
Data Discovery Analysis on Complex Time Series Data 

 

 

Peter L. Severynen 

Department of Computer Science and Engineering, 

The University of Texas at Arlington 

December 2022 

 



II 

 

Abstract 

 Complex time series are a ubiquitous form of data in the modern world. They have wide 

application across many different fields of scientific inquiry and business endeavor. Time series 

are used to understand and forecast weather patterns, voting patterns, computer network traffic, 

population health outcomes, demographic changes, the results of scientific experiments, and the 

performance of stocks and mutual funds. But time series can be difficult to analyze by 

conventional methods when the data is multivariate, incomplete, or in different formats. To 

address these issues, an investigation of several multivariate time series datasets was performed 

using the methods of automatic data discovery and derivative-based analysis. Interactive maps 

were constructed which displayed the results of the study. Conclusions were drawn and 

discussed, and an explanation was given of how this method can be applied to other multivariate 

time series datasets and real-world problems. 
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Introduction 

The Organisation for Economic Co-operation and Development (OECD) defines a time series as 

“a set of regular time-ordered observations of a quantitative characteristic of an individual or 

collective phenomenon taken at successive, in most cases equidistant, periods / points of time.” 

(Time Series). A time series may be either univariate or multivariate. In a univariate time series, 

there is one variable of interest. In a multivariate time series, there are more than one variables of 

interest. The distinguishing characteristic about time series data is that, as Lazzeri observes, 

“time isn’t just a metric, but a primary axis.” (Lazzeri, 2020). Indeed, time is a central element of 

every time series dataset. In a time series, the observations have a temporal ordering and may 

have a temporal dependency on preceding observations. For example, if the daily high 

temperatures in a metropolitan area are recorded for a month, and this data is represented as a 

time series, then the observations have a temporal dependency on one another. If it was hot 

yesterday, then it is more likely that it will be hot today. When this temporal dependency aspect 

of time series is present in a dataset, it makes it possible to predict future values of the time series 

(with varying degrees of accuracy) based on previous values of the time series. This is called 

time series forecasting. Time series’ predictive power is one of the factors that have led to their 

widespread use. 

 

Part I: Applications of Time Series and Time Series Analysis 

There are many situations in which it is necessary to analyze different time series data 

using data discovery, data mining, and machine learning (ML) techniques and methods. For 

example, weather patterns, climate change, voting patterns, computer network traffic, commuter 

traffic, healthcare data, demographics, scientific observations, and business/financial applications, 
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etc. may all be represented as time series. In order to extract useful information from these time 

series and derive meaning from them, it is necessary to perform time series analysis on them. 

Weather forecasting is the quintessential application of time series data. Weather stations 

around the world collect data on temperature, precipitation, humidity, air pressure, and other 

atmospheric parameters at regular intervals. This atmospheric data constitutes time series. These 

time series are aggregated and fed as input to supercomputers run by the National Oceanic and 

Atmospheric Administration (NOAA), a division of the U.S. Department of Commerce. By 

analyzing atmospheric time series and performing time series forecasting, accurate weather 

forecasts may be obtained. These forecasts are vital to the economic well-being of farmers, 

ranchers, builders, and others in weather-sensitive occupations and industries. In fact, according 

to NOAA, 

Each year, the United States averages some 10,000 thunderstorms, 5,000 floods, 1,300 

tornadoes and 2 Atlantic hurricanes, as well as widespread droughts and wildfires. 

Weather, water and climate events, cause an average of approximately 650 deaths and 

$15 billion in damage per year and are responsible for some 90 percent of all 

presidentially-declared disasters. About one-third of the U.S. economy – some $3 trillion 

– is sensitive to weather and climate. National Weather Service (NWS) provides weather, 

hydrologic, and climate forecasts and warnings for the United States, its territories, 

adjacent waters and ocean areas, for the protection of life and property and the 

enhancement of the national economy. (NOAA, 2022) 

The National Weather Service is a division of NOAA, and it provides timely and essential 

weather forecasts and other weather-related information to all Americans. For example, the 

National Weather Service accurately predicted the paths of Hurricane Ian and Hurricane Nicole, 
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which devastated Florida in 2022. Because the National Weather Service issued a hurricane 

watch for the affected counties, many residents evacuated, and thousands of lives were saved as a 

result! This would not have been possible without modern time series analysis and forecasting 

algorithms. 

