
Approximate Query Processing Using Deep Learning and Database Techniques

by

SHOHEDUL HASAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2022

Copyright © by Shohedul Hasan 2022

All Rights Reserved

To my Ammu, Hasina Akter, and my Abbu, Abul Kalam, who made me the person I am

today.

ACKNOWLEDGEMENTS

First and foremost, thanks to the Almighty!

I want to thank my supervising professor Dr. Gautam Das for his continuous support,

guidance, and encouragement throughout my Ph.D. When I joined DBXLab 5 years ago, I

barely knew what research and a Ph.D. were. I wanted to work with a good professor on

a good topic. Dr. Das allowed me to grow at my own pace while he always emphasized

the highest quality and value of work. Initially, he appointed me as a teaching assistant in

his course to quickly improve my communication and public speaking skills. He taught

me how to think beyond the mean. In my journey to be an independent researcher, Dr.

Das helped me in every step. While research and work are part of any Ph.D. process, he

provided his highest support during my health crisis. I am incredibly fortunate to have Dr.

Das as my supervisor in my Ph.D.

I want to thank my professors in my Ph.D. committee, Dr. Vassilis Athitsos, Dr.

Leonidas Fegaras, and Dr. Mohammad Atiqul Islam. They have always extended their

support whenever I needed it. I am extremely grateful to my collaborators, Dr. Saravanan

Thirumuruganathan, Dr. Nick Koudas, and Dr. Abolfazl Asudeh, for their continuous

guidance in different phases of my Ph.D. I have been fortunate to get friends like Suraj

Shetiya, Tanusree Debi, Dr. Jees Augustine, Dr. Sona Hasani, and Dr. Md Abdus Salam in

DBXLab. I wish to thank all my friends who supported me with their help, blessing, and

kind words. I would specially thank my school teacher Ohiduzzaman Sir. His inspiration

transformed my thinking. I am thankful to all my teachers in all phases of my life.

Finally, I would like to thank my family for their sacrifices. My parents managed to

bring a kid from a remote village in Bangladesh to my current position with their countless

iv

sacrifices despite limited resources. My deepest gratitude to my lovely wife, Kazi Samina

Maraj Mumu, who supported me in all the ups and downs of my Ph.D. journey.

November 9, 2022

ABSTRACT

Approximate Query Processing Using Deep Learning and Database Techniques

Shohedul Hasan, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Gautam Das

Data is generated at an unprecedented rate surpassing our ability to analyze them.

In real applications, it is often impractical to find an exact answer by traversing the entire

data. As a result, Approximate Query Processing (AQP) is getting extremely popular,

which finds an approximate answer in a quick time by sacrificing a fraction of accuracy.

This dissertation focuses on developing different AQP techniques to solve fundamental

database problems using deep learning. Moreover, we build a fast and scalable algorithm

for Quantile Regression, a well-known regression technique that can help minimize the

uncertainty in the recent deep learning-based AQP solutions, including ours.

First, we develop solutions for a fundamental database problem called Selectivity

Estimation- the problem of estimating the result size of queries. Poor selectivity esti-

mation can seriously impair query optimizer, hence an inefficient query execution. The

traditional database techniques often perform poorly for multi-attribute queries involving

many attributes. The deep learning-based solution is a promising area of research for Se-

lectivity Estimation. However, many existing approaches suffer from high inaccuracy for

low-selectivity queries. We propose two deep learning-based solutions that perform excep-

tionally well for low-selectivity multi-attribute queries involving many predicates. Our first

vi

approach treats selectivity estimation as a density estimation problem and learns the dis-

tribution using an unsupervised deep learning technique from data. The second approach

is a supervised technique that learns from queries. Both of our approaches are fast and

accurate, even for a large number of predicates.

The second problem we tackle in this dissertation is one of the most important tra-

ditional database problems widely known as Approximate Query Processing (AQP) for

aggregate queries like Sum, Average, and Count, which a data scientist widely uses for

real-time data analysis. We propose a deep learning-based technique that learns the data

distribution to generate samples representative of the input data from the model. Once we

have a learned model, samples can be generated as needed, and aggregate queries can be

answered without affecting the database. Moreover, the sample quality can be improved by

our proposed techniques for minimizing model bias and ensemble approaches.

Finally, we propose a scalable algorithm for a famous regression problem, Quantile

Regression, which can help minimize the uncertainty of deep learning-based solutions,

including our proposed solutions. We use computational geometry concepts of arrangement

and duality to design an algorithm to calculate objective cost from a neighboring point in

the arrangement in O(d). Moreover, we propose an algorithm for 2-dimensional Quantile

Regression, which is better than any other existing techniques.

While our deep learning-based approaches’ efficacy is demonstrated with extensive

experiment results, our Quantile Regression algorithm for 2-dimension is theoretically su-

perior to all existing techniques.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . xii

LIST OF TABLES . xiv

Chapter Page

1. INTRODUCTION . 1

1.1 Deep Learning Models for Selectivity Estimation of Multi-Attribute Queries 1

1.2 Approximate Query Processing for Data Exploration using Deep Genera-

tive Models . 2

1.3 Can Geometry Resolve Quantile Regression’s Inefficiency? 3

1.4 Dissertation Outline . 4

2. Deep Learning Models for Selectivity Estimation of Multi-Attribute Queries . . . 5

2.1 Introduction . 6

2.1.1 Outline of Technical Results . 7

2.2 Preliminaries . 9

2.2.1 Notations . 9

2.2.2 Selectivity Estimation as Distribution Estimation 10

2.2.3 Desiderata for DL Estimator . 11

2.3 Selectivity Estimation as Neural Density Estimation 11

2.3.1 Density Estimation via Autoregressive Decomposition 12

2.3.2 Autoregressive Density Estimators 12

2.3.3 Answering Range Queries . 13

viii

2.3.4 Attribute Ordering for Autoregression 16

2.3.5 Incorporating Query Workload . 18

2.3.6 Incremental Data and Query Workload 18

2.4 Selectivity Estimation as Supervised Learning 19

2.4.1 Query Featurization . 20

2.4.2 DL Model for Selectivity Estimation 22

2.4.3 Generating Training Data . 22

2.4.4 Miscellaneous Issues . 24

2.5 Experiments . 25

2.5.1 Experimental Setup . 25

2.5.2 Comparison with Baselines . 27

2.5.3 Supervised Cardinality Estimation 31

2.5.4 Unsupervised Density Estimation 34

2.5.5 Comparison with Naru . 37

2.6 Related Work . 39

2.7 Final Remarks . 40

3. Approximate Query Processing for Data Exploration using Deep Generative Mod-

els . 41

3.1 Introduction . 41

3.1.1 Outline of Technical Results . 42

3.2 Preliminaries . 44

3.3 Background . 45

3.4 AQP Using Variational AutoEncoders . 48

3.4.1 Using VAE for AQP . 48

3.4.2 Handling Approximation Errors. 50

3.4.3 Towards Accuracy Guarantees . 53

3.4.4 Variational Autoencoder AQP Workflow 55

3.4.5 Making VAE practical for relational AQP 55

3.5 AQP using Multiple VAEs . 57

3.5.1 Problem Setup . 57

3.5.2 Bounding VAE Errors . 58

3.5.3 Choosing Optimal Partition . 60

3.6 Experiments . 63

3.6.1 Experimental Setup . 63

3.6.2 Experimental Results . 65

3.6.3 Comparison with DL Model for AQP. 69

3.7 Related Work . 72

3.8 Conclusion . 73

4. Can Geometry Resolve Quantile Regression’s Inefficiency? 75

4.1 Introduction . 75

4.1.1 Motivation . 76

4.1.2 Quantile Regression: Challenges, and State of Art 77

4.1.3 Our Technical Contributions . 79

4.2 Preliminaries . 81

4.2.1 Running Example . 81

4.2.2 Problem Definition . 82

4.2.3 Geometric Mapping of Problem 84

4.2.4 Arrangements and k-Sets . 86

4.2.5 Existing State-of-Art Exact Approaches 88

4.3 UPDATENEIGHBOR oracle . 90

4.3.1 Illustration of UPDATENEIGHBOR oracle 91

4.3.2 UPDATENEIGHBOR oracle . 93

4.4 Quantile Regression in 2 Dimension . 96

4.4.1 Algorithm based on neighbor exploration 96

4.4.2 k-set Exploration Algorithm . 97

4.4.3 Our 2D approach . 99

4.5 Challenges in Higher Dimension . 102

4.6 Related work . 103

Appendix

REFERENCES . 105

BIOGRAPHICAL STATEMENT . 119

LIST OF ILLUSTRATIONS

Figure Page

2.1 Comparison with Baselines (Census) . 25

2.2 Comparison with Baselines (IMDB) . 25

2.3 Varying #Predicates (Supervised) . 31

2.4 Varying Selectivity (Supervised) . 31

2.5 Varying Domain Cardinality (Supervised) 31

2.6 Workload (Supervised) . 31

2.7 Varying #Predicates (Unsupervised) . 36

2.8 Varying Selectivity (Unsupervised) . 36

2.9 Varying Domain Cardinality . 36

2.10 Workload (Unsupervised) . 36

3.1 Two Phase Approach for DL based AQP 48

3.2 Varying Sample Size . 63

3.3 Varying Query Selectivity . 63

3.4 Varying Latent Dimension . 63

3.5 Varying Model Depth . 63

3.6 Varying Input Encoding . 63

3.7 Varying Output Encoding . 63

3.8 Varying T . 67

3.9 Varying K . 67

3.10 Partition Algorithms . 67

3.11 Performance of DL models for AQP . 68

xii

3.12 Performance of Model Building . 68

3.13 Performance of Sample Generation . 68

4.1 The Visual demonstration of database . 82

4.2 Dual space of the Sample Database . 86

4.3 Update Operation . 91

4.4 Traversing k-level of arrangement in order 99

LIST OF TABLES

Table Page

2.1 Breakdown of DL model performance based on #predicates (1-3, 4-6 and

7-9) for IMDB Dataset. 30

2.2 Point Queries on TPC-H. Queries are partitioned based on the number of

predicates. 30

2.3 Impact of Value Encoding. 33

2.4 Impact of Log Transformation. 34

2.5 Incremental Data with and without insertions on IMDB. 36

2.6 Range Queries on IMDB. 38

2.7 Impact of Attribute Ordering on number of predicates (1-3, 4-6 and 7-9) for

IMDB Dataset. 38

3.1 Empirical validation of R-ELBO Bounding 60

4.1 A 2D dataset. 81

4.2 Important Notations . 90

xiv

CHAPTER 1

INTRODUCTION

The exponential growth of data brings unprecedented challenges in today’s world.

Although computational power has been increasing rapidly, it is failing to handle the pace

of data growth. Due to the vastness of the database table, it is often impractical and unnec-

essary to calculate a database query’s exact answer. Approximate Query Processing (AQP)

is a technique that focuses on answering queries in near real-time by sacrificing a frac-

tion of accuracy. This dissertation proposes different AQP techniques for two fundamental

database problems using deep learning. Moreover, we also develop a scalable algorithm for

the Quantile Regression problem, which is a crucial arsenal in minimizing the uncertainty

of deep learning-based techniques, including our proposed approaches.

Our first problem is widely known as Selectivity Estimation – estimating the result

size of a SQL query. The second problem concerns Approximate Query Processing for

aggregate queries like Sum, Count, and Average. In the following two sections, we briefly

overview our deep learning-based solutions for these two extremely important database

problems. Finally, we highlight our scalable algorithm for Quantile Regression, followed

by the dissertation outline.

1.1 Deep Learning Models for Selectivity Estimation of Multi-Attribute Queries

The Selectivity Estimation problem focuses on predicting the result size of a database

query which is a fundamental database problem. Poor Selectivity estimation jeopardizes the

query planning, resulting in inefficient query execution. There has been a continuous quest

to find better Selectivity Estimation techniques. Many of these techniques are sampling-

1

based approaches which could have been better for multi-attribute queries. In recent years,

some deep learning-based approaches are also proposed, which are promising yet need to

be more accurate for a query with a large number of predicates and low selectivity. We

propose two complementary deep learning-based solutions for the Selectivity Estimation

problem.

In the first solution, we try to solve the problem as a neural density estimation prob-

lem. As selectivity estimation can be seen as a density estimation problem, finding the joint

probability distribution is one way to solve this problem. The joint probability distribution

can be calculated from conditional probabilities. However, calculating these different con-

ditional probability tables is significantly space inefficient and time-consuming. A better

alternative is to learn the conditional probability using a deep learning model. We propose

an unsupervised technique that can accurately estimate the selectivity of a multi-attribute

query with low selectivity. Our second approach focuses on finding selectivity in a super-

vised fashion.

We extend both of our approaches for range queries with multi-attributes. Moreover,

we address other practical challenges like incorporating query workload, query/data featur-

ization, etc. We show a detailed comparison of all the traditional approaches and current

deep learning-based methods for selectivity estimation. Our experiment results demon-

strate that our approaches are better than our competitors for queries with a large number

of predicates and low selectivity.

1.2 Approximate Query Processing for Data Exploration using Deep Generative Models

Approximately answering aggregate queries is one of the most exciting research ar-

eas in the database community. Generally, this problem is widely referred to as Approxi-

mate Query Processing (AQP). As business uses data-driven approaches to reach a decision,

2

it is often required to answer a query quickly yet very accurately. Due to the immense im-

portance of AQP, the database community has innovated many AQP techniques in the last

few decades.

Many traditional database AQP techniques are based on sampling. An offline sam-

pling often fails to capture the complex correlation among attributes. One alternative is to

perform on-demand sampling. However, this approach is time-consuming. Moreover, a

small percentage of data as samples requires a lot of space for big data. Due to the limita-

tion of traditional approaches, we propose a deep learning-based method that can overcome

these challenges.

We propose a deep generative model-based AQP technique that can generate sam-

ples to answer aggregate queries. Once the model is learned, the user can generate as many

as the sample they want to answer an aggregate query approximately. One beauty of this

approach is the model is extremely lightweight, only a few hundred kilobytes. We show

how model bias can be removed by incorporating variational rejection sampling and gen-

erating high-quality samples. Our extensive experiments on multiple datasets demonstrate

the efficacy of our technique.

1.3 Can Geometry Resolve Quantile Regression’s Inefficiency?

In the previous two sections, we summarized our deep learning-based solutions for

AQP. However, there is one problem with the learned model-based approach. These ap-

proaches are excellent in practice. However, they do not provide any confidence interval.

In many critical applications, blindly using a black box model can be devastating. Un-

certainty Quantification is an important research area that helps to overcome this issue.

Quantile Regression (QR), a classical statistical/machine learning technique, is one of the

most critical components of Uncertainty Quantification. This section highlights our contri-

3

bution to developing a scalable algorithm for Quantile Regression, especially for big data

scenarios.

Although QR has been extensively studied for the last 50 years, QR still needs to be

ready to handle big data. For a large dataset, QR state-of-the-art approaches are memory-

inefficient and time-consuming. One approach to making QR faster is approximately cal-

culating the QR. In this dissertation, we are only interested in the exact answer without

surprise, as QR is a tool of uncertainty quantification for our specific case.

We utilize the computational geometry concepts of arrangement and duality to de-

sign an oracle that can calculate the objective function of QR from a neighboring point

in the arrangement. Moreover, we propose a scalable algorithm using the computational

geometry concepts of k−set, which is superior to any other QR technique in 2-dimension.

1.4 Dissertation Outline

In Chapter 2, we discuss our deep learning based Selectivity Estimation approach for

multi-attribute queries. In Chapter 3, we present our AQP technique for Data Exploration

using Deep Generative Models. Finally, in Chapter 3, we discuss our scalable Quantile

Regression technique.

4

CHAPTER 2

Deep Learning Models for Selectivity Estimation of Multi-Attribute Queries

Selectivity estimation – the problem of estimating the result size of queries – is a

fundamental problem in databases. Accurate estimation of query selectivity involving mul-

tiple correlated attributes is especially challenging. Poor cardinality estimates could result

in the selection of bad plans by the query optimizer. Recently, deep learning has been ap-

plied to this problem with promising results. However, many of the proposed approaches

often struggle to provide accurate results for multi attribute queries involving large number

of predicates and with low selectivity.

In this paper, we propose two complementary approaches that are effective for this

scenario. Our first approach models selectivity estimation as a density estimation prob-

lem where one seeks to estimate the joint probability distribution from a finite number of

samples. We leverage techniques from neural density estimation to build an accurate selec-

tivity estimator. The key idea is to decompose the joint distribution into a set of tractable

conditional probability distributions such that they satisfy the autoregressive property. Our

second approach formulates selectivity estimation as a supervised deep learning problem

that predicts the selectivity of a given query. We describe how to extend our algorithms

for range queries. We also introduce and address a number of practical challenges arising

when adapting deep learning for relational data. These include query/data featurization,

incorporating query workload information in a deep learning framework and the dynamic

scenario where both data and workload queries could be updated. Our extensive experi-

ments with a special emphasis on queries with a large number of predicates and/or small

5

result sizes demonstrates that our proposed techniques provide fast and accurate selective

estimates with minimal space overhead.

2.1 Introduction

Selectivity estimation – the problem of estimating the result size of queries with

multiple predicates – is a fundamental yet challenging problem in databases. It has diverse

applications in query optimization, query profiling, database tuning, approximate query

processing etc. Poor cardinality estimates could result in the selection of bad plans by the

query optimizer [1]. Due to its importance, this problem has attracted intense interest from

the database community.

Current Approaches and their Limitations. Accurate estimation of query selectivity in-

volving multiple (correlated) attributes is especially challenging. Exactly representing the

joint distribution is often infeasible when many attributes are involved or each attribute

could take large number of values. Broadly speaking, major database systems tackle this

problem by approximating this joint distribution via synopses or sampling. Synopsis tech-

niques such as histograms approximate the joint frequency distribution in a bounded space

by making assumptions such as uniformity and attribute value independence [2, 1]. These

assumptions are often violated in real-world datasets resulting in large errors in selectivity

estimation [1]. Building multidimensional histograms could partially ameliorate this issue

but often has substantial space requirements. Sampling based approaches could handle at-

tribute dependencies and correlations more effectively. However, it is not a panacea – for

queries with low selectivity, the optimizer could be made to rely on magic constants [1],

resulting in poor estimates.

6

2.1.1 Outline of Technical Results

In this paper, we investigate the suitability of Deep Learning (DL) for selectivity es-

timation. Building a DL model that is lightweight, fast to train and estimate, and optionally

allow injection of domain knowledge such as query workload is non trivial. We propose

two complementary approaches that operate in two phases. In the offline phase, we train an

appropriate DL model from the data. During the online phase, the model accepts a query

and outputs its selectivity.

Selectivity Estimation as Unsupervised Learning. Our first approach models selectivity

estimation as a density estimation problem where one seeks to estimate the joint probabil-

ity distribution from a finite number of samples. Intuitively, the traditional sampling and

synopses approaches can be considered as approximate non-parameteric density estima-

tors. However, instead of directly estimating the joint probability, we seek to decompose it

into a series of simpler and tractable conditional probability distributions. Specifically, we

consider a specific decomposition with autoregressive property (formally defined in Sec-

tion 2.3). We then build a single DL model to simultaneously learn the parameters for each

of the conditional distributions. Our approach is based on MADE [3] that adapts a standard

autoencoder into an efficient neural density estimator.

Selectivity Estimation as Supervised Learning. We investigate if, given a training set of

queries along with their true selectivity, is it possible to build a DL model that accurately

predicts the selectivity of unknown queries involving multiple correlated attributes? Our

proposed approach can be utilized to quickly train a model without having seen the data!

The training set of queries with their true selectivities could be obtained from the query

logs. Our DL models are lightweight and can provide selectivity estimates for datasets in

few milliseconds. Our model outperforms other supervised estimation techniques such as

Multiple Linear Regression and Support Vector Regression that have been applied for the

7

related problem of query performance prediction [4]. The key benefit factor is the ability of

DL models to handle complex non linear relationships between queries involving correlated

attributes and their selectivity.

Comparison with Other DL based Approaches. Recently, there has been intense interest

in applying DL for selectivity estimation. Please refer to Section 2.6 for additional details.

We primarily focus on multi-attribute queries involving large number of predicates and have

low selectivity. This is often an Achilles heel of prior DL based approaches [5, 6, 7, 8].

As we shall show later in experiments, our proposed approaches can answer multi-attribute

queries more accurately than competing approaches.

Summary of Experiments. We conducted an extensive set of experiments over two real-

world datasets – Census and IMDB – that exhibit complex correlation and conditional

independence between attributes and have been extensively used in prior work including [1,

5, 6]. We specifically focus on queries that have multiple attributes and/or small selectivity.

We evaluated our supervised and unsupervised DL models on a query workload of 10K

queries. Our supervised model was trained on a training data of 10K queries. Our results

demonstrate that DL based approaches provide substantial improvement - for a fixed space

budget - over prior approaches for multi-attribute selectivity estimation which has been

historically a highly challenging scenario in database selectivity estimation.

Summary of Contributions.

• Deep Learning for Selectivity Estimation. We introduce an alternate view of

database selectivity estimation namely as an neural density estimation problem and

report highly promising results for both point and range predicates.

• Making the approach suitable for Databases. We describe adaptations making

these models suitable for various data types, large number of attributes and associ-

8

ated domain cardinalities, availability of query workload and incremental queries and

data.

Paper Outline. Section 4.2 introduces relevant notations and the design considerations

for DL based selectivity estimators. Section 2.3 formulates selectivity estimation as an

unsupervised neural density estimation problem and proposes an algorithm based on au-

toregressive models. In Section 2.4, we introduce the problem of selectivity estimation and

propose a supervised Deep Learning based model for it. Section 3.6 describes our exten-

sive experiments on real-world datasets, related work in Section 2.6 and finally conclude

in Section 2.7.

2.2 Preliminaries

2.2.1 Notations

Let R be a relation with n tuples and m attributes A = {A1, A2, . . . , Am}. The

domain of the attribute Ai is given by Dom(Ai). We denote the value of attribute Ai of

an arbitrary tuple as t[Ai]. We consider conjunctive queries on a single relation with both

point and range predicates. Point queries are of the form Ai = ai AND Aj = aj AND . . .

for attributes {Ai, Aj} ⊆ A where ai ∈ Dom(Ai) and aj ∈ Dom(Aj). Range queries are

of the form lbi ≤ Ai ≤ ubi AND lbj ≤ Aj ≤ ubj AND . . . Let q denote such a conjunctive

query while Sel(q) represents the result size. We use the normalized selectivity between

[0, 1] by dividing the result size by n, number of tuples.

Performance Measures. Given a query q, let the estimate provided by selectivity estima-

tion algorithm be Ŝel(Q). We use q-error for measuring the quality of estimates. Intu-

itively, q-error describes the factor by which the estimate differs from true selectivity. This

metric is widely used for evaluating selectivity estimation approaches [1, 9, 10, 11] and is

relevant for applications such as query optimization where the relative ordering is more im-

9

portant [1]. We do not consider the use of relative error due to its asymmetric penalization

of estimation error [11] that results in models that systematically under-estimate selectivity.

q-error = max

(
Sel(Q)

Ŝel(Q)
,
Ŝel(Q)

Sel(Q)

)
(2.1)

2.2.2 Selectivity Estimation as Distribution Estimation

Given a set of attributes A′ = {Ai, Aj, . . . , }, the normalized selectivity distribution

defines a valid (joint) probability distribution. The selectivity of a query q with {Ai =

ai, Aj = aj, . . .} can be identified by locating the appropriate entry in the joint distribution

table. Unfortunately, the number of entries in this table increases exponentially in the

number of attributes and their domain cardinality.

Distribution estimation is the problem of learning the joint distribution from a set

of finite samples. Often, distribution estimators seek to approximate the distribution by

making simplifying assumptions. There is a clear trade-off between accuracy and space.

