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Abstract 

EFFECT OF CENTRIFUGAL FORCE ON THE LOAD CAPACITY OF THRUST GAS 

BEARING 

RAKAN M. HAIDAR 

The University of Texas at Arlington, 2022 

Supervising Professor: Daejong Kim                                                                                                                                                                                

               It has been known for many decades that both rigid and foil thrust bearings are two 

options in the market for high-speed turbomachinery systems. Their advantages encompass the 

lower manufacturing cost, the lighter weight, and the flexibility in allowing “component 

misalignment and runout.” When the operating fluid is air, the classical lubrication theory works 

perfectly. Any additional terms of the inertia effect might be somehow less significant and 

sometimes negligible since the viscous forces will be dominant, but this may not be the case if the 

bearing operates in a harsh environment, such as a high-pressure environment. Nonetheless, this 

is a different scenario when dealing with water or denser gases lubricated bearings since the inertia 

forces have significance and effects as same as the viscous forces. Therefore, the classical 

lubrication theory, where the inertia forces are very small – Modified Reynolds number (Re) << 1 

– should be rederived and modified to include those additional terms. As they play a major role in 

affecting the bearing performance by reducing its load capacity, they should be considered. This 

thesis shows the comparison of both solutions when inertial terms are considered and when they 

are not through the comparison of the local Reynold number, pressure, streamlines, deflections, 

and load capacity.  
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Chapter 1: INTRODUCTION 

Thrust Bearing Categorization & Classical Lubrication Theory Entrance 

               Bearings are the primary structural component of rotating machinery. They come in 

many types, and they can be categorized based on different criteria, such as the design and working 

medium, or the direction of the load. The last criterion will be briefly discussed herein. The bearing 

can be classified based on the direction of loading into radial (Journal) bearings, thrust bearings, 

and linear bearings. The thrust bearings will be further discussed as this research mainly focuses 

on the thrust bearings. A thrust bearing can be defined as the main component of a rotating machine 

that restrains the movement of the shaft along its length. Moreover, the thrust bearings can also be 

categorized based on the design, such as rolling element thrust bearings, magnetic thrust bearings, 

and fluid film thrust bearings. The fluid film thrust bearings can also be classified based on the 

type of lubricant of the bearings, which can be oil, water, or a variety of gases including ambient 

air. The thrust bearings that operate either by water or gas, oil-free (eco-friendlier to the 

environment), will be further discussed. Since water and some of the gases have the characteristics 

of very low viscosity and high molecular weight, respectively when compared to the air, the inertia 

effects must be considered. Because when lubricants have these characteristics, they can affect the 

bearings’ performance to a great extent. The fluid film thrust bearing can also be classified based 

on the mode of lubrication as hydrodynamic fluid film bearing or (hydrostatic/hybrid) fluid film 

bearing. Each mode has a distinctive difference in the operating principle. The hydrodynamic 

thrust bearing is the bearing “composed of compliant surfaces and generally employs a fluid 

lubricant,” where the runner “drags the viscous fluid into a converging gap,” at which the fluid 

pressure will be increased producing the load-carrying capacity [1]. The hybrid thrust bearing is 

governed by positive pressure, where it is employed by the lubricant under the pressure between 



2 
 

the stationary and the moving surfaces. The amount of the lubricant being pressurized into the 

hydrostatic bearing is controlled based on the load on the shaft and the rotational speed. The thrust 

bearing can also be designed as a rigid bearing, where the bearing’s pads are considered rigid (no 

deflection or perhaps zero deflection). However, the thrust bearing can also be a foil thrust bearing, 

which is composed of the top foil and the elastic foundation (the corrugated bumps) underneath to 

be welded to the bearing’s backing plate at certain spots. These spots can be determined based on 

the design. The corrugated bumps provide stiffness and damping to the bearing. Figure 1 illustrates 

the structure of the hydrodynamic thrust bearing. The hybrid thrust bearing is similar except there 

are fluid orifices drilled through the two foils through which the lubricant is gushing out from an 

external source between the stationary surface, the thrust bearing, and the moving surface, the 

runner. Table 1 shows the main parameters of the gas thrust bearing that will be used throughout 

this document, and its parameters were used as input to the simulation. 

 

 

Figure 1: Typical geometry of a hydrodynamic foil thrust bearing, [14] 
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Table 1: Parameters of gas thrust bearing used in this thesis 

Parameters Value 

Inner Radius iR (mm) 23.5 

Outer Radius OR (mm) 41.0 

Number of Pads 6 

Total (Assembly) Clearance, C ( m ) 60 

Pad Angle 58 

Flat to tapered region ratio 0.5 

Taper Height (mm) 0.05 

Number of Lubricant’s Orifices 2 

Radial Position of Orifice1 (%) * 0.229 

Radial Position of Orifice2 (%) * 0.743 

Circuferential Position of Orifice1 (%) * 0.3 

Circuferential Position of Orifice2 (%) * 0.3 

Radius of  Orifices (mm) 0.5 

Possible RPM (Current Simulation Speed) 0 – 68000  

Total Stiffness of The Corrugated Bumps 200.0e6 

Number of Circumferential Grid Points (i), Used in Simulation (n) 120 

Number of Radial Grid Points (j), Used in Simulation (m) 60 

Temperature ( )oC  250 

Young's Modulus Pa 200e9 

Poisson Ratio 0.3 

External Applied Load 1000 N 

Lubricant Air 

* These percentages indicated as the radial position percentages can be multiplied by the radii of 

(Ro-Ri) to get the radial length at which the two orifices radially located. Similarly, to locate their 

position circumferentially after getting the radial length from the previous calculation of the 

lengths associated to the location of the orifices radially, it is possible to multiply those radial 

lengths by (0.3*Pad Angle) to get the circumferential locations of both orifices. Figure 5 shows 

the two holes through the bump foil, through which the orifices are being placed within a bearing’s 

pad area.  
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Chapter 2: LITERATURE REVIEW                                                                                                                                     

               There are countless aspects of why bearings’ designers may have to include the inertia 

effects while designing fluid film bearings, such as water or gas-lubricated bearings. First and 

foremost, some lubricants are much denser than ambient air, such as water, and gases with high 

molecular weight. Besides, when the bearing operating speed is high. Thus, the classical 

lubrication theory, where the inertia forces are very small – Modified Reynolds number << 1 – 

must be modified to consider those additional effects. Second, the centrifugal force can 

substantially reduce and restrain the bearings’ performance, such as the bearings’ load capacity. 

