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Abstract

This dissertation contributes in development of systems for automatic understanding of

human behavior having applications in medicine and surveillance. To enable cognitive

assessment in adolescent kids, we developed a vision based, unobtrusive and automated

cognitive assessment system called Activate Test of Embodied Cognition (ATEC). Our

system can measure hyperactivity and response inhibition which can inform physicians to

provide life-changing treatments for kids at an early age. More specifically we created an

end-to-end activity recognition system for one of the ATEC task called Cross Your Body

which can track multiple activities in an untrimmed video and provide a score that can be

directly transferred to expert human’s score with high inter-rater reliability. These scores

can be utilized to measure executive functioning of kids which is one of the key factor to

distinguish onset of ADHD in adolescent kids. We also introduced a new dataset towards

development of robust activity recognition system.

We also studied the influence of human object interaction(HOI) in action segmentation

task for long duration instructional videos under timestamp supervision. We created a

first of it’s kind timestamp supervised action segmentation system that utilizes HOI as

another source of information and utilized transformer for improved temporal modelling.

To enable research using HOI for multi-view action segmentation, we also created a new

dataset called (3+1) Rec, which has 1799 long-duration, high quality videos comprising

of 3 third person view and 1 egocentric view for each dish the subject is making in a

kitchen environment.
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1 Introduction

Automatic understanding of human behavior has several applications in medicine and

surveillance. Analysing human actions can enable cognitive assessment of children by

measuring their hyperactivity and response inhibition which can give physicians better

understanding of their cognitive state. Automatic and non-invasive assessment for cog-

nitive disorders will increase the affordability and reach for these detection methods and

can prove life-changing in child’s development. Human activity can also be analysed in

common settings such as cooking in kitchen and understanding the information of human

object interaction can give priors on the underlying activity they are performing.

In the first section, we focus on cognitive assessment. We introduce specifically a

new dataset towards development of automated system for the Activate Test of Embodied

Congition (ATEC), a measurement that evaluates cognitive skills through physical ac-

tivity. Evaluating cognitive skills through physical activity requires subjects performing

wide variety of tasks with varying levels of complexity. To make the system afford-

able and reachable to larger population, we created an automated system that can score

these human activities as accurately as an expert. To this end, we developed and activity

recognition system for one of the most challenging task in ATEC, called Cross-Your-Body

which can evaluate attention, response inhibition, rhythm and co-ordination, task switch-

ing, working memory. We created and annotated the dataset that enabled us for training

of vision based activity segmentation models. First, we developed a very accurate system

that requires trimmed video as input where every video has only one action and predicts

the human activity by tracking the human pose features. Second, we improved the system

to create an end-to-end method that can track multiple activities in an untrimmed video

which enabled the generation of scores that can directly transfer to the expert human’s

score with high inter-rater reliability.

In the second section, we study action segmentation in instructional videos under

timestamp supervision. In the action segmentation domain, the goal is to temporally

divide the input video into set of sequential actions. In fully supervised setting the training
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labels are given for every frame while in weakly supervised settings, the labels are at

video level and are sequence of actions. While the weakly supervised labels reduces the

annotation time for labeling videos, it lacks test performance as comparable to a fully

supervised setting by a big gap. To alleviate this problem, in addition to the sequence

of actions, timestamp supervision also adds a single frame number for each action which

adds significant constraints on when each activity may happen.

We study timestamp supervision under several scenarios. First, we created a new

approach that utilizes human object interaction (HOI) as a source of information other

than the exisiting flow and rgb information. The system creates new pseudo-groundtruth

by expanding the the timestamp annotations using the information from an off-the-shelf

pre-trained HOI detector, that requires no additional HOI-related annotations. We also

improved the temporal modelling system from temporal convolution based to transformer

one which further improved the performance. Second, to enable the research on HOI and

multi-view action segmentation, we created a first of it’s kind dataset called (3+1)Rec,

which has 1799 long-length, high quality videos comprising of 3 third person view and 1

egocentric for each dish the subject is making in a kitchen environment.

In summary, the main contributions in this thesis are as follows:

• We introduce a activity recognition system called Cross-Your-Body, designed by

psychologists that can provide accessible and affordable tools for predicting onset

of cognitive disorders such as ADHD by tracking spatio-temporal features.

• Our system can generate scores which can be directly translated to measure exec-

utive functioning which is one of the key factor to distinguish onset of ADHD in

adolescent kids.

• We present a novel approach for timestamp based action segmentation that utilizes

human object interaction as another source of information for efficient activity pre-

diction and also adopted transformers for improved temporal modeling.

• We present a large and public real-life dataset of 30 subjects which will be useful in

multi-view action segmentation. This dataset consists of high-quality, long-range

videos that has 3 third person and 1 egocentric view.

Finally, the list of published papers that constitute this thesis is provided below:
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• Saif Iftekar Sayed, and Vassilis Athitsos. Cross Your Body: a Cognitive Assess-

ment System for Children.In Proceedings of International Symposium on Visual

Computing, pages 97-109, 2021

• Saif Iftekar Sayed, Konstantinos Tsiakas, Morris Bell, Fillia Makedon and Vassilis

Athitsos. Cognitive assessment in children through motion capture and computer

vision: the cross-your-body task. In Proceedings of the international Workshop on

Sensor-based Activity Recognition and Interaction, pages 1-6, 2019

The list of published papers that constitute collaborative efforts during my research in

the field of action segmentation and robotics is provided below:

• Reza Ghoddoosian, Saif Iftekar Sayed, and Vassilis Athitsos. Hierarchical model-

ing for task recognition and action segmentation in weakly- labeled instructional

videos. In Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision, 2022

• Reza Ghoddoosian, Saif Iftekar Sayed, and Vassilis Athitsos. Action duration

prediction for segment-level alignment of weakly-labeled videos. In Proceedings

of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages

2053–2062, 2021

• Michail Theofanidis, Saif Iftekar Sayed, Joe Cloud, James Brady and Fillia Make-

don. Kinematic estimation with neural networks for robotic manipulators. In Pro-

ceedings of the International Conference on Artificial Neural Networks, pages 795-

802, 2018
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Cognitive Assessment
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2 Cognitive Assessment in Children
through Motion Capture and Com-
puter Vision: The Cross-your-Body
task

2.1 Abstract

This paper focuses on creating video-based human activity recognition methods towards

an automated cognitive assessment system for children. We present the Activate Test for

Embodied Cognition (ATEC), which assesses executive functioning in children through

physical/cognitive tasks. Detecting activities for children is challenging due to high

amount of random motion and variability. This paper focuses on creating a ubiquitous

and non-intrusive activity recognition system for upper-body movements. Our proposed

methods are evaluated on real-world data from children performing the Cross-your-Body

task. The dataset includes 15 children performing 8 types of activities, resulting to 1900

annotated video samples.

2.2 Introduction

Self-regulation, which generally refers to a complex of acquired, intentional skills in-

volved in controlling, directing, and planning one’s cognition, emotions and behaviors [1],

is an important mechanism associated with variety of outcomes, including school readi-

ness and performance [2]. Executive function refers to the mental processes that enable

humans to plan, organize, problem-solve as well as manage their impulses, including cog-

nitive flexibility, working memory, and inhibitory control [3]. Children who face deficits
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in executive functions are highly likely to present attention disorders [4]. ADHD or atten-

tion deficit hyperactivity disorder is a psychiatric neurodevelopmental disorder found in

children and young adolescents and it can start as early as age 6 [5, 6]. Cognitive impair-

ments in executive functions can not only cause bad performance in school settings, but

can also show repercussions in family, employment and community settings which can re-

sult to several socioeconomic problems, resulting to low self-esteem and self-acceptance

[7]. In order to quantify executive function in children, traditional assessments include

either paper or computer-based activities, e.g., the NIH toolbox. However, recent studies

suggest assessments which include physical activities, for example the Head-Toes-Knees-

Shoulders (HTKS) task, which has been extensively tested on 208 children and elicits

psychometric measures through physical performance [8].

Our research includes the development of ATEC; the ACTIVATE Test for Embodied

Cognition, which includes a set of physical tasks with cognitive demands to assess execu-

tive function in motion. A core ATEC task is Cross-your-Body, which follows and extends

the basic HTKS rules, and is designed to assess working memory and attention, bilateral

coordination, rhythm and self-regulation. The HTKS rules include four behavioral activ-

ities: ”touch your {head, toes, knees, shoulders}”. The subject is initially instructed to

touch the announced body part. Then, the task introduces task switching and requires the

child to touch the body part in an ”opposite” fashion (e.g. touch knees when told to touch

shoulders).

Cross-your-Body requires the subject to touch the correct body part with the hand from

the opposite side. Crossing the midline is an integral skill related to bilateral coordination

that children learn from infancy. Poor midline crossing can affect reading (tracking with

the eye from left to right) and writing (using their dominant hand across the writing page)

skills. Moreover, Cross-your-Body is designed to assess rhythm; the child is asked to

repeat each movement three times, alternating sides in a timely manner. Task performance

is determined both in terms of accuracy (touch the correct part) and rhythm (perform

movements in a rhythmic manner). Manual scoring requires a human rater to watch the

videos and score the child based on the task rules (accuracy, rhythm) and can be time-

expensive and often ambiguous.

The main purpose of our research is to build an automated scoring system for Cross-

your-body, which detects and analyzes the performed activities to assess accuracy and

rhythm. Current systems like Cognilearn [9] utilize state-of-the-art computer vision algo-

rithms by capturing color frames from the Kinect V2 camera and provide an interface for

motion capture and analysis. Deep Learning architectures were proposed as the backbone

model [10] and tested on synthetic data with adults performing the task. For this paper,
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our dataset includes collected data during the ATEC assessments with children between

5-10 years old in classroom environments.

The main contribution of our paper is a video-based activity recognition system for

the Cross-your-Body task, which recognizes the active hand that performs the movement,

estimates specific spatial hand positions for efficient feature extraction, while including

low-confidence prediction class. Our experiments on real-world data indicate the effi-

ciency of our method for reliable and user-independent activity prediction effective on

scaling number of users. The structure of the paper is as follows: Firstly, we present

related work on similar applications, highlighting the motivation of our work. Then, we

present the system architecture and our experimental approach using machine learning

techniques. We discuss our experimental protocol and results, describing the data collec-

tion and annotation process. Finally, we conclude with some final remarks and our future

work.

2.3 Related Work

Emerging technologies have influenced many medical related processes such as diagnosis,

rehabilitation and treatment. Computer and data science have opened up another realm

of capturing and analyzing data in an automated fashion. These implementations not

only demand higher prediction accuracy but also focus on user engagement. Active video

game play using consoles like Microsoft Kinect can help rehabilitation of children suf-

fering from Cerebral Palsy [11]. Systems can also monitor the attention state of the child

using eye-trackers towards user-friendly and personalized interfaces [12]. Moreover, vir-

tual reality games have been developed for assessment and rehabilitation of children with

attention deficit [13].

Inattention and/or hyperactivity or impulsivity symptoms can cause alterations in a

person’s human movements and reactions [14]. This is the main reason for exploring sev-

eral sensor-based human activity recognition systems. Such sensors can be employed on

the human body or can be placed in the surrounding environment. Hypothesis testing by

studying the readings given by wearables showed significant differences for ADHD pa-

tients compared to non-ADHD controls [15, 16]. Recent advancements in deep learning

have led to the use of convolution neural networks (CNN) to extract embedded accel-

eration patterns and provide objective measures to help diagnose ADHD [17], but such

approaches can be obtrusive since the subject has to wear different types of wearable

sensors.

Camera-based settings can provide an unobtrusive environment for data collection
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and computer vision and deep learning methods can be used to extract important spatio-

temporal features and recognize patterns of interest. In a previous work, a camera-based

system was proposed for the HTKS task [9] and evaluated on adults, which used deep

learning techniques to extract body pose information for human activity recognition fol-

lowing a frame-based approach. In this work, we follow a segment-based approach, since

the nature of activities involved in Cross-your-Body (CYB) is more complex compared

to HTKS, i.e., crossing the midline and performing the task in rhythm. Moreover, our

proposed methods are evaluated on real-world data from children performing the task.

2.4 CYB System

The primary goal of the system is to reliably recognize the type of performed activity

given a video segment. The system initially detects the subject and then tracks its hands

over time to recognize the performed activity, as well as when the activity was performed.

The overall system is illustrated in Figure [2.1]. The system receives body-motion data

from Kinect and then it produces a set of spatio-temporal features used to predict the

activity performed by the child. The system include two modules: the Acquire and the

Track module. The Acquire module takes care of capturing and analyzing each frame

to create an accurate skeleton vector for the entire video, which after preprocessing it is

passed to the Track module for gesture recognition.

Figure 2.1: System Architecture
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2.4.1 Acquire Module

The Acquire module initially fetches the RGB frames from the Kinect and detects the

subject of interest, in order to detect and filter its 2d pose, divide the body into regions

based on height in order to produce a filtered skeleton joint vector for activity recognition.

2.4.1.1 Human Detection

The first step of the process is to reliably detect the subject of interest. Due to the natu-

ralistic environment, there are often multiple people in the background during the ATEC

assessment was essential to first isolate the subject of interest in order to reduce compu-

tation complexity. YOLO v3 [18] was used to detect the humans in the scene because of

his fast and accurate inference and then based on an empirically decided spatial threshold,

the bounding box which fell in that criteria was chosen as the subject of interest which

was then was passed to the pose estimation.

2.4.1.2 2D Body Pose Estimation

Microsoft Kinect V2 has an RGB capture resolution of 1920x1080 pixels with a Time-

of-Flight depth data as an 512x424 resolution image [19]. The field of view for depth is

70 degrees horizontally and 60 degrees vertically [20]. In this paper, a Kinect V2 is used

for acquisition since it tracks more joints and has a higher motion tracking accuracy, with

greater stability. Kinect’s SDK provides it’s own stock SDK that can be used to get the

3D body pose of the skeleton, but the problem is that Kinect’s skeletal tracking doesn’t

perform well under occlusions [21]. In our work we are still using kinect, since it gives us

the color and the depth channels of the environment. Currently we are considering only

the color modality of the acquisition for our analysis as it is much more consistent and

less noisy than kinect’s skeletal tracker.