The scientific consensus is that extreme weather events such as these are growing in 

frequency and severity due to climate change. Here too, time series analysis is helpful for 

understanding the origin and evolution of climate change. Stips et al. asserts that “the results of 

investigating the information flow between the major radiative forcing’s and the GMTA [ global 

mean surface air temperature anomalies] time series clearly show that total Green House Gases 

(GHG), dominated in particular by CO2 forcing, is the main driver of changing global surface air 

temperature” (Stips et al., 2015). Kremer et al. used a clustering technique to detect climate 

change in multivariate time series data from hydrology, meteorology, and oceanography (Kremer 

et al., 2010). 

Time series analysis is also helpful in understanding voting patterns and how they change 

over time. For example, as set forth in the U.S. Constitution, the U.S. House of Representatives 

currently has 438 members who are elected from their respective congressional districts to serve 

two-year terms (U.S. Const.  art. I,  § 2.). The party affiliation of the winning candidate in 

successive elections forms a time series. By analyzing these time series for each congressional 

district, it can be determined whether a particular district leans Democratic or Republican. 

Political strategists use this information to target campaign advertising funds in the geographic 

areas where they believe that these funds will be most effective. This information also informs 

candidates’ voter mobilization efforts. 
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The role of time series analysis in understanding computer network traffic, congestion, 

and cyberattacks has been well-documented. Ntlangu and Baghai-Wadji trace the history of using 

time series to model network traffic and explain the theoretical foundations of this approach 

(Ntlangu & Baghai-Wadji, 2017). The number of packets traveling across a network node at 

predefined time intervals constitute a time series. By measuring this time series, it can be 

determined whether the network is congested at that node and will ultimately slow down. 

Moreover, as Shen observes, time series forecasting may be used to predict network traffic. 

(Shen et al., 2009). Time series are also an integral part of computer network security. An 

anomalous and sudden increase in traffic from a particular subnet or range of IP addresses may 

indicate a distributed denial of service (DDoS) attack on a particular server or Web site. Time 

series help network security professionals detect and prepare for such cyberattacks. Wu et al. 

used time series and fuzzy logic to improve the accuracy of “network threat frequency 

forecasting” (Wu et al., 2008). This work is important because it makes network connections 

faster and more secure. 

Just as time series are used to understand and model the movement of traffic in the digital 

world, time series may also be used to understand and model the movement of traffic in the 

physical world. Time series data about traffic flow is frequently used by civil engineers when 

designing new transportation infrastructure and improving existing transportation infrastructure. 

This applies equally well in both urban and rural settings. Moreover, Bawaneh and Simon 

created an algorithm for detecting anomalies in city traffic, such as automobile accidents, using 

time series data (Bawaneh & Simon, 2019). Once civil engineers know where trouble spots 

frequently occur, they can recommend solutions to policymakers including widening roads, 
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installing crash impact barrels, and adjusting traffic signage. This illustrates one of the many 

practical benefits of time series analysis. 

Time series analysis is also an important tool in biomedical research and public health 

policy planning. As Ferenti observes, “Many biomedical data are available as time series, 

especially in the field of public health and epidemiology, where indicators are usually collected 

over time.” (Ferenti, 2017). For example, the number of cases of an infectious disease, the 

number of positive tests, and the number of deaths attributable to the disease over time are all 

important factors that may be represented as time series. 

Specifically, state public health departments routinely publish datasets of COVID-19 

cases, tests, and deaths. An example of such data for the state of California may be found at 

CHHS Open Data, a website of the California Department of Public Health (California 

Department of Public Health, 2022). Models and analyses based on these time series datasets 

inform policymakers when they are tasked with making decisions about masking, social 

distancing, and other public health measures that are designed to reduce transmission and prevent 

the healthcare system from becoming overburdened. By analyzing these time series datasets, 

public health experts and data scientists can track case numbers over time and assess whether 

COVID-19 cases are trending upward or downward as new variants evolve. Oladunni et al. 

modeled how COVID-19 affects different communities and demographic groups (Oladunni et al., 

2021). This is important because it can potentially lead to increased health equity and targeted 

outreaches and educational campaigns to underserved communities (racial and ethnic minorities, 

rural areas, tribal lands, etc.). Ibrahim et al. describe how “data analytics, properly applied, hold 

great potential to target inequities and reduce disparities [in health care]” (Ibrahim, 2020). Timely, 
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comprehensive data and accurate, high-quality analysis are prerequisites for sound and effective 

public health policy. 

