
TOWARDS SECURITY AWARE CROWDSOURCING

by
MINGYAN XIAO

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment

of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON
August 2022



Copyright © by Mingyan Xiao 2022
All Rights Reserved



To my family



ACKNOWLEDGEMENTS
First of all, I would like to thank my supervisor, Dr. Ming Li, for her guidance

and encouragement through my PhD study. Her invaluable advice and rich experience in
research is extremely helpful to my PhD study and will continue enlightening me in future
academic career. She also offers a lot of helps in my daily life. She is not only a supervisor,
but also a role model and a friend of mine. I respect and admire her pursuit of perfection in
research, creative ideas, and dedication to students.

I also want to thank my committee members Dr. Hao Che, Dr. Chengkai Li and Dr.
Shirin Nilizadeh, for serving on my supervisory committee and offering all the assistance
in different stages of my PhD study.

I want to thank all the labmates in the MobiSec group for providing me uncondi-
tional help in both research and daily life. They gave me valuable advice and consolation
when I was faced with challenges and difficulties. They are Huadi Zhu, Srinivasan Murali,
Chaowei Wang, Youngtak Cho, and graduated group members Wenqiang Jin and Tianhao
Li.

Lastly, but most importantly, I would like to express my deep gratitude to my parents
and my beloved boyfriend who always encourage, console and support me when I need
them.

August, 2022

iv



ABSTRACT

TOWARDS SECURITY AWARE CROWDSOURCING

Mingyan Xiao
The University of Texas at Arlington, 2022

Supervising Professor: Dr. Ming Li

Crowdsourcing has emerged as a novel problem-solving paradigm, which facilitates

addressing problems by outsourcing them to the crowd. The openness of crowdsourcing

renders it vulnerable to misbehaving workers that impair data trustworthiness. They may

attempt to submit calibrated data/parameters to manipulate crowdsourcing outcomes for

higher beneficial gain. Those misbehaviors would infringe crowdsourcing’s process and,

overall, its usefulness.

In this dissertation, I intend to secure the crowdsourcing platform from worker’s un-

trustworthy data reporting. The main contributions are mainly threefold. First, we secure

task allocation, an essential but vulnerable stage in crowdsourcing, from individual misre-

porting. To be specific, misbehaving workers may manipulate task allocation outcomes by

uploading falsified parameters. Under the framework of incentive mechanism design, we

propose a defense scheme that obtains accurate task allocation outcomes even with work-

ers’ manipulated parameters. Second, we further consider workers’ collusive behaviors in

the stage of task allocation. Strategic workers may form coalitions and rig their param-

eters together to game the system for extra benefit. To suppress collusion, we leverage

incentive mechanism design to calibrate proper payment, leaving workers limited motiva-

tion to collude. Third, in addition to task allocation, we also investigate the misbehaviors
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from strategic workers in the stage of answer collection. A unified framework is developed

to protect these two stages from workers’ strategic manipulation simultaneously. Our ap-

proach still falls into the category of incentive design. Payment rule is carefully designed,

such that workers gain more for truth-telling. It thus motivates workers to honestly report

genuine data and parameters in both stages.
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CHAPTER 1

INTRODUCTION
Over the last decade, there existed a wide spectrum of crowdsourcing applications.

For example, the machine learning community uses crowdsourcing to build training datasets
of image labelling, object recognition, video tagging, etc [51]. The success of those appli-
cations have driven a series of industrial successes, including micro-task crowdsourcing
markets, e.g., Amazon Mturk [129], P2P ride-sharing, e.g., Uber [89], real-time online-to-
offline service, e.g., GrubHub [86], and citizen sensing service, e.g., Waze [84].

The effectiveness of crowdsourcing typically relies on the participation of a great
number of human workers. In the case of Amazon Mturk, it is reported that there are
250,810 MTurk workers worldwide who have completed at least one Human Intelligence
Task (HIT) posted through the TurkPrime platform. Basically, any Internet user can reg-
ister as a Mturk worker. On the other hand, the very openness which allows anyone to
participate, also exposes crowdsourcing to unreliable data and parameters reported by un-
trustworthy workers. Empirical study has shown that, albeit being banned, parameter ma-
nipulation widely exists in crowdsourcing and has a significant impact [52]. In particular,
parameter manipulation refers to workers, as both individuals or in a coalition, uploading
falsified parameters to manipulate crowdsourcing’s task allocation outcomes to increase
their benefit. Besides parameter manipulation, misbehaving workers may also report falsi-
fied task answers in the answer collection stage to maximize their benefits [135]. Conven-
tional security approaches like encryption or digital signature are ineffective, as the mis-
behaving workers alter the parameters before they are encrypted and signed. Prior efforts
that discard untrustworthy data by detections or reputation systems either rely on assump-
tions that workers adopt consistent misreport strategies [4, 5, 92], or knowledge of ground
truth/historical data [107] that may not be universally available.

In this dissertation, I aim to secure crowdsourcing from untrustworthy data/parameter
reporting. The rest of the dissertation is organized as follows.

In Chapter 2, I seek to defend parameter manipulation conducted by individual work-
ers. Crowdsourcing systems usually propose task allocation optimization problems to boost
effective resource utilization. In an ideal scenario, workers are trusted to report their ac-
curate parameters, e.g., bids, to the platform, so that task allocation optimization problems
can be correctly formulated and calculated. Nonetheless, strategic workers can explore il-
legal benefit gain by simply uploading falsified parameters. Even worse, such misbehavior
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is difficult to detect. To tackle this issue, we ask each worker to report its tunable “indica-
tor” instead of original parameters. We construct a surrogate task assignment optimization
problem based on those “indicators”. If, with a careful design of “indicators”, the optimal
solution of the surrogate optimization and the original one are identical, we can bypass
the original problem but get its optimal solution by solving the surrogate problem. Then,
the problem becomes how to elicit workers to offer our desired “indicators”. We design
an effective payment rule, under which the worker’s utility is maximized when it reports
desired “indicators”. The proposed scheme is evaluated through simulation studies.

Chapter 3 investigates how to resist parameter manipulation when multiple workers
collude. Designing task allocation that discourage workers from cheating and instead en-
courage them to reveal their true cost information has drawn significant attention. However,
the existing efforts have been focusing on tackling individual cheating misbehaviors, while
the scenarios that workers strategically form collusion coalitions and rig their parameters,
e.g., bids, together to manipulate auction outcomes have received little attention. To fill this
gap, in this work, we develop a (t, p)-collusion resistant scheme that ensures no coalition of
weighted cardinality t can improve its group utility by coordinating the bids at a probability
of p. This work takes into account the unique features of crowdsourcing, such as diverse
worker types and reputations, in the design. The proposed scheme can suppress a broad
spectrum of collusion strategies. Besides, desirable properties, including p-truthfulness
and p-individual rationality, are also achieved. To provide a comprehensive evaluation, we
first theoretically prove our scheme’s collusion resistance and then experimentally verify
our analytical conclusion using a real-world dataset.

In addition to the stage of task allocation, Chapter 4 further secures the stage of
data collection. In this stage, workers are required to submit their allocated tasks answers
to the platform. Misbehaving workers can possibly alter their answers, deteriorating the
accuracy of tasks. So far, the existing works treat parameter misreporting (in the task allo-
cation stage) and answer misreporting (in the answer collection stage) separately. Instead,
we aim to develop a unified framework that simultaneously protects two different stages
from workers’ strategic manipulation. We plan to leverage incentive design to motivate
workers to honestly reveal both task answers and their parameters. For this, we first derive
the sufficient and necessary conditions for answer truthfulness and parameter truthfulness
separately. Particularly, to achieve answer truthfulness, we leverage reference answers to
evaluate the truthfulness of a given worker’s answer. Under the model of Bayesian game,
a worker’s expected payment for truthtelling is set no less than that when lying, which
leaves workers little incentive to lie. The condition of parameter truthfulness is derived via
fractional VCG that ensures bids truthfulness. We then construct a payment optimization
problem incorporating these conditions as constraints. Its optimal solution lists the pay-
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ment to each worker that is expected to elicit answers and parameters jointly. Our proposed
mechanism, with a formally proved bounded approximation ratio, ensures that truthtelling
is a Bayesian Nash equilibrium. We prototype the mechanism and conduct a series of ex-
periments that involve 30 volunteers to validate the efficacy and efficiency of the proposed
mechanism.

Finally, Chapter 5 concludes the dissertation.
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CHAPTER 2

SECURING ALLOCATION IN MOBILE CROWD SENSING: AN
INCENTIVE DESIGN APPROACH

2.1 Introduction
Mobile crowd sensing (MCS) arises as a new sensing paradigm by exploring a

plethora of embedded multi-modal sensors in today’s ubiquitous mobile devices. By fus-
ing and analyzing their sensing data, MCS has potential to accelerate the maturity of smart
health caring, environment monitoring, traffic surveillance, social event observation, etc.
An MCS system mainly consists of three types of entities, task requestors, sensing work-
ers, and the platform. A typical MCS workflow can be divided into three stages: task
allocation, task sensing and data aggregation/analysis.

For the stage of task allocation, its main objective is to distribute sensing tasks among
workers such that sensing resources of the entire system are efficiently utilized. For this
purpose, prevalent approaches are to formulate and solve the task allocation optimization
problems at the platform, taking into account various optimization factors from all enti-
ties, e.g., [1, 58, 3]. Typically, workers are required to explicitly specify their parameters,
including task preferences, computation capacities, affordable travel distances, cost func-
tions. The accuracy of task allocation thus directly relies on the quality of these reported
parameters. As pointed out later in this chapter, malicious workers can easily manipulate
task allocation of MCS by simply uploading falsified parameters. In this work, we name
this type of attack as the parameter manipulation attack. Since these parameters are per-
sonal data owned by each worker, there is lack of evidence at the platform to decide their
accuracy. As a result, parameter manipulation attacks will be difficult to detect.

While there have been some existing works tackling security issues in MCS, most
of them focus on the stage of data analysis. Since MCS allows any voluntary participant
to contribute data, it is vulnerable to erroneous or even malicious data injection. Great
efforts have been devoted to the development of a so-called “reputation system” [4, 5, 6,
7, 8, 9]; they initially establish reputation scores of workers based on the quality of their
contributions, and later on use these scores to eliminate reports from less reputable workers.

Instead of tackling data trustworthy issues in the stage of data analysis as the above
works[4, 5, 6, 7, 8, 9], in this work, for the first time, we target at the parameter manipula-
tion attack in the stage of task allocation in MCS. To defend against it, our design goal is to
enable the platform to find accurate and optimal solutions to task allocation formulations,
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even under the existence of malicious workers. As an initial work on this topic, we plan to
start from a simplified case: workers report falsified objective function (parameters) while
the rest parameters, i.e., the ones in constraints, are unaltered. Since the objective func-
tion is critical to task allocation and of complex form, it can easily become the adversary’s
target. However, even under this simplified case, the scheme design is not an easy task.

Since solving task allocation optimization problems alone is already complicated in
general, it is infeasible to refer to computationally intensive cryptographic techniques for
the defense scheme design. Instead, we leverage the incentive mechanism. Our scheme
is built on top of an assumption that all workers are rational and self-interest in a sense
that they launch an attack only to maximize their benefits achieved during task sensing.
Since workers are skeptical to report genuine parameters for task allocation formulation,
instead of collecting them, our scheme asks each worker to submit its tunable “indicator” of
willingness for executing tasks. Then a new task allocation formulation, based on collected
indicators, is constructed, which is slightly different from the original one. On the other
hand, if the new problem’s optimal solution is the same with that of the original one, the
platform can still derive the accurate task allocation profile via the new problem. However,
the challenge is how to make the optimal solutions of these two distinguishing problems
identical. As pointed out later, it depends on indicator values chosen by workers. Incentive
mechanism design is thus applied to elicit workers to offer “proper indicators” so as to
achieve the goal.

We summarize the contributions of this work as follows.
• We address the parameter manipulation attack in the stage of task allocation in MCS,

where workers report falsified parameters to for illegal beneficial gain. It is a critical
security issue in MCS, yet receives rare attention so far.

• Instead of crypto primitives, we novelly apply the incentive mechanism in our de-
fense scheme development. It guarantees that the platform can still find the accurate
task allocation solution, even under the existence of malicious workers.

• We formally prove the security and convergence property of the proposed scheme. A
real-world dataset is applied to evaluate the scheme performance.

2.2 Problem Statement
2.2.1 Background

The discussion of this work pertains to a standard MCS system, which mainly con-
sists of a platform, a set of task requesters, and a set of participating sensing workers U =

{u1, · · · ,ui, · · · ,uM}, who communicate with the platform via wireless connections, such as
cellular networks or Wi-Fi. The platform hosts a set of sensing tasks T =

{
τ1, · · · ,τ j, · · · ,τN

}
5



that are collected from their requesters. Conducting sensing tasks are resource-consuming
for workers. Hence, to wisely utilize their resources, a task allocation framework is needed
to coordinate among workers until task completion. Typically, optimization problems are
formulated, taking into account of constraints from sensing capabilities and travel budget
at workers, and sensing quality requirement from sensing tasks. Without loss of generality,
in this work we consider a cost minimization problem1

P1 : min
xi

∑
i∈[1,M]

Ci (xi)

s.t. ∑
j∈[1,N]

xi j ≤ ti, ∀i ∈ [1,M] (2.1)

∑
i∈[1,M]

θi jxi j ≥ Tj, ∀ j ∈ [1,N] (2.2)

∑
j∈[1,N]

di j

wi j
(
xi j
) ≤ Di, ∀i ∈ [1,M] (2.3)

xi j ≥ 0, ∀i ∈ [1,M] ,∀ j ∈ [1,N] . (2.4)

The decision variable xi j (i ∈ [1,N], j ∈ [1,M]) stands for the sensing time that worker ui is
assigned for task τ j and xi is a vector xi = {xi1,xi2, · · · ,xiN}. Ci(·) is ui’s component in the
cost function and can be of different meanings. For example, in the case of minimizing the
payments to workers[1, 58], it is ui’s pricing function; in the case of minimizing the overall
travel distance[3], it stands for ui’s travel distance given a specific set of allocated tasks xi.
In a word, Ci(·) is used to represent certain “burden” task sensing causes to worker ui, and
we aim to minimize the overall “burden” from all workers. Following the prevalent setting,
we let Ci(·) be a convex function.

Denote by ti the maximum sensing time that ui can contribute. Constraint (2.1) states
that each worker’s total sensing time for all tasks cannot surpass this limit. For a task τ j,
we denote by Tj its minimum sensing time requirement. Constraint (2.2) says that the ac-
cumulated weighted sensing time from all workers regarding τ j should not be less than Tj.
Moreover, to carry out a task τ j, ui has to travel for a distance di j from its current location.
Let Di be ui’s maximal distance it is willing to travel. (2.3) says that each worker’s total
weighted travel distance should be no larger than Di. wi j(xi j) is the weight and calculated
by wi j(xi j) =

θi j
xi j

. A larger weight wi j(·) implies that a worker wi is more willing to conduct
task τ j since it can contribute with higher quality but cost shorter sensing time. The idea
of (2.3) is taken from [17]. Note that the formulation of P1 is not the contribution of this

1Our scheme also works for the maximization case with mild modification.
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work. Once the platform formulates P1, it can apply its favorite algorithms to solve it. The
solution of xi j’s is the final task allocation policy.

2.2.2 Adversary Model
In this work, we target at the parameter manipulation attack in the stage of task

allocation in MCS. The malicious workers submit the falsified parameters, i.e., the cost
functions, to the platform to manipulate the task allocation outcome, and thus receive illegal
beneficial gain. As a result, those from others, including benign workers and the platform,
may get harmed. Following a conventional approach, here we leverage “utility” to measure
a worker’s benefit received in MCS. It is defined as Ui = Pi(xi)−Ci(xi), where xi is ui’s
allocated task set and Pi(xi) is its corresponding payment.

Table 2.1: A toy example.

Parameters
T1 = 3 t1 = 2 d11 = 150 θ11 = 0.7 D1 = 3000

t2 = 3 d21 = 100 θ21 = 0.8 D2 = 2000
Without attack

C1(x) = 0.1 · e0.7xi j x∗11 = 3.8 U11 = 0.1
C2(x) = 0.1 · e0.8xi j x∗21 = 0.4 U21 = 0.1

With attack
C′1(x) = 0.1 · e5xi j x′11 = 0.9 U ′11 = 8.9

C2(x) = 0.1 · e0.8xi j x′21 = 3.0 U ′21 = 0.1

We now use a toy example to better illustrate the parameter manipulation attack. All
the system parameters are provided in Table 2.1. Under the attack-free scenario, the allo-
cated sensing time to u1 and u2 is x∗11 = 3.8 and x∗12 = 0.4, respectively, through optimally
solving P1. Without loss of generality, we set the payment Pi(xi) = Ci(xi)+0.1, i.e., each
worker gets paid by 0.1 more than its actual cost. Under this setting, we calculate the utility
of u1 and u2 as U11 =U21 = 0.1. Now, if worker u1 is malicious and changes ρ11 in its cost
function to 5, then x′11 and x′21 become 0.9 and 3.0, respectively. Accordingly, U ′11 turns
to 8.9, which is significantly larger than U11 (U ′21 stays at 0.1 unchanged). Thus, not only
does the parameter manipulation attack benefit malicious workers with illegal gain, but
also compromises interest of other entities, i.e., the platform has to pay much more than it
should.

In this work, malicious workers are modeled as rational and self-interest. When
launching a parameter manipulation attack, a malicious worker chooses the strategy that
brings itself the greatest benefit. In another word, its objective is solely to maximize its
own utility. Therefore, it distinguishes from the attacker who aims to sabotage system
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operations. These more aggressive attackers are not the focus of this work. It is worth
noting that the rational and self-interest attacker is a widely adopted attack model in game
theoretical approaches to tackling security problems, such as attack-defense analysis [18]
and security/dependability measurement [19].

2.3 Our Proposed Scheme
2.3.1 KKT Conditions of P1

Before digging into details of the scheme, we first briefly go through the KKT con-
ditions of P1, which play a critical role in the scheme design.

In P1 introduced in Section 4.2.1, its objective and constraint functions are convex.
Hence, it admits a unique optimal solution that can be characterized using the necessary
and sufficient Karush-Kuhn-Tucker (KKT) conditions[20].

We first derive the Lagrangian of P1 as follows

L(λ ,µ,ν ,x) = ∑
i∈[1,M]

Ci(xi)+ ∑
i∈[1,M]

λi · ( ∑
j∈[1,N]

xi j− ti)+ ∑
j∈[1,N]

µ j(Tj− ∑
i∈[1,M]

θi jxi j)

+ ∑
i∈[1,M]

νi( ∑
j∈[1,N]

di j
xi j

θi j
−Di)

where λ ≜ {λi ≥ 0 : ∀i ∈ [1,M]}, µ ≜ {µ j ≥ 0 : ∀ j ∈ [1,N]}, and ν ≜ {νi ≥ 0 : ∀i ∈ [1,M]}
are the vectors of Lagrange multipliers corresponding to constraints (2.1), (2.2), and (2.3),
respectively. The KKT conditions that produce the optimal dual solution λ

◦, µ◦ and ν◦,
and the optimal primal solution x◦ for P1 are given by the following set of equations ∀i ∈
[1,M] ,∀ j ∈ [1,N],

∂Ci(xi
◦)

∂xi j
= µ

◦
j θi j−

ν◦i di j

θi j
−λ

◦
i , (2.5)

λ
◦
i · ( ∑

j∈[1,N]

x◦i j− ti) = 0, (2.6)

µ
◦
j · (Tj− ∑

i∈[1,M]

θi jx◦i j) = 0, (2.7)

ν
◦
i · ( ∑

j∈[1,N]

di jx◦i j

θi j
−Di) = 0, (2.8)

x◦i j,λ
◦
i ,µ

◦
j ,ν
◦
i ≥ 0. (2.9)

The KKT conditions work well when all workers honestly report their genuine cost
functions. However, the platform fails to yield x◦ by solving (2.5)-(2.9) with any falsified
C′i(·) ̸=Ci(·).

8



2.3.2 Scheme Overview
Our objective is to develop a defense scheme to enable the platform to correctly find

out x◦ even without the correct information of Ci(·). Since workers are suspicious to report
manipulated cost functions, rather than having each of them report its cost function Ci(·),
it is asked to submit an “indicator” parameter, the willingness of this worker to participate
in a specific task. Then we construct a new task allocation optimization problem P2 (to
be presented soon) that takes “indicator” parameters as the coefficients of its objective
function, but shares identical constraints with P1. If, with a carefully designed scheme, the
optimal solution of P2 is the same with that of P1, x◦, then we can bypass P1 to find x◦. It
means we no longer need to worry about falsified C′i(·)’s. However, the challenge is how
to have the optimal solutions of P1 and P2 identical. Apparently, it relies on the indicators
submitted by workers. Then the problem becomes how to design a mechanism to elicit
workers to offer proper indicators so as to fulfill this goal. Note that malicious workers may
still report falsified indicators to manipulate the new problem P2’s task allocation solution.

Inspired by the work [21], we adopt the incentive mechanism to stimulate workers to
submit proper indicators. The platform pays workers according to their reported indicators.
Since (malicious) workers are rational, they strategically report indicators to maximize their
utility. Then, if indicators which produce x◦, coincide with the ones which bring worker’s
maximal utility, then our objective achieves. To summarize, the scheme needs to address
two questions. First, what are the values of “proper indicators”? Second, how to elicit
all workers to report their “proper indicators”? Next, we are going to answer these two
questions in the following two subsections, respectively.

2.3.3 Determination of “Proper Indicators”
Instead of Ci(·), we have each worker ui submit an indicator vector bi to the platform,

where bi ≜ {bi1,bi2, · · · ,biN} and bi j is ui’s indicator value for task τ j ∈T . A lower value
of bi j indicates that ui is more willing to execute τ j, while a larger value indicates the less
willingness ui has. As mentioned above, malicious workers may still strategically report
their bi’s for illegal utility gain.

Upon receiving all bi’s, the platform formulates an alternative task allocation opti-
mization problem (P2)

min
x ∑

i∈[1,M]
∑

j∈[1,N]

bi j

2
x2

i j, s.t. (2.1),(2.2),(2.3) and (2.4).

P2 shares the same set of constraints with P1, but differs in its objective function; P2 mini-
mizes the overall unwillingness (or maximize the overall willingness), while P1 minimizes
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an overall cost. Besides, P2’s objective function has a much simpler form compared with
that of P1.