For locating the joints in the RGB images, we leverage the recent advancements in

deep learning where data has been trained on millions of images encompassing scenarios

like self-occlusions and networks like OpenPose [22] can be very useful to provide ac-

curate estimation of body pose. We have employed the skeleton map result based on the

2016 COCO keypoints dataset challenge and the skeleton structure provided by openpose

is as shown in the figure 2.2. Each joint is represented by a 2D vector in the cartesian

co-ordinate space. The extracted tensor for a video can be expressed as follows:

Pi = [B1,B2, ....,B18], i = [1,2, ...,n] (2.1)
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Where Pi is a set of 18 2D keypoints location representing respective body joints for a

given frame i in a video sample.

Figure 2.2: Openpose Skeleton Map

2.4.1.3 Filter Keypoints

These points in a video sample are further filtered, where intermediate body points are

interpolated in case of misclassifications.

2.4.1.4 Body Bounding Box

After filtering the keypoints, the first frame of the video sample is used to divide the body

into 4 areas. This area is based on the required class labels of ears, shoulders, hip and

knees. The height of the person is computed using the distance between ear and ankle

with a padding of 50 pixels. Using a fixed width consistent with all the subjects the body

is spatially divided into 4 parts using a fixed percentage of height per body part. The

divided region helped the classifier understand which part the subject was trying to touch

and the use of these regions will be explained in the active body part prediction section.
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2.4.2 Track

Tracking modules involves classifying the activity by using the 2d keypoints. This in-

volves finding which hand was active in other words which hand was performing the

gesture/activity and which body part it was touching/interacting with. This involves find-

ing the relevant frames in the video which gives the maximum information for correct

classification as well as extracting those spatio-temporal features. The tracking module

first finds which hand was active, then tracking the spatial positions of the palm decides

where the touching of body happened based on the velocity and curvature of the palm

trajectory and eventually classifies the active body part. These steps will be elaborated in

the following sections.

Task ID Task Nature Video Instructed - ”Cross your body touch your..” Actual Movement Intended
1 Cross Body - Trial 1 E,S,H,K E,S,H,K
2 Cross Body - Trial 2 E,S,H,K E,S,H,K
3 Cross Body Ears - Knees E,K,K,E,K,E,E,K K,E,E,K,E,K,K,E
4 Cross Body Hips - Shoulders S,H,H,S,H,S,S,H H,S,S,H,S,H,H,S
5 Cross Body Hips - Combined E,H,K,S,K,H,E,K,H,S,E,S K,S,E,H,H,E,H,K,E,S,H,K,H

Table 2.1: Cross-your-Body versions and rules. Trials 1, 2 do not have cognitive
demands; the rest of them introduce task switching

2.4.2.1 Detect Active Hand

Before tracking the hand it was important to compute the palm position and not the wrist

position and since the body pose estimator of OpenPose didn’t give the palm position, an

approximate estimation of palm was done by extending the vector passing from the elbow

through wrist by a magnitude of 1.25 times the magnitude of the vector between elbow

and palm, where the elbow vector is added by the scalar elementwise (Eq. 2.2).

B⃗Palm = B⃗elbow +∥B⃗wrist − B⃗elbow∥∗1.25 (2.2)

The experimental protocol dictated that a valid touch of body part is supposed to be

done by the opposite hand-body pair (midline crossing). So to check whether a palm is

on the other side of the body a reliable anchor point was needed to decide the horizontal

center of the body. Based on the data visualizations and the experimental protocol, sub-

jects were instructed to stand at a fixed location in the scene, hence their feet position is

fixed in the whole video and can act as anchor points. The vector passing from midpoint

of the 2 ankle and parallel to the y-axis was considered as a border dividing the body into
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left and right side.

B⃗midankle =
B⃗le f tankle + B⃗rightankle

2
(2.3)

For a video sample, let Cle f t and Cright be the set of frame indices in a video sample

where the system predicted that the hands are in opposite sides of the body. These 2 sets

are then passed to a filter where:

Cle f t [n] =

n, if B⃗midanklex − B⃗le f t palmx > 0

0, otherwise
(2.4)

Cright [n] =

n, if B⃗midanklex − B⃗right palmx < 0

0, otherwise
(2.5)

After getting the frame indices where the left and right palms cross the midline, these

indices were further analyzed to get the active hand which is computed by analyzing

the velocities of the palms. The protocol for a correct body movement indicates that

subjects moves their hands from a rest position, cross the midline, touch the body part

of the opposite side and then bring the hand back to rest by crossing the midline again.

More formally, this means that the subject’s hand will cross the midline twice (once while

approaching and once while leaving) and the hand’s velocity vector in the x direction will

have opposite direction as it cross the midline. Note that there might be cases when the

subject’s hand may be in the cross state and still they did touch the body part. If both

hands were in cross state, then the hand which crosses the midline later was assumed as

the active hand. If none of the hands were in a state of cross, then the classifier is not

confident of the prediction and not undergo further steps.

2.4.2.2 Get Active Body Part

Once the system detects the active hand, the next step of the algorithm is to identify which

body part is touched. This is the crux of the system as based on the data analysis for the

kids, there is a very high intra-class variability on the style of how a subject performs an

activity in terms of distance from the palm and the intended body part touch and velocities

the palm approaches and leaves a body part after touching. The trajectory of an active

hand’s palm can be considered as a curve defined in a parametric form by equations x =

x(t) and y = y(t), where t is time and x and y are the co-ordinates of the palm. So, a

12



curvature at any point on the trajectory can be given as:

K =
|x′y′′− y′x′′|
[(x′)2 +(y′)2]2

(2.6)

Here x′ and x′′ are the first and second derivative of the x co-ordinates and similarly for

y-co-ordinates. Before getting the points of curvature, the trajectory is smoothed by using

a 1 dimensional smoothing filter. Using the spatial positions of the trajectory, further they

were filtered based on the velocity of the hand. An empirical threshold of 2 was chosen

to filter the positions. Once the spatial positions of the hands are known where the palm

trajectory showed highest curvature and the palm was moving slowly, then the mean of

these spatial positions is taken and using the bounding boxes of the relevant body parts

as shown in figure 2.2, the final prediction is done. If the prediction is ear or shoulder it

goes through further processing of ear and shoulder classification module which computes

more spatio-temporal features and produces a final prediction (ear/shoulder) by passing

the features to a decision tree algorithm.

Figure 2.3: Temporal Analysis of activities and rules

The spatio-temporal features into consideration are:

• Hand Shoulder and Hand Ear Distance: To compare that the hand was much closer

to ear or shoulder, euclidean distances between the active hand’s palm and the op-

posite side’s ear and shoulder were computed taking for the spatial positions where

the curvature of the trajectory was maximum and velocity was low. Note, there can

be a multiple points where this criteria of curvature and velocity may be true over
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time in a video so a mean of these euclidean distances was taken to compare if it

was close to ear or shoulders.

• Shoulder-Palm-Ear Angle: This is a very important feature that can be used to

differentiate the touching of ear or shoulder. For example the angle made by the

left shoulder, left elbow and left palm will be much closer to the angle made by the

left shoulder, left elbow and right ear compared to left shoulder, left elbow and right

shoulder when the actual activity performed was left hand touching right ear. Using

the formula 2.7, we can compute an angle between 3 joints and the above logic

will yield into 3 angles namely Θpalm, Θshoulder and Θear resulting into addition of

information for better prediction between ears and shoulder.

−→
AB = A−B
−→
BC = B−C

Θ =
∑

n
i=1 cos−1

(
−−→
ABi ·

−−→
BCi

|−−→ABi|·|−−→BCi|

)
n

(2.7)

2.4.3 System Protocol

In the context of our research study, children were participated to perform the ATEC ac-

tivities, including the Cross-your-Body task. For our experiments, we created our dataset

including data from 15 participants performing five versions of the task in 2 sessions with

a gap of 2 months. In order to ensure a high-fidelity assessment system, all instructions

are pre-recorded and same for all children. A large screen is used to display a theme-

based music video, where the on-screen host, Aliza, instructs the child to perform the task

following her ”Cross-your-Body” song. Two Kinects (front and side) are used to capture

the movements. The distance between the subject and both of the Kinects is 2m. Table

2.1 illustrates the task versions. Before each task, the subject is shown a task instruction,

as well as a demonstration video clip , explaining the task rules. For example, for Trials 1

and 2, the child is told to perform three touches, touching the announced body part, using

the hand from the opposite side and alternating sides. For the rest of the tasks, the child is

instructed to follow the ”opposite” rules; task 3 switches ears and knees, task 4 switches

shoulders and hips, while task 5 includes both rules. Every subject undergoes through the

same process and there is no prior instructions given other than the video instructions.

A temporal analysis of the activities performed vs instructed can be seen in fig 2.3

which indicates the progression of a task and is divided in 2 parts: video segments and

activity performed. Referring to the row of video segments, the main task is made of
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(a) Left Hand Right Ear (b) Left Hand Right Knee

(c) Right Hand Left Hip (d) Left Hand Left Shoulder

Figure 2.4: Sample predictions for a subject. Body joint positions are high-
lighted in yellow (ear), cyan (shoulders and hips) and yellow (knee). Active
hand positions for a hand are in thick red, while unfilled red circles indicate an
inactive hand. Points with high curvature and low speed are in green.

several sub-tasks and is highlighted in yellow and green respectively. A sub-task begins

when the instruction video starts saying ”Cross your body..” while a task segment begins

when the actual body part to touch was said. The instruction time gap between every task

segment is 1 second and there are 3 segments in every sub-task. Each task segment is an

activity of touching a body part and there were overlapping of activities, in other words

if A1 and A2 are 2 task segments of touching ear, the subject might be partially touching

the ear or moving hand away from that ear while lifting the other hand and approaching

the other ear intended for A2. Also since there involves processing of working memory a

subject would perform the activity with varying delay after the instruction and since there

also involves switching of rules, the activity performed may or may not be correctly done

as instructed.
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2.5 Experiments and Results

Based on the problem definition 8 activity classes were chosen as LHRE, RHLE, LHRS,

RHLS, LHRH, RHLH, LHRK, RHLK, where LH stands for left hand and RH stands for

right hand. Also there was a ninth class as nooo indicating system low-confidence. The

recorded videos were segmented based on the timestamps of the presented stimuli and a

frame level activity annotation was performed resulting into 1900 video samples, where

the average frame length of the video was 28. Each annotated segment refers to one (out

of three) movements. First 5 subjects were used to set the thresholds required by the

algorithm (e.g., bounding box) and the next 10 subjects were used for testing.

Figure 2.5: Confusion matrix for the test split

As illustrated in figure 2.4, these are some sample predictions of the system and it

can be clear that system could focus more on the spatial locations in the trajectory of

the hand where it could extract maximum information. The accuracy of the system was

measured for these 10 test subjects by comparing with the ground truths and the system

could achieve an overall 89.95%. The confusion matrix for the predictions can be seen

as in figure 2.5. Based on the confusion matrix, the prediction of ear or shoulder needs
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further fine-tuning as the system still gets confused since the distance between ear and

shoulder is small and the palm position prediction is not able to capture the fine motion

of palm. One way to improve this is to use the depth modality or skin detection for better

segmentation of hand and in-turn help to compute the distance and angles between palm,

ear and shoulder much more accurately.

2.6 Conclusion and Future Work

A video-based activity recognition system for cognitive assessment in children was pre-

sented. Data were collected from the Cross-your-Body task during the ATEC administra-

tion with children between ages 5-10. Overall 1900 video samples were segmented and

annotated and the system gave an overall accuracy of 89.95%. The automated system was

also tested with manual scoring and gave accurate results as comparatively. The system

successfully applied temporal modelling dependencies to capture the aforementioned ac-

tivities. Moving forward, the system will be extended to perform automated scoring given

the task rules. Our ongoing work on temporal localization of the activity will provide us

with insights on how to automatically score both for accuracy (which part is touches) and

rhythm (when the touch occurs). Intelligent interfaces will be used to provide the experts

with intuitive data visualization to enhance their decision making.
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3 Cross Your Body: A Cognitive As-
sessment System for Children

3.1 Abstract

While many action recognition techniques have great success on public benchmarks, such

performance is not necessarily replicated in real-world scenarios, where the data comes

from specific application requirements. The specific real-world application that we are

focusing on in this paper is cognitive assessment in children using cognitively demanding

physical tasks. We created a system called Cross-Your-Body and recorded data, which

is unique in several aspects, including the fact that the tasks have been designed by psy-

chologists, the subjects are children, and the videos capture real-world usage, as they

record children performing tasks during real-world assessment by psychologists. Other

distinguishing features of our system is that it’s scores can directly be translated to mea-

sure executive functioning which is one of the key factor to distinguish onset of ADHD

in adolescent kids. Due to imprecise execution of actions performed by children, and

the presence of fine-grained motion patterns, we systematically investigate and evaluate

relevant methods on the recorded data. It is our goal that this system will be useful in

advancing research in cognitive assessment of kids.

3.2 Introduction

Mental illness can cause several undesirable effects on a person’s emotional, mental or

behavioral states[23]. It is estimated that around 450 million people are currently affected

by mental health issues, including schizophrenia, depression, attention-deficit hyperactiv-

ity disorder(ADHD) and autism spectrum disorder (ASD)[23]. More specifically, ADHD,

which is a psychiatric neurodevelopmental disorder found in children and young adoles-

cents, can have its traces evident as early as age 6 [5]. Such traces may include deficits in
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executive functions[4] inhibiting them to perform mental processes like planning, orga-

nizing, problem-solving as well as managing their impulses, including working memory,

cognitive flexibility and inhibitory control [3]. These developmental shortcomings causes

detrimental effects not only in their school performances but also at a higher level, trigger

many negative effects in family, employment and community settings which can result

into several socio-economic problems, causing low self-esteem and self-acceptance [7]

While current methods use fMRI or sMRI scans[24], facial expressions[25] or clini-

cal notes[26],these methods provide good prognosis of the subject’s cognitive condition

at the brain activity/blood flow level, but are expensive and not portable. Embodied cog-

nition tackles this problem with an understanding that our sensorimotor experiences with

our social and physical environment helps in developing and shaping our higher cogni-

tive processes[27]. Inspired by this approach, research [8] adopted the Head Toe Knee

Shoulder(HTKS) task to assess these psychometric measures of self-regulation through

physical performance for 208 subjects using obtrusive wearable sensors.

