Wigner [Wigner (1939), Kim and Noz (2012)]. The BW equa-

tions are coupled first-order partial differential equation with the original Dirac op-

42



erator (D̂ = iγµ∂µ − m) acting on symmetric multispinor wavefunctions which are

taken to describe a field of rest mass m and spin s ≤ 1/2. For special cases of s = 1/2,

s = 1 and s = 3/2, the BW equations reduce to the Dirac [Dirac (1928)], Proca [Proca

(1936)] and Rarita-Schwinger [Rarita and Schwinger (1941)] equations, respectively;

however, for s = 2, see [Dvoeglazov (2000)].

Using this formalism, it is possible to begin with the CDE and extend the

concept of chirality to higher spin particles, thereby generalizing the BW equations

to include chiral degrees of freedom. Much like the original technique of Bargmann

and Wigner, our method of deriving the chiral (CBW) equations is based on the irreps

of the Poincaré group P . The derived CBW equations are valid for spin-1 massive

fields (though higher-order generalizations are, in principle, possible). By specifying

the chiral basis, we will demonstrate how our spin-1 equations reduce to a Proca-like

equation [Proca (1936)] is coupled to an auxiliary equation for a spin-0 massive field.

The resulting coupling is due to a misalignment of the chiral bases of the constituent

representations and, therefore, chirally induced. This is a new phenomenon, whose

physical implications are discussed.

4.2 Bargmann-Wigner equations with chiral freedom

We begin by observing that the at-rest solutions of Eq. (4.1) may be written as

ψ(±) = ω(±)(α)e∓imt , (4.2)
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where (+) ∈ {(1), (2)} indicate positive energy solutions and (−) ∈ {(3), (4)} indicate

negative energies. Then, these spinors take the form

ω(1)(α) =



cosα

0

i sinα

0


, ω(2)(α) =



0

cosα

0

i sinα


, ω(3)(α) =



i sinα

0

cosα

0


, ω(4)(α) =



0

i sinα

0

cosα


(4.3)

It is easily to verify that spinors ω(1) and ω(3) are +1
2
eigenstates of the spin projection

operator Ŝ3 and ω(2) and ω(4) are similarly −1
2
eigenstates. Moreover, all of these

states have a definite propagation mass.

We may now define the general set of positive energy multispinors of spin-1

from the tensor product of the spinors of spin-1/2 as follows

ω(1,1)(α, β) = ω(1)(α)⊗ ω(1)(β) , (4.4)

ω(1,2)(α, β) = ω(2,1)(α, β) = ω(1)(α)⊗ ω(2)(β) + ω(2)(α)⊗ ω(1)(β) , (4.5)

and

ω(2,2)(α, β) = ω(2)(α)⊗ ω(2)(β) , (4.6)

where β is the chiral angle associated with the chiral basis of the second bi-spinor

of our representation. It must be noted that different chiral angles can be paired

together in a single spinor as they are all valid eigenstates of momentum and spin, as

can be seen by observing that these multispinors are eigenstates of the following spin

operator (with indices included for clarity)(
Ŝ3
)µν
µ′ν′

=
(
Ŝ3
)µ
µ′δ

ν
ν′ +

(
Ŝ3
)ν
ν′
δµµ′ , (4.7)

and satisfy their respective at-rest chiral Dirac equations

(γ0 − e−2iα)µµ′ω
(+,+)
µν (α, β) = 0 , (4.8)
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and

(γ0 − e−2iβ)νν′ω
(+,+)
µν (α, β) = 0 , (4.9)

for (+,+) ∈ {(1, 1), (1, 2), (2, 2)}. We may then move from the rest frame to an

arbitrary momentum state by boosting each spinor

ω(+,+)
µν (α, β; pµ) = Λ(α, pµ)µµ′Λ(β, p

µ)νν′ω
(+,+)
µν (α, β) . (4.10)

where, the chiral form of the Lorentz transformation is related via a similarity trans-

formation to the case when α = 0 given by Λ(α, pµ) = eiαγ
5
Λ(0, pµ)e−iαγ5 . Further,

since the chiral rotation eiαγ5 commutes with all generators of the Lorentz group it

commutes with Λ(0, pµ) and thus Λ(α, pµ) = Λ(0, pµ). We next define the symmetric

and anti-symmetric positive energy multispinors and find

Ω(+,+)
µν (α, β; pµ) =

1

2

(
ω(+,+)
µν (α, β; pµ) + ω(+,+)

µν (β, α; pµ)
)
, (4.11)

and

Ω̃(+,+)
µc (α, β; pµ) =

1

2

(
ω(+,+)
µν (α, β; pµ)− ω(+,+)

µν (β, α; pµ)
)
, (4.12)

such that the full symmetric and anti-symmetric positive energy solutions are given

by

ψ(+)
µν (α, β, xµ) =

∑
(+,+)

∫
C

(+,+)
1 (pµ)Ω(+,+)

µν (α, β; pµ)e−ipµxµ

d3p , (4.13)

and

ψ̃(+)
µν (α, β, xµ) =

∑
(+,+)

∫
C

(+,+)
2 (pµ)Ω̃(+,+)

µν (α, β; pµ)e−ipµxµ

d3p , (4.14)

where the sum is over (+,+) ∈ {(1, 1), (1, 2), (2, 2)}.

Similar arguments for negative energy solutions lead to the construction of

the negative energy multispinors. Notationally, this is achieved via a simple index

substitution (+,+) → (−,−) ∈ {(3, 3), (3, 4), (4, 4)} and flipping the sign of the
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exponential. With this complete set of states, we may identify the most general

symmetric and anti-symmetric multispinors

Ψµν(α, β;x
µ) = a1ψ

(+)
µν (α, β, xµ) + b1ψ

(−)
µν (α, β, xµ), (4.15)

and

Ψ̃µν(α, β;x
µ) = a2ψ̃

(+)
µν (α, β, xµ) + b2ψ̃

(−)
µν (α, β, xµ) (4.16)

that satisfy the following four coupled equations

[iγµ∂µ −m cos(α− β)e−i(α+β)γ5

]
µ/ν
µ′/ν′Ψµν(α, β;x

µ)

= [−im sin(α− β)γ5e−i(α+β)γ5

]
µ/ν
µ′/ν′Ψ̃µν(α, β;x

µ) , (4.17)

and

[iγµ∂µ −m cos(α− β)e−i(α+β)γ5

]
µ/ν
µ′/ν′Ψ̃µν(α, β;x

µ)

= [−im sin(α− β)γ5e−i(α+β)γ5

]
µ/ν
µ′/ν′Ψµν(α, β;x

µ) , (4.18)

where the summed indices have been combined for brevity.

Isolating either multispinor yields

[∂µ∂µ +m2]µµ′Ψµν(α, β;x
µ) = 0 , (4.19)

and

[∂µ∂µ +m2]µµ′Ψ̃µν(α, β;x
µ) = 0 , (4.20)

which demonstrates that each element of our multispinors satisfy the Klein-Gordon

equation. These are new chiral BW equations (CBW equations) for spin-1 massive

fields; they reduce to the BW equations when α = β and thus Ψ̃ vanishes. This shows

that chiral degrees of freedom require an additional equation for Ψ̃. The effects of

this additional equation on the Proca equation [Proca (1936)] are now considered and

discussed.
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4.3 New insights into the Proca Equation

The CBW equations allows us to identify representations of spin-1 fields con-

sistent with those degrees of freedom observed in the CDE. Using Renton (1990), we

relate these representations to those known in the particle physics. Let Ĉ = iγ2γ0

and σµν = i
2
[γµ, γν ], then the Clifford basis is the following set of ten symmetric ma-

trices {γµĈ, σ̂µνĈ}, and the six anti-symmetric matrices {γµγ5Ĉ, iγ5Ĉ, Ĉ} that allow

expanding the multi-spinors in this basis, and obtain

Ψ = mAσγ
σĈ +

1

2
Fστ σ̂

στ Ĉ , (4.21)

and

Ψ̃ = ρe−iθγ5

Ĉ +mBσγ
σγ5Ĉ , (4.22)

where ρ is a scalar field, θ is a scalar parameter, Aµ and Bµ are vector fields, and F µν

is an antisymmetric tensor.

Writing the CBW equations in matrix form, we find the four linearly indepen-

dent combinations

i∂µ
(
γµΨ+Ψ(γµ)T

)
−m cos (α− β)

{
Ψ, e−i(α+β)γ5}

−im sin (α− β)
[
Ψ̃, γ5e−i(α+β)γ5]

= 0 , (4.23)

i∂µ
(
γµΨ̃ + Ψ̃(γµ)T

)
−m cos (α− β)

{
Ψ̃, e−i(α+β)γ5}

−im sin (α− β)
[
Ψ, γ5e−i(α+β)γ5]

= 0 , (4.24)

i∂µ
(
γµΨ−Ψ(γµ)T

)
+m cos (α− β)

[
Ψ, e−i(α+β)γ5]

+im sin (α− β)
{
Ψ̃, γ5e−i(α+β)γ5}

= 0 , (4.25)

and

i∂µ
(
γµΨ̃− Ψ̃(γµ)T

)
+m cos (α− β)

[
Ψ̃, e−i(α+β)γ5]

+im sin (α− β)
{
Ψ, γ5e−i(α+β)γ5}

= 0 . (4.26)
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Then, substituting the matrix expansions of the multispinors and exploiting the

linear independence of the basis matrices, we obtain our constraints. Among these

are the requirement that the fields ρ and Bµ vanish and θ = 0 unless we enforce

θ = π/2− α− β . With this condition, we define the rotated fieldsA′
µ

iB′
µ

 =

 cos (α− β) sin (α− β)

− sin (α− β) cos (α− β)


Aµ

iBµ

 (4.27)

and summarize the set of constraint equations as

Fστ cos (α + β) +
1

2
∂σF µνεµνστ sin (α + β)− (∂σA

′
τ − ∂τA

′
σ) = 0 ,

∂σB
′
τ − ∂τB

′
σ = 0 ,

∂σFστ +m2A′
τ cos (α + β) = 0 ,

1

2
∂σF µνεµνστ +m2A′

τ sin (α + β) = 0 ,

∂µA′
µ + iρ sin (2α− 2β) = 0 ,

∂µB′
µ + ρ cos (2α− 2β) = 0 ,

∂σρ−m2B′
σ = 0 .