Since P2 has a convex objective and constraint functions, similarly, it admits a unique
optimal solution as well. We write the Lagrange of P2 as

L̃(λ ,µ,ν ,x) = ∑
i∈[1,M]

∑
j∈[1,N]

bi j

2
x2

i j + ∑
i∈[1,M]

λi( ∑
j∈[1,N]

xi j− ti)+ ∑
j∈[1,N]

µ j(Tj− ∑
i∈[1,M]

θi jxi j)

+ ∑
i∈[1,M]

νi( ∑
j∈[1,N]

di j
xi j

θi j
−Di)

and denote the optimal primal and dual solutions of P2 as x∗ and λ
∗, µ∗ and ν∗, respectively.

Its corresponding KKT conditions yield a set of equations,

x∗i j =
µ∗j θi j−

ν∗i di j
θi j
−λ ∗i

bi j
, (2.10)

λ
∗
i · ( ∑

j∈[1,N]

x∗i j− ti) = 0, (2.11)

µ
∗
j · (Tj− ∑

i∈[1,M]

θi jx∗i j) = 0, (2.12)

ν
∗
i · ( ∑

j∈[1,N]

di jx∗i j

θi j
−Di) = 0, (2.13)

x∗i j,λ
∗
i ,µ

∗
j ,ν
∗
i ≥ 0, (2.14)

where (2.11)-(2.14) are identical to (2.6)-(2.9) of P1, while (2.10) differs from (2.5).
Our goal is to have x◦ ≜ x∗, i.e., the optimal solution of P1 is identical to that of P2.

Comparing equations (2.10)-(2.14) and (2.5)-(2.9), we observe that if bi jx∗i j =
∂Ci(x∗i )

∂xi j
then

the goal is achieved. Or, equivalently, ui submits the following indicator for each task τ j

bi j =
1

x∗i j
· ∂Ci (x∗i )

∂xi j
. (2.15)

Up to now, we have determined exact values of proper indicators bi j’s. When workers
submit their indicators following (2.15), the platform can still correctly find out x◦ by for-
mulating and solving P2, even without the knowledge of workers’ original cost functions.
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2.3.4 Elicitation of “Proper Indicators”
Now the remaining issue is how to induce workers to offer indicators strictly follow-

ing (2.15). This is where the incentive mechanism plays; the platform carefully chooses its
payment to workers, so as to elicit them to offer the desirable indicators.

Since each worker is rational and self-interest in a sense to always submit its indicator
to maximize its own utility, and thus ui determines its optimal indicator b∗i by solving the
following utility maximization problem (UMPi)

max
bi

Pi(xi)−Ci(xi)

s.t. bi j ≥ 0, ∀ j ∈ [1,N] .

The unique optimal solution of the UMPi meets the following optimality condition

∂Ci (xi)

∂xi j
=

b2
i j

λi +
νidi j
θi j
−µ jθi j

∂Pi (xi)

∂bi j
, ∀ j ∈ [1,N] , (2.16)

where we utilize derivative ∂xi j
∂bi j

=
λi+

νidi j
θi j
−µ jθi j

b2
i j

derived from (2.10).

Jointly consider (2.5) and (2.16). In order to elicit workers to submit desirable indi-
cator (2.15), a feasible incentive mechanism is to pay ui with

Pi(bi) = ∑
j∈[1,N]

(λi +
νidi j
θi j
−µ jθi j)

2

bi j
, (2.17)

where we express Pi (bi) as the function of ui’s indicator. Alternatively, we can rewrite
Pi (bi) as the function of ui’s sensing time with the relation (2.10)

Pi(xi) = ∑
j∈[1,N]

xi j(µ jθi j−λi−
νidi j

θi j
), (2.18)

i.e., the payment to ui is proportional to its devoted sensing time. (2.18) is intuitive; the
more sensing time ui contributes, the higher payment it receives. Till now, the second
question has been answered as well.

Remark I. One may ask rather than eliciting workers to submit proper indicators,
why not directly elicit them to submit accurate cost functions? This is because the original
cost function (of P1) can be in an arbitrary form. It is extremely difficult to develop an
effective incentive mechanism to motivate workers to report the genuine cost functions
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when their forms are unknown. With the introduction of indicators, a new problem P2 is
formulated. Due to its fixed and simplified expression of the objective function, it makes
the design feasible.

Remark II. It is worth mentioning two relevant but totally different research topics.
The first one is to achieve truthfulness (or called incentive compatibility) in auctions. Its
objective is to decide winners and their payment such that their best strategy is to submit
their true values/costs as bids. The second one is to find out an employee’s true type in a
monopoly market, when such information is unknown to the employer. Contract theory
has been widely adopted; incentives are provided to employees such that their utilities are
maximized when reporting true types. Differently, we do not care about whether workers
honestly submit their true cost functions/types or not; instead, we aim to enable the platform
to derive accurate task allocation profile even without these information.

2.3.5 Scheme Implementation
With the payment rule (2.17) or (2.18), each worker ui can compute its optimal indi-

cator by solving UMPi. Based on collected indicators, the platform then optimally solves
P2 for task allocation. However, UMPi and P2 are intertwined with each other. On one
hand, ui has to be aware of the task allocation result xi to solve UMPi and derive its indica-
tor. On the other hand, xi is obtained by the platform via solving P2, which takes workers’
indicators as inputs. Hence, there is a need for an iterative operation that gradually adjusts
results of both P2 and UMPi to reach the optimum point.

With this in mind, Algorithm 4 outlines our final scheme. The platform first initial-
izes the primal variable x and dual variables λ , µ and ν with their values satisfying KKT
conditions (2.11)-(2.14). For example, we can choose λ

(0)
i = µ

(0)
j = ν

(0)
i = 0, with any

positive value of x(0)i j .
Then the algorithm iteratively computes the primal and dual solutions of P2 (at the

platform) and indicators via UMPi (at ui) until convergence. Specifically, the platform
first announces dual solutions λ

(t)
i , µ

(t)
j , ν

(t)
i of P2 (line 4). With these values and the

knowledge of Ci(·), ui calculates its optimal indicator b(t)i by solving UMPi and submits it
to the platform (line 6-7). Then the platform obtains a new allocation rule x(t) by (2.10)
(line 8). It also updates dual solutions λ

(t)
i , µ

(t)
j and ν

(t)
i (∀i ∈ [1,M], j ∈ [1,N]) by using a

gradient descent method (line 9).
Note that (x)+ represents max{x,0}. In the end, the platform checks the termination

criterion (line 10). When changes of indicators for two consecutive iterations are suffi-
ciently small with ε ≥ 0, the iteration terminates. Otherwise, another round of iteration is
performed. Once convergence is reached, the solution of x(t) is exactly the optimal solution
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Algorithm 1 Our proposed scheme

Output: x∗ (x◦), Pi(x∗i ), ∀i ∈ [1,M]
1: t← 0, conv f lag← 0;
2: Initialize x(0)i j , λ

(0)
i , µ

(0)
j , ν

(0)
i , ∀i ∈ [1,M] , j ∈ [1,N];

3: while conv f lag = 0 do
4: t← t +1;
5: The platform announces λ

(t)
i , µ

(t)
j , ν

(t)
i , ∀i ∈ [1,M] , j ∈ [1,N];

6: Each worker ui computes its optimal indicator b(t)i by solving UMPi;
7: Each worker ui submits its indicator b(t)i to the platform;
8: The platform computes the new x(t) by (2.10);
9: The platform uses gradient updates for dual variables:

λ
(t)
i =

(
λ
(t−1)
i + s(t) · ( ∑

j∈[1,N]

x(t−1)
i j − ti)

)+

, µ
(t)
j =

(
µ
(t−1)
j + s(t) · (Tj− ∑

i∈[1,M]

θi jx
(t−1)
i j )

)+

,

ν
(t)
i =

(
ν
(t−1)
i + s(t) · ( ∑

j∈[1,N]

di jx
(t−1)
i j

θi j
−Di)

)+

, ∀i ∈ [1,M] , j ∈ [1,N] ;

10: if
∣∣∣∣b(t)i j −b(t−1)

i j

b(t−1)
i j

∣∣∣∣< ε, ∀i ∈ [1,M] , j ∈ [1,N] then

11: conv f lag← 1;
12: end if
13: end while
14: x∗i (x

◦
i )← x(t)i , ∀i ∈ [1,M];

15: The platform computes Pi (x∗i ) ,∀i ∈ [1,M] , by (2.18).

x∗ and thus x◦, i.e., the optimal solution to P1. Finally, the platform determines the final
payment Pi (x∗i ) for each worker with (2.18) (line 15).
Theorem 1. (Convergence.) Algorithm 4 converges to the optimal solution of P2 globally.

Proof. The formal proof is provided in Appendix 2.7.

Besides, it is also critical to show that our scheme pays workers properly, without
causing them negative utilities, as otherwise workers will be discouraged from participat-
ing.
Proposition 1. (Non-negative Utility.) Each worker ui ∈U receives a nonnegative utility
via our scheme, i.e.,

Pi (x∗i )−Ci (x∗i )≥ 0. (2.19)

Proof. The formal proof is provided in the technical report [28].
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2.4 Enhancing the Convergence Speed
The effectiveness of our defense scheme is in trade of extra interactions between

workers and the platform (until Algorithm 1 converges). As a result, calculation delay will
be caused in deriving the final task allocation profile. To tackle this side effect, we plan to
further accelerate the algorithm convergence speed.

The value of s(t) plays a critical role in the convergence speed of Algorithm 4. Ba-
sically, a large value implies a large step size in each iteration toward the optimal solution.
However, it may cause oscillation in the algorithm. On the other hand, a small s(t) may
lead to extra iterations, and thus a longer running time. Hence, in this section we propose
to enhance the convergence speed of Algorithm 4 via adaptive selection of s(t) in each iter-
ation. We adopt the backtracking line search [23], an efficient online search method used
in unconstrained convex optimization. Its idea is to determine the maximum step size to
move along a given search direction to find the optimal result. Since it operates over un-
constrained convex optimization problems, we first transfer P2 into an unconstrained form.
The Lagrange dual function of P2 is

g(λ ,µ,ν) = inf
x

L̃(λ ,µ,ν ,x)

= ∑
i∈[1,M]

∑
j∈[1,N]

[
θi j f 2 +2θi jλi f −2θ 2

i jµ j f +2νidi j f

2bi jθi j

]
− ∑

i∈[1,M]

(λiti +νiDi)+ ∑
j∈[1,N]

µ jTj,

where f = µ jθi j−
νidi j
θi j
−λi. According to the backtracking line search, our objective is to

find the optimal length to maximize the above Lagrange dual function.

Algorithm 2 The selection of suitable s

Input: bi, ∆(λ ,µ,ν), α , β

Output: s
1: s← 1
2: while g((λ ,µ,ν)+ s∆(λ ,µ,ν))< g(λ ,µ,ν)+α · s ·∇g

(
λi,µ j,νi

)T
∆(λ ,µ,ν) do

3: s← β s.
4: end while
5: return s;

The inputs of Algorithm 5 include bi, the descending direction ∆(λ ,µ,ν)= (dλi
dt ,

dµ j
dt ,

dνi
dt )

for g(λ ,µ,ν), where λi,µ j,νi ≥ 0 (i ∈ [1,M], j ∈ [1,N]), and two predefined constants
α and β . The output is the optimal line length s. It starts with a rough estimate, i.e.,
s = 1 (line 1). Then we iteratively adapt the step length (line 3) as long as the criterion

14



in line 2 holds, where ∇g
(
λi,µ j,νi

)
represents the local gradient of function g. Note that

g((λ ,µ,ν)+ s∆(λ ,µ,ν)) = g(λ ,µ,ν)+α ·s ·∇g
(
λi,µ j,νi

)T
∆(λ ,µ,ν) takes place at the

optimal point of g. Following the standard approach in the backtracking line search, we set
α ∈ (0,0.5) and β ∈ (0,1).

Once the suitable s is identified via Algorithm 5, it will be used to update s(t) in each
iteration of Algorithm 4.

2.5 Performance Evaluation
In this section, we conduct extensive simulations to evaluate the performance of our

scheme. The study is based on the Yelp Dataset Challenge [24]. The data is sampled by
Yelp from the greater Phoenix, AZ metropolitan area from March 2005 to January 2013.
This dataset includes 11537 businesses, 229907 reviews by 229907 users, and 8282 check-
in sets in the form of separate JSON or SQL files. Specifically, our evaluation selects a
set of Yelp users as workers in the MCS system. We then take the distance between two
consecutive check-in locations from the same user as the worker’s travel distance for one
task and the corresponding time interval in between as the worker’s maximum sensing time
it can contribute. Note that this dataset has been widely used in many other crowd/social
sensing related research, such as [25, 26].

We assume that each worker ui holds its convex objective function Ci (xi) = 0.1 ·
∑ j∈[1,N] eρi jxi j where ρi j is randomly chosen from [0.5,1]. For the sensing quality θi j, it is
a random value from [0,1]. Besides, we set the termination condition ε = 10−5, i.e., the
algorithm terminates if the gap between two consecutive iterations is less than 10−5. Each
simulation result is the average over 20 trials.

Effectiveness of Our Scheme. We start from a small-scale MCS with M = 2 workers
and N = 2 tasks. Besides, u2 is assumed as the malicious worker to manipulate the task
allocation outcome. Performances of our scheme, in terms of security and convergence
property, have been examined.

Fig. 2.1(a) shows utility of u1 and u2 under three scenarios, i.e., without attack
(U∗11, U∗21), with attack (U ′11, U ′21), with attack but protected by our scheme (U11, U21).
Once the algorithm converges, we observe that U ′21 > U∗21. It means the attacker u2 gains
extra utility by launching the parameter manipulation attack. However, such a utility gain
diminishes once our scheme is implemented. Specifically, U21 is equal to U∗21. Meanwhile,
U ′11 < U∗11, i.e., the benign worker u1’s utility is harmed by u2’s parameter manipulation
attack. However, it can be fully defended by our scheme, as U∗11 =U11.

We further depict in Fig. 2.1(b) worker’s total allocated sensing time under the three
scenarios same as above. With the implementation of our scheme, we observe x11 = x∗11 =
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Figure 2.1: Task allocation outcome comparison under different scenarios, i.e., without
attack, with attack, with attack but protected by our scheme.
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Figure 2.2: Iteration number needed for our algorithm to converge under different MCS
sizes.

0.6 and x12 = x∗12 = 1.5 after 20 iterations. It means that the platform is capable of finding
the optimal task allocation policy even with the existence of malicious worker u2. Besides,
if setting ε = 10−1 (the gap between two consecutive iterations is less than 10−1), our
scheme will stop after only 13 iterations. Hence, if we want to achieve a shorter running
time of the scheme, a larger ε is in need.

Impact of MCS Size. We further evaluate in Fig. 3.10 the impact of MCS size,
in terms of worker and task numbers, to the scheme performance. For example, in Fig.
3.10(a), when N = 20 and M = 5, the average iteration number is about 29. It is slightly
increased to 42 when M = 50. The similar trend is observed in Fig. 3.10(b); when N = 2
and M ranges from 5 to 50. We conclude that the algorithm converges pretty fast with
moderate system sizes. Moreover, as discussed in the previous section, the platform can
further choose a larger ε to accelerate the convergence speed.

Impact of Step Size s. Recall that s stands for the step size of our iterative Algorithm
4. Fig. 2.3 shows the convergence property of Algorithm 4 under different values of s. Still,
we consider a system with M = 50 workers and N = 20 tasks. Note that the dashed line
represents the optimal result of P1 when all workers honestly report their genuine cost
functions. We find that the convergence speed is dependent on the step size. For example,
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when s = 3.5× 10−5, it takes 61 iterations to reach the optimal result. When choosing a
larger s= 4.1×10−5, i.e., a larger step size, the iteration number decreases to 43. However,
a larger step size does not necessarily lead to a faster convergence speed. For example,
when s = 4.7×10−5, the iteration number becomes 48. Thus, a suitable s is critical to the
convergence speed of our scheme.

Impact of Malicious Worker Ratio. We now examine the impact of malicious
worker ratio to the effectiveness of our scheme. It is defined as the percentage of malicious
workers to the entire worker set. We consider an MCS consisting of M = 50 workers and
N = 2 sensing tasks, where u1 is set as a benign worker. Fig. 2.4 shows u1’s utility U1.
We first examine the case without our scheme. When all workers honestly report their cost
functions, i.e., the ratio is 0, we obtain U1 = 0.92. As the ratio increases, U1 drops fast. In
particular, when the ratio is equal to 26%, i.e., there are 13 malicious workers, U1 becomes
0.64. Moreover, the red dashed line (with our scheme) in this figure clearly demonstrates
that U1 keeps at 0.92, under different malicious worker ratios. Thus, we conclude that the
malicious worker ratio does not impact the effectiveness of our scheme.

Performance Enhancement by Integrating Algorithm 5. We now validate the
effectiveness of Algorithm 5. Fig. 2.5(a) compares the iteration number needed for Al-
gorithm 4 to converge with and without the integration of Algorithm 5. Apparently, the
former is significantly smaller than the latter in all cases when the number of workers is
from 5 to 50. For example, when there are 30 workers, the enhanced Algorithm 4 requires
11 iterations to converge, while the other one requires 36 iterations; the former is about 1/3
of the latter. Under the same parameter setting, we further show in Fig. 2.5(b) the running
time ratio between these two algorithms. We observe that the enhanced Algorithm 4 only
needs about half running time than the other one. We have a similar observation in Fig.
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Figure 2.5: Iteration numbers and time needed.

2.5(c) and Fig. 2.5(d) under M = 50. Thus, we conclude that Algorithm 5 can significantly
improve the performances of Algorithm 4, in terms of both iteration number and running
time.

2.6 Related Work
Security issues in MCS. Among the existing works the one that is closest to ours

is [27]. It aims to thwart malicious behaviors in worker recruitment of crowdsourcing via
the reverse game theory. However, it assumes that the worker’s attack statistics are avail-
able at the platform. Besides, it formulates worker recruitment into a simple optimization
problem, where no constraint is involved. For the other existing works that address se-
curity issues in MCS, such as [4, 5, 9], they mainly target at the data analysis stage. As
sensing data are reported by workers, they can possibly be altered by malicious ones. This
raises the issue of data trustworthiness. Effective schemes are proposed to either detect
untrustworthy workers or avoid their reports during data analysis. The research focuses on
how to evaluate trustworthiness of the shared data and how to maintain the reputation of
various workers. Realizing that the collected data may include sensitive information re-
garding their reporters, such as locations, daily commute, behavior patterns and habits, the
works [6, 7, 8] further guarantee data privacy and/or worker anonymity in their reputation
systems design. As we aim to tackle the security issue in the stage of task allocation, the
corresponding approach will be quite different.

Incentive mechanism design for MCS. To motivate mobile users to participate in
MCS, the incentive mechanism is an effective approach [12, 13, 14, 15, 16]. Workers get
paid by the platform to compensate their cost in task sensing. To model the interaction be-
tween the platform and workers as well as among workers themselves, auction theory and
game theory are widely adopted. Different objectives are discussed, such as maximizing
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social welfare[15], maximizing the platform’s profit[12], minimizing social cost[16], mini-
mizing privacy loss[13], or minimizing the platform’s payment[14]. Although these works
also resort to incentive mechanisms, they are resistant to individual misreporting workers’
costs.

2.7 Appendix
We first cite a notation that has been used in [22]. It will be extensively used in our

analysis. Given g(x) an arbitrary function, and x and y arbitrary real values, (g(x))+y is
defined as

(g(x))+y =

g(x) , y > 0,

max(g(x) ,0) , y = 0.
(2.20)

To prove Theorem 1, it is critical to derive the following lemma first.
Lemma 1. Given λ , µ and ν2 as dual solutions obtained in an arbitrary iteration of Algo-
rithm 4, and λ

∗, µ∗ and ν∗ the optimal dual solutions, we have

(λi−λ
∗
i )( ∑

j∈[1,N]

xi j− ti)+λi
≤ (λi−λ

∗
i )( ∑

j∈[1,N]

xi j− ti),

(µ j−µ
∗
j )(Tj− ∑

i∈[1,M]

θi jxi j)
+
µ j
≤ (µ j−µ

∗
j )(Tj− ∑

i∈[1,M]

θi jxi j),

(νi−ν
∗
i )( ∑

j∈[1,N]

di jxi j

θi j
−Di)

+
νi
≤ (νi−ν

∗
i )( ∑

j∈[1,N]

di jxi j

θi j
−Di).

Proof. We focus on the first inequality. According to the update rule to λ in Algorithm 4,
we have λ ⪰ 0. Then for λi ∈ λ , we discuss under two cases: λi = 0 and λi > 0.

Case I: λi = 0. We have

(λi−λ
∗
i )( ∑

j∈[1,N]

xi j− ti)+λi
≤ (λi−λ

∗
i )( ∑

j∈[1,N]

xi j− ti) (2.21)

⇐⇒ ( ∑
j∈[1,N]

xi j− ti)+λi
≥ ∑

j∈[1,N]

xi j− ti ⇐⇒ max{ ∑
j∈[1,N]

xi j− ti,0} ≥ ∑
j∈[1,N]

xi j− ti.

Therefore, the first inequality holds.

2In the following, we use λ , µ and ν to represent λ
(t), µ(t) and ν(t), respectively, without causing confu-

sion.
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Case II: λi > 0. We have
(λi−λ

∗
i )( ∑

j∈[1,N]

xi j− ti)+λi
≤ (λi−λ

∗
i )( ∑

j∈[1,N]

xi j− ti)

⇐⇒ (λi−λ
∗
i )( ∑

j∈[1,N]

xi j− ti)≤ (λi−λ
∗
i )( ∑

j∈[1,N]

xi j− ti).

Thus, the first inequality also holds.
In all, the first inequality holds in both cases. The proof for the rest two inequalities

similarly follows.

With Lemma 1, we are now ready to prove Theorem 1. We first rewrite it here again.
Theorem 1. Algorithm 4 converges to the optimal solution of P2 globally.

Proof. We consider a very small time slot, and hence assume that dual solutions are updated
according to the differential equations

dλi

dt
= ( ∑

j∈[1,N]

xi j− ti)+λi
, (2.22)

dµ j

dt
= (Tj− ∑

i∈[1,M]

θi jxi j)
+
µ j
, (2.23)

dνi

dt
= ( ∑

j∈[1,N]

di jxi j

θi j
−Di)

+
νi
. (2.24)

We first define the Lyapunov function

Z (λ ,µ,ν) =
M

∑
i=1

(λi−λ ∗i )
2

2
+

N

∑
j=1

(
µ j−µ∗j

)2

2
+

M

∑
i=1

(νi−ν∗i )
2

2
.