Storing the entire distribution table produces accurate estimates but requires exponential

space. On the other hand, heuristics such as attribute value independence (AVI) assume that

the distributions of individual attributes Ai are independent of each other. In this case one

needs to only store the individual attribute distributions and compute the joint probability

as

p(Ai = ai, Aj = aj, . . .) =
∏

Ak∈A′

p(Ak = ak)

Of course, this approach fails for most real-world datasets that exhibit correlated at-

tributes. Most popular selectivity estimators such as multidimensional histograms, wavelets,

kernel density estimations and samples can be construed as simplified non-parametric den-

sity estimators on their own.

10

2.2.3 Desiderata for DL Estimator

Given that selectivity estimation is just one component in the larger query optimiza-

tion framework, we would like to design a model that aids in the identification of good

query plans. Ideally, the estimator should be able to avoid the unrealistic assumptions of

uniformity and attribute value independence (afflicting most synopses based approaches)

and ameliorate issues caused by low selectivity queries (afflicting sampling based ap-

proaches). We would like to decouple training-accuracy tradeoff. For example, increasing

the sample sizes improves the accuracy - at the cost of increasing the estimation time. If

necessary, the estimator could have a large training time to increase accuracy but should

have near constant estimation time. We would also like to decouple the space-accuracy

tradeoff. Multi-dimensional histograms can provide reasonable estimates in almost con-

stant time - but require very large space (that grows exponentially to the number of at-

tributes) for accurate results. In other words, we would like to achieve high accuracy

through a lightweight model. The desired model must be fast to train and given the la-

tency requirements of query optimizer, generate estimates in milliseconds. It must also be

able to appropriately model the complex relationship between queries and their selectivi-

ties. Finally, it must be able to leverage additional information such as query workload and

domain knowledge.

2.3 Selectivity Estimation as Neural Density Estimation

We introduce an alternate view of selectivity estimation namely as an neural density

estimation problem. This new perspective allows us to leverage the powerful tools from

deep learning to get accurate selectivity estimation while also raising a number of non-

trivial challenges in wrangling these techniques for a relational database setting.

11

Previously, there has been attempts on using Bayesian networks (BN) to approxi-

mate the joint distribution through a set of conditional probability distributions [12, 13].

However, learning the optimal structure of BN is prohibitively expensive. Representing

conditional probability tables requires substantial storage for attributes with large domain

cardinality. Our solution (a) avoids the expensive conditional independence decomposition

using a simpler autoregressive decomposition; (b) learns the conditional probability tables

instead of storing them using universal function approximation [14] capability of neural

networks.

2.3.1 Density Estimation via Autoregressive Decomposition

The fundamental challenge is to construct density estimators that are expressive

enough to model complex distributions while still being tractable and efficient to train.

In this paper, we focus on autoregressive models [14] that satisfy these properties. Given a

specific ordering of attributes, autoregressive models decompose the joint distribution into

m conditional distributions P (Ai|A1, . . . , Ai−1). Specifically,

p(A1 = a1, A2 = a2, . . . , Am = am)

=
m∏
i=1

p(Ai = ai|A1 = a1, A2 = a2, . . . , Ai−1 = ai−1)
(2.2)

Each of these conditional distributions is then learned using an appropriate DL ar-

chitecture. The DL model first learns the distribution p(A1), followed by conditional distri-

butions such as p(A2|A1), p(A3|A1, A2) and so on. This process of sequentially regressing

each attribute through its predecessors is known as autoregression [14].

2.3.2 Autoregressive Density Estimators

Given such a setting, we need to address two questions. First, which DL architecture

should be used to learn the autoregressive conditional distributions? Second, how can we

12

identify an effective ordering of attributes for the decomposition? We answer the former in

this section and the latter in Section 2.3.4.

Encoding Tuples. The first step in modelling is to encode the tuples such that they can

be used efficiently for density estimation by a DL model. A naive approach would be to

use one-hot encoding [14] of the tuples. Instead, we propose a binary encoding that repre-

sents them as a ⌈log2 |Dom(Aj)|⌉ dimensional vector. If Dom(Aj) = {vj1, vj2, vj3, vj4} =

[0, 1, 2, 3], we represent Dom(Aj) as 00, 01, 10, 11 respectively. This approach is then

repeated for each attribute individually and the representation for the tuple is simply the

concatenation of the binary encoding of each attribute. This approach requires less stor-

age -
∑m

i=1⌈log2 |Dom(Ai)|⌉ dimensions instead of
∑m

i=1 |Dom(Ai)| required by one-hot

encoding.

Autoregressive Density Estimators using MADE. Given the encoding of the tuples, one

could learn the conditional distributions by using any one of the neural autoregressive den-

sity estimators specifically designed for this purpose [15, 16, 3]. While our approach is

agnostic to the specific estimator used, we advocate for the masked autoencoder architec-

ture from [3]. MADE modifies the autoencoders [14, 17, 18] for efficiently estimating

autoregressive distributions. Its flexible architecture allows us to effectively adapt it to

relational domains.

2.3.3 Answering Range Queries

Once the autoregressive density estimator has been trained it could be used to an-

swer point queries. Given a query q : Ai = ai AND Aj = aj AND . . ., we can encode this

query and feed it to the autoregressive density estimator model which will output the nor-

malized selectivity. While these models cannot directly answer range queries, it is possible

13

to use their ability to answer point queries in a sophisticated way to obtain accurate range

selectivity estimates.

Specifically, let us consider the question of answering range queries of the form:

q : A1 ∈ R1 AND A2 ∈ R2 AND . . . where Ri is a range of the form lbi ≤ Ai ≤ ubi.

Point queries of the form Ai = ai could be made into a range query ai ≤ Ai ≤ ai.

Finally, if an attribute Ai is unspecified then it could be modeled as min(Dom(Ai)) ≤

Ai ≤ max(Dom(Ai)). For the rest of subsection, we consider a query Q of the form

A1 ∈ R1 AND . . . AND Ak ∈ Rk. We would like to note that we do not directly feed the

range queries to the autoregressive model which is designed to answer point queries only.

Instead, we have proposed a Monte-Carlo approach that uses sampling and the point query

selectivity estimator to get an estimate of the range query. The end-points of each range

predicate are encoded using binary encoding.

Exhaustive enumeration where we enumerate all possible combination of the ranges

and invoking the point query estimate is not feasible unless the range query is relative

simple – involving small number of attributes and/or small ranges. The uniform sampling

approach generates random queries by uniformly sampling from the ranges R1, . . . , Rk and

extrapolating it to get an overall estimate. However, this provides bad selectivity estimates

when the number (and range) of predicates increases due to curse of dimensionality [19].

Adaptive Importance Sampling. The key insight to improve the naive uniform sampling

is to make it adaptive and weighted. In other words, each sample could have a different

weight and the probability with which a new point is selected could vary based on pre-

viously obtained samples. However, naively implementing this idea results in biased and

incorrect results.

We adapt an algorithm [20] that was originally designed for Monte-Carlo multi-

dimensional integration for the range selectivity estimation problem. Intuitively, we wish

14

to select samples S in proportion to the contribution they make to sel(q). However, this

leads to a chicken-and-egg problem as we use sampling to estimate sel(q). The solution is

to proceed in stages and use the information collected from samples of previous stages to

improve the next stage.

Let f(·) be the probability density function based on query q such that if we sample

points proportional to f(·), we might get accurate estimates. Of course, this information is

not always available. Suppose that we have access to another simpler probability density

function g(·) that is an approximation of f(·) and is also easier to sample from. Obviously,

sampling from g(·) would provide much better estimates than uniform sampling. Given

sample queries q1, . . . , qk generated using g(·), we can derive the estimate as

sel(Q) =
|R1| × . . . |Rk|

|S|

|S|∑
i=1

sel(qi)

g(qi)
(2.3)

Intuitively, we generated random queries based on g(·) and then appropriately cor-

rected the bias to get an unbiased estimate. Now the remaining question is to obtain an

efficient instantiation of g(·). We propose a simple approach inspired by Attribute Value

Independence (AVI) assumption where

Sel(A1 = a1 AND . . . AND Ak = ak) =

Sel(A1 = a1)× . . .× Sel(Ak = ak)

(2.4)

It is known that AVI assumption often provides an underestimate for correlated at-

tributes [21]. We leverage this fact to decompose g(A1, A2, . . . , Ak) as k component func-

tions g1(A1), g2(A2) One can then approximate the density of each of these attributes

individually through existing synopses approaches such as histograms.

Our proposed approach operates in stages. We generate an initial batch of random

queries through uniform sampling from the ranges. Using these random queries, we boot-

strap the histograms for individual attributes. In the future stages, we generate samples in a

15

non-uniform way using the sampling distribution imposed by the attribute wise histograms.

For example, a query qi = {x1 = ai1, . . . , xk = aik} will be picked proportional to the prob-

ability g1(a
i
1)× . . .×gk(a

i
k). So if some value Ai = ai occurs much more frequently then it

will be reflected in the histogram of Ai and thereby will occur more frequently in randomly

generated queries. Once all the sample queries are created, we then use Equation 2.4 to

generate unbiased estimates for range selectivity.

A concurrent work [22] also proposed a Monte Carlo integration based technique

dubbed progressive sampling for answering range queries. Our proposed approach based

on adaptive importance sampling is faster due to the possibility of batching. In Section 3.6,

we compare the performance of our model against progressive sampling and found that

they provide comparable results.

2.3.4 Attribute Ordering for Autoregression

In practice, the best attribute ordering for autoregressive decomposition is not given

to us and must be chosen appropriately for accurate selectivity estimation. Each of the

permutations of the attributes forms a valid attribute ordering and could be used to estimate

the joint distribution.

p(x) = p(x1) · p(x2|x1) · p(x3|x1, x2)

= p(x2) · p(x3|x2) · p(x1|x2, x3)

= p(x3) · p(x2|x3) · p(x1|x2, x3)

= . . .

(2.5)

Random Attribute Ordering. Prior approaches such as Bayesian Networks deploy an

expensive approach to identify a good ordering. We do away with this expensive step by

choosing several random orderings of attributes. As we shall show experimentally, this

approach works exceedingly well in practice. This is due to two facts: (a) the vast majority

16

of the d! possible permutations are amenable to tractable and accurate learning; and (b)

the powerful learning capacity of neural networks (and masked encoders) can readily learn

even a challenging decomposition by increasing the depth of the MADE model. MADE

architecture allows this to be easily and efficiently conducted by randomly permuting both

the input tuple that is binary encoded and the internal mask vectors in each layer.

Ensembles of Attribute Orderings. While a random ordering often provides good results,

it is desirable to guard against the worst case scenario of a bad permutation. We observe

from Equation 2.5 that numerous attribute orderings could be used for estimating the joint

distribution. We build on this insight by choosing κ random attribute orderings. Of course,

different orderings result in different models with their corresponding estimate and asso-

ciated accuracy. MADE could be used to learn the conditional distribution for each of

these orderings and utilize them to estimate the value of p(x) by averaging the individual

estimates. An attribute ordering can be represented as m0 = [m0(1), . . .m0(D)]. In this,

m0(d) represents the position of the d-th dimension of input x in the product of condition-

als. Thus multiple random orderings can be obtained by permuting [1, . . . , D]. This has

also been discussed in [23].

During training, before each minibatch [14] update of the model, we apply κ random

permutations in parallel on the input vectors and mask matrices. Each of these permutations

corresponds to a different ordering. The models are learned independently and the joint

probability is computed for each ordering and averaged to produce the final estimate. This

ensemble approach minimizes the likelihood of a bad estimates due to an unlucky attribute

ordering.

Injecting Domain Knowledge. If a domain expert possesses apriori knowledge that at-

tributes Ai and Aj are order sensitive, then we only chose permutations where the desired

order is observed. As a concrete example, assume one knows (say via data profiling), that

17

a functional dependency EmpID → Department exists on the schema. Then, we would

prefer permutations where the Department occurs after EmpID. This is due to the fact that

the conditional distribution p(Department|EmpID) is simpler and thereby easier to learn

than the other way around.

2.3.5 Incorporating Query Workload

The autoregressive approach outlined above does not require a training dataset such

as a query workload. However, it is possible to improve performance by leveraging query

workload if available. Suppose that we are given a query workload Q = {q1, . . . , ql}. We

associate a weight w(t) for each tuple t ∈ R that corresponds to the number of queries

that match t. So w(t) can vary between 0 and l. Next, we assign higher penalties for poor

estimates for tuples in the result set of multiple queries. The intuition is that a poor estimate

for tuple t was caused by sub-optimal learning of parameter weights of the conditional

distributions corresponding to the attribute values of t. As an example, consider a tuple t =

[0, 1] with two binary attributes A1 and A2. Suppose that we use a single attribute ordering

A2, A1. If the selectivity of t was incorrectly estimated, then the entries corresponding to

p(A2 = 1) and p(A1 = 0|A2 = 1) must be improved. If t is in the result set of by many

queries, then we prioritize learning the aforementioned parameter values through larger

penalty. This could be achieved using the weighted cross-entropy loss function defined as,

− log p(R) =
∑
t∈R

w(t) · ℓ(t) (2.6)

2.3.6 Incremental Data and Query Workload

Incremental Learning. The naive solution of retraining the entire model from scratch

becomes progressively expensive as more and more batches of incremental data are added

to R. We propose an incremental learning approach that extends the existing pre-trained

18

model by training it further only on the new data by initializing the model with the weights

learned from the previous training, instead of performing the standard random initialization.

We then continue training the model on new data. This two-step process preserves the

knowledge gained from the past, absorbing knowledge from new data and is also more

efficient. We use a smaller value for learning rate [14] and epochs than for the complete

retraining so that the model is fine-tuned.

While incremental learning is conceptually simple, it must be done carefully. A

naive training could cause catastrophic forgetting where the model “forgets” the old data

and focuses exclusively on the new data. This is undesirable and must be avoided [24]. We

propose the use of Dropout [25] and related techniques [26] to learn without forgetting. In

our paper, we utilize a dropout value of p = 0.1 when training over the new batch of data.

An additional complication arises from the fact that we already uses masks for maintaining

the autoregressive property. Hence, we apply the dropout only on the neurons for which

the masks are non-zero.

Incremental Workload. An autoregressive approach does not directly utilize query work-

load and hence could not use the information available from an incremental query work-

load. It is possible to reuse the techniques from Section 2.3.5 for this scenario. For each

tuple, we update the number of queries it satisfies and retrain the model based on the new

weights.

2.4 Selectivity Estimation as Supervised Learning

Our objective is to build a model that accepts an arbitrary query as input and outputs

its selectivity. This falls under the umbrella of supervised learning methodologies using

regression. Each query is represented as a set of features and the model learns appropriate

weights for these features utilizing them to estimate the selectivity. The weights are learned

19

by training the model on a dataset of past queries (such as from query log or workload) and

their true selectivities. Approaches such as linear regression, support vector regression etc

that have been utilized for query performance prediction [4] are not suitable for building

selectivity estimators. The impediment is the complex relationship between queries and

their selectivities where simplifying assumptions such as attribute value independence do

not hold. We leverage the powerful learning capacity of neural networks - with appropriate

architecture and loss functions - to model this relationship.

2.4.1 Query Featurization

The first step is to encode the queries and their selectivities in an appropriate form

suitable for learning.

Training Set. We are given a query training dataset Q = {(q1, s1), . . . , }. Each query

q ∈ Q can be represented as an ordered list of m attribute pairs of (Ai, vi) where vi ∈

Dom(Ai) ∪ {∗} (where * is used when Ai is unspecified). si denotes the normalized

selectivity of qi (i.e., Sel(qi)
n

) where n is the number of tuples.

Example. Let Q = {({A1 = 0, A2 = 1}, 0.3), ({A1 = 1, A2 = ∗}, 0.2), ({A1 = ∗, A2 =

∗}, 1.0)}. i.e., Query q2 with A1 = 1 AND A2 = ∗ has a selectivity of 0.2.

Encoding Queries. An intuitive representation for categorical attributes is one-hot en-

coding. It represents attribute Ai as |Dom(Ai)| + 1 dimensional vector that has 0 for all

positions except the one corresponding to the value Ai takes. Given m attributes, the rep-

resentation of the query is simply the concatenation of one-hot encoding of each of the

attributes. The numeric attributes can be handled by treating them as categorical attributes

by automatic discretization [27]. Alternatively, they can be specified as a normalized value

∈ [0, 1] by min-max scaling. Note that this scheme can be easily extended to operators

other than =. The only modification required is to represent the triplet (Ai, operatori, vi)

20

instead of just (Ai, vi). Each operator could be represented as a fixed one-hot encoding of

its own. Given d operators, each operator is represented as a d dimensional vector where

the entry corresponding to operatori is set to 1. Of course, the rest of our discussion is

oblivious to other mechanisms to encode the queries.

Encoding Selectivities. Each query q ∈ Q is associated with the normalized selectivity

si ∈ [0, 1]. Selectivities of queries often follow a skewed distribution where few queries

have a large selectivity and the vast majority of queries have much smaller selectivities.

Building a predictive model for such skewed data is often quite challenging. We begin

by applying log transformation over the selectivity by replacing the selectivity si by its

absolute log value as abs(log(si)). For example, a selectivity of 0.00001 is specified as 5

(using log to the base of 10 for convenience). This has a smoothing effect on the values

of a skewed distribution [28]. Our second transformation is min-max scaling where we

rescale the output of the log transformation back to [0, 1] range. Given a set of selectivities

S = {s1, s2, . . . , } and a selectivity si, min-max scaling is computed as

s′i =
si −min(S)

max(S)−min(S)
(2.7)

While this transformation does not impact skew, it enables us to deploy well known acti-

vation functions such as sigmoid that are numerically stable. Prior works such as [10, 29]

have also used log transformation followed by min max scaling to improve effectiveness of

regression.

Example. Let the selectivities of 3 queries be [0.1, 0.01, 0.001]. By applying the log trans-

formation, we get [1, 2, 3]. The corresponding min-max scaling gives [0.0, 0.5, 1.0] where

0.5 = 2−min([1,2,3])
max([1,2,3])−min([1,2,3])

.

21

2.4.2 DL Model for Selectivity Estimation

DL Architecture. Our DL architecture is based on a 3-layer fully connected neural net-

work with rectifier activation function (ReLU) specified as f(x) = max(0, x) ReLU is a

simple non-linear activation function with known advantages such as faster training and

sparser representations. The final layer uses a Sigmoid activation function f(x) = 1
1+e−x

Sigmoid is a popular function that squashes its parameter into a [0, 1] range. One can then

convert this output to true selectivity by applying inverse of min-max and log scaling. We

used the Adam optimizer [30] for training the model.

Loss Function. Recall from Section 4.2 that the q-error metric is widely used to evaluate

the selectivity estimator. Hence, it is desirable to train the DL model to directly minimize

the mean Q-error of the training dataset.

q-error(Q) =
1

|Q|

|Q|∑
i=1

max

(
si
ŝi
,
ŝi
si

)
(2.8)

Selectivity Estimation via Inference Once the model is trained, it can be used for estimat-

ing the selectivity. Given a new query, we extract its features through one-hot encoding and

feed it to the model. We apply the inverse transformation of min-max and log scaling on the

output so that it represents the actual selectivity. The model is lightweight and the inference

process often takes few milli-seconds when run on a GPU and/or CPU. Note that the time

taken for training and estimation are decoupled. While the training time is proportional to

the size of the training data, the inference is fixed for a given model.

2.4.3 Generating Training Data

While our DL model is relatively straightforward, it is possible to get good results

through a careful construction of training data. We next describe how a training dataset

could be constructed when query workload is not available. If query workload is available,

22

we describe a novel augmentation strategy such that the DL model can generate accurate

estimates for unknown queries that are similar to the query workload.

No Query Workload Available. Naive sampling from the space of all queries results

in a highly non-uniform training dataset and a sub-optimal selectivity estimator. Thus one

must obtain a training set of queries that are diverse both in the number of predicates and

their selectivities. Let the query budget be B - i.e., we wish to construct a dataset with

B queries and their selectivities. We begin by enumerating all queries with 1 predicates

that are the atomic units from which multi-predicate queries could be estimated. We then

generate multi-predicate queries where the predicates are chosen at random while the values

are chosen based on their frequency. In order to generate a random query qi, we first

choose the number of predicates k ∈ {2, . . . ,m} uniformly at random. Then we choose

k attributes uniformly at random from the set of attributes A = {A1, . . . , Am}. Let the

selected attributes be {Ai1, . . . , Aik}. These two steps ensure that we have a diverse set of

multi predicate queries both in terms of the number of predicates and the chosen predicates.

Next, we choose a tuple t uniformly at random from the relation R. We create a random

query qi as the conjunction of predicates Aij = t[Aij]. This process ensures that the random

query is selected proportional to the selectivity of query qi.

Query Workload Available. If a query workload Q is available, one could directly utilize

it to train the DL model. However, one can do much better by augmenting it, obtaining a

more informative training set of queries. The key idea is to select queries from the distri-

bution induced by the query workload such that the model generalizes to unknown queries

from the same distribution. We need to address two issues. First, how can one generate

random queries to augment the query workload? Second, how do we tune the model such

that it provides accurate results for the workload?

23

We begin by assigning weights to attributes and attribute values based on their oc-

currence in the query workload. For example, if A1 occurs 100 times while A2 occurs 50

times, then weight of A1 = 2/3 and A2 = 1/3. We repeat this process for attribute values

also. If an attribute value does not occur in the query workload, we assign a token frequency

of 1. For example, if A1 = 1 occurs 100 times while A2 occurred none, then their weights

are 100/101 and 1/101 respectively. We compute the frequency distribution of the number

of predicates from the query workload (such as # queries with 1, 2, 3, . . . predicates). This

information is used to perform weighted sampling of the queries by extending the algo-

rithm for the no workload scenario. This ensures that queries involving popular attributes

and attribute values are generated at a higher frequency. Of course, sampling takes place

without replacement so that all the queries in the augmented query workload are distinct.

Next, we assign different weights w(qi) to the queries qi ∈ Q′ from the augmented

workload to ensure that the model prioritizes the accuracy of queries from the workload.

w(qi) =

1 if qi ∈ Q

|Q|
|Q′| if qi ̸∈ Q

(2.9)

We then train the DL model where the penalty for a query q is weighed proportionally to

whether it came from the original or the augmented query workload.

q-error(Q) =
1

|Q|

|Q|∑
i=1

w(qi)×
(
si
ŝi

+
ŝi
si

)
(2.10)

2.4.4 Miscellaneous Issues

Incremental Data. Our supervised approach does not even look at the data and only uses

the query training dataset. When incremental data arrives, the selectivities of some of these

queries would change. We then train the model on the dataset with the updated selectivites.

Incremental Query Workload. In this case, it is possible to use the incremental training

algorithm as described in Section 2.3.6. We initialize the supervised model with the weights
24

from previous training run instead of random initialization. We train the model on the new

data with a reduced learning rate and a smaller number of epochs. We also use Dropout

regularization technique with probability p = 0.1 to avoid catastrophic forgetting.

2.5 Experiments

MADE Sup Samp LR SVR BN Wvlet Hist MSCN NC CE

Algorithms

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
g(

q
-e

rr
or

)

Figure 2.1: Comparison with Baselines
(Census)

MADE Sup Samp LR SVR BN Wvlet Hist MSCN NC CE

Algorithms

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
g(

q
-e

rr
or

)

Figure 2.2: Comparison with Baselines
(IMDB)

In our evaluation, we consider the following key questions:

1. How does our proposed methods compare against traditional selectivity estimation

approaches?

2. How does our methods compare against prior supervised DL based approaches?

3. How does our work compare with a concurrent work Naru [22] in terms of point and

range queries?

2.5.1 Experimental Setup

Hardware and Platform. All our experiments were performed on a NVidia V100 GPU.

The CPU is a quad-core 2.2 GHz machine with 16 GB of RAM. We used PyTorch for

building the DL models.

25

Datasets. We conducted our experiments on two real-world datasets: Census [12] and

IMDB dataset from Join Order Benchmark [1]. Each of these datasets have complex corre-

lated attributes and conditional dependencies. Selectivity estimation on multiple predicates

especially on IMDB datasets is quite challenging. The Census dataset has 50K rows, 8

categorical and 6 numerical attributes. The IMDB dataset consists of 21 tables with infor-

mation about movies, actors, directors etc. It contains as much as 2.5M movie titles and

over 4M actors. For our experiments, we used two large tables Title.akas and Title.basics

containing 3.4M and 5.3M tuples with 8 and 9 attributes respectively. Finally, we also eval-

uate our algorithms on a synthetic dataset from TPC-H benchmark using a scale factor of

1.