Time series analysis and forecasting is also applicable to a wide variety of economic and 

financial data both at an economy-wide level and at the level of individual companies and 

corporations. Furthermore, many kinds of economic data may be represented as time series. As 

Hayes observes, “[h]istorical stock prices, earnings, gross domestic product (GDP), or other 

sequences of financial or economic data can be analyzed as a time series.” (Hayes, 2022). These 

are metrics that apply to the U.S. economy as a whole. On a smaller level, time series are also 

used to model various financial performance metrics for individual companies or groups of 

companies within a specific sector of the economy. For example, the quarterly sales volume of a 

publicly traded company, or the monthly production of Japanese steelmakers may be modeled as 

a time series. Unlike the macroeconomic factors stated above, these metrics apply to a particular 

company or economic sector. Time series analysis helps companies make projections about what 

their quarterly sales, revenue, and earnings are expected to be for the next year. 

 

Part II: Data and Methods 

To evaluate the merits and applicability of derivative-based analysis to a broad set of 

problems, three datasets were used for this study: the Zillow Single-Family Homes Time Series 

Metro & U.S. dataset, the Dow Jones Industrial Average (DJIA) dataset, and the Consumer Price 

Index (Inflation) dataset. The first dataset describes the monthly median sale price of single-

family homes in the 911 largest U.S. metropolitan areas. The dataset covers the period from 

January 1996 to August 2021. This data was collected by the real estate company Zillow and 

made publicly available (Zillow, 2021). The second dataset consists of the opening and closing 
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prices of the Dow Jones Industrial Average (DJIA). Ganti describes the DJIA as “a price-

weighted index that tracks 30 large, publicly-owned [publicly-traded] companies trading on the 

New York Stock Exchange and the Nasdaq…[It] serve[s] as a proxy for the broader U.S. 

economy” (Ganti, 2022). The current composition of the index is shown in Figure 1.  
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Figure 1. Components of the Dow Jones Industrial Average Sorted by Stock Name 

 

The 30 companies that comprise the Dow Jones Industrial Average and their current weights.[1] 
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The DJIA dataset covers the time period from December 31, 1999 to February 11, 2022. 

The DJIA dataset was obtained from Yahoo! Finance (Dow Jones Industrial Average (^DJI)). The 

third dataset lists the inflation rate as measured by the Consumer Price Index (CPI) for each 

month from January 1996 to December 2021; it was obtained from usinflationcalculator.com 

(Historical Inflation Rates: 1914-2022, 2022). 

 

Why was Time Series Analysis Chosen as the Method of Inquiry for These Datasets? 

For this study, time series analysis was chosen because of the nature of the datasets to be 

investigated. Lazzeri notes, “[T]ime series analysis is about identifying the intrinsic structure and 

extrapolating the hidden traits of your time series data in order to get helpful information from it.” 

(Lazzeri, 2020) For the purposes of this study, each dataset was treated as separate and 

independent from the others, that is, there are no known dependencies of one dataset upon 

another. However, all the datasets may be influenced by broader economic trends, which are 

beyond the scope of this analysis. 

Since the datasets are multivariate time series, this presents unique challenges and 

opportunities. Two of the challenging aspects of analyzing these datasets were that they exist in 

different formats and use different timescales for their observations. While all the datasets are 

stored as comma separated values (CSV) files, one of the datasets uses time as the horizontal 

axis, while the others use time as the vertical axis. Time is also measured in different increments 

by the disparate datasets. In the real estate and inflation datasets, the observations were recorded 

on a timescale of months, while in the DJIA dataset, the observations were recorded on a 

timescale of days. This renders the datasets incompatible for a comparative analysis at the closest 

level of granularity. 
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The multivariate nature of the datasets also afforded unique opportunities for analysis that 

would not have been possible otherwise. For example, as the real estate dataset included 

geospatial, temporal, and financial components, correlations could be drawn between the three. It 

was possible to track which regions appreciated faster than others because of the intersection of 

geography, time, and price. 