Thirdly, these forces can substantially hinder the lubricant from properly flowing. If one examines 

the physical properties of the water, and some common gases that are used in fluid film bearings, 

it is possible to see that the water has very low viscosity compared to conventional lubrication oils, 

and those common lubricant gases are much denser than the ambient air. Mostly, the common 

gases used in the fluid film bearings have high molecular weight, which means high density. For 

a while, these gases have been used for many systems to operate ranging from small compressors 

to turbine engines. These gases can simultaneously be used to lubricate the gas bearings since these 

systems can use the same gas to operate. Consequently, knowing how to analyze the performance 

of the gas bearings is extremely important. For instance, Freon gas (R-134a) can mostly be used 

in cooling systems as it is the most efficient cooling gas that has ever been known. Therefore, if a 

turbo compressor, which is usually equipped with gas bearings, is to operate at high speed, it is 

possible to use R-134a to operate the cycle and lubricate the bearing. Similarly, in the Closed 

Bryton Cycles (CBC), the supercritical carbon dioxide (sCO2) cycles use carbon dioxide gas that 

is in a supercritical state, which is another efficient type of gas that can be used for this cycle to 

operate efficiently. 
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Comments & Remarks 

            Inertia effects cannot be neglected when designing fluid film bearings that are lubricated 

either by water or high-molecular-weight gases, which are highly denser than air, especially when 

operating at high speed and high Reynold’s number, where both inertia effect and turbulence are 

more pronounced.  Even so, sometimes inertia effects should be considered if the lubricant is the 

air and that is based on taking a high-level precaution because of the high-level precision 

requirement of the application and the environmental conditions where the bearing is operating. 

The inertia effect should be considered because it has an effect that can exacerbate the bearing’s 

performance by hindering the proper flow of the lubricant and decreasing the load capacity 

substantially due to the centrifugal force. From [2], it has been stated because both convective and 

centrifugal effects are weekly coupled, they can be analyzed and tested separately. The centrifugal 

effect has a negative effect by reducing the load capacity while the convective effect has a positive 

effect by increasing the load-carrying capacity. Furthermore, in the case of the tilting pad thrust 

bearing, when the film thickness ratio is small or the extent angle is large, the centrifugal effect is 

the highest in the medium, and that will cause a reduction in the load-carrying capacity. 

Nonetheless, when the film thickness ratio is large, or the extent angle is small, the convective 

effect is dominant, and that will cause an increase in the load-carrying capacity. Noteworthy, both 

centrifugal and convective forces are canceling each other at which both the film thickness ratio 

and the extent angle are moderate. From [3], it has been shown that the ratio of the radii has a 

pronounced influence on the load capacity, where it decreases when the inertia effect is considered 

compared to the inertia-less case. As previously mentioned, the highly dense gases presented in 

Table 2 can be used as a working fluid as well as a lubricant for the hydrostatic bearings in the 

mechanical closed cycles to operate, such as Closed Bryton Cycles (CBC) that operate using 
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supercritical carbon dioxide (sCO2). From [13], using supercritical carbon dioxide in a Closed 

Bryton Cycle would be a brilliant idea for many reasons. First, due to its high density and 

volumetric heat capacity, that will help reduce the size of the cycle when compared to the 

conventional cycle size which would require less budget and cost. Second, it is considered an ideal 

working fluid because it is non-explosive, non-flammable, and non-toxic. Lastly, it is relatively 

cheap compared to other working fluids. Therefore, the advantages of the hydrostatic foil bearings 

greatly outweigh the advantages of the oil-lubricated bearings if used in closed systems that 

operate with gases. From [6], some gases have been tested in the High-Pressure Rig at NASA Glenn 

Research Center to monitor the bearing’s power loss; it has been found that the bearing’s power 

loss greatly depends on the gas density and the shaft speed. There is a threshold speed above which 

the bearing’s power loss increases with the increase of the pressure, and the threshold speed 

increases as the gas molecular weight decreases. Thus, the inertia forces play a major role in 

affecting the bearing’s power loss. From another perspective, when testing and analyzing the 

bearing performance, one of the important matters that can be analyzed and tested is the bearing’s 

stability. From [7], it has been recommended that the inertia effect must be considered when the 

modified Reynold number is greater than one because those terms can drastically deteriorate the 

bearings’ performance. This is true, and it has been verified how those terms can affect the thrust 

bearing’s performance, such as the bearings’ load capacity. However, they concluded that those 

inertia terms could enhance the journal bearings’ performance by increasing the bearings’ stability. 

Their conclusion opposes the conclusion of this current work because centrifugal force is 

detrimentally worsening the thrust bearing’s load-carrying capacity. Also, this might be different 

for the case of journal bearing. Therefore, this issue should be addressed further. From [8], it has 

been concluded that in some situations even though the flow of the lubricants is laminar, the inertia 
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effects can play a major role and cannot be neglected because of the high velocity of the lubricants 

as they have a low viscosity, such as synthetic lubricants. Therefore, the stability of the rotor kept 

worsening even at a lower eccentricity ratio with the increase of the ratio of the bearing’s length 

to its diameter ( )/L D .   

 

Table 2:Viscosity & molecular weight of gases used in thin-film bearings [4] 

Gas 
Chemical 

Formula 

Molecular weight 

(g/mol) 

µo 

µPa-s 

To
 

K 

T* 

K 

Acetylene C2H2 26.036 10.2 293 198 

Air O2+N 29.000 17.1 273 124 

Ammonia NH3 17.034 9.82 293 626 

Argon Ar 39.950 22.04 289 143 

Carbon Dioxide CO2 44.010 13.66 273 274 

Carbon 

Monoxide 
CO 28.010 16.65 273 101 

Chlorine Cl2 70.900 12.94 289 351 

Chloride HCL 36.458 13.32 273 360 

Helium He 4.003 18.6 273 38 

Hydrogen H2 2.016 8.5 273 83 

Hydrogen sulfide H2S 34.086 12.51 290 331 

Methane CH4 16.042 10.94 290 198 

Neon Ne 20.180 29.73 273 56 

Nitrogen N2 28.020 16.65 273 103 

Nitric Oxide NO 30.010 17.97 273 162 

Nitrous Oxide N2O 44.020 13.66 273 274 

Oxygen O2 32.000 19.2 273 138 

Steam H2O 18.016 12.55 372 673 

Sulfur Dioxide SO2 64.070 11.68 273 416 

Xenon Xe 131.300 21.01 273 220 

Gas constant R = (8,314,34 J/Kg-K)/MW 
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Chapter 3: DERIVATION, MODIFICATION, CODING, AND SIMULATION 

Classical Lubrication Theory 

               The Classical Lubrication Equation or perhaps the so-called Classical Reynolds Equation 

is the equation “based on the work of Osborne Reynolds (Reynolds, 1886).” which gave birth to 

the science of hydrodynamic lubrication,” (Khonsari 2017) [9]. The Classical Reynolds Equation 

is based on the assumptions of negligible flow inertia and curvature effect due to the low Reynolds 

number and the thin film, respectively. Similarly, the Classical Reynold Equation in polar 

coordinates can be derived as the Classical Reynold Equation in the cartesian coordinate, or it can 

be obtained through the coordinate transformation from cartesian to polar coordinates. The 

classical Reynolds equation in polar coordinates is given by the equation(1). 

 
( ) ( )3 31 1

12 12 2

h hh p h p R
R

R r r R R R t

   

    

       
+ = +   

        
 (1) 

 Where, / r   is the partial derivative concerning the radial direction (r) or ( );(r) indicates the 

dimensional coordinate while ( ) indicates the nondimensional coordinate. /    is the partial 

derivative concerning the circumferential direction ( ), (p) is the pressure, (R) is the radius, ( ) 

is the angular velocity, (  ) is the density, ( ) is the dynamic viscosity, (t) is the time, and (h) is 

the film thickness, which is illustrated in Figure 2 and defined by equations(2) and(3). 