(4.28)

Taking the divergence of the first of these constraints and eliminating explicit depen-

dence on Fµν and B′
µ, we find the basic equations governing the fields reduce to three

coupled equations of A′
µ and ρ:

∂ν
(
∂νA

′
µ − ∂µA

′
ν

)
+m2A′

µ = 0 ,[
∂µ∂µ +m2 cos(2α− 2β)

]
ρ = 0 ,

∂µA′
µ + iρ sin (2α− 2β) = 0 .

(4.29)

It is evident that the vanishing of ρ is equivalent to the reduction of these equations

to the Proca equation [Proca (1936)].

A more symmetric form of these equations is obtained by the definition of the

constant κ ≡
√
m2 cos 2(α− β)− µ2 (where µ appears as a free parameter), and the
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scalar field ϕ defined in terms of the divergence of the vector field ϕ ≡ κ−1∂µA′
µ. The

constraint equations then reduce to[
∂ν∂ν +m2

]
A′

µ = +κ∂µϕ ,[
∂ν∂ν + µ2

]
ϕ = −κ∂µA′

µ ,

(4.30)

where the first equation is the Proca-like equation and the second is the auxiliary

equation for ϕ. Note that m and µ are generally not equal and correspond to the

masses of the vector and scalar fields, respectively. In the Lorentz gauge ∂µA′
µ = 0, the

scalar wavefunction ϕ = 0 and the Proca-like equation becomes the Proca equation

[Proca (1936)]. The coupling between the spin-1 and spin-0 massive fields is a new

phenomenon whose physical implications are now discussed.

4.4 Physical implications

The chiral Bargmann-Wigner (CBW) equations for spin-1 massive fields and

the Proca-like equation with its required auxiliary equation for spin-0 massive fields

lead to several physical implications.

The degrees of freedom introduced by the choice of chiral basis allowed from

Poincaré invariance admit an asymmetry to the defined representations of the con-

sidered spin-1 massive fields described by the multispinors, thereby allowing for gen-

eralization of the BW equations, which admit internal chiral degrees of freedom. As

a result, two CBW equations are obtained, one for Ψ and the other for Ψ̃, and they

are reduced to the original BW equations when Ψ̃ = 0, which is equivalent to the

case when chirality is neglected. Thus, the main physical implication of the CBW

equations is the presence of the additional field described by the multispinor Ψ̃.

To explore this additional field in detail, we specified the chiral basis so that the

CBW equations reduce to the Proca-like equation coupled to a spin-0 massive field.
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We demonstrated that the asymmetry of the defined representations manifests itself

as the coupled scalar and vector fields, with the total spin consistent with our choice

of representations. By committing to a specific chiral basis, one fixes the coupling

between these fields and restricts the system to the same total number of degrees of

freedom as when the chiral bases coincide. The coupling is described by the coefficient

κ that depends on the chiral angles α and β as well as on masses m and µ of the

scalar and vector fields, respectively.

The coupling between the scalar and vector fields caused by the presence of

internal chiral freedoms is a new phenomenon. While the fundamental spin-1 massive

fields describing bosons W± and Z0 are well-known in the Standard Model (SM)

[Paschos (2007)], the only experimentally verified fundamental scalar field is the Higgs

field [Paschos (2007), Aad et al. (2013)]. Experimental searches of this field have

produced strong evidence in favor of an elementary, massive, neutral spin-0 particle

of positive parity and [Aad et al. (2013), Chatrchyan et al. (2012)]. For this to be

identifiable with the proposed field ρ necessitates an additional mechanism for the

produce the self-coupling potential necessitated for the spontaneous breaking of the

Electroweak model. The source and implications of the Higgs potential remain an

active area of investigation [Sher (1989), Elias-Miro et al. (2012)]. It therefore remains

plausible that such a mechanism is obtainable to reconcile ρ with the observed Higgs

and so is worth entertaining the implications of ρ or ϕ as the Higgs boson. The

most immediate necessary consequence of these is the coupled nature of ρ and ϕ to

a vector boson which completes the spin representation of the field. Such a coupling

has been shown to necessarily arise proportional to the divergence of the vector field,

with κ being the proportionality coefficient representing chirality, this implies that

the Higgs field would then be related to the divergence of the vector wavefunction

and that chirality of a spin-1 massive elementary particle plays a dominant role in
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its representation. Notice that for values of α− β ≈ π/4 the mass of this vector field

may be quite large while the mass of ρ is taken to the observed Higgs value.

Another, more plausible consequence of the existence of ρ is as a weakly-coupled

massive scalar field constituting the currently unexplained dark matter (DM) [Free-

man and McNamara (2006)]. The physical properties requisite of DM fields are well-

explained by a spin-0 massive elementary particle [Freeman and McNamara (2006),

Sugita et al. (2008)], whose existence has not yet been verified experimentally [Bar-

bier et al. (2005), Ackermann et al. (2011), Ibarra et al. (2013)]. The presence of

such a DM field and its possible coupling to spin-1 massive fields of ordinary matter

(OM) through chirality would allow both OM and DM to be coupled. Moreover,

as recently shown, in the nonrelativistic limit, DM may have both scalar [Musielak

(2021)] and vector [Adshead and Lozanov (2021)] components that could be coupled

by chirality. Further studies of these interesting phenomena are necessary, and they

will be described elsewhere.

Finally, let us point out that the form of the dependence of the coupling κ

on the chiral angles α and β illustrates a critical result of our derivation that we

postulate in all physical systems, namely that in the absence of a mechanism to fix

the chiral basis of the constituent fields, it is only differences in chiral bases which

are experimentally observable.

4.5 Summary

We have demonstrated how the Chiral-Bargmann Wigner equations may be de-

rived from massive Dirac bi-spinor representations whose chiral bases are not aligned.

By carefully considering the necessary physical field requirements (symmetry, Lorentz

invariance, etc.), we have further shown how it is possible to derive a system of equa-
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tions for the composite representation of spin-1 fields whose form generally differs

from that of the well-known Proca equation. These equations notably contain an in-

teresting coupling to a massive scalar field with potential implications for dark matter

searches.
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CHAPTER 5

CHIRAL SYMMETRY BREAKING IN AND BEYOND THE STANDARD

MODEL

5.1 Introduction

Thus far, all considerations have been made regarding chiral representations

of free fields. While of fundamental interest, such fields are largely contrived as the

limiting cases of more complicated, interacting systems of particles. For this reason,

it is helpful to carry forward our investigations into the physical effects of chirality

within the context of an interacting field theory.

As shall be shortly demonstrated, the mechanism which specifies the relative

chiral phases (e.g., determines the differences of chiral basis) in the standard model

is explicated in the theory of electroweak interactions. In the following sections, a

mechanism for the spontaneous symmetry breaking of the U(1)Y weak hypercharge

symmetry by left-chiral Majorana neutrinos is introduced and discussed. The im-

plications are derived for effects arising from this specific means of U(1)Y sponta-

neous symmetry breaking with some derived results necessarily mechanism-agnostic.

Finally, calculations are presented in which it is shown that nontrivial, observable

differences from Standard Model (SM) neutrino scattering cross sections arise from

the proposed mechanism. The viability of the model is then discussed.

5.2 Chirality in Electroweak

In order to understand how the chiral bases of fields are specified in electroweak

theory we begin with spontaneous symmetry breaking. In standard electroweak the-
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ory the SU(2)× U(1) symmetry is spontaneously broken when the Higgs doublet Φ

takes on a non-zero expectation value at the minimum of an effective potential1. In

general we may expand Φ about Φ0 at each space-time point as

Φmin(x) =
1√
2
eiα(x)/v

 0

v + h(x)

, (5.1)

where v is the Higgs VEV, h is the Higgs field and α is a real-valued Nambu-Goldstone

boson (NGB), transforming linearly under weak hypercharge rotations

α
U(1)Y−−−→ α +

vβ

2
.

With α included in the definition of the Higgs field, the mass terms of the fermions

after spontaneous symmetry breaking (SSB) become

Lm = −m1ψ̄1e
−iαγ5/vψ1 −m2ψ̄2e

+iαγ5/vψ2

We have therefore identified the parameter which determines the chiral basis of par-

ticles in the standard model, the NGB α. Yet, in most circumstances α is omitted

from the resulting symmetry-broken Lagrangian by means of a redefinition of the Z

boson. To see how this works we fully expand the Higgs portion of the Lagrangian

after SSB and include α. We find

Lh =
1

2
∂µh ∂

µh+
1

2
M2

Hh
2 +

M2
H

8v2
h3 (h+ 4v)

+
(v + h)2

v2

[
1

2
M2

Z

(
Zµ +

1

MZ

∂µα

)(
Zµ +

1

MZ

∂µα

)
+M2

WW
+
µ W

−µ

]
Thus by taking Zµ → Z ′

µ = Zµ−(1/MZ)∂µα, the kinetic contribution of α disappears,

and we are free to choose the U(1)Y gauge in which α = 0. Of course, this choice

is only possible if the weak hypercharge symmetry is conserved. The question of the

physical significance of the chiral basis is therefore intimately connected to the weak

hypercharge symmetry of the standard model.
1See Chapter 2 for a review of electroweak theory
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5.3 Weak Hypercharge: Noether Currents

Both before and after spontaneous symmetry breaking the electroweak La-

grangian exhibits a global U(1)Y weak hypercharge symmetry under the transfor-

mation given by

ΨL → exp

[
i

2
yLβ

]
ΨL ψiR → exp

[
i

2
yiRβ

]
ψiR Φ → exp

[
i

2
yφβ

]
Φ.

The conserved U(1)Y Noether current is then

jµY =
yL
2
Ψ̄Lγ

µΨL +
y1R
2
ψ1Rγ

µψ1R +
y2R
2
ψ2Rγ

µψ2R +
iyφ
2

(
Φ†(∂µΦ)− (∂µΦ)

†Φ
)

Now, because the complete form of symmetry currents survive the process of spon-

taneous symmetry breaking, we may expand Φ about the minimum of the effective

potential as in [Eq. 5.1] and so find the conserved current after spontaneous symmetry

breaking to be

jµY =
yL
2
Ψ̄Lγ

µΨL +
y1R
2
ψ1Rγ

µψ1R +
y2R
2
ψ2Rγ

µψ2R − yφv

2
∂µα.