 

Research Journey 

When this research project began, the initial intent was to develop an online home 

buyer’s assistant that could show properties and recommend offer prices. This entailed a large 

amount of research into home prices and the fundamentals of the real estate market. Over time 

this goal evolved significantly as additional data was incorporated into the data discovery and 

analysis process. A set of color-coded interactive maps were created, which showed the 120 

largest U.S. metropolitan areas grouped by different parameters. Normalization of the data and 

computing the first and second derivatives made it possible to make meaningful comparisons 

within the dataset. Furthermore, as the researcher continued to explore the data, he found that 

some of his initial assumptions were validated by the analysis while others were not. For 

example, the median price of a single-family home doubled faster in California and Florida than 

it did in the Great Plains states (Map 1). However, most metropolitan areas in Texas and 

Louisiana did not double faster than metropolitan areas of similar size in other states, even 

though these states are located on the Gulf Coast of the United States and have prosperous 

energy industries. Eventually, as more data was incorporated, broader patterns and trends began 

to emerge. For example, there has been a general upward trend in asset prices over the 21 years 
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from 2000 to 2021. However, there have also been times of sudden decreases in asset prices (e.g. 

stock market crashes and housing price crashes). 

First, the method of derivative-based analysis will be applied to the real estate dataset, the 

DJIA dataset, and the inflation dataset to answer the associated research questions. The results 

will be discussed, and conclusions will be drawn. 

 

Research Questions 

There were ten major research questions that were addressed in this analysis: 

1. “In a given metropolitan area, which 1-year, 2-year, 5-year, or 10-year period had the greatest 

increase in normalized price?” and “What were the highest-performing metropolitan areas in 

a given 1-year, 2-year, 5-year, or 10-year period.” 

2. “Given a certain amount of money to invest, which metropolitan area offered the best returns 

over the entire 24-year period?” 

3. “Given two metropolitan areas, which one had a greater increase in median price over the 

entire 24-year period?” 

4. “In a given metropolitan area, how many years will it take for the median price for a single-

family home to double?” 

5. “Given the price data for a metropolitan area for 2021, will prices in that metropolitan area 

rise or fall in the next year?” 

6. “Is there a relationship between doubling time and the political party affiliation of the 

senators that represented the metropolitan areas and their respective states during the years in 

which the median price of a single-family home doubled?” 
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7. “Is there a statistically significant correlation between doubling time and the population size 

of the metropolitan area, i.e. do smaller metropolitan areas double in price faster than larger 

ones?” 

8. “What is the regional distribution of the metropolitan areas that doubled in price, e.g. did 

metropolitan areas on the East and West Coasts of the United States double in price faster 

than metropolitan areas in the interior of the country?”  

9. “Can it be determined from the available data when there is an asset price bubble in a 

particular metropolitan area or region?” 

10. “How can an asset price bubble be defined mathematically?” 

The first five research questions are important because they may be used by potential real 

estate investors to determine which metropolitan areas are likely to have the fastest return on 

investment. Leusin defines “return on investment” as “the gain or loss a real estate property 

generates minus its initial costs over a specific period of time” (Leusin, 2017). The last five 

questions are important because they deal with larger political, social, and economic trends. 

 

The Data Pipeline 

The first step in the data pipeline was preprocessing the data. Hagan explains that “Data 

preprocessing consists of such steps as normalization, non-linear transformations, feature 

extraction, coding of discrete inputs/targets, handling missing data, etc.” (Hagan, 2014). For this 

analysis, data preprocessing included data cleaning, type conversion, and feature extraction. First, 

the data was read into the program from a CSV file stored on disk. Once the data was read into 

the program, it was stored in a Pandas DataFrame for easy access and manipulation. Each of the 

fields in the DataFrame was initially interpreted as a string. Rows with missing values were 
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dropped. Then the program performed automatic type conversion from string to float so that the 

powerful mathematical and linear algebra functions of Numpy could be used on the numerical 

features in the dataset. 