 

Figure 2: Cross-sectional configuration of the thrust bearing [9] 
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 operating T runnerh C z= −  (2) 

, where                 TC  is the assembly clearance       runnerz is the   axial displacement   

 
1      0

     

operating taper taper

taper

operating taper pad

h h C

h h


 



  

 
= + −    

 

=  

 (3) 

Modified Reynolds Equation with Inertia Effects  

               When including those terms associated with the inertia effects, the classical Reynolds 

Equation in polar coordinates will be modified, and it can be called the modified Reynolds 

equation. This equation is fully discussed and derived by Pinkus and Lund in reference [8], and 

this derivation procedure will be discussed again in this document. To derive this Equation, the 

assumption of constant property across the film has been made. As it has been done to derive the 

Classical Reynold Equation, this derivation starts from continuity and momentum equations. 

However, the resulting Navier-Stocks equations that should be taken into consideration after 

imposing the continuity equation into the momentum equations will be a bit different and 

complicated. Both Navier-Stocks equations when deriving the classical Reynolds equation and the 

Modified Reynolds equation differ because the terms on the left-hand side of the Navier-Stocks 

equations are to be considered when deriving the modified Reynolds equation. Those terms are to 

be included when considering the inertia effects since the modified Reynolds’ number may be 

higher or equal to 1. Nevertheless, the third equation of the Navier-Stocks equations representing 

the lubricant flow along the axial axis (w) will be neglected because of the “ usual assumptions in 

lubrication theory about the smallness of w, ( /p y  ), etc,” (Pinkus and Lund 1981) [8], knowing 

that w represents the velocity vector of the lubricant in the direction out of the paper. Noteworthy, 

the reference of all the derivations in this section follows Pinkus and Lund. Therefore, the Navier-
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Stocks Equations for the sectorial configuration illustrated in Figure 3 will be given by equations(4) 

and(5). 

 
2

2

1u u u uv u
v p

r r r r y




  

      
+ + = − +     

       
 (4) 

 
2 2

2

1
r

v u v u v
v p

r r r y



  

        
+ − = − +      

         
 (5) 

Now, as the runner is rotating relative to the stationary surface, the bearing surface, equations(6) 

and(7) can be formed. The subscript of s indicates the shear-induced flow, and the subscript of p 

indicates the pressure gradient.  

 s pu u u= +  (6) 

 pv v=  (7) 

Pinkus and Lund stated, “in most bearing applications, particularly for bearings with high linear 

speed, we will have,” the following assumption. 

   ,    p s p su u v v u  
 

Now, both equations(4) and(5) can be written as equations(8) and(9) when aiming to evaluate the 

inertia forces.  

 
2

2

1 s su uu
p

r y r







    
= −    

   
 (8) 

 
2

2

s
r s

uv
p u

y r



 

= +  
 

 (9) 
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Then, it has been assumed since ( )/su U y h= , the value of su will be the same at any location of 

angular position ( ). Therefore, the following expression in the equation(10) holds, and the term 

left is the centrifugal term only.  

 0su



 
 
 

 (10) 

Consequently, equations(8) and(9) can also be written as equations(11) and(12). 

 
2

2

1u
p

y r



=


 (11) 

 
2 2

2 r

v u
p

y r




 
= − 

  
 (12) 

 

Now, it is possible to integrate both equations(11) and(12) over the film thickness with the 

consideration of the following boundary conditions. After integrating, both velocities distribution 

of u and v are given by equations(13) and(14) , respectively, following the Pinkus and Lund paper, 

[8]. 

    ,  0 at 0

0       ,  0 at 

u r v y

u v y h

= = =

= = =  

 ( )
( )
2

B

y h yr
u h y y p

h r
 



−
= − + −    (13) 

 
( )

( ) ( ) ( ) ( ) ( )
2

2 2 3 3 4 4 5 5

1 2 3 4
2

rr p y
v y h y K h y K h y K h y K h y

r

  

 

−
 = − + − + − + − + −
 

 (14) 

, where 
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( )

( )
( )

( )

2
2

1

2 2

2

3 2

2

4

2 3

1 1 1
2 2

12 2 2

1

20 2

1 1
 

30 2

                

B

B

B

B

r

h
K p r

h

r h
K p p

h r

h
K p p

r h

K p
r

p p
p p

r



 
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Figure 3: Basic nomenclature of bearing’s sectorial configuration [8] 
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               After obtaining both equations(13) and(14), it is possible to do the dynamic balance over 

the control volume of the sectorial configuration shown in Figure 3. The control volume of the 

bearing’s sectorial configuration is illustrated in Figure 4. 

 

Figure 4: Control volume of the bearing sectorial configuration [10] 

After doing the dynamic balance, the obtained equation will be given by the equation(15). After 

substituting all parameters, Ks’ values are defined in equation(14), rearranging, changing the 

derivatives to a partial derivative form, and multiplying the whole equation by -1, equation(15) can 

be rewritten and represented by equation(16). 
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 (16) 

This is generally the modified Reynold’s equation including inertia force in convection-diffusion 

form. For gases, density in equation(16) can be replaced with pressure using the equation of state, 

equation(17).  

 
g

p

R T
 =  (17) 

Thus, equation(16) can be represented by equation(18). 
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 (18) 

For the isothermal case, gR T  can be dropped off of the whole equation and if multiplying both 

sides of the equation by 12 so that equation(18) can also be expressed by equation(19). 
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 (19) 

Equation(19) is the modified Reynolds equation for compressible gases including centrifugal 

inertia force. When inertia is all neglected, equation(19) is reduced to the traditional thin film 

Reynolds equation, equation(20). 
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Non-dimensional Modified Reynolds Equation   

It is also possible to represent equation(19) in a non-dimensional form using the following 

nondimensional parameters. 

( )

2
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, where                        ( ) a/ 2            P =101325 PaT T i oU R R R = = +       

Now, equation(19) can be expressed by equation(21).  
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Equation(21) can also be condensed to be represented by equation(22) . 
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 (25) 

The first term in equation(23) is the shear-driven term, and the second term is pressure-driven along 

the circumferential direction. The first term in equation(24) is the centrifugal force, and the second 

term is pressure-driven along the radial direction. sQ indicates the flux term of the right-hand side 

term of equation(19); it is given by equation(25). The first term is the transient term, and the second 

term is the new term associated with the inertia effect. 

Coding and Simulation of Modified Reynolds Equation  

               The main objective of this thesis is to derive and add the inertia effects to the classical 

lubrication equation. Not only this but also to solve the classical Reynolds equation as well as the 

modified Reynolds equation to compare the solutions and investigate how those inertia terms affect 

the thrust bearing’s performance or perhaps the bearing’s load capacity. The first step was to 

implement those new terms in the classical Reynolds equation solver. The thrust foil bearing code 

has the capability and a wide variety of options, it can simulate both the rigid as well as the foil 

bearing. It also has the option to simulate both solutions while including the inertia terms and while 

not. Further. It also has the option to solve Reynold’s equation only once for the case of the rigid 

bearing while giving the minimum film thickness as an input, and then a comparison can be done 

between the two solutions to investigate the difference in pressure and the bearing’s load capacity. 