If we can prove that dZ(λ ,µ,ν)
dt ≤ 0, it indicates that Z (λ ,µ,ν) is stable and thus our algo-

rithm converges to the optimal solution of P2. By applying the chain rule and taking the
derivative with respect to t, we obtain

dZ (λ ,µ,ν)

dt
= ∑

i∈[1,M]

(λi−λ
∗
i )

dλi

dt
+ ∑

j∈[1,N]

(
µ j−µ

∗
j
) dµ j

dt
+ ∑

i∈[1,M]

(νi−ν
∗
i )

dνi

dt
,

which can be rewritten below with (2.22)-(2.24)

dZ (λ ,µ,ν)

dt
= ∑

i∈[1,M]

(λi−λ
∗
i ) · ( ∑

j∈[1,N]

xi j− ti)+λi
+ ∑

j∈[1,N]

(µ j−µ
∗
j ) · (Tj− ∑

i∈[1,M]

θi jxi j)
+
µ j

+ ∑
i∈[1,M]

(νi−ν
∗
i ) · ( ∑

j∈[1,N]

di jxi j

θi j
−Di)

+
νi
.
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From Lemma 1, we directly derive

dZ (λ ,µ,ν)

dt
≤ ∑

i∈[1,M]

(λi−λ
∗
i ) · ( ∑

j∈[1,N]

xi j− ti)+ ∑
j∈[1,N]

(µ j−µ
∗
j ) · (Tj− ∑

i∈[1,M]

θi jxi j)

+ ∑
i∈[1,M]

(νi−ν
∗
i ) · ( ∑

j∈[1,N]

di jxi j

θi j
−Di).

Next, we make some modification in the right-hand-side of the above inequality. Hence,
we get

Ż ≤ ∑
i∈[1,M]

(λi−λ
∗
i ) · ( ∑

j∈[1,N]

xi j−
N

∑
j=1

x∗i j)+ ∑
i∈[1,M]

(λi−λ
∗
i ) · ( ∑

j∈[1,N]

x∗i j− ti)

+ ∑
j∈[1,N]

(µ j−µ
∗
j ) · ( ∑

i∈[1,M]

θi jx∗i j− ∑
i∈[1,M]

θi jxi j)+ ∑
j∈[1,N]

(µ j−µ
∗
j ) · (Tj− ∑

i∈[1,M]

θi jx∗i j)

+ ∑
i∈[1,M]

(νi−ν
∗
i ) · ( ∑

j∈[1,N]

di jxi j

θi j
− ∑

j∈[1,N]

di jx∗i j

θi j
)+ ∑

i∈[1,M]

(νi−ν
∗
i ) · ( ∑

j∈[1,N]

di jx∗i j

θi j
−Di).

The second, forth and sixth terms in RHS of the above inequality are nonpositive due to
(2.1)-(2.3) and (2.11)-(2.13). Thus,

Ż ≤ ∑
i∈[1,M]

(λi−λ
∗
i ) · ( ∑

j∈[1,N]

xi j− ∑
j∈[1,N]

x∗i j)+ ∑
j∈[1,N]

(µ j−µ
∗
j ) · ( ∑

i∈[1,M]

θi jx∗i j− ∑
i∈[1,M]

θi jxi j)

+ ∑
i∈[1,M]

(νi−ν
∗
i ) · ( ∑

j∈[1,N]

di jxi j

θi j
− ∑

j∈[1,N]

di jx∗i j

θi j
) = ∑

i∈[1,M]
∑

j∈[1,N]

(xi j− x∗i j)(
∂Ci(x∗i )

∂xi j
− ∂Ci(xi)

∂xi j
).

The last equation comes from (2.5). The RHS of the above inequality is nonpositive be-
cause of the following property that holds for any convex function f (·) [20]

f (u)≥ f (v)+∇ f (v)T (u− v) . (2.25)

To be specific, for any xi and the optimal solution x∗i , we have[
∂Ci (x∗i )

∂xi1
, · · · , ∂Ci (x∗i )

∂xiN

]T

· (xi− x∗i )≤Ci (xi)−Ci (x∗i )[
∂Ci (xi)

∂xi1
, · · · , ∂Ci (xi)

∂xiN

]T

· (x∗i − xi)≤Ci (x∗i )−Ci (xi) .
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Then, add the above two inequalities,[
∂Ci (x∗i )

∂xi1
− ∂Ci (xi)

∂xi1
, · · · , ∂Ci (x∗i )

∂xiN
− ∂Ci (xi)

∂xiN

]T

(xi− x∗i )

= ∑
j∈[1,N]

(
xi j− x∗i j

)
(
∂Ci (x∗i )

∂xi j
− ∂Ci (xi)

∂xi j
)≤ 0.

By adding together the above inequalities for all xi’s (i ∈ [1,M]), we have

∑
i∈[1,M]

∑
j∈[1,N]

(
xi j− x∗i j

)
(
∂Ci (x∗i )

∂xi j
− ∂Ci (xi)

∂xi j
)≤ 0.

Thus, Ż ≤ 0 holds, which ends the proof.

22



CHAPTER 3

COLLUSION-RESISTANT WORKER RECRUITMENT IN
CROWDSOURCING SYSTEMS

3.1 Introduction
Crowdsourcing marketplace emerges as a new paradigm that makes it easier for in-

dividuals and businesses to outsource their processes and jobs to a large group of human
workers who can perform these tasks virtually. This could include anything from conduct-
ing simple data validation and research to more subjective tasks like survey participation,
content moderation, and more. Crowdsourcing enables companies to harness the collective
intelligence, skills, and insights from a global workforce to streamline business processes,
augment data collection and analysis, and accelerate machine learning development. Due
to these promising features, recent years have witnessed the prosperity of several commer-
cialized crowdsourcing platforms, such as Amazon Mechanical Turk [129], Uber [89] and
Guru [83], etc.

Crowdsourcing has a wide spectrum of potential applications. For example, quite a
few research propose to harness the sensing power of distributed mobile devices for spec-
trum monitoring/sensing of a large geographic area [32, 33, 34, 35, 36, 37, 38]. Under
the framework of crowdsourcing, mobile devices are hired to sense the spectrum occu-
pancy/vacancy of their present locations. The aggregated sensing results can produce a real-
time fine-grained spectrum usage map over a large geographic area. Crowdsourcing has
also gained great interest in the field of wireless signal fingerprinting based indoor/outdoor
localization [39, 40, 41, 42, 45, 46]. To reduce the effort of a manual calibration for the
site survey, especially in a multi-floor building or a large geographic area, various kinds of
crowdsourcing-based indoor localization methodologies have been successfully applied. In
addition, many mobile crowdsourcing tasks also exist in commercial crowdsourcing plat-
forms. For example, in Waze [84] some tasks hire workers with mobile devices to carry
out geolocation-aware image collection, image tagging, road traffic monitoring, etc. In
Taskrabbit [85], the platform publishes spatial tasks such as cleaning a house or walking a
dog. Typically, these tasks are only accessible by workers nearby.

Participating in crowdsourcing is usually costly for individual workers, since they
spend time and wisdom in task execution. Therefore, effective incentive mechanisms are
essential to stimulate worker participation. Great efforts have been devoted to this research
area. Reverse auctions [130, 131, 132] that rely one workers’ costs, have been extensively
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adopted. Specifically, workers compete with each other by submitting to the platform their
costs, i.e., bids (i.e., the minimum payment they accept for the task), then winners and pay-
ments are decided accordingly. As proved in these works, such competition can effectively
bring down the platform’s expense in hiring cheaper labor and thus significantly enhance
economic efficiency.

Despite the appealing properties, auction-based markets are deemed vulnerable to
bidder misbehaviors [73]. Strategic bidders, individually or in groups, may seek to game
the system by coordinating their bids to manipulate auction outcomes. To make the best
use of crowdsourcing systems, a worker recruitment auction must discourage workers from
cheating and instead encourage them to reveal their true cost regarding task execution to the
platform. In this context, the existing works [133, 134, 58, 59, 61, 62, 70, 71, 72, 142] have
been focusing on truthfulness; no worker, individually, can improve its utility by bidding
other than its actual cost.

Truthful auctions in crowdsourcing, however, become ineffective when workers col-
lude, i.e., they strategically form coalitions and rig their bids together for illegitimate ben-
eficial gain. Albeit being legally banned, collusions have widely appeared in past commer-
cial auctions and have had significant effects, e.g., FCC spectrum auctions [74, 75, 76, 77],
treasure auctions [78, 79], eBay online auctions [87, 88, 90], and auctions in P2P systems
[91, 93, 94]. Empirical analysis on these auctions reveals that most collusion groups are
small, less than 6 members per group [77, 90, 94]. In the domain of crowdsourcing, which
typically involves a large number of workers, such small-size collusion groups are thus
easy to form among friends and close relatives. Moreover, since crowdsourcing auctions
are conducted online among anonymous workers, collusions can be hard to detect. Thus,
it renders collusion an even more challenging issue to tackle in the crowdsourcing market-
place.

Collusion resistance has rarely been studied in the context of crowdsourcing, ex-
cept [95] that targets a particular form of collusion. Instead, we aim to resist a broad
set of collusion attacks. In fact, designing collusion-resistant mechanisms is a nontriv-
ial task. According to the impossibility results proved in [96, 112], there is no “strong”
collusion-resistant mechanism, which can optimize or even approximate any nontrivial ob-
jective function without any assumption over auction settings. Only a handful of collusion
resistance works exist for general auctions so far [96, 97, 98, 99]. However, most of them
rely on assumptions such as incomplete information sharing among colluders [97, 98] and
the auctioneer having prior knowledge over bidder behaviors [99]. Neither of the above as-
sumptions holds in practical crowdsourcing systems. To avoid these constraints, a scheme
called APM is proposed by Goldberg and Hartline [96]. Notice that the above works are
designed for generic auctions, while the worker recruitment in crowdsourcing is featured
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with unique characteristics. For example, crowdsourcing tasks are typically imposed with
quality requirements from their requesters. Besides, workers are profiled with their repu-
tations and “types”, such as age, region, education level, etc. All these factors reform the
winner selection process by introducing various constraints to the worker recruitment for-
mulation. As a result, existing mechanisms are not readily applicable. Thus, an effective
collusion resistance scheme that is suitable for crowdsourcing is in dire need.

To resist collusions, we take a proactive prevention approach, because uncovering
collusion coalitions is hard due to its tacit nature and complex auction structure. Specifi-
cally, we design the rules for winner selection and payment determination to diminish the
utility gain of coalitions, leaving workers little or no incentive to collude. We resort to a
“soft” approach that suppresses collusions in a probabilistic manner. A (t, p)-collusion re-
sistance scheme is developed. Particularly, with a probability of p, no coalition of weighted
cardinality t or less can improve its group utility by coordinating the bids. Besides, the pro-
posed scheme also achieves p-truthfulness and p-individual rationality. Additionally, we
provide a formal analysis of the platform’s extra cost caused by trading for collusion avoid-
ance.

The main contribution of this work is summarized as follows
• We address the critical collusion issue in auction-based crowdsourcing systems. This

issue has rarely been discussed so far.
• We develop a (t, p)-collusion resistance scheme. It successfully defends against

strategic behaviors from coalitions with weighted cardinality t at a probability p.
• We conduct comprehensive theoretical analysis over the critical economic and collu-

sion resistant properties achieved by our scheme.
• A real-world dataset extracted from the commercial crowdsourcing platform Guru [83]

is used to evaluate the performances of the proposed scheme.

3.2 System Model and Problem Statement
In this section, we first introduce the system model. The framework of auction-based

worker recruitment in crowdsourcing is introduced. Then we examine the formation and
the impact of worker collusion therein. It shows that the property of worker recruitment
auctions provides a fertile breeding ground for collusions, causing a significant revenue
loss at the platform.
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Table 3.1: Notations.

wi the i-th worker Tj the j-th type
bi bid of wi xi decision indicator
ηi bi/ki ki reputation of wi

b {bi : i ∈ [1,N]} G or G j coalition
bG /cG bid/cost set of G cW \G cost set of W \G
Pi(b) payment to wi E {E j : j ∈ [1,M]}

a interval of A uG utility of coalition G
ci cost of wi T {Tj : j ∈ [1,M]}
W {wi : i ∈ [1,N]} hθ

u (·) rounded up function
ui(b) utility of wi η j {ηi : ∀i wi ∈ E j}

t j weighted cardinality of Gi in Tj

k reputation threshold of wi

l j reputation threshold of Tj

E j sorted worker set of Tj according to ηi

A discrete value set {a, · · · ,r ·a, · · · ,R ·a}
Γr j·a(η j) subset of η j; ∀ηi ∈ Γr j·a(η j), ηi ≤ r j ·a

A j subset of A ; ∀r j ·a ∈A j, ∑i:ηi∈Γr j ·a(η j)
ki ≥ l j

H function set of the form hθ
u (·) with u ∈ [0,1]

3.2.1 System Model
The crowdsourcing system considered in this work consists of a platform and a large

set of workers W = {w1, · · · ,wi, · · · ,wN}. The platform hosts a set of to-do tasks, while
the workers are intelligent laborers that are willing to carry out tasks in trade of monetary
rewards. Following many prior works in this field [58, 59, 61, 62, 70, 71, 72, 142], the
platform adopts the framework of reverse auction to recruit workers. The platform and
workers play the role of the auctioneer and bidders, respectively. In a generic reverse
auction, bidders compete with each other by offering the bid, i.e., the minimum payment
one accepts for conducting a task. Upon the collection of all bids, the auctioneer picks the
winner(s) who offer the lowest bids and determines the corresponding payment that should
be paid to a winning bidder. Table 3.1 lists the notions used in this work.

Unlike generic auctions, in crowdsourcing worker’s “reputation” is taken into ac-
count for worker recruitment. Here we use weight, denoted by ki ∈ [0,1], to represent
worker wi’s reputation. For the rest of the paper, we use the terms “reputation” and “weight”
interchangeably. This value can be maintained and updated by the platform from a long-
term observation. Typically, highly-rated workers overweight the bad-mouthed ones. For
example, in Amazon Mechanical Turk [129] and Guru [83], task requesters are allowed
to set the preference to workers with high ratings. A task typically requires workers of
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different backgrounds to work on. For instance, for a task that collects public opinions on
the best picture out of a given set, it is desirable to recruit workers covering comprehensive
demography, as people of different ages, regions, education levels, etc. may have distinct
perceptions. To reflect this property, following [142, 150], each worker is exclusively clas-
sified into one of the following types T =

{
T1, · · · ,Tj, · · · ,TM

}
. We overload the notation

wi ∈ Tj, meaning that wi is a type Tj worker. Such information is provided by workers
during registration1. Besides, we assume that the accomplishment of a task needs diverse
workers covering the type set T 2.

Denote by ci worker wi’s associated cost toward the task, indicating the minimum
payment it accepts. ci is private and known only to wi itself. To compete for task execution
opportunities, wi submits bid bi. Upon receiving bids b = {b1, · · · ,bi, · · · ,bN} from all
workers, the platform formulates a worker recruitment problem that aims to minimize the
accumulated payment from to each winning worker, denoted as Pi(b)3, while taking into
account the task result quality and crucial economic properties in auctions.

min ∑
i:wi∈W

Pi(b)xi

s.t. ∑
i:wi∈Tj

kixi ≥ l j, ∀ j ∈ [1,M], (3.1)

ki ≥ k, ∀i ∈ {i : xi = 1}, (3.2)⋃
j:wi∈Tj,∀xi=1

Tj = T , (3.3)

xi ∈ {0,1}, ∀i ∈ [1,N],

IC, IR and Collusion resistance.

xi is a binary decision variable. xi = 1 means that wi is recruited; xi = 0 otherwise. The
above problem aims to minimize the platform’s overall payment.

To guarantee the task result quality, multiple workers should be hired for each type.
Constraint (3.1) says that the weighted cardinality of the hired worker set for each type can-
not be lower than l j, a threshold determined by the platform to provide quality-guaranteed
services. The operation of summing up reputations from workers has been adopted in
real-world crowdsourcing applications. One example is the web application iSpot which

1We pertain the discussion over bid collusion in this work, collusion of misreporting type information
[69] and tasks’ answers [63, 102] have been studied and the joint collusion over bids, worker types or worker
answers will be considered in our future work.

2Our design also fits for the case where a task only needs workers from a subset of types T ′ ⊆ T with
minor modification to the scheme.

3Pi(b) is expressed as the function of the entire bid set b because the former is dependent on the latter.
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exploits crowdsourcing to identify species accurately in biodiversity science [116, 117]. iS-
pot calculates the total reputational weight attached to one label of a given unknown species
as the sum of the reputation of workers who reports this label. If this total exceeds a pre-set
threshold, iSpot marks this label as the ID of the species. In constraint (3.2), k denotes
the minimal reputation a worker must have for being recruited. By tuning k, the platform
effectively filters out the workers that are disqualified with low reputation. Constraint (3.3)
requires that all worker types should be covered. Take crowdsourcing-based spectrum mon-
itoring/sensing as an illustration. Each mobile device is only able to obtain the spectrum
usage at a specific location given its limited sensing range. To derive a complete spectrum
usage map over a large geographic area, it is desirable for the service provider to recruit a
set of workers covering all locations. Treating locations as types, constraint (3.3) guaran-
tees the hiring of workers of all types, i.e., mobile devices at all locations. Moreover, any
solution to the above problem should also satisfy some inherent economic properties, such
as truthfulness (also called incentive compatibility (IC)) and individual rationality (IR). Fi-
nally, the platform calculates payment Pi(b) to each winning worker wi. A loser does not
execute any task and receives zero payment.

To facilitate the scheme design, we formally present a worker’s utility and a coalition
group’s utility in Definition 1 and Definition 2, respectively. Worker wi’s utility is denoted
as ui(b). It is expressed as a function of bid set b as the former is dependent of the latter.
Definition 1. (A Worker’s Utility.) Given the bid set b, the utility of a worker wi ∈W is

ui(b) = (Pi(b)− ci)xi.

Definition 2. (A Coalition’s Group Utility.) Given the bid set b, the group utility of a
coalition G is

uG = ∑
i:wi∈G

ui(b),

i.e., the sum of individual utility from all workers in the same coalition G .

3.2.2 Problem Statement
Workers are modeled as rational and self-interested; they may game the system for

higher beneficial gain. Thus, collusions occur in an auction when a group of bidders form
a coalition, rig their bids to manipulate auction outcomes, and gain higher group utility.
In below, we first use a simple example to illustrate how it impacts the crowdsourcing
marketplace.

Assume that there are four workers (N = 4), all of whom are of the same type T
and weight k = 1, and the task only needs type T workers to execute. Their associated
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Figure 3.1: Small-size collusions have severe impact on auction-based crowdsourcing mar-
ketplace.

cost are set to c1 = 15, c2 = 17, c3 = 20 and c4 = 60. Let l = 2. To achieve minimum
payment, truthfulness, and individual rationality simultaneously, we adopt the widely used
second-price reverse auction [130] here for worker recruitment. Specifically, winners are
the ones who bid with the lowest prices, and their payments are given by the lowest losing
bid. When all workers bid with their true costs (bi = ci,∀i), the winners are w1 and w2,
each paid at 20. Now assume that w2 and w3 collude, i.e., G = {w2,w3} and w3 raises its
bid to 59. In this case where bi = ci, i ∈ {1,2,4} and b3 = 59, w1 and w2 win while w3 still
loses. Under the second-price reverse auction, winner’s payment is the lowest losing bid,
i.e., b3. Hence, w2’s payment becomes 59, which is significantly larger than 20 received
without collusion. Since w2 and w3 form a coalition, w2 can transfer some part of its extra
income to w3. As a result, each of them achieves a higher utility.

We then further examine collusion impacts via larger-scale simulations. Assume that
there are 5000 workers (N = 5000) that are categorized into 10 types (M = 10). Let l j = 100
( j ∈ [1,10]). As the example above, we consider small-size coalitions of size 2. There are
1000 such coalitions in the system. Each of them adopts the similar collusion strategy
introduced above, i.e., one worker honestly submits its cost, while the other increases the
bid. In the simulation, each worker’s cost and weight are randomly selected from [1,100]
and [0,1], respectively. In Figure 3.1(a) we plot the group utility improvement of each
coalition in 100 trials. It shows that workers have incentives to collude, since collusions
are easy to perform and are highly beneficial. The red curve and green curve in Figure
3.1(b) represent the distribution of the total payment caused to the platform when only one
collusion group and 1000 collusion groups exist, respectively. Apparently, the impact on
payment is limited when only one collusion group is present, but the payment increases
by five times when 1000 collusion groups are present. The above illustrations show that
small-size collusions are particularly effective in raising worker group utility and imposing
extra costs on the platform.
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So far, we have only considered one kind of collusions, where some workers from a
coalition offer bids higher than their true costs, while the others report genuine values. In
fact, colluders are feasible to adopt a broad spectrum of strategies, e.g., they can arbitrarily
raise or lower bids, as long as it brings a higher group utility. In this study, we aim to defend
against such general collusions.

Let bG and cG be the bid set and true cost set of all members from coalition G ,
respectively. cW \G stands for the true cost set from all the other workers except the ones
from coalition G . Then ui(bG ,cW \G ) is the utility of worker wi, a member of G , when it
and its fellows from G collaborate to arbitrarily rig their bids. Similarly, ui(cG ,cW \G ) is
the utility of worker wi, when it and its fellows from G honestly report their costs. Then,
possible collusion strategies are defined as follows.
Definition 3. (Collusion strategies.) Workers from a coalition G arbitrarily raise/decrease
their bids to increase coalition’s group utility uG , i.e.,

∑
i:wi∈G

ui(bG ,cW \G )> ∑
i:wi∈G

ui(cG ,cW \G ),

where bG ⋄ cG , denoting some elements of bG and cG satisfy bi > ci, some of them satisfy
bi < ci, and the rest are the same.

The symbol bG ⋄ cG denotes that some of colluders offer bids higher than their true
cost b j > c j, some of them offer bids lower than their true cost b j < c j, and the rest
keep their bids unchanged b j = c j. A collusion is success, if the accumulated utility
from all members of coalition with collusion is higher than that without collusion, i.e.,
∑i:wi∈G ui(bG ,cW \G )> ∑i:wi∈G ui(cG ,cW \G ).