Features that will be extracted from the Real Estate Dataset 

Next, features were extracted from the real estate dataset. The following five features 

were chosen to compare metropolitan areas from the real estate dataset because they were the 

most informative: time, median price, normalized median price, state, and region. Normalized 

median price and region are derived features. 

 

Development of Methods and Algorithms 

In order to answer the research questions, several methods and algorithms were 

developed. Initially fixed-length time periods such as years were used to partition and analyze 

the real estate dataset at a higher level of granularity. Then these were generalized to multi-year 

spans of time. One of the challenges was the different formats of the datasets. Like all tabular 

datasets, the real estate dataset consists of rows and columns. Each row represents a different 

metropolitan area. There are 911 metropolitan areas in all. The first five columns are features, 

such as RegionName, RegionType, and StateName. The remaining columns are the months that 

the price data was recorded for. Therefore, the real estate dataset is unique among the datasets 

because in this dataset time is the horizontal axis; whereas, in the other datasets time is the 

vertical axis. The scale of time is different, too, among the three datasets. In the CPI dataset, time 

is measured in months. In the real estate dataset, time is measured in months. In the DJIA dataset, 

time is measured in days. All of these timescales are important, but in order to make meaningful 

comparisons, years were chosen as the common timescale. 



 

14 

 

It was important to normalize the prices for the real estate dataset because housing prices 

can vary widely from one market to another. For example, the median price of a single-family 

home in Selma, Alabama in August 2021 (the most recent month for which data is available in 

the real estate dataset) was $60,503. The median price of a single-family home in San Jose, CA 

in August 2021 was $1,564,395 – over $1.5 million dollars! Normalization helps to even-out 

these differences so that appreciation and depreciation trends may be seen over time. 

Normalization yields an apples-to-apples comparison instead of an apples-to-oranges comparison. 

There are different kinds of normalization, though. Two of the most frequently used types 

of normalization for vectors are L1 normalization and L2 normalization. L1 normalization takes 

the sum of the absolute values of the vector to be normalized. L2 normalization sums the squares 

of the absolute values of the elements of the vector. 

                                                  

          Eq. 1. The formula for L1 normalization.[2]                           Eq. 2. The formula for L2 normalization.[3]  

 

For this analysis, a different method of normalization was chosen. The maximum price of 

a single-family home in a given metropolitan area across a fixed time period (one or more years) 

was found. Then each price was divided by the maximum price in order to normalize it. 

The first question has two parts: “In a given metropolitan area, which 1-year, 2-year, 5-

year, or 10-year period had the greatest increase in normalized price?” and “What were the 

highest-performing metropolitan areas in a given 1-year, 2-year, 5-year, or 10-year period.” To 

answer the first part of this question, the following algorithm was designed: 
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Algorithm 1a 

1) partition the dataset into user-specified equal length time periods 

2) for each period 

a) normalize the prices by dividing each price by the maximum price for its metropolitan 

area over the specified timespan 

b) change in price = final price - initial price 

c) store the name of the of the metropolitan area and the change in its normalized price in a 

data structure 

3) sort the metropolitan areas in descending order by change in price. 

4) iterate through the periods comparing the increase in normalized price in each period for that 

metropolitan area. 

5) return the highest increase in normalized price and the period in which it occurred 

To answer the second part, the following algorithm was used: 

 

Algorithm 1b 

1) partition the dataset into user-specified equal length time periods 

2) For a user-defined period 

a) normalize the prices by dividing each price by the maximum price for its metropolitan 

area over the specified timespan 

b) change in price = final price - initial price 

c) store the name of the metropolitan area and the change in its normalized price in a data 

structure 

3) sort the metropolitan areas in descending order by change in price 

4) print the user-specified number of metropolitan areas and their respective increases in 

normalized price 

After these algorithms were implemented, manual testing was performed on them, and they were 

found to work on any number of metropolitan areas in the dataset. 