However, this method cannot be used when solving the case of the foil gas bearing because of the 

deflection that occurs to the bearing’s foils with time. Therefore, the transient method is rather be 
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used to solve for the gas foil bearing. Consequently, Reynold’s equation is solved iteratively by 

the Gauss-Seidel at each nodal point of a bearing’s pad, where it keeps iterating until mapping out 

the steady-state solution. When simulating the foil gas bearing, there is an elastic foundation (the 

corrugated bumps) that provides both bearing’s stiffness and damping coefficients. The bumps foil 

can be visualized to be welded to the bearing’s backing plate, usually almost halfway from the 

leading edge, and on top of that, the top foil is welded to the bearing’s backing plate at the leading 

edge of the bearing’s pad as it is clearly illustrated in Figure 1. “Once the pressure profile is 

evaluated, all other bearing performance such as load-carrying capacity, friction force, flow rate, 

etc., can easily be determined,” (Khonsari 2017) [9]. Therefore, it is possible to plot the pressure 

profile from the numerical data. The bump mapping is critically needed to run this code for the gas 

foil bearing mode. It needs the bump mapping numerical data where the elastic foundation and the 

corrugated bumps are touching the backing plate. These numerical data are needed as input to the 

bump deflection subroutine function to calculate the deflection of the bearing’s foils. This bump 

deflection subroutine function is modeled as a 2D plate model. The input file can be generated 

using a simple code written in MATLAB. This code can generate the required bump mapping file 

if the dimensions of the radial slots are predicted and implemented in the MATLAB code. 

Basically, the bump mapping file is numerical data, which are represented by zeros & ones, where 

the zeros mean the corrugated bumps are not touching the bearing’s backing plate, yet the ones 

mean touching. Figure 5 shows the Solid Works (CAD) Model of the actual bearing’s corrugated 

bumps foil.  

 

 

https://www.bing.com/ck/a?!&&p=ca8ec0fa7f54b18bJmltdHM9MTY2OTA3NTIwMCZpZ3VpZD0xMmVlOTc2MC1kOGY0LTY3OTEtM2UyOC04NTM2ZDlhMzY2ZmYmaW5zaWQ9NTE4OQ&ptn=3&hsh=3&fclid=12ee9760-d8f4-6791-3e28-8536d9a366ff&psq=DGuess+Sidel+iterative+method&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvR2F1c3MlRTIlODAlOTNTZWlkZWxfbWV0aG9k&ntb=1
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Figure 5: Bottom & front views of the actual corrugated bumps 

 

Figure 6 shows the bearing’s bumps mapping configuration of the bearing’s six pads, where the 

yellow lines represent the values of ones of the numerical date in the mapping input file, and the 

blue areas enclosed by those yellow lines, are the areas of the zeros’ numerical values. 

 

Figure 6: Polar plot of the corrugated bumps of the six pads  
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Discretization of Modified Reynolds Equation  

               To introduce equation(22) to the code, it should be in a discretized form; the method of 

the discretization can be fully found in the book of Numerical Heat Transfer and Fluid Flow, 

(Patankar 1980), [10]. After the discretization, it is possible to apply the method of undetermined 

coefficients, which is also widely known as the finite element difference scheme (forward, 

backward, and central difference), which are applied to the right-hand side term, the source term 

sQ , of the Modified Reynolds Equation, equation(25). The forward scheme of the first order is 

given by equation (26) while the backward scheme is given by equation (27).  

 
( ) ( ) ( )3 4 2

2

w x w x h w x hw

x h+

− + + − +



 (26) 

 
( ) ( ) ( )3 4 2

2

w x w x h w x hw

x h−

+ − − + −



 (27) 

Equation (28) gives the mathematical expression for the central difference scheme. h is the distance 

between two consecutive grid points. 

 
( ) ( )

2

w x h w x hw

x h

+ − −


 
 (28) 

If one looks at Figure 7, it is easily can be seen that the yellow grid point is the current grid point, 

and the blue grid points are the points halfway from the current grid points and are the intended 

points to be calculated at this instance while the red grid points are a single grid point away from 

the current grid point. Those forward and backward difference schemes are applied on the 

boundaries of the control volume represented by  
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Figure 4 mainly on the source term, sQ , but the central difference scheme is applied everywhere 

on the area enclosed by the boundaries of the four sides. This method is mainly applied to make 

sure that the code is reading the numerical data enclosed by the pressure control volume as 

illustrated in Figure 7. Going beyond this control volume when reading the numerical data of the 

source term, the results will not converge. Consequently, the forward scheme is needed at the south 

and west sides while the backward is needed at the north as well as the east side.   

 

Figure 7: Bearing’s control volume of a single grid point of a single pad 

 

If expressing equation(22) in incremental form, it can be rewritten by equation(29). This equation 

is the Modified Reynolds Equation in flux form.  

 sQ Q Q Q Q   

+ − + −− + − =  (29) 

The first term of equation(29) is the flux term along the circumferential direction of the positive 

increment, which is given by equation(30). Equation(30) also represents this term in a discretized 

form of a convection-diffusion term. 
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Similarly, the second term of equation(29) is the flux term along the circumferential direction of 

the negative increment. This term is given by equation(31); equation(31) also represents this term 

in a discretized form of a convection-diffusion term. 
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Likely, the third term of equation(29) is the flux term along the radial direction of the positive 

increment. This term is given by equation(32); this term is also represented in a convection-

diffusion term. 
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Similarly, the Fourth term of equation(29) is the flux term along the radial direction of the negative 

increment. This term is given by equation(33). This term is also expressed in a convection-diffusion 

term. 
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Lastly, the fifth, or perhaps the right-hand term of equation(29) is the source term and is given by 

equation(34). the first term of this equation, ( the squeeze term) will be equal to zero when solving 

for the steady-state case but not when solving for the unsteady state (the transient method). The 

second term, which is associated with the inertia terms, can be separately represented by 

equation(35). 
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Considering a special case for isothermal case, where 1 = , equation(35) will be reduced to 

equation(36).  
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If rearranging equation(36) and enforcing the expression in equation(37) back into equation(36), 

equation(38) can be formulated. 
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Defining a new parameter (Psi, ( ),  ) to be equal to the mathematical expression as is shown 

by equation(39)  to avoid the long expansion, where if done, it will be a very long term. 
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Finally, the second term of the source term, equation(35) can be rewritten by equation(40). 

Consequently, equation(34) can be rewritten as equation(41). 
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After getting both equations(39) and(41), it is possible to discretize both of them. If they are 

discretized following the finite element difference scheme described at the beginning of this 

section, they can be rewritten as equation(42) to equation(47), respectively.  
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If introducing the Peclet Number, Pe given by equation(48), (Patankar 1980), [10] on both 

directions ( ) and ( ).  