Similarly a recent work [28] created a system called ATEC whose scores showed sig-

nificant correlation with concurrent measurements of executive functions and significant

discriminant validity between At-risk children and Normal Range children on multiple

pre-existing tests like the CBCL Competency, CBCL ADHD Combined score, BRIEF-2

Global Executive Composite, BRIEF-2 Cognitive Regulation Index and SNAP-IV ADHD

Combined Score. They measure psychometric scores such as Response Inhibition, Self-

Regulation, Rhythm and Coordination which constitutes the Executive Function(EF) Score

and Working Memory Index Score. These scores provide valuable information for differ-

entiating adolescent kids susceptible to ADHD as compared to normal[29]. They used

human annotators to evaluate the activities performed by kids, while current systems like

[30], [9] use computer vision technique to detect these activities, but they do not produce

scores that can be translated to produce these psychometric scores. The main contribu-

tion of the paper is to create a system that can produce an automated score of rhythm and

accuracy, which is the fundamental component of creating the psychometric measures by

utilizing the recording and scoring protocol followed ATEC system for the cross your

body task and compare it with the human scores. The data has been recorded in real-time

in an indoor environment, and shows children performing fine-grained activities. In this

system, the children follow instructions to touch, using each hand, a specific body part

(ear, shoulder, knee, or hip) on the other side of the body.
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3.3 Related Work

Neuroimages like fMRI or sMRI have been traditionally used as clinical data for appli-

cations such as identification of ADHD [31, 24] which use CNN to identify local spatial

patterns of modulations of blood flow in a section of brain. While there are compelling

research methods that can separate kids with ADHD from control subjects, these tech-

niques require costly acquisition of brain scans and face the issue of portability. Instead

of learning such information at a micro-level, one can study the effects of the disorder at

macro-level, as human movements and how they can be affected by hyperactivity and/or

inattention[14]. This inspired several wearable sensor based approaches[15, 16] and a

significant difference was evident between non-ADHD controls and ADHD patients, but

such methods require obtrusive sensors.

With the advent of sophisticated activity recognition systems, such human movements

can be tracked and was first tried on adults using HTKS task[9]. The prior work most re-

lated to ours is the method presented in [30], which was also applied to videos of children

performing the Cross-Your-Body task.

Our work has significant differences, and advantages, compared to [30] and can be

used for fully-automated scoring of the children’s performance. The method of [30] can-

not be used on its own for fully automated scoring, due to two limitations which our

method overcomes: the first limitation was that it required human annotations to convert

a child’s performance into several segmented videos, each segment corresponding to a

specific instance of the hand moving to touch a body part. Second, the output of the sys-

tem in [30] simply classified each video segment, without providing frame-level labels

indicating when exactly the subject touches the instructed body part. Frame-level labels

are necessary for scoring the rhythm and timing of each child’s performance, which is an

important aspect of the human experts’ evaluation protocol.

3.4 Data Acquisition and Protocol Definition

The goal of the system is to facilitate the development of an automated scoring environ-

ment, whose output correlates as much as possible with scores produced by human experts

for the same videos. Simulated datasets have been previously created for similar tasks us-

ing adults[9], but they lack the unique motion dynamics that the children participants

display in our recording.
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3.4.1 Data Recording

The subjects were recorded at multiple indoor locations and strict quality control was

maintained (such as keeping the distance from the subjects to the camera within a spec-

ified range), to ensure consistent acquisition quality and every kid was given the same

instruction. The data was recorded using Kinect V2. A screen is used to display a music

video where the host instructs the kids to perform the task following the song of ”Cross-

your-body”. There are 5 tasks overall and each task has varying sub-segment. In a single

sub-segment, the subject is told to perform 3 touches based on the announced body part

using the hand from the opposite side and alternate sides, for example ”Cross your body

touch your hips, hips, hips. For first 2 tasks the subject is required to touch the same body

part as instructed, but for the other 3 tasks the challenge becomes cognitively demanding

as they are told to follow opposite rules, for example in task 3 subject requires to touch

ears when instructed to touch knees and vice versa. Similarly task4 switches shoulders

and hips and task5 includes rules of both task 3 and 4. The scoring system is followed

according to the research done by Bell [28]

3.4.2 Scoring Scheme

The objective of our data processing module is to apply activity segmentation algorithms

to evaluate the performance of the participants. The scoring protocol created by the psy-

chologist experts specifies 2 scores: accuracy and rhythm. The accuracy score depends

on the amount of times that the subject touches the desired body part correctly, and the

rhythm score depends on the amount of times that the subject touches the desired body

part within one second after receiving the instruction. These two scores signify differ-

ent psychometric measures necessary for measuring self-regulation, response inhibition,

working memory, co-ordination and attention [28]. Thus, our system is designed to pro-

duce both those scores.

For the accuracy score part, the goal is to detect if the relevant activity is happening

or not in a video. A potential approach is to manually segment and annotate these videos,

to ensure only one activity happening per video, and then to recognize the activity in each

trimmed video. It has limited real-world use, as it requires significant manual effort to

produce the trimmed video. Furthermore, as this approach produces a video-level class

label, as opposed to frame-by-frame labeling, it could not be used for computing rhythm

score, which requires identifying the time when the hand touches the respective body part.

To address these limitations, in this paper we follow a problem formulation where the

system output should predict both the body part that is touched, and the time during which
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it is touched by the hand. The input to the system is a video segment, which typically has

more than one action. For the training examples, the ground truth includes frame-level

labels. The input video segment is provided automatically by the video capturing system,

with no need for manual annotations, based on the time that each instruction is provided to

the child. These instructions are pre-recorded, and the time that they are issued is known

to the system.

Based on the above considerations, we formulate our problem as an frame-level super-

vised action segmentation problem, similar to formulations applied on the MPIICooking2

dataset[32] to understand fine-grained activities. We note that our problem could also

possibly be tackled as an activity localization problem, but in our work so far we have not

pursued that approach.

3.4.3 Annotation Scheme:

The annotation scheme we adopted in our system is illustrated in Fig. 3.1. Here we

annotate explicitly those frames where the hand approaches the body part, then touches,

and finally leaves the body part. As seen in the figure, a gesture is considered valid only

if the hand has crossed the midline of the body and fulfilled the 3 sequential steps. The

steps and the corresponding frames are highlighted in the figure. We first identify the

time segment when the hand is about to touch the body part. We chose an approximate

distance of a few inches around the designated body part. In the subsequent time segment

the subject touches the body part, and in the third time segment the hand leaves the body

part and gets to a distance of few inches from it. A video segment of video is assigned

the appropriate label if it fulfills all these steps, else it is designated as background(BG).

A strict protocol was followed as there are cases where a subject keeps the hand crossed

and near the body part while using the other hand to touch the other side of the body part.

3.4.4 Dataset Statistics

Overall the dataset consists of 894 total videos recorded for 19 subjects, and has on an

average 2.7 activities per video. The average length of a video sample is around 3.3

seconds, while the maximum and minimum length of the videos are around 3.6 and 3.1

seconds respectively. There are around 2500 activities in these videos having durations

ranging from 0.03 seconds to 1.36 seconds. The dataset consists of 8 classes without

background. The class-wise distribution of the dataset is as shown in the table 3.1. There

are 8 classes indicating the combination of hand and body part. The 4 lettered class label

is comprised of the first and second letter indicating the side: left(l) or right(l), the second
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Figure 3.1: Annotation Scheme for the Cross Your Body System. Highlighted
Red frames were given annotation as right hand left shoulder(rhls)

letter stands for hand(h) and the fourth letter stand for the body part: ear(e), shoulder(s),

hip(h), knee(k).

Class label Index Min(sec) Max(sec) Mean(sec) Sample Count
lhre 0 0.03 0.93 0.21 319
rhle 1 0.03 0.90 0.23 224
lhrs 2 0.03 1.17 0.20 388
rhls 3 0.03 0.87 0.20 285
lhrh 4 0.03 1.37 0.25 338
rhlh 5 0.03 1.00 0.24 257
lhrk 6 0.03 0.83 0.19 337
rhlk 7 0.03 0.87 0.21 284

Table 3.1: Class-wise duration distribution of the dataset.

3.4.5 Data Properties

The recorded data has several attractive properties that distinguish it from the existing

datasets. High Quality: All the videos were recorded in Full HD resolution and were

recorded in indoor conditions that ensured good illumination quality.

Richness and Diversity: The only practice that the subjects received was showing them

once a video illustrating how to touch each body part. There were no instructions given to

the children during the recording phase to improve their gestures or motion patterns. This

resulted in a very realistic dataset that has many unique and novel motion patterns, as can

be seen in figure 3.2. The dataset has high intra-class variation of and also has occlusions

during performance of these activities. Also the diversity in the speed at which a subject

touches a body part varies drastically, resulting into cases where the touch of a body part

spans just a few frames.
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Figure 3.2: Examples of action instances in Cross Your Body Data. The
left part shows instances belonging to categories within the set of touching-
shoulder, from top to bottom ”right hand left shoulder”, ”left hand right shoul-
der”, ”right hand left shoulder”, illustrating the level of variations that the
touching-shoulder action can have. On the right the first 2 samples from top to
bottom illustrate examples of touching-shoulder and touching-ear instances in
which one hand occludes another, while the third sample illustrates occlusion
by head while touching the shoulder.

Fine-grained action differences: Since there are classes like touch ear v/s touch shoul-

der, this dataset is unique from the point of view of inter-class variations, as there are

samples belonging to different classes where the body pose looks very similar. Further-

more, since the resolution of the hands is relatively small, hand detection and tracking is a

challenge, thus posing a unique use-case for activity detection and recognition algorithms.

3.5 System Definition

The goal of the system is to recognize and score the fine-grained actions in this dataset.

Given the scoring requirements, the system is essentially an action segmentation system.

Note that this dataset can also be used to evaluate activity localization algorithms, but we

have so far not pursued that approach. Action segmentation involves frame-level predic-

tions of an untrimmed video that may contain one or more activities.

We systematically evaluated 3 action segmentation methods based on Temporal Con-

volution Networks(TCN), namely MSTCN++[33], ASRF[34] and DTGRM[35] on the

data and also included one pose based activity recognition system ST-GCN[36] to under-

stand the significance of pose. Training protocols follow the original paper unless stated

otherwise.

For action segmentation, the setup involves a training set of N videos, where each

video is composed of frame-wise feature representations x1:T = (x1, ...,xT ), where T is

the length of the video. Using these features the system outputs the predicted action class
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likelihoods y1:T = (y1, ...,yT ), where yt ∈ RC and C is the number of classes. During test

time, given only a video, the goal is to predict y1:T .

All of the experiments were performed using a user-independent 6-fold cross valida-

tion system where it was ensured that, for each split, there is no training video of any

person appearing in the test set. The remaining section explains the feature extraction and

the analysis on the performance of these methods.

3.5.1 Feature Extraction

The actions in the video are highly dependent not only on the motion patterns but also on

the appearance information. Due to the fine-grained nature of the activities like touching

ear v/s touching shoulder, missing on the latter information will lead to incorrect predic-

tion. We used the 2 modalities of data, mainly optical flow and RGB frames to produce

intermediate frame-representation using I3D network[37] pretrained on Kinetics dataset.

We have chosen a temporal window of 16 frames to compute the I3D features. The I3D

features extracted from each modality is concatenated together to produce a feature rep-

resentation xi ∈ R2048×Ti , where Ti is the length of the video i

3.5.2 Action Segmentation

We chose Temporal Convolution Networks(TCN)-based modelling systems, because TCNs

have a large receptive field and work on multiple temporal scales, and thus they are ca-

pable of capturing long-range dependencies between the video frames. The reason we

chose this multi-scale option is because the instruction given usually follows a theme. For

example, if the instruction is ”Cross your body touch your Ears, Ears, Ears”, the subject

is expected to touch ears three times (each time with the opposite hand than the previous

time). Consequently, frame-level predictions become easier if the network understands

that the actions happening in the video are related to ears, and that hands alternate.

MSTCN++ is an improvement over MSTCN where the system generates frame level

pedictions using a dual dilated layer that combines small and large receptive field in con-

trast to MSTCN[38]. While MSTCN++ has the ability to look at multiple temporal fields,

it still lacks the ability for efficient temporal reasoning. This drawback was resolved in

DTGRM where they used Graph Convolution Networks(GCN) and model temporal rela-

tions in videos. While models like MSTCN++ and MSTCN use smoothing loss to avoid

over-segmentation errors, this method introduced an auxilliary self-supervised task to en-

courage the model to find correct and in-correct temporal relations in videos.DTGRM
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and MSTCN++ both work predict frames directly and there is no concept of detecting

action boundaries. Since in our dataset and task it is necessary to understand when an

action starts and ends, and also since the motion is so fine-grained, it is important to ac-

curately detect action boundaries. To resolve this problem, we also employed another

method, ASRF, which alleviates over-segmentation errors by detecting action boundaries.

For analysis of the importance of the method based on the modality of the data, we trained

each method on 3 different modalities: I3D features extracted on RGB frames, I3D fea-

tures extracted on flow frames, and a third modality consisting of concatenating the I3D

features of the first two modalities.

Evaluation metrics: For evaluation, the metrics we employ are framewise accuracy(Acc),

framewise accuracy without background(Acc-bg), segmental edit distance (Edit), and seg-

mental F1 score measured at overlapping thresholds of 10%, 25% and 50% denoted by

F1-10, F1-25 and F1-50 respectively. The overlapping threshold is based on the metric

of Intersection over Union (IoU) ratio. We added the framewise accuracy without back-

ground as a metric since a major portion of the frames in the dataset is background.

