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ABSTRACT

MACHINE LEARNING FOR TARGET DETECTION USING UWB RADAR

SENSOR NETWORKS

DHEERAL BHOLE, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professors: Qilian Liang and Chenyun Pan

Machine learning (ML) has recently been used to solve critical problems. This

dissertation focuses on developing systems using Ultra-Wideband (UWB) wireless

sensor networks and machine learning to solve critical tasks such as target detection

in various challenging scenarios. These tasks have been researched for several years

and efforts have been made to achieve universal solutions.

In the first part of this dissertation, we have proposed a system to detect metallic

targets in foliage environment. Mission critical systems need to be ready for the harsh

working environment such as dense foliage, water bodies, rain, heavy winds and other

natural challenges. Extreme engineering excellence is needed to achieve a faultless

system during such critical tasks and routines. To solve this problem, we come up

with a Machine Learning system trained on wireless sensor network dataset. Our work

consists of four main parts: First, we clean and standardize the dataset. Second, we

transform the dataset using IFFT and PCA. Third, we train a XGBoost model on

this dataset and make predictions on the test dataset. Finally, we calculate errors

v



by comparing the predicted and actual values and obtain high accuracy with our

method.

In the second part of this dissertation, we have proposed a system to detect

humans through walls. Human detection through walls, doors and corridors is critical

in applications such as hostage rescue situation, surveillance, activity recognition, etc.

Our work consists of three main parts: First, we clean and standardize the dataset.

Second, we train a Neural Network model on this dataset and make predictions on

the test dataset. Finally, we calculate errors by comparing the predicted and actual

values and obtain high accuracy with our method.

In the last part of this dissertation, we have proposed an ensemble ML system to

optimize the first task of target detection in foliage environment. We apply generalized

stacked machine learning system to harness the power of different ML models and we

achieve the best accuracy with this method.
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CHAPTER 1

Introduction

In the summer of 1956, a group of scientists gathered at Dartmouth to form

a new branch of science which is Artificially Intelligent [1]. They had the ambition

to make machines that have awareness and that can learn specific tasks. They did

make some progress since carefully programmed computers can do simple arithmetic,

play chess and perform many human-like tasks. While humans evolve and write

code for machine, machines learned very little. Later, in 1959, scientists realized

that instead of teaching computers everything, it might be better to teach them to

learn by themselves. One of the pioneering scientist Arthur Samuel’s checker-playing

program [2] was among the world’s first successful self-learning programs that led to

the term ”Machine Learning”. Machine learning (ML) is defined as a set of methods

that can automatically detect patterns in data, and then use the uncovered patterns

to predict future data, or to perform other kinds of decision making under uncertainty

[3]. There are several ML methods including neural networks (NN), support vector

machines [4] and k-nearest neighbor classifiers [5].

Support vector machine (SVM) [4] was a popular and dominant classification

method before the arrival of deep learning. Even though it is still used in applications

where less data is available. SVM solves the problem of maximizing the distance or

margin separating two classes in input space. The problem turns out to be convex,

and any local solution is also a global solution [6]. Using kernel methods such as

Radial Basis Function (RBF) can boost the performance of SVM [7]. Boosting is

an effective method of putting together multiple base classifiers to produce a strong
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classifier whose performance can be sufficiently better than that of any of the base

classifier [6]. The most widely used boosting approach is AdaBoost [8] which stands

for adaptive boosting. Adaboost collects all base classifiers’ decisions, then uses

training to adjust the weights given to each of them. The idea is that, better base

classifiers should have stronger weights while worse base classifiers should have smaller

weights. Adaboost can have much better performance than the best of the base

classifiers. Deep learning is a set of ML models which allow computers to learn from

experience and understand the world in terms of a hierarchy of concepts, with each

concept defined through its relation to simpler concepts [9]. The graph of such model

is deep with many layers, leading to the name ”deep learning”. The layers are neural

networks that can be trained individually or simultaneously. The RBF kernel SVM

on the MNIST benchmark was outperformed by Hinton’s neural network [10] which

led to the beginning of current neural network renaissance [9]. Deep learning has

been very successful applications such as natural language processing [11], speech

recognition [12] and image recognition [13].

NN were first proposed by Rosenblatt in the form of the perceptron [14]. NN

work well on classification problems such as pattern recognition [15, 16, 17, 18, 19, 20],

remote sensing [21, 22, 23], image processing [24, 25, 26], power load forecasting [27,

28, 29], nonlinear estimation [30, 31, 32, 33], limitation of inverse analysis [34, 35] and

real time temperature prediction using neural networks [36, 37]. There are primarily

3 types of neural network - Artificial Neural Networks (ANN), Convolutional Neural

Networks (CNN) and Recurrent Neural Networks (RNN). NN with enough hidden

units can approximate any continuous function giving it universal approximation

property [38]. Even though there have been many successes, neural nets still have

many problems. First, training is still heavily based on first order backpropagation

which is slow, easily falls into local minima, and is not affine invariant. Second, current

2



neural nets and deep learning models have an excessive number of parameters that

need to be manually adjusted. Third, deep learning works well, but there is still no

convincing theory for it.

In the past decade, ML has been able to solve incredibly difficult tasks where

traditional programming has failed. ML has done very well on 1-D, 2-D and 3-D data

in the supervised learning paradigm [9]. All this has been possible due to the avail-

ability of incredible computation resources, parallel & distributed implementation of

algorithms and the hugely supportive Artificial Intelligence (AI) community [39].

Mission critical systems need to be ready for the harsh working environment

such as dense foliage, water bodies, rain, heavy winds and other natural challenges.

Extreme engineering excellence is needed to achieve a faultless system during such

critical tasks and routines. We have considered one such scenario which is target

detection in foliage environment. Many research efforts have been invested in study-

ing the dense cluttered foliage environment. Multipath fading, scattering from trees,

ground reflections, moving components of the forest, adverse weather conditions and

non-stationary nature of the environment make it a challenging but interesting Engi-

neering problem.

In previous work, [40] applied a differential based approach for foliage target

detection. Whereas [41] used information theory for the same. Previous work used

DSP extensively which require expertise needed to be tuned for different scenarios. A

universal approach that does not require extensively expert knowledge and can work

everywhere is badly needed. Our system is robust and only data dependent. [42]

provides a radar sensor wireless channel model in foliage environment. In outdoor

UWB channel, the multipath contributions that arrive at the receiver are grouped

into clusters. The time of arrival of clusters can be modeled as a Poisson arrival

process, while within each cluster, subsequent multipath contributions for rays also
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arrive according to a Poisson process. The amplitude of channel coefficient at each

path follows Rician distribution for medium and far distance, and it is non-stationary

for paths from short distance (one of two Rician distributions), and these observa-

tions are quite different with the IEEE indoor UWB channel model and S-V model.

[43] proposed a Discrete-Cosine Transform (DCT)-based approach for sense-through-

foliage target detection when the echo signal quality is good, and a Radar Sensor

Network (RSN) and DCT-based approach when the echo signal quality is poor.

Human detection through walls, doors and corridors is critical in applications

such as hostage rescue situation, surveillance, activity recognition, etc. Such a critical

task also comes with a lot of diverse engineering problems. One of the most important

problem being detecting humans through walls, doors and other construction mate-

rial. Good penetration and range resolution have enabled Ultra wideband (UWB) to

be primary choice for target detection through most construction materials and other

indoor situations [44]. Large bandwidth of UWB signals enable it to achieve high

range resolution and thus detection of multiple nearby objects. In this study we have

considered a tougher problem with stationary Human being. Movement can make

the problem relatively simpler as the radar would receive different echoes for different

timestamps, making detection easier. We have considered typically occurring brick

wall, gypsum wall and wooden door structures in our study.

Internet of things (IoT) development is strongly based on effective and energy

efficient wireless sensor network deployment [45]. Accurate and efficient Human de-

tection/localization will improve the performance of IoT ecosystem.
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CHAPTER 2

Ultra-wideband (UWB): A Review

2.1 Ultra-wideband

Ultra-wideband (UWB) is a wireless communication protocol that uses very low

energy for short-range, high-bandwidth communications over a spectrum of frequen-

cies ranging from 3.1 to 10.6 GHz. First definition for UWB signal was based on the

fractional bandwidth (Bf ) of the signal having a value greater than 0.25 which was

defined by The Defense Advanced Research Projects Agency (DARPA) [46]. Later

the fractional bandwidth requirement was reduced to 0.2. The fractional bandwidth

is defined in 2.1, where fL is the lower frequency of the -10dB emission input and

fH is the upper frequency of the -10dB emission point, respectively [47]. As per

FCC, the signal is considered as UWB if the signal bandwidth is 500MHz or more

and the transmitter cannot have transmit power more than 0.5mW. This limitation

significantly limits the applications of UWB to short range-high data rate or long

range-low data rate applications. But this enables UWB devices to not interfere with

other narrowband device signals and it can co-exist with other signals.

Bf = 2
fH − fL
fH + fL

(2.1)

The transmission center frequency fc is determined as the average of these cut-off

frequencies as indicated in 2.2 and depicted in Figure 2.1 [48].

fc =
(fH − fL)

fH + fL
(2.2)
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Figure 2.1: A UWB signal in frequency domain

UWB communications avail many advantages over narrowband communications

technology, an important one being improved channel capacity. By Shannon’s channel

capacity formula, the capacity increases with bandwidth (B) as indicated in 2.3.