We may decompose this into the electromagnetic and purely left-chiral parts by using

the relationship

q1 =
1

2
+
yL
2

=
y1R
2

q2 = −1

2
+
yL
2

=
y2R
2

(5.2)

then, since yφ = 1 we have

jµEM = q1(ψ̄1Lγ
µψ1L + ψ̄1Rγ

µψ1R) + q2(ψ̄2Lγ
µψ2L + ψ̄2Rγ

µψ2R)

jµ∆L = −1

2
ψ̄1Lγ

µψ1L +
1

2
ψ̄2Lγ

µψ2L.

And so we may write the Noether current as

jµY = jµEM + jµ∆L − v

2
∂µα.
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The direct proof of the conservation of this current is carried out explicitly by cal-

culating the divergences directly from the Lagrangian. We may write the relevant

portion of LEW as

∆LEW =
1

2
∂µα∂

µα + ψ̄1

[
iγµ∂µ −m1e

− iα
v
γ5
]
ψ1 + ψ̄2

[
iγµ∂µ −m2e

+ iα
v
γ5
]
ψ2.

We find ∂µjµEM = 0 identically. For the remaining terms, upon variation of LEW we

obtain

∂µ(ψ̄1Lγ
µψ1L) =

iλ1v√
2

(
e

iα
v ψ̄1Rψ1L − e−

iα
v ψ̄1Lψ1R

)
∂µ(ψ̄2Lγ

µψ2L) =
iλ2v√

2

(
e−

iα
v ψ̄2Rψ2L − e

iα
v ψ̄2Lψ2R

)
∂µ∂µα = − iλ1√

2

(
e

iα
v ψ̄1Rψ1L − e−

iα
v ψ̄1Lψ1R

)
+
iλ2√
2

(
e−

iα
v ψ̄2Rψ2L − e

iα
v ψ̄2Lψ2R

)
.

And therefore

∂µ∂µα =
2

v
∂µj

µ
∆L,

which is precisely the condition for the divergence of jµY to vanish. Note the crucial

step in this conservation was the cancellation of ∂µ∂µ by the sum of the divergence

of the left-chiral fermion currents, ∂µ(ψ̄1Lγ
µψ1L). In turn, crucial to this cancellation

is the coupling of the fermions to the Higgs. Consequently, any (tree-level) mass

term for weakly interacting fermions must have their origins in couplings to the Higgs

VEV or else violate U(1)Y . In the next section we consider a type of mass term which

explicitly violates this symmetry: left-chiral Majorana fermions.

5.4 Left-Chiral Majorana Neutrinos Effects on U(1)Y

A now well-established body of evidence points towards neutrinos having non-

zero masses [Aker et al. (2022)]. From a SM perspective, the smallness of these masses
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injects a naturalness problem into the usual fermion mass generation mechanism2.

One means of reconciling this lightness of neutrinos is to posit the Majorana nature

of neutrino masses. In this model a single chiral species is coupled to its charge

conjugate. Such a Majorana mass term may be written as

∆LM =
im

2
(χT

Lσ
2χL − χ†

Lσ
2χ∗

L)

for the two-component left-chiral spinor χL. It should be observed that ∆LM does

not exhibit U(1) symmetry, i.e. is not invariant under χ → χ′ = eiθχ for θ ∈ R.

As a result, tree level terms which take the form of ∆LM are forbidden within the

standard model as they explicitly violate weak hypercharge [Ramond et al. (1999)].

We now consider the possibility that the electroweak model is somehow spon-

taneously broken by the presence of non-zero neutrino masses. At this point we wish

to consider a model with only left-chiral neutrinos and which have tree-level masses

generated exclusively from Majorana self-couplings. In the Majorana description it

is more convenient to express our fields in the form of two-component chiral spinors.

We write this new Lagrangian after spontaneous symmetry breaking as

L =
1

2
∂µα∂

µα + iχ†
1Lσ̄

µ∂µχ1L + iχ†
2Lσ̄

µ∂µχ2L + iχ†
2Rσ

µ∂µχ2R

−m2

(
e

iα
v χ†

2Lχ2R + e−
iα
v χ†

2Rχ2L

)
+
im1

2

(
χT
1Lσ

2χ1L − χ†
1Lσ

2χ∗
1L

)
Because this tree-level Majorana mass term does not couple to the Higgs, it does

not couple to α directly. As a result, defining our transformation exactly as before,
2To illustrate the problem one need only compare the mass ratios from a single generation of

quarks and leptons: Current measurements give (mu/me) = 4.2+1.0
−0.5 and (md/me) = 9.14+0.9

−0.33 while

(mν/me) ≈ 10−6 [Particle Data Group (2020)].
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we find a nonzero divergence of jµY which follows from the non-vanishing divergence

of jµ∆L. For our one-generation model, this may be written as

∂µj
µ
Y =

1

2
∂µ

(
χ†
1Lσ̄

µχ1L

)
= −m1

2

(
χT
1Lσ

2χ1L + χ†
1Lσ

2χ∗
1L

)
.

We find that the weak hypercharge symmetry violation is proportional to the sum

over these terms for left-chiral Majorana fermions.

5.5 Chiral Implications of Spontaneously Broken U(1)Y

The growing number of anomalous results from neutrino experiments suggest

new physics and make a strong case for fully exploring all viable theoretical models

capable of predicting modifications to observable processes currently accessible by ex-

periments. Particularly, a theory of left-chiral Majorana neutrino masses arising from

some hitherto unknown spontaneous symmetry breaking mechanism is a possibility

whose implications should be thoroughly and intensively considered. Understanding

the resulting phenomenology will validate or nullify its viability as a physical theory.

As shall be demonstrated, the presence of left-chiral Majorana masses introduces

subtle but non-zero effects.

We begin by defining the (formally real) pseudoscalar and scalar field operators

for the left-chiral Weyl neutrino field χ

S = +
1

2

(
χ†χc + χ†

cχ
)
= Re

[
χ†χc

]
P = − i

2

(
χ†χc − χ†

cχ
)
= Im

[
χ†χc

]
We omit the subscript “L” for brevity, but it should be borne in mind that this is a

purely left-chiral neutrino. Now, because χ†χc is a complex scalar, we may write it

as

χ†χc = S + iP = Neiϕ
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for

N =
√
P 2 + S2, ϕ = tan−1

(
P

S

)
.

As has been stated above, any Lagrangian containing the quadratic self-term χ†χc

will explicitly violate the U(1)Y weak hypercharge symmetry of electroweak theory

which requires the action remain unchanged for χ→ exp(−iβ/2)χ. Under this trans-

formation we find P and S transform like

S
U(1)Y−−−→ S cos β + P sin β

P
U(1)Y−−−→ P cos β − S sin β,

which is as expected for the components of a complex number. As a result of these

transformation properties it is easy to see that N is a conserved quantity under

U(1)Y . However, the same is not true of the phase which transforms as ϕ → ϕ − β.

Comparing this to the transformation rule of the NGB α we find that at any point α

and ϕ are linearly related. Therefore we have

α = α0 −
v

2
ϕ = α0 −

v

2
tan−1

(
P

S

)
(5.3)

for a constant α0. This expresssion is important as it relates the NGB α directly to

the neutrino field through S and P . Now, consider the U(1)Y -invariant Lagrangian

L = iχ†σ̄µ∂µχ+ µ
√
P 2 + S2 − λ

2

(
P 2 + S2

)
(5.4)

for constant terms µ and λ (not to be confused with the analgous terms in the Higgs

potential). The effective potential of this Lagrangian is minimized when the neutrino

field satisfies
√
P 2 + S2 = µ/λ. Within the regime for which perturbations may be

constrained to the minima, we may therefore break the symmetry and define the
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effective field χ′ such that the real and imaginary parts of (χ′†χ′
c) can be written as

S ′ = S and P ′ = P + µ/λ. The Lagrangian written in terms of χ′ becomes

L = iχ′†σ̄µ∂µχ
′ + µ P ′ − λ

2

(
P ′2 + S ′2

)
+ µ

√
S ′2 +

(
P ′ − µ

λ

)2
− µ2

2λ

with µP ′ now appearing as a Majorana mass term. Thus, by the redefinition of our

field χ about the effective self-coupling minima the Majorana neutrino has acquired

mass at the expense of the spontaneous breaking of the weak hypercharge symmetry.

In fact, the breaking of this symmetry has implications for more than just the neutrino

field. The value of the chiral phase α (that is, the hitherto unconstrained NGB field)

is now determined by the local values of the field operators P ′ and S ′. Furthermore,

from the full electroweak theory above we find the chiral couplings between the field

α and the charged leptons may be given in the form

−Lint = mf ψ̄e
∓iαγ5/vψ

where mf is the mass of the charged fermion. Since we have an expression for α in

terms of the neutrino field χ (not χ′ whose transformation properties may generally

differ), we may substitute and upon reducing find (up to a phase)

−Lint =
mf

(P 2 + S2)1/4
ψ̄
(
Re
[
e±iα0/v

√
S + iP

]
± iIm

[
e±iα0/v

√
S + iP

]
γ5
)
ψ. (5.5)

Notice that this expression is a necessary consequence of the breaking of the U(1)Y

symmetry and the local fixing of the field α by the neutrino field χ. As such, Eq.(5.5)

remains valid regardless of the posited mass mechanism provided it is symmetry-

violating. For our specific case3, we have expanded about
√
P 2 + S2 = µ/λ. There-

3To achieve generality in the resulting calculations one has simply to replace µ/λ with the desired

vacuum expectation.
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fore, substituting this into Lint and expanding to first order in the constant λ (or,

equivalently, to first order in S) yields

−Lint = ±imf ψ̄γ
5ψ +

mfλ

2µ

(
ψ̄Sψ

)
.

where we have absorbed constant factors into our definition of α0 and absorbed it

into the chiral basis of the field ψ. We know from previous considerations that the

first term is a standard chiral mass and will contribute a simple pole to the fermion

propagator and may be omitted from our definition of the interaction terms. The

second term is more interesting as it introduces a quartic scalar-scalar point-like

coupling between the charged fermions and the neutrino. We may put this in a

somewhat more standard form by taking

P = − i

2
ν̄γ5ν and S =

1

2
ν̄ν

for the Majorana bi-spinor field

ν =

χ
χc

.
We may then write the lowest-order, non-trival term as

Lint = −mfλ

4µ
[ν̄ν]

[
ψ̄ψ
]
. (5.6)

We see immediately that the coupling constant for this interaction depends inversely

on the neutrino mass parameter µ, linearly on the fermion mass mf and linearly in

the parameter λ which we may take to govern the strength of the coupling. It is clear

that any searches for this quartic interaction will either strengthen or invalidate the

details of the above theory. Moreover, searches for new neutrino couplings of the type

given in Eq. (5.5) will serve as a probe of standard model symmetry violations. In

the next section we will discuss the observable effects on neutrino scattering.
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Figure 5.1. Contributions to νf → νf scattering amplitude for the model presented
in the text. In addition to the two SM charged current (a) and neutral current (b)
processes, a new four-fermion vertex (c) is postulated arising from spontaneously
broken U(1)Y .