We did 2 forms of analysis: event-based analysis, where models were trained using

all 9 classes including background. The second analysis was done based on a subset of

the labels. More specifically we relabeled ”left hand right ear” and ”right hand left ear”

to just ear and similarly for shoulder. This resulted in only 3 classes: ear, shoulder and

background.

Table 3.2 illustrates the performance of all the 3 segmentation models for all the

classes. It can be observed that ASRF shows the best performance as compared to

MSTCN++ and DTGRM, as it is able to predict action boundaries. Note that the met-

ric of Acc-BG is more important than Acc as the dataset has a lot of background frames.

More importantly, the flow modality produced better results as compared to RGB or even

concatenated I3D features, and this is further discussed in the analysis subsection. Other

fine-grained activity datasets like [39] have shown similar observations where they illus-

trate RGB values contribute less due to subtle differences between classes as compared to

coarse-grained classes.

We have also investigated how data modality plays a role on capturing temporal dy-

namics in actions that are very fine. For this, we chose a subset of classes like touching

ears and shoulders because they are spatially separated by a very low margin as compared

to touching hip and knee. Table 3.3 illustrates the performance of all the 3 segmenta-

tion models for this subset of classes. It is evident that flow plays an important role in

understand these motion patterns.
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Method Modality Acc Acc-BG Edit F1-10 F1-25 F1-50
MSTCN++ RGB 79.59 28.43 67.94 69.53 67.13 55.07

Flow 82.73 36.10 71.15 74.13 71.81 60.13
Both 82.11 36.24 71.68 74.71 72.15 59.90

DTGRM RGB 81.10 26.75 64.83 68.59 66.09 54.75
Flow 83.55 35.76 71.91 75.35 72.52 61.05
Both 83.67 35.68 70.50 75.07 72.50 60.74

ASRF RGB 63.34 36.42 55.73 59.90 54.64 42.79
Flow 80.45 48.66 73.94 78.04 75.56 63.66
Both 80.98 44.03 73.45 77.10 74.81 63.27

Table 3.2: Performance of Action Segmentation models for All Classes.

Method Modality Acc Acc-BG Edit F1-10 F1-25 F1-50
MSTCN++ RGB 82.41 33.95 71.92 73.51 70.38 59.34

Flow 86.00 51.36 80.44 82.45 80.03 69.76
Both 85.87 48.08 78.87 81.76 79.90 69.00

DTGRM RGB 84.00 34.22 72.39 75.65 73.00 61.79
Flow 86.69 50.80 79.09 82.62 80.85 70.23
Both 86.09 43.45 74.76 80.08 77.43 66.66

ASRF RGB 83.28 44.22 75.23 77.34 75.74 65.88
Flow 85.02 56.55 79.95 82.90 80.86 70.50
Both 84.63 49.12 77.79 80.64 78.93 68.69

Table 3.3: Performance of Action Segmentation models.(Set Level: Ear and
Shoulder)

3.5.3 Analysis

3.5.3.1 Comparison with human scores

Using the segmentation results and the times when the instruction was made by accessing

the video, the relevant accuracy and rhythm scores for each subject was produced by the

system for all the 5 tasks and all subjects. The Bland-Altman plots(Fig. 3.3 and 3.4)

shows the comparison of the system scores and human scores for the activities performed

by the kids. The Y-axis indicates the difference of the scores generated by machines and

humans and the X-axis indicates the mean of the scores using both methods. Every point

in the scatter plot indicates the measurement for a user which may overlap. For each plot,

The blue line indicates the mean of difference of human and machine scores (estimated

bias) which is 3.04 for accuracy metric and 3.25 for rhythm. The red lines refers to interval

(mean ± 1.96 × standard deviation) which signifies the limits of agreement between human

and machine scores. For accuracy the limit of agreement is [6.55,0.47] and [6.66,0.16]

for rhythm. Ideally the mean of differences should be closer to 0. This shows that there is
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Figure 3.3: Accuracy Score comparison of Human and machine scores

a potential of improvement in reliably detecting the touches.

3.5.3.2 What cannot be handled by the current models

To illustrate the limitations of the current methods, we provide the segmentation results

of some cases where the network failed.

1) Self correction: The network cannot always handle the scenario where the user

self-corrects the touch. For example in Fig.3.5, the subject first intends to touch his shoul-

der. Then, in the middle of moving the hand towards the shoulder, he corrects himself

and proceeds to touch the hip. Such cases are essential in this dataset and the target ap-

plication, as the subject has to utilize their working memory to decide which body part

to touch based on the instruction and type of the rule they are told to follow. The task

was intentionally designed by the psychologist experts so that subjects can get easily con-

fused and need to self-correct. The segmentation results show that the best system ASRF

incorrectly predicted lhrs as it failed to understand that the touch did not happen.

2) Confusion between ear and shoulder: While the pose system clearly illustrated that

the system cannot handle spatially fine-grained poses like touch ear v/s touch shoulder

for some cases, this issue was echoed in action segmentation results as well, which used

much more sophisticated I3D features.

3) Intense motion: Sometimes out of confusion and haste to complete the task, the

subject performs touching of body parts at a high speed, and that makes it challenging to

predict.
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Figure 3.4: Rhythm Score Comparison of Human and machine scores

4) Occlusions: As the subjects perform action very quickly, this results into scenarios

where the activities overlap and hand from the previous action occludes the other hand

which is being used to perform the next action, causing the network difficulty to track.

3.5.4 Conclusion

In this paper, we introduce a system for Cross-Your-Body task focusing on cognitive as-

sessment using kids as subjects. The system differs from existing works as there is a direct

comparison between the scores provided by human experts and machines. The recorded

data provides diverse activities which have high intra-class variability and low inter-class

variability. It also includes many unique and realistic actions that involve uncoordinated

motion patterns that vary in pace and has occlusions. We have empirically investigated

significance of pose and I3D features and different data modalities by viewing it as an ac-

tion segmentation problem. Many interesting findings show that the current state of the art

systems find it difficult to recognize these activities. Our system demonstrates creation of

2 fundamental metrics required to measure several executive functions and shows promis-

ing potential for future research. This system can be used as a non-intrusive solution for

cognitive assessment in kids where there is no need of an expert to manually score the

cognitively demanding tasks.
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Figure 3.5: Segmentation Results for different methods. ASRF incorrectly pre-
dicts lhrs(highlighted section) when the subject hovered his hand around shoul-
der and then decided to touch right hip
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Part 2:
Timestamp supervised action segmen-
tation
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4 Timestamp Supervised Action Seg-
mentation Using Human Object In-
teraction

4.1 Abstract

This paper focuses on temporal action segmentation using timestamp supervision where

only one frame is annotated for each action segment. The main idea and contribution is

to use information from Human Object Interaction (HOI) to improve action segmentation

accuracy. This information is obtained from an off-the-shelf pre-trained HOI detector, that

requires no additional HOI-related annotations in our experimental datasets. Our approach

generates pseudo-ground truth by expanding the annotated timestamps into intervals in-

cluding neighboring frames where a human is continuously interacting with an object.

This pseudo-ground truth allows the system to specifically exploit the spatio-temporal

continuity of human interaction with an object to segment the video. Our experiments

quantitatively show the advantages of leveraging HOI information, as our framework out-

performs state-of-the-art methods on three challenging datasets with varying viewpoints,

providing improvements of up to 10.9% in F1 score and up to 5.3% in frame-wise accu-

racy.

4.2 Introduction

The amount of video data available on the internet is growing at an ever-increasing rate.

Analyzing these videos is important for diverse real-world applications in surveillance,

video suggestions, sport analytics, etc. This potential has motivated the design of various

approaches [40, 37, 41, 42, 43] for action recognition in trimmed video clips in recent
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Figure 4.1: The continuity of human object interaction carries important infor-
mation about the continuity of an action. The blue bounding boxes in the video
indicate the spatial locations of objects that the human is interacting with. In
timestamp supervision only one arbitrary frame per action segment is known
(indicated by vertical bars in the segmented video), but the action label of that
frame can be propagated to neighboring frames based on patterns of human-
object interaction around that frame.

years. However, in the real world videos are usually untrimmed and contain several ac-

tions of varying lengths.

Action segmentation is the task of temporally segmenting untrimmed videos and pro-

ducing an action label for every frame[44, 45, 46, 38]. Fully supervised action segmen-

tation methods require as training data the start and end frame of each action in each

training video. However, manually annotating these action boundaries is time-consuming

and simply not scalable to large datasets.

To alleviate the manual annotation bottleneck, some action segmentation approaches[47,

48, 49, 50, 51, 52] utilize weaker supervision, in the form of an ordered sequence of ac-

tions present in the video, without specifying the start and end frames of each action.

Similarly [53, 32, 54] use action sets to segment the video temporally. While these meth-

ods have significantly lighter annotation requirements, they attain much lower accuracy

than their fully supervised counterparts. This gap in accuracy has led to an alternative

type of supervision called time-stamp supervision[55] where, in addition to the ordered

sequence of actions, the training data also contains a single frame number for each action,

thus placing significant constraints on when each activity may be happening.
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In this paper, we focus on timestamp supervision, given its promising combination

of lighter annotation requirements and accuracy that is closer to that of fully-supervised

methods. Within that context, we propose extracting and using human object interac-

tion information to improve accuracy. Our approach extends the supervisory signal of

single-frame timestamps to intervals around those timestamps, by identifying neighbor-

ing frames where human object interaction occurs continuously, and labeling such frames

with the same action.

Figure 4.1 illustrates this idea using an example. In that figure, for the action of

add pepper in a video, the human takes the container, adds the pepper and puts it back.

Detecting the time interval of interaction between the human and the pepper container

allows us to propagate the add pepper action label from the single frame included in the

training data to all frames in that interval.

The main contributions of the paper are as follows:

• The key novelty is the idea of using HOI information to improve action segmenta-

tion accuracy. Furthermore, we show that in practice this idea does not require any

extra training data for new action recognition datasets.

• We provide a specific architecture that serves as an example illustrating how to ex-

ploit HOI information in action segmentation under timestamp supervision. The

proposed architecture demonstrates the feasibility and benefits of using HOI infor-

mation in this setting.

• The proposed architecture outperforms state-of-the-art methods on action segmen-

tation using timestamped supervision. We evaluated our system on three datasets

50salads[56], MPII Cooking 2[57], GTEA[58]. The system can be generalized to

varying environments and viewpoints (egocentric and third person).

In principle, our idea of using HOI information requires additional, HOI-specific train-

ing data in order to train an HOI detector. In practice, we have used the same pre-trained

off-the-shelf HOI detector in all our experimental datasets. Thus, these extra HOI-specific

annotations can be treated as a one-off cost (that has already been paid if one uses an

off-the-shelf HOI detector), as opposed to being an additional cost for each new action

recognition dataset.

In the experimental results, our system provides across-the-board improved accuracy

in all three datasets for all metrics, compared to the state-of-the-art timestamp-supervised
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action segmentation methods. The source code and extensive documentation will be made

public upon acceptance.

4.3 Related Work

4.3.1 Weakly Supervised Methods.

Weakly supervised methods for action segmentation have used diverse approaches such

as connectionist temporal classification[47], energy-based learning[51] or Dynamic Time

Warping[52]. Some methods are iterative, and alternate between generating pseudo-

ground truth using the current model and refining the current model using the pseudo-

ground truth [59, 48, 49, 60]. These methods suffer from relatively high inference time,

and they cannot generate transcripts (i.e., action sequences) that have not seen during

training, which makes such methods a poor fit for datasets where the number of possible

action sequences is combinatorially large. Souri et al.[61] make the inference time faster

by predicting the transcript alongside the frame-level predictions using mutual consis-

tency. The features traditionally used are derived from either Improved Dense Trajectories

(IDT) or I3D.

4.3.2 Timestamp Supervision.

The accuracy attained by weakly supervised action segmentation methods is significantly

lower to that of fully supervised methods. Timestamp supervision has recently been ex-

plored as a way to bridge this accuracy gap, while still not requiring the same annotation

burden as full supervision. Moltisanti et al.[55] trained a fine-grained acition classifier

by employing a plateau function sampling distribution centered around temporal times-

tamp annotations. This method showed promising result on temporal action localization

for trimmed videos. Later Ma et al.[62] mined action and background frames to extend

the action localization system. Recently Li et al.[63] proposed a timestamp supervision

method which uses the model predictions and the annotated timestamps to estimate action

change. They also proposed a confidence loss that forces model confidence to monoton-

ically decrease as the distance to timestamp increases. This system showed significantly

improved results compared to weakly supervised methods trained using only action se-

quence information and no timestamps.
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4.3.3 Human Object Interaction.

The task of human object interaction(HOI) detection is to localize a human and an ob-

ject in their respective bounding boxes and then to specify the interaction between them,

by outputting a tuple <human bounding box,object bounding box, object class, action

class> given an image. This is an active research area[64, 65, 66, 67] and further liter-

ature on image based HOI can be found in state-of-the-at HOI papers[67]. In the video

domain, Gupta et al.[68] formulated a bayesian approach that helps integrate various per-

ceptual tasks involved in understanding human-object interactions. Also Kopula et al.[69]

formulated the problem as a graph where the edges represented affordance and relation

between human actions and objects and nodes represented objects. Also work from Na-

garajan et al.[70] finds interaction hotspots on the objects and learns object affordances

using the videos without manually annotated segmentations. These interaction hotspots

are pixel-level segmentations that provide information of object affordance. Similarly en-

vironment affordance was utilized in applications involving action anticipation[71], and

Xiao et al.exploits action/object relations for recognition in trimmed videos. Another

method [72] on image-level HOI detection is designed to detect hands and objects when

they are in contact. That system not only predicts the hand in contact with the object but

also finds the bounding box of the object that is in contact with the hand. This system is

technically related to [73] but instead of predicting triplets <human, verb, object>, they

propose an alternative representation based on physical contact and interaction. The sys-

tem is trained to recognize hands and active (touching) objects irrespective of object or

activity class and thus can be generalized to other domains. However these approaches

work on single images or trimmed videos, and no prior work has used HOI for action

segmentation.