C = B log2(1 + SNR) (2.3)

2.1.1 The UWB Radar Range Equation

The UWB range equation is a non-stationary quantity because the directivity

factor of a transmitting antenna, G, the effective cross section of a receiving antenna,

A, and the effective scattering cross section of a target, σUWB, become dependent on

time and signal waveform [49].

R(s, t) ≤ 4

√
EG(θ, ϕ, S, t)σUWB(t)A(θ, ϕ, S, t)

(4π)2ρqN0

(2.4)

where:

E = the energy of the radiated signal

G = the directivity factor of a transmitting antenna

S = the signal waveform

A = the effective cross section of a receiving antenna

σUWB = the effective scattering cross section of a target

6



ρ = the losses in all the systems of a radar

q = the threshold signal-to-noise ratio

N0 = the spectral density of noise power

2.1.2 IEEE 802.15.4a Standard

IEEE 802.15 low-rate alternative PHY task group (TG4a) was formed in 2004 to

design an alternate PHY specification for the already existing IEEE 802.15.4 standard

for WPANs [50]. High-precision ranging with low-power and low-cost devices was

the main aim of the TG4a. In 2007, the TG4a defined IEEE 802.15.4a standard

supporting new applications.

2.1.3 UWB Transmission

Conventional communication systems transmit coded information using am-

plitude, phase and/or frequency modulation of a sinusoidal signal. UWB is very

different to this as it transmits information by sending radio signals at specific time

intervals which occupy a large bandwidth. The information can also be modulated on

UWB signals (pulses) by encoding the amplitude of the pulse, its polarity and/or by

using orthogonal pulses [46, 49]. Generally, UWB antennas directly radiate impulse

UWB signals without the need of a carrier signal compared to traditional narrowband

transceivers, hence the transceiver complexity is reduced. Data transmission can be

conducted from one of the two approaches:

• Orthogonal Frequency Division Multiplexing (OFDM) channels are created by

subdividing the total available UWB bandwidth.

• Impulse radios (Ultra short pulses in the picosecond range) which span all fre-

quencies.
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The first approach utilizes the spectrum more efficiently and facilitates improved

performance and data throughput. This comes at the cost of increased signal pro-

cessing effort (complexity) and power consumption. The second approach is cheaper

at the expense of reduced signal to noise ratio (SNR). The choice between the two

approaches is application specific.

2.1.3.1 Channel Allocations

As per IEEE 802.15.4 standard, a UWB equipment could transmit at one or

more of the following bands:

1. Sub-GHz: 250-750 MHz

2. Low band: 3.244-4.742 GHz

3. High band: 5.944-10.234 GHz

The Sub-GHz band has 1 channel, Low band has 4 channels and High band has 11

channels. These channels and their bandwidths and center frequencies are mentioned

in [50].

2.1.3.2 System Parameters

The IEEE 802.15.4a standard supports multiple data rates 0.11, 0.85, 1.7,

6.81, 27.24 Mbps.The standard supports these variable data rates through the use

of variable-length bursts. The channels can transmit pulses with various mean pulse

repetition frequency (PRF) options, which are 3.90, 15.6 and 62.4 MHz.

2.1.3.3 Ranging and Location Awareness

Ranging capability for the UWB PHY option is supported by IEEE 802.15.4a.

The ranging estimation is obtained from time-delay estimates which are obtained via

certain two-way protocols between two devices [50].
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CHAPTER 3

Machine Learning (ML): A Review

3.1 Machine Learning

ML is the amalgamation of Mathematics and Computer Science aided by strong

computing resources [51]. It aims to optimize the performance of specific task by

using data samples and/or past experience [52]. With recent developments and huge

interest in the field, there are many ML methods. In this chapter, we review a few

of those. ML can be divided into many types based on different parameters. The

most common being the use of known labels in the training process and thus yielding

supervised and unsupervised learning. New sub fields like semi-supervised, generative

networks are also coming up with the amount of research interest in AI [53, 54, 55].

3.1.1 Supervised Learning

Supervised learning is the most common and applied field of ML. Learning

the underlying data distribution using labeled data and mathematical models is the

crux of supervised ML. It attempts to learn a function mapping known inputs to

unknown outputs based on learning of patterns found in label training data. Common

supervised ML algorithms are listed below:

• Support Vector Machines (SVM)

• Naive Bayes

• k-Nearest Neighbors (KNN)

• Family of Regression

• Decision Trees
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• Random Forest (RF)

• Ensemble Methods

• Neural Networks (NN)

The received waveform is time domain 1-D data. After exploratory data analy-

sis, we conclude that the data we considered is not enough for deep learning models.

So, we employ algorithms like k-nearest neighbors, support vector machines, random

forest, XGBoost and shallow neural networks which work very well with less data. We

have explained XGBoost and NN in details in the following chapters as we propose

systems based on these models.

KNN [56] is a simple non-parametric supervised learning algorithm where the

output decision for a test sample is based on its k neighbors. K in KNN is based

on feature similarity and finding the correct value of k is called parameter tuning.

Smaller k value can produce noisy output and have larger influence on the result.

Larger k value will be computationally expensive and might result in lower variance

but increased bias. IfX is matrix of features from an observation and Y is a class label,

KNN estimates the conditional distribution of Y given X and classifies an observation

with the highest probability. Given a positive integer k , k-nearest neighbors looks

at the k observations closest to a test observation x0 and estimates the conditional

probability that it belongs to class j using equation 3.1.

Pr(Y = j|X = x0) =
1

k

∑
i∈N0

I(yi = j) (3.1)

where N0 is the set of k-nearest observations and I(yi = j) is an indicator

variable that evaluates to 1 if a given observation (xi, yi) in N0 is a member of class j,

and 0 if otherwise. After estimating these probabilities, k -nearest neighbors assigns

the observation x0 to the class which the previous probability is the greatest.
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SVM [57] is a popular classification method used in applications where less

data is available. SVM solves the problem of maximizing the distance or margin

separating two classes in input space. The problem turns out to be convex and any

local solution is also a global solution [6]. Different kernel methods such as linear,

radial basis function (RBF), polynomial, sigmoid can be used to train the SVMmodel.

The SVM finds the maximum margin separating hyperplane. We consider a linear

classifier: h(x) = sign(wTx+ b) with a binary classification setting with labels {+1,

-1}. So the best hyperplane is the one which maximizes the distance to the closest

data points. SVM optimization problem can be represented as equation 3.2, where

optimized parameters (w,b) can minimize the equation.

min
w,b

wTw+ C
n∑

i=1

max[1− yi(w
Tx+ b), 0] (3.2)

Algorithm 1 Random Forest for Regression or Classification

1: for b = 1, 2, ..., B do

2: (a) Draw a bootstrap sample Z∗ of size N from the training data.

3: (b) Grow a random-forest tree Tb to the bootstrapped data:

4: i. Select m variables at random from the p variables.

5: ii. Pick the best variable/split-point among the m.

6: iii. Split the node into two daughter nodes.

7: end for

8: Output the ensemble of trees {Tb}B1 .

To make a prediction at a new point x:

Regression: f̂B
rf (x) =

1
B

∑B
b=1 Tb(x)

Classification: ĈB
rf (x) = majority vote {Ĉb(x)}B1 .
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RF [58] is an ML method consisting of multiple decision trees. Each tree receives

different subset of data obtained by bootstrapping and random feature selection thus

creating an uncorrelated forest of trees. This leads to a more accurate ensemble than

any of the individual tree. Typically, the more the number of trees in the forest the

better the performance of the ensemble. We tried 5, 25, 50, 100, 200, 500, 750 and

1000 number of trees. The performance plateaus after 500 trees and is the optimal

choice for all cases which are shown in section 4.

3.1.1.1 Supervised Learning Training Process

High quality data acquisition is the first step as seen in Figure 3.1 [51]. Majority

of time is spent in getting the data ready for the training process. Raw data gener-

ated/collected needs to be studied, cleaned and prepared for the next stage so that

researchers can decide on appropriate learning algorithms, metrics, loss functions and

parameters [59]. Data preprocessing techniques like Fourier Transform, Dimensional-

ity Reduction and Normalization are used in this work. Data is split into Training,

Test and Evaluation sets and the splitting ratio is experimentally setup [60]. The aim

of obtaining a generalized model depends on sensible data splitting ratio.

Training is the next phase where ML algorithms learn the relationship between

input features and target variable. A loss function is used to determine the difference

between the true and predicted value. The role of the ML algorithm is to update the

predicted values such that the loss is minimized. At this stage, training and validation

sets are used to refine the model (Optimize hyperparameters, change features, etc). In

this work a variety of algorithms are used to learn the aforementioned relationship. A

set of Individually trained classifiers whose predictions are combined when classifying

new instances is known as an ensemble learner. Ensemble is often more accurate than

any of the individual classifiers in it [61].
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Figure 3.1: Supervised learning flowchart

Model evaluation is the process of utilizing various evaluation metrics to under-

stand a ML model’s performance. It is used to compare the performance of different

algorithms to make up an empirical study. Predicted labels are compared to true

labels at this stage.