5.6 Modifications To Neutrino Scattering

As a consequence of taking the appearance of the neutrino mass to sponta-

neously break the U(1)Y gauge symmetry of the electroweak theory, we have found

the appearance of additional point-like couplings between charged lepton fields and

left-chiral Majorana neutrinos. To further investigate the physical significance of this

term, it is helpful to consider the specific case of neutrino elastic and quasi-elastic

scattering. The tree-level Feynman diagrams for this process in our theory are shown

in Fig. 5.1. To lowest order, the new contribution to the matrix element is

Mλ = −imfλ

4µ
[ν̄ν]

[
ψ̄ψ
]
.

The contributions from the neutral current MNC and charged current MCC are well-

known [Halzen and Martin (1984), Paschos (2007)]. These may be combined in the

low-energy effective limit as a single term given by

MSM = −iGF√
2

[
ν̄γµ

(
1− γ5

)
ν
] [
ψ̄γµ

(
gV − gAγ

5
)
ψ
]
,

where GF is the Fermi constant related directly to the Higgs vev by v−2 = GF

√
2

and gA a gV are the effective axial and vector couplings prescribed in the electroweak
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theory and their values depend upon the specific flavor states involved in the reaction.

Squaring and performing the corresponding traces for the standard model amplitude

yields the differential cross section in terms of the energy of the outgoing neutrino E ′
f

[Paschos (2007), Fukugita and Yanagida (2013)] which we write as

dσSM
dE ′

f

=
G2

Fmf

2π

[
(gV + gA)

2 + (gV − gA)
2

(
E ′

ν

Eν

)2

(5.7)

+
(
g2V − g2A

) mf

Eν

(
E ′

ν − Eν

Eν

)]
(5.8)

for Eν the energy of the incident neutrino, and E ′
ν the energy of the scattered neu-

trino. Next, to calculate our modification to this cross section, we add Mλ and MSM

coherently. In squaring we find that the cross terms MSMM∗
λ and M∗

SMMλ vanish

identically when averaged over spins from the trace of an odd number of γ matri-

ces. The resulting spin-averaged differential cross section then separates into a sum

over the cross sections for the individual amplitudes. The quartic contribution from

diagram (c) in Fig. (5.1) enters as

dσλ
dE ′

f

=
G2

Fκ
2
fmf

2π

[(
E ′

ν − Eν

Eν

)2

+
5mf

4Eν

(
E ′

ν − Eν

Eν

)]
, (5.9)

where we have defined the unitless parameter

κf ≡ λmf

2
√
2GFµ

.

We see that, taking the average 〈E ′
ν〉 ≈ Eν/2 this becomes

dσλ
dE ′

f

=
G2

Fκ
2
fmf

2π

[
1

4
+

5mf

8Eν

]
which gives an overall finite increase which becomes more pronounced at smaller Eν

values due to the inverse dependence on Eν , though this is suppressed by the mass

mf .
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5.7 Mixing and Flavor Violation

By implicitly taking the interaction and mass bases to coincide, we have ef-

fectively avoided a discussion of mixing. A full treatment of this aspect requires

modification of Eq.(5.4). One simple extension involves a simple tripling of the above

Lagrangian, but the proliferation of unknown variables makes this solution unappeal-

ing. Another possible modification follows from U(1)Y invariance allowing for the

conservation of the properties of S and P is given by taking

P = −im
ν
i

2µ
δij ν̄

M
i γ

5νMj = − i

2µ
[mν

kU
∗
nkUkm] ν̄

I
nγ

5νIm

S =
mν

i

2µ
δij ν̄

M
i ν

M
j =

1

2µ
[mν

kU
∗
nkUkm] ν̄

I
nν

I
m

where the sum spans the three generations of neutrinos, mν
i are the neutrino masses

and Unk are the elements of the PMNS matrix [Pontecorvo (1958), Maki et al. (1962)]

which accounts for flavor mixing of neutrinos. Note that these now amount to field-

strength normalization conditions which set the allowable scale of perturbations about

the minima.

In addition to mixing among the neutrinos, the mass bases of the charged

fermions are defined by the diagonalization of the Yukawa couplings. In the interac-

tion basis, the Yukawa matrix need not be diagonal for any species of fermions [see

Akhmedov (2007)]. The modified form of Eq. (5.6) which accounts for mixing is then

Lint = −λmνimk

4µ2
δijδkl

[
ν̄Mi ν

M
j

] [
ψ̄M
k ψ

M
l

]
+ h.c.

= − vλ

4µ2
√
2
mνnU

∗
inUnjYkl

[
ν̄Ii ν

I
j

] [
ψ̄I
kψ

I
l

]
+ h.c., (5.10)

where the Yij are the Yukawa couplings in the interaction basis. It is clear that as

a result of this interaction being diagonal in the mass basis it cannot be diagonal in

the interaction basis (this is a general property of Eq.(5.5) when mixing is accounted

for). Therefore, the form of Eq. (5.10) will permit flavor-violating reactions such
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Figure 5.2. An example of one type of graph present at higher orders in perturbation
theory. This term will contribute to the interactions of all charged fermions but
may be expected to be overwhelmed by electromagnetic effects. However, nonzero
contributions may arise when considering long-range interactions of neutral composite
objects.

as νµ + e− → νµ + µ−. This is of particular significance to charged-current cross

section experiments at relatively small ∆Eν . If correct, Eq. (5.10) will contribute

a background to charged current events in beam-line experiments with a differential

cross section proportional to the kinematic terms in Eq. (5.9) with modifications to

the couplings from coherent sums over the neutrino flavor content.

5.8 Discussion

Given recent anomalies in the neutrino sector [Athanassopoulos et al. (1997),

Aguilar-Arevalo et al. (2018), Kostensalo et al. (2019), Giunti et al. (2022)], a strong

case may be made for the full exploration of any testable, predictive, and physically

well-motivated theory which consistently explains the origin of neutrino masses. We

take this to be such a theory. However, this is not to say the above model is without

challenges. Strict experimental limits exist which constrain the allowable values of

our model parameters. Neutrino scattering has been mentioned as the most direct

means of search for this process, but it is not the only experimental avenue sensitive to
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Lint. The proposed interaction necessarily contributes tree-level scattering diagrams

which include radiated photons in the final state and thus would appear as a false-

background in searches for the reaction e++e− → ν+ ν̄+γ which serves to constrain

the number of interacting neutrinos in the standard model [Gaemers et al. (1979)].

The rate of background for the proposed interaction is first order in αEMλme/µ (where

for the purpose of establishing an order of magnitude estimate we have assumed no

mixing). The leading order process at energies near the Z resonance enter in as

αEMGF . So, from observed rates [Acciarri et al. (1998), Janot and Jadach (2020)],

we obtain the very approximate constraint λ � GF (1eV)/me, where 1eV estimates

the neutrino mass scale. Additional physical searches which impose constraints on

this process include orthoposotronium to invisible searches [Vigo et al. (2018)] with

order of magnitude constraints similar to those from neutrino production limits above.

Of course, with all of these the experimental considerations, an investigation into

the renormalizability and radiative diagrams of the theory will yield more precise

constraints and predictions.

In addition to experimental results which constrain the parameter space, several

purely theoretical concerns exist. First, we have not addressed the issues of the

larger symmetry group of the electroweak theory. Second, while many of the results

of this chapter are independent of the exact SSB mechanism which generates the

mass of the neutrinos, depending only on the VEV of the operators P 2 + S2, careful

considerations of the scale of the potential must be made to constrain the regime

in which the expansion about the effective minima remains valid. Additionally a

justification of the (admittedly derivative) potential found in Eq. (5.4) is wanting.

Third, the form of the interactions in Eq. (5.5) and Eq. (5.6) admit higher order

terms that should exist in perturbation theory (c.f. Fig. 5.2) which are observable in

principle and may serve to facilitate an increase in long-range forces between neutral
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bodies (an analogous exchange is found in Feinberg and Sucher (1968) and recently

investigated in Segarra and Bernabéu (2020)). Fourth and finally, our interaction

has not been rigorously renormalized. Since severely unconstrained UV divergences

famously plague the generic four-fermion vertex, this could be a source of challenges

for the mechanism. However, as an effective model, an escape may exist via an appeal

to the return to an unbroken U(1)Y group at high energies.

Before concluding this section it is useful to place the proposed mechanism

in context within the wider literature. Many theories in which SSB mechanisms

adjacent to the Higgs give rise to masses for Majorana neutrinos have been explored

in the literature. In many of these [e.g., Chikashige et al. (1981), Ma et al. (2017),

Pisano and Sharma (1998) Latosinski et al. (2010),Gelmini and Roncadelli (1981)] the

spontaneous breaking of lepton number or the Peccei–Quinn symmetry [Peccei and

Quinn (1977)] is taken to generate a scalar field which couples to the neutrino fields

to provide the Majorana mass terms. Our model differs from these in several respects.

First, we take the mechanism which breaks the U(1)Y symmetry to arise from the

Majorana field itself. As a result, the degrees of freedom from the chiral NGB in

the Standard Model become absorbed into the definition of the neutrino field itself.

We are thereby absolved of the need for additional scalar fields. Second, through the

mechanism of chiral fixing the Majorana neutrino fields induce characteristic couplings

to the charged fermions which serve as a distinct signature of the interaction.