4.3.4 The Proposed Method in the Context of Related Methods.

With respect to the action segmentation methods discussed above, our method falls un-

der timestamp supervision. The key feature differentiating our method from existing ac-

tion segmentation methods is the use of information from human object interaction. Our

method integrates HOI information within the timestamp supervised action segmentation

framework of Li et al.[63], and the experiments show that using HOI information leads to

across-the-board improved accuracy compared to the original results of [63].

The proposed method uses an HOI detection module as a black box, so any HOI

method can be plugged in. Our implementation uses the off-the-shelf pre-trained system

described in [72]. Consequently, our method can be applied to novel action recognition
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datasets without needing any additional HOI annotations for those datasets.

4.4 Temporal Action Segmentation

Given a sequence of video frames X = [x1, ...,xT ] where T is the length of the video, the

goal in temporal action segmentation is to predict action class label for each frame a1:T =

[a1, ...,aT ]. In Section 4.4.1 we explain the problem formulation for action segmentation

using timestamp supervision. In Section 4.4.2 we describe the proposed framework for

learning from timestamp supervision using Human Object Interaction. Then we provide

the details of loss function in Section 4.4.3.

4.4.1 Timestamp Supervision

In a fully supervised setup, each training video X = [x1, ...,xT ] is accompanied by frame-

wise labels [a1, ...,aT ]. However for timestamp supervision, the model is only provided

with a single frame annotation per action segment during training. For a training video

X containing T frames and N action segments, where N << T , labels AT S = [at1 , ...,atN ]

specify one frame for each of the N segments. It is reported in [74] that it is 6 times faster

to annotate a single frame per action than to annotate the start and end frames of each

action.

4.4.2 Action Segmentation and HOI

Compared to other weaker forms of supervision such as transcripts (i.e., sequences of

actions), timestamps provide not only the action class label but also a concrete temporal

location when the activity is happening. This information allows us to explore and ex-

ploit patterns around that time frame. Commonly used datasets such as Breakfast[75],

50salads[56], MPIICooking2[57], GTEA[58], all display a human performing activities

that involve interacting with objects. If we detect an interval of continuous human object

interaction around a specific timestamp, we can assume that all frames in that interval be-

long to the same action as the timestamped frame. This approach creates HOI-influenced

pseudo-groundtruth that enhances any other available real or pseudo-ground truth.

Many HOI detectors predict the action verb and spatial location of the interaction.

There may be benefits to using the action verb information, but that may also require HOI

training data more related to the specific action recognition dataset. To keep training re-

quirements minimal, our current method does not use any action verb labels, and therefore

does not require the HOI module to produce such labels.
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Figure 4.2: The proposed training framework. The secondary labels generator
creates new pseudo ground-truth, κ using the HOI detections ρ and existing
timestamp annotations. The binarized pseudo ground-truth(α) also provides
new supervisory signal to the primary label generator for generating frame-
wise labels β .

In our implementation, we use the off-the-shelf pre-trained HOI detector of Shan et

al. [72]. Given an image, the model predicts hand sides and contact states either with the

hands or surrounding objects. Hand side values are left or right, and hand state is repre-

sented as a 2D one-hot vector. There are five contact states: none, self, other, portable,

and non-portable. The contact state is represented as a 5D one-hot vector. Alongside

these categorical outputs, the model also produces bounding boxes around the hands and

the interacting objects. In our method, we considered only those frames which had an in-

teraction with a portable object. So, every frame with a detected contact state of portable is

considered as a valid HOI frame, and the object bounding box bt is stored. Here t ∈ [1,T ]

and T is the length of the video.

4.4.2.1 HOI-Influenced Pseudo-Ground Truth

In the architecture diagram on Figure 4.2, the secondary label generator uses HOI infor-

mation to generate pseudo-ground truth action labels. In this subsection we describe how

the secondary label generator works.

The inputs are a video X , single-frame timestamp annotations AT S = [at1 , ...,atN ], and
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a sequence of frame-level HOI predictions ρ . The output is pseudo-ground truth κ . As

shown in Figure 4.3, we start with a window of τ frames around a given timestamp frame

ti. We denote by banchor the mean center location of the detected object bounding boxes

within that window of τ frames. Point banchor provides an approximate location of the

human object interaction around timestamp ti. Neighboring frames will be labeled with

the same action if the location of the detected human object interaction in those frames

stays close to banchor.

Frame-wise labels κ are initialized to ground-truth single-frame timestamp action la-

bels ati for a video. Then, for each anchor location ti, the algorithm considers adjacent

intervals forward and backward in time, with a hop of w frames at a time, to decide

whether to propagate label ati to each of those intervals. We denote by bi, j the mean lo-

cation of the object bounding box in frames xi,xi+1, . . . ,x j. We denote by δi, j the distance

between locations banchor and bi, j. Given this notation, for a hop index h starting from 0

which increments by 1, h ∈ R and spatial threshold σ in pixels, the forward expansion of

timestamp action ati proceeds as follows:

κ[ti+hw,ti+(h+1)w] = ati , if δ[ti+hw,ti+(h+1)w] < σ (4.1)

The forward search terminates if δ[ti+hw,ti+(h+1)w] for a hop h is greater than σ , if no

valid HOI frames have been detected in hop h, or if the time search range reaches the end

of the video.

Similarly the backward expansion of timestamp action ati is as follows:

κ[ti−hw,ti−(h+1)w] = ati , if δ[ti−hw,ti−(h+1)w] < σ (4.2)

Once the forward and backward expansion of action timestamp ati terminate, the next

timestamp ati+1 is considered for forward and backward expansion following the same

logic.

4.4.2.2 Fine-tuning Action Changes

In the architecture diagram on Figure 4.2, the primary label generator, given a video X

and timestamp annotations AT S = [at1 , ...,atN ], generates frame-wise labels Â = [â1, ..., âT ]

such that âti = ati for i ∈ [1,N] where N is the number of segments. In this subsection we

describe the operation of the primary label generator.
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Figure 4.3: The proposed pseudo-ground truth generation method for a given
action segment in a video. Timestamps are indicated in yellow. The black
section in ρ indicates the frames where HOI was detected. After subtracting
banchor from the bounding boxes of the neighbouring frames, the color spectrum
in δ indicates magnitude difference from blue(low) to red(high) . hoph indicates
the progression of search window in forward and backward direction. Final
pseudo ground-truth is indicated by the block κ .

Our formulation for this module builds on the method of [63], which trains a TCN

model M for action segmentation. That TCN model is referred to as “segmentation model”

in Fig. 4.2. To generate frame-wise labels, the method of [63] estimates the time tbi of

action change between two consecutive timestamps ti and ti+1, as follows:

tbi = argmin
t̂

t̂

∑
t=ti

d(ht ,ci)+
ti+1

∑
t=t̂+1

d(ht ,ci+1) (4.3)

s.t.
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ci =
1

t̂ − ti +1

t̂

∑
t=ti

ht , (4.4)

ci+1 =
1

ti+1 − t̂

ti+1

∑
t=t̂+1

ht (4.5)

In the above, d(., .) signifies the Euclidean distance and ht is the output of the penulti-

mate layer of the TCN at time t. Intuitively, the algorithm divides the the frames between

timestamps ti and ti+1 into two clusters by finding the location tbi such that the average

distance between the frame outputs and cluster centers is minimized.

In [63], this approach is implemented using a forward-backward algorithm. In the

forward direction, frames from the last computed boundary tbi−1 to the timestamp ti are

assigned action label ati , and these frames are used in estimating the next action boundary

tbi,FW . For the backward direction, boundary estimate tbi+1 , is used to predict the previous

boundary tbi,BW . The average of the 2 estimates is used to find the final estimate tbi . As

initial conditions, tb0 = 1 and tbN = T , where T is the number of frames.

tbi,FW = argmin
t̂

t̂

∑
t=tbi−1

d(ht ,ci)+
ti+1

∑
t=t̂+1

d(ht ,ci+1) (4.6)

tbi,BW = argmin
t̂

t̂

∑
t=ti

d(ht ,ci)+

tbi+1

∑
t=t̂+1

d(ht ,ci+1) (4.7)

p =
tbi,FW + tbi,BW

2
(4.8)

In [63], the value of p from Eq. 4.8 is used as the estimate for tbi . This is where

our method diverges, and uses human-object interaction information to improve upon this

estimate. Our modification is formulated as follows:

tbi =

{
p, αp = 0

f (p,G), αp = 1
(4.9)
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f (p,G) =

{
min(G), G ̸= /0

p, G = /0
(4.10)

G = {t|t ∈ [tbi,FW , tbi,BW ],αt = 0} (4.11)

Here αt ∈ {0,1}, for t ∈ [0,T ], indicates the interaction label obtained by binarizing

the pseudo ground-truths κ at time t. Value 1 signifies interaction and 0 as no interaction.

Figure 4.2 illustrates the binarized results α where the black segments indicate interaction

and white segments indicate no interaction. Thus, we improve upon the architecture by

adding a constraint that the detected boundary tbi is invalid if there is an ongoing human

object interaction at that time. The boundary is re-adjusted to a temporal location where

there is no interaction. During training, the final estimate tbi is estimated by the interaction

label αp. If interaction exists at time p then a subset of interaction values α[tbi ,FW ,tbi ,BW ] is

used to find a new action boundary. In the subset, the first time frame when there is no

interaction is assigned as the new tbi . If there is interaction happening in all the frames in

α[tbi ,FW ,tbi ,BW ], then tbi = p .

4.4.3 Loss Function

We use the already successful combination of classification loss and smoothing loss used

in traditional action segmentation techniques [38, 34, 76] and the novel confidence loss

[63].

Classification Loss

For classification loss, we employed a cross entropy loss that computes the loss between

the prediction action probabilities and the generated target labels as well as the generated

pseudo ground-truths using HOI.

Lcls =
1
T ∑

t
−log(ỹt,â), (4.12)

Here ỹt,â is the predicted probability from the model for target action label â at time t.
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Smoothing Loss

To penalize for local inconsistencies in the the predicted action class probabilities we

adopted the truncated mean square error as a smoothing loss[38]. This loss encourages

the network to avoid over-segmentation errors

LT−MSE =
1

TC ∑
t,a

∆̃
2
t,a, (4.13)

∆̃t,a =

{
∆t,a, ∆t,a ≤ τ

τ, otherwise
(4.14)

∆t,a = |logỹt,a − logỹt−1,a| (4.15)

Where C is the number of action classes, ỹt,a is the action a probability at time t.

Confidence Loss

The confidence loss[63] enforces monotonicity on the model confidence and is defined as

follows:

Lcon f =
1
T ′ ∑

ati∈AT S

(
ti+1

∑
t=ti−1

δati ,t), (4.16)

δati ,t =

{
max(0, logỹt,ati

− logỹt−1,ati
), i f t ≥ ti

max(0, logỹt−1,ati
− logỹt,ati

), i f t < ti
(4.17)

Using this loss, the low confident regions which are surrounded by higher probability

regions are encouraged to produce higher probabilities. This loss also penalizes outlier

frames carrying high probabilities that are far from the annotated timestamp and that are

not surrounded by high confidence regions.

43



The final loss of the action segmentation model is:

Ltotal = Lcls +αLT−MSE +βLcon f (4.18)

Here α and β are the hyper-parameters that guide the contribution of each loss.

4.5 Experiments

In this section, we compare our method with the current state of the art systems for ac-

tion segmentation using timestamp supervision. We also show the contribution of each

component quantitavely and qualitatively.

4.5.1 Datasets

In our experiments, we have used three public datasets commonly used for evaluating

action segmentation methods: 50salads[56], MPII Cooking 2[57], and GTEA[58]. We

note that each dataset contains both video-level class labels, that describe the activity

of an entire video, and segment-level class labels, that describe the fine-grained action

that takes place at each segment. In these experiments, both for our method and for the

competitors, we do not take video-level class labels into account. We are only concerned

with labeling each frame with the correct fine-grained action label.

The 50Salads dataset contains 50 videos and 17 fine-grained action classes. Each

video on average contains 20 fine-grained action instances and is 6.4 minutes long. The

videos display human subjects preparing different types of salads. There are 25 video-

level class labels (different salads) overall, and every actor prepares two different salads.

The GTEA dataset contains 28 egocentric videos and 11 fine-grained action classes.

There are 7 different video-level classes such as “preparing tea” and “hot dog”, performed

by 4 subjects. Each video contains 20 fine-grained action instances on average.

The MPII Cooking 2 contains 243 high quality videos, ranging in length from 1

minute to 40 minutes, and 67 fine-grained action classes. It includes 29 subjects who

prepare 58 different dishes (video-level class labels) like “making pizza” or “preparing

cucumber”.

4.5.2 Evaluation Metrics

We use evaluation metrics commonly used in action segmentation tasks [38, 34, 76]:

frame-wise accuracy (Acc), segmental edit distance (Edit) and segmental F1 score at over-
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(a)

(b)

(c)

Figure 4.4: Qualitative results on (a) 50Salads, (b) MPII Cooking2 and (c)
GTEA datasets. The current state of the art system (Timestamp) still suffers
from over-segmentation in all datasets. On the contrary our approach gets
better prediction by utilizing the frames where continuous human object inter-
action occurs.
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lapping thresholds of 10%, 25% and 50%, denoted as F1@{10,25,50}. While frame-wise

accuracy is the most commonly used metric in action segmentation research, it naturally

places more importance on long-duration actions over shorter actions, and it lacks an

explicit penalty for over-segmentation errors. Segmental edit score and F1 score penal-

ize the over-segmentation errors and treat shorter and longer duration actions as equally

important.

4.5.3 Implementation Details

For the action segmentation module of Fig. 4.2 we use the multi-stage temporal con-

volution network of Li et al.[63]. For HOI detection, if there are multiple objects de-

tected, where the human is interacting with an object in each hand, the bounding boxes

are merged to a bigger bounding box. We trained for 70 epochs using Adam optimizer.