 1/2, 1/2, , 1/2 , 1/2

1 1 1 1
, , , ,

2 2 2 2

1 1 1 1
, , , ,

2 2 2 2

                                             i j i j i j i j
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F F F F
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D D D D
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   
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+ − + −
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= = = =  (48) 

Also introducing the power law scheme for numerical stability, which can be defined by 

equation(49).  

 ( ) ( )( )
5

, ,max 0, 1 0.1i j i jA Pe Pe −  (49) 

Now, substituting all consecutive equations from equation(30) to equation(33) and equation(41) 

into equation(29) With implementing Peclet Number, all expressions in equation(48), and the 

power law scheme, equation(49), equation(29) can be re-expressed by equation(50). 
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Thus, equation(50) is the discretized form of the Non-Dimensional Modified Reynolds Equation, 

noting that while incorporating these equations in the code, if statements should be made where 

both the terms of ( ),sQ i j  and ( )
( ),

,
i j

  embedded inside it should be reflected and considered 

in the term ,i jb based on the location of the grid points. 
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Mesh Refinement 

               Both Table 3 and Table 4 show the cases of mesh refinement for the case of rigid 

Hydrodynamic bearing of 3-bar and 9-bar ambient pressures, respectively. These two cases have 

been chosen to do a refinement study to choose an optimal grid point for doing the numerical 

computation. The rigid hydrodynamic case has been chosen to do the refinement analysis because 

it is the fastest case where the results could be simulated with just a button click. The chosen grid 

points, highlighted in gray, are the 120 and 60 grid points along the circumferential and radial 

directions, respectively. This meshing option has been chosen to be an optimal option for this 

analysis because it maintains a good accuracy of the results as it is possible to see the comparison 

within the upcoming paragraphs, and it does not take a very long time for the numerical solution 

to be computed, especially for foil bearing cases. 

               The main objective of the numerical analysis in this thesis is to make a comparison 

between both solutions of the classical Reynolds equation – the inertia effect not considered – 

versus the modified Reynolds equation, where the inertia effect is considered. Therefore, it really 

matters how to choose the grid points while doing the simulation because it highly affects the 

solution accuracy. Since the key parameter that should be solved first from these equations is the 

pressure, and the load capacity is mainly the required parameter to be compared from both 

solutions, both are assigned to be compared while doing the refinement study of the grid points. 

               If looking through the tables below, one can see that the difference between both values 

of the pressure when including and not including the inertia terms (Pressure Difference, in the 

tables) are decreasing as the grid points are increased. This means that the accuracy of the results 

is getting better. Further, if we look at Table 3, the schemes of grid points, one can see that the 

difference between both values of the pressure difference of the current chosen grid point and the 
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next choice of a grid point is approximately between 0.0055 0.01 bar. Similarly, if one look at 

the difference between the difference of the load capacity of the current grid point and the next 

grid point choice, it is possible to see that the difference is ranging between 0.7 2.50 N. If 

considering the refinement study based on the ambient pressure equals to 3 bar, the study will not 

be accurate and not accurate to do the comparison because in the case of rigid hydrodynamic case, 

it was barely to see a difference between both solutions of including and not including the inertial 

terms when the ambient pressure is less or equal to 3 bar. Therefore, a higher ambient pressure 

condition, 9 bar, has been chosen to further investigate and complete this refinement study. If 

looking at Table 4, it is possible to see that the difference between both values of the pressure 

difference of the current chosen grid point and the next choice of a grid point is approximately 

between 0.0082 0.06  bar. Similarly, if one look at the difference between the difference of the 

load capacity of the current grid point and the next grid point choice, it is possible to see that the 

difference is ranging between 4.50 15N. Accordingly, it is possible to infer that the higher the 

grid points, the higher the accuracy of the output results. However, the choice of the grid point 

should be picked wisely because a great deal of time is required when solving for both cases of 

foil bearing, where the transient method should be used due to the deflection of the bearing’s foil. 

Consequently, the current chosen number of grid points highlighted in gray in both tables is an 

optimal choice, and there is no need to increase the number of grid points further because it has 

been noted several times when the grid points are increased to a level more than the current choice 

of grid points, highlighted in gray, the required time for the computation is dramatically increased. 

Therefore, no need to go to higher grid points, especially that the difference of the pressure 

difference and the load capacity difference of each grid point choice and its next grid point choice 

is almost nothing. Furthermore, these differences between solutions are not worthy to increase the 



29 
 

computational time, especially if the simulation will be run several times to solve for all ambient 

pressures ranging from 1 to 10 bar. 

 

Table 3: Grid points refinement for rigid hydrodynamic 3 bar ambient pressure 

Grid  

Points(n) 

Grid  

Points(m) 

Maximum Pressure (bar) Pressure  

Difference 

Load Capacity (N) Load Capacity  

Difference No Inertia Inertia No Inertia Inertia 

30 15 10.2487 10.1619 0.0868 1218.83 1199.52 19.31 

60 30 10.1653 10.0853 0.0800 1143.27 1125.96 17.31 

90 45 10.1266 10.0525 0.0741 1115.91 1099.34 16.57 

120 60 10.0356 9.96697 0.0686 1087.43 1072.10 15.33 

150 75 9.82918 9.76782 0.0614 1039.10 1025.83 13.27 

180 90 9.53879 9.48683 0.0520 975.836 964.786 11.05 

210 105 9.21838 9.17514 0.0432 907.170 898.051 9.119 
 

 

Table 4: Grid points refinement for rigid hydrodynamic 9 bar ambient pressure 

Grid  

Points(n) 

Grid  

Points(m) 

Maximum Pressure (bar) Pressure  

Difference 

Load Capacity (N) Load Capacity  

Difference No Inertia Inertia No Inertia Inertia 

30 15 18.4296 17.8990 0.5306 1431.53 1296.41 135.12 

60 30 18.2356 17.7306 0.5050 1319.99 1199.08 120.91 

90 45 18.1668 17.6700 0.4968 1282.67 1166.26 116.41 

120 60 18.0647 17.5949 0.4698 1247.74 1138.84 108.9 

150 75 17.8621 17.4363 0.4258 1190.22 1093.68 96.54 

180 90 17.5810 17.2076 0.3734 1110.90 1028.03 82.87 

210 105 17.2671 16.9432 0.3239 1017.75 946.595 71.155 
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Chapter 4: RESULTS AND DISCUSSION 

                  After discretizing the Modified Reynolds Equation as fully explained in detail in the 

previous chapter, the next step is to implement all equations from the prior chapter to the C++ 

code. After implementing, debugging, and making sure that the results were converging, and the 

results were satisfactory, they agreed to the former literature in chapter 2, the code was run again 

several times to simulate the case of both rigid and foil thrust bearings. This simulation has been 

done with the consideration of the incompressible lubricant, isothermal medium, and constant 

viscosity because the main aim is to purely investigate the effects of the inertia effects (Centrifugal 

Force) when added to the classical lubrication equation (Reynolds Equation).            