Model Testing is the final stage of predicting the outputs for new data. The

aim for a model is to generalize well and not to under or over fit the training data.
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3.1.2 Unsupervised Learning

Unsupervised learning is another field of ML which works with abundantly

available unlabeled data. Learning the underlying data distribution, assemble that

data based on similarities and express that dataset in a precise format is the crux of

unsupervised ML [62]. Common unsupervised ML algorithms are listed below:

• Clustering

• Anomaly Detection

• Principal Component Analysis (PCA)

• Neural Networks (NN)

3.1.3 Reinforcement Learning

Reinforcement learning is a ML training method based on maximizing reward

for actions taken by an agent in an environment. Simply stating Reinforcement

learning rewards an agent for choosing from a correct set of actions and punishes

for choosing otherwise. The goal is to obtain an action model that maximizes total

reward of the agent. A reinforcement learning agent interacts with its environment,

takes action and learns through trial and error. [63, 64]. Common reinforcement

learning algorithms are listed below:

• State-action-reward-state-action (SARSA)

• Q-learning

• Deep-learning

• Markov decision process

3.2 Preprocessing Techniques

ML performance and efficacy depends on data preprocessing techniques yield-

ing high quality Data. Data quality includes accuracy, completeness, consistency,
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believability and interpretability [65]. The techniques used in this work are discussed

briefly:

3.2.1 Dimensionality Reduction

Dimensionality reduction is a method of decreasing the number of random vari-

ables or attributes in the dataset. Wavelet transforms and principal component anal-

ysis (PCA) transforms original data onto a smaller space. Attribute subset selection

detects and removes irrelevant, weakly relevant or redundant attributes or dimensions

[65].

3.2.1.1 Principal Component Analysis (PCA)

Principal component analysis is the multivariate statistical technique of finding

the principal components and using them to perform a change of basis on the data

[66]. PCA analyzes a dataset’s inter-correlated dependent variables with the goal

of mapping these features to a set of new orthogonal variables called principal com-

ponents. PCA also represents the pattern of similarity of the observations and the

variables by displaying them as points in maps [67]. The new projections have highest

variance along the direction in space known as first principal component. The second

principal component is orthogonal to the first principal component and maximizes

variance among all directions orthogonal to the first. In this work PCA is utilized

to reduce the high dimensional data to low dimensional data and only utilizing com-

ponents carrying most variance of the data. This results in low computation effort

without any accuracy trade-off.
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3.2.2 Fourier Transform

Fourier transform is not a commonly used preprocessing technique in ML but it

is often used in signal processing tasks. A Fourier Transform is a mathematical trans-

form that decomposes functions depending on time or space into functions depending

on temporal frequency or spatial frequency. Fourier and inverse Fourier transform

are shown in 3.3 and 3.4 respectively.

X(w) =

∫ ∞

−∞
x(t)e−jwtdt (3.3)

x(t) =
1

2π

∫ ∞

−∞
X(w)ejwtdw (3.4)

When handling recurrent time domain sometimes classification becomes tough

due to lack of easy decision boundaries. So a natural option arises to convert time

domain data to frequency domain data. Frequency domain representation gives how

much signal is encompassed within each frequency band over a range of frequen-

cies. So particular frequencies will be more populated and providing natural decision

boundaries to help ML models classify easily as compared to its time domain repre-

sentation [68]. In this work Discrete Fourier Transform is applied using the NumPy

built-in Fast Fourier Transform (FFT) algorithm (CT) [69, 70].
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CHAPTER 4

Target Detection in Foliage Environment

Mission critical systems need to be ready for the harsh working environment

such as dense foliage, water bodies, rain, heavy winds and other natural challenges.

Extreme engineering excellence is needed to achieve a faultless system during such

critical tasks and routines. We have considered one such scenario which is target

detection in foliage environment. Many research efforts have been invested in study-

ing the dense cluttered foliage environment. Multipath fading, scattering from trees,

ground reflections, moving components of the forest, adverse weather conditions and

non-stationary nature of the environment make it a challenging but interesting Engi-

neering problem.

4.1 Data Collection

The foliage penetration measurement task was conducted from August 2005 to

December 2005 [71]. Barth pulse source was used to collect the data in this experi-

mental setup. For this UWB data, each sample is spaced at 50 picosecond intervals

and 16,000 samples were collected for each collection for a total duration of 0.8 mi-

croseconds at a rate of approximately 20 Hz. The Barth pulse source was operated

at low amplitude and 35 pulses reflected signal were averaged for each collection.
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(a) The lift in the experiment with all the equipment [71]

(b) The target (a trihedral reflector) is shown on the stand at 300 feet from the lift [71]

Figure 4.1: Foliage data collection setup

Figure 4.1 depicts the experimental setup. Figure 4.1a shows the lift used in

the experiment which supported the entire measuring apparatus. The man lift was a

4-wheel drive diesel platform that was driven up and down a graded track 25 meters

long with an experimental length of 20 meters. The lift was placed at 11 different

positions along the track resulting in 11 data collections for target and no target

scenario. Figure 4.1b shows the trihedral reflective target. Foliage-target data were

taken from the track firing into the foliage with and without the target.

Figure 4.2 displays the received echoes with (a) no target and (b) with target

on range. On visual inspection it is difficult to conclude the presence of target in

these figures. To give a better understanding of these received echoes to the reader,

expanded views from sample 13001–15000 are shown in Figure 4.3a and 4.3b. The
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Figure 4.2: Reflected echoes for two different cases with: (a) no target (b) target
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Figure 4.3: Expanded view of reflected echoes from sample index 13001 to 15000 for
two different cases with: (a) no target (b) target (c) their difference
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received echo in Figure 4.3a can be treated as response from the foliage clutter since

there is no target in range. Therefore, the difference between Figure 4.3a (echo with

no target) and Figure 4.3b (echo with target) is the target response which is shown in

4.3c. In practical scenario, we either receive echo as shown in Figure 4.2a or Figure

4.2a. The main challenge is to train an Artificial Intelligence to make target detection

decision based only on the received echo.

4.2 Dataset Preparation

One of the most important steps to get good results with ML is to have a clean

dataset. The dataset we handled had consistent received echoes with 16000 samples

for multiple locations with target and no target cases. As per our knowledge the

target is detected around sample 13900 of the received echo for this experimental

setup. So, the ML model does not need to be trained for the entire sequence of 16000

samples. We chose a window of 2000 samples from 14001 to 16000 from each received

echo and reduced the size of the dataset to be considered. So each signal had 2000

samples and 35 such signals were recorded for each target and no target case was

repeated over 11 different positions. The entire dataset had 11 ∗ 2 ∗ 35 = 770 signals

with 2000 samples each.

4.3 XGBoost Model for Target Detection

This section presents the work published in [72] and the next section presents

a later on carried out comparative analysis with different ML models for the same

dataset.
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Figure 4.4: ML pipeline for foliage dataset

4.3.1 ML Pipeline

Figure 4.4 shows the flow of the data through the ML pipeline. The received

raw UWB data is split into training (Xtrain, Ytrain) and testing (Xtest, Ytest) datasets.

These datasets are preprocessed in the next phase. We transform the sequential data

from time to Frequency domain using FFT, so that we could do analysis on two

domain representations of data. Then PCA is applied to reduce the dimensionality of

dataset while retaining maximum variance present in the dataset along new dimension

called principal components. This preprocessed data is then fed to the ML model

(Eg. XGBoost) which trains on (Xtrain, Ytrain) processed dataset. After training and

validation the model is used for testing with Xtest which returns predicted labels

Ŷtest. These predicted labels Ŷtest and true test labels Ytest are compared to determine

different performance metrics like area under the curve (AUC) and accuracy.

4.3.2 XGBoost Algorithm

The received echoes are time domain single dimensional data, and its Fourier

transform makes it a complex valued two-dimensional data. XGBoost [73] is a su-

pervised, scalable end-to-end tree boosting algorithm for sparse data and weighted

quantile sketch for approximate tree learning. Simply stated it is an open-source im-
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plementation of gradient boosted trees (Gradient Boosting on decision trees). Firstly,

decision trees are just a sequence of simple decision rules that combined produce a

prediction of the desired variable. Secondly, Gradient Boosting is a ML algorithm

which creates a prediction model in the form of an ensemble of weak prediction mod-

els, usually decision trees. If the weak learner is a decision tree as shown in Figure

4.5, the final algorithm is called gradient boosted tree which typically outperforms

random forests [40, 74]. Quicker model exploration is enabled due to parallel and

distributed computing used in XGBoost.

Figure 4.5: Tree ensemble method

Figure 4.5 [73] shows an ensemble of 2 decision trees. The tree starts with a

bigger problem at the root then breaking up the bigger problem into simple binary

decision problems at each level. The process repeats until the tree reaches problems

which cannot be broken up further known as leaf nodes. The final prediction of a

given example is calculated by summing up the score in the corresponding leaves.

The prediction for example 1 is calculated by aggregating its score from each tree,

hence prediction = 2+0.9 = 2.9. For consistent performance, we trained 50 XGBoost

models and averaged the performance rather than using the best accuracy achieved
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for a lucky random XGBoost model. For each model, the number of trees and its

depth were different. This enables the model to achieve high accuracy.

Boosting fits an ensemble of models with the final Equation 4.1 and can be

written as adaptive basis function models Equation 4.2

f(x) =
M∑

m=0

fm(x) (4.1)

f(x) = θ0 +
M∑

m=1

θmϕm(x) (4.2)

where f0(x) = θ0, fm(x) = θmϕm(x)for m = 1, . . . ,M , and ϕm is a sequentially add

base functions to improve the fitness of the current model.

Booting algorithms thus solve Equation 4.3 either exactly or approximately at

each iteration.