For the first 30 epochs the network was trained using only the annotated timestamps to

minimize the impact of initialization. From epochs 30 to 50, the pseudo ground-truth κ

generated using HOI (the output of the “secondary label generator” in Fig. 4.2) was used

to train the network. After epoch 50, the generated labels created by identifying action

change and HOI (the output of the “primary label generator” in Fig. 4.2) were used for

training. The learning rate is 0.0005 and the batch size is 8. For the loss function, we used

τ = 4, α = 0.15 and β = 0.075. We used the same I3D[37] features as in [38]. We trained

all models using the same timestamp annotations as Li et al.[63], for fair comparison with

other methods. For all 3 datasets the optimum σ and τ values were obtained based on the

cross-validation performance, whereas the α and β values that we used were the same

ones as in [63]. The value of σ used for each dataset, and further implementation details,

can be obtained in the supplementary material.

4.5.4 Results

4.5.4.1 Comparison with the State of the Art System

In Table 4.1 we compare our method with the current state-of-the-art method of Li et

al.[63] for action segmentation using timestamp supervision. Compared to [63], our ap-

proach consistently attains higher accuracy in all 3 datasets in all metrics. For GTEA,

the F1 score at 50% overlapping threshold improves by 10.9%. The frame-wise accuracy

improves by 5.3% when compared to [63] and is now 92.5% of the fully supervised ap-

proach. For 50Salads, the F1 score at 50% overlapping threshold improves by 5.9% and

the frame-wise accuracy improves by 0.4% when compared to [63] and is now 97.45%
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F1 @ {10, 25, 50} Edit Acc
50Salads
Timestamp[63] 73.9 70.9 60.1 66.8 75.6
Ours 77.3 75.2 63.6 69.8 75.8
Full Supervision 70.8 67.7 58.6 63.8 77.8
GTEA
Timestamp[63] 78.9 73.0 55.4 72.3 66.4
Ours 82.1 78.7 63.0 74.8 70.4
Full Supervision 85.1 82.7 69.6 79.6 76.1
MPII Cooking2
Timestamp[63] 42.7 38.7 28.7 41.1 50.1
Ours 44.9 40.6 28.8 43.5 51.3
Full Supervision 45.5 42.1 32.5 43.2 54.0

Table 4.1: Comparison between our method and current state of the art for
timestamp action segmentation on the three datasets.

Supervision Method F1@{10,25,50} Edit Acc

Full MSTCN++[33] 80.7 78.5 70.1 74.3 83.7
BCN[76] 82.3 81.3 74.0 74.3 84.4
ASRF[34] 84.9 83.5 77.3 79.3 84.5

Timestamps Seg model + plateau [55] 71.2 68.2 56.1 62.6 73.9
Timestamp[63] 73.9 70.9 60.1 66.8 75.6
Ours 77.3 75.2 63.6 69.8 75.8

Table 4.2: Results with different levels of supervision on 50Salads.

of the fully supervised approach. For MPII cooking2, the F1 score at 25% overlapping

threshold improves by 4.5% and the frame-wise accuracy is improved by 2.3% when

compared to [63] and is now 95.1% of the fully supervised approach.

Tables 4.2-4.3 compare the performance of the system with state-of-the-art fully su-

pervised methods as well as with other timestamp supervision methods. For fair com-

parison, all timestamp supervision methods use the same timestamp annotations. These

tables illustrate that our method makes a significant step towards closing the accuracy gap

between timestamp supervision and fully supervised methods.
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Supervision Method F1@{10,25,50} Edit Acc
Full MSTCN++[33] 88.8 85.7 76.0 83.5 80.1

BCN[76] 88.5 87.1 77.3 84.4 79.8
ASRF[34] 89.4 87.8 79.8 83.7 77.3

Timestamps Seg model + plateau[55] 74.8 68.0 43.6 72.3 52.9
Timestamp[63] 78.9 73.0 55.4 72.3 66.4
Ours 82.1 78.7 63.0 74.8 70.4

Table 4.3: Results with different levels of supervision on GTEA.

4.5.4.2 Impact of loss with HOI

Table 4.4 shows the benefits of using HOI information. We show results using the original

loss function of [63], and results obtained by incorporating two changes proposed in this

paper: “pg” denotes the pseudo-ground truth generated using HOI, as described in Section

4.4.2.1. By “ft” we denote detecting action boundaries using the proposed “fine-tuning”

equations 4.9-4.11 of Section 4.4.2.2, whereas versions not marked with “ft” detect action

boundaries as described in [63].

For 50Salads, the F1 score @50% overlap increased by 2.5% when compared to [63]

when adding the “pg” component, and increased further by 0.6% when using the “ft”

approach. The qualitative results showcase how our approach corrected some of the over-

segmentation errors in [63]. Similar improvements were seen in GTEA, where the F1

score @50% increased by 2.7% by using just pseudo-ground truth and by 4.9% with fine-

tuning action changes using HOI. Similar gains were seen in MPII Cooking 2. Overall,

our system yields consistently higher accuracy in datasets that have varying viewpoints

(egocentric and third person).

4.5.4.3 Impact of fine-tuning.

Table 4.5 illustrates the benefits of re-adjusting the action change boundaries using HOI

information. The terms “loss”, “pg” and “ft” have the same meanings that we defined in

discussing Table 4.4. Table 4.5 shows that, for the GTEA dataset, our proposed improve-

ments lead to higher accuracy in almost all metrics. There are only two entries in that

table (out of a total of 10) where the proposed components do not improve accuracy, but

in both those cases the drop is marginal (0.3%). In the other eight entries, our components

lead to improvements ranging from 0.6% to 4.9%.
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F1@{10,25,50} Edit Acc

50Salads
loss[63] 73.9 70.9 60.1 66.8 75.6
loss+pg 76.5 74.4 62.6 69.3 75.7
loss+pg+ft 77.3 75.2 63.6 69.8 75.8
GTEA
loss[63] 78.9 73.0 55.4 72.3 66.4
loss+pg 79.9 75.5 58.1 74.2 68.2
loss+pg+ft 82.1 78.7 63.0 74.8 70.4
MPII Cooking2
loss[63] 42.7 38.7 28.7 41.1 50.1
loss+pg 44.4 40.0 28.3 42.1 50.5
loss+pg+ft 44.9 40.6 28.8 43.5 51.3

Table 4.4: Contribution of the original loss from Li et al.[63](loss), new pseudo
ground-truth(pg) generation and fine-tuning(ft) of the action change using HOI

F1@{10,25,50} Edit Acc
GTEA
loss[63] 78.9 73.0 55.4 72.3 66.4
loss+ft 78.6 74.5 57.6 72.0 67.9
Improvement -0.3 1.5 2.2 -0.3 1.5
loss+pg 79.9 75.5 58.1 74.2 68.2
loss+pg+ft 82.1 78.7 63.0 74.8 70.4
Impovement 2.3 3.1 4.9 0.6 2.2

Table 4.5: Improvement in performance for GTEA using labels generated by
adding constraint of HOI to detect acton change
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4.6 Conclusion

The main novel idea in this paper is that information from human-object interaction can be

used to improve action segmentation accuracy under timestamp supervision. Our model

extends the single frame timestamp annotations using the frame level predictions of a

human-object interaction detector. We track the object that the human is interacting with

around the timestamp, and we use that information to generate pseudo-ground truth action

labels. We improve the existing frame-level action class generator by adding a constraint

that an action boundary cannot exist around frames where the human is continuously

interacting with the object. Results on three commonly used public datasets show that

the key idea of using HOI information can indeed improve action segmentation accuracy

noticeably. Our proposed architecture has outperformed the current state of the art, further

closing the gap with models trained using full supervision.

4.7 Implementation Details

In this section we provide the implementation details for our model using the three datasets:

50salads[56], MPII Cooking 2[57], GTEA[58]. For all the three datasets, we train the

model in 3 steps:

1. Until epoch 30 we use the single frame timestamps.

2. From epoch 31 to 50 we use the pseudo ground-truths generated from the times-

tamps and HOI.

3. From epoch 51 to 70 we train using the fine-tuned action boundaries using HOI.

Regarding Tables 4 and 5 of the main paper, which show variations of our method for

ablation studies, this is how these variations correspond to the above steps:

• The “loss+pg” method of Table 4 corresponds to using only the first two steps

above, and skipping the third step.

• The “loss+pg+ft” method corresponds to using all three steps as described above.

• The “loss+ft” method of Table 5 corresponds to using only steps 1 and 3, and skip-

ping step 2. So, for the “loss+ft” version, from epoch 31 to 50 we train using the

fine-tuned action boundaries using HOI, and we stop training when epoch 50 is

done.
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The best performance in all three datasets was dependent on the pseudo ground-truth

generation parameters σ and τ as explained in the section titled “HOI influenced Pseudo

Groundruth” of the main paper. For each dataset, the values for σ and τ were chosen

automatically, using cross-validation. These are the values we used:

• For 50Salads, σ = 30 and τ = 30.

• For GTEA, σ = 10 and τ = 75.

• For MPII Cooking 2, σ = 15 and τ = 15.

4.8 Impact of frame selection on performance

The HOI pseudo ground-truths are generated around the annotated frame-level timestamp.

To check the system’s sensitivity on the initialization of these frame-level annotations, we

randomly selected timestamp frames for each action segment and created 10 unique sets

of timestamp annotations and their respective HOI pseudo ground-truths for every video.

We trained independent models with these newly generated annotations and performed

this experiment for GTEA and 50Salads dataset and Table 4.6 illustrates the mean and

standard deviation for each performance metric for these 10 models trained on unique

timestamps and HOI pseudo ground-truths. It can be seen that the mean values for these

performance metric are still better than the current state of the art despite random initial-

ization and shows the system can still perform better even if timestamps are annotated

randomly.

4.9 Importance of Pseudo-Ground Truths Using HOI

The information below describes alternative training strategies that we have evaluated.

These strategies consist of different choices and orderings among the following modules:

• Module a: This is the module described in Section 3.2.1 of the main paper, which

generates and uses pseudo-ground truth labels κ . As described earlier, in the imple-

mentation details section of this supplementary document, this module is used (in

the normal version of our method) for training in epochs 31 to 50.
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Dataset F1@{10,25,50} Edit Acc

50Salads 76.6 ±0.6 74.2 ±0.6 63.1 ±0.8 69.5 ±0.5 76.2 ±0.3

GTEA 81.4 ±0.9 78.0 ±1.2 61.5 ±1.4 75.5 ±1.3 70.2 ±0.6

Table 4.6: Variation in performance using 10 unique combinations of randomly
generated frame-level annotations. Number to the left of ± indicates the mean
for 10 runs and to the right indicates standard deviation

• Module b: This is the “fine-tuning” module described in Section 3.2.2 of the main

paper. As described earlier, in the implementation details section of this supple-

mentary document, this module is used (in the normal version of our method) for

training in epochs 51 to 70.

• Module b’: This is a replacement of the “fine-tuning” module described in Sec-

tion 3.2.2 with the original boundary detection method used in [63]. In the system

overview of Figure 2 of the main paper, this variant would correspond to cutting the

link between binary labels α and the “primary labels generator”.

Changing the order between module a and module b In the standard version of our

method, as explained earlier, we train using module a in epochs 31-50, and we train using

module b in epochs 51-70. We evaluated switching this order. This variation is denoted

on Table 4.7 as “b then a”. Essentially, in this variation we train using module b in epochs

31-50, and we train using module a in epochs 51-70. Table 4.7 shows the results of this

variation. We see that using module a first and module b second gave better performance

for all three datasets.

Replacing our fine-tuning module with the original boundary detection of .[63]

We also evaluated a variant where we use module b’ (the original boundary detection

module of [63]) instead of our finetuning module (module b). We tried both possible

orderings in training (module a in epochs 31-50 followed by module b’ in epochs 51-70,

and the other way around).

Table 4.8 illustrates the performance differences of these variations. It can still be seen

that training the network first from epoch 31 to 50 using pseudo ground-truths from HOI

helps the network perform better for all three datasets. We can also see, by comparing

the “a then b” results in Table 4.7 with the “a then b’ ” results of Table 4.8 that module

b, which is one of our contributions, leads to better accuracy than module b’ which is the

corresponding component in [63].
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Training Type F1@{10,25,50} Edit Acc

50Salads
a then b 77.3 75.2 63.6 69.8 75.8
b then a 73.2 70.1 58.2 64.7 73.8
GTEA
a then b 82.1 78.7 63.0 74.8 70.4
b then a 73.6 66.6 49.4 68.8 61.4
MPII Cooking2
a then b 44.9 40.6 28.8 43.5 51.3
b then a 35.0 30.1 19.6 30.8 39.5

Table 4.7: Variation in training using labels generated by pseudo ground-truths
generated using HOI (a) and boundary detection using HOI (b)

Training Type F1@{10,25,50} Edit Acc
50Salads
a then b’ 76.5 74.4 62.6 69.3 75.7
b’ then a 71.8 69.0 57.8 64.9 73.7
GTEA
a then b’ 79.9 75.5 58.1 74.2 68.2
b’ then a 73.4 65.7 45.7 70.7 60.3
MPII Cooking2
a then b’ 44.4 40.0 28.3 42.1 50.5
b’ then a 35.9 31.4 20.6 32.6 39.8

Table 4.8: Variation in training using labels generated by boundary detection
without using HOI (b’) and pseudo ground-truths generated using HOI (a)
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σ (pixels) F1@{10,25,50} Edit Acc
10 80.5 77.2 59.7 74.9 68.9
20 82.3 78.8 60.5 76.9 69.9
25 81.4 78.0 61.2 73.8 70.0
30 80.3 75.2 59.3 74.4 69.0
35 81.0 77.4 58.6 73.2 68.4
40 77.6 72.2 56.0 72.5 67.2

Table 4.9: Performance Impact on varying Spatial threshold, σ in pixels with
Temporal window τ = 30 for GTEA dataset.