Results from Simulation 

               Several cases were run to simulate the thrust bearing that has the parameters given in 

chapter 1, Table 1 as rigid and foil bearing. Both lubrication modes of hydrodynamic as well as 

hybrid are simulated for both types of bearing. When simulating for the rigid mode, the minimum 

film thickness is set to be constant at 5 microns and used to be the input in the Reynolds equation 

solver. Therefore, after the pressure has been calculated, it will be integrated over the pad’s area 

to get the load capacity of the bearing. With that being done, after simulating both cases with 

including and without including the inertia effect, it is possible to see the difference and do the 

comparison through the maximum local Reynolds number, pressure profiles, streamlines, 

deflections, and load capacity. However, different step input external load is applied until 

achieving approximately the 5 microns minimum film thickness when simulating for the foil 

bearing case.  
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Local Reynolds Number 

               The bearing has been simulated up to 10 bar (1000 kPa) ambient pressure to mainly 

measure the bearing’s load capacity. The simulation cases were limited to 10 bar ambient pressure 

because this limitation was based on the calculation of the local Reynolds number. The calculation 

of the local Reynolds number is given by equation(51). Table 5 shows the maximum local 

Reynolds numbers at the grid points for all simulated cases. This calculation has been done to 

verify that the maximum local Reynolds number at the grid points is around 2300 as an indicated 

measure for this solution to be valid since the main assumption was based on Laminar flow. 

Cengel, Y. and Cimbala, J. have stated that for a flow to be a laminar flow, Reynolds number 

should be smaller or equal to 2300. It is a transitional flow if the Reynolds number is greater or 

equal to 2300 and smaller or equal to 4000; however, the flow is turbulent if the Reynolds number 

is greater than 4000, [12].  

 
( ) ( ) ( ), , ,

Re
gas

p r h r u r

R T

  


=  (51) 

 

, where        ( ),u r  : is the average circumferential velocity given by equation(52) 

                   ( ),P r  : is the pressure over the pad area. 

                    ( ),h r  : is the film thickness, and here it considered to be the hydraulic diameter.  

                    gR : is the gas constant        T: is the temperature           : is the dynamic viscosity 

                  Generally, Table 5 shows that the local Reynolds number is getting higher as the 

pressure increases and tends to be almost similar for both cases of Rigid hydrodynamic bearing 

whether including or not including the inertia effect. Nevertheless, in the case of the Rigid hybrid 

bearing, the local Reynolds number tends to get a bit smaller when including the inertia effect. 
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Unlikely, for both cases of the lubrication mode of the foil bearing, the local Reynolds number 

tends to increase with including the inertia terms and even get higher than 3000 when the pressure 

is 8, 9, and 10 bar in the case of foil hybrid. Even though the pressure drops as explained in detail 

in the following section when including the inertia terms, the increase of the average velocity along 

the circumferential direction causes the local Reynolds number to get higher due to the 

proportionality with the average velocity in equation(51). However, in the hydrodynamic case is 

not obvious as in hybrid mode because the pressure gradient is smaller if both cases are compared. 

Looking at equation(52) and equation(53), it is possible to see that their terms are dependent on the 

pressure gradient. Therefore, both velocities are getting larger while operating the hybrid mode. 

Therefore, this is obvious if the bearing’s foils deflect, that will cause a higher clearance (gap), 

which, in turn, causes a higher volumetric flow rate and velocity based on the following 

mathematical relation, Q Av= . The pressure keeps building up gradually to a very high level at 

the location around the orifices, or perhaps at the tapered region, and that, in turn, will cause the 

sagging effect of the foils in case of the foil bearing and a high leakage flow along the tapered 

region. Consequently, the local Reynolds number difference is larger between both cases of the 

foil bearing. All these details will be discussed further in the following two sections. 

                The flow of these foil-bearing cases at high pressures might still be laminar because the 

tabulated local Reynolds numbers have been identified to be the maximum at the injection orifices 

for the hybrid cases, at which the flow is very high. Besides, these local Reynolds numbers are in 

the range of the transitional flow, and there is a 50% chance that the flow is still laminar since the 

streamlines are smooth and regular, and they do not break up. According to Johns (2017),” laminar 

flow, in which the streamlines are smooth and regular. Unlikely, turbulent flow, in which the 
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streamlines break up (p. 73),” [11]. Therefore, if the plots of the streamlines are examined in the 

section on the velocities and streamlines, one can see that those streamlines are smooth and regular.  

Table 5: Maximum local Reynolds numbers at the grid points for all simulation cases 

Pressure 

(bar) 

Maximum Value of Local Reynolds Number 

- Rigid 

Hydrodynamic 

Rigid Hybrid Foil 

Hydrodynamic 

Foil Hybrid 

- Without 

Inertia 

With 

Inertia 

Without 

Inertia 

With 

Inertia 

Without 

Inertia 

With 

Inertia 

Without 

Inertia 

With 

Inertia 

1 142.3 142.3 365.89 365.855 137.77 137.788 405.21 409.226 

2 284.599 284.599 680.687 680.459 273.003 273.219 810.047 812.898 

3 426.899 426.899 950.53 949.863 407.882 408.729 1164.12 1170.96 

4 569.199 569.199 1205.59 1204.34 542.448 545.423 1520.52 1533.54 

5 711.498 711.498 1455.77 1453.78 678.109 682.555 1878.45 1900.29 

6 853.798 853.798 1702.83 1699.96 814.393 821.262 2238.72 2272.3 

7 996.098 996.098 1947.73 1943.85 950.724 981.497 2601.3 2650.76 

8 1138.4 1138.4 2191.09 2186.1 1087.2 1123.34 2965.76 3024.5 

9 1280.7 1280.7 2433.29 2427.14 1224.33 1241.52 3331.54 3400.85 

10 1423 1424.38 2674.62 2667.26 1361.19 1369.01 3719.26 3796.24 

 

Pressure  

                  The pressure is the key parameter for bearing simulation as stated by Michel Khonsari 

in his book, [9]. The pressure has been plotted for all four cases of the thrust bearing at different 

ambient pressures. The cases of 3, 6, and 9 bar will be discussed further throughout this section.  