{θ̂m, ϕ̂m} = argmin
{θm,ϕm}

n∑
i=1

L(yi, f̂
(m−1)(xi) + θmϕm(xi)) (4.3)

For tree based learning, in the first step the tree considers every split parallel to

the coordinate axes and chooses the split that minimizes the objective. In the second

step, the tree considers every split parallel within each region and chooses the split

which maximizes Gain. These steps are repeated till the stopping criterion is met.

For a region Rj, weights wj are learnt which minimize the loss function Equation 4.4.

Region Rj includes the set of indices Ij such that xi ∈ Rj for i ∈ Ij. The empirical

loss is given in Equation 4.5 where L̂j is the aggregated loss at node j.

ŵj = argmin
w

∑
i∈Ij

L(yi, w) (4.4)

L̃(f̂) =
T∑

j=1

∑
i∈Ij

L(yi, ŵj) ≡
T∑

j=1

L̂j (4.5)

XGBoost learns a new tree at iteration m in Equation 4.6

{ŵjm, R̂jm}Tm
j=1 = argmin

{wjm,Rjm}Tmj=1

n∑
i=1

L(yi, f̂
(m−1)(xi) +

Tm∑
j=1

wjmI(xi ∈ Rjm)) (4.6)
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XGBoost tries to find the optimal tree structure R̂jm and optimal weights ŵjm

that minimize the empirical loss shown in Equation 4.7

{{ŵjm, R̂jm}Tm
j=1}Mm=1 = argmin

{{wjm,Rjm}Tmj=1}Mm=1

n∑
i=1

L(yi,
M∑

m=1

Tm∑
j=1

wjmI(xi ∈ Rjm)) (4.7)

Hessian matrix plays an important role to determine the tree structure as shown

in Equation 4.8. The optimal leaf weights are determined by Equation 4.9.

Gain =
1

2

[
G2

L

HL

+
G2

R

HR

−
G2

jm

Hjm

]
(4.8)

ŵjm = −Gjm

Hjm

(4.9)

For Dataset D = {(xi, yi)} where (|D| = n, xi ∈ Rm, yi ∈ R), loss function

L, number of iterations M , learning rate η and number of terminal nodes T , the

pseudo-code for XGBoost with exact greedy algorithm can be described as follows:

Algorithm 2 XGBoost with exact greedy algorithm for split finding for small dataset

1: Input: D, L,M, η, T

2: Initialize: f̂ (0)(x) = f̂0(x) = θ̂0 = argminθ

∑n
i=1 L(yi, θ)

3: for m = 1, 2, ...,M do

4: ĝm(xi) = [∂L(yi,f(xi))
∂f(xi)

]f(x)=f̂ (m−1)(x)

5: ĥm(xi) = [∂
2L(yi,f(xi))
∂f(xi)2

]f(x)=f̂ (m−1)(x)

6: Find structure {R̂jm}Tj=1 for splits which maximize Gain = 1
2
[
G2

L

HL
+

G2
R

HR
− G2

jm

Hjm
]

7: Find leaf weights {ω̂jm}Tj=1 for learnt structure by ω̂jm = −Gjm

Hjm

8: f̂m(x) = η
∑T

j=1 ω̂jmI(x ∈ R̂jm)

9: f̂ (m)(x) = f̂ (m−1)(x) + f̂m(x);

10: end for

11: Output: f̂(x) ≡ f̂ (M)(x) =
∑M

m=0 f̂m(x)
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4.4 Results

We experimented with multiple window sizes like 500, 1000, 2000 and 3000 sam-

ples around the target sample. We found best predictive results for 2000 samples as

it makes sense to only concentrate on relevant samples and ignore irrelevant samples.

We considered different ML models on the rich foliage environment Dataset. Since

we get best results for XGBoost for full dataset (Time and Frequency domain), we

consider full dataset for all models.

4.4.1 XGBoost

Table 4.1: XGBoost performance for foliage dataset

Domain Mean Accuracy
with std dev (%)

Time 88.1±0.83

Frequency
Real 92.3±0.58

Imaginary 88.3±0.79
Both 93.6±0.89

All Data 93.7±0.59

• The target detection accuracy for time domain data is the least while it is far

exceeded by frequency domain data. This corresponds to the ML model being

able to learn better boundaries across different frequencies.

• For frequency domain data, accuracy is much better for Real part data than for

Imaginary part data.

• For frequency domain data having both Real part and Imaginary part, it almost

achieves maximum accuracy.

• As per ML rules, more relevant data means better model predictive power. We

get the best accuracy of 93.7% for entire data (Time and Frequency domain).

25



4.4.2 K Nearest Neighbors (KNN)

Table 4.2: K nearest neighbor performance for foliage dataset

No. of Neighbors Mean Accuracy
with std dev (%)

5 neighbors 88.64±0.81
10 neighbors 88.61±0.79
25 neighbors 87.66±0.21
50 neighbors 81.81±0.44
75 neighbors 81.11±0.19
100 neighbors 77.27±0.39
200 neighbors 72.72±0.46

From Table 4.2, K Nearest Neighbor [56] model performs best for K=5. As

the value of K increases, accuracy drops. Being a majority voting algorithm, a small

value of K means less number of neighboring points are important in this dataset

classification problem. Compared to other algorithms used for this task as seen in

Figure 4.8, KNN has the third best accuracy of 88.64%.

4.4.3 Random Forest (RF)

Table 4.3: Random forest performance for foliage dataset

No. of Decision Trees Mean Accuracy
in Random Forest with std dev (%)
5 decision trees 68.18±2.87
10 decision trees 74.67±2.04
25 decision trees 72.00±1.57
50 decision trees 79.22±2.06
75 decision trees 79.22±1.03
100 decision trees 79.87±1.08
200 decision trees 81.16±0.98
500 decision trees 83.81±0.82
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From Table 4.3, Random Forests Classifier [58] model performs best for Number

of Trees = 500. Being a Decision Tree combining algorithm, a large number of Decision

Trees means it depends on output of many weak learner trees. Thus increasing its

training time too. So there should be a trade off between accuracy and training time.

Compared to other algorithms used for this task as seen in Figure 4.8, RF has the

lowest accuracy of 83.81%.

4.4.4 Neural Networks (NN)

Table 4.4: Neural network performance for foliage dataset

No. of Neurons in Number of Mean Accuracy
each hidden Layer Hidden Layers with std dev (%)

1 87.85±0.14
50 2 85.96±0.68

3 85.96±0.07
1 85.96±0.41

100 2 83.36±0.07
3 84.31±0.00
1 90.45±0.41

128 2 88.96±0.60
3 89.61±0.63

From Table 4.4, Neural Network [75] model performs best for Number of Neu-

rons=128 in 1 hidden layer. Being universal function approximator [38] algorithm,

a large number of Neurons means it depends on output of many activation paths.

Thus increasing its training time. So there should be a trade off between accuracy

and training time. Compared to other algorithms used for this task as seen in Figure

4.8, NN has the second highest accuracy of 90.45%.
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4.4.5 Confusion Matrix Analysis of All Models for Foliage Dataset

Figure 4.6: Confusion matrix of ML models for foliage dataset

The confusion matrix in Figure 4.6 shows label wise model performance. False

positive and false negative can be extracted from this matrix. As a foliage target

detection problem is very security sensitive, false negatives are not tolerable. XGBoost

performs the best for this metric.
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4.4.6 ROC Curve Analysis of All Models for Foliage Dataset

Figure 4.7: ROC curve of ML models for foliage dataset

ROC is a probability curve and AUC indicates the capability of the model to

distinguish between classes. Higher AUC means that the model is better at classifying

target. As shown in Figure 4.7, XGBoost receives a high AUC of 0.95 and have

plotted it along with other model’s AUC and random guessing AUC = 0.5, where the

model has no predictive power. Since the dataset is well balanced, TPR and TNR

performances are very close for all sets of data.
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4.4.7 Accuracy Comparison of All Models for Foliage Dataset

Figure 4.8: Accuracy of ML models for foliage dataset

The accuracy bar chart in Figure 4.8 shows accuracy performance for considered

models. Random Forest has the lowest accuracy of 83.81% while XGBoost has the

best accuracy of 93.7% [72].

After extensive experimentation and applying data transformation using our

domain expertise we were able to achieve significant performance improvement over

other methods. Our XGBoost based ML system is able to detect metallic target in

foliage situation with an accuracy of 93.7%.
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CHAPTER 5

Human Detection through Wooden Door, Gypsum Wall & Brick Wall

Human detection through walls, doors and corridors is critical in applications

such as hostage rescue situation, surveillance, activity recognition, etc. Such a critical

task also comes with a lot of diverse engineering problems. One of the most important

problem being detecting humans through walls, doors and other construction mate-

rial. Good penetration and range resolution have enabled Ultra Wideband (UWB) to

be primary choice for target detection through most construction materials and other

indoor situations [44]. Large bandwidth of UWB signals enable it to achieve high

range resolution and thus detection of multiple nearby objects. In this study we have

considered a tougher problem with stationary human being. Movement can make

the problem relatively simpler as the radar would receive different echoes for different

timestamps, making detection easier. We have considered typically occurring brick

wall, gypsum wall and wooden door structures in our study.