Algorithms for Selectivity Estimation. The unsupervised model consists of a 4 layer

masked autoencoder with 128 neurons in each layer and was trained for 10 epochs by de-

fault. The supervised model consists of 3 fully connected layers with 100 neurons and

ReLU activation function. The final layer has sigmoid activation function to convert the

output in the range [0, 1]. The training data consists of 10K queries (see details in Sec-

tion 2.4). The true selectivities are transformed by log scaling followed by min-max scal-

ing. We trained it for 100 epochs.

Query Workload. We compared the algorithms on a test query log of 10K queries. We

generated the log to thoroughly evaluate the performance of the estimators for various

facets such as number of predicates, selectivity, size of joint probability distribution, at-

tribute correlation etc. Census has 8 categorical attributes thereby creating
(
8
1

)
+
(
8
2

)
+

. . .
(
8
8

)
= 255 possible attribute combinations. The 10K workload was equally allotted

such that there are 1250 queries with exactly 1 predicate, 1250 queries with 2 predicates

and so on. There are
(
8
i

)
combinations with exactly i attributes. We allocate 1250 equally

26

between
(
8
i

)
combinations. For a specific attribute combination, we pick their values ran-

domly without replacement from their respective domains.

Performance Measures. We used q-error defined in Section 4.2 for measuring the estima-

tion quality. Recall that q-error of 1 corresponds to perfect estimate while a q-error of 2

corresponds to an under- or over-estimate by a factor of 2 and so on. We also use box-plots

to concisely describe the results of 10K queries. The middle line corresponds to the median

q-error while the box boundaries correspond to the 25th and 75th percentiles. The top and

bottom whiskers are set to show the 95th and 5th percentiles.

2.5.2 Comparison with Baselines

In our first set of experiments, we demonstrate the efficacy of our approaches against

popular baseline approaches such as multi-dimensional histograms [2, 31, 32, 33, 34, 35],

wavelets [36], Bayesian networks [12, 13] and sampling [37]. Our experiments were con-

ducted on Postgres and leverage the recently introduced multi-column statistics feature

from Postgres 10. We use the TABLESAMPLE command in Postgres 10 with Bernoulli

sampling to obtain a 1% sample. Haar wavelets are widely used in selectivity estimation

and approximate query processing [36, 38] as they are accurate and can be computed in

linear time. We used standard Haar wavelet decomposition algorithm described in [38] for

handling multi-dimensional data. We implemented the algorithm described in [12]. We

also evaluated our approach against Linear Regression (denoted as LR) [39] and Support

Vector Regression (denoted as SR) [40] that has been previously used for a related area of

query performance monitoring [4].

Bayesian Network (BN) are disproportionately affected by the domain cardinality.

For example, consider three attributes A1, A2, A3 such that A1 and A2 are the parents of

A3. The conditional probability table of A3 needs O(|A1| × |A2| × |A3|) entries. For the

27

IMDB dataset that has millions of actors and/or movie titles, this results in an explosion

of space requirements. For the initial set of experiments involving non-DL baselines over

IMDB dataset, we perform it only on a 1% sample. Since even the 1% sample has 25K

movies and 110K actors, we use an additional entropy based discretization [27] so that it

fits into the space budget. Unfortunately, our efforts to discretize the entire IMDB dataset

so as to fit the space budget produced inferior BN with poor results. We repeated our

experiment over 10 different 1% samples and report the average results in Figure 2.2. Once

we show the superiority of our method over non-DL baselines, we report the results for the

DL based approaches for the entire IMDB and TPC-H datasets in Tables 2.1 and 2.2.

We also evaluated our algorithms against 3 representative DL based approaches [10,

8, 7] for which either the code or the complete DL architecture specification was available.

MSCN [10] is a multi-set convolutional network that has been used for answering corre-

lated joins effectively. MSCN can express query features using sets resulting in smaller

model sizes [10]. NeuralCubes (NN) [7] is another approach that uses DL to estimate

queries with application in interactive data exploration. It is a holistic approach that uses

an encoder-decoder based architecture to learn embedding for each feature and uses a DL

model to estimate the aggregates. CE is a cost based estimator first proposed in [8]. While

it is used for estimating the cost of a query, it has a component for query estimation that we

use for estimation.

For fair comparison, all the selectivity estimators are allocated the same space bud-

get. Specifically, MSCN required 3MB of space and all other non-DL models were modi-

fied to fit this space budget. Sup, MADE and Naru used less than 2MB of space. Increasing

the space budget did not materially improve the accuracy. We used additional optimizations

such as half-precision to reduce the storage of our supervised and unsupervised models.

This is done post-training and results in a smaller model with almost no loss in accuracy.

28

We also applied model pruning on the supervised model. This resulted in our supervised

model requiring space of around 200KB. Our MADE model used a space of around 1MB.

Figures 2.1 and 2.2 present the results. We can observe that our DL based approaches

dramatically outperform all the prior methods. The baseline approaches of LR [39] and

SVR [40] provide inaccurate results; both Census and IMDB exhibit complex correlation

and conditional dependencies, which these techniques are unable to adapt to. The sampling

based approach provides good estimates for queries with high selectivities but dramatically

drops off in accuracy for queries with low/very-low selectivities. Wavelets and histograms

provide performance comparable to our methods. However, this is due to the fact that we

disproportionately allocated much more resources for them than our approaches. Interest-

ingly, the closest baseline is BN that is related in principle to our algorithm. However, our

approaches are superior to BN in both accuracy and time. Specifically our approaches are

2 times more accurate on average for Census and 100 times more accurate for the worst

case error. Similar trends hold for IMDB in terms of accuracy. As a point of reference,

it takes one minute to train our approaches on Census versus 16 minutes for BN (corre-

spondingly 12 minutes of training for our approaches for IMDB versus 516 minutes for

BN). Figures 2.1 and 2.2 shows that both our unsupervised and supervised approaches ei-

ther outperform the competing approaches or are comparable with them. For supervised

approaches, this is due to our approach to construct and/or augment an existing workload.

For unsupervised approaches, the outperformance is due to the ability of MADE to accurate

learn the (autoregressive) conditional probability distributions.

Comparing DL based Models. In the next set of experiments, we focus on the DL based

approaches. Our experiments were conducted on the entire IMDB and TPC-H datasets.

Table 2.1 shows the results for the IMDB dataset. We partition the queries based on the

29

number of predicates and display the median and 99-th percentile for each of the cases. We

can see that our proposed approaches outperform other supervised DL based approaches.

1-3 4-6 7-9
50th 99th 50th 99th 50th 99th

Sup 1.01 1.12 1.09 2.78 1.77 4.2
MADE 1.01 1.06 1.02 1.22 1.08 2.26
NARU 1.01 1.06 1.02 1.21 1.08 2.27
MSCN 1.08 1.67 1.78 2.1 3.8 281
NC 1.32 1.98 3.2 98 9.6 323
CE 1.18 1.87 1.55 4.7 5.6 108

Table 2.1: Breakdown of DL model performance based on #predicates (1-3, 4-6 and 7-9)
for IMDB Dataset.

We also performed additional experiments on TPC-H dataset to show that our pro-

posed approaches can generalize across multiple distributions. The query workload was

constructed in the same way for IMDB and Census. Table 2.2 shows that the results are

similar as before. Our proposed approaches can achieve excellent results on TPC-H.

1-3 4-6 7-9
50th 99th 50th 99th 50th 99th

Sup 1.03 1.08 1.1 2.23 1.7 4.9
MADE 1.01 1.02 1.03 1.08 1.12 1.9
NARU 1.01 1.02 1.03 1.08 1.12 1.91
MSCN 1.06 1.12 1.34 1.56 4.7 172
NC 1.24 1.89 5.6 66 10.7 264
CE 1.12 1.43 1.77 3.8 6.3 131

Table 2.2: Point Queries on TPC-H. Queries are partitioned based on the number of predi-
cates.

The sample workload provided by Kipf et al [10] is for answering queries over mul-

tiple tables. Since our focus is on answering multi-predicate queries on a single table, this

30

was not applicable. Hence, we implemented the training data generation scheme described

in Section 3.3 of [10] and obtained a training dataset of equivalent size (10K queries). We

found that the performance of MSCN is heavily dependent on the sampling scheme and is

especially vulnerable to queries with low selectivities. Even when we doubled the query

workload (to 20K) queries, the performance of MSCN was worse than ours. A similar

behaviour was also observed in [22].

1 2 3 4 5 6 7 8

Number of Predicates

1

2

3

4

5

q
-e

rr
or

Figure 2.3: Vary-
ing #Predicates (Su-
pervised)

[0-0.01) [0.01-0.05)[0.05-0.1) [0.10-1)

Selectivity

1

2

3

4

5

q
-e

rr
or

Figure 2.4: Vary-
ing Selectivity (Su-
pervised)

[0-100) [100-1K) [1K-10K)[10K-0.5M)

Size of Domain Cardinality

1

2

3

4

5

q
-e

rr
or

Figure 2.5: Varying
Domain Cardinality
(Supervised)

Unweighted Loss Weighted Loss

Algorithm

1

2

q
-e

rr
or

Figure 2.6: Work-
load (Supervised)

2.5.3 Supervised Cardinality Estimation

We have established that our proposed approaches outperform DL and non-DL base-

lines. In this subsection, we describe additional experimental results that investigates the

impact of various relevant factors of this outperformance.

Varying #Predicates in Query. Figure 2.3 presents the result of varying the number of

predicates for the census dataset. The results for the larger and more challenging datasets

of IMDB and TPC-H can be found in Tables 2.1 and 2.2. We partition the query workload

based on the number of predicates involved and report the median and 99-th percentile of

q-error. Not surprisingly, the q-errors of DL based approaches are low for queries with

31

small number of predicates which are often easy to accurately estimate. However, these

approaches start to falter for queries with higher number of predicates. These queries often

have low selectivity and exhibit complex correlations between the attributes. In contrast,

our supervised approach gives accurate estimates across the board for queries with small

as well as large number of predicates.

Varying Query Selectivity. We group the queries in the test set based on their selectivity

and investigate how the selectivity of the query impacts of our approach. Figure 2.4 shows

the results. Not surprisingly, our approach provides very accurate estimates for queries

with selectivity of 1% or more. Even when the selectivity is less than 1%, our approach is

quite accurate with a median q-error of less than 2.

Varying Domain Cardinality. The attributes of IMDB dataset vary between 4 to almost

half a million. Figure 2.5 show that our proposed approach performs well for all types of

attributes thanks to the effective encoding of the values and the construction of training set.

Leveraging Query Workload. Our proposed approach leverages workload in two ways.

First, the training dataset for the supervised approach is generated to be similar to the

workload. Second, the objective function is modified so that errors on queries similar to

workload are penalized with a higher weight. It is plain that using a training dataset based

on workload gives better results. Hence, we test the impact of weighting queries differently

on the performance of the model. Figure 2.6 shows the performance of two variants of the

supervised approach. While both these approaches construct the training dataset similar to

the workload, the way the objective function is modified is different. The Unweighted Loss

variant gives equal weight to the errors from all queries in the training query workload.

On the other hand, Weighted Loss gives higher penalty to errors on queries similar to the

workload. Figure 2.6 shows that both these modifications are needed for obtaining good

results.

32

Encoding 50th 75th 99th
Census One-Hot 1.01 1.04 1.1
Census Binary 1.01 1.04 1.08
IMDB One-Hot 1.02 1.17 1.61
IMDB Binary 1.01 1.04 1.12

Table 2.3: Impact of Value Encoding.

Impact of Encoding. In our paper, we discussed two ways of encoding the query – one-

hot encoding or the binary encoding. Table 2.3 shows the impact of encoding on the model

performance in terms of percentile q-errors. When the domain cardinality is small such as

for Census dataset, the impact of encoding is minimal and is only visible at the tail end of

q-error. However, when the cardinality is huge such as for IMDB dataset, then the impact

is non-trivial. This to be expected as the binary encoding requires substantially less number

of parameters to learn in the input layer of the DL model than the one-hot encoding. Given

a fixed training dataset, a model with lesser number of parameters will avoid the overfitting.

Furthermore, the encoding also has a nice side-effect of reducing the model size.

Impact Log Transformation and Min-Max Scaling. We use log transformation and

min-max scaling as a pre-processing step for query selectivity. Table 2.4 shows that the

transformation has a significant impact on the performance of our supervised model. This

is due to the fact that the selectivity of queries in the training dataset are very skewed.

Furthermore, the selectivity of a significant number of queries (such as the queries with

multiple predicates) are often very small. Unscaled selectivity has a deletrious effect on the

model performance and gives large errors for queries with low selectivity as shown by the

99-th percentile q-errors. It also slows down the convergence of the model training.

Hyperparameter Tuning. We conducted additional experiments varying hyperparame-

ters such as epochs, number of layers and number of hidden units. Our DL model consists

of 3 fully connected layers with 100 hidden units. We varied the number of epochs as (50,

33

Transformation 50th 75th 99th
Census No 1.07 1.73 4.8
Census Yes 1.01 1.04 1.08
IMDB No 1.04 1.92 11.27
IMDB Yes 1.01 1.04 1.12

Table 2.4: Impact of Log Transformation.

100, 200, 500), number of layers between 2-6, number of hidden units as (50, 100, 200,

500). We found that using a 100 epochs provided the best result. A smaller number of

epochs resulted in underfitting while more than that resulted in overfitting as measured by

the performance over a separately held validation set. We found that increasing the number

of layers beyond 3 provided minimal improvements and made the model prone to overfit-

ting and increased the model size. The choice of 3 layers with 100 hidden units each fit the

sweet spot in terms of lower q-error and smaller model size.

Summary. Our supervised model produces more accurate results and requires less storage

than each of the prior work that use supervised DL models. Better accuracy is due to the

careful selection of training dataset, log-transformation / min-max scaling and an effective

use of workload when available. As shown from the experiments above, the combination

of these characteristics allows us to have a smaller model architecture while achieving

good performance for queries with low selectivity and/or multiple predicates. We also use

number of tricks like half-precision and model pruning to further reduce the model size.

This does not materially affect the accuracy.

2.5.4 Unsupervised Density Estimation

Varying #Predicates in Query. Figure 2.7 depicts how our unsupervised approach be-

haves for queries with varying number of predicates. As expected, the approach is very

accurate for queries with small number of predicates. This is unsurprising as they could be

34

easily learnt by most selectivity estimators. We can observe however that our estimates are

very accurate and within a factor of two even for queries with as much as 7-8 predicates.

Often queries with large number of predicates have small selectivities and exhibit complex

correlations. Despite those challenges our methods provide very good performance.

Varying Query Selectivity. Next, we group the queries in the 10K test set based on their

selectivity. Figure 2.8 presents that, our approach provides very accurate estimates for

queries with selectivity of 5% or more. Even when the selectivities are low or very low, our

method is still able to provide excellent estimates that are off by a factor of at most 2 for

75% percent of the query test set.

Varying Domain Cardinality. Figure 2.9 shows that the overall trend is comparable to

that of the supervised approach. For attributes with small number of domain values, the

estimates are very accurate. It slowly deteriorates for attributes with larger domain cardi-

nality.

Impact of Query Workload. As expected, the availability of query workload improves the

performance of our unsupervised approach. As expected, the improvement for supervised

is much better than for the unsupervised model. This is to be expected as the supervised

estimator is trained on the query workload while the unsupervised is trained on the relation

and does not use the workload information directly. Nevertheless, our retrofitted approach

that uses a weighted cross entropy loss function does provide a meaningful improvement

in performance.

Handling Incremental Data. Our proposed approaches can naturally handle incremental

data. In order to evaluate them, we randomly permuted the IMDB dataset and grouped them

into three partitions. The first partition P1 consists of 50% of the data and P2 and P3 consist

of the remainder. We consider two cases - NoIns and Ins. In the former, the new tuples

does not contain any attribute domain values. In the latter, this could result in new domain

35

1 2 3 4 5 6 7 8

Number of Predicates

1

2

3

4

5

6

7

8

9

10

11

12

13

14

q
-e

rr
or

Figure 2.7: Vary-
ing #Predicates (Un-
supervised)

[0-0.01) [0.01-0.05)[0.05-0.1) [0.10-1)

Selectivity

1

2

3

4

5

6

7

q
-e

rr
or

Figure 2.8: Vary-
ing Selectivity (Un-
supervised)

[0-100) [100-1K) [1K-10K)[10K-0.5M)

Size of Domain Cardinality

1

2

3

4

5

6

7

8

9

10

11

12

13

q
-e

rr
or

Figure 2.9: Varying
Domain Cardinality

Unweighted Loss Weighted Loss

Algorithm

1

2

3

4

5

q
-e

rr
or

Figure 2.10: Work-
load (Unsupervised)

P1 P2 P3
Sup-NoIns 2.8 2.82 2.86
MADE-NoIns 1.53 1.56 1.63
Sup-Ins 2.8 8.7 119
MADE-Ins 1.53 4.2 6.8

Table 2.5: Incremental Data with and without insertions on IMDB.

values. For an unordered (categorical) attributes, we impose an arbitrary ordering of the

attribute values and use binary encoding to represent the values. For a new domain value,

the next available binary representation is allotted. Similarly, the domain values need not

be dense. Consider an attribute whose domain is {1, 20, 100, 1000}. By default, our binary

encoding will use 10 bits to encode these values (210 = 1024). This allows one to encode

any value between 0 − 1023 without any major changes. If the inserted values are larger

than 1023, then one would require a different encoding and re-training. This approach is not

unique to binary encoding. Even other approaches such as one-hot encoding or embedding

based also suffer from the same issue. We have conducted an experiment to highlight this

phenomenon (Table 2.5). We report the 99-th percentile of q-error. Our current approach

could easily and effectively handle incremental data where the domain of the attributes are

either not modified or only have limited insertions. Their efficacy drops if there is a large

amount of insertions and would require retraining of the model.

36

2.5.5 Comparison with Naru

Our unsupervised selectivity estimator is very similar to Naru [22] which is a concur-

rent work. We conduct additional experiments comparing our method with Naru’s MADE

based model using the code from its GitHub repository. Both our approaches uses an neu-

ral autoregressive model for learning the conditional probability distribution and use it for

answering point queries. Given this similarity, it is not surprising that the results from Ta-

bles 2.1 and 2.2 for IMDB and TPC-H dataset show comparable accuracy. Our model is

smaller than Naru’s due to the use of half-precision and simpler binary encoding. This also

has an auxilliary benefit of making the inference faster.

Range Queries. We next evaluated the performance of our approach and Naru for range

queries. Since IMDB had limited number of numerical attributes, we increased the pool

by artificially encoding each categorical variable as an integer. For example, {a, b, c}

is now encoded as {0, 1, 2}. Table 2.6 shows the results. Both our approaches lever-

age the autoregressive model that was designed for answering point queries for answering

range queries. We use an adaptive importance sampling algorithm inspired by Monte-Carlo

multi-dimensional integration [20] while Naru uses a progressive sampling [22].

Given a range query with say K predicates, Naru works as follows. First, it obtains

the probability of i-th predicate conditioned on previous values. Then, it generates a sample

value for i-th attribute. Finally, the conditional probabilities are multiplied together to get

an estimate of the selectivity. We can see that this approach proceeds sequentially in stages

one attribute at a time where the probability estimation and sampling steps are interspersed.

In contrast, our approach has the notion of batches that is used to parallelize the

estimation. Given a query budget, we partition them into batches (say of size 25 or 50).

Given a query with K range predicates, we use K functions (g1, g2, . . . , gK). The function

gi help us in smartly sampling a value ai ∈ Ri (where Ri is the range predicate for attribute

37

Ai). Each of gi is based on a single attribute and the sampling can be done in parallel for

each attribute. Additionally, we also keep the value of gi fixed during the batch. This allows

us to generate multiple samples from a weighted distribution efficiently. After each batch is

processed, we issue the entire batch of randomly constructed to the point query estimator,

update the values of gi and repeat the process. We can see that this notion of batching

allows one to vectorize key steps such as sampling, invoking the estimator, updating gi and

so on. Since GPUs can run the vectorized code efficiently, higher the batch size, faster is

the running time.

1-3 4-6 7-9
50th 99th 50th 99th 50th 99th

MADE 1.01 1.08 1.06 1.34 1.12 3.17
NARU 1.01 1.08 1.06 1.36 1.12 3.23

Table 2.6: Range Queries on IMDB.

Attribute Ordering. We show the results of attribute ordering in Table 2.7. Naru uses

an ordering based on mutual information. Our approach is based order-agnostic training

of MADE where we train the model on multiple orderings. Even using a small number of

orderings gives good performance. In addition, as mentioned in Section 3.4, we use domain

knowledge or information gleaned from data profiling such as functional dependencies to

choose attribute ordering. The experimental results show that both these heuristics provide

comparable results.

IMDB TPC-H
50th 99th 50th 90th

MADE 1.02 1.32 1.01 1.92
NARU 1.02 1.31 1.01 1.91

Table 2.7: Impact of Attribute Ordering on number of predicates (1-3, 4-6 and 7-9) for
IMDB Dataset.

38

Inference Timings. Even when using the same model architecture as Naru, the median

inference time of our model is slightly faster by 0.1ms (7.4ms to 7.3ms). The difference is

due to smaller model size (at the input layer) required by our simpler encoding. We also

use additional optimizations such as half-precision that dramatically shrink our model and

decrease the inference time to 3.8ms

2.6 Related Work

Deep Learning for Databases. Recently, there has been extensive work on applying tech-

niques from DL for solving challenging database problems. One of the first work was by

Kraska et. al [41] that sought to build learned indexes. There are two conceptual connec-

tions between our approach and [41]. First, they both seek to leverage the data distribution

for the task at hand. Second, both of these leverage the concept of ensembles/mixtures to

improve the performance of individual DL models. However, the problem they tackle are

very different – density estimation vs indexing. Another difference is that [41] uses the

cumulative distribution function (CDF) [42] while our unsupervised approach uses prob-

ability density estimation (PDF). There has been extensive work on using DL techniques

including reinforcement learning for query optimization (and join order enumeration) such

as [43, 44, 45, 46]. Recently, there has been effort to build a learned database systems [47]

and an end-to-end learned optimizers [48, 8]. DL has also been applied to the problem of

entity resolution in [49] and data integration [50, 51].

Traditional Approaches for Selectivity Estimation. Due to the importance of selectivity

estimation, there has been extensive work on accurate estimation. Popular approaches for

estimation include sampling [37], histograms [2, 31, 32, 33, 34, 35], wavelets [36], kernel

density estimation [52, 53, 54] and graphical models [12, 13].

39

ML based Approaches for Selectivity Estimation. Due to its versatility, ML has been

explored for the problem of selectivity estimation. One of the earliest approaches to use

neural networks is [55]. While promising, the recently proposed techniques such as neural

density estimation are much more accurate. Another relevant recent work is [10, 56] that

focuses on estimating correlated join selectivities. It proposes a novel set based DL model

but focuses mostly on supervised learning. In contrast we consider both supervised and

unsupervised approaches. An empirical analysis of various approaches can be found in [5].

Recently, there has been efforts to focus on challenging types of queries including group-

by [57], range [22, 29] and spatial [58] queries. Our algorithm for range queries is much

simpler than that of [22] and can provide comparable results. There is also some promising

work on using deep learning for approximate query processing such as [59, 6, 7].

2.7 Final Remarks

In this paper, we proposed DL models for the fundamental problem of selectivity

estimation. We proposed two complementary approaches that modeled the problem as an

unsupervised and supervised learning respectively. For the former, we leveraged MADE

– a neural density estimation technique based on masked autoencoders. For the latter, we

proposed a DL architecture to learn the selectivity from a query log augmented with true

selectivities. Our extensive experiments showed that the results are very promising and can

address some of the pain points of popular DL based selectivity estimators. There are a

number of promising avenues to explore. For one, how to extend the unsupervised selec-

tivity estimators over single tables to multiple tables involving correlated joins. Another

intriguing direction is to investigate the possibility of other deep generative models such as

deep belief networks (DBN), variational auto encoders (VAE) and generative adversarial

networks (GANs) for the purpose of selectivity estimation.