Finally, (gratuitously) we would be remiss to omit an interesting observation

made in passing during the above analysis. Using the Fierz rearrangement theorems

(found in, for example Okun (2013)) it is possible to write Eq. (5.6) as

Lint = −mfλ

4µ
(ν̄σµνν)(ψ̄σ

µν) + V (ψ, ν)
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where the terms contained in V (ψ, ν) are of equal order and include vector, pseu-

dovector, scalar, and pseudoscalar couplings. In our opinion, the form of this term is

suggestive: a tensorial coupling proportional to the fermion mass. It is conceivable

that such an interaction has implications for quantum theories of gravitation, though,

at the moment, this claim remains speculative.

5.9 Addendum: Chirality in Quantum Chromodynamics

The above constitutes an entirely consistent development of the implications

associated with a method by which the chiral basis of the standard model is fixed

by SSB arising from left-chiral Majorana neutrinos. There are, however, additional

means by which chiral symmetries are broken in the standard model. This section

details the chiral symmetry breaking in Quantum Chromodynamics (QCD). Our rea-

sons for presenting this are two-fold: First, to emphasize the differences between this

symmetry breaking and that introduced in this chapter. Second, to understand how

the QCD model fails to be satisfactory for our purposes.

In QCD–under certain conditions–pions obtain a non-zero expectation value

from quark-antiquark pairs arising from the vacuum. This is of importance in consid-

eration of the broken (approximate) chiral symmetry SU(2)L × SU(2)R
4. One finds

the spontaneously broken symmetry induces a divergence of the three axial compo-

nents of the Noether currents associated with the linear combinations of the symmetry

currents from generators of SU(2)A. The axial currents may be written as [Peskin

and Schroeder (2018)]

jµ5a(x) = Q̄γµγ5τaQ

4In some formulations of the chiral symmetry in QCD, the strange quark is considered “light”.

The symmetry group then becomes SU(3)L × SU(3)R.
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for the quark doublets Q and axial generators γ5τa. By identifying the pions as

the NGBs of the theory, Lorentz invariance dictates that the amplitude of the axial

current operating between the pion field and the vacuum can only be proportional to

the four-momentum of the pion [Weinberg (1995a)]. Therefore, the divergence of the

current is found to be [Peskin and Schroeder (2018)] Kaku (1993)].〈
0
∣∣∂µjµ5a (0)∣∣πb (p)

〉
= −m2

πfπδ
ab

with the indices a and b running over the three pions and the three axial currents.

The scale of the pion’s mass is therefore directly proportional to the scale of validity

of the symmetry. In the limit where the pions are massless, the symmetry is con-

served. Notice that, as pseudoscalar mesons, the odd-parity of the pions makes this

identification possible only for the axial currents [Weinberg (1995a).

We take the differences between the symmetries considered here and elsewhere

in this chapter as self-evident. However, taken as an analogy, there are many parallels.

For example, our previous result found the divergence of the weak hypercharge to be

proportional to the sum over the neutrino masses and may indicate that U(1)Y is an

approximate symmetry of the standard model, valid in the limit that the neutrino

masses vanish. If true, U(1)Y may be conserved to an extremely high degree but still

violated. The largest stumbling block to this interpretation is the existence of the Z

boson. Taken holistically, the successes of the electroweak model clash against any

theory in which the Z boson is not fundamental. This is the primary reason such an

approximate U(1)Y symmetry was not considered in this chapter.

5.10 Summary and Future Work

In this chapter, we have brought together the postulated physical significance

of the chiral basis with the electroweak theory of the standard model. Then by
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identifying a left-chiral Majorana neutrino field with the NGB of the electroweak

symmetry, which specifies the absolute chiral basis, we were able to introduce a plau-

sible mechanism by which the remaining U(1)Y symmetry is subsequently broken,

and the neutrino acquires mass. The resulting physical implications, including new

couplings between neutrinos and charged fermions, were investigated, calculated, and

discussed. Possible experimental verification was proposed through the measurement

of neutrino scattering cross sections. Lastly, differences are observed between the

proposed theory and the chiral symmetry breaking of QCD.

Future investigations into this topic must address those points raised in the

discussion above. Additionally, a comprehensive phenomenological development of

the underlying interactions remains crucial to assessing the validity of the proposed

physical theory.
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CHAPTER 6

CHIRALITY IN CURVED SPACE-TIME

6.1 Background

As described by Parker and Toms (2009), Wald (1994), Birrell and Davies

(1984), and Fulling et al. (1989) in their monographs on QFT in curved space-time,

as well as in the review papers by Benini et al. (2013), 2010, typical extensions of

QFT from flat to to curved space-time are done using the methods already developed

in flat space-time, with two major differences. First, no reference to the plane-wave

basis is possible, and calculations must employ ‘operator-valued distributions’ [Wald

(1994)]. Additionally, no preferred choice of Hilbert space exists, which indicates

that no uniquely defined vacuum exists in the theory (e.g., Fulling et al. (1989)). An

important requirement is that solutions to the QFT field equations have the same

structure as in flat space-time, which is ensured by considering the so-called global

hyperbolicity (e.g., Fulling et al. (1989), Wald (1994)). In general, the curved space-

times are fixed in that no dynamics are of concern in constructing the QFT; however,

see Wald (1994) for a semi-classical treatment of the backreaction problem.

All previous formulations of QFT in curved space-time fail at the level of iden-

tifying the proper physical vacuum. In this chapter, we posit that one contributing

factor to these failings is the lack of emphasis placed on specifying the local chi-

ral vacuum structure. We present the rationale for this conclusion and outline the

relationship between chirality and the Bogolubov transformations.
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6.2 The Vacuum Problem

Quantum field theory predicts that the vacuum is not empty but filled with

virtual particles constantly being created and annihilated. Experimental confirmation

of this picture is provided by the Casimir effect [Casimir (1948)]. The “standard”

vacuum of QFT is the infinite Minkowski vacuum, defined as the state in which the

expectation value of the operator describing the energy, momentum, and stresses of

fields is zero. This definition allows the Minkowski vacuum to be uniquely defined and

any theory of fields based on this definition to be self-consistent [Boi (2011), Milonni

(2013)].

In the General Theory of Relativity, just as the metric is only locally Minkowski,

the same principle holds for the vacuum. Only in the limit that the space is considered

flat may the vacuum structure be taken as reducing to that of Minkowski QFT. As

a result, the local vacuum properties vary from point to point with the curvature

of space-time. Thus when considering the coupling of quantum fields to curvature,

vacuum fluctuations pass a level of non-linearity into the definition of the vacuum.

The geometry of the space determines the ground state, but the vacuum fluctuations

modify this grounds state by contributing to the definition of the geometry and so

on. A mathematical description of the quantum vacuum that effectively embodies

this idea was given initially by Schwinger (1951).

Let T µν be a stress tensor of any combination of fields, including the gravita-

tional field. Then, the vacuum-to-vacuum amplitude is given by

〈out, vac|T µν |in, vac〉 = −i δ

δgµν
〈out, vac|in, vac〉

where the external field gµν serves as an arbitrary zero point for quantum fluctuations

of the gravitational field. For QFTs in Minkowksi space-time, the expectation value

of T µν is zero identically (otherwise this would not fit the definition of the vacuum

72



given above), and the observed vacuum fluctuations arise from 〈(T µν)2〉 6= 0. The

situation is very different in curved space-time, where curvature induces 〈T µν〉 6= 0

and the expectation value 〈(T µν)2〉 is the source of gravitational vacuum polarization.

Moreover, the topology of space-time plays an important role in gravitational vacuum

polarization. This brief description shows that the concept of the quantum vacuum in

QFT in curved space-time is not well-defined because there exist ambiguous ‘vacuum

states’ appearing in the background. The ambiguity of vacuum states results in

different numbers of particles, which prevents unique identification of the vacuum in

such theories. This is known as the vacuum problem in curved space-time and so far

its solution has remain elusive (Parker and Toms (2009), Wald (1994), Birrell and

Davies (1984), and Fulling et al. (1989)). An investigation into the application of

generalized chirality introduced in this dissertation in solving the vacuum problem in

curved space-time is now explored.

6.3 Bogolubov Transformation

Quantum states with different numbers of particles appear naturally in QFT

in curved space-time, and the problem becomes especially important in quantum

theories dealing with the creation of particles in curved space-time, such as Hawking’s

theory of the production of particles near the event horizon of a Schwarzschild black

hole [Hawking (1975)] and Parker’s theory of creation of particles in early stages of

the Universe, shortly after the Big Bang [Parker (1968), (1969), (1971)]. Let us now

briefly describe Hawking’s theory, with specific emphasis on its vacuum problem.

Hawking (1975) solved the Klein-Gordon equation in the Schwarzschild metric

for massless particles, and used its solutions to determine a flux of particles emerging

from the the black hole and reaching an external observer located far away from the
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black hole’s event horizon. Following [Parker and Toms (2009)], the solutions in the

entire space-time can be written as

φ =

∫
(aωfω + a†ωf

∗
ω) dω, (6.1)

where fω and f ∗
ω are a complete set of solutions of the Klein-Gordon equation. In this

Heisenberg picture, the operators aω and a†ω are time-independent. These solutions

are not unique as another set of solutions exists (pω and p∗ω) and correspond to the field

expansion in terms of positive frequencies, which is a well-defined set for the distant

observer. Since this set of solutions does not apply directly to the event horizon,

there is another set, qω and q∗ω, which can be made valid at the event horizon. The

ambiguity of solutions is caused by the vacuum problem in curved space-time [Fulling

et al. (1989)]. Using these expansions, the solutions in the entire space-time can be

written as [Parker and Toms (2009)]

φ =

∫
(bωpω + b†ωp

∗
ω + cωqω + c†ωq

∗
ω) dω, (6.2)

where bω are annihilation operators for particles reaching at late times the distant

observer.

Thus, there are two sets of solutions given by Eqs (6.1) and (6.2), and corre-

sponding to two different Fock spaces. It is the Bogolubov transformation that relates

these solutions

pω =

∫
(αωω′fω′ + βωω′f ∗

ω′) dω′, (6.3)

where αωω′ and βωω′ are the Bogolubov coefficients given by αωω′ = (fω′ , pω) and

βωω′ = −(f ∗
ω′ , pω). Now, a wave packet is formed from pω in a frequency range around

ω and it reaches the distant observer; for details, see [Hawking (1975)] or [Parker and

Toms (2009)].
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6.4 Chirality and Vacuum Structure

We may understand the effects of a chiral rotation on the vacuum by considering

a field before and after the rotation in the following way.