5.1 Data Collection

The Human detection through wall measurement was conducted at the Uni-

versity of Texas at Arlington [76]. 3 different locations were used to sense human

through brick wall, gypsum wall and wooden door. P220 UWB radar in mono-

static mode (shown in Figure 1) where waveform pulses are transmitted from a single

Omni-directional antenna and the scattered waveform is received by a collocated

Omni-directional antenna were used [77, 78]. The radar parameters in each of the
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cases given below were Integration: Hardware Integration = 512, Software Integration

= 2, Pulse Repetition Frequency: 9.6 MHz Step Size: 13 bin, Window Size (ft): 10 ft

Figure 5.1: Human target (Left), UWB radar (Right) for gypsum wall

Figure 5.1 shows the location of the radar and Human target on different sides

of a 1-ft thick gypsum partition wall. Person is at a distance of 6.5 ft from the radar

on the other side of the wall and the height of the antennas from ground is 3’4”.

Figure 5.2: Human target (Left), UWB radar (Right) for wooden door

Figure 5.2 shows the location of the radar and Human target on different sides

of a 1.57” wooden door. Person is standing at a distance of 7’6” from the radar on

the other side of the door and the height of the antennas from ground is 3’4“.
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Figure 5.3: Human target position (Left), UWB radar (Right) for brick wall

Figure 5.3 shows the location of the radar and Human target on different sides

of a 4.75” brick wall. Person is standing at a distance of 8’ from the radar on the

other side of the door and the height of the antennas from ground is 3’4”.

Figure 5.4 displays the received echoes with (a) no person and (b) with person

through wall or door. On visual inspection it is difficult to conclude the presence of

target in these figures. The received echo in Figure 5.4a can be treated as response

from the surroundings since there is no person in range. Therefore, the difference

between Figure 5.4a (echo with no person) and Figure 5.4b (echo with person) is the

target response which is shown in 5.4c. In practical scenario, we either receive echo

as shown in Figure 5.4a or Figure 5.4a. The main challenge is to train an Artificial

Intelligence to make target detection decision based only on the received echo.

5.2 Dataset Preparation

Preparing a good, clean, noiseless, outlier free, model friendly dataset is at the

heart of the ML process. The dataset we handled had inconsistent received echoes

with different numbers of samples per signal for multiple locations (gypsum wall,

brick wall & wooden door) with person and no person cases. We used 512 samples

for each signal (Figure 5.4) to have uniform amount of data for all cases. So, each
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Figure 5.4: Reflected echoes through wall with: (a) no person (b) person (c) their
difference

signal had 512 samples and 766 such signals were recorded for both person and no

person case repeated over 3 different locations. The entire dataset had 3*2*766 =

4596 signals with 512 samples each.
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5.3 Neural Network for Human Detection

This section presents the work submitted in [79].We carried out comparative

analysis with different ML models for the same dataset.

5.3.1 ML Pipeline

Figure 5.5: ML pipeline for wall dataset

Figure 5.5 shows the flow of data through the ML pipeline. Received UWB

data is reshaped as explained in 5.2, then sent to the training and testing phase. We

used 80-20 split for training and testing on the entire data. The training data is used

to train multiple ML models. The model classifies new data in the testing phase and

gives final predictions.

5.3.2 Neural Networks Algorithm

Artificial Neural Networks derive motivation from biological neural networks

[75]. They are a set of ML models which allow computers to learn from experience

and understand the world in terms of a hierarchy of concepts, with each concept

defined through its relation to simpler concepts [9].

Figure 5.6 shows a shallow neural network. NN are made up of neurons arranged

as input layer, one or more hidden layers, and an output layer. The artificial neurons

from one layer are connected to the next layer with an associated weight and threshold.

The aim of training is to learn weights of the edges connecting the nodes in the hidden

layers. The node is activated if its output is above the specified threshold. The input

35



Figure 5.6: Shallow neural network

layer receives input which passes through the activated hidden layer nodes and final

prediction is outputted by the output layer. NN can adapt to varying input such that

it generates the best possible result without the need of changing the output criteria.

The steps involved in the neural network algorithm are as follows:

• Step 1: Assign random weights to all edges in the network.

• Step 2: Using the inputs and the edges find the activation rate of hidden nodes.

• Step 3: Using the activation rate of hidden nodes and edges to output, find the

activation rate of output nodes.

• Step 4: Find the error rate at the output node and recalibrate all the edges

between hidden nodes and output nodes.

• Step 5: Using the weights and error found at the output node, cascade down

the error to hidden nodes.

• Step 6: Recalibrate the weights between hidden node and input nodes.
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• Step 7: Repeat the process till convergence criterion is met.

• Step 8: Using the final edge weights score the activation rate at the output

nodes.

With ŷ(i) as the prediction of the ith example, the differentiable negative log

likelihood loss function for classification can be defined as:

L = −
N∑
i=1

[y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i))] (5.1)

In the hidden layer, relu function is used to make the activation outputs non-

negative and is defined in Equation 5.2.

relu(x) = max(0, x) (5.2)

In the output layer, since it is a binary classification task, sigmoid function

is used to limit output between 0 and 1 representing probability and is defined in

Equation 5.3.

σ(x) =
1

1 + e−x
(5.3)

For Dataset D = {(xi, yi)} where (|D| = n, xi ∈ Rm, yi ∈ R), loss function L,

number of epochs E, learning rate η, hidden layer weights Wh & biases bh and input

layer weights Wi & biases bi; the pseudo-code for neural network training process can

be described as follows:
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Algorithm 3 Neural network training pseudocode

1: Input: D, L, E, η,Wi, bi,Wh, bh

2: Initialize: Wi, bi,Wh, bh (random)

3: for e = 1, 2, ..., E do

4: # Feedforward: Pass data samples to neural network

5: h(m) = relu(Wix
(m) + bi)

6: ŷ(m) = σ(Whh
(m) + bh)

7: # Feedbackward: Update weights and bases such that L is minimized

8: Wh = Wh − η ∂L/∂Wh

9: Wi = Wi − η ∂L/∂Wi

10: bh = bh − η ∂L/∂bh

11: bi = bi − η ∂L/∂bi

12: end for

13: Output: Wi, bi,Wh, bh (optimal)

5.4 Results

We conducted multiple experiments to test the performance of different ML

models on the indoor environment wall Dataset. We recorded Mean Accuracy with

Standard Deviation, Mean Training Time per Sample (ms) and Mean Testing Time

per sample (ms).

5.4.1 Wooden Door Scenario

5.4.1.1 Neural Network (NN)

From Table 5.1, Neural Network [75] model performs best for Number of Neu-

rons=50 in 1 hidden layer. Being universal function approximator [38] algorithm, a
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Table 5.1: Neural network performance for wooden door dataset

No. of Neurons in Number of Mean Accuracy Mean Training Time Mean Testing Time
each hidden Layer Hidden Layers with std dev (%) per Sample (ms) per Sample (ms)

1 97.36±0.14 16.70±2.47 0.30±0.02
50 2 97.16±0.68 17.42±3.22 0.31±0.02

3 96.68±0.07 18.95±7.07 0.31±0.02
1 97.17±0.41 17.41±3.50 0.33±0.01

100 2 97.03±0.07 17.63±3.63 0.30±0.02
3 97.10±0.00 18.88±6.24 0.31±0.03
1 97.35±0.41 18.12±4.58 0.32±0.02

128 2 97.16±0.60 19.52±7.80 0.31±0.03
3 97.21±0.63 21.77±8.83 0.31±0.01

small number of Neurons means it depends on output of few activation paths. Thus

having a relatively short training time. Compared to other algorithms used for this

task as seen in Figure 5.13, NN achieves second best accuracy of 97.36%.

5.4.1.2 K Nearest Neighbor (KNN)

Table 5.2: K nearest neighbor performance for wooden door dataset

No. of Neighbors Mean Accuracy Mean Training Time Mean Testing Time
with std dev (%) per Sample (ms) per Sample (ms)

5 neighbors 78.89±0.15 0.28±0.10 0.008±0.000
10 neighbors 82.05±0.20 0.26±0.02 0.006±0.002
25 neighbors 85.86±0.22 0.22±0.10 0.007±0.008
50 neighbors 86.87±0.37 0.27±0.22 0.004±0.003
75 neighbors 87.62±0.57 0.21±0.20 0.005±0.001
100 neighbors 87.71±0.87 0.21±0.37 0.002±0.017
200 neighbors 86.94±0.70 0.23±0.16 0.002±0.001

From Table 5.2, K Nearest Neighbor [56] model performs best for K=100. As

the value of K increases, accuracy rises. Compared to other algorithms used for this

task as seen in Figure 5.13, KNN achieves third best accuracy of 87.71%.
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5.4.1.3 Support Vector Machine (SVM)

Table 5.3: SVM performance for wooden door dataset

Kernel Types Mean Accuracy Mean Training Time Mean Testing Time
with std dev (%) per Sample (ms) per Sample (ms)

Radial Basis Function (RBF) 99.00±0.60 0.50±0.06 0.38±0.18
Linear function 97.52±0.62 0.21±0.02 0.10±0.01

3rd Order polynomial function 98.96±0.52 0.54±0.08 0.47±0.05
Sigmoid function 97.94±0.56 0.24±0.10 0.10±0.01

From Table 5.3, Support Vector Machine [57] model performs best for Radial

Basis function (RBF) kernel Type. Being a non-probabilistic binary linear classifica-

tion algorithm, SVM maps training samples to point in space so as to maximize the

width of gap between the two categories. Compared to other algorithms used for this

task as seen in Figure 5.13, SVM achieves best accuracy of 99.00% after NN but it

has a considerably lower training time than NN. It is an ideal candidate for this task.