40

CHAPTER 3

Approximate Query Processing for Data Exploration using Deep Generative Models

Data is generated at an unprecedented rate surpassing our ability to analyze them.

The database community has pioneered many novel techniques for Approximate Query

Processing (AQP) that could give approximate results in a fraction of time needed for com-

puting exact results. In this work, we explore the usage of deep learning (DL) for answering

aggregate queries specifically for interactive applications such as data exploration and vi-

sualization. We use deep generative models, an unsupervised learning based approach, to

learn the data distribution faithfully such that aggregate queries could be answered approx-

imately by generating samples from the learned model. The model is often compact – few

hundred KBs – so that arbitrary AQP queries could be answered on the client side with-

out contacting the database server. Our other contributions include identifying model bias

and minimizing it through a rejection sampling based approach and an algorithm to build

model ensembles for AQP for improved accuracy. Our extensive experiments show that

our proposed approach can provide answers with high accuracy and low latency.

3.1 Introduction

Data driven decision making has become the dominant paradigm for businesses seek-

ing to gain an edge over competitors. However, the unprecedented rate at which data is

generated surpasses our ability to analyze them. Approximate Query Processing (AQP)

is a promising technique that provides approximate answers to queries at a fraction of the

cost needed to answer it exactly. AQP has numerous applications in data exploration and

41

visualization where approximate results are acceptable as long as they can be obtained near

real-time.

Case Study. Consider an user who performs data exploration and visualization on a popular

dataset such as NYC Taxi dataset. The user issues ad-hoc aggregate queries, involving

arbitrary subsets of attributes of interest, such as what is the average number of passengers

on trips starting from Manhattan? or what is the average trip duration grouped by hour?

and so on. Since this is for exploratory purposes, an imprecise answer is often adequate.

A traditional approach is to issue aggregate queries to the database server, get exact or

approximate answers accessing the base data or pre-computed/on-demand samples and

display the returned results to the user. However, this could suffer from high latency that

is not conducive for interactive analysis. In this paper, we propose an alternate approach

where the approximate results could be computed entirely at the client side. Specifically, we

build a deep generative model that approximates the data distribution with high fidelity and

is lightweight (few hundreds of KBs). This model is sent to the client and could be used to

generate synthetic samples over which AQP could be performed locally on arbitrary subsets

of attributes, without any communication with the server. Our approach is complementary

to traditional AQP exploring a new research direction of utilizing deep generative models

for data exploration. It offers a lightweight model that can answer arbitrary queries which

we experimentally demonstrate exhibit superior accuracy. For queries requiring provable

guarantees we default to traditional AQP or exact query evaluation.

3.1.1 Outline of Technical Results

Deep Learning for AQP. Deep Learning (DL) [14] has become popular due to its excellent

performance in many complex applications. In this paper, we investigate the feasibility of

using DL for answering aggregate queries for data exploration and visualization. Struc-

42

tured databases seem intrinsically different from prior areas where DL has shined - such

as computer vision and natural language processing. Furthermore, the task of generating

approximate estimates for an aggregate query is quite different from common DL tasks.

However, we show that AQP can be achieved in an effective and efficient manner using DL

models.

Deep Generative Models for AQP. Our key insight is to train a DL model to learn the

data distribution of the underlying data set effectively. Once such a model is trained, it acts

as a concise representation of the dataset. The samples generated from the model have a

data distribution that is almost identical to that of the underlying dataset. Hence, existing

AQP techniques [60, 61] could be transparently applied on these samples. Furthermore, the

model could generate as many samples as required without the need to access the underly-

ing dataset. This makes it very useful for interactive applications as all the computations

could be done locally.

Technical Challenges. The key challenge is to identify a DL based distribution estimation

approach that is expressive enough to reflect statistical properties of real-world datasets

and yet tractable and efficient to train. It must be non-parametric and not make any prior

assumption about data characteristics. A large class of DL techniques - dubbed collectively

as deep generative models - could be used for this purpose. Intuitively, a deep generative

model is an unsupervised approach that learns the probability distribution of the dataset

from a set of tuples. Often, learning the exact distribution is challenging, thus generative

models learn a model that is very similar to the true distribution of the underlying data. This

is often achieved through neural networks that learn a function that maps the approximate

distribution to the true distribution. Each of the generative models have their respective

advantages and disadvantages. We focus on variational autoencoders [62] that aim to learn

43

a low dimensional latent representation of the training data that optimizes the log-likelihood

of the data through evidence lower bound.

3.2 Preliminaries

Consider a relation R with n tuples and m attributes A1, A2, . . . , Am. Given a tuple

t and an attribute Ai, we denote the value of Ai in t as t[Ai]. Let Dom(Ai) be the domain

of attribute Ai.

Queries for AQP. In this paper, we focus on aggregate analytic queries of the general for-

mat:

SELECT g, AGG(A) FROM R

WHERE filter GROUP BY G

Of course, both the WHERE and GROUP BY clauses are optional. Each attribute Ai

could be used as a filter attribute involved in a predicate or as a measure attribute involved

in an aggregate. The filter could be a conjunctive or disjunctive combination of conditions.

Each of the conditions could be any relational expression of the format A op CONST

where A is an attribute and op is one of {=, ̸=, <,>,≤,≥}. AGG could be one of the

standard aggregates AVG, SUM, COUNT that have been extensively studied in prior AQP

literature. One could use other aggregates such as QUANTILES as long as a statistical

estimator exists to generate aggregate estimates.

Performance Measures. Let q be an aggregate query whose true value is θ. Let θ̃ be

the estimate provided by the AQP system. Then, we can measure the estimation accuracy

through relative error defined as

RelErr(q) =
|θ̃ − θ|

θ
(3.1)

44

For a set of queries Q = {q1, . . . , qr}, the effectiveness of the AQP system could be

computed through average relative error. Let θj and θ̃j be the true and estimated value of

the aggregate for query qj .

AvgRelErr(Q) =
1

r

r∑
j=1

|θ̃j − θj|
θj

(3.2)

We could also use the average relative error to measure the accuracy of the estimate

for GROUP BY queries. Suppose we are given a group by query q with groups G =

{g1, . . . , gr}. It is possible that the sample does not contain all of these groups and the

AQP system generates estimates for groups {gj1 , . . . , gj′r} where each gji ∈ G. As before,

let θji and θ̃ji be the true and estimated value of the aggregate for group gji . By assigning

100% relative error for missing groups, the average relative error for group by queries is

defined as,

AvgRelErr(q) =
1

r

(
(r − r′) +

r′∑
i=1

|θ̃ji − θji |
θji

)
(3.3)

3.3 Background

In this section, we provide necessary background about generative models and vari-

ational autoencoders in particular.

Generative Models. Suppose we are given a set of data points X = {x1, . . . , xn} that are

distributed according to some unknown probability distribution P (X). Generative mod-

els seek to learn an approximate probability distribution Q such that Q is very similar to

P . Most generative models also allow one to generate samples X ′ = {x′
1, . . . , } from the

model Q such that the X ′ has similar statistical properties to X . Deep generative mod-

els use powerful function approximators (typically, deep neural networks) for learning to

approximate the distribution.

45

Variational Autoencoders (VAEs). VAEs are a class of generative models [62, 63, 64]

that can model various complicated data distributions and generate samples. They are very

efficient to train, have an interpretable latent space and could be adapted effectively to dif-

ferent domains such as images, text and music. Latent variables are an intermediate data

representation that captures data characteristics used for generative modelling. Let X be

the relational data that we wish to model and z a latent variable. Let P (X) be the prob-

ability distribution from which the underlying relation consisting of attributes A1, . . . , Am

was derived and P (z) as the probability distribution of the latent variable. Then P (X|z) is

the distribution of generating data given latent variable. We can model P (X) in relation to

z as P (X) =
∫
P (X|z)P (z)dz marginalizing z out of the joint probability P (X, z). The

challenge is that we do not know P (z) and P (X|z). The underlying idea in variational

modelling is to infer P (z) using P (z|X).

Variational Inference. We use a method called Variational Inference (VI) to infer P (z|X)

in VAE. The main idea of VI is to approach inference as an optimization problem. We

model the true distribution P (z|X) using a simpler distribution (denoted as Q) that is easy

to evaluate, e.g. Gaussian, and minimize the difference between those two distribution us-

ing KL divergence metric, which tells us how different P is from Q. Typically, the simpler

distribution depends on the attribute type. Gaussian distribution is often appropriate for

real numbers while Bernoulli distribution is often used for categorical attributes. Assume

we wish to infer P (z|X) using Q(z|X). The KL divergence is specified as:

DKL[Q(z|X)||P (z|X)] =
∑
z

Q(z|X) log(
Q(z|X)

P (z|X)
) =

E[log(
Q(z|X)

P (z|X)
)] = E[log(Q(z|X))− log(P (z|X))]

(3.4)

46

We can connect [62] Q(z|X) which is a projection of the data into the latent space and

P (X|z) which generates data given a latent variable z through Equation 3.5 that is also

called as the variational objective.

logP (X)−DKL[Q(z|X||P (z|X)]

= E[logP (X|z)]−DKL[Q(z|X||P (z)]

(3.5)

Encoders and Decoders. A different way to think of this equation is as Q(z|X) encoding

the data using z as an intermediate data representation and P (X|z) generates data given

a latent variable z. Typically Q(z|X) is implemented with a neural network mapping the

underlying data space into the latent space (encoder network). Similarly P (X|z) is imple-

mented with a neural network and is responsible to generate data following the distribution

P (X) given sample latent variables z from the latent space (decoder network). The varia-

tional objective has a very natural interpretation. We wish to model our data P (X) under

some error function DKL[Q(z|X||P (z|X)]. In other words, VAE tries to identify the lower

bound of log(P (X)), which in practice is good enough as trying to determine the exact

distribution is often intractable. For this we aim to maximize over some mapping from

latent variables to logP (X|z) and minimize the difference between our simple distribution

Q(z|X) and the true latent distribution P (z). Since we need to sample from P (z) in VAE

typically one chooses a simple distribution to sample from such as N(0, 1). Since we wish

to minimize the distance between Q(z|X) and P (z) in VAE one typically assumes that

Q(z|X) is also normal with mean µ(X) and variance Σ(X). Both the encoder and the de-

coder networks are trained end-to-end. After training, data can be generated by sampling z

from a normal distribution and passing it to the decoder network.

47

3.4 AQP Using Variational AutoEncoders

In this section, we provide an overview of our two phase approach for using VAE for

AQP. This requires solving a number of theoretical and practical challenges such as input

encodings and approximation errors due to model bias.

Our Approach. Our proposed approach proceeds in two phases. In the model building

phase, we train a deep generative model MR over the dataset R such that it learns the

underlying data distribution. In this section, we assume that a single model is built for

the entire dataset that we relax in Section 3.5. Once the DL model is trained, it can act

as a succinct representation of the dataset. In the run-time phase, the AQP system uses

the DL model to generate samples S from the underlying distribution. The given query is

rewritten to run on S. The existing AQP techniques could be transparently used to generate

the aggregate estimate. Figure 3.1 illustrates our approach.

Figure 3.1: Two Phase Approach for DL based AQP

3.4.1 Using VAE for AQP

In this subsection, we describe how to train a VAE over relational data and use it for

AQP.

Input Encoding. In contrast to homogeneous domains such as images and text, relations

often consist of mixed data types that could be discrete or continuous. The first step is to

represent each tuple t as a vector of dimension d. For ease of exposition, we consider one-

48

hot encoding and describe other effective encodings in Section 3.4.5. One-hot encoding

represents each tuple as a d =
∑m

i=1 |Dom(Ai)| dimensional vector where the position

corresponding to a given domain value is set to 1. Each tuple in a relation R with two binary

attributes A1 and A2, is represented as a 4 dimensional binary vector. A tuple with A1 =

0, A2 = 1 is represented as [1, 0, 0, 1] while a tuple with A1 = 1, A2 = 1 is represented as

[0, 1, 0, 1]. This approach is efficient for small attribute domains but becomes cumbersome

if a relation has millions of distinct values.

Model Building and Sampling from VAE. Once all the tuples are encoded appropriately,

we could use VAE to learn the underlying distribution. We denote the size of the input and

latent dimension by d and d′ respectively. For one hot encoding, d =
∑m

i=1 |Dom(Ai)|. As

d′ increases, it results in more accurate learning of the distribution at the cost of a larger

model. Once the model is trained, it could be used to generate samples X ′. The randomly

generated tuples often share similar statistical properties to tuples sampled from the under-

lying relation R and hence are a viable substitute for R. One could apply the existing AQP

mechanisms on the generated samples and use it to generate aggregate estimates along with

confidence intervals.

The sample tuples are generated as follows: we generate samples from the latent

space z and then apply the decoder network to convert points in latent space to tuples.

Recall from Section 3.3 that the latent space is often a probability distribution that is easy

to sample such as Gaussian. It is possible to speed up the sampling from arbitrary Normal

distributions using the reparameterization trick. Instead of sampling from a distribution

N(µ, σ), we could sample from the standard Normal distribution N(0, 1) with zero mean

and unit variance. A sample ϵ from N(0, 1) could be converted to a sample N(µ, σ) as

z = µ+ σ⊙ ϵ. Intuitively, this shifts ϵ by the mean µ and scales it based on the variance σ.

49

3.4.2 Handling Approximation Errors.

We consider approximation error caused due to model bias and propose an effective

rejection sampling to mitigate it.

Sampling Error. Aggregates estimated over the sample could differ from the exact results

computed over the entire dataset and their difference is called the sampling error. Both the

traditional AQP and our proposed approach suffer from sampling error. The techniques

used to mitigate it - such as increasing sample size - can also be applied to the samples

from the generative model.

Errors due to Model Bias. Another source of error is sampling bias. This could occur

when the samples are not representative of the underlying dataset and do not approximate

its data distribution appropriately. Aggregates generated over these samples are often bi-

ased and need to be corrected. This problem is present even in traditional AQP [60] and mit-

igated through techniques such as importance weighting [65] and bootstrapping [66, 60].

Our proposed approach also suffers from sampling bias due to a subtle reason. Gen-

erative models learn the data distribution which is a very challenging problem - especially

in high dimensions. A DL model learns an approximate distribution that is close enough.

Uniform samples generated from the approximate distribution would be biased samples

from the original distribution resulting in biased estimates. As we shall show later in the

experiments, it is important to remove or reduce the impact of model bias to get accurate

estimates. Bootstrapping is not applicable as it often works by resampling the sample data

and performing inference on the sampling distribution from them. Due to the biased nature

of samples, this approach provides incorrect results [66]. It is challenging to estimate the

importance weight of a sample generated by VAE. Popular approaches such as IWAE [67]

and AIS [68] do not provide strong bounds for the estimates.

50

Rejection Sampling. We advocate for a rejection sampling based approach [69, 70] that

has a number of appealing properties and is well suited for AQP. Intuitively, rejection sam-

pling works as follows. Let x be a sample generated from the VAE model with probabilities

p(x) and q(x) from the original and approximate probability distributions respectively. We

accept the sample x with probability p(x)
M×q(x)

where M is a constant upper bound on the ra-

tio p(x)/q(x) for all x. We can see that the closer the ratio is to 1, the higher the likelihood

that the sample is accepted. On the other hand, if the two distributions are far enough, then

a larger fraction of samples will be rejected. One can generate arbitrary number of samples

from the VAE model, apply rejection sampling on them and use the accepted samples to

generate unbiased and accurate aggregate estimates.

In order to accept/reject a sample x, we need the value of p(x). Estimating this value

- such as by going to the underlying dataset - is very expensive and defeats the purpose of

using generative models. A better approach is to approximately estimate it purely from the

VAE model.

Variational Rejection Sampling Primer. We leverage an approach for variational rejec-

tion sampling that was recently proposed in [69]. For the sake of completeness, we describe

the approach as applied to AQP. Please refer to [69] for further details. Sample generation

from VAE takes place in two steps. First, we generate a sample z in the latent space using

the variational posterior q(z|x) and then we use the decoder to convert z into a sample x in

the original space. In order to generate samples from the true posterior p(z|x), we need to

accept/reject sample z with acceptance probability

a(z|x,M) =
p(z|x)

M × q(z|x)
(3.6)

where M is an upper bound on the ratio p(z|x)/q(z|x). Estimating the true posterior p(z|x)

requires access to the dataset and is very expensive. However, we do know that the value

51

of p(x, z) from the VAE is within a constant normalization factor p(x) as p(z|x) = p(x,z)
p(x)

.

Thus, we can redefine Equation 3.6 as

a(z|x,M ′) =
p(x, z)

M × p(x)× q(z|x)
=

p(x, z)

M ′ × q(z|x)
(3.7)

We can now conduct rejection sampling if we know the value of M ′. First, we

generate a sample z from the variational posterior q(z|x). Next, we draw a random number

U in the interval [0, 1] uniformly at random. If this number is smaller than the acceptance

probability a(z|x,M ′), then we accept the sample and reject it otherwise. That way the

number of times that we have to repeat this process until we accept a sample is itself

a random variable with geometric distribution p = P (U ≤ a(z|x,M ′)); P (N = n) =

(1− p)n−1p, n ≥ 1. Thus on average the number of trials required to generate a sample is

E(N) = 1/p. By a direct calculation it is easy to show [70] that p = 1/M ′. We set the

value of M ′ as M ′ = e−T where T ∈ [−∞,+∞] is an arbitrary threshold function. This

definition has a number of appealing properties. First, this function is differentiable and can

be easily plugged into the VAE’s objective function thereby allowing us to learn a suitable

value of T for the dataset during training [69]. Please refer to Section 3.6 for a heuristic

method for setting appropriate values of T during model building and sample generation.

Second, the parameter T when set, establishes a trade-off between computational efficiency

and accuracy. If T → +∞, then every sample is accepted (i.e., no rejection) resulting

into fast sample generation at the expense of the quality of the approximation to the true

underlying distribution. In contrast when T → −∞, we ensure that almost every sample is

guaranteed to be from the true posterior distribution, by making the acceptance probability

small and as a result increasing sample generation time. Since a should be a probability we

change equation Equation 3.7 to:

a(z|x,M ′) = min
[
1,

p(x, z)

M ′ × q(z|x)

]
(3.8)

52

3.4.3 Towards Accuracy Guarantees

As mentioned in Section 3.1, our approach is complementary to traditional AQP sys-

tem. Our objective is to design a lightweight deep generative model that could be used to

obtain quick-and-dirty aggregate estimates that are often sufficient for preliminary data ex-

ploration. Once the user has identified promising queries that requires provable guarantees,

we can defer traditional AQP techniques or even obtain exact answers. In this subsection,

we describe an initial approach for obtaining the accuracy guarantees. We would like to

note that developing a framework to quantify approximation errors of AQP based on deep

generative models is a challenging problem and a focus of our future research.

Eliminating Model Bias. Recall from Section 3.4.2 that approximation errors incurred in

our approach are due to model bias and sampling error. If the model bias is eliminated,

then our problem boils down to the traditional AQP setting. We could readily leverage the

rich set of accuracy guarantees and confidence intervals developed for handling sampling

error. This is achieved by setting T = −∞ and applying variational rejection sampling

(VRS). However, this comes with a large computational cost whereby the vast majority

of generated tuples are rejected. Ideally, we would like a granular accuracy-computation

tradeoff. Increasing T improves the sampling efficiency at the cost of model bias.

Distribution Testing. We adapt techniques designed for high-dimensional two-sample

hypothesis testing [71, 72] for choosing appropriate T . Suppose we are given two sets

of uniform random samples SD and SM from the original dataset and the learned model

respectively. Let |SD| = |SM |. Suppose that these samples were drawn from probability

distributions PD and PM . If we can ascertain that the two distributions are the same (i.e.

PD = PM), by using the corresponding samples, then we can safely ignore the issue of

model bias. This is achieved by testing the null hypothesis H0 : PD = PM .

53

There are two factors that makes this challenging: high-dimensionality and test-

statistics for AQP. First, we train VAE model by transforming tuples into a vector whose

dimensionality ranges in the thousands. Classical tests such as Kolmogrov-Smirnov are not

suitable for testing such high dimensional distributions. Second, hypothesis testing meth-

ods rely on a test statistic that is a function of SD and SM that could be used to distinguish

PD and PM . For example, a simple test statistic is to choose an aggregate query such as es-

timating the average value of some attribute Ai. If the average of Ai computed over SD and

SM deviates beyond certain threshold we can reject the null hypothesis. However, this is

not appropriate for our scenario. We wish to test the null hypothesis for arbitrary aggregate

queries. The way out of this conundrum is to use Cross-Match Test [71, 72].

Cross-Match Test for AQP. We begin by projecting tuples in SD and SM into the latent

space of VAE using the encoder. We abuse the notation by representing the projected tuples

as SD and SM . Let Z = SD ∪ SM . We associate a label of 0 if tuple t ∈ SD and a label of

1 if t ∈ SM . We construct a complete graph where each node corresponds to a tuple in Z

while the edge corresponds the Euclidean distance between the latent space representation

of the corresponding tuples. We then compute a minimum weight perfect matching using

the Blossom algorithm [73]. The output is a collection of non-overlapping pairs of tuples.

Consider a specific pair of tuples (Zi, Zj). There are three possibilities: both tuples are

from SD, both tuples are from SM or one each from SD and SM . Let aD,D, aM,M , aD,M

be the frequency of pairs from the matching of these three categories. The cross-match

test [71, 72] specifies aD,M as the test statistic. Let η = aD,D + aM,M + aD,M . We accept

or reject the null hypothesis based on the probability computed as

2aD,M × η!(
η

|SD|

)
(aD,D)!(aM,M)!(aM,D)!

(3.9)

54

3.4.4 Variational Autoencoder AQP Workflow

Algorithm 1 provides the pseudocode for the overall workflow of performing AQP

using VAE. In the model building phase, we encode the input relation R using an appro-

priate mechanism (see Section 3.4.5). The VAE model is trained on the encoded input and

stored along with appropriate metadata.

During the runtime phase, we generate sample SM from VAE using variational re-

jection sampling with T = 0. We then apply the hypothesis testing to ensure that the two

distributions cannot be distinguished. If the null hypothesis is rejected, we generate a new

sample SD with a lower value of T . This will ensure that the model bias issue is eliminated.

One can then apply existing techniques for generating approximation guarantees and con-

fidence intervals. Note that we use the VAE model for data exploration only after it passed

the hypothesis testing.

3.4.5 Making VAE practical for relational AQP

In this subsection, we propose two practical improvements for training VAE for AQP

over relational data.

Effective Input Encoding. One-hot encoding of tuples is an effective approach for rela-

tively small attribute domains. If the relation has millions of distinct values, then it causes

two major issues. First, the encoded vector becomes very sparse resulting in poor perfor-

mance [74]. Second, it increases the number of parameters learned by the model thereby

increasing the model size and the training time.

A promising approach to improve one-hot encoding is to make the representation

denser using binary encoding. Without loss of generality, let the domain Dom(Aj) be its

zero-indexed position [0, 1, . . . , |Dom(Aj)| − 1]. We can now concisely represent these

values using ⌈log2 |Dom(Aj)|⌉ dimensional vector. Once again consider the example

55

Algorithm 1 AQP using VAE
1: Input: VAE model V

2: T = 0, SD = sample from D,

3: Sz = {} //set of samples

4: while samples are still needed do

5: Sample z ∼ q(z|x)

6: Accept or reject z based on Equation 3.8

7: If z is accepted, Sz = Sz ∪ {z}

8: SM =Decoder(Sz) // Convert samples to original space

9: Test null hypothesis H0 : PS = PD using Equation 3.9

10: if H0 is rejected then

11: T = T − 1

12: Goto Step 3

13: Output: Model V and T

Dom(Aj) = {Low,Medium,High}. Instead of representing Aj as a 3-dimensional vec-

tors (i.e., 001, 010, 100), we can now represent them in ⌈log2(3)⌉ = 2-dimensional vector

i.e., η(Low) = 00, η(Medium) = 01, η(High) = 10. This approach is then repeated

for each attribute resulting a d =
∑n

i=1⌈log2 |Dom(Ai)|⌉-dimensional vector (for n at-

tributes) that is exponentially smaller and denser than the one-hot encoding that requires∑n
i=1 |Dom(Ai)| dimensions.