τ (frames) F1@{10,25,50} Edit Acc
15 80.8 76.4 60.6 75.3 69.4
30 80.3 75.2 59.3 74.4 69.0
45 80.4 76.0 58.4 74.8 68.1
60 79.2 73.3 58.0 73.4 68.6
75 77.2 73.6 56.6 70.9 67.3
90 78.4 75.3 57.4 73.6 68.3

Table 4.10: Performance Impact on varying Temporal window, τ with Spatial
threshold, σ = 30 for GTEA dataset

4.10 Impact of spatial and temporal thresholds

The pseudo ground-truth generated is controlled by 2 variables τ and σ . Variable τ con-

trols the temporal window in which the algorithm finds the bounding box of interaction.

Table 4.9 illustrates the impact of performance by keeping the temporal window constant

at τ = 30 frames and varying spatial threshold σ from 10 to 40 pixels. It can be seen

that lower spatial thresholds of 10 or 20 pixels performed better as they ensure consider-

ation of smaller movements during the interaction. Table 4.10 refers to the performance

of varying the temporal window τ from 15 frames to 90 frames on GTEA dataset at a

fixed spatial threshold σ of 30 pixels. It can be seen that the smaller window of 15 frames

performs better as it will avoid overshoot of more frames to re-labelled incorrectly.

4.11 Accuracy of the generated pseudo ground-truth using HOI

We compared the quality of the pseudo ground-truths generated using HOI and single

timestamp with the actual frame-wise ground-truth labels of the datasets. The metrics

used were percentage count (%Count) of the frames where the algorithm labelled a frame
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(a)

(b)

Figure 4.5: Human Object Interaction Detections (HOI) and the corresponding
pseudo ground-truth generation for 50Salads Dataset
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σ (pixels)
%Acc / %Count
GTEA (τ=75)

%Acc / %Count
50Salads (τ=30)

10 66.66/58.26 95.50/8.79
20 54.28/72.06 94.94/15.21
25 48.73/78.88 94.80/18.05
30 42.15/82.89 93.45/21.00
35 39.29/86.43 93.04/24.55
40 36.36/89.23 91.83/28.18

Table 4.11: Variation frame-wise accuracy and count of frames using σ keeping
τ constant for 50Salads and GTEA dataset. Highlighted values indicates the
setup where the network gave best test performance.

with a valid action label. Note this analysis was not used to decide spatial and tempo-

ral thresholds. Thresholds were solely decided on the network’s cross-validation perfor-

mance. Using those valid labels, we measured how many of those frame-wise labels were

accurate when compared to the ground-truth (%Acc).

Table 4.11 illustrates these values by using the variation of spatial threshold in pixels

and keeping temporal window (τ) constant (75 frames for GTEA and 30 frames 50Salads).

Increasing σ will enable the algorithm to track the HOI bounding box in neighboring

frames at a coarser level, thus enabling the system include more frames in the same action,

but the accuracy of these frames drops despite the increase in %Count.

Similarly Table 4.12 illustrates the same metrics using the variation of Temporal win-

dow τ and keeping spatial threshold σ constant (10 pixels for GTEA and 30 pixels for

50Salads). It can be seen that tracking the bounding boxes at longer lengths may cause

the %Acc of the labels to reduce, but increase the %Count.

Thus, a good balance of accurate frames that last for longer duration is required and

this will vary according to the dataset as some might have fine-grained actions, while

others may long duration actions.

4.12 Impact of labels generated using HOI and action change

In Section 3.2.2 of the main paper, titled Fine-tuning Action Changes, we use the first

frame of non-interaction frames in range [tbi,FW , tbi,BW ] to decide the boundary change

location tbi . Table 4.13 illustrates performance of the network by picking up the last frame

of non-interaction (last) as compared to the first frame of non-interaction (first) when the

action boundary at tbi was at a location when HOI occured. It can be seen that using the

first frame was the better strategy and gave better performance for all three datasets.
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τ (frames)
%Acc/%Count
GTEA (σ=10)

%Acc/%Count
50Salads (σ=30)

15 70.88/56.06 94.36/18.22
30 70.29/57.23 93.45/21.00
45 70.32/57.80 92.01/23.99
60 68.24/57.31 90.92/26.25
75 66.66/58.26 87.75/27.53
90 65.36/58.73 87.65/29.38

Table 4.12: Variation frame-wise accuracy and count of frames using using τ

keeping σ constant for 50Salads and GTEA dataset. Highlighted values indi-
cates the setup where the network gave best test performance.

4.13 Limitations

The proposed method makes several assumptions, and is limited by the extent to which

those assumptions hold in a specific dataset. One assumption is that each video displays a

single human performing activities involving interaction with objects. This assumption is

relevant in many real-world applications, and it is true in commonly used datasets, such

as the ones we have used in our experiments. At the same time, clearly there can be action

recognition domains where this assumption does not apply. For example, this assumption

would not apply for distinguishing between activities such as “walking” and “running”.

Also low resolution and dark condition videos, that appear for example in the Break-

fast Dataset [75], will not benefit from this approach as the HOI detector fails to detect

interactions. The pseudo ground-truth generation can be extended further by using off-

the-shelf object detectors and tracking those bounding boxes from the extended interac-

tion frames. Other temporal modelling systems like transformers can be used to improve

the performance. The system currently utilizes the idea of interactions to generate the

pseudo ground-truths. Future work can involve extraction of features inside the interac-

tion bounding box which can provide more information to the network.

4.14 Improvement of Temporal Modeling using Transformers

To Improve the temporal modeling system, current literature provides evidence that trans-

formers can be a viable solution instead of temporal convolution network[38]. To this end

we replaced the TCN architecture with a transformer based[77] and Table 4.14 illustrates

the improvement in performance for the existing method.
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Type F1@{10,25,0} Edit Acc
GTEA
first 82.1 78.7 63.0 74.8 70.4
last 81.1 78.1 60.9 74.8 69.9
50Salads
first 77.3 75.2 63.6 69.8 75.8
last 75.9 73.8 61.7 68.8 75.4
MPII Cooking 2
first 44.9 40.6 28.8 43.5 51.3
last 45.4 40.4 27.7 42.3 49.7

Table 4.13: Variation in Fine tuning Boundary detection using action change
detection and choosing first /vs last non HOI detected frame in range
[tbi,FW , tbi,BW ]

F1@10 F1@25 F1@50 Edit Acc
50 Salads
Auth 73.9 70.9 60.1 66.8 75.6
Ours 77.3 75.2 63.6 69.8 75.8
Ours with transformer 79.6 76.1 65.9 72.6 78.1
GTEA
Auth 78.9 73 55.4 72.3 66.4
Ours 82.1 78.7 63.0 74.8 70.4
Ours with transformer 86.7 84.1 67.1 81.8 70.4

Table 4.14: Performance Improvement using Transformers for temporal mod-
elling
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5 (3+1)ReC Dataset

5.1 Introduction

Current long duration activity understanding datasets suffer from several problems. Dataset

like Breakfast[75] has good number of video-level labels and has third-person views.

While the dataset has multiple views from which a person is being recorded, they suf-

fer from bad video quality and has very low video resolution 320x480. Also the dataset

suffers from large occlusions and also makes the algorithm difficult to track as there are

many concerns regarding bad lightning conditions. While there are other datasets which

resolve the bad resolution conditions like MPIICooking2[57], they are more tailored to-

wards fine-grained activity recognition and they suffer from large class imbalance.

We created a new dataset Called 3+1ReC(Explain) which solves all these problems

and also makes it more useful for activity recogntion focused towards multiple research

areas. The dataset we created comprises of recording 30 unique actors, each perform 15

dishes in different Kitchen. We recorded high quality dataset having recording resolution

of 1920x1080. The data is recording in Third Person and Egocentric view as well. There

are 3 different third person view for the same dish along-with an egocentric view.

5.2 Data Acquisition and Protocol

The goal of the dataset is to facilitate high quality action understanding using the infor-

mation of interactions around kitchen and not bias the system to perform a dish in the

same manner. Every dish can be made by following sequential steps which are called as

transcript. We ensured that every dish has unique set of sequences for the 30 subjects

so that the dataset is not biased to certain sequences of actions. We have also ensured

that the subjects are not instruted to perform actions in the same manner to avoid bias of

spatio-temporal information while performing the cooking activities.
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The subjects were recorded at multiple indoor locations and strict quality control was

maintained as per what instructions need to be told to the participant before every record-

ing session. Before recording every dish, we would verbally ensure if the subjects knew

where the respective ingredients are located in the kitchen. Once they give us a confirma-

tion, they would perform the sequences of steps according to the transcript and a volunteer

would instruct what the next step is from the background.

The recording platform consisted of 3 Full HD WiFi cameras and one GoPro attached

to the forehead. A sample of the camera setup can be seen in fig. 5.1. If the background

of the kitchen was constant for more than one subject, the ingredients were moved in the

kitchen and the camera locations were also moved to reduce bias.

We created unique transcripts for all the dishes for different subjects. Table 5.5 refers

to a sample transcript for all the 15 dishes which was used to instruct the subject.

5.3 Dataset Properties

The dataset is unique in many aspects and we have compared it with the current datasets

used by the research community. We divide the dataset properties in 3 categories: record-

ing properties, environment settings and label distributions.

5.3.1 Recording Properties

Table 5.1 illustrates the unique recording properrties when compared to other existing

datasets. In terms of video resolution this is the only dataset that ego-centric and third

person view, both having resolution as 1920x1080. When compared to the length of the

videos, (3+1)ReC has an average length of 3.6 min while the maximum length of the video

is 10.3 min. The other competitors like Epic Kitchen [78] has very long videos (61.8min)

but they lack first person view. Similarly EGTEA+ has longer first person view but they

don’t lack third person view. Our dataset has a healthy balance of multi-view(ego-centric

and thirdperson) and has competitive longer length for long duration action modelling.

5.3.2 Environment settings

Table 5.2 illustrates the distribution of environment settings. While Epic Kitchen[78] has

highest number of environment settings, they are only ego-centric videos. Also our dataset

has highest number of videos (1799) and the number of tasks are highest as compared to

all other datasets.
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Dataset ave video length
(min) Ego centric view # third person

views Video Resolution

50 Salad 6.4 X 1 640 x 480
IKEA 1.9 X 3 1920 x 1080
Breakfast 2.3 X 2-5 320×240
Epic Kitchens 100 8.6 (61.8 max) Y X 1920x1080
GTEA 1.2 Y X 720 x 404
EGTEA + >19 (54.3 max) Y X 1280x960
1ReC 3.6 (10.3 max) Y X 1920x1080
3ReC 3.6 (10.3 max) X 3 1920x1080
(3+1)ReC 3.6 (10.3 max) Y 3 1920x1080

Table 5.1: Comparison of current datasets based on video recording properties

Dataset # subjects # env settings # vids #tasks

50 Salad 25 1 50 1
IKEA 48 5 1113 4
Breakfast 52 18 1712 10
Epic Kitchens 100 37 45 700 NA
GTEA 4 1 28 7
EGTEA + 32 1 86 7
1ReC 30 8 450 15
3ReC 30 10 1349 15
(3+1)ReC 30 10 1799 15

Table 5.2: Comparison of current datasets based on task and environment
properties
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Dataset #actions
(w/o bg)

# transcripts
(w/ bg)

Ave #segments per
video (with bg) Max/Min #samples

Cooking 2 87* 272 95.5
1736(1736/1)
(take out/apply plaster)

50 Salad 17 50 20
1.55(62/40)
(place tomato/add dressing)

IKEA 31** 359 22.7
159.4(3348/21)
(spin leg/lay down table top)

Breakfast 47 256 6.9
68.5(685/10)
(pour milk/stir tea)

Epic Kitchens 100 3769ˆ 700 128*
1890*(1890/1)
(turn on tap/pour celery)

GTEA 10* 28 33
35(140/4
(take/fold)

EGTEA + 106 86 239
23.5(752/32)
(read/close oil container)

1ReC 102 418 11.7
16.4(246/15)
(Take Spoon/Pour Egg2Pan)

3ReC 102 441 11.7
16.4(738/45)
(Take Spoon/Pour Egg2Pan)

(3+1)ReC 102 444 11.7
16.4(984/60)
(Take Spoon/Pour Egg2Pan)

Table 5.3: Comparison of current datasets based on transcript properties

5.3.3 Label distributions

Table 5.3 refers to the label distributions based on the annotations for all the datasets.

Compared to Breakfast dataset[75], we have a much better class distribution when com-

pared to the max/min count for each label. For Breakfast dataset it was 685/10 while for

our dataset it is 984/60. This will ensure sufficient number of samples in training and

test split for training and testing. Also when compared to Epic Kitchens 100[78], which

is 1890/1, our dataset even when compared to only ego-centric view, we have a better

distribution of max/min of 246/15.

5.3.4 Annotations

We enabled our dataset for future research to be utilized for all supervision methods.