Figure 8, Figure 9, and Figure 10 illustrate the pressure distribution of the rigid bearing cases for 

3, 6, and 9 bar, respectively. Whereas Figure 11, Figure 12, and Figure 13 show the pressure 

distribution of the Foil bearing cases for 3, 6, and 9 bar, respectively.  If one looks closely at these 

plots, it is always true that the hybrid mode has higher pressure distribution along the bearing’s 

pads’ area than those of the hydrodynamic mode because of the externally supplied lubricant to 
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the system. The rigid bearing always surpasses the foil bearing in having the higher-pressure 

distribution due to the high rigidity (zero deflection assumption). However, the foil bearing has its 

foils to be deflected, and that is obvious through the corrugations on the surfaces of the pressure 

profiles as illustrated in the foil bearing figures. Moreover, it is noticeable there is a pressure drop 

when including the inertia terms. The maximum values of the pressures between every two cases 

when not including and including the inertial terms are tabulated in Table 6 and Table 7, 

respectively. From both Table 6 and Table 7,  it is possible to see that the maximum pressure gets 

higher as the ambient pressure increases. The difference between the two maximum values from 

both tables for each pressure case is getting higher as the ambient pressure increases for the rigid 

as well as the foil bearing. There is a noticeable difference in the case of the rigid bearing and the 

difference tends to be insignificant if comparing both lubrication modes of the rigid bearing due 

to no deflection. Therefore, there is no big difference whether to supply more lubricant to the 

system or not. However, in the case of the foil bearing, the difference between the maximum 

pressures from both tables for each pressure case is getting more noticeable, and this difference 

gets even higher in case of the hybrid mode due to the higher deflection of the bearing’s foils. The 

amount of deflections is getting higher in the case of hybrid mode due to the externally supplied 

lubricant to the system, and the deflection increases with the increase of the pressure. This can be 

seen from Figure 30, Figure 31, and Figure 32. If one compares the difference between the maximum 

pressures for each case of both lubrication modes of the foil bearing, one can see that this difference 

gets more distinguishable for the case of foil bearing than it was in the rigid bearing case due to 

the increase of the pressure and the deflection simultaneously as more lubricant is supplied to the 

system.   
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Pressure Profiles of Rigid Bearing Case 

 

Figure 8: Pressure distribution profiles of the rigid bearing six pads, P=3bar 

 

Figure 9: Pressure distribution profiles of the rigid bearing six pads, P=6bar 
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Figure 10: Pressure distribution profiles of the rigid bearing six pads, P=9bar 

 

Pressure Profiles of Foil Bearing Case 

 

Figure 11: Pressure distribution profiles of the foil bearing’s six pads, P=3bar  
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Figure 12: Pressure distribution profiles of the foil bearing six pads, P=6bar 

 

Figure 13: Pressure distribution profiles of the foil bearing six pads, P=9bar  
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Table 6: Maximum pressure of cases without including inertia terms  

- Rigid Hydrodynamic Rigid Hybrid Foil Hydrodynamic Foil Hybrid 

Pressure (bar) Maximum Pressure  

3 9.40 13.35 7.78 10.62 

6 13.71 17.74 11.27 14.04 

9 17.37 21.40 14.39 17.13 

 

Table 7: Maximum pressure of cases with including inertia terms  

- Rigid Hydrodynamic Rigid Hybrid Foil Hydrodynamic Foil Hybrid 

Pressure (bar) Maximum Pressure 

3 9.34 13.28 7.70 10.42 

6 13.52 17.52 10.96 13.48 

9 17.00 20.96 13.82 16.21 

 

Velocities and Streamlines 

                      One of the extremely important matters that should be investigated when studying 

the lubrication of the thrust bearing is to look at how the lubricant particles are moving through 

the bearing’s medium. The family of Streamlines is a very good option to trace the movement of 

the fluid particles since the velocity vectors will almost always be tangent to these lines. If one 

integrates both equations(13) and(14) over the film thickness h, it is possible to obtain both 

equations(52) and(53), which are the average velocities of u and v, respectively. 
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Using both above equations, it is possible to generate the following streamlined plots. If one looks 

closely at the next figures representing the streamlines, one can see that the velocity vector along 

the circumferential direction is always dominant, especially at the flat region which is located on 

the right-hand side from the center of the figures, specifically at the right of the notation of 

29taper = , along the horizontal axis. This velocity vector is generated due to the moving surface 

relative to the stationary surface, which is known as the Couette flow. Figure 14, Figure 15, and 

Figure 16 show the streamlines of the rigid hydrodynamic bearing for the pressure equal to 3bar, 

6bar, and 9bar, respectively. Moreover, Figure 18, Figure 19, and Figure 20 illustrate the 

streamlines of the foil hydrodynamics bearing for the pressure equal to 3bar, 6bar, and 9bar, 

respectively. All these figures show that the velocity vectors ( )rv along the radial direction  are 

getting higher at  the top and bottom left corners. Therefore, the streamlines get curved toward the 

north direction at the top corners and toward the south direction at the bottom corners. This 

happens because of the flow associated with the pressure gradient along the radial direction, which 

is the first term of equation(53). Therefore, it is possible to see that those curved streamlines are 

getting a bit wider toward the center of the bearing’s pads along the circumferential direction as 

the pressure increases. It is possible to see this behavior through Figure 17, and Figure 21, where 

all three pressure cases are illustrated when the inertia effect is not included, especially comparing 

the Pb=3 bar to the Pb=6 bar or Pb=9 bar. Likely, this is also happening for the case when including 

the inertia terms. In addition, there is also an extra effect of the other terms of equation(53) when 

including the inertia effect that may responsible to change the intensity of the average velocity 

along the radial direction ,and that is based on the value of the pressure gradient along the 

circumferential direction. However, Figure 22, Figure 23, and Figure 24 illustrate the streamlines 

of the rigid hybrid bearing for the pressures of 3 bar, 6 bar, and 9 bar, respectively. Further, Figure 

https://www.bing.com/ck/a?!&&p=39c3b89a4e03c230JmltdHM9MTY2ODgxNjAwMCZpZ3VpZD0xMmVlOTc2MC1kOGY0LTY3OTEtM2UyOC04NTM2ZDlhMzY2ZmYmaW5zaWQ9NTE4OQ&ptn=3&hsh=3&fclid=12ee9760-d8f4-6791-3e28-8536d9a366ff&psq=quette+flow&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvQ291ZXR0ZV9mbG93&ntb=1
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26, Figure 27, and Figure 28 show the streamlines of the foil hybrid bearing for the pressures of 3 

bar, 6 bar, and 9 bar, as well. All these figures show that the externally injected air is involved in 

the case of the hybrid mode through the two orifices at the tapered region through which the air is 

gushing out. Noteworthy, the flow along the circumferential direction dominates the flow 

throughout the medium, except at the region of the orifices. Mainly, the flow should be a 

summation of both the Couette flow as well as the pressure gradient flow along the circumferential 

direction. Nevertheless, in the tapered region, it is possible to realize that the pressure gradient 

along both directions gets to a high level due to the externally injected lubricant. As previously 

stated above for the case of the hydrodynamic bearing, when the inertia terms are included, there 

will be an additional effect on the radial velocity component, where the intensity of the flow may 

change. Through the tapered region exactly just after the leading edge, it is possible to notice that 

the streamlines get a bit more squeezed  or crumpled when not including the inertia terms, and this 

gets more noticeable for the 6, and 9 bar cases as that can be clearly shown through Figure 25. 