Effective Decoding of Samples. Typically, samples are obtained from VAE in two steps:

(a) generate a sample z in the latent space i.e., z ∼ q(z|x) and (b) generate a sample x′ in

the original space by passing z to the decoder. While this approach is widely used in many

domains such as images and music, it is not appropriate for databases. Typically, the output

of the decoder is stochastic. In other words, for the same value of z, it is possible to generate

56

multiple reconstructed tuples from the distribution p(x|z). However, blindly generating a

random tuple from the decoder output could return an invalid tuple. For images and music,

obtaining incorrect values for a few pixels/notes is often imperceptible. However, getting

an attribute wrong could result in a (slightly) incorrect estimate Typically, the samples

generated are often more correct than wrong. We could minimize the likelihood of an

aberration by generating multiple samples for the same value of z. In other words, for the

same latent space sample z, we generate multiple samples X ′ = {x′
1, x

′
2, . . . , } in the tuple

space. These samples could then be aggregated to obtain a single sample tuple x′. The

aggregation could be based on max (i.e., for each attribute Aj , pick the value that occurred

most in X ′) or weighted random sampling (i.e., for each attribute Aj , pick the value based

on the frequency distribution of Aj in X ′). Both these approaches provide sample tuples

that are much more robust resulting in better accuracy estimates.

3.5 AQP using Multiple VAEs

So far we have assumed that a single VAE model is used to learn the data distribution.

As our experimental results show, even a single model could generate effective samples for

AQP. However, it is possible to improve this performance and generate better samples.

One way to accomplish this is to split the dataset into say K non-overlapping partitions

and learn a VAE model for each of the partitions. Intuitively, we would expect each of

the models to learn the finer characteristics of the data from the corresponding partition

and thereby generate better samples for that partition. In this section, we investigate the

problem of identifying the optimal set of K partitions for building VAE models.

3.5.1 Problem Setup

Typically, especially in OLAP settings, tuples are grouped according to hierarchies

on given attributes. Such hierarchies reflect meaningful groupings which are application

57

specific such as for example location, product semantics, year, etc. Often, these groupings

have a semantic interpretation and building models for such groupings makes more sense

than doing so on an arbitrary subset of the tuples in the dataset. As an example, the dataset

could be partitioned based on the attribute Country such that all tuples belonging to a

particular country is an atomic group. We wish to identify K non-overlapping groups

of countries such that a VAE model is trained on each group.

More formally, let G = {g1, g2, . . . , gl} be the set of existing groups with gi ⊆ R

such that ∪li=1gi = R. We wish to identify a partition S = {s1, . . . , sK} of R where

si ⊆ G and si ∩ sj = ∅ when i ̸= j. Our objective is to group these l subsets into K

non-overlapping partitions such that the aggregate error of the VAEs over these partitions

is minimized.

Efficiently solving this problem involves two steps: (a) given a partition, a mech-

anism to estimate the error of K VAEs trained over the partition without conducting the

actual training and (b) an algorithm that uses (a) to identify the best partition over the space

of partitions. Both of these challenges are non-trivial.

3.5.2 Bounding VAE Errors

Quantifying VAE Approximation. The parameters of VAE are learned by optimizing an

evidence lower bound (ELBO) given by

E[logP (X|z)]−DKL[Q(z|X)||P (z)]

(from Equation 3.5) which is a tight bound on the marginal log likelihood. ELBO provides

a meaningful way to measure the distribution approximation by the VAE. Recall from Sec-

tion 3.4.2 that we perform rejection sampling on the VAE that results in a related measure

we call R-ELBO (resampled ELBO) defined as

E[logP (X|z)]−DKL[R(z|X,T)||P (z)]

58

where R(z|X,T) is the resampled distribution for a user-specified threshold of T . Given

two VAEs trained on the same dataset for a fixed value of T , the VAE with lower R-ELBO

provides a better approximation.

Bounding R-ELBO for a Partition. Let us assume that we will train a VAE model for

each of the atomic groups gj ∈ G. We train the model using variational rejection sam-

pling [69] for a fixed T and compute its R-ELBO. In order to find the optimal partition,

we have to compute the value of R-ELBO for arbitrary subsets si = {gi1, . . . , } ⊆ G. The

naive approach would be to train a VAE on the union of the data from atomic groups in

si which is time consuming. Instead, we empirically show that it is possible to bound the

R-ELBO of VAE trained on si if we know the value of R-ELBO of each of gi1, . . . ,. Let

f(·) be such a function. In this paper, we take a conservative approach and bound it by

sum f(r1, r2, . . . , rk) =
∑k

i=1 ri where ri is the R-ELBO for group gi. In other words, f(·)

bounds the R-ELBO of VAE trained ∪ki=1gi by
∑k

i=1 ri. It is possible to use other functions

that provide tighter bounds.

Empirical Validation. We empirically validated the function f(·) on a number of datasets

under a variety of settings. Table 3.1 show the results for Census and Flights dataset that

has been widely used in prior work on AQP such as [75, 76, 12]. Please refer to Section 3.6

for a description of the two datasets. We obtained similar results for other benchmark

datasets. For each of the datasets, we constructed multiple atomic groups for different

categorical attributes. For example, one could group the Census dataset using attributes

such as gender, income, race etc. We ensured that each of the groups are at least 5% of

the data set size to avoid outlier groups and if necessary merged smaller groups into a

miscellaneous group. We trained a VAE model on each of the groups for different values

of T using variational rejection sampling and computed their R-ELBO. We then construct

all pairs, triples, and other larger subsets of the groups and compare the bound obtained by

59

f(·) with the actual R-ELBO value of the VAE trained on the data of these subsets. For

each dataset, we evaluated 1000 randomly selected subsets and report the fraction in which

the bound was true. As is evident in table 3.1 the bound almost always holds.

Table 3.1: Empirical validation of R-ELBO Bounding

Dataset T = −10 T = 0 T = +10
Census 0.992 0.997 0.996
Flights 0.961 0.972 0.977

3.5.3 Choosing Optimal Partition

In this section we assume we are provided with the value of R-ELBO for each of the

groups gi ∈ G, 1 ≤ i ≤ l, a bounding function f(·) and a user specified value K. We

propose an algorithm that optimally splits a relation D into K non overlapping partitions

S = {s1, . . . , sK}where si ⊆ G and si∩sj = ∅when i ̸= j. The key objective is to choose

the split S in such a way that the
∑K

i=1 R-ELBO(si) is minimized. Note that there are K l

possible partitions and exhaustively enumerating and choosing the best partition is often

infeasible. R-ELBO(g) corresponds to the actual R-ELBO for atomic groups g ∈ G while

for si ⊆ G, this is estimated using the bounding function f(si). We investigate scenarios

that occur in practice.

Optimal Partition using OLAP Hierarchy. In OLAP settings, tuples are grouped accord-

ing to hierarchies on given attributes that reflect meaningful semantics. We assume the

availability of an OLAP hierarchy in the form of a tree where the leaf node corresponds to

the atomic groups (e.g., Nikon Digital Cameras) while the intermediate groups correspond

to product semantics (e.g., Digital Camera→ Camera→ Electronics and so on). We wish

to build VAE on meaningful groups of tuples by constraining si to be selected from the leafs

60

or intermediate nodes, be mutually exclusive and have the least aggregate R-ELBO score.

We observe that the selected nodes forms a tree cut that partitions the OLAP hierarchy into

K disjoint sub-trees.

Let us begin by considering the simple scenario where the OLAP hierarchy is a bi-

nary tree. Let h denote an arbitrary node in the hierarchy with left(h) and right(h) returning

the left and right children of h if they exist. We propose a dynamic programming algorithm

to compute the optimal partition. We use the table Err[h, k] to denote aggregate R-ELBO

of splitting the sub-tree rooted at node h using at most k partitions where k ≤ K. The base

case k = 1 is simply building the VAE on all the tuples falling under node h. When k > 1,

we evaluate the various ways to split h such that the aggregate R-ELBO is minimized. For

example, when k = 2, there are two possibilities. We could either not split h or build two

VAE models over left(h) and right(h). The optimal decision could be decided by choosing

the option with least aggregate error. In general, we consider all possible ways of appor-

tioning K between the left and right sub-trees of h and pick the allocation resulting in least

error. The recurrence relation is specified by,

Err[h, k] =

R-ELBO(h) if k=1

min1≤i≤k(Err[left(h), i]+

Err[right(h), k − i]) otherwise

(3.10)

The extension to non-binary trees is also straightforward. Let C = {c1, . . . , cj}

be the children of node h. We systematically partition the space of children into various

groups of two and identify the best partitioning that gives the least error (eq. 3.11). A

61

similar dynamic programming approach was also used for constructing histograms over

hierarchical data in [77].

Err[h, k] =

R-ELBO(h) if k=1

min1≤i≤k(Err[{c1, . . . , cj/2}, i]+

Err[{cj/2+1, . . . , cj}, k − i]) otherwise

(3.11)

Scenario 2: Partitioning with Contiguous Atomic Groups. Given the atomic groups

G = {g1, . . . , gl}, a common scenario is to partition them into K contiguous subsets. This

could be specified as K+1 integers 1 = b1 ≤ b2 . . . ≤ bK+1 = l where the boundary of the

i-th subset is specified by [bi, bi+1] and consists of a set of atomic groups {gbi , . . . , gbi+1
].

This is often desirable when the underlying attribute has a natural ordering such as year.

So we would prefer to train VAE models over data from consecutive years such as {2016−

2017, 2018 − 2019} instead of arbitrary groupings such as {{2016, 2018}, {2017, 2019}}.

This problem could be solved in near linear time (i.e., O(l)) by using the approach first

proposed in [78]. The key insight is the notion of sparse interval set system that could be

used to express any interval using a bounded number of sparse intervals. The authors then

use a dynamic programming approach on the set of sparse intervals to identify the best

partitioning.

In practice, K is often determined by various other factors such as space budget for

persisting the generative models. Identifying K automatically is an interesting orthogo-

nal problem. Our bounding function for R-ELBO has a natural monotonic property. We

empirically found that common heuristics for selecting number of clusters such as Elbow

method [79] works well for our purpose.

62

3.6 Experiments

We conduct a comprehensive set of experiments and demonstrate that VAE (and deep

generative models) are a promising mechanism for AQP. We reiterate that our proposed

approach is an alternate way for generating samples, albeit very fast. Most of the prior

work for improving AQP estimates could be transparently used on the samples from VAE.

0.5% 1% 5%

SampleSize

0.0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
E

rr
o
r

D
iff

er
en

ce Dataset

Census

Flights

Figure 3.2: Varying Sample
Size

0.1-1.0 0.01-0.1 <0.01

Selectivity

0.0

0.2

0.4

R
el

at
iv

e
E

rr
o
r

D
iff

er
en

ce Dataset

Census

Flights

Figure 3.3: Varying Query
Selectivity

25% 50% 100%

Latent Dimension

0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e
E

rr
o
r

D
iff

er
en

ce Dataset

Census

Flights

Figure 3.4: Varying Latent
Dimension

1 2 3

Depth

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
E

rr
or

D
iff

er
en

ce Dataset

Census

Flights

Figure 3.5: Varying Model
Depth

One-hot Binary Integer

Input Encoding

0.0

0.5

1.0

1.5

R
el

at
iv

e
E

rr
or

D
iff

er
en

ce Dataset

Census

Flights

Figure 3.6: Varying Input
Encoding

Naive Importance Weighted

Output Encoding

0.00

0.25

0.50

0.75

1.00

1.25

R
el

at
iv

e
E

rr
or

D
iff

er
en

ce Dataset

Census

Flights

Figure 3.7: Varying Output
Encoding

3.6.1 Experimental Setup

Hardware and Platform. All our experiments were performed on a server with 16 cores,

128 GB of RAM and NVidia Tesla K80 GPU. We used PyTorch [80] for training VAE and

GAN, bnlearn [81] for learning Bayesian Networks and MSPN [82] for mixed sum-product

networks (MSPN).

63

Datasets. We conducted our experiments on two real-world datasets: Census [83] and

Flights [84, 85]. Both datasets have complex correlated attributes and conditional depen-

dencies that make AQP challenging. The Census dataset has 8 categorical attributes and 6

numerical attributes and contains demographic and employment information. The Flights

dataset has 6 categorical and 6 numerical attributes and contains information about on-

arrival statistics for the last few years. We used the data generator from [85] to scale the

datasets to arbitrary sizes while also ensuring that the relationships between attributes are

maintained. By default, our experiments were run on datasets with 1 million tuples.

Deep Generative Models for AQP. In our experiments, we primarily focus on VAE for

AQP as it is easy and efficient to train and generates realistic samples [62]. By default,

our VAE model consists of a 2 layer encoder and decoder that are parameterized by Nor-

mal and Bernoulli distributions respectively. We used binary encoding (Section 3.4.5) for

converting tuples into a representation consumed by the encoder.

In order to generate high quality samples, we use rejection sampling during both

VAE training and sample generation albeit at different granularities. During training, the

value of threshold T (x) is set for each tuple x so that the acceptance probability of sam-

ples generated from q(z|x) is roughly 0.9 for most tuples. We use the procedure from [69]

to generate a Monte Carlo estimate for T (x) satisfying acceptance probability constraints.

While the trained model already produces realistic samples, we further ensure this by per-

forming rejection sampling with a fixed threshold T (for the entire dataset) during sample

generation (as detailed in Section 3.4.2). There are many ways for choosing the value of

T . It could be provided by the user or chosen by cross validation such that it provides the

best performance on query workload. By default, we compute the value of T from the final

epoch of training as follows. For each tuple x, we have the Monte-Carlo estimate T (x).

We select the 90-th percentile of the distribution T (x). Intuitively, this ensures that samples

64

generated for 90% of the tuples would have acceptance probability of 0.9. Of course, it is

possible to specify different values of T for queries with stringent accuracy requirements.

We used Wasserstein GAN as the architecture for generative adversarial networks [14].

We used entropy based discretization [27] for continuous attributes when training discrete

Bayesian networks. We used the default settings from [82] for training MSPN.

Query Workload. We used IDEBench [85] to generate aggregate queries involving filter

and group-by conditions. We then selected a set of 1000 queries that are diverse in various

facets such as number of predicates, selectivity, number of groups, attribute correlation etc.

Performance Measures. As detailed in Section 3.4.2, AQP using VAE introduces two

sources of errors: sampling error and errors due to model bias. The accuracy of an estimate

could be evaluated by relative error (see Equation 3.1). For each query in the workload,

we compute the relative error over a fixed size sample (1% by default) obtained from the

underlying dataset R and the learned VAE model. For a given query, the relative error

difference (RED) computed as the absolute difference between the two relative errors pro-

vides a meaningful way to compare them. Intuitively, RED will be close to 0 for a well

trained VAE model. We repeat this process over 10 different samples and report the aver-

age results. Given that our query workload has 1000 queries, we use box plots to concisely

visualize the distribution of the relative error difference. The middle line corresponds to

the median value of the difference while the box boundaries correspond to the 25th and

75th percentiles. The top and bottom whiskers are set to show the 95th and 5th percentiles

respectively.

3.6.2 Experimental Results

Evaluating Model Quality. In our first experiment, we demonstrate that VAE could mean-

ingfully learn the data distribution and generate realistic samples. Figure 3.2 shows the

65

distribution of relative error differences for both datasets over the entire query workload

for various sample sizes. We can see that the differences are less than 1% for almost all

the cases for the Census dataset. The flights dataset has many attributes with large domain

cardinalities which makes learning the data distribution very challenging. Nevertheless,

our proposed approach is still within 3% of the relative error obtained from the samples of

R.

Impact of Selectivity. In this experiment, we group the queries based on their selectivity

and compute the relative error difference for each group. As shown in Figure 3.3, the

difference is vanishingly small for queries with large selectivities and slowly increases

for decreasing selectivities. In general, generating estimates for low selectivity queries is

challenging for any sampling based AQP. The capacity/model size constraints imposed on

the VAE model could result in generating bad estimates for some queries with very low

selectivities. However, this issue could be readily ameliorated by building multiple VAE

models that learn the finer characteristics of data minimizing such errors in these cases.

Impact of Model Capacity and Depth. Figures 3.4 and 3.5 shows the impact of two

important hyper parameters - the number of latent dimensions and depth of the encoder and

decoder. We vary the latent dimension from 10% to 100% of the input dimension. Large

latent dimension results in an expressive model that can learn complex data distributions

at the cost of increased model size and training time. Increasing the depth results in a

more accurate model but with larger model size and slower training time. Empirically, we

found that setting latent dimension size to 50% (for binary encoding) and encoder/decoder

network depth of 2 provides good results.

Effectiveness of Input Encoding and Output Decoding. It is our observation that the

traditional approach of one-hot encoding coupled with generating a single sample tuple for

each sample from the latent space does not provide realistic tuples. It may be suitable for

66

image data but certainly not suitable for relational data. Figure 3.6 shows how different

encodings affect the generated samples. For datasets such as Census where almost all

attributes have small domain cardinality, all the three approaches provide similar results.

However, for the flights dataset where some attributes have domain cardinality in tens of

thousands, naive approaches such as one-hot encoding provides sub-optimal results. This

is due to the fact that there are simply too many parameters to be learnt and even a large

dataset of 1 Million tuples is insufficient. Similarly, Figure 3.6 shows that our proposed

decoding approach dramatically decreases the relative error difference making the approach

suitable for relational data. This is due to the fact that the naive decoding could produce

unrealistic tuples that could violate common integrity constraints an effect that is minimized

when using our proposed decoding.

T=-inf T=-10 T=0 T=+10 T=+inf

T

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e
E

rr
or

D
iff

er
en

ce Dataset

Census

Flights

Figure 3.8: Varying T

K=1 K=5 K=All

K

0.0

0.1

0.2

0.3

0.4

R
el

at
iv

e
E

rr
or

D
iff

er
en

ce Dataset

Census

Flights

Figure 3.9: Varying K

Greedy Dynamic Programming

Algorithm

0.00

0.25

0.50

0.75

1.00
R

el
at

iv
e

E
rr

or
D

iff
er

en
ce Dataset

Census

Flights

Figure 3.10: Partition Algo-
rithms

Impact of Rejection Sampling. Figure 3.8 shows how varying the value of T impacts the

sample quality. Recall from Section 3.4.2 that as T → +∞, almost all samples from VAE

are accepted, while when T → −∞, samples are rejected unless they are likely to be from

the true posterior distribution. As expected, decreasing the value of T results in decreased

value of relative error difference. However, this results in a larger number of samples being

rejected. Our approach allows T to be varied across queries such that queries with stringent

67

VAE MSPNGAN BN DBEst NC HistWavelets

Generative Model

0

1

2

R
el

at
iv

e
E

rr
or

D
iff

er
en

ce

Figure 3.11: Performance of
DL models for AQP

100K 1M 10M 100M 1B

Size

0

1000

2000

3000

T
ra

in
in

g
T

im
e

(s
)

T

T=-inf

T=-10

T=0

T=+10

T=+inf

Figure 3.12: Performance of
Model Building

1K 10K 100K 1M

Size

0

2

4

6

8

S
am

p
li
n

g
T

im
e

(s
)

T

T=-inf

T=-10

T=0

T=+10

T=+inf

Figure 3.13: Performance of
Sample Generation

accuracy requirements can use small T for better estimates. We investigate the impact of

rejection sampling on model building and sample generation later in the section.

One versus Multiple VAEs. In the next set of experiments, we consider the case where one

uses multiple VAEs to learn the underlying data distribution. We partitioned the attributes

based on marital-status for Census and origin-state for Flights. We evaluated partitioning

data over other attributes and observed similar results. In order to compare the models

fairly, we ensured that the cumulative model capacity for both scenarios were the same.

For example, if we built K VAE models with capacity C each, then we compared it against

a single VAE model with capacity K × C. Figure 3.9 shows the results. As expected, the

sample quality improves with larger number of VAE models enabling them to learn finer

data characteristics. Interestingly, we observe that increasing the model capacity for the

single VAE case has diminishing returns due to the fixed size of the training data. In other

words, increasing the capacity does not improve the performance beyond certain model

capacity. Figure 3.10 compares the performance of partitions selected by the dynamic pro-

68

gramming algorithm for the scenario where an OLAP hierarchy is provided. We compare

it against a greedy algorithm. As expected, our proposed approach that is cognizant of

the R-ELBO metric provides better partitions - especially datasets such as Flight that have

complex R-ELBO distributions.

3.6.3 Comparison with DL Model for AQP.

While we primarily focused on VAE, it is possible to leverage other deep generative

models for AQP. Figure 3.11 compares the performance of three common models : VAE,

GAN and Bayesian Networks (BN). Generative Adversarial Networks (GANs) [86, 14]

are a popular and powerful class of generative models that learn the distribution as a min-

imax game between two components - generator (that generates data) and discriminator

(that identifies if the sample is from the true distribution or not). (Deep) Bayesian net-

works (BN) are another effective generative model that specifies the joint distribution as a

directed graphical model where nodes correspond to random variable Ai (for attribute Ai)

and directed edges between nodes signify (direct) dependencies between the corresponding

attributes. Please refer to [14] for more details. In order to ensure a fair comparison, we

imposed a constraint that the model size for all three approaches are fixed. Furthermore,

VAE provides the best results for a fixed model size. GANs provide reasonable perfor-

mance but was heavily reliant on tuning. Training a GAN requires identifying an equilibria

and tuning of many parameters such as the model architecture and learning rate [86]. This

renders the approach hard to use in practise for general data sets. Identifying appropriate

mechanisms for training GANs over relational data for AQP is a promising avenue for fu-

ture research. BNs provide the worst result among the three models. While BNs are easy to

train for datasets involving discrete attributes, a hybrid dataset with discrete and continuous

attributes, and attributes with large domain cardinalities are challenging. When the budget

on model size is strict, BNs often learn a sub-optimal model.

69

We also evaluated VAE against the recently proposed MSPN [82] that has been uti-

lized for AQP in [75]. Similar to Bayesian Networks, MSPNs are acyclic graphs (albeit

rooted graphs) with sum and product nodes as internal nodes. Intuitively, the sum nodes

split the dataset into subsets while product nodes split the attributes. The leaf nodes define

the probability distributions for an individual variable. MSPN could be used to represent an

arbitrary probability distribution [82]. We used the random sampling procedure from [75]

for generating samples from a trained MSPN. We observed that MSPN often struggles to

model distributions involving large number of attributes and/or tuples and that using a sin-

gle MSPN for the entire model did not provide good results. As a comparison to train a VAE

on 1M tuples of the Census data set on all attributes requires a few minutes versus almost

3.5 hours for MSPN. In addition the accuracy of queries with larger number of attributes

for the case of MSPN was very poor and not close to any of the other models. Hence, we

decided to provide an advantage to MSPN, building the model over subsets of attributes.

That way we let the model focus only on specific queries and improve its accuracy. There

were around 120 distinct combination of measure and filter attributes in our query work-

load. We built MSPN models for each combination of attributes, generate samples from it

and evaluate our queries over it. For example, if a query involved an aggregate over Ax and

filter condition over {Ai, Aj, Ak}, we built an MSPN over the projected dataset containing

only {Ax, Ai, Aj, Ak}. Unlike GAN and BN, we did not control the number of leaf nodes.

However, the size of the MSPN models that were trained over attribute subsets were in the

same ballpark as the other generative models. Figure 3.11 presents the performance of VAE

and MSPN (build on specialized subsets of attributes) to be superior over GAN and BN.