“Utility” is terminology in economics. It stands for the benefit of consuming or
providing a good/service. The utility of a worker in our paper is the net income of selling
its service. It is equal to the payment received from the platform minus its cost, as shown in
Definition 1. Similarly, group utility is the net income of a coalition for selling their offered
services, which is equal to the sum of the utility of all workers in the coalition.

Note that multiple coalitions may coexist in an auction. Besides, one worker wi

can participate in different coalitions, say G1, G2, · · · , the collusion is deemed success
if any of the following inequality holds, ∑i:wi∈G1 ui(bG1,cW \G1) > ∑i:wi∈G1 ui(cG1,cW \G1),
∑i:wi∈G2 ui(bG2,cW \G2)> ∑i:wi∈G2 ui(cG2,cW \G2), · · · . To prevent worker wi from collusion,
our goal is to ensure none of these inequalities exist under careful mechanism design. While
workers may collude by misreporting other information in addition to bids, we focus the
discussion on bid collusion in this work, due to the design complexity.
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3.3 A Basic Scheme without Collusion Resistance
In this section, we first develop a basic worker recruitment auction scheme with-

out collusion resistance. The discussion of this basic scheme is critical, as it serves as
the cornerstone for our comprehensive collusion-resistant worker recruitment that will be
presented in the next section.

3.3.1 Basic Scheme Design
Upon receiving each worker wi’s bid bi, the platform checks the worker’s type via

accessing its profile. It first rules out workers whose reputations are lower than the threshold
k. The platform then lists all workers of type Tj ( j ∈ [1,M]) and sorts them in an ascending
order according to the per unit weight bid ηi = bi/ki. Denote by E j this sorted worker set.
Let E = {E j : j ∈ [1,M]} and η j = {ηi : ∀i wi ∈ E j}. In order to recruit workers covering
all types, winners are selected in each E j.

Here we elaborate the design rationality of the above-mentioned steps. Recall that the
worker recruitment optimization problem aims to minimize the platform’s overall payment
with the constraints from task quality and task type coverage. As this problem is NP-hard,
we resort to the above heuristic steps to approximately solve it. The intuition of ranking ηi

from low to high is that the worker with a lower ηi is preferred by the platform compared
with the one with a higher ηi, since a lower ηi indicates a lower bid (and thus potentially
lower payment) but a higher weight/reputation. Then the platform selects winning workers
starting from the lowest ηi.

The platform maintains a set of discrete values A = {a, · · · ,r ·a, · · · ,R ·a}, such that

a≤min
i
{ηi}, R ·a≥max

i
{ηi}. (3.4)

We present the following definition which is critical for our scheme design.
Definition 4. Let y be an ascending vector. Denote by Γx(y) the set of elements in y with
the value at most x.

For each E j ∈ E , the platform first generates a set A j = {r j · a : ∑i:ηi∈Γr j ·a(η j)
ki ≥

l j,r j ∈ [1,2, · · · ,R]} from A . It then identifies the value r∗j · a from A j such that (r∗j · a) ·
∑i:ηi∈Γr∗j ·a

(η j)
ki is minimized. The winners in E j, i.e., of type Tj, are the workers whose

per unit weight bid ηi is at most r∗j · a, each receiving the payment at ki · (r∗j · a). The
rest workers lose. The platform’s total payment for hiring type Tj workers is calculated as
(r∗j ·a) ·∑i:ηi∈Γr∗j ·a

(η j)
ki. Note that r∗j ·a can be viewed as winner’s per unit weight payment.

It has the following property.

31



Proposition 2. For r∗j ·a of any E j ∈ E that satisfies

r∗j ·a = arg min
r j·a∈A j

(
(r j ·a) · ∑

i:ηi∈Γr j ·a(η j)

ki
)
,

we have

∑
i:ηi∈Γr∗j ·a

(η j)

ki ≥ l j, (3.5)

∑
i:ηi∈Γ(r∗j−1)·a(η j)

ki < l j. (3.6)

Proof. First of all, we directly have (3.5) according to how r∗j · a is derived in the basic
scheme. We then prove (3.6) via the contradiction method. Assume that ∑

i:ηi∈Γ(r∗j−1)·a(η j)
ki≥

l j. We have
(r∗j ·a) · ∑

i:ηi∈Γr∗j ·a
(η j)

ki ≤ [(r∗j −1) ·a] · ∑
i:ηi∈Γ(r∗j−1)·a(η j)

ki, (3.7)

as otherwise (r∗j −1) ·a will become winner’s per unit weight payment. From Definition 4,
we know that

∑
i:ηi∈Γ(r∗j−1)·a(η j)

ki < ∑
i:ηi∈Γr∗j ·a

(η j)

ki,

and thus
[(r∗j −1) ·a] · ∑

i:ηi∈Γ(r∗j−1)·a(η j)

ki < (r∗j ·a) · ∑
i:ηi∈Γr∗j ·a

(η j)

ki.

which contradicts with (3.7). It implies that the assumption
∑i:ηi∈Γ(r∗j−1)·a(η j)

ki ≥ l j is invalid. Thus, (3.6) holds.

Proposition 2 provides an efficient way to determine winning workers and their pay-
ments. Specifically, once A j is generated for each worker type Tj, instead of comparing
(r j ·a) ·∑i:ηi∈Γr j ·a(η j)

ki’s for each element in A j and identifying the minimum one, the first
element of A j is exactly the per unit weight payment to each winner. Besides, any worker
with its per unit weight bid no larger than this value is the winner. It is not difficult to tell
that the computation complexity of the basic scheme is O(MN).

The design rationale of the basic scheme can be interpreted in the following way.
Note that once per unit weight payment is determined, so is the worker’s payment, as its
reputation times per unit weight payment. Hence, a worker’s payment is independent of
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its bid, providing strategic players limited incentives to rig their bids. While collusion is
still viable by manipulating the final payment of the basic scheme, the effect is largely
constrained. This is because the per unit weight payment (under collusion) is always in
the set {r j · a : r j ∈ [rL

j ,r
H
j ],r j ∈ Z+}, and thus a worker’s payment is limited to the set

{ki · r j · a : r j ∈ [rL
j ,r

H
j ],r j ∈ Z+}. Without introducing A or confining per unit weight

payment to A , the payment under collusion will be unbounded.
The choice of a needs to balance the platform’s payment and the scheme robustness.

Generally, a larger a causes less payment at the platform, but at a cost of weaker scheme
robustness; specifically, the probability that the scheme is robust against collusion is lower.
In the simulation, we provide extensive discussions regarding the choice of a.

3.3.2 A Walk-through Example
Since this example only aims to show how our scheme operates, the collusion pattern

(i.e., the number of coalition group, who rise/reduce their bid and how much they coordi-
nate their bids, etc) and the platform parameter (such as l j) are arbitrarily set. Consider
that there are thirteen workers (N = 13) and one task that looks for two types of workers
(M = 2). Besides, let l j = 2 ( j ∈ {1,2}) and k = 0. Assume that w1−w5,w11,w13 ∈ T1 and
w6−w10,w12 ∈ T2. The weight of w1−w3, w5−w6 is 0.5 and that of w4, w7−w13 is 1.
Worker’s bids are listed as

b1 = 15,b2 = 17,b3 = 19,b4 = 44,b5 = 24,b6 = 31,b7 = 33,

b8 = 36,b9 = 38,b10 = 39,b11 = 40,b12 = 50,b13 = 60.

We derive two sorted worker sets

E1 = {w1,w2,w3,w11,w4,w5,w13},E2 = {w7,w8,w9,w10,w12,w6},

with the corresponding η j as

η1 = {30,34,38,40,44,48,60},η2 = {33,36,38,39,50,62},

Let a = 4, then A1 = {10 · 4,11 · 4, · · · ,15 · 4} and A2 = {9 · 4,10 · 4, · · · ,16 · 4} since
∑i:ηi∈Γ10·4(η1)

ki = 2.5 > l1 and ∑i:ηi∈Γ9·4(η2)
ki = 2 = l2. According to Proposition 2, r∗1 ·a =

10 ·4 = 40 and r∗2 ·a = 9 ·4 = 36. Thus, winners in E1 (of type T1) are w1, w2, w3 and w11,
with the first three paid at 20 each and the last one paid at 40. w7 and w8 are recruited in
E2 (of type T2) and paid at 36 each. The rest workers lose and get 0. Thus, the platform’s
total payment is 172.
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3.4 Final Collusion-Resistant Scheme
In this section, we develop a collusion-resistant worker recruitment auction based on

the basic scheme.

3.4.1 Collusion Patterns
Consider a worker set E j ∈ E . Without collusion, the per unit weight payment to

each winner is r∗j ·a according to our basic scheme. Assume that there is a collusion group
G j in E j with weighted cardinality t j = ∑i:wi∈G j ki. When ki’s are all 1’s, t j is directly the
cardinality of G j, i.e., the number of members in this coalition. As described in Definition
3, colluders may choose to raise or lower bids for group utility gain. We start from a special
case, where they raise their bids so as to manipulate the payment, like the example shown
in Section 3.2.2. More precisely, each winner’s per unit weight payment can be increased
up to rH

j ·a, satisfying

∑
i:ηi∈ΓrH

j ·a
(η j)

ki− t j = ∑
i:ηi∈Γr∗j ·a

(η j)

ki. (3.8)

In another special case, where colluders decrease their bids, then each winner’s per unit
weight payment can be decreased down to rL

j ·a, satisfying

∑
i:ηi∈ΓrL

j ·a
(η j)

ki + t j = ∑
i:ηi∈Γr∗j ·a

(η j)

ki. (3.9)

Although a winner’s per unit weight payment has been decreased, it is possible that more
colluders become winners. As a result, their group utility can still potentially be increased.
It is not difficult to derive that rL

j ·a≤ r∗j ·a≤ rH
j ·a.

The above discussion reveals the mechanism how a coalition receives group util-
ity gain through manipulating the winner’s payment. Ideally, if the following assumption
exists

r∗j ·a = r j ·a, ∀r j ∈ [rL
j ,r

H
j ] (3.10)

i.e., winners are paid undifferentiated no matter a coalition colludes or not, the motivation
of collusions will be diminished. Nonetheless, such a design idea is infeasible unless certain
modifications are made, which will be the focus next.

3.4.2 Scheme Design
We develop a “soft” collusion-resistance approach: no coalition gain is achievable

from colluding with a probability p. We formally define a (t, p)-collusion resistant auction.
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Definition 5. ((t, p)-collusion resistant auction.) An auction is (t, p)-collusion resistant,
if, with a probability of p or higher, no coalition with weighted cardinality t can improve
its group utility by coordinating the bids. This holds even if multiple collusion groups are
present, as long as each group’s weighted cardinality is t or less.

Meanwhile, we also aim to achieve truthfulness and individual rationality under the
soft collusion-resistant auction framework. Recall that bi and ci are worker wi’s bid and
true cost respectively, while c−i stands for the cost set from all workers except wi.
Definition 6. (p-Truthfulness.) The worker recruitment auction is p-truthful, if

Pr [ui(bi,c−i)≤ ui(ci,c−i)]≥ p, ∀wi ∈W

Definition 7. (p-Individual Rationality.) The worker recruitment auction is p-individual
rational, if

Pr [ui ≥ 0]≥ p, ∀wi ∈W

In order to defend against collusions, our idea is to carefully set winner payment,
such that it will not be influenced by colluders’ strategies. Before we delve into design
details, we first define [α,β ]-consensus estimate.
Definition 8. ([α,β ]-consensus estimate.) Given α,β > 0 and v> 0, we say that a function
h(·) is a [α,β ]-consensus estimate of v if

1. for any w such that α ≤ w≤ β , we have h(w) = h(v);
2. h(v) is a nontrivial upper bound on v, i.e., 0 < v≤ h(v).

h(v) is called the consensus value.
Consider a function

hθ
u (v) = v rounded up to nearest θ

s+u (3.11)

where s is a tunable integer and θ is a carefully chosen positive real value. The selection
of θ depends on α and β . The definition of hθ

u (·) implies that for any v, v≤ hθ
u (v)≤ θ · v.

Define H as the set of functions of the form hθ
u (·) with u chosen uniformly on [0,1].

Definition 8 and the design of function hθ
u (·) are inherited from [101], but modified to

accommodate our scenario. Specifically, hθ
u (·) is a rounded-up function here, i.e., hθ

u (v)≥ v
given value v, while that in [101] is a rounded-down function. One reason for such a
change is to ensure non-negative worker utility in the context of crowdsourcing where the
reverse auction framework is adopted. More importantly, consensus estimate in [101] is to
achieve a high competitive ratio, while we leverage it to develop a soft collusion resistance
approach. Therefore, the purpose and parameter design rationale of hθ

u (·) in these two
works are different. We can induce the following corollary from [101].
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Corollary 1. For h from H and a given value v > 0, h(v) is distributed identically to θU v
where U is a random variable following uniform distribution on [0,1].

Proof. Consider a random variable Y = logk h(v) and let t = logk v. Then Pr[Y ≤ t + x] =
Pr[U ≤ x] and therefore Y is uniformly distributed between t and t + 1. Thus, h(v) is
identical to kU v.

Proposition 3. For h from H and a given value v > 0, the probability that h(v) is a [α,β ]-
consensus estimate of v is 1− logθ

β

α
.

Proof. According to Definition 8, h is a [α,β ]-consensus estimate of v if h(α) = h(v) =
h(β )≥ β . From Corollary 1, we have

Pr [h(α)≥ β ] = Pr
[
θ

U
α ≥ β

]
= Pr

[
θ

U ≥ β

α

]
= 1−Pr

[
θ

U ≤ β

α

]
= 1−Pr

[
U ≤ logθ

β

α

]
= 1− logθ

β

α
.

We are now ready to introduce our (t, p)-collusion resistant worker recruitment auc-
tion. Its pseudo-code is presented in Algorithm 3. Upon receiving bids from workers, the
platform derives E . For each E j ∈ E , the platform generates A j and identifies the value
r∗j ·a from A j such that (r∗j ·a) ·∑i:ηi∈Γr∗j ·a

(η j)
ki is minimized. According to Proposition 2,

r∗j ·a is simply the first element of A j. The platform then selects a suitable function hθ j
u (·).

The winners in E j are the workers of per unit weight bids at most hθ j
u (r∗j ·a). A winner wi

is then paid at ki ·h
θ j
u (r∗j ·a). The rest workers lose.

Algorithm 3 (t, p)-collusion resistant worker recruitment

Input: bi, ki, t j and l j (i ∈ [1,N], j ∈ [1,M])
Output: xi and Pi(b) (i ∈ [1,N])

1: for each Tj ∈T do
2: Platform generates worker set E j and A j;
3: Identify the first value in A j and set it as r∗j ·a;

4: Select hθ j
u (·) based on t j and η j;

5: Winners of Tj are the ones with ηi ≤ hθ j
u (r∗j ·a);

6: Calculate each winner’s payment as Pi(b) = ki ·h
θ j
u (r∗j ·a).

7: end for
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As long as hθ j
u (r j · a) is a (rL

j · a,rH
j · a)-consensus estimate of r j · a ∈ [rL

j · a,rH
j · a],

we have
hθ j

u (r j ·a) = hθ j
u (r∗j ·a) r j ∈ [rL

j ,r
H
j ] (3.12)

with the probability p j. This is because rL
j ·a≤ r∗ ·a≤ rH

j ·a. According to Proposition 3,
p j is calculated as

p j = 1− logθ j

rH
j ·a

rL
j ·a

= 1− logθ j

rH
j

rL
j

(3.13)

by setting α = rL
j · a and β = rH

j · a. It means no collusions will impact winner’s per unit
weight payment and thus its total payment with a probability p j. If p j is high, it fails the
motivation of collusion at a large chance. We can set an arbitrary value of p j from (0,1)
by tuning θ j and a.

Now the remaining issue is to generate a suitable hθ j
u (·) to have (3.12) hold. For

this purpose, we first identify rH
j · a and rL

j · a via (3.8) and (3.9), respectively. Then θ j is
carefully selected such that (3.12) holds for v∈ [rL

j ·a,rH
j ·a]. Specifically, we should expect

rL
j ·a≤ hθ j

u (rL
j ·a)≤ rL

j ·a ·θ j, r∗j ·a≤ hθ j
u (r∗j ·a)≤ r∗j ·a ·θ j,

rH
j ·a≤ hθ j

u (rH
j ·a)≤ rH

j ·a ·θ j.

Together with (3.12) and the fact that rL
j ≤ r∗j ≤ rH

j , in order to have the above equations
hold, we must have

rH
j ·a≤ hθ j

u (r j ·a)≤ rL
j ·a ·θ j, ∀r j ∈ [rL

j ,r
H
j ]

which requires rL
j ·a ·θ j ≥ rH

j ·a and thus θ j ≥ rH
j /rL

j .
Up to now, we have presented how to determine winners and their payments for E j.

The same procedure will be followed to handle the rest sets in E . The scheme is (t, p)-
collusion resistance, where t = min j∈[1,M]{t j} and p = ∏

M
j=1 p j. Its formal analysis will be

given in Theorem 3.
Theorem 2. The computation complexity of our (t, p)-collusion resistant worker recruit-
ment algorithm is upper bounded by O(MN).

Proof. The computation complexity of Algorithm 3 is dominated by the while-loop, which
contains M iterations, where M is the number of worker types. For each iteration, it involves
a computation of generating the worker set E j and the corresponding A j (line 2), causing N
times of look-up operations and up to R times of comparisons, respectively. Besides, for the
process of selecting hθ j

u (·) (line 4), its main component is to identify rH
j ·a and rL

j ·a, which
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results in 2R times of comparison at most. For the process of determining winning workers
(line 5), it involves N times of comparison at most. Therefore, the computation complexity
of Algorithm 3 is upper bounded by O(M(2N +3R)). Recall that R is a constant value in
the algorithm. The computation complexity is thus rewritten as O(MN).

3.4.3 A Walk-through Example
To better explain our scheme, we still take the example in Section 3.3.2 as an illus-

tration. Following the same procedure as in the basic scheme, the platform first generates
the worker sets E1 = {w1,w2,w3,w11,w4 ,w5,w13} and E2 = {w7,w8,w9,w10, w12,w6},
the corresponding A1 = {10 · 4, · · · ,15 · 4} and A2 = {9 · 4,10 · 4, · · · ,16 · 4} with a = 4,
and r∗1 ·a = 10 ·4 = 40 and r∗2 ·a = 9 ·4 = 36.

Assume that the platform intends to defend against a coalition with weighted car-
dinality up to t = 1.5 in each worker type. According to (3.8) and (3.9), for E1 we have
rL

1 · a = 8 · 4 = 32, rH
1 · a = 11 · 4 = 44. Following the requirement θ j ≥ rH

j /rL
j , a feasi-

ble value of θ j is 3 is selected. In order to decide winners and their payments for E1,
let u = 0.4 be an instantiation. Recall that u is a random value chosen from [0,1]. Then
h3

0.4(r
∗
1 ·a) = h3

0.4(40) is calculated as “40 rounded up to the nearest 3s+0.4” (with s as a tun-
able integer), which gives us 41.9. According to the scheme, workers with per unit weight
bids no larger than 41.9 are winners for E1. Thus, w1−w3 and w11 are winners paid at
21.0, 21.0, 21.0 and 41.9 respectively. w2−w5 and w13 lose.

Following the similar idea, for E2, w7 −w8 are winners, with each paid at 37.5
(θ2 = 3,u = 0.3), while others lose. The platform’s total payment is thus 179.9, which
is only slightly above, around 5%, than that caused in the basic scheme with no collusion
resistance.

3.4.4 Addressing Inter-type Collusions
So far we have focused on the scenarios where colluders from the same coalition

reside in the same worker set E j ∈ E , i.e., they belong to the same type Tj ∈T . Such kind
of collusion can be viewed as intra-type collusions. Nonetheless, it is also possible that
colluders from the same coalition are of different types, which we call inter-type collusions.
For instance, in the example discussed in Section 3.3.2 and 3.4.3, the collusion among w2,
w3 and w6 is exactly an inter-type collusion.

Even though inter-type collusions seem to be more complex than intra-type collu-
sions, each inter-type collusion can be equivalently divided into multiple independent intra-
type collusions. This is because collusions under each worker type are dealt one by one in
our scheme, including winner selection and payment determination. Hence, the winners’
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payment for one worker type is irrelevant to that for the other type. As a result, a colluder’s
utility received in E j does not impact its peers’ utilities received in another E j′ ( j ̸= j′).
Therefore, for the inter-task collusion coalition G = {w2,w3,w6}, it can be divided into
two intra-collusion coalitions, i.e., G1 = {w2,w3} and G2 = {w6}. To sum up, if we can
effectively discourage the formation of intra-collusion coalitions, so for the inter-collusion
coalitions.

3.4.5 Restrictions on Our Scheme
Generally, it is difficult to design a scheme that can defend against an arbitrary num-

ber of colluders. This is the same case for our scheme.
In order to have our scheme work, the condition (3.8) and (3.9) should meet, or

equivalently,

∑i:ηi∈ΓrL
j ·a

(η j)
ki = ∑i:ηi∈Γr∗j ·a

(η j)
ki− t j. (3.14)

∑i:ηi∈ΓrH
j ·a

(η j)
ki = ∑i:ηi∈Γr∗j ·a

(η j)
ki + t j. (3.15)

In order to make sure ∑i:ηi∈ΓrL
j ·a

(η j)
ki and ∑i:ηi∈ΓrH

j ·a
(η j)

ki exist in any worker set E j, then

∑i:ηi∈ΓrL
j ·a

(η j)
ki > 0, (3.16)

∑i:ηi∈ΓrH
j ·a

(η j)
ki ≤ ∑i:wi∈E j ki. (3.17)

Substituting (3.14) and (3.15) into (3.16) and (3.17) respectively, we derive following re-
strictions on t j:

t j < ∑i:ηi∈Γr∗j ·a
(η j)

ki, (3.18)

t j ≤ ∑i:wi∈E j ki−∑i:ηi∈Γr∗j ·a
(η j)

ki. (3.19)

When coalitions are of small size, then the relation t j < l j typically exists, i.e., the weighted
cardinality of a coalition is smaller than l j. Recall that l j is a threshold selected by the
crowdsourcing platform to ensure service quality during worker recruitment. Besides, as
l j ≤∑i:ηi∈Γr∗j ·a

(η j)
ki, then (3.18) holds. Moreover, there are a large population of workers in

a real crowdsourcing system. Hence, we have ∑i:wi∈E j ki≫ t j and thus (3.19) also satisfies.
To sum up, our scheme can effectively defend against small-scale collusions in a

crowdsourcing system where there are a large set of workers.