Let ψ be a quantized Dirac field solving the Dirac equation in flat space-time

given by

ψ =

∫
d3p

(2π)3
√
2Ep

∑
s=1,2

aspu
s (p) e−ip·x + bs†p v

s (p) e+ip·x

for the creation and annihilation operators as,p and b†p,s satisfying the anticommutation

relations {arp, as†q } = {brp, bs†q } = (2π)3δ(3)(p−q)δrs, with all others vanishing. In this

construction all energies are positive, and so we may ostensibly interpret as†q fermions

and bs†q as creating anti-fermions. In both cases the particles are created with positive

energies and with momentum p [Peskin and Schroeder (2018)].

Now, it is simple to show that if ψ solves the Dirac equation then ψ′ = ei(α/2)γ
5
ψ

solves the corresponding chiral equation(
iγµ∂µ −me−iαγ5

)
ψ′ = 0.

We find that when an appropriate phase is chosen, our spinors us(p) and vs(p) mix

under chiral rotations as

ei(α/2)γ
5

us (p) = cos
α

2
us (p) + i sin

α

2
v3−s (p)

ei(α/2)γ
5

vs (p) = cos
α

2
vs (p) + i sin

α

2
u3−s (p)

The resulting solution may therefore be written in the original spinor basis as

ψ′ = ei(α/2)γ
5

ψ = cos
α

2

∫
d3p

(2π)3
√

2Ep

∑
s=1,2

(
aspu

s (p) e−ip·x + bs†p v
s (p) e+ip·x)

+ i sin
α

2

∫
d3p

(2π)3
√

2Ep

∑
s=1,2

(
a3−s
p vs (p) e−ip·x + b(3−s)†

p us (p) e+ip·x).
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The first term is clearly just cos(α/2)ψ, the second term is in want of an interpretation.

The spinors in it appear attached to the “wrong” exponential terms. We define the

second term as ψ̃ and write

ψ′ = cos
α

2
ψ + i sin

α

2
ψ̃.

Using the known properties of ψ and ψ′ we find upon substitution of this form into

the CDE that ψ̃ satisfies the equation(
iγµ∂µ −me−iαγ5

)
ψ̃ = im cot

α

2

(
1− e−iαγ5

)
ψ

This suggests that ψ and ψ̃ are not wholly independent. Also, in the limit α → 0,

the right-hand side of this equation becomes formally infinite. Yet, operating from

the left with iγµ∂µ +meiαγ
5 we find the right hand side goes identically to zero and

the components of ψ̃ satisfy the KG relation, (∂µ∂µ − m2)ψ̃ = 0, independently of

α. This suggests the field expansion ψ̃ has some physical validity independently of ψ

and α. The solution is to interpret these quanta as CPT-conjugated fields–negative

energy states moving oppositely the direction implied by their creation operators.

The above highlights the unusual role chirality plays as a symmetry within the

standard model. Unlike the unitary transformations that underlie the fundamental

interactions’ gauge fields, the choice of chiral basis provides inequivalent physical

descriptions of the physical energies and hence the vacuum. To illustrate this point,

consider two observers who choose different chiral bases in formulating a quantum

field theory. These are not related by any unitary transformation and are not directly

equatable. Therefore, what one takes to be valid positive energy states, the other

necessarily views as mixtures of negative energy states and vice-versa1. Thus, a chiral
1One possibility which escapes this conclusion is if the system in question is invariant under a

global chiral rotation. The validity of such a transformation in curved space is unlikely, though it

remains an open question in curved space-time [Deser et al. (1980), Parker and Toms (2009)].
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rotation is a vacuum transformation and has direct analogies with the Bogolubov

transformations presented above.

6.5 Summary and Future Work

For the reasons described above, a full investigation into the chiral vacuum

structure of curved space-time based on an axiomatic quantum field theory [Hollands

and Wald (2010)] will likely yield additional insights into the vacuum problem. The

mixing of negative modes through chiral means is a new observation indicative of a

more significant role for chirality in the formulation QFT in curved space-time than

has previously been appreciated [in, for example, Parker and Toms (2009)]. A full

enunciation of the concept of chirality via the vierbein (or tetrad) formalism [Penrose

and Rindler (1984a), Penrose and Rindler (1984b)] is a necessary next step in these

investigations, with the goal being a complete covariant definition of chirality.
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CHAPTER 7

CONCLUDING REMARKS

In the course of this document an attempt has been made to explore as compre-

hensively as possible the issues arising from aspects of chriality as they exist at the

most fundamental levels of physics. In doing so several conclusions were ultimately

reached regarding the subject. First, chiral freedoms are a necessary an inherent

characteristic of any theory of fermions in which the nature of parity remains uncon-

strained [Watson and Musielak (2020) and Watson and Musielak (2021b)]. Second,

these degrees of freedom have representational importance and must be considered

when developing mathematical descriptions of free fields due to the underlying chi-

ral representations having the ability to modify the physical properties of observed

representations vis. a vis. the manifestation of auxiliary fields [Watson and Musielak

(2021a)]. And third, the concept of chirality and chiral bases may be given physical

significance through the spontaneous breaking of weak hypercharge symmetries within

the standard model. The apparent violation, taken as proportional to the masses of

the neutrino fields, gives rise to new couplings as a necessary consequence of the iden-

tification of the chiral bases dependence on neutrino field configurations. Finally, ob-

servations were made regarding the interpretation of second-quantized chiral-rotated

fields. The negative energy modes which are manifest after rotation were shown to

have significance to the vacuum problem in curved space-time and brief outline of

determining the significance in curved spaces was presented.
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A.1 Notations and Conventions

Here we summarize our notational and mathematical conventions used through-

out this dissertation:

Upper indexed vectors (vµ) denote contravariant vectors which transform like

the coordinate differentials dxµ. Lower indexed vectors (vµ) denote covariant vectors

which transform like the gradient ∂µ.

The Einstein summation convention is employed throughout: repeated Latin in-

dices spanning 1, 2, 3 are always summed over when repeated. Greek indices spanning

0, 1, 2, 3 are summed over only when repeated in lower and upper positions.

The Minkowski metric is denoted by ηµν and the metric signature is taken to

be “mostly negative”, e.g. η00 = +1 and η11 = η22 = η33 = −1 with all non-diagonal

elements zero. Metrics differing from flat spacetimes are given by the more general

gµν .

The Pauli matrices are written contravariantly as σi and occasionally it will be

useful to include among these the 2-by-2 identity which we denote as σ0. We may

then summarize the matrices as

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 ,
A.2 Acronyms

An attempt is made to avoid confusion, but for convenience an incomplete list

of some of the more frequently employed acronyms found in the text is given here:

BW = Bargmann-Wigner

CBW = Chiral Bargmann-Wigner

CDE = Chiral Dirac Equation

CPT = Charge, Parity, and Time
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DE = Dirac Equation

DM = Dark Matter

EW = Electroweak

NGB = Nambu-Goldstone Boson

OM = Ordinary Matter

QCD = Quantum Chromodynamics

QED = Quantum Electrodynamics

QFT = Quantum Field Theory

SSB = Spontaneous Symmetry Breaking

SM = Standard Model (of Particle Physics)

VEV = Vacuum Expectation Value
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B.1 Raw Computations: Bargmann-Wigner Equations

Starting from the Dirac equation:

(iγµ∂µ −m)ψ = 0

We have proven (we suppose it is well known) that this equation remains Poincaré

invariant under the chiral transformation which changes the field’s discrete properties:

γµ → γµ ψ → eiαγ
5

ψ

In which case we obtain: (
iγµ∂µ −me−2iαγ5

)
ψ′ = 0

This is to say, the free Dirac equation exhibits a Poincaré-invariant chiral degree

of freedom. Note the distinct difference between the above transformation and any

unitary transformation of the form:

γµ → UγµU † ψ → ψ′ = Uψ

Such that yields: (
i
[
UγµU †] ∂µ −m

)
ψ′ = 0

A chiral transformation is emphatically not a unitary spin transformation. The

chiral degree of freedom for the free Dirac field is a necessary consequence of the two

constituent fields contained in the Dirac bi-spinors. We may “tear apart” a free-Dirac

spinor and obtain the constituent spinors (in the chiral basis):

ψ =

χL

χR


We now wish to solve the general equation(

iγµ∂µ −me−2iαγ5
)
ψ = 0
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Moving to the standard basis, in the rest frame this equation takes the form

0 =

E −m cos 2α im sin 2α

im sin 2α −E −m cos 2α


χ1

χ2


Where E = ±m. So:

0 = (±m−m cos 2α)χ1 + (im sin 2α)χ2

0 = (im sin 2α)χ1 + (∓m−m cos 2α)χ2

So, for positive energies:

ψ(+) =

 cosαχ

i sinαχ


And, for negative energies:

ψ(+) =

i sinαχ
cosαχ


This yields the simplest orthogonal solutions given by χ↑ = {1, 0} and χ↓ = {0, 1}:

ω(1)(α) =



cosα

0

i sinα

0


, ω(2)(α) =



0

cosα

0

i sinα


, ω(3)(α) =



i sinα

0

cosα

0


, ω(4)(α) =



0

i sinα

0

cosα


Which satisfy: (

iγµ∂µ −me−2iαγ5
)
ω(+) (α) eimt = 0(

iγµ∂µ −me−2iαγ5
)
ω(−) (α) e−imt = 0

for “+” ∈ {1, 2} and “−” ∈ {3, 4} These equations are equivalent to:(
γ0 − e−2iαγ5

)
ω(+) (α) = 0(

γ0 + e−2iαγ5
)
ω(−) (α) = 0
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The chiral angle connects these solutions (up to a normalization factor)

ω(3) (α) = −iω(1)
(
α +

π

2

)
= γ5ω(1) (α)

ω(4) (α) = −iω(2)
(
α +

π

2

)
= γ5ω(2) (α)

Note that since eiαγ5 commutes with the spin operators we find that ω(±) define

particle states with definite spin and mass. This means we may apply the scheme of