Moreover, the streamlines even go in the reverse direction due to the dominance of pressure 

gradient along the circumferential direction at the leading edge as clearly shown in Figure 29, where 

all three different pressures can be compared for the foil bearing case when the inertia effect is not 

included. This is happening because the bump foil is sagging and deflecting a bit more when inertia 

terms are not included due to the higher pressure. Noticing that, at the tapered region, the highest 

deflection occurs as shown in Figure 30, Figure 31, and Figure 32. However, when adding the inertia 

terms, the deflection of the bump foil is a bit less because the pressure is lower, where the leakage 

flow is higher. From another perspective, this is reasonable because the velocities get higher when 

including the inertia terms, and it is possible to see that from the calculated local Reynolds numbers 

in Table 5. 

https://www.bing.com/ck/a?!&&p=39c3b89a4e03c230JmltdHM9MTY2ODgxNjAwMCZpZ3VpZD0xMmVlOTc2MC1kOGY0LTY3OTEtM2UyOC04NTM2ZDlhMzY2ZmYmaW5zaWQ9NTE4OQ&ptn=3&hsh=3&fclid=12ee9760-d8f4-6791-3e28-8536d9a366ff&psq=quette+flow&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvQ291ZXR0ZV9mbG93&ntb=1
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Streamlines of Rigid & Foil Hydrodynamic Bearing Cases 

 

Figure 14: Rigid hydrodynamic streamlines, P=3bar 
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Figure 15: Rigid hydrodynamic streamlines, P=6bar 
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Figure 16: rigid hydrodynamic streamlines, P=9bar 
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Figure 17: Rigid hydrodynamic streamlines for all three cases -no Inertia 
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Figure 18: Foil hydrodynamic streamlines, P=3bar 
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Figure 19: Foil hydrodynamic streamlines, P=6bar 
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Figure 20: Foil hydrodynamic streamlines, P=9bar 
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Figure 21: Foil hydrodynamic streamlines for all three cases – no Inertia 
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The Streamlines’ Figures of Rigid & Foil Hybrid Bearing Cases 

 

Figure 22: Rigid hybrid streamlines, P=3bar 

 



50 
 

 

 

Figure 23: Rigid hybrid streamlines, P=6bar 
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Figure 24: Rigid hybrid streamlines, P=9bar 
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Figure 25: Rigid hybrid streamlines for all three cases – no Inertia 
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Figure 26: Foil hybrid streamlines, P=3bar 
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Figure 27: Foil hybrid streamlines, P=6bar 
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Figure 28: Foil hybrid streamlines, P=9bar 
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Figure 29: Foil hybrid streamlines for all three cases – no Inertia 
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Deflection 

                     Another important thing that should be investigated when checking the foil bearing 

performance is the deflection of the bearing’s bump foil, which provides the bearing’s stiffness 

and damping coefficients. In this section, the foil deflection of the bearing when including and not 

including the inertia terms will be investigated it plays a major role in enhancing the bearing’s load 

capacity is optimized to be stiffer, which may greatly help to decrease the leakage.  

 

Figure 30: Nondimensional foil bearing’s deflection, P=3bar  
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Figure 31: Nondimensional foil bearing’s deflection, P=6bar     

 

Figure 30, Figure 31, and Figure 32 illustrate the deflection happening in the bearing’s top foil due 

to the increase in pressure. As explained in an earlier section that the pressure is higher for those 

cases when inertia terms are not included because the flow rate gets to be higher when including 

the inertia effect. Therefore, the leakage flow is mostly happening at the tapered region, where the 

maximum deflection occurs in the bearing. Furthermore, through these figures, it is possible to see 
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the maximum deflections that occur in both cases at different ambient pressures. Also, it is possible 

to see these numbers in Table 8 because it seems a bit hard to read them directly from the plots. 

These numbers get bigger as the pressure increases. In addition, the gap between the two maximum 

numbers for both cases while including and not including the inertia terms gets larger as the 

pressure increases.   

 

Figure 32: Nondimensional foil bearing’s deflection, P=9bar 
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Table 8: Maximum deflections of both cases with including and without including the inertia      

terms 

- Foil Hydrodynamic Foil Hybrid 

Pressure (bar)  Without Inertia With Inertia Without Inertia With Inertia 

3 0.076 0.074 0.142 0.139 

6 0.086 0.081 0.164 0.155 

9 0.091 0.080 0.173 0.159 

 

Bearing’s Load Capacity 

                      This section discusses the main objective of this research, which is the bearing’s load 

capacity. Generally, the bearing’s load capacity is the core aspect to be investigated when 

designing and testing the bearings’ performance. It is an important matter because it indicates how 

much load can the bearing take while operating. Therefore, it is crucial as it can attenuate the 

bearing’s ability to operate flexibly while exerting a higher load. As has been discussed in the 

pressure section that the inertia terms added to the classic Reynolds lubrication equation play a 

major role in reducing the pressure profile of the bearing. Therefore, that, in turn, will heavily 

reduce the bearing’s load capacity as illustrated in the next figures. Figure 33, Figure 34, Figure 35, 

and Figure 36 illustrate the bearing’s load capacity versus the pressure for the rigid hydrodynamic, 

rigid hybrid, foil hydrodynamic, and foil hybrid, respectively. Figure 33 shows the load capacity 

for both cases of including and not including the inertia terms, where both load capacities are 

almost the same and they tend to differ as the pressure increases beyond 3 bar, but it seems to be 

4 bar in the case of the rigid hybrid as illustrated in Figure 34. However, that seems to be exactly 

at 2 bar for both cases of foil bearing as shown in Figure 35 and Figure 36. The load capacity when 

the inertia effect is included tends to decrease as the pressure increases for all four cases. However, 

it seems to be a bit less in the case of rigid bearings because there is no deflection, and the load 

capacity tends to decrease a bit more in the case of the rigid hydrodynamic bearing since there is 
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no hydrostatic air supplying the system. However, for both cases of foil bearing, the load capacity 

drops further to a greater amount due to the deflection.  

 

Figure 33:Load capacity Vs pressure of rigid hydrodynamic 

 

Figure 34: Load capacity Vs pressure of rigid hybrid 
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Figure 35: Load capacity Vs pressure of foil hydrodynamic 

 

 

Figure 36: Load capacity Vs pressure of foil hybrid 
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Chapter 6: CONCLUSION 

                    Both rigid and foil gas thrust bearings are widely used bearings in turbomachine 

applications. The thrust bearing is used to prevent the movement of the shaft along its length. The 

thrust bearing can operate in either hydrodynamic or hybrid mode. When dealing with viscous 

lubricants, such as oil, inertia terms can be neglected since the viscous force dominates. However, 

when dealing with water or denser gases, the inertia effect should be considered. The classical 

Reynolds equation should be modified to consider those terms. The inertia effect most of the time 

is linked to the turbulent flow; however, the inertia effect also appears when the flow is laminar. 

Inertia terms can always be considered when the system operates at very high speed and undergoes 

very high loading, where the centrifugal force has a negative influence in attenuating the bearing’s 

load capacity. According to many former literatures, the convective effect and centrifugal effect 

can be decomposed to be analyzed separately because the convective effect has a positive influence 

while the centrifugal effect has a negative influence. The gas thrust bearing loses a great deal of 

its load capacity as the ambient pressure increases due to the leakage flow that is mostly happening 

at the tapered region, but it appears to be greater to some extent in the case of the foil bearing, 

where the maximum deflection of the bump foil occurs at the tapered region.   
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