5.4.1.4 Random Forest (RF)

Table 5.4: Random forest performance for wooden door dataset

No. of Decision Trees Mean Accuracy Mean Training Time Mean Testing Time
in Random Forest with std dev (%) per Sample (ms) per Sample (ms)
5 decision trees 72.87±2.87 0.12±0.01 0.01±0.000
10 decision trees 78.79±2.04 0.20±0.02 0.01±0.002
25 decision trees 88.33±1.57 0.49±0.10 0.04±0.008
50 decision trees 93.73±2.06 0.87±0.22 0.04±0.003
75 decision trees 94.77±1.03 1.19±0.20 0.05±0.001
100 decision trees 96.20±1.08 1.50±0.13 0.07±0.017
200 decision trees 96.44±0.98 3.24±0.67 0.15±0.010
500 decision trees 97.12±0.82 7.00±0.44 0.30±0.004
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From Table 5.4, Random Forests Classifier [58] model performs best for Number

of Trees = 500. Being a Decision Tree combining algorithm, a large number of Decision

Trees means it depends on output of many weak learner trees. This increasing its

training time too. So there should be a trade off between accuracy and training time.

Compared to other algorithms used for this task as seen in Figure 5.13, RF achieves

third best accuracy of 97.12%.

5.4.1.5 Confusion Matrix Analysis of All Models for wooden door dataset
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Confusion matrix comparison for selected Model configurations for Wooden Door

Figure 5.7: Confusion matrix of ML models for wooden door dataset

The confusion matrix in Figure 5.7 shows label wise model performance. False

positive and false negative can be extracted from this matrix. As a person detection

problem is very security sensitive, false negatives are not tolerable. SVM and NN

perform the best for this metric.
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5.4.1.6 ROC Curve Analysis of All Models for wooden door dataset
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Figure 5.8: ROC curve of ML models for wooden door dataset

The ROC curve in Figure 5.8 shows AUC metric for considered models. Again,

SVM and NN perform the best for this metric.

5.4.2 Gypsum Wall Scenario

5.4.2.1 Neural Networks (NN)

From Table 5.5, Neural Network [75] model performs best for Number of Neu-

rons=128 in 3 hidden layers but for the best. Being universal function approximator

[38] algorithm, a large number of Neurons means it depends on output of many ac-

tivation paths. Thus increasing its training time too. So there should be a trade off
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Table 5.5: Neural network performance for gypsum wall dataset

No. of Neurons in Number of Mean Accuracy Mean Training Time Mean Testing Time
each hidden Layer Hidden Layers with std dev (%) per Sample (ms) per Sample (ms)

1 94.54±0.05 16.23±2.53 0.29±0.02
50 2 94.67±0.12 16.85±3.28 0.30±0.03

3 94.22±0.18 16.35±2.48 0.30±0.02
1 94.89±0.04 16.87±3.07 0.29±0.02

100 2 94.79±0.08 17.44±4.25 0.29±0.03
3 93.71±014 17.38±4.06 0.30±0.04
1 94.76±0.07 19.87±3.45 0.24±0.01

128 2 94.86±0.09 19.72±3.01 0.24±0.02
3 95.03±0.63 19.82±3.03 0.25±0.01

between accuracy and training time. Compared to other algorithms used for this task

as seen in Figure 5.13, NN achieves highest accuracy of 95.03%.

5.4.2.2 K Nearest Neighbor (KNN)

Table 5.6: K nearest neighbor performance for gypsum wall dataset

No. of Neighbors Mean Accuracy Mean Training Time Mean Testing Time
with std dev (%) per Sample (ms) per Sample (ms)

5 neighbors 68.22±0.02 0.29±0.09 0.006±0.001
10 neighbors 73.23±0.43 0.25±0.18 0.004±0.002
25 neighbors 77.49±0.72 0.31±0.12 0.005±0.008
50 neighbors 80.92±0.11 0.30±0.09 0.005±0.012
75 neighbors 82.22±0.07 0.30±0.20 0.006±0.006
100 neighbors 84.68±0.29 0.27±0.04 0.005±0.013
200 neighbors 85.68±0.70 0.29±0.33 0.007±0.014

From Table 5.6, K Nearest Neighbor [56] model performs best for K=200. As

the value of K increases, accuracy rises. Being a majority voting algorithm, a large

value of K means more number of neighboring points are important in this dataset

classification problem. Compared to other algorithms used for this task as seen in

Figure 5.13, KNN achieves least accuracy of 85.68%.
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5.4.2.3 Support Vector Machine (SVM)

Table 5.7: SVM performance for gypsum wall dataset

Kernel Types Mean Accuracy Mean Training Time Mean Testing Time
with std dev (%) per Sample (ms) per Sample (ms)

Radial Basis Function (RBF) 93.41±0.01 0.68±0.08 0.42±0.28
Linear function 89.84±0.62 0.24±0.04 0.09±0.01

3rd Order polynomial function 88.28±0.52 0.59±0.07 0.52±0.03
Sigmoid function 93.39±0.00 0.25±0.01 0.13±0.00

From Table 5.7, Support Vector Machine [57] model performs best for ’Radial

Basis Function (RBF)’ kernel Type. Being a non-probabilistic binary linear classifi-

cation algorithm, SVM maps training samples to point in space so as to maximize

the width of gap between the two categories. Compared to other algorithms used for

this task as seen in Figure 5.13, SVM achieves second best accuracy of 93.41% after

NN but it has a considerably lower training time than NN. It is an ideal candidate

for this task.

5.4.2.4 Random Forest (RF)

Table 5.8: Random forest performance for gypsum wall dataset

No. of Decision Trees Mean Accuracy Mean Training Time Mean Testing Time
in Random Forest with std dev (%) per Sample (ms) per Sample (ms)
5 decision trees 69.39±0.03 0.13±0.01 0.01±0.000
10 decision trees 70.85±0.02 0.23±0.04 0.01±0.002
25 decision trees 81.30±0.01 0.52±0.08 0.02±0.001
50 decision trees 85.90±2.06 0.79±0.11 0.04±0.003
75 decision trees 86.98±1.42 1.11±0.12 0.04±0.000
100 decision trees 89.80±1.28 1.48±0.13 0.06±0.002
200 decision trees 90.25±0.37 2.91±0.37 0.12±0.003
500 decision trees 92.22±0.82 7.25±0.45 0.27±0.010
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From Table 5.8, Random Forests Classifier [58] model performs best for Number

of Trees = 500. Being a Decision Tree combining algorithm, a large number of Decision

Trees means it depends on output of many weak learner trees. Thus increasing its

training time too. So there should be a trade off between accuracy and training time.

Compared to other algorithms used for this task as seen in Figure 5.13, RF achieves

third best accuracy of 92.22%.

5.4.2.5 Confusion Matrix Analysis of All Models for gypsum wall dataset
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Figure 5.9: Confusion matrix of ML models for gypsum wall dataset

The confusion matrix in Figure 5.9 shows label wise model performance. SVM

and NN perform the best for this metric.
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Figure 5.10: ROC curve of ML models for gypsum wall dataset

5.4.2.6 ROC Curve Analysis of All Models for gypsum wall dataset

The ROC curve in Figure 5.10 shows AUC metric for considered models. Again,

SVM and NN perform the best for this metric.
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5.4.3 Brick Wall Scenario

5.4.3.1 Neural Networks (NN)

Table 5.9: Neural network performance for brick wall dataset

No. of Neurons in Number of Mean Accuracy Mean Training Time Mean Testing Time
each hidden Layer Hidden Layers with std dev (%) per Sample (ms) per Sample (ms)

1 85.18±0.12 16.85±2.83 0.23±0.01
50 2 84.88±0.32 17.06±2.11 0.22±0.00

3 84.53±0.02 16.89±1.36 0.23±0.05
1 85.14±0.04 17.05±1.75 0.21±0.01

100 2 84.76±0.09 17.91±0.63 0.21±0.02
3 84.57±0.32 17.99±3.40 0.22±0.02
1 84.95±0.01 17.82±3.36 0.23±0.01

128 2 84.73±0.18 17.85±3.08 0.22±0.01
3 84.60±0.03 18.62±4.90 0.23±0.02

From Table 5.9, Neural Network [75] model performs best for Number of Neu-

rons=50 in 1 hidden layer. Being universal function approximator [38] algorithm, a

small number of Neurons means it depends on output of few activation paths. Thus

having a relatively short training time. Compared to other algorithms used for this

task as seen in Figure 5.13, NN achieves highest accuracy of 85.18%.

5.4.3.2 K Nearest Neighbor (KNN)

From Table 5.10, K Nearest Neighbor [56] model performs best for K=200. As

the value of K increases, accuracy rises. Being a majority voting algorithm, a large

value of K means more number of neighboring points are important in this dataset

classification problem. Compared to other algorithms used for this task as seen in

Figure 5.13, KNN achieves third best accuracy of 81.10%.
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Table 5.10: K nearest neighbor performance for brick wall dataset

No. of Neighbors Mean Accuracy Mean Training Time Mean Testing Time
with std dev (%) per Sample (ms) per Sample (ms)

5 neighbors 64.00±0.02 0.32±0.27 0.008±0.000
10 neighbors 66.63±0.01 0.36±0.01 0.006±0.002
25 neighbors 71.58±0.03 0.32±0.15 0.007±0.008
50 neighbors 75.77±0.02 0.29±0.49 0.004±0.003
75 neighbors 77.27±0.01 0.37±0.15 0.005±0.001
100 neighbors 79.01±0.03 0.31±0.18 0.002±0.017
200 neighbors 81.10±0.01 0.33±0.23 0.002±0.001

5.4.3.3 Support Vector Machine (SVM)

From Table 5.11, Support Vector Machine [57] model performs best for Radial

Basis Function (RBF) kernel Type. Being a non-probabilistic binary linear classifi-

cation algorithm, SVM maps training samples to point in space so as to maximize

the width of gap between the two categories. Compared to other algorithms used for

this task as seen in Figure 5.13, SVM achieves second best accuracy of 84.38% after

NN but it has a considerably lower training time than NN. It is an ideal candidate

for this task.