39



3.5 Property Analysis
In this section, we provide a formal analysis of various properties achieved by our

scheme.
Recall that E is denoted as E = {E j : j ∈ [1,M]}. t j is the weighted cardinality of

the coalition which resides in E j. p j is the coalition’s collusion success probability
Lemma 2. For any E j ∈ E , our scheme achieves (t j, p j)-collusion resistance, with p j de-
fined by (3.13).

Proof. It is equivalent to show that any coalition of weighted cardinality t j cannot obtain
higher group utility by rigging their bids, with a probability p j or higher. In the following,
we plan to first show the validity of the above statement for two special cases of collusions,
where colluders either raise or decrease bids. Then the statement for an arbitrary collusion
strategy given in Definition 3 will directly follow.

Denote by T ′
j ⊆ G j (T j ⊆ G j) and u′j (u j) the set of winning colluders by raising bids

in E j and their corresponding utility when they collude (or not), respectively. As colluders
raise their bids, some of them may lose, thus T ′

j ⊆T j. The difference between the coalition
in E j’s group utility when they collude or not is calculated as

u j−u′j = ∑
i:wi∈T j

[
ki ·h

θ j
u (r∗j ·a)− ci

]
− ∑

i:wi∈T ′j

[
ki ·h

θ j
u (r′j ·a)− ci

]
= ∑

i:wi∈T j\T ′j

[
ki ·h

θ j
u (r∗j ·a)− ci

]
≥ 0

with a probability p j, where hθ j
u (r′j · a) stands for the per unit weight payment when col-

lusions take place. Specifically, as r∗j · a ≤ r′j · a ≤ rH
j · a and thus hθ j

u (r∗j · a) = hθ j
u (r′j · a)

holds with a probability p j according to (3.12). Hence, the second equation above holds
with a probability p j. Besides, for a colluder wi ∈ T j\T ′

j , as it wins without collusion,

we have ηi = ci/ki ≤ hθ j
u (r∗j ·a) according to Algorithm 3, which directly leads to the last

inequality. Besides, p j associates with t j. Thus, the above expression indicates that any
coalition of weighted cardinality t j cannot achieve a higher group utility by raising bids
with a probability p j.

We further denote by T ′′
j ⊆ G j (T j ⊆ G j) and u′′j (u j) the set of winning colluders

by decreasing bids in E j and their corresponding utility when they collude (or not), re-
spectively. Some workers who lose when bid truthfully may win when they collude, thus
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T j ⊆ T ′′
j . The difference between the coalition in E j’s group utility when they collude or

not is calculated as

u j−u′′j = ∑
i:wi∈T j

[
ki ·h

θ j
u (r∗j ·a)− ci

]
− ∑

i:wi∈T ′′j

[
ki ·h

θ j
u (r′j ·a)− ci

]
=− ∑

i:wi∈T ′′j \T j

[
ki ·h

θ j
u (r∗j ·a)− ci

]
≥ 0

with a probability p j. Specifically, as rL
j ·a≤ r′j ·a≤ r∗j ·a and thus hθ j

u (r∗j ·a) = hθ j
u (r′j ·a)

with a probability p j according to (3.12). Hence, the second equation above holds at p j.
Besides, for a colluder wi ∈ T ′′

j \T j, as it loses without collusion, we have hθ j
u (r∗j · a) ≤

ci/ki = ηi according to Algorithm 3, which thus leads to the last inequality. The above
expression indicates that any coalition of weighted cardinality t j cannot achieve a higher
group utility by decreasing bids with a probability p j.

For a coalition where members adopt arbitrary strategies given by Definition 3, it can
be viewed as the combination of the above two special cases. Following a similar approach,
the statement can be validated under this scenario. As its proof is similar to the above, we
omit its discussion here.

Based on Lemma 2, we are ready to give the following theorem on collusion re-
sistance. Note that the deduction of θ j, rH

j and rL
j in Theorem 3 is discussed in Section

3.4.1.
Theorem 3. Our scheme achieves (t, p)-collusion resistance with

p =
M

∏
j=1

(
1− logθ j

rH
j

rL
j

)

and t = min j∈[1,M]{t j}.

Proof. For intra-type collusions, a coalition forms within a single E j ∈ E . And collu-
sions in different E j’s are independent with each other. According to Lemma 2, when
colluders are of weighted cardinality up to t j in each E j, our scheme is collusion resis-
tance at a probability p j. Since there are totally M E j’s, our scheme can defend against
any coalition of weighted cardinality t with probability p, where t = min j∈[1,M]{t j} and

p = ∏
M
j=1

(
1− logθ j

rH
j /rL

j

)
.

For inter-type collusions, consider an arbitrary coalition G of weighted cardinality
t ′ forming across M E j’s and t ′ = ∑

M
j=1 t j. From the discussion of Section 3.4.4, G can

be equivalently divided into M intra-type coalitions, each with the weighted cardinality
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t j. Besides, we have proved in Lemma 2 that our scheme is collusion resistance to any
coalition of weighted cardinality t j in each E j with a probability p j. Thus, our scheme is
capable of defending against any coalition of weighted cardinality t ′ with a probability p
for inter-type collusions, where t ′ = ∑

M
j=1 t j and p = ∏

M
j=1

(
1− logθ j

rH
j /rL

j

)
.

Combining the results for both intra- and inter-type collusions, we conclude that our
scheme is (t, p)-collusion resistance.

Comparing Definition 5 and Definition 6, by setting t = maxi{ki}, a (t, p)-collusion
resistance auction is degraded to a p-truthful auction. Hence, the latter can be viewed as a
special case for the former.
Corollary 2. Our scheme is p-truthful with

p =
M

∏
j=1

(
1− logθ j

rH
j

rL
j

)
.

Theorem 4. Our scheme is p-individual rational, i.e.,

Pr [ui(b)≥ 0]≥ p ∀i ∈ [1,N].

Proof. If wi is a winner, then Pi(b) = ki ·h
θ j
u (r∗j ·a)≥ bi. Meanwhile, according to Corollary

2, our scheme is p-truthful. Thus Pr [bi = ci] ≥ p. As a result, Pr [Pi(b)− ci ≥ 0] ≥ p. On
the other hand, if wi loses, then Pr[ui(b) = 0] = 1. In either case, the above statement
holds.

According to above proof, we have Pi(b) = ki · h
θ j
u (r∗j · a) ≥ bi, i.e., a worker’s pay-

ment is always no less than its bid. For a truthful worker with bi = ci, IR is always satisfied
as Pi(b) ≥ bi = ci. For a colluder, as our scheme is p-truthful (i.e., Pr[bi = ci] ≥ p), IR is
satisfied with probability p, i.e., Pr[Pi(b)≥ ci]≥ p. Therefore, our scheme always produces
non-negative utility for truthful workers. On the other hand, it does cause negative utility
at a certain probability p to workers who tend to explore the system for beneficial gain via
untruthful bidding. Besides, the soft guarantee of economic properties, such as IC, IR, and
collusion resistance, are commonly seen in incentive design. For example, [118] designs
the par-per-click auction that is truthful with an error probability. [119] also proposes a
probabilistic version of IR. Our design falls into this category.

From the scheme design, we can tell that the collusion resistance property is achieved
by recruiting redundant workers and overpaying each winner, i.e., trading the platform’s
extra cost with collusion resistance. Hence, it is critical to examine the extra cost caused
to the platform. We first evaluate the ratio between the platform’s cost of our final scheme
and that of the basic scheme.
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Proposition 4. The platform pays no larger than Pb ·∑N
i=1 ki ∑

M
j=1 θ j/l j in the (t, p)-collusion

resistant scheme, where Pb is the platform’s payment under the basic scheme.

Proof. Denote by Pt as the platform’s total payment under the (t, p)-collusion resistant
scheme.

Pt

Pb
=

∑
M
j=1 hθ j

u (r∗j ·a) ·∑i:ηi∈Γ
hθ
u (r∗j ·a)

(η j)
ki

∑
M
j=1 r∗j ·a ·∑i:ηi∈Γr∗j ·a

(η j)
ki

1⃝
≤

∑
M
j=1 θ jr∗j ·a ·∑i:ηi∈Γ

hθ
u (r∗j ·a)

(η j)
ki

∑
M
j=1 r∗j ·a · l j

≤
∑

M
j=1 θ jr∗j ·a ·∑i:wi∈E j ki

∑
M
j=1 r∗j ·a · l j

2⃝
≤

M

∑
j=1

θ j ·∑N
i=1 ki

l j

where 1⃝ is derived because hθ j
u (r∗j ·a)≤ θ j ·r∗j ·a (due to the property of hθ j

u ) and ∑i:ηi∈Γr∗j ·a
(η j)

ki ≥ l j. 2⃝ is due to the fact that ∑ j α j/∑ j β j ≤ ∑ j α j/β j when α j,β j > 0. Hence,
Pt ≤ Pb ·∑N

i=1 ki ∑
M
j=1 θ j/l j.

We further analyze the frugality of our scheme. It is defined as the ratio between the
payment caused by our scheme Pt and the optimum payment Popt , by solving the original
worker recruitment optimization problem without considering collusion resistance, truth-
fulness, or individual rationality. Therefore, frugality evaluates the amount of extra pay-
ment our scheme causes in the trade of its critical properties.

Theorem 5. The frugality of our scheme Pt/Popt satisfies Pt
Popt
≤ ∑

M
j=1

θ jr∗j ·∑N
i=1 ki

l j
.

Proof. We define the k-th lowest bid from workers in E j as b(k)j . We have

Pt

Popt
≤

∑
M
j=1 hθ j

u (r∗j ·a) ·∑i:ηi∈Γ
hθ
u (r∗j ·a)

(η j)
ki

∑
M
j=1 ∑

l j
k=1 b(k)j

3⃝
≤

∑
M
j=1 θ jr∗j ·a ·∑i:ηi∈Γ

hθ
u (r∗j ·a)

(η j)
ki

∑
M
j=1 l j ·b(1)j

≤
∑

M
j=1 θ jr∗j ·a ·∑i:wi∈E j ki

∑
M
j=1 l j ·b(1)j

4⃝
≤

∑
M
j=1 θ jr∗j ·a ·∑i:wi∈E j ki

∑
M
j=1 l j ·a

5⃝
≤

M

∑
j=1

θ jr∗j ·∑N
i=1 ki

l j

where 3⃝ and 5⃝ are due to same reasons for 1⃝ and 2⃝ respectively. 4⃝ is derived due to
(3.4).
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3.6 Performance Evaluation
3.6.1 Dataset

To validate the proposed scheme, we employ a real-world dataset obtained from the
commercial crowdsourcing platform Guru4. We focus on tasks in the field of Program-
ming & Development, which involves 894 tasks and 26904 workers. For each task, we
record its required worker skills, such as experience in iOS App development and graphic
design, etc. The required skill set is mapped to T , the type set of our scheme. Thus, the
cardinality of T is used to instantiate M = 50 in evaluation. For each worker, we record
its offered skill, received rating (from its historical employers in the platform), and asked
salary (dollars/hour), which are then mapped to the type Tj this worker belongs to, weight
ki, and exerted cost ci, respectively, in the simulation. A total of 50 coalition groups are
randomly formed among the 26904 workers. By the default setting, one coalition is formed
in each type. Besides, their weighted cardinality is upper bounded by 2. Within each group,
workers arbitrarily raise/decrease their bids. l j is set to 50. All simulation results are the
average over 100 trials.

3.6.2 Collusion Resistance
To examine the collusion resistance property, we analyze the utility gain, which is

defined as the difference between a coalition’s group utility achieved with and without the
scheme. Intuitively, if a coalition’s utility gain is 0, i.e., collusion does not produce a higher
group utility, it eliminates the members’ motivation for collusion.

10 20 30 40 50

0

2

4

6

8

(a) Average utility gain

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

(b) Cumulative distribution of instance utility gain

Figure 3.2: Collusion resistance performance comparison. One coalition group exists in
each type, with each coalition’s weighted cardinality k = 2.

4Except Guru dataset, we are not able to identify other datasets that also contain bid information of real-
world crowdsourcing systems. We would also like to point out that Guru dataset [83] has been adopted in
prior works on crowdsourcing [120, 121].
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In the simulation, Fig. 3.2 shows the coalition’s utility gain when the coalition car-
dinality is 2. We find in Fig. 3.2(a) that our scheme, under the setting of both (2,0.8) and
(5,0.8), works well. Utility gain is rarely observed throughout all coalition groups. This is
because the two settings can defend coalitions with the cardinality of 2 and 5, respectively.
Fig. 3.2(b) depicts the cumulative distribution of instant utility gain of a randomly selected
coalition. It is derived under the same setting of Fig. 3.2(a). Instead of average utility gain,
Fig. 3.2(b) examines the CDF of utility gain. The coalition’s maximal utility gain is as high
as 4 under the basic scheme, which is significantly larger than that when our scheme is in
place. Besides, the coalition’s maximal utility gain under (2,0.7) is 1.5, which is smaller
than that under (5,0.7), i.e., 2. It indicates that the platform can better restrict a coalition’s
instant group utility when setting a smaller t. Given a larger t, we are expecting a larger
rH/rL. Thus, under the same p, i.e., 0.7 here, the larger t produces a larger θ according
to (3.13). As a result, the instant payment a winner gets will be larger, which, as a con-
sequence, brings a larger instant utility gain. By comparing with the utility gain achieved
under (2,0.7) and (2,0.8), we find that the latter can prevent collusion at a higher success
rate. However, it leads to a larger instant utility gain; if a coalition succeeds in colluding, it
receives a higher gain. This phenomenon can be explained following the similar rationality
above.
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Figure 3.3: Collusion resistance performance comparison. One coalition group exists in
each type, with each coalition’s weighted cardinality k = 5.
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Figure 3.4: Collusion resistance performance comparison. Two coalition groups exist in
each type, with each coalition’s weighted cardinality k = 5.

In Fig. 3.3, the coalition’s weighted cardinality k is set to 5. Fig. 3.3(a) shows that
the average utility gain can reach as high as 25 under the basic scheme (without collusion
resistance). Under (t, p) = (5,0.8), the average utility gain keeps close to 0 throughout all
coalitions. It means that no coalition can explore positive utility gain on average. There-
fore, collusion is effectively prevented. We then set (t, p) = (2,0.8). However, it exhibits
poor performance when implemented to resist collusions with weighted cardinality 5. The
average utility of some coalitions decreases to 0, while the remaining coalitions’ average
utility is the same as that of the basic scheme, which denotes (2,0.8) resist parts of col-
lusions because colluders size is larger than t = 2. The above result is slightly different
from that of Fig. 3.2(a): our scheme with (5,0.8) can still effectively resist collusion while
the scheme with (2,0.8) cannot. This is simply because the coalition with cardinality 5 is
beyond the capacity of our defense scheme with (2,0.8). A result similar to Fig. 3.2(b) can
be observed in Fig. 3.3(b).

Fig. 3.4 shows the performance when two coalition groups are present in each type.
In the setting, as there are 50 types, the total number of coalition groups is 100. For com-
parison purposes, we set the coalition cardinality as 5. According to the figure, collusion
can still be effectively defended with our scheme under (5,0.8). This is the same case with
Fig. 3.3, where only one coalition per type exists. Thus, we conclude that the number of
coalitions does not impact the collusion resistance performance of our scheme. It complies
with our theoretical result.

Fig. 3.5 shows the collusion resistance property of our scheme by evaluating the total
payment occurred at the platform. When no coalition exists, the total payment of the basic
scheme is less than that of the proposed scheme. However, the payment increases dramat-
ically as more collusion takes place, while this value keeps almost constant in our scheme
under all three settings. This is because the payment to each winner remains unchanged
with a high probability as long as the coalition’s weighted cardinality is no larger than 2,
i.e., a default value in our simulations. On the other hand, as the basic scheme cannot resist
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Figure 3.5: Total payment comparison under different collusion group numbers.

Table 3.2: Upper bound of colluder ratio in real-world FCC auctions [77].

PCS-C Block Auction 35 AWS-1 700 MHz
48.7% 1.1% 1.5% 0.03%

collusion, it causes significantly increased payment as more malicious workers are present.
When there is no collusion, the average total payment with the basic scheme is 1.1×105,
while that with the proposed scheme under three settings (2, 0.7), (2, 0.8) and (5, 0.7) are
2.2× 105,5.2× 105,6.1× 105, resulting in the corresponding ratio as 2, 4.7, 5.5, respec-
tively. Although the proposed scheme incurs extract payment than the basic scheme when
no collusion exists, the payment of the basic scheme increases dramatically as more collu-
sion presents. In an extreme case where 50 collusion groups misbehave, the total payment
reaches 2.0×106 under the basic scheme, while that of the proposed scheme under (2, 0.7)
is merely 2.2×105 which is about 1/9 of the former.

Table 3.2 shows the upper-bound of collusion ratio in Federal Communications Com-
mission (FCC) spectrum auctions. Four real-world FCC spectrum auctions are examined,
PCS-C Block, Auction 35, AWS-1 and, 700 MHz. (Please refer to [77] for details of these
four auctions.) Their collusion ratio is upper-bounded by 48.7%, 1.1%, 1.5%, and 0.03%,
respectively. Recall that our scheme causes lower total payment than the basic scheme as
long as one collusion group exists. Thus, our final scheme is more cost-effective than the
basic scheme under all non-zero collusion ratios.

3.6.3 Payment
As mentioned, the collusion resistance property of our scheme is achieved by causing

extra payment (overpayment) at the platform. Thus, in this part, we evaluate the overpay-
ment and the effect of parameters, i.e., t and p to the platform’s payment to winners.

We first check the impact of the threshold l j to a winning worker’s payment in Fig.
3.6. The payment demonstrates a “step” shape as l j increases. This is due to the rounding
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Figure 3.6: Payment to one randomly selected winner.
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Figure 3.7: Distribution of per unit weight bids of two different datasets.

operation hθ
u (·) involved in the payment calculation. Besides, we observe that the payment

increases as l j grows. From the scheme design, we can infer that a larger l j leads to a
larger r∗j ·a and thus a larger hθ

u (r
∗
j ·a). Note that hθ

u (·) is a non-decreasing function. As the
winner’s payment is calculated as ki ·hθ

u (r
∗
j ·a), it has positive correlation with l j.

Fig. 3.8 examines the distribution of total payment of our scheme and Popt . Recall
that Popt is obtained via optimally solving the original worker recruitment optimization
problem without considering collusion resistance, truthfulness, or individual rationality.
The results of Fig. 3.8(a) and 3.8(b) are derived from the Guru dataset, with its per unit
weight bid η distribution shown in Fig. 3.7(a). We find that our scheme achieves the
above-mentioned properties at the cost of higher total payment. Specifically, as shown in
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Figure 3.8: Total payment caused by our scheme and Popt .
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Figure 3.9: The frugality over different l’s.

Fig. 3.8(a), 90-percentile of the total payment is 5.5× 105, 8.1× 105, and 15.8× 105,
respectively, under the settings of (2,0.8), (4,0.8), and (8,0.8), while Popt is merely 1.1×
105. We further evaluate in Fig. 3.8(c) and 3.8(d) the same metric under a synthetic worker
bid dataset, with each element randomly generated following a uniform distribution. Its
corresponding per unit weight bid distribution is plotted in Fig. 3.7(b). Apparently, the bid
distribution impacts the total payment, in terms of both mean and variance. The average
payment under Guru dataset is higher than that under uniform bid distribution. This is
because our scheme applies a single-price scheme based on random rounding in each type
segment, resulting in more winners under the Guru dataset. More specifically, when l = 50,
the corresponding r∗ · a falls within the range [5,65] and the per unit weight bids under
Guru dataset mostly reside at the lower end of the distribution. Besides, the total payments
under Guru dataset experience less variance than that under uniform bid distribution. This
is because the Guru dataset generates a smaller value of rH/rL and thus a smaller θ to
achieve the same p. Note that the possible range of payment is reduced as θ decreases.

Fig. 3.9 examines the frugality achieved by our scheme under different thresholds
l’s, the threshold determined by the platform to guarantee service quality. As discussed in
Theorem 4, frugality quantifies the extra payment caused by our scheme compared with
Popt . We notice that frugality decreases as l grows. When l surpasses 400, frugality drops
quickly approximating 1. It indicates that the platform barely overpays. On the other hand,
a larger l indicates that more workers should be recruited for a given task. Therefore,
the corresponding total payment will be enlarged too. Besides, when l j ∈ [10,400], the
frugality under Guru dataset is larger than that under uniformly distributed bids due to the
same reason discussed above. Such a difference becomes negligible as l increases.

Fig. 3.10 shows the platform’s average payment of a randomly selected task under
different combinations of t and p. From Fig. 3.10(a), we observe that the platform’s total
payment increases as t grows. For example, when p = 0.9, the platform’s payment is
8.0×103 at t = 4. This value becomes 1.2×104 at t = 8. The latter is about 1.5 times of
the former. The similar trend is observed for p = 0.7 and p = 0.8. It implies that it costs
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Figure 3.10: The platform’s average total payment under different settings.
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Figure 3.11: Scheme performances under different settings.

the platform more, in order to defend coalitions with larger weighted cardinality. We also
notice that, under the same t, a larger p costs the platform more, as shown in Fig. 3.10(b).
For example, when t = 8, the total payment is 5.9×103 with p = 0.7. It becomes 1.2×104

with p= 0.9. The latter is about twice the former. Hence, it costs the platform more in order
to achieve a higher defense success probability. The reason can be briefly summarized as
follows. For a specific E j ∈ E , in order to achieve a larger p j, we are expecting a larger θ j

according to (3.13). Thus, from the definition of hθ j
u (·) in (3.11), a winner is very likely to

receive a higher payment hθ j
u (r∗j ·a) for a given r∗j ·a. We have a similar observation in Fig.

3.10(b).
Fig. 3.10 provides some insightful observations of our (t, p)-collusion resistant

scheme. First, there is a tradeoff between t and the platform’s total payment; to defend
against coalitions of larger size, the platform has to pay more accordingly. A similar re-
lation pertains to p and the platform’s total payment; to achieve a higher defense success
rate, the platform has to pay more too.
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3.6.4 Impact of parameters
In this part, we evaluate the impact of different parameters on the performance of our

scheme. Specifically, we concentrate on two of the most critical ones, θ , and a. A feasible
worker set E j ∈ E is randomly selected and examined with the payment range for each
winner and p j. The payment range is simply the possible value range of hθ j

u (r∗j · a) under
different u and s. It provides another way to measure the average payment at the platform.
Generally, a larger payment range leads to a larger average payment at the platform.