However, in the case of VAE the model was trained over the entire dataset being able to an-

swer arbitrary queries while MSPN was trained over specific attribute subsets utilized by

specific queries. Even in this case, providing full advantage to MSPN, the median relative

error difference for VAE and MSPN were 0.060835 and 0.137699 respectively, more than

70

two times better for VAE. This clearly demonstrates that a VAE model can learn a better

approximation of the data, being able to answer arbitrary queries while it can be trained an

order of magnitude faster than MSPN as detailed next.

Next, we compare our approach with DBEst [87] and NeuralCubes [88] that use

ML models for answer AQP queries. Figure 3.11 compares the performance of our ap-

proach against these methods. In contrast to our approach that uses synthetic samples,

DBEst and NeuralCubes use pre-built models to directly answer AQP queries. For sim-

ple aggregate queries, the performance of both these methods are comparable to that of

our approach. However, our approach produces more accurate result for ad-hoc queries

that are very common in data exploration. Furthermore, the ability of our approach to cre-

ate arbitrary number of samples to achieve low error that is not possible with DBEst and

NeuralCubes.

Performance Experiments. Our next set of experiments investigate the scalability of VAE

for different dataset sizes and values of threshold T . Figure 3.12 depicts the results for

training over a single GPU. All results would be substantially better with the use of multiple

GPUs. As expected, the training time increases with larger dataset size. However, due to

batching and other memory optimizations, the increase is sublinear. Next, incorporating

rejection sampling has an impact on the training time with stringent values of T requiring

more training time. The increased time is due to the larger number of training epochs

needed for the model to learn the distribution. The validation procedure for evaluating

the rejection rate uses a Monte Carlo approach [69] that also contributes to the increased

training time. However overall it is evident from our results that very large data sets can

be trained very efficiently even on a single GPU. This attests to the practical utility of

the proposed approach. Figure 3.13 presents the cost of generating samples of different

sizes and for various values of T . Not surprisingly, lower values of T require a larger

71

sampling time due to the higher number of rejected samples. As T becomes less stringent,

sampling time dramatically decreases. Interestingly, the sampling time does not vary a

lot for different sampling sizes. This is due to the efficient vectorized implementation of

the sampling procedure in PyTorch and the availability of larger memory that could easily

handle samples of large size. It is evident again that the proposed approach can generate

large number of samples in fractions of a second making the approach highly suitable for

fast query answering with increased accuracy.

3.7 Related Work

Deep Learning for Databases. Recently, there has been increasing interest in applying

deep learning techniques for solving fundamental problems in databases. SageDB [47]

proposes a new database architecture that integrates deep learning techniques to model

data distribution, workload and hardware and use it for indexing, join processing and query

optimization. Deep learning has also been used for learning data distribution to support

index structures [41], join cardinality estimation [10, 43], join order enumeration [46, 44],

physical design [89], entity matching [49], workload management [90] and performance

prediction [91].

Sampling based Approximate Query Processing. AQP has been extensively studied by

the database community. A detailed surveys is available elsewhere [65, 60]. Non sam-

pling based approaches involve synopses data structures such as histograms, wavelets and

sketches. They are often designed for specific types of queries and could answer them

efficiently. In our paper, we restrict ourselves to sampling based approaches [92, 93, 94,

95, 96]. Samples could either be pre-computed or obtained during runtime. Pre-computed

samples often leverage prior knowledge about workloads to select samples that minimize

the estimation error. However, if workload is not available or is inaccurate, the chosen sam-

72

ples could result in worse approximations. In this case, recomputing samples is often quite

expensive. Our model based approach could easily avoid this issue by generating sam-

ples as much as needed on-demand. Online aggregation based approaches such as [97, 98]

continuously refine the aggregate estimates during query execution. The execution can be

stopped at any time if the user is satisfied with the estimate. Prior approaches often ex-

pect the data to be retrieved in a random order which could be challenging. Our model

based approach could be easily retrofitted into online aggregation systems as they could

generate random samples efficiently. Answering ad-hoc queries and aggregates over rare

sub-populations is especially challenging [99] . Our approach offers a promising approach

where as many samples as needed could be generated to answer such challenging queries

without having to access the dataset. [75] uses mixed sum-product networks (MSPN) to

generate aggregate estimates for interactive visualizations. While in the same spirit as our

work, their proposed approach suffers from scalability issues that limits its widespread ap-

plicability. Even for a small dataset with 1 million tuples, it requires hours for training.

This renders such an approach hard to apply for very large data sets. In contrast a VAE

model can be trained in a matter of minutes making it ideal for very large data sets.

3.8 Conclusion

We proposed a model based approach for AQP and demonstrated experimentally that

the generated samples are realistic and produce accurate aggregate estimates. We identify

the issue of model bias and propose a rejection sampling based approach to mitigate it.

We proposed dynamic programming based algorithms for identifying optimal partitions to

train multiple generative models. Our approach could integrated easily into AQP systems

and can satisfy arbitrary accuracy requirements by generating as many samples as needed

without going back to the data. There are a number of interesting questions to consider in

73

the future. Some of them include better mechanisms for generating conditional samples

that satisfy certain constraints. Moreover, it would be interesting to study the applicability

of generative models in other data management problems such as synthetic data generation

for structured and graph databases extending ideas in [100].

74

CHAPTER 4

Can Geometry Resolve Quantile Regression’s Inefficiency?

Runtime complexity and robustness are two critical attributes of machine learning

algorithms in today’s world of big data. In this paper, we aim to investigate a classical ma-

chine learning/statistics problem, quantile regression, especially for database setups asso-

ciated with billions of records. We utilize the computational geometry concept of Arrange-

ment and Duality to design an algorithm named UPDATENEIGHBOR oracle which can cal-

culate the objective function in O(d) time from a neighboring point in the arrangement. We

combine our UPDATENEIGHBOR oracle algorithm and a computational geometry concept

of k-set to design a quantile regression algorithm in 2-dimension, which is asymptotically

better than all other existing approaches. Our expected run time and deterministic runtime

are better than the existing state of the art.

4.1 Introduction

In this paper, we revisit the classical problem of Quantile Regression (QR), a ro-

bust alternative to the well-known Ordinary Least Squares (OLS) Linear Regression, and

develop novel algorithm that is asymptotically faster than all the existing algorithms.

In the rest of the introduction, we first motivate the general need for speed and ro-

bustness of ML systems for big data. We then describe the specific problem of Quantile

Regression, its challenges, and summarize our novel technical contributions.

75

4.1.1 Motivation

The modern era is blessed with an unprecedented abundance of data. Such rapidly

growing data offers opportunities for machine learning (ML) techniques to harness knowl-

edge at a scale that had not been possible before. However, the growth of data brings

additional challenges like longer training time for ML models. One solution is increasing

computational power. However, the available computational power to support these ma-

chine learning techniques is not increasing at the same rate as the growth in data. Before

2012, computational power needed to train artificial intelligence was doubling in every two

years, but since then the need had doubled in every three-four months (i.e., approximately

seven times per year) [101], mainly due to the increased cost of training and maintain-

ing ML models on such ever increasing datasets. As a result, there is a continuous quest

for algorithms with better run time complexity, especially in big data scenarios. Even a

small improvement in runtime complexity can make a substantial difference in execution

time for big data. In summary, there is a pressing need to develop faster machine learning

algorithms for many application scenarios.

Besides a fast algorithm, robustness is another crucial requirement in machine learn-

ing [102, 103, 104, 105]. The research area of robust ML draws its inspiration from the

classical field of robust statistics, where the canonical example is mean versus median es-

timators − the latter is less affected by outliers in the data compared to the former []. In

modern machine learning, the notion of robustness has broadened to include ML models

that are impervious to outliers, noise, variability between training and test distributions,

adversarial corruptions in the training data, and various other notions. In certain applica-

tions, robustness can be a critical requirement. For example, recent works (see [106]) have

shown through adversarial methods how models used in an autonomous vehicle trained to

detect STOP signs lack robustness, which can be extremely devastating and life threatening.

Smart health-care [107], data-driven policy making [108], and predictive policing [109] are

76

a few example domains underscoring the importance of developing ML models that are ro-

bust in practice. Recently, There has been a lot of ML-based work[110][111] in database

research in recent years, which are replacing the traditional database techniques. However,

it is crucial to have the right tools and techniques to ensure the robustness of such ML

techniques.

4.1.2 Quantile Regression: Challenges, and State of Art

Linear Regression is a seminal statistical approach to building linear predictive mod-

els between a response (i.e., dependent) variable and one or more predictor (i.e., indepen-

dent) variables. Linear regression is over two centuries old (dating back to Legendre and

Gauss) and is often considered as the forerunner of modern machine learning [?]. We re-

visit two classical linear regression techniques: Ordinary Least Square Regression (OLS)

and Quantile Regression (QR). Both build linear models, but with different objective func-

tions: in OLS the objective is to minimize the mean squared error (i.e., ℓ2 norm) between

the dependent variable and that predicted by the model; whereas in QR, the objective is to

minimize the mean absolute error (i.e., ℓ1 norm).

Why Quantile Regression? Historically, OLS has been much more widely used than QR.

This is primarily because (as we will discuss shortly) QR is plagued by unacceptably high

computational resource needs, whereas there exist extremely resource efficient and scalable

algorithms for building OLS models.

Nevertheless, despite its computational advantages, OLS has a major limitation. OLS

is not a robust model. It can be easily skewed in the presence of outliers in the data, which

makes OLS a poor model of choice in several emerging applications where robustness of

the predictive model is critically needed. On the other hand, QR is a robust model. In

simple terms, the comparison of OLS and QR is analogous to the “mean versus median”

77

comparison mentioned in Section 1.1. That is why QR is considered for applications where

model robustness in the presence of outliers and skew in the data is critically needed, such

as healthcare [112], ecology [113], and others [114]. Beyond robustness, another attraction

of quantile regression is that it is advantageous when conditional quantile functions are

of interest, which have application in uncertainty quantification and conformal prediction

in AI systems as well as approximate query processing in databases [115, 116]. In fact,

if the scalability and computational efficiency of QR could be significantly improved, its

applicability would increase dramatically across an even more broad range of applications

[113].

Computational Challenges of Quantile Regression: The computational challenges of

QR is best highlighted by the following observations. Consider a database with n tuples

and d attributes, of which one attribute is the response (i.e., independent) variable and

the rest are predictor (i.e., dependent) variables. Typically n >> d in most data fitting

problems. For OLS, since the objective function to be minimized (least square) is quadratic

and differentiable, this yields a highly scalable training algorithm with time complexity of

O(nd3) time and space complexity of O(d2) [117]. In contrast, the objective function in

quantile regression is defined by the ℓ1 norm, i.e., sum of the absolute error, which has

“piecewise linear” characteristics, and hence its optimization is much more challenging.

The state of art approach for QR [118] applies a reparameterization technique to convert

the problem into a huge linear programming formulation involving n linear constraints and

(n+ 2d) variables. Solving these linear programs require significant more resources (time

and memory) compared to OLS [118], making QR prohibitive for all but small-to-moderate

sized datasets. This need for extensive computational resources has been one of the main

reasons for the relative lack of adoption of QR in emerging Big Data applications.

78

State of Art Techniques and Tools: Quantile Regression is a well-studied research prob-

lem. In Section 4.6, we provide a more detailed overview of the literature, but highlight a

few key works here.

Two prominent class of exact techniques to solve the QR problem are exterior-point

based [119] and interior-point based [118] approaches. Barrodale and Robert (BR) pro-

posed a simplex-based exterior point technique [119], which moves from one exterior point

(i.e, a “corner” of the feasible polytope defined by the linear program) to another exterior

point, in the direction of steepest gradient descent. The core idea of BR originates from

Edgeworth’s bi-variate weighted median based 1888 approach [120]. The run time of this

algorithm is O(n2), which is still the state of art algorithm for 2-dimension. All the exterior

points based approaches are only suitable for small problem instances with around 1000 tu-

ples and few attributes [118]. Portnoy and Koenkar later proposed a primal-dual interior

point method (IPM) which finds the optimal solution by minimizing the difference between

primal and dual objective cost [118]. This method is reasonably fast for larger input sizes

in practice but worst case theoretical runtime complexity is O(n3.5 log 1/ϵ) where ϵ is the

desired accuracy [121]. Moreover, BR and IPM are extremely memory hungry for big data,

hence, not suitable for big data instances under resource constraints.

4.1.3 Our Technical Contributions

In this paper, we make two key technical contributions.

Our first contribution is designing an Oracle, named UPDATENEIGHBOR oracle,

which efficiently finds the objective cost of an exterior point from its neighbor’s aggre-

gate information. We capitalize a computational geometry concepts of arrangement and

duality [122] to define the neighborhood. The aggregate information contains the sum

along every feature for current exterior point with both positive and negative errors. Our

79

UPDATENEIGHBOR oracle performs an update operation in O(d) time and O(d) space

complexity for any input dimension d.

Our second major contribution is an efficient quantile regression algorithm for 2-

dimension, named QREG2D. We use computational geometry concept like arrangement,

duality, and k-set [122] to solve 2-dimensional quantile regression problem. The determin-

istic run time complexity for our QR algorithm is in O(n4/3 log1+a n) where where a > 0

is an arbitrarily small constant. The expected run time complexity of our algorithm is in

O(n4/3) which is asymptotically better than any other existing approach in 2-dimension.

However, our computational geometry based approach is not extendable in higher dimen-

sion which we will discuss later in Section 4.5.

Summary of Contributions:

• We investigate the classical machine learning and statistical technique of Quantile

Regression and proposed novel approaches to solve it optimally and efficiently.

• We propose an innovative computational geometry based algorithm named UPDATENEIGH-

BOR oracle which can update the objective cost at an exterior point from its neighbor

in O(d) time and space complexity.

• We also design a novel algorithm named QREG2D utilizing UPDATENEIGHBOR

oracle and computational geometry concepts like arrangement and k-set for quan-

tile regression problem in 2-dimension. The deterministic version of our algorithm

runs in in O(n4/3 log1+a n) time where where a > 0 is an arbitrarily small con-

stant. However, our Algorithm has an expected run time complexity of O(n4/3) and

is asymptotically superior than the existing O(n2) approach for Quantile regression

in 2-dimension.

Paper Organization: In Section 4.2, we introduce the problem with all the necessary de-

tails to understand the problem and solutions in this paper. We present our UPDATENEIGH-

80

id A1 A2

t1 3.15 3.13
t2 1.97 1
t3 1.369 2.43
t4 0.149 1.287
t5 -0.39 0.222
t6 -0.51 -0.65
t7 -2.04 7.30

Table 4.1: A 2D dataset.

BOR oracle algorithm in Section 4.3, the quantile regression algorithm in 2-dimensional in

4.4, challenges in higher dimension in 4.5 and followed by related work Section.

4.2 Preliminaries

In this section we provide useful definitions and notations, as well as a formal de-

scription of the main problem considered in this paper. Some of the notations and formal

problem definitions are borrowed from existing literature such as [119, 118].

4.2.1 Running Example

In this paper, we use an example dataset, shown in Table 4.1, which will be used

throughout the article. The dataset contains seven input tuples and two attributes A1 and

A2. our goal is to predict one of the attributes from the other attribute. For our example,

let us assume that we want to predict A2 from A1. Let us denote A1 and A2 by x and y

respectively for simplicity.

Figure 4.1 shows a scatter plot of input tuples in 2-dimensional space where each

input tuple is a point with (x, y) coordinate. We get a line if we fit a Linear Regression(LR)

model for these points. Figure 4.1 demonstrates two classical LR fits. One of the LR fits is

Ordinary Least Square Regression(OLS), which minimizes the sum of squared error. The

81

Figure 4.1: The Visual demonstration of database

other LR fit is a special type of Quantile Regression(QR) (ℓ1-regression) which minimizes

sum of absolute error.

For any input point, the vertical distance between the point and the LR fit is the error

in regression. In Figure 4.1, the red and green dotted line shows the error for OLS and

ℓ1-regression fits respectively. The figure shows that the OLS model is heavily affected by

the presence of outlier t7. However, the ℓ1-regression is less sensitive to the outlier. For all

but one point, the length of a green dotted line is smaller than that of a red dotted line.

4.2.2 Problem Definition

Data Model: LetD be a dataset with n tuples and d attributes. Our goal is to predict one of

the attributes from rest of the attributes. The attribute we predict is called response variable.

The attributes used in prediction is called predictor variables. For our running example, y

(A2) is response variable and x (A1) is predictor variable. For d attributes, we denote the

response variable and the vector of predictor variables by yi and Xi = [1 x1 x2 . . . xd−1]

respectively for ith tuple. A constant 1 is added in Xi to make the problem definition

82

(defined later) consistent. X is a matrix where ith row corresponds to Xi. The X and y for

the running example are following.

X =

1 50

1 24

1 12

1 5.5

1 2.4

1 1

1 0.05

and, y =

0.6

0.55

0.45

0.35

0.28

0.2

0.12

Residual: If the actual value is y and the regressed value is ŷ, then the residual, r, can

be defined as y − ŷ. The value of r can be positive, negative, and zero. From this view

point, we can also define ri = r+i − r−i where, for each tuple i in D, r+i = max(ri, 0) and

r−i = −min(ri, 0). Note that r+i , and r−i contain only non-negative values. In Figure 4.1,

the dotted lines shows the residuals. t5 has positive residuals and t7 has negative residuals.

Residual sets: Given a QR hyperplane with parameters β in the primal space, the set of

tuples for which actual value yi is greater than or equal to (resp. lesser than) the predicted

value ŷi = βTXi is denoted by I+ = {i : yi ≥ ŷi}) (resp. I− = {j : yj < ŷj}). Note

that the two sets are mutually exclusive, I+ ∩ I− = ∅; I+ ∪ I− = U. Geometrically, the

entity I+ represents the set of points that lie on or above the regression hyperplane and I−

represents points that lie below the hyperplane.

Quantile Parameter, τ : In Quantile Regression, quantile parameter τ ∈ (0, 1) determines

what fraction of total number of input tuples will have negative residual. For τ = 0.5, half

of the input tuple will have negative residuals and other half will have positive residuals.

In practice, median, quartiles, deciles, 0.05, and 0.95 are some of the most frequently used

quantile parameters.
83

Formal Problem Definition:

The formal definition of Quantile Regression(QR) problem in this paper is defined

as follows.

Quantile Regression

Given quantile parameter τ and a dataset D with n tuples, where y is a vector of

actual response variable and X is a n×d matrix constructed from predictor variables,

find a parameter vector β ∈ Rd that optimizes the following objective function.

min
β∈Rd

∑
i=1

τr+i + (1− τ)r−i

where r+i = max(yi −XT
i β, 0)

and r−i = −min(yi −XT
i β, 0)

If τ = 0.95, the objective function puts a high penalty (0.95) on any points with

positive residuals and a low penalty (0.05) on any points with negative residuals. In Figure

4.1, we used τ = 0.5 for the QR which puts equal penalty for both positive and negative

residuals. For τ = 0.5, QR is known as ℓ1-regression which is often used as an alternative

to OLS.

4.2.3 Geometric Mapping of Problem

Each input tuple Di can be viewed as a point in d dimensional space. In this subsec-

tion, we define the dual space of D, its connection with the quantile regression problem,

and some of the basic properties that we will use throughout the paper.

QR Hyperplane, H: LR estimates the response variable as a linear combination of pre-

dictor variables with an offset. There is a geometric interpretation of an LR fit. If we

assume the input tuple as points in space, the LR fit is a hyperplane in space. We call such

84

a hyperplane QR Hyperplane and denote it by H. As shown in Figure 4.1 , the regression

hyperplanes are lines for our running example in 2-dimension. The coefficients associated

with the QR Hyperplane are regression parameters (β).

Optimal QR Hyperplane, H∗: In primal space, there is a QR hyperplane for which QR

optimization function is minimum. We call this hyperplane Optimal QR Hyperplane and

denote it by H∗. The Optimal QR Hyperplane geometrically divides the points into τn

points on one side and (1− τ)n points on the other side [123].

Dual space: A duality transformation function transforms a given point (hyperplane resp.)

in primal space into a hyperplane (point resp.) in the dual space, such that certain prop-

erties are maintained in the dual space and vice-versa. Following along similar lines as

Edgeworth [120], we define the duality transformation function.

Given a hyperplaneH in d dimensional primal space, the dual ofH is a point F (H) ∈

Rd such that:

H : y − a1x1 − a2x2 . . .− ad−1xd−1 − ad = 0

F(H) : {a1, a2, . . . , ad} ∈ Rd

Given a point p in d dimensional primal space, the dual of the point is a d-dimensional

hyperplane F(p) such that:

p : {p1, p2, . . . , pd} ∈ Rd

F(p) : zd +
d−1∑
i=1

pizi − pd = 0

Here zi represents the variables defining the hyperplane in dual space. We would like

to note that the n points in the primal space transform into n corresponding hyperplanes in

the dual space.

85

Figure 4.2: Dual space of the Sample Database

4.2.4 Arrangements and k-Sets

One of the contributions of our paper is the connection of computational geome-

try notions of arrangements and k-sets with the seemingly unrelated problem of quantile

regression. We briefly review these concepts below.

Arrangements: Given n hyperplanes in d-dimensional space, the entire space is divided

into an arrangement consisting of O(nd) d-dimensional convex cells. Much is known about

the geometric properties of such arrangements, as well as algorithms for their construction.

[122].

In our case, the n points in the primal space transform into n dual hyperplanes,

creating a natural division of the dual space into such an arrangement, which provide us

with an alternate view of the problem. Figure 4.2 shows the lines in the dual space for the

sample database. The colored lines in the database represent the dual lines, with the color

representing the tuple’s color in the database.

Complete Skeleton, S: The relative location of a point p based on a hyperplane can be

three types: above the line, below the line, and on the line which can be denoted by +1,−1

and 0 respectively. Given a set of n hyperplanes H , relative locations for all the hyperplanes

in H can be found for p and a vector named position vector U(p) can be constructed using

86

those n relative locations. For another point q, p and q belongs to an equivalence class

defined as face if U(q) = U(p). A face is a set of points such that all points in the face

have exactly same position vector. A face is called a k-face if its dimension is k A 0-face

is called vertex and an 1-face is called edge. The intersection of d hyperplanes creates a

vertex. In Figure 4.2, the intersection between dual lines are vertices and line segments

between two vertices are edges.

let E is a subset of edges in the arrangement A. The end points of the edges are

vertices. let V be a set of all vertices from E. A graph SE = (V,E) is called skeleton if SE

is connected. If a skeleton contains all the edges in A, it is called complete skeleton. The

details about the complete skeleton can be found in [122].

The dual hyperplanes, transformed from primal input points, create an arrangement.

Any vertex in complete skeleton of such arrangement is a QR hyperplane in primal space.

If we traverse all the vertices in complete skeleton, the optimal QR hyperplane can be found

from these vertices. In this paper, we design efficient techniques to solve QR by traversing

the complete skeleton smartly.

Neighbor: Let S = (V,E) be the complete skeleton of a given arrangement where V is

the set of vertices and E is the set of edges. Two vertices v1 ∈ V and v2 ∈ V are neighbors

if there is the edge e between v1 and v2 in E. A vertex is created from the intersection of

d dual hyperplanes. if we drop any of d dual hyperplanes, the intersection of remaining

hyperplanes will be a dual line. As a dual line is an one-dimensional entity, there can be at

most two neighbors of a vertex along a dual line. As we can drop any of d dual hyperplanes,

there can be d dual lines going through a vertex. As a result, the total number of neighbors

of a vertex is at most 2d.

k-set: Given a set of n points in d-dimensional space, a k-set is a subset of k points that

can be separated by a hyperplane from the remaining points. A lot is known about k-sets,

87

their counts, as well as algorithms for their enumeration and construction [122]. For our

geometric mapping, consider the n points is given by the data points in the primal space.

As the optimal quantile regression hyperplane H∗ must partition the n points such that τn

points are on one side and the remaining (1− τ)n lie on the other, the optimal hyperplane

is a separating k-set hyperplane. We exploit these observations in our algorithm for both 2

and higher dimensions.

Further details of duality, arrangements, skeleton and k-sets can be found in [122].