The following algorithm was used to answer the second research question: 

Algorithm 2 

1) set a user-defined threshold for the maximum initial starting price  

2) filter the dataset based on the threshold 

3) for each metropolitan area under the threshold 

a) normalize the prices by dividing each price by the maximum price for its metropolitan 

area over the entire timespan of the dataset 

b) change in price = final price - initial price 
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c) store the name of the metropolitan area and the change in its normalized price in a data 

structure 

4) sort the metropolitan areas in descending order by change in price 

5) return the name of the metropolitan area with the highest increase in normalized price and its 

change in price 

To answer the third research question, the following algorithm was used: 

Algorithm 3 

1) for each metropolitan area in the dataset 

a) normalize the prices by dividing each price by the maximum price for its metropolitan 

area over the entire timespan of the dataset 

b) change in price = final price - initial price 

c) store the name of the metropolitan area and the change in its normalized price in a data 

structure 

2) sort the metropolitan areas in descending order by change in price 

3) define two variables to store the increase in normalized price for the two user-specified 

metropolitan areas 

4) iterate through the sorted list of metropolitan areas, updating each metropolitan area’s price 

variable 

5) choose the metropolitan area that had the highest increase in normalized price over the entire 

timespan of the dataset 

6) print the names and the respective increases in normalized price for the two metropolitan 

areas 

To compute the shortest time interval for the median price of a single-family home to 

double, the following algorithm was used: 

Algorithm 4 

1) find the minimum monthly price for a user-specified metropolitan area 

2) iterate through the succeeding columns until a price greater than or equal to twice the 

minimum price is found 

3) count the number of months that occurred between these two price points 

4) divide the number of months by 12 to obtain the doubling time in years 

round the doubling time in years to the desired precision 

 

There is also a geospatial component to this analysis because the state and region in 

which each metropolitan area is located were considered when assessing appreciation rates. 
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In this analysis, the doubling time was rounded to the nearest tenth and the results were 

displayed in Map 1. 

 

Map 1. The 120 Largest U.S. Metropolitan Areas Grouped by the Time to Double   

 

Generated with Leaflet.js[4] 

Legend 

Green: Metropolitan areas where the prices doubled in 0 to 10 years. 

Yellow: Metropolitan areas where the prices doubled in 10 to 20 years. 

Black: Metropolitan areas where the prices doubled in 20 to 30 years. 

Gray: Metropolitan areas where the prices did not double during the 

years for which there is data available. 

 

This map shows the largest 120 U.S. metropolitan areas by population grouped by the time for the normalized 

median price of a single-family home in that metropolitan area to double. The metropolitan areas denoted by the 

green dollar sign icon doubled in price the fastest, and the metropolitan areas denoted by the black dollar sign icon 

doubled in price the slowest. 
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Doubling times varied widely between states and within certain states. Among the 120 

most populous metropolitan areas in the dataset, the shortest doubling time was San Jose, CA 

(4.5 years). The longest doubling time was undefined because there were some metropolitan 

areas (e.g. Chicago, IL and Cleveland, OH) that did not double in price during the 25 years that 

are recorded in the dataset, though prices in these metropolitan areas did generally increase. 

To answer the fifth research question, the following algorithm was used: 

Algorithm 5 

1) compute the derivative of normalized price with respect to time for each year in the dataset 

for a user-specified metropolitan area 

2) compute the median derivative for that metropolitan area over the past 24 years 

3) If the derivative of price with respect to in 2021 was more than 20% above the median 

derivative for that metropolitan area over the past 24 years, then the next year was predicted 

to be a good (above average) year for price increases in that metropolitan area. 

4) If the derivative of price with respect to time in 2021 was more than 20% below the median 

derivative for that metropolitan area over the past 24 years, then the next year was predicted 

to be a poor (below average) year for price increases in that metropolitan area. 

5) If the derivative of price with respect to time in 2021 was between 80% and 120% of the 

median derivative for that metropolitan area over the past 24 years, then the next year was 

predicted to be a fair (average) year for price increases in that metropolitan area. 

Algorithm 6 

1) Assign the states to regions 

2) For each state, take the metropolitan area with the highest median price and the lowest 

median price and compare them to the metropolitan area to the highest and lowest median 

price respectively in every other state in that region. 

 

By studying these derivatives, the 2008-2009 housing crash can be clearly seen in 

metropolitan areas across the country. 