Fig. 3.11(a) depicts the impact of θ j, where we fix t j = 2 and a = 2. We observe that
both the payment range and the probability p j increases as θ j grows. For example, when
θ j = 1.2, the payment range to each winner in E j is [50,55], while p j is about 0.5. These
two values become [50,62.5] and 0.9, respectively, when θ j = 2. It implies that in order to
construct a more robust collusion-resistant scheme, i.e., a higher p j, a larger θ j is desirable,
which, however, will result in a higher winner payment. On the other hand, a smaller θ j can
cost the platform less, but also renders the system more vulnerable to collusions. Hence, a
suitable θ j should be selected by balancing these two aspects. A similar tradeoff exists for
parameter a in Fig. 3.11(b), where we set t j = 2 and θ j = 2. Recall that a should also meet
the requirement (3.4). When a = 3, the payment range for each winner and the probability
p j is [90,128] and 0.85, respectively. They are decreased to [90,90] and 0.2 when a = 45.
We notice that a larger a leads to a lower payment range to each winner and thus a lower
total payment at the platform, but also a lower collusion defense success rate; oppositely, a
smaller a achieves a higher defense success rate, but a higher cost to the platform as well.
The above results tell that suitable values of θ j and a should be selected by balancing the
aspects of the platform’s payment and the scheme robustness.

3.7 Related Work
Collusion resistance in crowdsourcing. Collusion resistance has rarely been in-

vestigated in crowdsourcing. An initial research is conducted by Ji and Chen [95] with
the focus on achieving group strategy-proofness, whereby a member that benefits from the
coalition strategy will not pay off another member that suffers a loss [100]. Nonetheless, the
scheme design for collusion resistance should further take into account the scenarios that
members from the same coalition can exchange side-payment. Therefore, group strategy-
proofness aims to prevent a particular form of collusions. Torshiz et. al [102] studied how
to avoid worker collusions in reporting falsified results without being detected. Alterna-
tively, we defend worker collusions during their economic interactions with the platform,
so as to protect the platform and other benign workers from economic loss. Thus, we are
working on a totally different problem.
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Collusion resistance in spectrum auctions. Since collusions also happen in spec-
trum auctions [74, 75], collusion resistance is also investigated therein. Ji and Liu [125]
proposed a collusion-resistant dynamic pricing approach to maximize the users’ utilities
while combating their collusive behaviors using the derived optimal reserve prices. [126,
127] also fall into the same line of research. However, these works are lack of formal
proofs over their collusion resistance property. Besides, they only tackle a specific subset
of collusions. Zhou et al. [128] then developed a general collusion-resistant framework for
dynamic spectrum auctions.

Collusion resistance in general auctions. Since Robinson [73] gave theoretical ev-
idence that auctions are vulnerable to collusions, there only have been a handful of works
on collusion-resistant mechanism design [96, 97, 98, 99]. Che and Kim [97, 98] consid-
ered weaker colluders where members from the same coalition only have incomplete infor-
mation regarding strategies adopted by each other. Nonetheless, in crowdsourcing, since
all transactions are made online, it is pretty easy for colluders to share with their strate-
gies offline without being detected. Penna and Ventre [99] developed a collusion-resistant
mechanism assuming that the auctioneer has prior knowledge over bidders’ behaviors. The
assumption is questionable in real crowdsourcing systems where a large number of workers
are involved.

Among the existing works, the one that is closest to ours is APM [96], which also
resorts to the consensus estimate technique to derive a soft defense approach. Specifi-
cally, consensus estimate is applied to the winner number; collusions are discouraged for
failing to change (the number of) winners in an auction. However, APM only works for
generic auctions where bidders are homogeneous and only differ in bids. Winner selection
is straightforward, e.g. picking the winners that offer top-l bids. In our problem, workers
are heterogeneous for associated with various reputations. Winner selection further takes
into account worker reputation as the quality constraint. By simply applying consensus es-
timate to the winner number may violate this constraint. Besides, APM relies on selecting
the optimum set of winners, which is easy in generic auctions. Since worker recruitment
is modeled as a binary integer programming problem, it is computationally intractable to
derive its optimum result. Thus, the key ingredient of APM does not exist here. Alterna-
tively, we novelly employ the consensus estimate over winner payments, which avoids the
limitations of APM.

It is also worth mentioning some other related works on collusions [113, 114, 122,
123, 124, 115]. Notice that they focus on theoretical understanding of collusion perfor-
mances under different auction settings. For example, [115] studies the impact of bidder
collaboration in all-pay auctions. Instead, we aim to design a collusion-resistant scheme
that prevents coalitions to rig auction outcomes in crowdsourcing.
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Collusion detection in general auctions. As claimed by [47, 48], collusion might
never be detected unless restrictive assumptions are imposed. The current existing works
on collusion detection share a similar idea: They first derive important features in auctions
without collusion and then show that one or more of these features are absent in collusive
bids [48]. The fundamental assumption is that collusion strategies (e.g., who conducts col-
lusion and how) and auction setting (e.g., bidder numbers, auction type, etc.) are consistent
throughout auctions. Based on this, some works [49, 53] use various statistical tests to
compare the bidding patterns of collusive and competitive bidders using bid price data of
auctions that had been proven collusive in the past. Nonetheless, the information of collu-
sive auctions, called a reference, may not be readily available. Another category of papers
[48, 54] make improvement on these tests; they are able to identify collusive bidding pattern
from the knowledge of bid prices of historical auctions without the reference. In addition
to bidding price data, winning bid price [55], bid price-to-reserve price ratio [56], winning
bid price to reserve price ratio with non-price attributes [57], etc., can also be used to de-
rive important features that serve as the basis for collusion detection by showing features
absence in collusive bids. Still, all the above works assume that colluders adopt consistent
collusion strategies under a fixed auction setting. In practice, auctions are highly dynamic;
besides, colluders can arbitrarily form coalitions and rig their bids without sticking to any
pattern. In contrast, this work does not impose such assumptions; to be specific, we have
no requirement on the availability of prior knowledge of collusion or the consistency of
collusion strategies. Instead of passively detecting collusive behaviors, our defense scheme
proactively prevents collusion via proper incentive design.
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CHAPTER 4

ELICITING JOINT TRUTHFUL ANSWERS AND PROFILES
FROM STRATEGIC WORKERS IN CROWDSOURCING

SYSTEMS

4.1 Introduction
Crowdsourcing facilitates individuals and businesses to outsource their processes and

jobs to a large pool of workers. Crowdsourcing has a wide spectrum of potential applica-
tions. For example, quite a few research propose to harness the sensing power of distributed
devices for spectrum monitoring/sensing of a large geographic area [157, 32, 30, 31].
Specifically, under the framework of crowdsourcing, devices are hired to sense the spec-
trum occupancy/vacancy of their present locations. The aggregated sensing results can
produce a real-time fine-grained spectrum usage map over a large geographic area. Crowd-
sourcing has also gained great interest in the field of wireless signal fingerprinting based
indoor/outdoor localization [156, 155, 42, 44]. To reduce the effort of a manual calibration
for the site survey, especially in a multi-floor building or a large geographic area, various
kinds of crowdsourcing-based indoor localization methodologies have been successfully
applied. In addition, there are plenty of commercial crowdsourcing platforms. For exam-
ple, in Clickworker [43] some tasks hire workers with devices to carry out geolocation-
aware image collection, image tagging, road traffic monitoring, etc. In Taskrabbit [85], the
platform publishes spatial tasks such as cleaning a house or walking a dog. Typically, these
tasks are only accessible by workers nearby.

In most crowdsourcing systems, the platform assigns tasks to suitable workers based
on their self-reported profiles1, such as locations and expertise.

A typical workflow can be divided into four stages: task assignment, task execution,
answer collection, and answer aggregation/analysis. In general, task assignment problems
are formulated to achieve certain optimization goals, e.g., maximizing the number of as-
signed tasks [152, 153] or minimizing overall cost (time, effort, and computing resources,
etc.) incurred to workers [61, 60]. For practical considerations, the problem may further
take into account various constraints, such as the maximum distance a worker is willing to
travel to perform tasks, a worker’s available time duration, and her expected work quality.

1We use the terms profiles and parameters interchangeably in the rest of the paper.
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Work quality is of essential importance to the success of crowdsourcing tasks because
low-quality answers from the crowd would easily deteriorate the accuracy of tasks via
aggregation. Low quality is often attributed to workers’ deliberate mis-reporting, lack of
effort exertion, or free-riders copying results from peers. There have been some prior
studies tackling the latter two cases [154, 158]. In this paper, we are interested in defending
against more intelligent workers who may game the system through strategically reporting
task answers for higher beneficial gain. Our discussion focuses on one of the most typical
crowdsourcing tasks–binary-answer2, e.g., if a specific spectrum band is vacant or not in
the current location. A task is associated with a ground truth of a binary value. Each
worker exerts her effort to derive an answer. To elicit truthful answers from the crowd,
some existing solutions resort to economic mechanisms [104, 106, 105, 108, 109, 110,
111, 108]. Incentives are rewarded to truthful workers such that truth-telling is a Nash
equilibrium [80]: no worker receives higher gain by lying, when others respond honestly.
Therefore, no one would unilaterally deviate from honest reporting. It is worth noting that
workers’ truthful answers do not necessarily always coincide with the task ground truth,
as workers may be hindered from, for example, the insufficient accuracy of smartphones’
built-in GPS module.

Workers may also be deceitful about their self-reported profiles. These profiles are
indispensable in task assignments. A strategic worker may fabricate her profile to manipu-
late task assignment outcomes for their own gain. For instance, a worker in location-based
tasks is more likely to be selected if she misreports her position as being closer to the loca-
tion of interest. To prevent workers from manipulating task assignment outcomes, one of
the primary goals of this work is to achieve profile truthfulness. Some prior studies aim at
improving cost truthfulness [134, 136, 137, 138, 60, 139, 157, 140], i.e., motivating work-
ers to reveal their genuine costs. As cost can be deemed as part of self-reported profiles,
cost truthfulness is a special case of profile truthfulness. Our approaches to achieve profile
truthfulness need to cover a much wider spectrum of strategic behaviors.

Rather than treating answer misreporting and profile misreporting separately, this pa-
per aims to develop a unified framework that protects two different stages from workers’
strategic manipulation simultaneously. To the best of our knowledge, this is the first study
to tackle such a combined challenge of misreporting in crowdsourcing. Under the frame-
work of incentive design, there are existing solutions to elicit answer truthfulness [104, 106,
105, 108, 109, 110, 111, 108] and cost truthfulness [134, 136, 137, 138, 60, 139, 157, 140],
respectively. However, they are not directly applicable here due to their neglect of the other
aspect. We cannot simply apply the above schemes in different stages of crowdsourcing ei-

2Our scheme can be easily extended to tasks with multiple answers.
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ther, i.e., a worker is first paid for answer truthfulness and then paid for cost truthfulness, as
the total payment would violate the conditions for each of the two objects. Thus, our goal
is to design a unified payment scheme that guarantees both answer and profile truthfulness.

Since a worker’s true answers and profile are only known to herself, uncovering
the worker’s untruthful behavior is hard. Hence, instead of directly detecting if a worker
lies or not, we take a proactive approach that focuses on prevention instead of passive
detection. To be specific, we propose an incentive mechanism such that honestly providing
both answers and profile is a Nash equilibrium. While there are various types of incentives
to adopt, such as payment, reputation, and social recognition, our design assumes incentives
in the form of monetary payment. The salient challenge in this approach is to design
one payment to reward a worker for truth elicitation in two kinds of submissions. Our
idea is to first derive the sufficient and necessary condition for answer truthfulness and
profile truthfulness, separately. We then construct an incentive optimization problem that
incorporates these conditions as constraints. Its optimal solution lists the payment to each
worker. Since the solution must satisfy the constraints and thus the conditions for truth-
telling, the workers are well motivated to behave honestly.

To derive each worker’s sufficient and necessary condition for answer truthfulness,
we use reference answers, i.e., reported answers from each worker’s peers. As a worker’s
true observation toward a task is only known to herself, workers have “incomplete informa-
tion”. For example, workers are unaware of the platform’s payment and each other’s best
strategies, i.e., which answers everyone else could report in order to maximize their own
benefits (payments). To take this characteristic into account, this paper resorts to the model
of Bayesian game [141] instead of the standard game model. A worker’s payment is eval-
uated in its expectation with respect to her entire (binary) observation space, as a function
of the worker’s payments given the various reference reports instances and her posterior
belief. To be specific, the posterior belief is the probability of the worker having a particular
observation, given the observations of other workers. Then, by setting a worker’s expected
payment while truth-telling no less than that while lying, the worker has little incentive to
lie, which is so-called a Bayesian Nash equilibrium [141]. By applying Bayesian inference,
the posterior belief can be converted into an expression of the ground truth’s prior prob-
ability and the conditional probability of a worker’s answer given the ground truth. Both
probabilities are practically known to the platform (Section 4.3.1). The idea of utilizing
reference answers to derive the condition for answer truthfulness was also used in the peer
prediction approach [104, 106, 105]. However, in their work, only one reference answer is
randomly picked from a worker’s peers to evaluate the worker’s truthfulness. Such a sim-
plistic method will misjudge a worker when the selected peer reports incorrectly. Instead,
our approach is more robust as answers from all peers are taken into account.
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To derive the sufficient and necessary condition for profile truthfulness, we design
a randomized worker selection and worker payment approach. We first formulate an opti-
mization problem for worker selection, i.e., assigning suitable workers to each task. Since
this problem is NP-hard, we first relax the integrality constraint of each variable to its frac-
tional domain and optimally solve the relaxed problem. Given that the fractional optimal
solution is inapplicable to practical worker selection, it is then decomposed into a weighted
sum of a set of feasible integer solutions. All weights are real-valued and range from 0 to 1,
with their sum equal to 1. Then, we come up with a randomized worker selection; each fea-
sible integer solution is randomly picked at a probability equal to its associated weight. To
ensure the randomized worker selection is feasible to apply, the factional optimal solution
needs to scale up by a factor η . According to [143], given any α-approximate algorithm
that proves an integrality gap of at most η for the “natural” linear relaxation, one can use
η as the scaling factor. Thus, an α-approximate algorithm to the worker selection problem
is further developed. Once the worker selection outcome is determined, we set a worker’s
payment as η times the fractional payment derived from fractional VCG (Vickrey-Clarke-
Groves) [144]. We note that the fractional VCG was originally developed to achieve bid
truthfulness in generic auctions via proper payment design. In this work, we tailor it to
tackle profile misreporting. The joint randomized worker selection and worker payment
ensure profile truthfulness.

The contribution of this work is summarized as follows.
• We develop an incentive mechanism that aims to achieve comprehensive joint answer

and profile truthfulness in crowdsourcing. The proposed mechanism ensures that truth-
telling is a Bayesian Nash equilibrium.
• We propose a randomized worker selection algorithm and formally prove that the pro-

posed algorithm produces an approximation ratio upper bounded by 2.
• To investigate the efficacy of our mechanism, a prototype consisting of a worker-side

app and a platform-side program is implemented. We recruited 30 volunteers to conduct
a series of in-field experiments. The full stack of code for the prototype implementation
is open-sourced at https://sites.google.com/site/reportingtruthful/.

4.2 System model and Problem Statement
4.2.1 System Model

We consider a crowdsourcing system that consists of a set of workers and a platform.
The platform has a set of tasks to obtain answers from a crowd W = {w1, · · · ,wi, · · · ,wK}
of K candidate workers. We consider binary-answer tasks and denote the answer space
of each task as A = {0,1}. Besides, each task is associated with a ground truth G ∈ A ,
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Figure 4.1: A typical workflow of a crowdsourcing system.

which is unknown prior to the accomplishment of tasks. A typical workflow of the system
is illustrated in Figure 4.1.
• Step 1⃝: The platform publishes a task.
• Step 2⃝: Each worker wi submits her profile.
• Step 3⃝: The platform selects the winner set W ∗ for this task.
• Step 4⃝: Each winning worker wi ∈W ∗ submits her answer ri.
• Step 5⃝: The platform derives the task’s final result by aggregating collected answers us-

ing methods such as majority voting [145] or maximum a posterior probability estimate
(MAP) [146].
• Step 6⃝: The platform determines payments to winning workers.

In order to select a proper set of workers for a task, conventional approaches formu-
late an optimization problem that aims to maximize or minimize a certain objective while
satisfying a set of constraints [136, 137, 138, 60, 139]. In this paper, we consider a linear
optimization problem in a generalized form, as follows.

P1 : min π1 = ∑
wi∈W

f (bi)xi

s.t. ∑
wi∈W

dixi ≥ γ, xi ∈ {0,1} ∀wi ∈W .

The platform solves P1 to choose a proper set of workers W ∗ for the task. In P1, xi is a
binary variable: 1 if worker wi is to be selected, and 0 otherwise. The self-reported profile
from wi, denoted bi, is a vector of task-dependent parameters. Take crowdsourcing-based
spectrum monitoring/sensing as an illustration. Each device is associated with its specific
sensing capabilities, such as the sensing range and operational frequency band. Besides,
each device is at a different distance away from the task location. f (·) can be any weighted
aggregate function over all elements in bi. It is selected by the platform and unknown to

58



the workers. For example, suppose a worker’s profile bi = {si, ti} consists of her sensing
capability ti and its distance to the task location si, where si and ti are normalized values.
The function can be f (bi) = 0.8si + 0.2(1− ti). In this example, the worker’s distance to
the location of interest outweighs her sensing capability for being selected. Since bi is
both task-dependent and worker-dependent and thus a prior unknown to the platform, it
is collected before the formulation of P1. The scalar value of task-independent parameter
di is available at the platform via long-term observation of wi’s performance, e.g., task
accomplishment rate or average rating from task requesters. γ is a task-specific threshold
value chosen by the platform.

4.2.2 Problem Statement and Design Objectives
Workers are modeled as rational and self-interested. They choose their strategies in

a way to maximize their own benefits. Thus, workers may intentionally game the system.
As discussed earlier, the platform collects data from workers for both worker selection and
answer aggregation. Both procedures are thus vulnerable to manipulation. According to
the formulation of P1, wi is more likely to be selected if she submits a fabricated profile
bi that produces a lower value of f (bi). Workers are also interested in reporting falsified
answers, if it generates higher gains than truth-telling. Therefore, the primal goal of this
work is to elicit worker truthfulness in reporting both their profiles and answers.

We propose to leverage incentives to motivate workers to behave honestly. The idea
is simple: a worker receives the highest payment for truth-telling. A winning worker wi’s
payment is expressed as pi(ri,r−i,bi,b−i), where bi and b−i represent the worker profile
reported by wi and its peers, respectively, and ri and r−i are the answers reported by wi and
its peers, respectively. bi, b−i and r−i are vectors. r−i is the reference answers from peers.
Intuitively, payment pi is dependent of ri and bi. Besides, since the platform is unaware of
a worker’s true answer to the task, we propose to utilize reference answers to measure the
worker’s answer truthfulness. Hence, pi also depends on r−i. Besides, to achieve profile
truthfulness, pi is also dependent of b−i. More details can be found in Section 4.3.2.

We now define truthfulness that is achieved by a proper incentive mechanism.
Definition 9. (Truthfulness.) Given true reference answers o−i and profiles c−i, the mech-
anism achieves truthfulness if and only if every worker’s best strategy is truth-telling, i.e.,

EA ,I [pi(ri = oi,bi = ci|o−i,c−i)]≥ EA ,I [pi(ri = oi,bi = ci|o−i,c−i)] (4.1)

where oi and ci denotes wi’s true answer and profile, oi ̸= oi and ci ̸= ci.
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The above definition forms a Bayesian Nash equilibrium, where no individual can
gain higher payment on average by lying when others behave honestly. Therefore, no
worker has the incentive to alter her reported answer or profile unilaterally, because such
a strategy would harm her interest. Since a worker’s true observation toward a task is
unknown to the platform, her payment is evaluated in the expectation with respect to A

in (4.1). Besides, our proposed mechanism relies on a randomized worker selection, i.e.,
winning workers are selected in a probabilistic manner. Thus, the expected payment further
takes into account all possible worker selection outcomes I . The details of the randomized
worker selection and I are discussed in Section 4.3.2.

Here we make a brief clarification why a Bayesian game is considered. Bayesian
games are games with incomplete information, which are, informally, games where players
may not know all aspects of the game, such as sequence, strategies, and payoffs of other
players. In contrast, standard games refer to games of complete information. In our paper,
each worker, i.e., player, is unaware of its payoff function because the platform’s payment
and other workers’ submitted information (i.e., profiles and answers) are unknown. Hence,
the interactions among workers in our case should be formulated as a Bayesian game.

4.3 Mechanism Design
Our design first derives the sufficient and necessary conditions for answer and profile

truthfulness separately. In the framework of incentive design, such a condition is expressed
in the form of worker payments. Specifically, for the condition of answer truthfulness,
a worker’s payment is set higher for reporting her true observation toward a task than
lying. Given that workers’ true observations are only known to themselves, we utilize
reference answers to evaluate workers’ answer truthfulness (Section 4.3.1). Motivated by
the fractional VCG, the profile truthfulness is achieved via the design of a randomized
worker selection and worker payments (Section 4.3.2). Since the proposed randomized
worker selection requires a scaling factor to ensure its feasibility, we further develop an
α-approximate algorithm to obtain this value (Section 4.3.3). All the derived conditions
are finally incorporated into an incentive optimization problem as constraints. Its solution
provides the payment for each worker that motivates truth-telling in two different kinds of
submissions (Section 4.3.4).
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Table 4.1: Notation

W entire worker set W ∗ winner set
G ground truth pi wi’s payment
ci wi’s true profile bi wi’s reported profile
oi wi’s true answer ri wi’s reported answer
A task answer set xi recruitment variable
di wi’s coefficient γ recruitment threshold

π∗1 , π∗2 , π∗3 , π∗4 optimum result of P1, P2, P3, P4
π ′∗1 optimum result of the linear relaxed P1
oi opposite of true observation oi

c−i true profile set from wi’s peers
b−i reported profile set from wi’s peers
o−i true answer set from wi’s peers
r−i reported answer set from wi’s peers
I set of all possible task assignment outcomes
θ an instance of the true reference report

x(I) a feasible solution to P1 under index I
β (I) selection probability of x(I)
I the set of feasible solution to P1
xF optimum solution to the linear relaxed P1
α approximation ratio of Algorithm 4
δ truth-telling payment margin

η
integrality gap between π∗1 and π∗2 ; upper bound

of the approximation ratio of our mechanism

4.3.1 Eliciting Truthful answers
This part derives a sufficient and necessary condition for answer truthfulness. For a

given worker selection outcome I ∈I , (4.1) is then degenerated to EA [pi(oi|o−i = θ)]≥
EA [pi(oi|o−i = θ)]3. θ is an instance of the true reference answer, which is a vector.