4.2.5 Existing State-of-Art Exact Approaches

In this subsection, we describe a few properties of QR, connection to linear program-

ming, and existing exact techniques to solve problem.

There has been extensive research conducted on QR over the last two hundred years.

Many important properties of quantile regression have been identified[124]. The descrip-

tion of two important QR properties used in this paper is following.

Theorem 1. [124] Quantile Regression objective function is continuous and convex.

Theorem 2. [124] The Optimal QR Hyperplane goes through at least d input tuples.

Wagner [125] identified the connection between linear programming and ℓ1-regression.

A reparameterization technique[123] is used to convert the QR problem into a linear pro-

gramming problem. The linear constraints of a linear programming problem creates a con-

vex polytope. QR problems solutions revolve around the utilization of the exterior(corner)

and interior points of that convex polytope.

Next we give a brief overview of prior algorithms for QR. The focus of QR re-

search has been primarily on how to make the algorithms more faster, with the even-

tual goal of trying to make it an alternative to OLS regression. There have been two

broad category of techniques, exact techniques (where the objective function is minimized),

and approximate/heuristic techniques. There is a wide body of techniques that belong

88

to the latter category, e.g., modifying the original objective function to achieve a faster

performance[126, 127], as well as other approximation approaches [128, 129, 130]. How-

ever, since our focus in this paper is to consider regression as a robust and trustworthy

technique, we are only interested in exact approaches.

Prior research on exact quantile regression techniques can be divided into two cate-

gories: exterior point based approaches and interior point based approaches.

In 1888, Edgeworth designed a computational geometry based exterior point ap-

proach [120] to solve 2-dimensional ℓ1-regression. Edgeworth’s technique with random-

ized median finding algorithm can solve 2-dimensional QR in O(n2) time. Barrodale and

Roberts (BR)[119] designed a simplex algorithm-based approach for any dimension that

starts from an exterior point, and moves towards the highest gradient descent of the objec-

tive function. The quantreg[131] package in R includes the implementation of BR in their

package, which we named QR-BR. Unfortunately, QR-BR is extremely slow and memory

inefficient for large datasets.

For large datasets, interior point based solutions are more appropriate. Portnoy and

Koenkar [118] introduced a primal dual interior point method (IPM) solution for QR. In this

approach, the QR problem is solved using primal and dual space both simultaneously. IPM

adds a barrier function in the objective function which helps exploring the the solutions in

interior points. The algorithm stops when the difference of primal and dual objective is

smaller than a given small threshold ϵ. The quantreg package includes the latest IPM based

implementation which we call QR-IPM. Although, QR-IPM is quite fast, it is extremely

memory hungry.

89

Notation Description
D Dataset
n The number of input tuples in dataset
d the number of attributes in dataset
τ Quantile parameter
β Vector of regression parameter
t Input tuple or data points in primal space
H QR Hyperplane in primal space
H∗ Optimal QR Hyperplane in primal space
r Residual, the error in prediction.
r+ Positive residual
r− Negative residual
I+ A set of indices of input tuples with positive residual
I− A set of indices of input tuples with negative residual

Table 4.2: Important Notations

4.3 UPDATENEIGHBOR oracle

The exterior point based approaches to solve QR often move from one exterior point

to a neighboring exterior point such that the objective cost decreases. Note that each ex-

terior point has an optimization function value associated with it. While moving from

one exterior point to a neighboring point, the objective function is often recalculated from

scratch by traversing all the input points which is expensive and requires O(nd) time. In

this section, we propose an innovative technique UPDATENEIGHBOR oracle which can

efficiently calculate the objective cost by maintaining only a few aggregate values. Our

approach reduces the time complexity to O(d) for any dimension d.

In the following subsection, we illustrate our idea of UPDATENEIGHBOR oracle with

an example. We then introduce UPDATENEIGHBOR oracle formally to update the optimiza-

tion function value in O(d) time when moving from vertex in the complete skeleton graph

to its neighbor.

90

Figure 4.3: Update Operation

4.3.1 Illustration of UPDATENEIGHBOR oracle

In this subsection, we illustrate how we can reduce the computational cost while

moving from one vertex to a neighboring vertex by maintaining only a few aggregate val-

ues. For this illustration of UPDATENEIGHBOR oracle, we use our running example from

Table 4.1 with τ = 0.5.

As seen in Section 4.2, a vertex in the complete skeleton graph (point in dual space)

refers to a QR hyperplane in primal space. The optimal solution lies in one of these vertices

in the complete skeleton graph. Let S be a complete skeleton graph constructed from

Figure 4.2 and P(i,j) be any vertex constructed from the intersection of dual line Ti and Tj .

As shown Figure 4.2, P(1,3) and P(1,4) are neighbors which will be used in our illustration.

Figure 4.3 shows the primal representation of P(1,3) and P(1,4) where each represents a line.

From the definition of residual set in Section 4.2, I+ = {1, 3, 4, 7} and I− = {2, 5, 6} for

P(1,4). We calculate the sum along X-axis and Y -axis for these two group of points and

call these aggregate values at P(1,4). Given these aggregate values for P(1,4), we would like

to answer following questions as steps of our demonstration.

1. How to calculate the objective value at P(1,4)?

2. How to calculate the aggregate values at P(1,3) from P(1,4) in O(1)?

3. If aggregate values are known for P(1,3), how to calculate the objective value at P(1,3)?

91

As shown in Figure 4.3, P(1,4) passes through input tuple t1 and t4 in primal space

and its parameter vector is β = [1.19, 0.71].

For all i ∈ I+, let
∑

xi,
∑

yi be the sum along X and Y axis. Similarly, for all

j ∈ I−, let
∑

xj , and
∑

yj be the sum along X and Y axis.

Given the aggregate values for P(1,4), the objective cost L at P(1,4) can be calculated

using following process.∑
ri = (

∑
yi −

∑
xi × β[1]− β[0]× |I+|)

= 7.52∑
rj = (

∑
xj × β[1] + β[0]× |I−| −

∑
yj)

= 3.79

L = 0.5×
∑

ri + (1− 0.5)×
∑

rj

= 5.65

Now, we will try to answer how we will update the aggregate values at P(1,3) from

P(1,4). As shown in Figure 4.3, only one input point t4 changes its residual sign from

positive to negative in P(1,4) to P(1,3) transition. For P(1,3), I+ = {1, 3, 7} and I− =

{2, 4, 5, 6}. If we want to calculate the aggregate values at P(1,3) from P(1,4), the information

of input point t4 can be utilized in the following fashion.∑
yi =

∑
yi − t4.y = 12.86∑

yj =
∑

yj + t4.y = 1.86∑
xi =

∑
xi − t4.x = 2.47∑

xj =
∑

xj + t4.x = 1.27

Earlier we have shown how to calculate objective cost from aggregate values at P(1,4).

Similarly objective cost for P(1,3) can be calculated using the aggregate values. If the ag-

gregate values at P(1,4) is known, the aggregate values and objective cost at P(1,3) can be
92

calculated in O(1) time and space. Although our illustration is in 2-dimension, our UP-

DATENEIGHBOR oracle works in any dimension.

4.3.2 UPDATENEIGHBOR oracle

Our first contribution is an Oracle which, when provided with a input vertex along

with its optimization function value and a neighboring vertex, updates the optimization

function value in O(d) time. The update operation relies on maintaining a few aggregate

values when moving from one vertex to its neighboring vertex. To understand the moti-

vation behind the aggregate values, we rewrite the optimization function into two summa-

tions.

min
β∈Rd

τ
∑
i∈I+

(yi −Xiβ) + (1− τ)
∑
j∈I−

(Xjβ − yj)

First, we will show that if we are given certain aggregate values for a vertex, we can

compute the optimization function in O(d) time. For all i ∈ I+ and j ∈ I−, consider

the aggregate values
∑

yi,
∑

Xi[1], . . . ,
∑

Xi[d],
∑

yj and
∑

Xj[1], . . . ,
∑

Xj[d] were

known for a given vertex in the skeleton graph (hyperplane in primal space). Given these

aggregate values, the optimization function can be computed for the corresponding primal

hyperplane in O(d) time using the following formula.

τ
∑
i∈Y +

yi − τ
∑

1≤m≤d

(βm

∑
i∈Y +

Xi[m]) +

(1− τ)
∑

1≤m≤d

(βm

∑
j∈Y −

Xj[m])− (1− τ)
∑
j∈Y −

yj (4.1)

Secondly, we show that given a vertex and the aggregate values for it, the aggregate

values can be updated/computed for any neighboring vertex in O(d) time. An illustration

to bring this important result is provided in Section 4.3.1.

The formal proof for this O(d) time update is presented in Theorem 3.
93

Theorem 3. Given the aggregate values ∀1≤m≤d

∑
i∈I+ Xi[m],

∑
i∈I+ yi,

∑
j∈I− yj , ∀1≤m≤d

∑
j∈I− Xj[m]

for a vertex in the complete skeleton graph, the aggregate values can be updated in O(d)

time when we move to a neighboring vertex.

Proof. Any vertex in the complete skeleton graph represents a hyperplane in the primal

space which divides the set of points in D into two sets, I+ and I−. When we move from

a vertex to its neighboring vertex the sets I+ and I− change in one of three ways,

• A point in primal space moves from above the hyperplane to below the hyperplane

i.e. a point moves from I+ to I−.

• A point in primal space moves from below the hyperplane to above the hyperplane

i.e. a point moves from I− to I+.

• The hyperplane moves such that a point from above is exchanged with a point from

below. In such a case, the number of points above the hyperplane remain the same,

i.e. a point from I+ is swapped with a point in I−. Note that the k in this case is may

not be τ(1− n).

For each of the three cases, we prove that the aggregate values can be updated in

O(d) time. For the rest of this proof, let the new sets after the update be represented by U+

and U−.

Let us consider the first case, where the hyperplane moves such that a point moves

from the set I+ to I− i.e. a point in primal space which was above the hyperplane (vertex)

now lies below the neighboring hyperplane (neighbor vertex). Let Xt be the point that

is involved in the transition. As we know the details of point Xt, we can remove the

94

contribution of Xt towards I+ and add the contribution to aggregates entities of I−. The

formulae for update are as below, ∑
i∈U+

yi =
∑
i∈I+

yi − yt

∀1≤m≤d

∑
i∈U+

Xi[m] =
∑
i∈I+

Xi[m]−Xt[m]

∑
i∈U−

yi =
∑
i∈I−

yi + yt

∀1≤m≤d

∑
i∈U−

Xi[m] =
∑
i∈I−

Xi[m] +Xt[m]

As there are 2d + 2 equations which take O(1) time to update, the total time taken

for the update of the aggregate values is O(d).

The second case, where a point in primal space has moved from below the hyperplane

(vertex) to above the neighboring hyperplane (neighbor vertex), can be updated using a

similar manner. Let Xt be the point that is involved in the transition. The formulae for the

update operation for the second case are,∑
i∈U+

yi =
∑
i∈I+

yi + yt

∀1≤m≤d

∑
i∈U+

Xi[m] =
∑
i∈I+

Xi[m] +Xt[m]

∑
i∈U−

yi =
∑
i∈I−

yi − yt

∀1≤m≤d

∑
i∈U−

Xi[m] =
∑
i∈I−

Xi[m]−Xt[m]

With 2d+ 2 equations each of which take O(1) the overall time complexity is O(d) time.

Let us consider the third case, where the hyperplane moves such that a point from

above is exchanged with a point from below. In this case, a point from I+ is swapped with

a point in I−. Let Xs be the point that is moved from I+ to I− and Xt be the point moved

from I− to I+. As we know the details of point Xs and Xt, we can remove the contribution
95

of Xs towards I+ and add the contribution of Xt to it. We perform vice verse operation to

I−. The formulae for update are as below,

∑
i∈U+

yi =
∑
i∈I+

yi + yt − ys

∀1≤m≤d

∑
i∈U+

Xi[m] =
∑
i∈I+

Xi[m] +Xt[m]−Xs[m]

∑
i∈U−

yi =
∑
i∈I−

yi − yt + ys

∀1≤m≤d

∑
i∈U−

Xi[m] =
∑
i∈I−

Xi[m]−Xt[m] +Xs[m]

With 2d + 2 equations each of which take O(1) the overall time complexity is O(d) time.

Hence, proved.

4.4 Quantile Regression in 2 Dimension

In this section, we start with describing two approaches for the QR problem in 2

dimensions which will provide an intuition for our optimized two dimensional algorithm.

We then propose our theoretical algorithm for 2 dimensional QR problem and prove its

running time.

4.4.1 Algorithm based on neighbor exploration

In this subsection, we introduce an algorithm that utilizes the UPDATENEIGHBOR

oracle.

Exploring the vertices in the complete skeleton graph presents us with an interesting

algorithm to obtain the optimal QR line. Let us consider for simplicity that a GETNEIGH-

BORS oracle exists that can quickly provide us with the neighbours of a given vertex. We

can start from any of the O(n2) vertices and explore neighboring vertices around it in

a Breadth First Search manner while updating the aggregate entities and objective cost.

96

While for simplicity of understanding we choose BFS for exploration, it does not change

the analysis that follows. We stop when no new neighboring vertices are found with a lower

optimization value. The optimal QR hyperplane is the vertex with the smallest optimization

function among the explored intersection points.

Note that one naive way of constructing a GETNEIGHBORS Oracle is to compute

the O(n2) vertices of the complete skeleton graph beforehand. Computing and storing

the intersections points consumes O(n2) space and O(n2) time. Often the O(n2) space is

prohibitive in nature/practice. As the dimensions grows beyond 2, this neighborhood based

approach is prohibitive as there are a total of O(nd) points. Exploring these intersection

points is far more expensive than the LP approach for larger dimensions.

This algorithm provides us with an approach that explores the neighbors of vertices

until reaches the optimal solution. While this approach produces similar complexity as that

of exterior point method for 2 dimensions, it produces an intuition for our optimized 2D

algorithm. We present a more efficient approach for 2 dimensions in the later part of this

section.

4.4.2 k-set Exploration Algorithm

The seemingly disconnected concept of arrangement is connected to the problem of

QR through the concept of k-sets. k-set is a subset containing k points that can be separated

from the rest of the n − k points by a hyperplane. k-sets have often been used in various

computational geometry settings to solve numerous problem.

An interesting observation that can be made on the optimal solution QR hyperplane

is that it separates the n points/tuples into τn and (1− τ)n points[?]. While there are many

hyperplanes that separate the n points into two parts (with τn and (1 − τ)n points), we

are interested in that specific hyperplane which provides the lowest optimization score. As

k-sets separate the points into k and n − k points, the optimal hyperplane must be one

97

among of the k-set separating hyperplanes such that k = τn. The computational geometry

technique of k-set can also be viewed as a walk along the k-level of an arrangement. Hence,

the optimal hyperplane can be found along the vertices encountered during the walk in k-

level of the arrangement.

The QR problem in 2 dimensions can utilize this property (the result of Theorem 2).

The optimal hyperplaneH∗ in primal space is represented by a point F(H∗) in dual space.

This point is one of the vertices in the complete skeleton graph corresponding to the k-level

arrangement in the dual space. One approach to solve this problem would be enumerate

the vertices corresponding to the k-level of the arrangement and for each vertex compute

the optimization function value.

We first present a k-set exploration approach that makes use of the concept of k-

sets without the use of aggregate entities to solve the problem. Such an approach has to

compute the optimization function value (error) for a vertex which corresponds to a dual

point p in the k-level arrangement. Computing the optimization function for each of these

vertices involves aggregating the error contribution of each of the n points in the primal

space using the line F−1(p). Note that each of the computation consumes O(n) time. For

each of the vertices corresponding to the dual points in the k-level arrangement, the naive

error computation is repeated and the optimal line l∗ corresponds to that line F−1(p) with

the least error.

Time complexity: For a given vertex p in the k-level arrangement, a naive approach to

compute the error without making use of UPDATENEIGHBOR oracle takes a total of O(n)

time. The upper bound on the intersection points in k-level of an arrangement is bounded

by O(nk1/3). Hence, the total time taken for the naive approach is O(n2k1/3) for a given τ

(k = τn). As k = n/2 when τ = 1/2, the worst case time complexity is O(n7/3).

98

Figure 4.4: Traversing k-level of arrangement in order

4.4.3 Our 2D approach

The two approaches introduced so far set the base for our optimized approach. While

the neighbor exploration algorithm that makes use of UPDATENEIGHBOR oracle has an

optimized manner of exploration, the search space is not limited to k-sets. On the other

hand, the main bottleneck in the k-set based approach without UPDATENEIGHBOR oracle

is the error computation. For each vertex belonging to k-set, O(n) time is consumed for

the computation of the optimization function.

Instead, we use a hybrid approach where the O(1) time update operation of com-

puting optimization function when travelling between neighboring points in the k-level

arrangement (k-set) overcomes the bottleneck in these approaches.

One property that our 2 dimensional algorithm relies upon is that the k-level ar-

rangement enumerating algorithm explores the intersection points in order. That is for the

Theorem 3 to be used we need to explore intersection points such that we move from one

vertex in the complete skeleton to its neighbor vertex in the k-level arrangement. More

specifically, we require the k-set enumerating algorithm to provide us vertices such that

any vertex vj obtained after vi is its neighbor. Note that the neighboring vertices both be-

99

Algorithm 2 QREG2D
1: Input: Database D, τ

2: Output: Parameters for optimal lineH∗

3: k ← (1− τ)n

4: Y p = Y m = Xp = Xm = 0 {Initialize aggregate sums to 0. Y p:
∑

yi, Xp:∑
Xi for i ∈ I+

Y m:
∑

yj , Xm:
∑

Xj for j ∈ I−}

5: OptV alue←∞; OptLine← ∅

6: init← False

7: Obtain k-level arrangement points P using Randomized Incremental algorithm

8: for p in P do

9: l← F−1(p) {y = mx+ c =⇒ l← [m, c]}

10: if init == False then

11: init = True

12: Calculate the aggregate values Y m,Xm, Y p,Xp using l

13: else

14: Find out Xs and Xt that swapped from I+ and I− respectively

15: Update Y m, Xm, Y p, Xp using UPDATENEIGHBOR oracle

16: LineV alue← τ(Y p−Xp×l[1]−l[0]×k)+(1−τ)(Xm×l[1]−l[0]×(n−k)−Y m)

17: if LineV alue < OptV alue then

18: OptV alue← LineV alue; OptLine← l

19: return OptLine

long to the k-set. Figure 4.4 shows the ordered sequence of k-set in k level of arrangement

for our running example.

100

Any k-set enumeration algorithm that satisfy this property can be used in our algo-

rithm. The best deterministic approach to enumerate ordered k-set is using Sweep Line

[132] algorithm by Edelsbrunner and Welzl using the dynamic data structure from T. Chan

[133]. The runtime complexity of this deterministic approach is O(n logm +m log1+a n)

where m is the number of k-set and a > 0 is an arbitrarily small constant. Additionally, T.

Chan [134] has developed a Randomized Incremental algorithm to perform the enumera-

tion in O(m+ n log n).

Our approach is presented in QREG2D Algorithm 2. We initialize the aggregate

values Xp, Y p, Xm and Y m to 0. Note that Xp and Y p represent the aggregate
∑

Xi

and
∑

yi for i ∈ I+. Similarly, Xm and Y m represent the aggregate
∑

Xj and
∑

yj for

j ∈ I−. We compute the aggregate values for the first point in the k-set as a special case. As

we move from one point to its neighboring point in the k-set we call UPDATENEIGHBOR

oracle to update the aggregate values. Objective cost can be computed using the aggre-

gate values. We return the k-set with the minimum objective cost in the walk over the k

level of arrangement. The runtime complexity of our algorithm with deterministic k-set

enumeration is presented in Theorem 4. Theorem 5 proves the expected runtime of our

algorithm.

Theorem 4. Algorithm 2 finds the optimal solution for the 2 dimensional QR problem in

O(n4/3 log1+a n) time where a > 0 is an arbitrarily small constant.

Proof. For the first k-set obtained through the enumeration, the optimization function and

aggregate values need to be calculated by a linear scan over the points which takes O(n)

time. Updating the optimization function value and aggregate values as we explore neigh-

boring k-set takesO(1) time. The points in the k-level of the arrangement can be computed

using Sweep Line algorithm [132, 133, 134] in O(n logm + m log1+a n) where m is the

number of k-set and a > 0 is an arbitrarily small constant. The upper bound on total

101

number of k-sets is given by Dey [135], O(nk1/3). This brings the overall time taken to

O(nk1/3 log1+a n). As k is a percentage of n, the overall time complexityO(n4/3 log1+a n).

Hence, proved.

Theorem 5. Algorithm 2 finds the optimal solution for the 2 dimensional QR problem in

O(n4/3) expected time.

Proof. Proof is similar to the proof of Theorem 4. However, if we use the Randomized

Incremental algorithm instead of the deterministic algorithm, the enumeration can be done

in O(n log (n) + nk1/3) expected time (Corollary 4.4 [134]). The points in the k-level

of the arrangement can be computed using Randomized Incremental algorithm[134] in

O(n log (n) + nk1/3) time (Corollary 4.4). This brings the overall time taken to O(n4/3).

The run time complexity for IPM is O(n3.5 log 1/ϵ) [121]. For exterior point based

exact approach, the run time complexity for 2 dimension is O(n2) [124]. The worst case

run time of complexity Algorithm 2 is, O(n4/3 log1+a n), which is better than the current

exact approaches. However, the expected runtime our algorithm is O(n4/3) which is a lot

better than the current state-of-the-art exact methods.

4.5 Challenges in Higher Dimension

Although our k-set based QR solution is extremely efficient in 2-dimension, the same

idea does not flourish in higher dimension. Let us consider 3 dimension QR first. In 3

dimension, the upper bound on number of k-set is O(nk
3
2). As k is a fraction of n, the

upper bound is O(n
5
2) for any quantile parameter. Given an Oracle which can enumerate

the k-sets in 3 dimension, still the QR solution will take O(n
5
2) time which is theoretically

better than QR-IPM. However, we do not know about any such enumeration technique for

3 dimensions which is an open problem for future research. Furthermore, in 4 dimensions,

102

the upper bound on number of k-set is O(n2(k + 1)2−2/45). For any quantile, the upper

bound becomes approximately O(n4) which is worse than QR-IPM. As number of k-set

increases significantly in higher dimension, the k-set based solution for QR is not feasible.

4.6 Related work

The idea of quantile regression was introduced even before OLS regression. Around

1757, Boscovich proposed the idea of fitting a line for 2-dimensional data by minimizing

the sum of absolute residuals under the assumption of mean of residuals has to be zero.

Laplace gave an algebraic formulation of the problem in his Methode de Situation in 1789.

In 1809 Gauss suggested to remove zero mean residual constraint. Later in 1823, he also

proposed least square criterion (i.e., OLS). As OLS has more analytical and computational

simplicity, it has been always popular. However, a criterion is a choice and there are dif-

ferent cases where one criterion will outperform others. In 1888, Edgeworth proposed a

computational geometry based solution for the bi-variate median regression problem which

helped the development of today’s Simplex method. In 20th century, there has been ex-

tensive work on quantile regression which helped a wide range of applications. In 1974,

Barrodale and Roberts [119] used simplex technique to solve median regression problem as

a bounded dual problem. Bloomfield and Steiger [124] explored the simplex technique for

median regression in depth and suggested exploring a normalized steepest edge direction

instead of steepest edge direction.

Before 1987, all the quantile regression techniques were focusing on median regres-

sion. Koenker and d’Orey [136] generalized the criterion for any quantile which is now

known as quantile regression. In median regression, an input point incurs a cost of ab-

solute deviation. For quantile regression parameter τ , Koenker and d’Orey proposed to

assign 1− τ and τ weight to negative and positive residuals. After the development of gen-

103

eralized quantile regression for any quantile, there has been an extensive research in this

area. We mention a few prominent work in this paper. There have been a various research

directions in this area. The primary focus is on the development of a faster quantile regres-

sion algorithm [126]. Another research direction is finding quantile regression for multiple

quantile[118, 126]. In 1997, Portnoy and Koenker [118] developed a primal dual interior

point method where in each step the goal is to minimize the different between primal dual

objective loss. It is extremely fast compared to the all previous methods. Later Koenkar

also proposed a technique for sparse big data in 2011.