Table 5.11: SVM performance for brick wall dataset

Kernel Types Mean Accuracy Mean Training Time Mean Testing Time
with std dev (%) per Sample (ms) per Sample (ms)

Radial Basis Function (RBF) 84.38±0.00 0.72±0.12 0.48±0.09
Linear function 76.88±0.04 0.46±0.11 0.10±0.01

3rd Order polynomial function 74.03±0.09 0.49±0.04 0.45±0.05
Sigmoid function 82.15±0.02 0.36±0.04 0.22±0.01
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5.4.3.4 Random Forest (RF)

From Table 5.12, Random Forests Classifier [58] model performs best for Num-

ber of Trees = 500. Being a Decision Tree combining algorithm, a large number of

Decision Trees means it depends on output of many weak learner trees. Thus in-

creasing its training time too. So there should be a trade off between accuracy and

training time. Compared to other algorithms used for this task as seen in Figure 5.13,

RF achieves lowest accuracy of 80.73%.

Table 5.12: Random forest performance for brick wall dataset

No. of Decision Trees Mean Accuracy Mean Training Time Mean Testing Time
in Random Forest with std dev (%) per Sample (ms) per Sample (ms)
5 decision trees 59.49±0.02 0.10±0.01 0.01±0.000
10 decision trees 59.97±0.02 0.20±0.03 0.01±0.001
25 decision trees 65.14±0.37 0.49±0.04 0.02±0.004
50 decision trees 71.14±0.02 0.80±0.11 0.03±0.002
75 decision trees 73.33±0.02 1.13±0.14 0.05±0.001
100 decision trees 73.11±0.33 1.42±0.07 0.06±0.002
200 decision trees 76.79±0.15 3.02±0.32 0.13±0.009
500 decision trees 80.73±0.14 7.20±0.18 0.30±0.006

5.4.3.5 Confusion Matrix Analysis of All Models for brick wall dataset

The confusion matrix in Figure 5.11 shows label wise model performance. SVM

and NN perform the best for this metric.

49



person

no person

Tr
ue

 la
be

l
98 54

5 150

KNN

134 18

25 130

SVM

person no person
Predicted label

person

no person

Tr
ue

 la
be

l

128 24

37 118

RF

person no person
Predicted label

129 23

23 132

NN

40

60

80

100

120

Confusion matrix comparison for selected Model configurations for Brick Wall

Figure 5.11: Confusion matrix of ML models for brick wall dataset

5.4.3.6 ROC Curve Analysis of All Models for brick wall dataset
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Figure 5.12: ROC curve of ML models for brick wall dataset
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The ROC curve in Figure 5.12 shows AUC metric for considered models. Again,

SVM and NN perform the best for this metric.

5.4.4 Accuracy Comparison of All Models for Different Scenarios

Figure 5.13: Accuracy of ML models for different scenarios

The Accuracy bar chart in Figure 5.13 shows Accuracy performance for consid-

ered models in different situations. The models are trained for individuals datasets

and not the entire datasets. Sense through wall human detection seems easiest in the

wooden door case followed by gypsum wall and is toughest in the brick wall case. All

algorithms suffer in the brick wall case. Again, SVM and NN have the best accuracy

for all the scenarios with SVM having very low training time.
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5.5 Confusion Matrix Analysis of All Models for Entire Wall Dataset

The confusion matrix in Figure 5.14 shows label wise model performance. As the

models are trained on more data, the performance improves with less false positives

and false negatives. NN perform the best for this metric.

Figure 5.14: Confusion matrix of ML models for entire wall dataset

5.6 ROC Curve Analysis of All Models for Entire Wall Dataset

The ROC curve in Figure 5.15 shows AUC metric for considered models trained

on the entire dataset. As the models are trained on more data, the performance

improves. NN perform the best for this metric with AUC=0.966.
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Figure 5.15: ROC curve of ML models for entire wall dataset

5.7 Accuracy Performance of All Models for Entire Wall Dataset

Figure 5.16: Accuracy of ML models for entire wall dataset
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The accuracy bar chart in Figure 5.16 shows accuracy performance for consid-

ered models trained on entire dataset. KNN and RF perform the worst while NN

performs the best with accuracy of 96.1% with 1 hidden layer and 50 nodes [79].

After extensive experimentation and applying data transformation using our

domain expertise we were able to achieve significant performance improvement over

other methods. Our Neural Network based ML system is able to detect humans

through walls with an accuracy of 96.1%.
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CHAPTER 6

Stacked Machine Learning for Target Detection

In this chapter we use stacking to solve the problem of target detection. Stacking

is an ensemble machine learning algorithm where multiple algorithms are applied at

multiple levels. Stacking can harness the power of a range of decent-performing

models on a regression or classification task which have better performance than

any individual model in the ensemble. Typical ensemble methods include bagging

and boosting. Bagging [80] has parallel execution while boosting [8] has sequential

execution. Stacking is a bit different from bagging and boosting [81]. Unlike bagging,

in stacking, the models are typically different for the same dataset. Unlike boosting,

in stacking, a single model is used to learn how to best combine the predictions

from contributing models. Longer training time is needed since a set of models are

considered. For N models, it takes N times more training time in case of sequential

algorithms like boosting and stacking. Non-sequential models can be parallelized and

do not increase training time. A trade-off between training time, compute power

requirement and performance enhancement must be considered.

Reasons to consider ensemble learning:

1. Training a robust, less noisy and more stable model with linear and non-linear

relationship learning capability.

2. Increased classification accuracy compared to individual base classifiers.

3. Reduced bias/variance resulting in not overfitted/underfitted models.
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6.1 Bagging

Algorithm 4 Bagging

1: If n is the number of bootstrap samples

2: for i = 1, 2, ..., n do

3: Draw bootstrap sample of size m,Di

4: Train classifier hi on Di

5: end for

6: ŷ = mode{h1(x), ..., hn(x)}

Figure 6.1: Bagging

In bagging [61], we create n bootstrapped samples from the entire dataset which

are chosen randomly with replacement. Typically for a dataset with R rows and C

columns, 0.67 ∗R rows and
√
C columns are selected randomly in each bootstrapped

sample. These samples are fed to ML models. Mode is used in classification tasks

whereas mean is used in regression tasks to make the final prediction. Bagging reduces

the bias of any individual model or feature in a dataset as it gives equal importance

to all models. As seen in Fig. 6.1 the 3 bootstrapped samples are generated from the
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original dataset. 3 same or different ML models are trained on these samples. These

models train on this data and learn from different features. Final prediction is made

with input coming from all the models.

6.2 Boosting

In boosting [61], we create a sequence of weak learners which emphasize on

learning on data for which the previous models predicted incorrect. When these

models are added, they are weighted in a way that is related to weak learner’s accu-

racy. ”Re-weighting” is performed to readjust the data weights. Correctly classified

data inputs have higher weights and wrongly classified data inputs have lower weights.

There are many types of boosting algorithms like AdaBoost [8], Gradient Boost [82],

XGBoost [73], Light GBM [83] and CatBoost [84].

Figure 6.2: Boosting
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Algorithm 5 Gradient Boosting

1: Input data: {⟨x(i), y(i)⟩}ni=1

Differentiable Loss function: L(y(i), h(x(i)))

2: Initialize model

h0(x) = argmin
ŷ

n∑
i=1

L(y(i), ŷ)

3: for t = 1, 2, ..., T do

4: Compute pseudo residual ri,t = −
[
∂L(y(i),h(x(i))

∂h(x(i))

]
h(x)=ht−1(x)

; for i = 1 to n

5: Fit tree to ri,t values and create terminal nodes Rj,t for j = 1, ..., Jt

6: for j = 1, 2, ..., Jt do

ŷj,t = argmin
ŷ

∑
x(i)∈Ri,j

L(y(i), ht−1(x
(i)) + ŷ)

7: end for

8: Update

ht(x) = ht−1(x) + α
Jt∑
j=1

ŷj,t|(x ∈ Rj,t)

9: end for

10: Return ht(x)

6.2.1 AdaBoost

AdaBoost stands for adaptive boosting, where the miss-classified data samples

are weighted more in the new data sample. The model adapts the weights of the data

points, hence the name Adaptive boosting. So progressively, models keep becoming

better than previous models. The models are trained in sequential model.
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6.2.2 Gradient Boosting

Gradient Boosting used loss functions instead of penalizing miss-classified data

samples as in AdaBoost. The loss function can be mean squared error for regression

or log loss for classification tasks. This boosting algorithm, utilizes gradient descent

method [85] to continuously minimize loss function. This enables the algorithm to

reach the optimal point with lowest error. Theoretically, it performs better than

AdaBoost. It is more susceptible to problems like overfitting and long run-time.