Bargmann and Wigner in constructing higher order equations. Note, however, that

there is no need to sample strictly from spinors of equivalent chiral bases. Taking

two sets of spinors ω(i) (α) and ω(i) (β), we may define the neither symmetric or anti-

symmetric at-rest multispinors:

ω(1,1) (α, β) = ω(1) (α)⊗ ω(1) (β)

ω(1,2) (α, β) = ω(2,1) (α, β) = ω(1) (α)⊗ ω(2) (β) + ω(2) (α)⊗ ω(1) (β)

ω(2,2) (α, β) = ω(2) (α)⊗ ω(2) (β)

These multispinors satisfy the following equations(
γµpµ −me−2iαγ5

)µ
µ′
ω(+,+)
µν (α, β; p) = 0(

γµpµ −me−2iβγ5
)ν
ν′
ω(+,+)
µν (α, β; p) = 0

We then take the symmetric and anti-symmetric parts of these multispinors:

Ω(+,+)
µν (α, β; p) =

1

2

(
ω(+,+)
µν (α, β; p) + ω(+,+)

νµ (α, β; p)
)

Ω̃(+,+)
µν (α, β; p) =

1

2

(
ω(+,+)
µν (α, β; p)− ω(+,+)

νµ (α, β; p)
)

These spinors must satisfy the coupled equations (suppressing the functional

dependence for brevity):[
γµpµ −

m

2

(
e−2iαγ5

+ e−2iβγ5
)]µ

µ′
Ω(+,+)

µν =
[ m

2

(
e−2iαγ5 − e−2iβγ5

)]µ
µ′
Ω̃(+,+)

µν[
γµpµ −

m

2

(
e−2iαγ5

+ e−2iβγ5
)]µ

µ′
Ω̃(+,+)

µν =
[m
2

(
e−2iαγ5 − e−2iβγ5

)]µ
µ′
Ω(+,+)

µν
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Or, noting:

1

2

(
e−2iαγ5

+ e−2iβγ5
)
= cos (α− β)e−i(α+β)γ5

1

2

(
e−2iαγ5 − e−2iβγ5

)
= −i sin (α− β)γ5e−i(α+β)γ5

We find these coupled equations may be written:[
γµpµ −m cos (α− β)e−i(α+β)γ5

]µ
µ′
Ω(+,+)

µν =
[
−im sin (α− β)γ5e−i(α+β)γ5

]µ
µ′
Ω̃(+,+)

µν[
γµpµ −m cos (α− β)e−i(α+β)γ5

]µ
µ′
Ω̃(+,+)

µν =
[
−im sin (α− β)γ5e−i(α+β)γ5

]µ
µ′
Ω(+,+)

µν

And thus, we find the positive energy solutions corresponding to coupled sym-

metric and antisymmetric wavefunctions existing

ψ(+,+)
µν (xµ) =

∑
(+,+)

∫
C

(+,+)
1 (pµ) Ω(+,+)

µν (α, β; pµ) e−ipµxµ

d3p

ψ̃(+,+)
µν (xµ) =

∑
(+,+)

∫
C

(+,+)
2 (pµ) Ω̃(+,+)

µν (α, β; pµ) e−ipµxµ

d3p

Where (+,+) ranges over (1,1), (1,2), (2,2). Then these fields must satisfy the coupled

equations :[
iγµ∂µ −m cos (α− β)e−i(α+β)γ5

]µ
µ′
ψ(+,+)
µν =

[
−im sin (α− β)γ5e−i(α+β)γ5

]µ
µ′
ψ̃(+,+)
µν[

iγµ∂µ −m cos (α− β)e−i(α+β)γ5
]µ
µ′
ψ̃(+,+)
µν =

[
−im sin (α− β)γ5e−i(α+β)γ5

]µ
µ′
ψ(+,+)
µν

Similar arguments hold for negative energy solutions. So, we may construct the most

general symmetric and anti-symmetric solutions:

Ψµν(α, β;x
µ) = a1ψ

(+,+)
µν (α, β, xµ) + b1ψ

(−,−)
µν (α, β, xµ), (B.1)

and

Ψ̃µν(α, β;x
µ) = a2ψ̃

(+,+)
µν (α, β, xµ) + b2ψ̃

(−.−)
µν (α, β, xµ) (B.2)
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Which must satisfy the coupled equations:[
iγσ∂σ −m cos (α− β)e−i(α+β)γ5

]µ
µ′
Ψµν (α, β;x

µ) =
[
−im sin (α− β)γ5e−i(α+β)γ5

]µ
µ′
Ψ̃µν (α, β;x

µ)[
iγσ∂σ −m cos (α− β)e−i(α+β)γ5

]µ
µ′
Ψ̃µν (α, β;x

µ) =
[
−im sin (α− β)γ5e−i(α+β)γ5

]µ
µ′
Ψµν (α, β;x

µ)

These equations can be easily separated to yield:[
∂µ∂

µ +m2
]µ
µ′ Ψµν (α, β;x

µ) = 0

[
∂µ∂

µ +m2
]µ
µ′ Ψ̃µν (α, β;x

µ) = 0

Thus, each component of the multispinors satisfies the Klein-Gordon equation. Con-

sidering the matrix form of the above equations:(
iγµ∂µΨ−m cos (α− β)e−i(α+β)γ5

Ψ
)
= −im sin (α− β)γ5e−i(α+β)γ5

Ψ̃ (B.3)(
i∂µΨ(γµ)T −m cos (α− β)Ψe−i(α+β)γ5

)
= +im sin (α− β)Ψ̃γ5e−i(α+β)γ5 (B.4)(

iγσ∂σΨ̃−m cos (α− β)e−i(α+β)γ5

Ψ̃
)
= −im sin (α− β)γ5e−i(α+β)γ5

Ψ (B.5)(
i∂µΨ̃ (γµ)T −m cos (α− β)Ψ̃e−i(α+β)γ5

)
= +im sin (α− β)Ψγ5e−i(α+β)γ5 (B.6)

And taking:

Ψ = mAσγ
σĈ +

1

2
Fστ σ̂

στ Ĉ

Ψ̃ = ρe−iθγ5

Ĉ +mBσγ
σγ5Ĉ

Where Ĉ = iγ2γ0 and σ̂µν ≡ i
2
[γµ, γν ]. Then, noting Ĉ (γµ)T = −γµĈ along with

the relations

{γµ, γν} = 2ηµν

[γµ, γν ] = −2iσµν

[γµ, σ̂στ ] = 2i (ηµσγτ − ηµτγσ)

{γµ, σ̂στ} = −2εµστργργ
5
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Fστγ
5σ̂στ =

i

2
F µνεµνστ σ̂

στ

Fστe
−i(α+β)γ5

σ̂στ = Fστ σ̂
στ cos (α + β) +

1

2
F µν σ̂στ εµνστ sin (α + β)

Fστγ
5e−i(α+β)γ5

σ̂στ = −iFστ σ̂
στ sin (α + β) +

i

2
F µν σ̂στ εµνστ cos (α + β)

[
Ψ, e−i(α+β)γ5

]
= −2im sin (α + β)Aσγ

σγ5Ĉ{
Ψ , e−i(α+β)γ5

}
= +2m cos (α + β)Aσγ

σĈ + Fστe
−i(α+β)γ5

σ̂στ Ĉ[
Ψ, γ5e−i(α+β)γ5

]
= +2m cos (α + β)Aσγ

σγ5Ĉ{
Ψ, γ5e−i(α+β)γ5

}
= −2im sin (α + β)Aσγ

σĈ + Fστγ
5e−i(α+β)γ5

σ̂στ Ĉ[
Ψ̃, e−i(α+β)γ5

]
= −2im sin (α + β)Bσγ

σĈ{
Ψ̃, e−i(α+β)γ5

}
= +2m cos (α + β)Bσγ

σγ5Ĉ + 2ρe−i(α+β+θ)γ5

Ĉ[
Ψ̃, γ5e−i(α+β)γ5

]
= +2mBσ cos (α + β)γσ Ĉ{

Ψ̃, γ5e−i(α+β)γ5
}
= −2im sin (α + β)Bσγ

σγ5Ĉ − 2ρe−i(α+β+θ)γ5

γ5Ĉ

iγµΨ+ iΨ(γµ)T = imAσ [γ
µ, γσ] Ĉ +

i

2
Fστ [γ

µ, σ̂στ ] Ĉ

iγµΨ− iΨ(γµ)T = imAσ {γµγσ} Ĉ +
i

2
Fστ {γµ, σ̂στ} Ĉ

iγµΨ̃ + iΨ̃ (γµ)T = imBσ {γµ, γσ} γ5Ĉ + 2ρ sin θγµγ5Ĉ

iγµΨ̃− iΨ̃ (γµ)T = imBσ [γ
µ, γσ] γ5Ĉ + 2iρ cos θγµĈ
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And

∂µAσ [γ
µ, γσ] = −i (∂µAσ − ∂σAµ)σ

µσ

∂µAσ {γµ, γσ} = 2∂µAµ

∂µBσ [γ
µ, γσ] γ5 = −i (∂µBσ − ∂σBµ) γ

5σµσ

∂µBσ {γµ, γσ} γ5 = 2∂µBµγ
5

∂µFστ [γ
µ, σ̂στ ] = 4i∂σFστγ

τ

∂µFστ {γµ, σ̂στ} = −2∂µF στγργ5εµστρ

We find the following reduction the linearly independent combinations of the multi-

spinor matrix equations.