For example, in Las Vegas, NV, the derivative of normalized price w.r.t time was negative 

from 2007 to 2011, and the median price of single-family homes was decreasing in Las Vegas 

during this time. This sharp decrease in median home prices had long-lasting effects on the 
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residential real estate market in Las Vegas. The median price of a single-family in the 

metropolitan area did not reach its pre-crash high of $370,412 again until July 2021. It took 

approximately 15 years for real estate prices to recover in Las Vegas. 

To ascertain whether there was any correlation between political representation and the 

rate at which residential housing prices increased in the 120 largest U.S. metropolitan areas, the 

party affiliation of the U.S. senators that represented these metropolitan areas’ states during the 

periods in which the median price of a single-family home doubled were determined. The 

median price of single-family homes in metropolitan areas on the East and West Coasts of the 

U.S. tended to double faster than those in the interior of the country. 

 

Map 2. The 120 Largest U.S. Metropolitan Areas Grouped by Their Senate Representation 

 

Generated with Leaflet.js[4] 

Legend 

Red: Metropolitan areas that are located in a state that was represented by two Republican 

senators during the years in which the prices in that metropolitan area doubled. 
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Blue: Metropolitan areas that are located in a state that was represented by two Democratic 

senators during the years in which the prices in that metropolitan area doubled. 

Purple: Metropolitan areas that are located in a state that was represented by one Republican and 

one Democratic senator during the years in which the prices in that metropolitan area doubled. 

 

This map shows the largest 120 U.S. metropolitan areas by population grouped by the political affiliation of their 

state’s U.S. Senate delegation. Red means two Republican senators, blue means two Democratic senators, and 

purple means one Republican senator and one Democratic senator. 

 

The coastal metropolitan areas are more likely to support Democratic political candidates 

in Senate races as shown in Map 2, but correlation does not prove causation and other factors 

could be at play (e.g. education, income level, immigration, and local industries). The average 

doubling time of the metropolitan areas and their Senate representation during that time is shown 

in Table 1. 

 

Table 1. Average Doubling Time of the Metropolitan Areas by Political Party of their 

Senate Representation 

Political Representation in the U.S. Senate Average Doubling Time in Years 

Two Democratic senators 11.2 

Two Republican senators 20.7 

One Democratic and one Republican senator 7.7 

 

This table shows the average time for the normalized median price of a single-family home to double in the 120 

largest U.S. metropolitan areas compared to the political affiliation of their Senate representation. 
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Interestingly, the average doubling time of the metropolitan areas represented by 

Democratic and Republican senators (7.7) was lower than either the average doubling time of the 

metropolitan areas represented by Democratic senators (11.2 years), or the metropolitan areas 

represented by Republican senators (20.7 years). 

To answer the question, “Is there a statistically significant correlation between doubling 

time and the population size of the metropolitan area, i.e. do smaller metropolitan areas double in 

price faster than larger ones?” the correlation between population size and doubling time was 

computed. The metropolitan areas are sorted by population size on Map 3. 

 

Map 3. The 120 Largest U.S. Metropolitan Areas Grouped by Population 

 

Generated with Leaflet.js [4] 

Legend 

Black: Metropolitan areas in the 1 to 40 largest U.S. metropolitan areas by population. 

Dark Blue: Metropolitan areas in the 40 to 80 largest U.S. metropolitan areas by population. 

Light Blue: Metropolitan areas in the 80 to 120 largest U.S. metropolitan areas by population. 
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This map shows the largest 120 U.S. metropolitan areas by population grouped by the population 

size of the metropolitan area.  The metropolitan areas denoted by the black dollar sign icon were 

the most populous, and the metropolitan areas denoted by the light blue dollar sign icon were the 

least populous. 

To compute the correlation between population size and doubling time, first a subset of 

the 120 most populous metropolitan areas was taken and plotted on a map. In the dataset, the 

metropolitan areas are sorted in decreasing order of population size. The most populous 

metropolitan area in the top 120 was New York, NY with a population of 20.1 million in its 

metropolitan area and size_rank 1 (U.S. Census Bureau, 2022). The least populous metropolitan 

area in the top 120 was Huntsville, AL with a population of 200,574 and size_rank 121 (U.S. 