A belief regarding the prior probability of task ground truth Pr[G = at ] (at ∈ A )
is deemed available at the platform. It also knows the likelihood that a worker honestly
reports its genuine answer given the ground truth, i.e., Pr[oi = ai|G = at ] (ai ∈ A ). This
knowledge can be obtained by the platform via long-term observation. Specifically, if
the proposed mechanism achieves truthfulness, then ri = oi and thus Pr[oi = ai|G = at ] =

Pr[ri = ai|G = at ]. Since ri is observable at the platform and the ground truth G would be
eventually derived, Pr[ri = ai|G = at ] can be obtained.

3Since we focus on analyzing the relation between answer reporting and incentives, bi and c−i are tem-
porarily dropped for expression simplicity. pi is still dependent on them.
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We have

EA [pi(oi|o−i = θ)] = ∑
ai∈A

Pr[oi = ai|o−i = θ ] · pi(ai,o−i = θ)

where Pr[oi = ai|o−i = θ ] is the likelihood that given wi’s peers reporting honestly worker
wi does the same. We have

Pr[oi = ai|o−i = θ ] =
Pr[o−i = θ |oi = ai]Pr[oi = ai]

Pr[o−i = θ ]
. (4.2)

Here, workers are assumed to report independently. Hence, Pr[o−i = θ |oi = ai] can be
expressed by

Pr[o−i = θ |oi = ai] = ∏
wk∈W ∗\wi

Pr[ok = ak|oi = ai]

where Pr[ok = ak|oi = ai] = ∑
at∈A

Pr[ok = ak|G = at ]Pr[G = at |oi = ai], (4.3)

and

Pr[G = at |oi = ai] =
Pr[oi = ai|G = at ]Pr[G = at ]

Pr[oi = ai]
=

Pr[oi = ai|G = at ]Pr[G = at ]

∑at′∈A Pr[oi = ai|G = at ′]Pr[G = at ′ ]
.

Recall that Pr[oi = ai|G = at ] and Pr[G = at ] are common knowledge at the platform. Thus
Pr[ok = ak|oi = ai] (4.3) is derived. As Pr[oi = ai] = ∑at∈A Pr[G = at ] ·Pr[oi = ai|G = at ]

and Pr[o−i = θ ] = ∏wk∈W ∗\wi Pr[ok = ak], then Pr[oi = ai|o−i = θ ] (4.2) is also derived.
Finally, EA [pi(oi|o−i = θ)] is obtained.

Similarly,

EA [pi(oi|o−i = θ)] = ∑
ai∈A

Pr[oi = ai|o−i = θ ] · pi(ai,o−i = θ).

Therefore, the sufficient and necessary condition for answer truthfulness is

∑
ai∈A

Pr[oi = ai|o−i = θ ] · pi(ai,o−i = θ)≥ ∑
ai∈A

Pr[oi = ai|o−i = θ ] · pi(ai,o−i = θ).

(4.4)
Its instantiation is

Pr[oi = 1|o−i] · pi(1,o−i)+Pr[oi = 0|o−i] · pi(0,o−i)

≥Pr[oi = 1|o−i] · pi(0,o−i)+Pr[oi = 0|o−i] · pi(1,o−i).
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where pi(0,o−i) and pi(1,o−i) stand for wi’s payment when reporting “0” and “1”, respec-
tively, when o−i is observed with an instance θ . If wi’s payment pi(0,o−i) and pi(1,o−i)

satisfy the above constraint, a worker is more willing to report genuine observation for a
higher payment in expectation. (4.5) will be integrated into the final mechanism design,
which will be clear soon.

4.3.2 Eliciting Truthful Profiles
To elicit truthful profiles, inspired by a fractional version of the VCG mechanism

[144], our design consists of randomized worker selection and worker payment.
Randomized worker selection. The objective of this part is to select a proper set of

winning workers to carry out the task by solving P1. Since P1 is a 0-1 knapsack problem
[147], it is NP-hard to solve. We first consider its linear relaxed form by converting the bi-
nary variable xi ∈ {0,1} to 0≤ xi ≤ 1. The relaxed problem transforms P1 into a fractional
domain and returns a fractional optimum solution, denoted by xF . Let π ′∗1 be the optimum
result of the relaxed P1. While xF is inapplicable to task assignment, we are able to de-
compose it into a randomized format. Specifically, identify βI and x(I) = {xi(I)|∀i} such
that xF = ∑I∈I βIx(I), where I = {x(I)|∀I ∈I } is the set of feasible integer solutions to
P1 and βI ≥ 0 (∑I∈I βI = 1). Then a randomized task assignment chooses the I-th integer
solution x(I) with probability βI .

On the other hand, there does not exist a convex combination of integer solution
∑I∈I βIxi(I) that equals xF

i , because otherwise, the expected objective value generated by
these integer solutions equals to that generated by the fractional solution, which is appar-
ently a contradiction to the fact that the fractional solution achieves lower objective value
than any possible integer solution. Therefore, to derive a feasible decomposition, we need
to scale up the optimum fractional solution by a certain factor. According to [143], given
any α-approximate algorithm that proves an integrality gap of at most η for the “natural”
linear relaxation, one can use η as the scaling factor. We leave the job of finding such an
approximation algorithm in Section 4.3.3.

The solution of βI’s is obtained via solving the following liner maximization problem

max ∑
I∈I

βI

s.t. ∑
I∈I

βIxi(I)≤ ηxF
i , ∀i

∑
I∈I

βI ≤ 1, βI ≥ 0, ∀I ∈I .

(4.5)
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Note that x(I) is obtained by enumeration. Since it has an exponential number of elements,
the enumeration process is time-consuming. Motivated by the ellipsoid method [148], we
resort to its dual problem and propose an algorithm that solves it within polynomial time.
Note that the α-approximate algorithm providing the scaling factor η is also essential to
solve (4.5). Details are given in Appendix. Besides, we are able to prove in Lemma 4 that
the optimum value of (4.5) is 1.

A toy example. Here we provide a toy example to better illustrate how the proposed
random worker selection works. Consider that there are two workers and one task. We
further assume the result from the relaxed P1 and the approximation ratio as xF = (0.5,0.5)
and η = 2, respectively. Let I , the set of feasible solution to P1, as {(1,0),(1,1)}. We aim
to find β(1,0) and β(1,1) such that β(1,0) ·1+β(1,1) ·1= 2 ·0.5, β(1,0) ·0+β(1,1) ·1= 2 ·0.5, and
β(1,0)+β(1,1) = 1. Through simple calculation, we derive β(1,0) = 0 and β(1,1) = 1, which
means our randomized worker selection chooses x1 = 1,x2 = 1 (resp., x1 = 1,x2 = 0) with
probability 1 (resp., 0).

Worker payment. Recall that π ′∗1 is the optimum result of the linear relaxed P1. Con-
sider a factional payment pF

i = π ′∗1,−i−(π ′∗1 − fi(bi)xF
i ), where π ′∗1,−i stands for the optimum

result of the linear relaxed P1 when wi is excluded from the formulation. The winner wi’s
payment is then set to pi(I) = η pF

i . wi is a winner if xi(I) = 1 given a randomly picked
worker selection outcome I ∈ I . The calculation of pF

i quantifies the externality each
winner causes to others under fractional worker selection. As we will show in Theorem 8,
paying a winner with its externality and the scale-up factor η are essential to ensure profile
truthfulness.

Justification of applying fractional VCG. The worker selection problem P1 is NP-
hard and thus computationally expensive to find its optimum solution. We thus propose a
randomized worker selection to achieve a polynomial complexity. Here we give a definition
of fractional VCG.
Definition 10. (Fractional VCG.) In a fractional VCG, the allocation rule is given by xF =

{xF
i |∀i}, the optimum allocation solution in the fractional domain; the pricing rule is given

by pF
i = π ′∗1,−i−(π ′∗1 − fi(bi)xF

i ), where π ′∗1 is the optimum allocation result in the fractional
domain, and π ′∗1,−i stands for the optimum result when wi is excluded from the auction.

Compared with conventional VCG, the allocation and pricing are determined through
solving LP problems in fractional VCG. Therefore, it is more efficient to execute at the
crowdsourcing platform. Apparently, our computation efficiency is achieved by compro-
mising allocation optimum. Fortunately, as we prove in Theorem 3 in the paper, the op-
timality gap, quantified in approximation ratio here, is upper bounded by 2. We would
also like to mention some other existing approaches in tackling computation complexity of
VCG auctions. They typically develop heuristic algorithms in allocation and pricing while
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achieving truthfulness and individual rationality simultaneously. Those approaches, how-
ever, are hard to bound the optimality gap especially when scenarios become complicated.

4.3.3 An α-Approximate Algorithm
This part develops an α-approximate algorithm that provides the scaling factor η for

our randomized worker selection. It is also an indispensable component to the proposed
algorithm to solve (4.5). We first transform P1 into its equivalent form P2.

P2 : min π2 = ∑
wi∈W

fi(bi)xi

s.t. ∑
wi∈W \S

di(S)xi ≥ γ(S),∀S⊆W : γ(S)> 0, (4.6)

xi ∈ {0,1},∀wi ∈W

where S is an arbitrary subset of workers, γ(S) = γ −∑wi∈S di, and di(S) = min{di,γ(S)}.
(4.6) involves a series of constraints with respect to S satisfying S ⊆W and γ(S)> 0. For
a given S, its corresponding xi’s are set to 1’s.
Lemma 3. P2 is equivalent to P1.

Proof. Denote by S1 and S2 the feasible solution sets of P1 and P2, respectively. Since P1

and P2 have the same objective function, it is equivalent to show S1 = S2.
First, we show S1 ⊆S2. For an arbitrary feasible solution x ∈S1, denote its cor-

responding winner set as W ∗ = {wi|xi = 1}. We have ∑wi∈W ∗ di ≥ γ , which can be trans-
formed to

∑
wi∈W ∗\S

di ≥ γ− ∑
wi∈S

di = γ(S), (4.7)

with S ⊂ W ∗. Then we discuss through the following two cases that x ∈ S1 is also a
feasible solution to P2.

Case 1: There exist some workers wi ∈W ∗\S with di ≥ γ(S). Denote these workers
as S′. Then ∑wi∈W \S di(S)xi =∑wi∈W ∗\S di(S)xi =∑wi∈W ∗\(S∪S′) di+ |S′|γ(S)≥ γ(S), which
implies that (4.6) holds.

Case 2: No worker in W ∗\S has di ≥ γ(S). In another word, every worker in W ∗\S
has di < γ(S). We have ∑wi∈W \S di(S)xi = ∑wi∈W ∗\S di(S)xi = ∑wi∈W ∗\S di≥γ(S). The last
inequality is due to (4.7). Therefore, (4.6) holds as well.

Second, we show S2 ⊆ S1. For an arbitrary feasible solution x ∈ S2, we have
∑wi∈W \S di(S)xi ≥ γ(S) = γ−∑wi∈S di. It can be written as ∑wi∈W \S di(S)xi +∑wi∈S dixi ≥
γ , because xi = 1 ∀wi ∈ S. Besides, di ≥ di(S) according to the definition of di(S). There-
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fore, ∑wi∈W dixi = ∑wi∈W \S dixi+∑wi∈S dixi ≥∑wi∈W \S di(S)xi+∑wi∈S dixi ≥ γ , which im-
plies that x is also a feasible solution to P1.

From the discussion above, we have S1 =S2. Therefore, P2 is equivalent to P1.

Since P1 and P2 are equivalent, if we can find an α-approximate algorithm for P2, so
it is for P1.

Now consider a linear program P3 by relaxing P2’s binary variable xi ∈ {0,1} to
0≤ xi≤ 1. We further formulate a dual problem of P3 but with the dual variables associated
with constraints 0≤ xi ≤ 1(∀i) dropped

P4 : max π4 = ∑
S⊆W :γ(S)>0

γ(S)y(S)

s.t. ∑
S⊆W :wi∈W \S,γ(S)>0

di(S)y(S)≤ fi(bi),∀wi ∈W (4.8)

y(S)≥ 0,∀S⊆W

Algorithm 4 outlines the steps for the proposed α-approximate algorithm. It lever-
ages the formulation of P4 to derive a feasible solution to P1. Its idea is to gradually
grow the winning worker set S(t) by selecting the worker which produces the smallest
( fi(bi)− q(t)i )/di(S(t)) in each iteration (line 4). For each S(t), it then calculates the cor-
responding dual variable solution y(S(t)). It continues until the termination condition
γ(S(t))≤ 0 reaches.
Lemma 4. Algorithm 4 provides a feasible solution to P1 and P4.

Proof. We first examine if Algorithm 4 provides a feasible solution to P1. According to
the algorithm, xi is either 0 or 1. Thus, the binary constraint is satisfied. Besides, the
iteration of the algorithm stops when γ(S) ≤ 0. Together with the definition of γ(S), we
have ∑wi∈W di ≥ ∑wi∈S di ≥ γ . Then the other constraint of P1 is also satisfied. Since the
solution meets both constraints of P1, it is feasible to P1.

We next examine if Algorithm 4 provides a feasible solution to P4. Suppose the
while-loop consists of T + 1 iterations. We first verify if y(S(t)) identified in an arbitrary
iteration t + 1,∀t ∈ [0,T ] is non-negative. Particularly, when t = 0, fi(bi) ≥ q(0)i = 0, and
thus y(S(0)) is positive; when t ∈ [1,T ]

q(t)i = q(t−1)
i +di(S(t−1))y(S(t−1)) = q(t−1)

i +di(S(t−1))
fi∗(t)(bi∗(t))−q(t−1)

i∗(t−1)

di∗(t−1)(S(t−1))

≤ q(t−1)
i +di(S(t−1))

fi(bi)−q(t−1)
i

di(S(t−1))
= fi(bi).

66



Algorithm 4 The α-approximate algorithm

Input: {bi}, {di}, γ

Output: {xi}, {y(S)}, π1, W ∗

1: xi← 0, q(0)i ← 0, ∀i, y(S)← 0, ∀S, S(0)← /0, γ(S(0))← γ−∑wi∈S(0) di, π
(0)
1 ← 0, t← 0;

2: while γ(S(t))> 0 do
3: di(S(t))←min{di,γ(S(t))}, ∀i;
4: i∗(t)← argmini∈W \S(t)( fi(bi)−q(t)i )/di(S(t));

5: y(S(t))←
(

fi∗(t)(bi∗(t))−q(t)
i∗(t)

)
/di∗(t)(S

(t));
6: xi∗(t) ← 1;
7: π

(t+1)
1 ← π

(t)
1 + fi∗(t)(bi∗(t));

8: S(t+1)← S(t)∪wi∗(t);
9: q(t+1)

i ← q(t)i +di(S(t))y(S(t)), ∀i ∈W \S(t);
10: γ(S(t+1)) = γ−∑wi∈S(t+1) di;
11: t← t +1;
12: end while
13: W ∗← S(t), π1← π

(t)
1 .

Thus, q(t)
i∗(t)
≤ fi∗(t)(bi∗(t)). As di∗(t)(S

(t))> 0, then we have y(S(t))= ( fi∗(t)(bi∗(t))−q(t)
i∗(t)

)/di∗(t)(S
(t))

≥ 0.
The remaining task is to verify if {y(S) : S ⊆ W } has the constraint (4.8) hold for

all wi ∈ W . For this purpose, we divide W into two non-overlapping subsets: W ∗ and
W \W ∗, i.e., the winning worker set and the losing worker set.

Case 1: wi∗(t) ∈W ∗, a worker selected in the arbitrary (t +1)-th (t ∈ [0,T ]) iteration.
We have

∑
S⊆W :w

i∗(t)∈W \S,γ(S)>0
di∗(t)(S)y(S) =

t

∑
τ=0

di∗(t)(S
(τ))y(S(τ))

=
t−1

∑
τ=0

di∗(t)(S
(τ))y(S(τ))+di∗(t)(S

(t))
( fi∗(t)(bi∗(t))−q(t)

i∗(t)
)

di∗(t)(S
(t))

= q(t)
i∗(t)

+ fi∗(t)(bi∗(t))−q(t)
i∗(t)

= fi∗(t)(bi∗(t)).

Thus, (4.8) is satisfied for all winning workers.
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Case 2: wi ∈W \W ∗, any losing worker. We have ( fi(bi)−q(T )i )/di(S(T ))≥ ( fi∗(T )(bi∗(T ))−
q(T )

i∗(T )
)/di∗(T )(S

(T )). Therefore,

∑
S⊆W :i∈W \S,γ(S)>0

di(S)y(S) =
T

∑
τ=0

di(S(τ))y(S(τ))

=
T−1

∑
τ=0

di(S(τ))y(S(τ))+di(S(T ))
( fi∗(T )(bi∗(T ))−q(T )

i∗(T )
)

di∗(T )(S
(T ))

≤ q(T )i +di(S(T ))
( fi(bi)−q(T )i )

di(S(T ))
= fi(bi)

which implies that (4.8) holds for workers from W \W ∗ as well.
According to the analysis above, Algorithm 4 provides a feasible solution to P4.

Proposition 5. Algorithm 4 provides an α-approximation solution to P1 where α = 2, i.e.,
π1/π∗1 ≤ 2.

Proof. Let wi∗ denote the worker selected in the last iteration by Algorithm 4. The while
loop continues as long as γ(S)> 0. Then γ(W ∗\wi∗) = γ−∑wi∈W ∗\wi∗ di > 0 and thus

∑
wi∈W ∗\wi∗

di < γ. (4.9)

Besides,

π1 = ∑
wi∈W ∗

fi(bi)= ∑
wi∈W ∗

∑
S⊆W :wi∈W \S,γ(S)>0

di(S)y(S) = ∑
S⊆W :γ(S)>0

∑
wi∈W ∗\S

di(S)y(S).

(4.10)
The second equality can be easily inferred from the proof of Lemma 2. The third equality
is obtained by switching the order of the two sum operations. Note that

∑
wi∈W ∗\S

di(S)≤ ∑
wi∈W ∗\wi∗

di− ∑
wi∈S

di +di∗(S)≤γ− ∑
wi∈S

di +di∗(S) = γ(S)+di∗(S)≤ 2γ(S)

where the second inequality is due to (4.9). Let π∗4 be the optimum value of P4. Due to the
strong duality, π∗4 ≤ π∗1 . Combining all the results above, we have

π1 ≤ ∑
S⊆W :γ(S)>0

2γ(S)y(S)≤ 2π
∗
4 ≤ 2π

∗
1 .
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Based on Proposition 5 and its proof, we have π1 derived by Algorithm 4 and π∗3
have an integrality gap of at most η , i.e., π1/π∗3 ≤ η , where η = 2.
Lemma 5. The computation complexity of Algorithm 4 is O(K2).

The complexity of Algorithm 4 is dominated by the while-loop, which contains at
most K iterations. Recall that K stands for the number of workers. In each iteration,
the most time-consuming calculation is ranking (line 4), which is upper-bounded by K
operations. Thus, the complexity is upper bounded by O(K2).

While there have been some prior works [149] developing approximation algorithms
to solve 0-1 knapsack problems, they all face a trade-off between iteration convergence and
computation efficiency. Particularly, when updating the dual variable, i.e., line 5 in our
algorithm, their solution does not specify the exact step size. As a result, if the step size is
too small, then it takes excessively long rounds for the algorithm to stop; if the step size is
too large, then the algorithm may fail to converge. Instead, Algorithm 4 identifies a proper
step size,

(
fi∗(t)(bi∗(t))−q(t)

i∗(t)

)
/di∗(t)(S

(t)), for each iteration that ensures the convergence
within K iterations.

4.3.4 Piecing All Components Together
We are now ready to integrate all ingredients into a unified payment mechanism that

elicit joint answer and profile truthfulness from strategic workers.
For the first objective, as discussed in Section 4.3.1, its sufficient and necessary con-

dition is that each winning worker receives no less payment when reporting honestly than
lying, as specified in (4.4). Practical mechanisms require certain margins for truth-telling
[63]; honest reporting is better than lying by at least some margin δ , chosen by the platform
to offset the external benefits a worker might obtain by lying. Thus, we twist a little bit over
(4.4) and obtain (4.11) to account for the margin δ .

For the second objective, for a given worker selection outcome I, a winning worker
wi receives η pF

i . On the other hand, since wi’s true observation is unknown to the platform,
we thus let wi’s expected payment with respect to A equal to η pF

i (4.12).
Combining all discussions above, we arrive at the following formulation in calculat-

ing winner wi’s payment, given a randomly picked worker selection outcome I ∈I

P5 : max δ

s.t. ∑
ai∈A

Pr[oi = ai|o−i]pi(ai,o−i)− ∑
ai∈A

Pr[oi = ai|o−i]pi(ai,o−i)≥ δ (4.11)

∑
ai∈A

Pr[oi = ai|o−i]pi(ai,o−i) = η pF
i (4.12)

pi(ai,o−i)≥ 0, ∀ai ∈A .
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The above optimization is a linear programming problem that can be efficiently
solved via the conventional simplex method [64].

Algorithm 5 summarizes our final design.

Algorithm 5 The final design

Input: {bi}, {ri}
Output: W ∗, {βI}, {pi}

1: Compute the optimal fractional worker selection xF by solving the relaxed P1;
2: Compute the scale-up factor η using Algorithm 4;
3: Derive βI’s by formulating and solving (4.5);
4: Select each integer solution x(I) of P1 randomly with probability βI , thus W ∗ is de-

rived;
5: Calculate winner’s payment pi(ai,o−i) (ai ∈A ) by solving P5.

Theorem 6. The computation complexity of Algorithm 5 is O(K2).