Eq. (B.3) + Eq. (B.4):

i∂µ

(
γµΨ+Ψ(γµ)T

)
= m cos (α− β){Ψ, e−i(α+β)γ5}+ im sin (α− β)[Ψ̃, γ5e−i(α+β)γ5

]

Reduces to:

Fστ cos (α + β) +
1

2
F µνεµνστ sin (α + β) =

1

cos (α− β)
(∂σAτ − ∂τAσ)

∂τFτσ = −m2 cos (α + β) (Aσ cos (α− β) + iBσ sin (α− β))

Eq. (B.3) − Eq. (B.4):

i∂µ

(
Ψ(γµ)T − γµΨ

)
= m cos (α− β)[Ψ, e−i(α+β)γ5

] + im sin (α− β){Ψ̃, γ5e−i(α+β)γ5}

Reduces to:

∂µAµ = −iρ sin (α− β) sin (α + β + θ)

ρ sin (α− β) cos (α + β + θ) = 0

−1

2
∂µF στεµστρ = m2 sin (α + β) (Aρ cos (α− β) + iBρ sin (α− β))
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Eq. (B.5) + Eq. (B.6):

i∂µ

(
Ψ̃ (γµ)T − γµΨ̃

)
= m cos (α− β)[Ψ̃, e−i(α+β)γ5

] + im sin (α− β){Ψ, γ5e−i(α+β)γ5}

Reduces to:

∂σ (ρ cos θ) = im2 sin (α + β) (Aσ sin (α− β)− iBσ cos (α− β))

Fστ sin (α + β)− 1

2
F µνεµνστ cos (α + β) = − i

2 sin (α− β)
(∂µBν − ∂µBν) εµνστ

Eq. (B.5) − Eq. (B.6):

i∂σ

(
γσΨ̃ + Ψ̃ (γσ)T

)
= m cos (α− β){Ψ̃, e−i(α+β)γ5}+ im sin (α− β)[Ψ, γ5e−i(α+β)γ5

]

Reduces to:

∂µBµ = −ρ cos (α− β) sin (α + β + θ)

ρ cos (α− β) cos (α + β + θ) = 0

∂σ (ρ sin θ) = im2 cos (α + β) (Aσ sin (α− β)− iBσ cos (α− β))

Then, by making use of the identity ερλστ εµνστ = −2δρµδ
λ
ν and defining two new

fields A′
µ and B′

µ as a rotation of our original fields:A′
µ

iB′
µ

 =

 cos (α− β) sin (α− β)

− sin (α− β) cos (α− β)


Aµ

iBµ


we observe that ρ sin (α− β) cos (α + β + θ) = 0 and ρ cos (α− β) cos (α + β + θ) = 0

require either ρ = 0 or α + β + θ = π
2
, we find taking ρ = 0 yields:

∂σ (∂σA
′
τ − ∂τA

′
σ) +m2A′

τ = 0

B′
τ = 0

While taking θ = π
2
− (α + β) reduces the set of equations to:
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Fστ cos (α + β) +
1

2
∂σF µνεµνστ sin (α + β)− (∂σA

′
τ − ∂τA

′
σ) = 0

∂σB
′
τ − ∂τB

′
σ = 0

∂σFστ +m2A′
τ cos (α + β) = 0

1

2
∂σF µνεµνστ +m2A′

τ sin (α + β) = 0 ,

∂µA′
µ + iρ sin (2α− 2β) = 0

∂µB′
µ + ρ cos (2α− 2β) = 0

∂σρ−m2B′
σ = 0

Then, taking the divergence of the first term and eliminating explicit dependence on

Fµν using the divergence relations for it and the dual tensor given by:

∂σFστ = −m2A′
τ cos (α + β)

1

2
∂σF µνεµνστ = −m2A′

τ sin (α + β)

we obtain the set of constraints:

∂µ
(
∂µA

′
ν − ∂νA

′
µ

)
+m2A′

ν = 0

∂µB
′
ν − ∂νB

′
µ = 0

∂σρ−m2B′
σ = 0

∂µA′
µ + iρ sin (2α− 2β) = 0

∂µB′
µ + ρ cos (2α− 2β) = 0

Which, upon elimination of B′
µ reduce to

∂ν
(
∂νA

′
µ − ∂µA

′
ν

)
+m2A′

µ = 0(
∂µ∂µ +m2 cos(2α− 2β)

)
ρ = 0

∂µA′
µ + iρ sin (2α− 2β) = 0

91



B.2 Raw Computations: Cross Sections

Given the matrix element as the coherent sum

MSM +Mλ = − iGF

2
√
2

[
ūν (k

′) γµ
(
1− γ5

)
uν (k)

] [
ūf (p

′) γµ
(
cV − cAγ

5
)
uf (p)

]
−imλ

4µ
[ūν (k

′)uν (k)] [ūf (p
′)uf (p)]

We find that for the cross terms in the squared amplitude, we may write:

∆ |M|2 = (M∗
SMMλ +MSMM∗

λ)

This is:

∆ |M|2 = 2Re
(
− GFmλ

8µ
√
2

[
ūν (k

′) γµ
(
1− γ5

)
uν (k)

]
[uν (k) ūν (k

′)]

×
[
ūf (p

′) γµ
(
cV − cAγ

5
)
uf (p)

]
[uf (p) ūf (p

′)]
)

And so:

∆ |M|2 = −GFmλ

4µ
√
2
Re

[
Tr
{(∑

uν ūν

)
k′
γσ
(
1− γ5

) (∑
uν ūν

)
k

}
×Tr

{(∑
uf ūf

)
p′
γσ
(
cV − cAγ

5
) (∑

uf ūf

)
p

}]
Using our completeness relations (taking the neutrino to be effectively massless) we

find:

∆ |M|2 = −GFmλ

4µ
√
2
Re

[
ηστk

′
µkνTr

{(
γµγτγν − γµγτγ5γν

) }
×Tr

{(
γµp′µ +m

)
γσ
(
cV − cAγ

5
)
(γνpν +m)

} ]
Performing the traces we find these terms disappear due to the odd number of gamma

matrices present. So, moving on to the term Mλ by itself:

|M|2 = m2λ2

16µ2
[ūν (k

′)uν (k)] [ūν (k)uν (k
′)] [ūf (p

′)uf (p)] [ūf (p)uf (p
′)] (B.7)

= Tr
{(∑

uν ūν

)
k′

(∑
uν ūν

)
k

}
× Tr

{(∑
uf ūf

)
p′

(∑
uf ūf

)
p

}
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k′µkνTr {γµγν} × Tr
{(
γµγνp′µpν +mγµ

(
p′µ + pµ

)
+m2

)}
= p′σpτk

′
µkνTr {γµγν} × Tr {γσγτ}+ 4m2k′µkνTr {γµγν}

Using the identity:

k′µkνTr {γµγν} = 4k′ · k

We obtain

|Mλ|2 =
m2λ2

4µ2
(k′ · k)

[
4 (p′ · p) +m2

f

]
=
m2

fλ
2

4µ2

(
pinν · poutν

) [
4
(
pinf · poutf

)
+m2

f

]
The differential cross section for two-body scattering may be written as (Thomson

(2013), Particle Data Group (2020)):

dσ =
d3poutν d3poutf√(

pinν · pinf
)2 −m2

νm
2
f

|M|2

64π2Eout
ν Eout

f

δ
(
Ein

ν + Ein
f − Eout

ν − Eout
f

)
×δ3

(
~pinν + ~pinf − ~poutν − ~poutf

)
For neutrino-fermion scattering in the lab frame, our kinematics are taken such that:

Ein
f = mf ~pinf = ~0

And we take mν to be negligible. Then we find√(
pinν · pinf

)2 −m2
νm

2
f =

(
pinν · pinf

)
= Ein

ν mf

And so:

σ =

∫ ¯|M|2

64π2Ein
ν mfEout

ν Eout
f

δ
(
Ein

ν + Ein
f − Eout

ν − Eout
f

)
δ3
(
~pinν + ~pinf − ~poutν − ~poutf

)
d3poutν d3poutf

Performing the integral over d3poutν with the help of the delta function we obtain the

constraint ~poutν = ~pinν − ~poutf . Therefore, neglecting the mass of the neutrino we find:

Eout
ν =

∣∣~poutν

∣∣ =√|~pinν |2 +
∣∣~poutf

∣∣2 − 2~pinν · ~poutf
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Now, taking ~pinν to be along the z-axis and defining θf as the scattering angle of the

charged fermion, we may expand d3poutf as:

d3poutf = Eout
f

2
dEout

f d (cos θf ) dφf

And take: (
~pinν · ~poutf

)
= Ein

ν

√(
Eout

f

)2 −m2
f cos θf

Then we have:

Eout
ν =

∣∣~pinν − ~poutf

∣∣ =√(Ein
ν )2 +

(
Eout

f

)2 − 2Ein
ν

√(
Eout

f

)2 −m2
f cos θf

So we may write the cross section as:

σ =

∫ |M|2Eout
f

32πmf

∣∣~pinν − ~poutf

∣∣Ein
ν

dEout
f d (cos θf )

× δ

(
Ein

ν − Eout
f +mf −

√
(Ein

ν )2 +
(
Eout

f

)2 − 2Ein
ν

√(
Eout

f

)2 −m2
f cos θf

)
Where we have performed the φν integral from 0 to 2π. We then note the property

of the delta function:

δ (g (x)) =
∑ δ (x− xi)

|g′ (xi)|

Where the sum is over the solutions to g (xi) = 0 denoted xi. We find the solutions

to the term in the delta function to be given by the relation:

cos θf =
1

Ein
ν

(mf + Ein
ν )(

mf + Ein
f

)√(Eout
f

)2 −m2
f

Which is equivalent to keeping the particles on its mass shell. Then:

δ
(
Ein

ν +mf − Eout
ν − Eout

f

)
=

Ein
ν − Eout

f +mf

Ein
ν

√(
Eout

f

)2 −m2
f

δ

(
cos θf −

1

Ein
ν

(mf + Ein
ν )(

mf + Eout
f

)√(Eout
f

)2 −m2
f

)
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And so:

dσ

dEout
f

=
¯|M|2Eout

f

32πmf (Ein
ν )2

1√(
Eout

f

)2 −m2
f

Or, by taking Eout
f � mf :

dσ

dEout
f

=
¯|M|2

32πmf (Ein
ν )2

Now, taking the matrix element

|Mλ|2 =
m2λ2

4µ2
(k′ · k)

[
4 (p′ · p) +m2

f

]
=
m2λ2

4µ2

(
pinν · poutν

) [
4
(
pinf · poutf

)
+m2

f

]
Substituting the the lab frame products:

pinν · poutν = mf

(
Ein

ν − Eout
ν

)
pinν · pinf = mfE

in
ν

pinν · poutf = poutν · pinf = mfE
out
ν

pinf · poutf = mf

(
Ein

ν − Eout
ν +mf

)
We find the differential cross section to be:

dσλ
dEout

f

=
m3

fλ
2

32π µ2

[(
Ein

ν − Eout
ν

Ein
ν

)2

+
5mf

4Ein
ν

(
Ein

ν − Eout
ν

Ein
ν

)]
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