In the continuous quest of a faster quantile regression, the objective criterion has

been often modified. As none of these are widely accepted, we only consider the original

quantile regression problem in this paper. If we we consider the entire history of quantile

regression, the most prominent two techniques are based on Barrodale and Roberts[119],

and Portnoy and Koenkar [118]. The latest updated implementation based on these tech-

niques can be found in quantreg package [131] in R maintained by Roger Koenkar which

is a gold standard public library for quantile regression. However, these widely used and

accepted implementations are quite memory hungry. Moreover, the run time complexity of

these implementations is still far behind to face the challenges of big data. So it is extremely

important to find out techniques that can take this everincreasing challenge.

bibliographyrefs

104

REFERENCES

[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann, “How

good are query optimizers, really?” PVLDB, vol. 9, no. 3, 2015.

[2] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita, “Improved histograms for

selectivity estimation of range predicates,” in ACM Sigmod Record, vol. 25, no. 2,

1996.

[3] M. Germain, K. Gregor, I. Murray, and H. Larochelle, “Made: Masked autoencoder

for distribution estimation,” in ICML, 2015, pp. 881–889.

[4] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B. Zdonik, “Learning-

based query performance modeling and prediction,” in ICDE. IEEE, 2012, pp.

390–401.

[5] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi, “An empirical analysis of deep

learning for cardinality estimation,” arXiv preprint arXiv:1905.06425, 2019.

[6] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C. Binnig,

“Deepdb: Learn from data, not from queries!” PVLDB, 2020.

[7] Z. Wang, D. Cashman, M. Li, J. Li, M. Berger, J. A. Levine, R. Chang, and C. Schei-

degger, “Nncubes: Learned structures for visual data exploration,” arXiv preprint

arXiv:1808.08983, 2018.

[8] J. Sun and G. Li, “An end-to-end learning-based cost estimator,” arXiv preprint

arXiv:1906.02560, 2019.

[9] V. Leis, B. Radke, A. Gubichev, A. Kemper, and T. Neumann, “Cardinality estima-

tion done right: Index-based join sampling.” in CIDR, 2017.

105

[10] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper, “Learned cardinalities:

Estimating correlated joins with deep learning,” CIDR, 2019.

[11] M. Müller, G. Moerkotte, and O. Kolb, “Improved selectivity estimation by combin-

ing knowledge from sampling and synopses,” PVLDB, vol. 11, no. 9, pp. 1016–1028,

2018.

[12] L. Getoor, B. Taskar, and D. Koller, “Selectivity estimation using probabilistic mod-

els,” in ACM SIGMOD Record, vol. 30, no. 2, 2001.

[13] K. Tzoumas, A. Deshpande, and C. S. Jensen, “Lightweight graphical models for

selectivity estimation without independence assumptions,” PVLDB, vol. 4, no. 11,

pp. 852–863, 2011.

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,

http://www.deeplearningbook.org.

[15] K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra, “Deep

autoregressive networks,” in ICML, 2014, pp. 1242–1250. [Online]. Available:

http://jmlr.org/proceedings/papers/v32/gregor14.html

[16] B. Uria, I. Murray, and H. Larochelle, “NADE: the real-valued neural

autoregressive density-estimator,” CoRR, vol. abs/1306.0186, 2013. [Online].

Available: http://arxiv.org/abs/1306.0186

[17] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Extracting and composing

robust features with denoising autoencoders,” in ICML, 2008. [Online]. Available:

https://doi.org/10.1145/1390156.1390294

[18] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-

encoders: Explicit invariance during feature extraction,” in ICML, 2011, pp. 833–

840.

[19] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

106

[20] G. P. Lepage, “A new algorithm for adaptive multidimensional integration,” Journal

of Computational Physics, vol. 27, no. 2, pp. 192–203, 1978.

[21] V. Poosala and Y. E. Ioannidis, “Selectivity estimation without the attribute value

independence assumption,” in VLDB, vol. 97, 1997, pp. 486–495.

[22] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Heller-

stein, S. Krishnan, and I. Stoica, “Deep unsupervised cardinality estimation,” Pro-

ceedings of the VLDB Endowment, vol. 13, no. 3, pp. 279–292, 2019.

[23] B. Uria, I. Murray, and H. Larochelle, “A deep and tractable density estimator,” in

International Conference on Machine Learning, 2014, pp. 467–475.

[24] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An empirical

investigation of catastrophic forgetting in gradient-based neural networks,” arXiv

preprint arXiv:1312.6211, 2013.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” JMLR, vol. 15,

no. 1, pp. 1929–1958, 2014.

[26] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE TPAMI, vol. 40, no. 12,

pp. 2935–2947, 2018.

[27] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and unsupervised discretiza-

tion of continuous features,” in Machine Learning Proceedings 1995. Elsevier,

1995, pp. 194–202.

[28] F. Changyong, W. Hongyue, L. Naiji, C. Tian, H. Hua, L. Ying, et al., “Log-

transformation and its implications for data analysis,” Shanghai archives of psychi-

atry, vol. 26, no. 2, p. 105, 2014.

[29] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya, and S. Chaudhuri, “Selectivity

estimation for range predicates using lightweight models,” PVLDB, vol. 12, no. 9,

pp. 1044 – 1057, 2019.

107

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ICLR, vol.

abs/1412.6980, 2015.

[31] N. Thaper, S. Guha, P. Indyk, and N. Koudas, “Dynamic multidimensional

histograms,” in SIGMOD, 2002, pp. 428–439. [Online]. Available: https:

//doi.org/10.1145/564691.564741

[32] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and T. Suel,

“Optimal histograms with quality guarantees,” in VLDB, 1998, pp. 275–286.

[Online]. Available: http://www.vldb.org/conf/1998/p275.pdf

[33] Y. E. Ioannidis, “The history of histograms (abridged),” in VLDB, 2003. [Online].

Available: http://www.vldb.org/conf/2003/papers/S02P01.pdf

[34] N. Bruno and S. Chaudhuri, “Conditional selectivity for statistics on query

expressions,” in SIGMOD, 2004, pp. 311–322. [Online]. Available: https:

//doi.org/10.1145/1007568.1007604

[35] N. Bruno, S. Chaudhuri, and L. Gravano, “Stholes: A multidimensional

workload-aware histogram,” in SIGMOD, 2001, pp. 211–222. [Online]. Available:

https://doi.org/10.1145/375663.375686

[36] Y. Matias, J. S. Vitter, and M. Wang, “Wavelet-based histograms for selectivity esti-

mation,” in ACM SIGMOD Record, vol. 27, no. 2, 1998.

[37] R. J. Lipton, J. F. Naughton, and D. A. Schneider, Practical selectivity estimation

through adaptive sampling. ACM, 1990, vol. 19, no. 2.

[38] G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine, et al., “Synopses for mas-

sive data: Samples, histograms, wavelets, sketches,” Foundations and Trends in

Databases, vol. 4, no. 1–3, pp. 1–294, 2011.

[39] J. Neter, W. Wasserman, and M. H. Kutner, “Applied linear regression models,”

1989.

108

[40] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics

and computing, vol. 14, no. 3, pp. 199–222, 2004.

[41] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for learned

index structures,” in SIGMOD. ACM, 2018, pp. 489–504.

[42] P. Chilinski and R. Silva, “Neural likelihoods via cumulative distribution functions,”

arXiv preprint arXiv:1811.00974, 2018.

[43] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi, “Learning state represen-

tations for query optimization with deep reinforcement learning,” arXiv preprint

arXiv:1803.08604, 2018.

[44] R. Marcus and O. Papaemmanouil, “Deep reinforcement learning for join order enu-

meration,” arXiv preprint arXiv:1803.00055, 2018.

[45] K. Tzoumas, T. Sellis, and C. S. Jensen, “A reinforcement learning approach for

adaptive query processing,” History, 2008.

[46] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and I. Stoica, “Learn-

ing to optimize join queries with deep reinforcement learning,” arXiv preprint

arXiv:1808.03196, 2018.

[47] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding, A. Kristo, G. Leclerc, S. Mad-

den, H. Mao, and V. Nathan, “Sagedb: A learned database system,” 2019.

[48] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaemmanouil,

and N. Tatbul, “Neo: A learned query optimizer,” Proceedings of the VLDB Endow-

ment, vol. 12, no. 11, pp. 1705–1718, 2019.

[49] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang, “Dis-

tributed representations of tuples for entity resolution,” PVLDB, vol. 11, no. 11, pp.

1454–1467, 2018.

[50] R. Cappuzzo, P. Papotti, and S. Thirumuruganathan, “Creating embeddings of het-

erogeneous relational datasets for data integration tasks,” SIGMOD, 2020.

109

[51] S. Thirumuruganathan, N. Tang, M. Ouzzani, and A. Doan, “Data curation with deep

learning,” EDBT, 2020.

[52] F. Korn, T. Johnson, and H. Jagadish, “Range selectivity estimation for continuous

attributes,” in ssdbm. IEEE, 1999, p. 244.

[53] M. Kiefer, M. Heimel, S. Breß, and V. Markl, “Estimating join selectivities using

bandwidth-optimized kernel density models,” PVLDB, vol. 10, no. 13, pp. 2085–

2096, 2017. [Online]. Available: http://www.vldb.org/pvldb/vol10/p2085-kiefer.pdf

[54] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi, “Selectivity estimators

for multidimensional range queries over real attributes,” VLDB J., vol. 14, no. 2, pp.

137–154, 2005. [Online]. Available: https://doi.org/10.1007/s00778-003-0090-4

[55] S. Lakshmi and S. Zhou, “Selectivity estimation in extensible databases-a neural

network approach,” in VLDB, 1998, pp. 623–627.

[56] A. Kipf, D. Vorona, J. Müller, T. Kipf, B. Radke, V. Leis, P. Boncz, T. Neumann,

and A. Kemper, “Estimating cardinalities with deep sketches,” in Proceedings of the

2019 International Conference on Management of Data, 2019, pp. 1937–1940.

[57] A. Kipf, M. Freitag, D. Vorona, P. Boncz, T. Neumann, and A. Kemper, “Estimating

filtered group-by queries is hard: Deep learning to the rescue,” 1st International

Workshop on Applied AI for Database Systems and Applications, 2019.

[58] D. Vorona, A. Kipf, T. Neumann, and A. Kemper, “Deepspace: Approximate

geospatial query processing with deep learning,” in Proceedings of the 27th ACM

SIGSPATIAL International Conference on Advances in Geographic Information Sys-

tems, 2019, pp. 500–503.

[59] S. Thirumuruganathan, S. Hasan, N. Koudas, and G. Das, “Approximate query pro-

cessing for data exploration using deep generative models,” ICDE, 2020.

[60] B. Mozafari and N. Niu, “A handbook for building an approximate query engine.”

IEEE Data Eng. Bull., vol. 38, no. 3, pp. 3–29, 2015.

110

[61] B. Mozafari, “Approximate query engines: Commercial challenges and research

opportunities,” in SIGMOD, 2017, pp. 521–524. [Online]. Available: http:

//doi.acm.org/10.1145/3035918.3056098

[62] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint

arXiv:1606.05908, 2016.

[63] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436–444, 2015.

[64] J. Altosaar, Tutorial - What is a variational autoencoder?, 2018. [Online].

Available: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

[65] M. N. Garofalakis and P. B. Gibbons, “Approximate query processing: Taming the

terabytes.” in VLDB, 2001, pp. 343–352.

[66] B. Efron and R. J. Tibshirani, An introduction to the bootstrap. CRC press, 1994.

[67] Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted autoencoders,”

arXiv preprint arXiv:1509.00519, 2015.

[68] R. M. Neal, “Annealed importance sampling,” Statistics and computing, vol. 11,

no. 2, pp. 125–139, 2001.

[69] A. Grover, R. Gummadi, M. Lazaro-Gredilla, D. Schuurmans, and S. Ermon, “Vari-

ational rejection sampling,” in AISTATS, 2018.

[70] W. G. Cochran, Sampling techniques. John Wiley & Sons, 2007.

[71] P. R. Rosenbaum, “An exact distribution-free test comparing two multivariate distri-

butions based on adjacency,” JRSS: Series B, vol. 67, no. 4, pp. 515–530, 2005.

[72] L. Wasserman, Modern Two-Sample Tests, 2012. [Online]. Available: https:

//normaldeviate.wordpress.com/2012/07/14/modern-two-sample-tests/

[73] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathematics, vol. 17,

pp. 449–467, 1965.

111

[74] R. G. Krishnan and M. Hoffman, “Inference and introspection in deep generative

models of sparse data,” Advances in Approximate Bayesian Inference Workshop at

NIPS, 2016.

[75] M. Kulessa, A. Molina, C. Binnig, B. Hilprecht, and K. Kersting, “Model-based

approximate query processing,” arXiv:1811.06224, 2018.

[76] A. Galakatos, A. Crotty, E. Zgraggen, C. Binnig, and T. Kraska, “Revisiting

reuse for approximate query processing,” PVLDB, 2017. [Online]. Available:

https://doi.org/10.14778/3115404.3115418

[77] F. Reiss, M. Garofalakis, and J. M. Hellerstein, “Compact histograms for hierarchi-

cal identifiers,” in Proceedings of the 32nd international conference on Very large

data bases. VLDB Endowment, 2006, pp. 870–881.

[78] S. Guha, N. Koudas, and D. Srivastava, “Fast algorithms for hierarchical

range histogram construction,” in PODS, 2002. [Online]. Available: http:

//doi.acm.org/10.1145/543613.543637

[79] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier,

2011.

[80] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-

maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[81] M. Scutari and J.-B. Denis, Bayesian Networks with Examples in R. Boca Raton:

Chapman and Hall, 2014.

[82] A. Molina, A. Vergari, N. Di Mauro, S. Natarajan, F. Esposito, and K. Kersting,

“Mixed sum-product networks: A deep architecture for hybrid domains,” in AAAI,

2018.

[83] “UCI Machine Learning Repository. Adult Data Set ,” 2019. [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/adult

112

[84] “Bureau of transportation statistics. Flights Data Set ,” 2019. [Online]. Available:

http://www.transtats.bts.gov/

[85] P. Eichmann, C. Binnig, T. Kraska, and E. Zgraggen, “Idebench: A benchmark for

interactive data exploration,” arXiv:1804.02593, 2018.

[86] I. J. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,” CoRR,

vol. abs/1701.00160, 2017. [Online]. Available: http://arxiv.org/abs/1701.00160

[87] Q. Ma and P. Triantafillou, “Dbest: Revisiting approximate query processing engines

with machine learning models,” in SIGMOD, 2019.

[88] Z. Wang, D. Cashman, M. Li, J. Li, M. Berger, J. A. Levine, R. Chang, and C. Schei-

degger, “Neuralcubes: Deep representations for visual data exploration,” CoRR, vol.

abs/1808.08983, 2018.

[89] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, T. C. Mowry,

M. Perron, I. Quah, et al., “Self-driving database management systems.” in CIDR,

2017.

[90] R. Marcus and O. Papaemmanouil, “Releasing cloud databases for the chains of

performance prediction models.” in CIDR, 2017.

[91] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica, “Ernest: Efficient

performance prediction for large-scale advanced analytics.” in NSDI, 2016, pp. 363–

378.

[92] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy, “The aqua approximate

query answering system,” in ACM Sigmod Record, vol. 28, no. 2. ACM, 1999, pp.

574–576.

[93] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica, “Blinkdb:

Queries with bounded errors and bounded response times on very large data,” in

EuroSys, 2013. [Online]. Available: http://doi.acm.org/10.1145/2465351.2465355

113

[94] Y. Park, B. Mozafari, J. Sorenson, and J. Wang, “Verdictdb: universalizing approxi-

mate query processing,” in SIGMOD, 2018.

[95] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl, S. Chaudhuri, and

B. Ding, “Quickr: Lazily approximating complex adhoc queries in bigdata clusters,”

in SIGMOD. ACM, 2016, pp. 631–646.

[96] S. Chaudhuri, G. Das, and V. Narasayya, “Optimized stratified sampling for approx-

imate query processing,” TODS, vol. 32, no. 2, p. 9, 2007.

[97] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,” in Acm Sigmod

Record, vol. 26, no. 2. ACM, 1997, pp. 171–182.

[98] S. Wu, B. C. Ooi, and K.-L. Tan, “Continuous sampling for online aggregation over

multiple queries,” in SIGMOD, 2010.

[99] S. Chaudhuri, B. Ding, and S. Kandula, “Approximate query processing: No

silver bullet,” in SIGMOD, 2017. [Online]. Available: http://doi.acm.org/10.1145/

3035918.3056097

[100] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim, “Data synthesis

based on generative adversarial networks,” PVLDB, vol. 11, no. 10, pp. 1071–1083,

2018. [Online]. Available: http://www.vldb.org/pvldb/vol11/p1071-park.pdf

[101] https://cacm.acm.org/news/241072-computing-power-needed-to-train-ai-is-rising-

seven-times-faster-than before/fulltext.

[102] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter,

“Efficient and robust automated machine learning,” Advances in neural information

processing systems, vol. 28, 2015.

[103] I. Goodfellow, P. McDaniel, and N. Papernot, “Making machine learning robust

against adversarial inputs,” Communications of the ACM, vol. 61, no. 7, pp. 56–66,

2018.

114

[104] D. Su, H. Zhang, H. Chen, J. Yi, P.-Y. Chen, and Y. Gao, “Is robustness the cost of

accuracy?–a comprehensive study on the robustness of 18 deep image classification

models,” in Proceedings of the European Conference on Computer Vision (ECCV),

2018, pp. 631–648.

[105] J. Z. Li, “Principled approaches to robust machine learning and beyond,” Ph.D. dis-

sertation, Massachusetts Institute of Technology, 2018.

[106] M. Fink, Y. Liu, A. Engstle, and S.-A. Schneider, “Deep learning-based multi-

scale multi-object detection and classification for autonomous driving,” pp. 233–

242, 2019.

[107] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui,

G. Corrado, S. Thrun, and J. Dean, “A guide to deep learning in healthcare,” Nature

medicine, vol. 25, no. 1, pp. 24–29, 2019.

[108] A. F. v. Veenstra and B. Kotterink, “Data-driven policy making: The policy lab

approach,” in International conference on electronic participation. Springer, 2017,

pp. 100–111.

[109] A. Shapiro, “Reform predictive policing,” Nature, vol. 541, no. 7638, pp. 458–460,

2017.

[110] S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das, “Deep learn-

ing models for selectivity estimation of multi-attribute queries,” in Proceedings of

the 2020 ACM SIGMOD International Conference on Management of Data, 2020,

pp. 1035–1050.

[111] S. Thirumuruganathan, S. Hasan, N. Koudas, and G. Das, “Approximate query pro-

cessing for data exploration using deep generative models,” in 2020 IEEE 36th in-

ternational conference on data engineering (ICDE). IEEE, 2020, pp. 1309–1320.

[112] M. A. Olsen, F. Tian, A. E. Wallace, K. B. Nickel, D. K. Warren, V. J. Fraser, N. Sel-

vam, and B. H. Hamilton, “Use of quantile regression to determine the impact on

115

total health care costs of surgical site infections following common ambulatory pro-

cedures,” Annals of surgery, vol. 265, no. 2, p. 331, 2017.

[113] B. S. Cade and B. R. Noon, “A gentle introduction to quantile regression for ecolo-

gists,” Frontiers in Ecology and the Environment, vol. 1, no. 8, pp. 412–420, 2003.

[114] C. Davino, M. Furno, and D. Vistocco, Quantile regression: theory and applications.

John Wiley & Sons, 2013, vol. 988.

[115] S. Thirumuruganathan, S. Shetiya, N. Koudas, and G. Das, “Prediction intervals

for learned cardinality estimation: An experimental evaluation,” in 2022 IEEE 38th

International Conference on Data Engineering (ICDE). IEEE, 2022, pp. 3051–

3064.

[116] F. Savva, C. Anagnostopoulos, and P. Triantafillou, “Ml-aqp: Query-driven

approximate query processing based on machine learning,” arXiv preprint

arXiv:2003.06613, 2020.

[117] M. R. Chernick, “The elements of statistical learning: Data mining, inference and

prediction,” 2002.

[118] S. Portnoy and R. Koenker, “The gaussian hare and the laplacian tortoise: com-

putability of squared-error versus absolute-error estimators,” Statistical Science,

vol. 12, no. 4, pp. 279–300, 1997.

[119] I. Barrodale and F. D. Roberts, “An improved algorithm for discrete l 1 linear ap-

proximation,” SIAM Journal on Numerical Analysis, vol. 10, no. 5, pp. 839–848,

1973.

[120] F. Y. Edgeworth, “Xxii. on a new method of reducing observations relating to sev-

eral quantities,” The London, Edinburgh, and Dublin Philosophical Magazine and

Journal of Science, vol. 25, no. 154, pp. 184–191, 1888.

[121] S. J. Wright, Primal-dual interior-point methods. SIAM, 1997.

116

[122] H. Edelsbrunner, Algorithms in combinatorial geometry. Springer Science & Busi-

ness Media, 1987, vol. 10.

[123] R. Koenker and G. Bassett Jr, “Regression quantiles,” Econometrica: journal of the

Econometric Society, pp. 33–50, 1978.

[124] P. Bloomfield and W. L. Steiger, Least absolute deviations: theory, applications, and

algorithms. Springer, 1983.

[125] H. M. Wagner, “Linear programming techniques for regression analysis,” Journal of

the American Statistical Association, vol. 54, no. 285, pp. 206–212, 1959.

[126] V. Chernozhukov, I. Fernández-Val, and B. Melly, “Fast algorithms for the quantile

regression process,” Empirical economics, pp. 1–27, 2020.

[127] J. Yang, X. Meng, and M. Mahoney, “Quantile regression for large-scale applica-

tions,” in International Conference on Machine Learning. PMLR, 2013, pp. 881–

887.

[128] N. Meinshausen and G. Ridgeway, “Quantile regression forests.” Journal of machine

learning research, vol. 7, no. 6, 2006.

[129] Y. Feng, Y. Chen, and X. He, “Bayesian quantile regression with approximate like-

lihood,” Bernoulli, vol. 21, no. 2, pp. 832–850, 2015.

[130] S. Zheng, “Gradient descent algorithms for quantile regression with smooth approx-

imation,” International Journal of Machine Learning and Cybernetics, vol. 2, no. 3,

pp. 191–207, 2011.

[131] https://cran.r project.org/web/packages/quantreg/index.html.

[132] H. Edelsbrunner and E. Welzl, “Constructing belts in two-dimensional arrangements

with applications,” SIAM Journal on Computing, vol. 15, no. 1, pp. 271–284, 1986.

[133] T. M. Chan, “Dynamic planar convex hull operations in near-logarithmic amortized

time,” Journal of the ACM (JACM), vol. 48, no. 1, pp. 1–12, 2001.

[134] ——, “Remarks on k-level algorithms in the plane,” 1999.

117

[135] T. K. Dey, “Improved bounds on planar k-sets and k-levels,” in Proceedings 38th

Annual Symposium on Foundations of Computer Science. IEEE, 1997, pp. 156–

161.

[136] R. W. Koenker and V. d’Orey, “Algorithm as 229: Computing regression quantiles,”

Applied statistics, pp. 383–393, 1987.

118

BIOGRAPHICAL STATEMENT

Shohedul Hasan was born in Bangladesh in 1989. He received his B.S. degree in

Computer Science and Engineering from the Bangladesh University of Engineering and

Technology (BUET), Dhaka, Bangladesh, in 2014. After graduating from BUET, he started

a remote Software Engineering job in a U.S. startup named Q.I. Analysis Inc. After two

years working at Q.I., he came to the USA for his Ph.D. in the Fall 2016 at The University of

Texas at Arlington. His current research interests are Databases, Algorithms, Data Mining,

Machine Learning, and Data Science.

119