For that we have created frame-level annotations that will help fully supervised meth-

ods. We also have transcript annotations that will enable researchers in weakly super-

vised setting. Most importantly we also provide timestamp annotations that will enable
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Split F1@10 F1@25 F1@50 Edit Acc
1 29.2158 25.9172 18.6469 28.8902 34.4656
2 31.5951 27.9908 20.2454 30.2096 36.6419
3 61.7154 58.5529 49.7365 57.1333 61.7072
4 58.0175 53.7415 46.1613 53.9395 56.838
5 44.1012 40.9266 32.6898 44.4721 50.2286

Average 44.929 41.4258 33.49598 42.92894 47.97626

Table 5.4: Fully Supervised

Figure 5.1: Camera Setup for Recording

timestamp or semi-supervised training. For timestamp annotations we randomly sampled

a single frame-level annotations from the respective action-segments. We also tried to

keep the annotations among views of a same dish to be consistent so that it can also help

multi-view action action recognition research. For that we tried to temporally synchro-

nize multiple views of the same dish video and assign common ground-truth label. Videos

which couldn’t be synchronized because of frame drops for a same dish were annotated

separately. The start of an action was assigned when the volunteer in the video showed

intention of performing that action and there was a labelling buffer of 0.5 seconds that

helped synchronize labels of other views for the same dish. With this approach videos

that were synchronized would have start and end time errors for an action of less than 0.5

seconds.
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Dish Name Transcript

Avocado Toast
Take CuttingBoard-Take Bread-Toast Bread-Take Knife-Take Avocado-
Take Bowl-Cut Avocado-Take Spoon-Spoon Avocado-Mash Avocado-
Sprinkle Seasoning-Spread Avocado

Bana Pancake

Take Banana-Take Bowl-Pour Oil-Peel Banana-Add Banana-
Take Spoon-Mash Banana-Take Egg-Crack Egg-Whisk Batter-
Sprinkle Seasoning-Whisk Batter-Pour Batter2Pan-Fry Pancake-
Take Plate-Put Pancake2Plate

Cereal
Take Bowl-Take Milk-Pour Milk-Take Cereal-Pour Cereal-
Take Spoon-Mix Cereal

Chocolate
Milk

Take Cup-Take Milk-Pour Powder-Pour Milk-Pour Sugar-
Take Spoon- Stir Milk

Coffee
Take Cup-Take Milk-Pour Milk-Pour Coffee-Microwave Cup-
Pour Sugar-Take Spoon-Stir Coffee

French Toast
Take Bread-Take Egg-Take Milk-Take Bowl-Add Butter-Crack Egg-
Sprinkle Seasoning-Pour Milk-Take Spoon-Whisk Egg-Dip Bread-
Put Bread2Pan-Fry Toast-Take Plate-Put Toast2Plate

Fried Eggs
Pour Oil-Take Egg-Take Bowl-Crack Egg-Sprinkle Seasoning-Take Tomato-
Wash Tomato-Take Knife-Cut Tomato-Take Spoon-Whisk Egg-
Pour Egg2Pan-Fry Egg-Take Plate-Put Egg2Plate

Fruit Salad

Take Bowl-Take Knife-Take CuttingBoard-Take Cucumber-Take Strawberry-
Take Apple-Take Banana-Peel Banana-Wash Cucumber-Wash Strawberry-
Wash Apple-Cut Cucumber-Cut Strawberry-Cut Banana-Cut Apple-
Sprinkle Seasoning-Put Fruit2Bowl-Mix Salad

Hashbrown
Take Bowl-Take Potato-Take Onion-Pour Oil-Peel Potato-Take Grater-
Grate Potato-Grate Onion-Squeeze Hashbrown-Put Hashbrown2Pan-
Wash Hands-Fry Hashbrown-Take Plate-Put Hashbrown2Plate

Lemonade
Take Cup-Pour Water-Take Lemon-Take Knife-
Take CuttingBoard-Cut Lemon-Pour Sugar-
Squeeze Lemon-Take Spoon-Stir Lemonade

Oatmeal

Take Bowl-Take Milk-Pour Oat-Pour Milk-Take Strawberry-
Wash Strawberry-Take Banana-Take Knife-Take CuttingBoard-Peel Banana-
Cut Banana-Add Banana-Cut Strawberry-Add Strawberry-
Sprinkle Seasoning-Take Spoon-Stir Oatmeal

PeanutButter
Sandwich

Take Plate-Take Bread-Toast Bread-Take Knife-
Cut Bread-Take PeanutButter-Take Jam-Take Spoon-
Spread Peanutbutter-Spread Jam-Put Bread

Tea
Fill Kettle-Boil Water-Take Teabag-Take Cup-Add Teabag-Pour Water-
Pour Sugar-Take Spoon-Stir Tea

Vegetable
Sandwich

Take Bread-Take Cucumber-Take Tomato-Take Onion-Wash Cucumber-
Wash Tomato-Cut Tomato-Cut Cucumber-Cut Onion-Cut Bread-
Put Tomato-Put Cucumber-Put Onion-Sprinkle Seasoning-Put Bread

Orange Juice
Take Orange-Take Knife-Take CuttingBoard-
Cut Orange-Take Squeezer-Take Cup-
Squeeze Orange-Pour Juice

Table 5.5: Sample Transcripts for a subject for 15 Dishes
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Figure 5.2: Single Object HOI Detection

To enable further research on HOI, we also ran human object interaction detector[72]

to get the bounding box locations from individual frames. Fig 5.2 illustrates the HOI

detection for the bounding for one of the third person view. The output stored were the

locations of the right and left hand boxes and also the blue bounding box indicating the

object where HOI happened.

Similarly Fig 5.3 illustrates the HOI detection for the bounding for the third person

view. The HOI detector consistently showed good outputs for the ego-centric view as

well.

Fig 5.4 illustrates the HOI detection for the bounding for the third person view where

there were 2 objects the human was interacting with. The right hand was interacting

with the wooden spatula while the left one was interacting with the pan. We believe this

would also enable further multi-object human object interacting tracking for better activity

modeling.

65



Split Index Subject ID Range
1 P1-P5
2 P6-P10
3 P11-P15
4 P21-P25
5 P26-P30
6 P16-P20

Table 5.6: Subject Id-wise splits for cross-validation

Splits F1@10 F1@25 F1@50 Edit Acc
1 24.4023 18.0028 7.1027 24.709 20.5274
2 23.0229 16.9396 7.6743 24.3647 19.1439
3 41.8873 31.0063 11.0737 40.9283 33.1738
4 41.7433 30.8959 12.3971 43.6891 34.0279
5 39.3612 27.6146 9.8918 41.0297 27.8333
6 43.5104 32.5173 13.2102 45.1729 30.2173
Average 34.0834 24.89184 10.2249 36.64895 27.4872

Table 5.7: Results for Timestamp Supervision on Ego-centric Data

Splits F1@10 F1@25 F1@50 Edit Acc
1 29.2158 25.9172 18.6469 28.8902 34.4656
2 31.5951 27.9908 20.2454 30.2096 36.6419
3 61.7154 58.5529 49.7365 57.1333 61.7072
4 58.0175 53.7415 46.1613 53.9395 56.838
5 44.1012 40.9266 32.6898 44.4721 50.2286
6 63.3366 60.2328 50.5335 60.242 57.8541
Average 47.9969 44.5603 36.3356 45.8145 49.6226

Table 5.8: Results for Full Supervision on Ego-centric (3+1)Rec Data

Splits F1@10 F1@25 F1@50 Edit Acc
1 37.3250 30.7932 17.9368 45.1231 22.3924
2 33.9899 29.2628 18.4581 39.7927 17.9611
3 40.6667 34.0000 20.1111 44.0624 22.5466
4 43.7428 37.4282 25.1435 47.2812 28.1340
5 37.1610 31.5061 21.1194 40.2220 20.5108
6 42.7054 37.2275 24.9301 47.3061 25.1894
Average 38.5771 32.5981 20.5538 43.9646 22.7890

Table 5.9: Results for Weak Supervision on Ego-centric (3+1)Rec Data
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Figure 5.3: Ego centric HOI Detection

5.4 Baseline experiments and results

To provide baselines for future research we utilized a temporal Convolution network ar-

chitecture [63] and trained them in Fully supervised and timestamp supervised fashion.

Similarly for weakly supervised setting, we utilized mutual consistency network and loss[]

to train. These method will act as a baseline for future research in many fields and using

the HOI spatial predictions, a separate field of research can be made. Similarly since the

annotations are synchronized, a mullti-view action segmentation approaches can be for-

mulated which can utlize understanding multi-view analysis of human object interaction.

We used a 6 fold cross-validation settings and Table 5.6 refers to the 6 fold cross-

validation settings. For faster analysis, we utilized only the ego-centricc views for train-

ing and testing. We Extracted the I3D features using the implementation[37] which was

pretrained on Kinetics dataset. We chose a temporal window of 16 frames to compute

the I3D features. The I3D extraction primarily takes 2 modalities of data: RGB and flow

and we computed per frame flow features. As the I3D network cannot take a big input

size like 1920x1080 dimension data, we divided each frame into 2 windows of width of

960 and extracted I3D features of these 2 windows. The I3D features extracted from each
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Figure 5.4: Multi obj HOI Detection

modality is concatenated together to produce a feature representation xi ∈R2048×Ti , where

Ti is the length of the video i. As the length of the videos is very long, we reduced the

dimensions of the data using incremental PCA as computing PCA on the entire dataset

was memory consuming. We reduced the dimension from R2048×Ti to R100×Ti .

For fully supervised setting we trained the TCN network for 70 epochs using the same

conditions as mentioned by the author except we had a frame-level loss generated from

the ground-truth from the annotations. For Timestamp and for network using HOI, we

used the performance metrics and settings constant as mentioned in 4.5.3

Table 5.9 refers to the split-wise distribution of the performance for the weakly super-

vised setting. The performance in all metrics is consistent and the overall frame-level ac-

curacy is low as mutual consistency is a weakly supervised network and it utilizes viterbi

algorithm to decode the frame-level predictions at test time.

Table 5.8 refers to the split-wise distribution of the performance for the Fully su-

pervised setting. The performance metrics are understandably high and the frame-level

accuracy is still not as high as compared to other datasets. This shows that the dataset is

challenging and there needs to be improvement in modeling the spatio-temporal features.

Table 5.7 refers to the split-wise distribution of the performance for the timestamp su-
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Splits F1@10 F1@25 F1@50 Edit Acc
1 23.5336 17.9201 8.2044 27.0587 22.0824
2 24.1116 18.2636 8.0072 26.1095 21.2022
3 43.0724 31.1133 13.4176 46.435 30.0908
4 44.7776 34.083 15.7921 44.7295 30.7489
5 40.5024 30.2459 11.9309 41.5375 36.241
6 49.0329 37.5242 16.5377 49.4089 33.1053
Average 37.5051 28.1917 12.3150 39.2132 28.9118

Table 5.10: Results for Timestamp + HOI Supervision on Ego-centric (3+1)Rec
Data

Supervision F1@10 F1@25 F1@50 Edit Acc
Timestamp 34.0834 24.8918 9.6279 34.9442 26.9413
Ours 37.5051 28.1917 12.3150 39.2132 28.9118
Full 47.9969 44.5603 36.3356 45.8145 49.6226

Table 5.11: Cumulative results for Timestamp and Full Supervision on Ego-
centric (3+1)Rec Data

pervised setting. For split 1 and 2, the network shows lower performance when compared

to other splits as the data was much challenging in the scenarios in terms of environment

settings.

Table 5.10 refers to the split-wise distribution of the performance for the timestamp

supervised setting using HOI. For split 1 and 2, the network showed similar lower perfor-

mance.

Table 5.11 refers to the overall cross-validation results. It can be seen clearly that

keeping the network consistent and adding pseudo-groundtruths using HOI, we can im-

prove the timestamp supervised results with no additional cost of annotations.

5.5 Qualitative Comparison for Timestamp Supervision with HOI

Figure 5.5 illustrates a qualitative example of segmentation results using the timestamp’s

implementation when compared to our method which utilizes HOI. The left figure illus-

trates the result for dish ”Fried Eggs” and the highlighted section is for the label ”Fry

Egg”. It can be seen HOI provided better action segmentation performance. Similarly for

the right image of for dish ”Orange Juice” and the class label ”Squeeze Orange” was seg-

mented much better using HOI. The left and right top images illustrates predictions of HOi

in blue boxes which helped in providing better pseudo ground-truths thereby improving
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Figure 5.5: Qualitative results for Ego-centric prediction compared with ours

the performance of the system.

5.6 Conclusion

We created a new dataset named (3+1)Rec which is first of it’s kind dataset that has third

person and first person view for long term video analysis. The dataset provides high

quality long-term videos with 15 video level labels or dishes and efforts were made to

provide every dish with unique transcript. When compared to the current datasets, we

provide not only timestamp labels but also full frame-level labels and label consistency is

maintained for all the videos. To enable future multi-view action segmentation research,

we also made sure that the labels for a dish are temporally consisted over all the 4 views.

Since all the activities are performed by humans doing regular kitchen activities, there

is a potential research avenue which can benefit analysing human object interaction and

we have also provided human object interaction labels. This dataset can be used for full,

weak and timestamp supervised setting and we have provided baseline by training them

on the current state of the art.

70



6 Conclusion

The thesis makes several assumptions, and is limited by the extent to which those as-

sumptions hold in a specific dataset. One assumption is that each video displays a single

human performing activities involving interaction with objects. This assumption is rele-

vant in many real-world applications, and it is true in commonly used datasets, such as

the ones we have used in our experiments. At the same time, clearly there can be action

recognition domains where this assumption does not apply. For example, this assumption

would not apply for distinguishing between activities such as “walking” and “running”.

In the first section we created action recognition systems that track the body, rgb and

flow information. This work was showcased how computer vision systems can be used

to evaluate onset of cognitive disorders such as ADHD in kids through an unobtrusive,

accessible and easy-to-use framework. We created a dataset having real-world usage with

children performing fine-grained motion patterns having high intra-class variability. We

created a system that will be useful in advancing reasearch in cognitive assessment of

kids. This system produces scores that can directly be transferred to measure executive

functioning which is a key perdictor for onset of ADHD in adolescent kids.

In the second section, we propose an approach to train an action segmentation model

by employing the timestamp annotations and concept of human object interaction. Our

model extends the single frame timestamp annotations using the frame level predictions

of a human object detector. We track the object bounding boxes where the human is in-

teracting around the timestamp, thereby pseudo ground-truths. We also use improved the

existing frame-level action class generator by adding a constraint that an action boundary

cannot exist around frames where the human is continuously interacting with the object.

We improved the temporal modelling by replacing a temporal convolutional based model

to a transformer. To enable future research on multi-view action segmentation and also

utilize human object interaction information, we introduce a new dataset called (3+1)Rec

and this dataset can be utilized in several supervision settings such as full, weak and times-

tamp. We believe that given it’s high quality, wide variety of environment settings and a
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balanced class distribution, this dataset can be utilized in understand human actions in

long duraton videos.
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