Proof. The computation of Algorithm 5 mainly consists of the following components, solv-
ing the relaxed P1 (line 1), obtaining η using Algorithm 4 (line 2), solving (4.5) (line 3),
and solving P5 (line 5). In the following, we provide an analysis of these four components.
We employ the simplex method to solve the relaxed P1, an LP problem. According to [65],
the computation complexity of simplex method is O(nd), where n and d are the number of
variables and constraints, respectively. Thus, the computation complexity for solving the
relaxed P1 is O(K). Recall that K is the number of workers. Similarly, the complexity for
solving P5 is O(K). For Algorithm 4, its complexity is upper bounded by O(K2). While
(4.5) is an LP problem, it involves an exponential number of variables. Thus, we first con-
vert it to its dual problem and then solve it via the ellipsoid method, whose complexity is
at most O(n2), where n is the number of variables. Thus, solving (4.5) causes O(K2). To
sum up, the computation complexity of the proposed mechanism is O(K2).

4.3.5 Extension to Multi-choice Tasks
When considering multiple-choice tasks, the change is applied to the instantiation

of the sufficient and necessary condition for answer truthfulness, the form is still the same
though

∑
ai∈A

Pr[oi = ai|o−i = θ ] · pi(ai,o−i = θ)≥ ∑
ai∈A

Pr[oi = ai|o−i = θ ] · pi(ai,o−i = θ),
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which denotes that truth-telling achieves higher payment than lying. Multiple-choice tasks
introduces more choices of lying than binary-choice tasks. Specifically, for each oi = ai,
there are k− 1 lying cases. Thus, more cases are generated in its instantiation. All the
instantiations will serve as constraints in P5 to get final payments. Recall that P5 is an
LP problem, which can be efficiently solved by the simplex method with the computation
complexity O(nd), where n and d are the number of variables and constraints, respectively.
Hence, although multi-choice tasks would increase the number of constraints in P5, it would
not cause any change to our scheme design.
Theorem 7. Given K workers and M k-choice tasks, the computation complexity of Algo-
rithm 2 is O(MK2 +MKk(k−1)k)

Proof. The proof follows the main idea of Theorem 1. Here we mainly highlight the
changes due to multi-choice tasks. Under the k-choice setting, P5 becomes the linear pro-
gramming problem with (k− 1)k constraints and k variables, where k is the number of
choices in each task. Therefore, the complexity of P5 for K workers is O(Kk(k− 1)k).
Hence the computation complexity of the proposed mechanism for one k-choice task is
O(K +K2 +K2 +Kk(k−1)k) = O(K2 +Kk(k−1)k).

Although Theorem 1 seems to indicate an exponential computation complexity, the
exponential part k is typically a small value no larger than 6. Hence, the overall computation
is still practical to implement on a regular server.

4.4 Performance Analysis
In this section, we analyze the properties achieved by our mechanism, including joint

answer and profile truthfulness and its approximation ratio.
Theorem 8. The proposed mechanism guarantees joint answer and profile truthfulness.

Proof. According to Definition 9, we need to prove EA ,I [pi(oi,ci)]≥ EA ,I [pi(oi,ci)]
4.

For this purpose, we first show EA ,I [pi(oi,ci)]≥EA ,I [pi(oi,ci)] and then EA ,I [pi(oi,ci)]

≥ EA ,I [pi(oi,ci)] .

Specifically,

EA ,I [pi(oi,ci)] = ∑
I∈I

βIEA [pi(oi,ci)] = ∑
I∈I

βI ∑
ai∈A

Pr[oi = ai]pi(ai) = ∑
I∈I

βIη pF
i (ci)

= η pF
i (ci)

4For expression simplicity, we omit o−i and c−i from pi in the following discussion.
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which is exactly η times wi’s payment under the fractional VCG mechanism when report-
ing ci. Similarly, we have EA ,I [pi(oi,ci)] = η pF

i (ci), i.e., η times wi’s payment under the
fractional VCG mechanism when reporting untruthful ci. On the other hand, as proved
in [144], the fractional VCG guarantees pF

i (ci) ≥ pF
i (ci), and thus EA ,I [pi(oi,ci)] ≥

EA ,I [pi(oi,ci)].
When wi submits ci, under a specific feasible worker recruitment profile I ∈ I , wi

either wins or loses. The following discussion is conducted for these two cases, separately.
For the first case, wi loses with ci. Then EA [pi(oi,ci)] = EA [pi(ri,ci)] = 0. Since wi

loses, it will not be selected. Hence, its payment is 0.
For the second case, wi wins with ci. Then

EA [pi(oi)]−EA [pi(oi)] = ∑
ai∈A

Pr[oi = ai] · (pi(ai)− pi(ai))≥ δ .

Combining these two cases, we have EA [pi(oi,ci)] ≥ EA [pi(oi,ci)]. Therefore,
EA ,I [pi(oi,ci)]=∑i∈I βI ·EA [pi(oi,ci)]≥∑i∈I βI ·EA [pi(oi,ci)]=EA ,I [pi(oi,ci)].

It is desirable to analyze the approximation ratio of the proposed mechanism to the
optimum result of P1, where truthfulness is not guaranteed. It evaluates the optimality
tradeoff for truthfulness.
Theorem 9. The proposed mechanism achieves the approximation ratio upper bounded by
2.

Proof. The expected overall objective value achieved by the proposed mechanism is for-
mulated by ∑

I∈I
βI ∑

wi∈W
fi(bi)xi(I). Thus, the approximation ratio is calculated as

∑
I∈I

βI ∑
wi∈W

fi(bi)xi(I)

π∗1
=

∑
wi∈W

fi(bi)( ∑
I∈I

βIxi(I))

π∗1
= η

∑
wi∈W

fi(bi)xF
i

π∗1
= η

π∗3
π∗1
≤ η

where η = 2.

4.5 Experimental Evaluation
4.5.1 Experimental Setup

As a proof-of-concept implementation, we develop a prototype of the proposed mech-
anism. The prototype mainly consists of the worker-side app and the platform-side pro-
gram. Specifically, the app is developed in Android. The platform program runs on a Dell
laptop with a 1.6GHz processor and 16GB RAM. To facilitate the task publication and
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Figure 4.2: Screenshots of worker-side app.

data reporting, the web server, named HTTP File Server (HFS) [66], is utilized. To in-
vestigate the performance of our mechanism, in-field experiments involving 30 volunteers
have been conducted. For each task, the worker-side app also generates a random number
from [0.005,0.075] to represent the volunteer’s self-reported profile5, which is unknown
by the platform. There are 60 tasks in total. All of them are binary-answer English gram-
mar questions from commonly used real-world crowdsourcing datasets [67]. An on-site
training workshop on app usage was provided to volunteers before the experiment. The ex-
periment procedure is briefly summarized as follows. Once the platform publishes a task,
workers submit their reported profiles (Figure 4.2(b)). The volunteer decides if to submit
the same profile as generated by the app or a different one. Then the platform determines
which workers to recruit. The selected workers then solve the question and send back the
answers, i.e., answers (Figure 4.2(c) and 4.2(d)). The platform determines payment to each
worker for this task (Figure 4.2(e)). A worker’s final payment is the accumulated amount
it receives in all tasks (Figure 4.2(f)).

We developed our own prototype instead of using existing crowdsourcing platforms,
such as Amazon Mechanical Turk or Flower Eight, due to the complex nature of our pay-
ment rule and the centralized worker selection. In these platforms, a worker’s payment is
predeclared and generally fixed. Thus, dynamic incentives cannot be implemented. All of
our source codes are available online6.

For comparison purposes, the experiment is also conducted with another two incen-
tive mechanisms. The first one, called random VCG, employs the random VCG auction
framework for worker selection and payment calculation so as to achieve profile truthful-
ness. The second one is called truth serum [158] that was designed for answer truthfulness.

5In the experiments, there is only one parameter in a worker’s profile for simplicity.
6https://sites.google.com/site/reportingtruthful/
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Figure 4.3: A randomly selected worker’s reported and true answer for 60 tasks in our
mechanism.

Specifically, truth serum extracts a worker’s posterior belief from its reported answer and
scores it using reference answers. The scoring rule is carefully designed such that truth-
telling is a Bayesian Nash equilibrium.

4.5.2 Analysis of Answer Truthfulness
This section evaluates answer truthfulness. Since all tasks are relatively easy gram-

mar questions for college students, we assume that their genuine answer to a task is the
same as its ground truth.
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Figure 4.4: Answer elicitation performance comparison among our mechanism, random
VCG, and truth serum.

Figure 4.3 shows a randomly selected worker’s reported answer and the ground truth
across the entire 60 tasks. We use “1” and “0” to denote the answer “yes” and “no”,
respectively. This worker misreports more often at the beginning but tends to be honest
later. Particularly, 7 tasks are misreported among the first half batch, while this number
drops to 4 for the second half batch. Since the worker gets the best-expected payoff when
behaving honestly, it gradually adjusts strategies to truth-telling.
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Figure 4.5: A randomly selected worker’s reported and true profile for 60 tasks in our
mechanism.
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Figure 4.6: Profile elicitation performance comparison among our mechanism, random
VCG and truth serum.

Figure 4.4(a) examines the truthful task ratio, which is defined as the percentage of
tasks that a worker honestly reports among all the tasks. We observe that the ratio achieved
by our mechanism and truth serum is around 0.9, while that for the random VCG is as low
as 0.5. Thus, workers demonstrate no preference in answer reporting when truth elicitation
is not enforced. Our mechanism performs as good as truth serum in motivating truth-
telling. However, the latter does not consider profile truthfulness, which will be discussed
in the next section. In addition, we compare in Figure 4.4(b) the truthful worker ratio,
which is defined as the percentage of honest-reporting workers for a given task, among
the three mechanisms. Similarly, ours has a similar performance as truth serum. Both of
them outperform the random VCG. It is worth mentioning that neither our mechanism nor
truth serum can guarantee perfect truth-telling in real-world experiments. This is because
workers are modeled as idealized “rational individuals” with perfect knowledge to act in
the paper, which may not be reflective of their actual status in real-world scenarios.

4.5.3 Analysis of Profile Truthfulness
Figure 4.5 depicts a randomly selected worker’s reported profile and its genuine value

for the 60 tasks. We observe a similar trend as in Figure 4.4: the worker is more likely to
misreport at the beginning but tends to behave honestly after a few rounds of task execu-
tions. This is also because our mechanism effectively encourages workers to report true
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Figure 4.7: The platform’s expense for different tasks.

Table 4.2: Accuracy performance comparison.

Accuracy Error Accuracy ratio
Our mechanism 55 5 91.7%

Truth serum 54 6 90.0%
Random VCG 32 28 53.3%

profiles. Figure 4.6(a) compares the truthful task ratio among the three mechanisms. We
find that our mechanism and the random VCG have a similar performance in truthful profile
elicitation, which outperforms truth serum. This is because the former two apply random
VCG for worker selection where profile truthfulness is guaranteed while truth serum does
not consider profile truthfulness but merely answer truthfulness. A similar observation is
obtained in Figure 4.6(b).

We further examine the platform’s expense incurred by the three mechanisms for
each task in Figure 4.7. The expense is the sum of all worker payments. Truth serum
causes the highest expense among the three. Since it fails to consider profile truthfulness,
workers can manipulate reported profiles and thus incur extra payment to the platform.
We also observe that our mechanism brings a slightly higher expense than random VCG
on average. This extra expense ensures the answer truthfulness that random VCG fails to
achieve.

4.5.4 Accuracy Performance
Once the platform collects answers from workers, it aggregates them and derives the

final result. We employ the majority voting as the aggregation method, i.e., if more than half
answers are “yes”, then the final result of the task is deemed “yes”; otherwise, it is “no”.
Accuracy is different from answer truthfulness. The former denotes that the aggregated
answer is the same as the ground truth, while the latter means a worker reports her true
observation. Table 4.2 compares the accuracy performance among the three mechanisms.
Our mechanism and truth serum have a similar performance. Specifically, we get correct
answers in 55 and 54 tasks out of 60 via our mechanism and truth serum, respectively. The
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Figure 4.8: The platform’s expense under different crowdsourcing sizes.
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Figure 4.9: Time consumption of our mechanism under different system sizes.

random VCG has the lowest accuracy ratio, 53.3%. Together with the answer truthfulness
analysis Figure 4.4, we find that answer truthfulness and accuracy demonstrate a strong
positive correlation in our mechanism. This property is useful, especially for the tasks
whose ground truth is hard to derive.

4.5.5 Impact of System Size
We also analyze the impact of system size on the mechanism performance. Figure

4.8 shows the platform’s expense under different system sizes. We find in Figure 4.8(a) that
the expense increases linearly as the number of tasks grows. Specifically, the total amount
is $26.8 when there are 30 tasks and 15 reference answers. This value increases to $60.5
when the task number becomes 60. The observation meets our expectation: more workers
need to be recruited to execute more tasks, thus incurring higher expenses to the platform.
Here, reference answers correspond to r−i in the mechanism. Figure 4.8(b) shows that the
platform’s average expense also increases linearly with respect to the number of reference
answers. Specifically, the platform’s average payment is $25.5 when there are 40 tasks and
10 reference answers. It increases to $50.3 when the answer number becomes 15.
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Figure 4.9 illustrates the time consumption of our mechanism under different set-
tings. It mainly comes from three processes: winner selection, payment calculation, and
the data communication between the platform program and the worker-side app. Notice
that the task execution time, i.e., the duration for workers to conduct tasks and derive re-
sults, is not included, as this part depends on individual intelligence that varies from worker
to worker. We observe from Figure 4.9(a) that the time slightly increases, from about 0.7s to
2.2s, when the task number changes from 5 to 60. The average time consumption for each
task is as low as 0.05s. It is worth mentioning that tasks are conducted sequentially in the
current experiment. The time consumption can be further reduced when they are processed
in parallel, which we will implement and examine in our future work. A similar trend is
observed in Figure 4.9(b). The time consumption slightly increases when more workers
participate. Specifically, the value is 1.1s when there are 21 workers, and it becomes 2.1s
when the worker size is 60.

To sum up, our mechanism can not only effectively elicit truthful answers and pro-
files, but is also feasible to implement for practical crowdsourcing systems due to its mod-
erate expense caused to the platform and high computation efficiency.

4.5.6 Analysis of Scalability
To evaluate the scalability of the proposed scheme, we further conduct a series of

simulations. Besides, its performance is also compared with a baseline approach, i.e., the
conventional VCG. To implement the baseline approach, we utilize CPLEX, a commer-
cial optimization software package [68], to optimally solve the integer programming (IP)
problem P1 for task allocation and VCG for payment determination. For each task and
worker, we randomly generate task-independent parameters di and workers’ profile bi from
the normal distribution N(0.5,0.2). γ is set to 2 by default. The maximum worker size and
task size is set to 1000 and 1600, respectively. All results are averaged over 100 trials. The
evaluations run on a Dell laptop with a 1.6GHz processor and 16GB RAM.

Figure 4.10 compares the time consumption between our scheme and the baseline
approach given different amounts of tasks. As a note, the baseline approach stands for
the conventional VCG approach that directly applies CPLEX to find the optimum solution
of task allocation and pricing. We observe in Figure 4.10 that our scheme spends much
less time than the baseline approach given the same number of tasks. For example, when
there are 400 tasks, it takes our scheme 2.3 s and 6.9 s to derive task allocation and pricing
outcomes, respectively. However, the values become 62.5 s and 63.2 s for the baseline
approach. This is because the latter solves computationally expensive IP problems, i.e.,
P1, for both task allocation and payment determination; instead, our scheme follows the
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Figure 4.10: Time consumption of our scheme and the baseline approach over different
task numbers (Worker number=500).
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Figure 4.11: Time consumption of our scheme and the baseline approach over different
worker numbers (Task number=500).

framework of fractional VCG that only involves solving LP problems with polynomial
complexity.

Figure 4.11 compares the time consumption between our scheme and the baseline
approach given different numbers of workers. We observe that our scheme’s time for task
allocation increases slower than that of the baseline approach as the worker number grows.
This is because more variables introduce a lower time complexity to LP problems (or our
scheme) than IP problems (or the baseline approach). We also notice in Figure 4.11(a) that
our payment determination takes relatively stable time with the increase of worker numbers.
Combining the results from Figure 4.10 and Figure 4.11, we conclude that our scheme is
more practical for implementation than the conventional VCG in terms of computation
efficiency, especially when the number of workers and/or tasks is large.
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4.6 Related Work
Answer truthfulness. Mechanism design to elicit truthful answers/data, in binary-

answer tasks, is an extensively studied topic [104, 106, 105, 108, 109, 110, 111, 108] The
idea is to devise payment rules such that truth-telling is a Nash equilibrium. Since the
ground truth for each task is unknown to the system, a natural solution is to reward workers
based on other workers’ reports, i.e., reference answers [104, 106, 105] Another solution
is to utilize a truth detection technology that gives a signal indicating if a worker is truthful
or lying based on factors, e.g., physiological measures (e.g., pupil dilation) [108, 109].
Realizing that workers’ efforts also determine the accuracy of crowdsourcing services, a
couple of works [110, 111, 108] further utilize incentives to motivate workers to exert
efforts in task execution. For example, Dasgupta et al. [110] incentivized maximum effort
followed by truthful reports of answers in an equilibrium that achieves maximum payoffs
for workers. Gong et al. [111] developed mechanisms to incentivize strategic workers to
truthfully reveal their private quality and data, and make truthful efforts as desired by the
crowdsourcing requester. The above two works assume that workers have the same cost of
effort exertion and/or the same solution accuracy. In practice, for example, students with
a better academic background are likely better at homework assessment. They may spend
smaller costs (e.g., time) generating homework assessments with higher quality (i.e., higher
solution accuracy). Huang et al. [108] then accommodated such worker heterogeneity in
their incentive mechanism design. None of the above works considers profile truthfulness.
As discussed, this property is of equal importance for the platform to deliver high-quality
crowdsourcing services.

Cost truthfulness. Minimizing the overall worker cost, in terms of energy consump-
tion, travel distance, or computing resources, is a prevailing decision criterion to generate
suitable worker-task pairs during task assignments. Since cost is private information and
workers are strategic in reporting this value for favorable outcomes, the main challenge
lies in how to stimulate workers to disclose their costs truthfully. Incentive mechanisms
have attracted most attention for truthful cost elicitation due to their ability to deal with
workers’ strategic behaviors [134, 136, 137, 138, 60, 139, 157, 140] For example, Yang et
al. [134] were among the first to discuss cost truthfulness during task assignment in crowd-
sourcing. Auction-based incentive mechanisms have been developed. Along this line of
research, [137, 139, 157] then study the impact of budget constraints at the platform. Since
the monetary provision is limited, the platform’s strategy space is thus confined. Noticing
that existing mechanisms assume the existence of only one task requester, [140] considers
multiple requesters. The framework of double-auction is thus applied. Cost truthfulness is
guaranteed at both requesters and workers. Since cost is merely one kind of self-reported
profile, cost truthfulness is thus a special case of profile truthfulness that we aim to achieve.
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Aside from the cost, strategic workers are able to manipulate a much wider spectrum of
self-reported profiles, which conventional cost truthfulness schemes cannot resist.

Summary. To our knowledge, this is the first study that protects two different stages,
i.e., task assignment and answer aggregation, in crowdsourcing from workers’ strategic
misreporting simultaneously. In the task assignment stage, workers report their profiles,
such as locations, expertise, and cost of task execution, to the platform, who then decides
task assignment based on the collected profiles. Hence, strategic workers may manipulate
their reports to gain benefit. This is the same case in the answer aggregation stage where
workers lie about their reported answers. Prior works utilize incentive design to tackle
either one of the above two kinds of misbehaviors. Instead, we aim to develop a unified
framework to address them at the same time. It is infeasible to directly apply existing
schemes in each stage, i.e., a worker is first paid for answer truthfulness and then paid for
cost truthfulness. This is because the worker’s total payment received from both stages, if
not carefully calibrated jointly, would violate conditions for both profile truthfulness and
answer truthfulness.

Another limitation of the prior works is that they mostly focus on cost truthfulness,
i.e., motivating workers to reveal their genuine costs in task execution. In fact, in the
stage of task assignment, workers are required to report many other information, such as
location and expertise, in addition to the cost. We call them “profile” in this paper. Cost
truthfulness cannot guarantee workers truth-telling over other information. To address this
issue, our approach achieves profile truthfulness that covers a much wider spectrum of
strategic behaviors.
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CHAPTER 5

CONCLUSIONS
This dissertation secures crowdsourcing from workers’ strategic misreporting behav-

iors. All schemes are developed under the framework of incentive mechanism design. Our
core idea is to pay strategic workers properly such that their best strategies are to behave
honestly or in a way that is desired.

In Chapter 2, to resist parameter manipulation performed by individual workers, we
leverage the incentive mechanism to develop an effective and novel defense scheme. Our
idea is to stimulate workers to report desirable indicators, such that the new formulated
problem shares the identical optimal solution with the original one. To implement the de-
fense scheme, we further develop an iterative algorithm. The backtracking based approach
is adopted to accelerate the convergence speed. We then formally prove its convergence
property and individual rationality. Extensive simulation results show that the algorithm
only takes a few iterations to converge, and thus to find the accurate solution under moder-
ate system sizes.

In Chapter 3, we propose a (t, p)-collusion resistant scheme that resists parameter
manipulation carried by worker coalitions. No coalition of weighted cardinality t can im-
prove its group utility by coordinating the bids at a probability p. In addition, some de-
sirable economic properties, including p-truthfulness and p-individual rationality, are also
guaranteed via our scheme. Since the existence of these properties is in the trade of extra
cost at the platform, we also provide a formal analysis of the tradeoff. Simulation results
demonstrate the effectiveness of our scheme.

In Chapter 4, we develop an incentive mechanism to jointly elicit truthful answers
and parameters from strategic workers in crowdsourcing. Our design first derives the suffi-
cient and necessary conditions for these two goals separately. We then formulate a worker
selection optimization problem. Due to its NP-hardness, we resort to solving its relaxed
version in a fractional domain. The factional optimal solution is then decomposed into a
randomized format. An α-approximate algorithm is further developed. The upper bound
of its integrality gap then serves as a scaling factor 2, which is applied to the random-
ized worker selection to ensure its feasibility. As a final step, the conditions for answer
and parameter truthfulness are integrated as constraints of the payment optimization prob-
lem, whose solution is the incentive paid to each worker to motivate honest behaviors. As
a proof-of-concept implementation, we prototype the proposed mechanism. A series of
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experiments that involve 30 volunteers have been conducted. Results show that our mech-
anism is effective and efficient for practical implementation.
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