6.2.3 XGBoost

XGBoost stands for Extreme Gradient Boosting. It utilizes the engineering

skills to improve speed and performance for gradient boosting methods by pushing

the limits of computation resources. XGBoost can be considered as a framework and

it has recently won most of the competitions on Kaggle. It uses regularization to

overcome the problem of overfitting and speeds up performance by parallelization,

cache optimization and out-of-memory computation [73]. It also prunes the decision

trees beyond a certain depth which reduces run-time significantly.

6.2.4 Light GBM

Light GBM reduces the run-time of the boosting algorithm by making the

computational workload light. It still maintains higher level of model performance

compared to other similar algorithms. LightGBM implements a highly optimized

histogram-based decision tree learning algorithm, which yields great advantages on

both efficiency and memory consumption. It uses leaf-wise tree growth method in-

stead of level-wise tree growth method.
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6.2.5 CatBoost

CatBoost stands for Categorical Boosting. Categorical features can be directly

handled in CatBoost without the need of encoding. Its performance is optimal when

the features are categorical and it uses a permutation driven alternative.

6.3 Stacking

Stacking utilizes the power of different ML models as different models can learn

different patterns from the data. The architecture of a stacked model includes more

than one base level (level-0) models and a meta level (level-1) model that combines

the predictions of base models. The level-1 model is trained on the predictions made

by the contributing level-0 models on unseen data. The base model outputs may be

real values in case of regression and class labels or probabilities in case of classification

tasks.

Base models can be chosen wisely to make varied assumptions about how to

solve predictive modeling task. Some common models of choice are neural networks,

linear regression, logistic regression, support vector machines and decision trees. In-

stead of individual models, ensemble models like random forest can be used as a level-0

model. The performance of base models is better if their predictions are sufficiently

uncorrelated.

Meta level models are usually linear models with linear regression for regres-

sion and logistic regression for classification tasks. The linear models almost adapts

outputs from all base level models as a weighted combination.
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Algorithm 6 Stacking

1: Input: training data, D = {xi, yi}mi=1

2: Output: ensemble classifier H

3: Step 1: learn base-level classifiers

4: for t = 1, 2, ..., T do

5: learn ht based on D

6: end for

7: Step 2: construct new data set of predictions

8: for i = 1, 2, ...,m do

9: Dh = {x′
i, yi}, where x′

i = {h1(xi), ..., hT (xi)}

10: end for

11: Step 3: learn a meta-classifier

12: learn H based on Dh

13: return H

Figure 6.3: Stacking

Fig. 6.3 shows a configuration of stacked machine learning method. We have

considered K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Random
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Forest (RF) and Neural Networks (NN) as the base models. The meta level model is

logistic regression in our case. Same training data D is fed to all base level models

which use on different strengths to make predictions on the test data. These predic-

tions make the input to the meta level model which in turn gives the final prediction.

6.4 Results

We conducted multiple experiments to test the performance of different ML

models on the foliage target detection dataset. We tried different model configurations

but we get the best performance for the stack with KNN (5 neighbors), RF(500

decision trees), XGBoost(100 decision trees) and NN(1 hidden layer with 128 nodes).

6.4.1 Confusion Matrix Analysis of all models for foliage target detection
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Figure 6.4: Confusion matrix of all ML models for Foliage dataset
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The confusion matrix in Fig. 6.4 shows label wise model performance. The

stacked ML model performs the best as compared to KNN, RF and XGBoost. The

miss classifications are very low in the stacked ML case. The reason for this being the

base layer models are able to classify correctly in most test cases and working well as

an ensemble.

6.4.2 ROC Curve Analysis of All Models for Foliage Dataset

As shown in Fig. 6.4, Stacked ML model receives the highest AUC of 0.982. It

is significantly higher from the next best AUC for XGBoost. Stacked ML model is

able to perform well on true positive rate for all thresholds of classification decision.
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Figure 6.5: ROC curve of all ML models for Foliage dataset
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6.4.3 Accuracy Performance of All Models for Entire Wall Dataset

The accuracy bar chart in Figure 6.6 shows accuracy performance for considered

models trained on foliage dataset. KNN and RF perform the worst while stacked

model performs the best with accuracy of 98.75%.
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Figure 6.6: Accuracy of all ML models for Foliage dataset

After extensive experimentation and applying data transformation using our

domain expertise we were able to achieve significant performance improvement over

other methods. Our stacked ML system is able to detect metallic target in foliage

situation with an accuracy of 98.75%.
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CHAPTER 7

Conclusion and Future Research

7.1 Conclusions

In the first part of this dissertation, we have proposed a system to detect metallic

targets in foliage environment. Mission critical systems need to be ready for the harsh

working environment such as dense foliage, water bodies, rain, heavy winds and other

natural challenges. Extreme engineering excellence is needed to achieve a faultless

system during such critical tasks and routines. To solve this problem, we come up

with a Machine Learning system trained on wireless sensor network dataset. Our work

consists of four main parts: First, we clean and standardize the dataset. Second, we

transform the dataset using IFFT and PCA. Third, we train an XGBoost model on

this dataset and make predictions on the test dataset. Finally, we calculate errors

by comparing the predicted and actual values and obtain high accuracy with our

method [72]. Experiments and plots in Chapter 4 validate these claims. Chapter

4.1 discusses the entire data collection process in the foliage environment. Chapter

4.2 shows the dataset preparation phase of the experiment. Chapter 4.3 details the

XGBoost algorithm and its intricacies. Finally, Chapter 4.4 displays the confusion

matrix, ROC and accuracy metrics performance for the ML models.

In the second part of this dissertation, we have proposed a system to detect hu-

mans through walls. Human detection through walls, doors and corridors is critical in

applications such as hostage rescue situation, surveillance, activity recognition, etc.

Our work consists of three main parts: First, we clean and standardize the dataset.

Second, we train a Neural Network model on this dataset and make predictions on
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the test dataset. Finally, we calculate errors by comparing the predicted and ac-

tual values and obtain high accuracy with our method [79]. Experiments and plots

in Chapter 5 validate these claims. Chapter 5.1 discusses the entire data collection

process in the foliage environment. Chapter 5.2 shows the dataset preparation phase

of the experiment. Chapter 5.3 details the neural network algorithm and its intrica-

cies. Finally, Chapter 5.4 displays the confusion matrix, ROC and accuracy metrics

performance for the ML models.

In the last part of this dissertation, we have proposed an ensemble ML system to

optimize the first task of target detection in foliage environment. We apply generalized

stacked machine learning system to harness the power of different ML models. We

get the best accuracy with this method. Chapter 6.1 discusses the first approach of

ensemble learning. Chapter 6.2 discusses the second approach of ensemble learning.

Chapter 6.3 discusses the last approach of stacked learning. Finally Chapter 6.4

displays the confusion matrix, ROC and accuracy metrics performance for the ML

models.

7.2 Future Research

7.2.1 Infuse Multi-Modality Data in the System

Typically, ML does well with more data availability [9]. But more data comes

with high compute need so it is a trade off between performance and speed. An

amount of data should be selected which gives satisfactory results with optimum re-

sources. Varied data types can provide unique information pertaining to independent

dimensionality which can help improve the model’s performance.

Reasons to consider multi-modality data are as follows:

1. Modalities have different quantitative influence over the prediction output.
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2. As it is well known, ML models are chosen based on the type of data available.

Different models are able to extract different patterns from the data. Therefore,

it is natural to consider multiple modalities of the data if available.

Limitations of multi-modality data are as follows:

1. The problem with considering multi-modality multi classifier system is that it

starts with equal importance to all the sub-networks / modalities which is highly

unlikely in real-life situations. A weighted combination of the sub-networks

needs to be found so that each input modality can have a learned contribution

towards the output prediction.

2. N modalities of data are considered for the task and therefore it requires a much

longer time for training. Additionally 2-D data takes more time to train, so

trade-off between training time, compute power requirement and performance

enhancement must be considered.

Figure 7.1: Multimodality ML system

7.2.2 Uncertainty with Probabilistic Bayesian Neural Network (BNN)

Feedforward neural networks learn weights as numbers. It does not take into

account the uncertainty which can be found in the data or the model. Taking a prob-

abilistic approach to deep learning allows to account for uncertainty, so that models

can assign fewer level of confidence to incorrect predictions. Sources of uncertainty
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can be found in the data, due to measurement error or noise in the labels, or the

model, due to insufficient data availability for the model to learn effectively [86].

Reasons to consider BNN are as follows:

1. BNN finds the distribution of weight instead of a single set of weights making

it a robust model. By catering to the probability distributions, it can avoid the

overfitting problem by addressing the regularization properties.

2. BNN model provides the whole picture towards the prediction which allows

to automatically calculate the uncertainties associated with prediction when

dealing with unknown targets.

Limitations of BNN are as follows:

1. Since the model architecture is much more sophisticated, BNN trains for the

distribution parameters and it requires a much longer time to converge for

training.

2. It is challenging to understand all the theories and formulae behind BNN. A

solid understanding of statistical distributions is needed so as to apply the

appropriate prior and posterior functions.

Figure 7.2: Standard & Bayesian neural network
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Therefore, considering multi-modality data for target detection in foliage and

sense-through-wall human detection will be beneficial and next on the agenda. Un-

certainty prediction using Bayesian Neural Network in the sense-through-wall human

detection will be one of the focus of next work.
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