Census Bureau, 2022). The population of each metropolitan area was not included in the dataset; 

therefore, the variable size_rank (relative metropolitan area size based on population) was used 

as a proxy for population. For the correlation calculation, the independent variable was size_rank 

and the dependent variable was doubling time. The Pearson correlation coefficient between 

size_rank and doubling time was 0.11. This means that the size_rank of the metropolitan area 

was not correlated with the doubling time of the metropolitan area, hence smaller metropolitan 

areas did not double in price faster than larger ones. 

Next, the eighth research question, “What is the regional distribution of the metropolitan 

areas that doubled in price, e.g. did metropolitan areas on the East and West Coasts of the United 

States double in price faster than metropolitan areas in the interior of the country?” was 

investigated. Seventy-six percent of the metropolitan areas where the median price of a single-

family home doubled in less than 10 years were located in a state that borders either the Atlantic 

Ocean or the Pacific Ocean.  
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The metropolitan areas that did not follow this pattern were Boise City, ID (7.2 years); 

Phoenix, AZ (9.3 years); Tucson, AZ (9.7 years); Minneapolis-St. Paul, MN (8.1 years); New 

Orleans, LA (9.6 years); Detroit, MI (7.9 years); Flint, MI (9.1 years); and Lansing, MI (8.7 

years). With the exception of New Orleans, LA, these metropolitan areas are all located inland, 

i.e. not in a coastal state. 

Some of the metropolitan areas with sub-10-year doubling times may be outliers. For 

example, New Orleans is the only metropolitan area on the Gulf Coast of the United States that 

had a doubling time of less than 10 years. In New Orleans the doubling time ran from January 

1996 to August 2005. Detroit, MI; Flint, MI; and Lansing, MI may also be outliers because the 

metropolitan areas nearby them had doubling times that were twice as long as these three 

metropolitan areas in Michigan did. 

Metropolitan areas in the interior of the country had longer times than metropolitan areas 

on the coasts. Only 24 percent of metropolitan areas that had a doubling time of less than 10 

years were located in non-coastal states. The average doubling time of metropolitan areas in 

these states was 13.8 years. 

Based on the analysis that was performed, several important patterns can be identified. 

There was a sharp and continued decrease in the median price of single-family homes in many 

metropolitan areas across the United States in the period 2008-2009. Metropolitan areas in states 

that bordered the Atlantic Ocean or the Pacific Ocean were significantly more likely to double in 

price than metropolitan areas in non-coastal states. Doubling times varied widely between states 

and within certain states. Metropolitan areas that were represented by two Democratic senators 

or one Republican senator and one Democratic senator doubled much faster on average than 
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metropolitan areas that were represented by two Republican senators. The size_rank of a 

metropolitan area was not correlated with its doubling time. 

To understand how the rate of appreciation or depreciation in each real estate market 

changes over time, the first and second derivatives of price with respect to (w.r.t) time were 

calculated and compared. The first derivative shows whether the prices are increasing or 

decreasing. It gives the slope of the price function. The second derivative shows whether the 

change in price is accelerating or decelerating. The second derivative also gives the concavity of 

the price function. May and Bart explain, “[A] graph is concave up if the line between two points 

is above the graph, or alternatively if the first derivative is increasing…[A] graph is concave 

down if the line between two points is below the graph, or alternatively if the first derivative is 

decreasing. In determining [whether] a curve is concave up or concave down, we want to take 

the second derivative of a function, or the derivative of the derivative.” (May & Bart, 2022) The 

first and second derivatives for different metropolitan areas in the dataset were analyzed. The 

following graphs show the first and second derivatives of normalized price with respect to time 

for select metropolitan areas. 
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Figure 2. Graph of the First Derivative for Denver, CO 

 

This graph shows the first derivative of the normalized median price of a single-family home in Denver, CO from 

January 31, 1996 to August 31, 2021. The derivative reached its lowest point in 2008, and it reached its highest 

point in 2021. Single-family homes in Denver were depreciating in 2007.  

 

Figure 3. Graph of the Second Derivative for Denver, CO 
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This graph shows the second derivative of the normalized median price of a single-family home in Denver, CO from 

January 31, 1996 to August 31, 2021. The second derivative changed more abruptly than the first derivative at its 

local maxima and minima. This is reflected in the fact that the normalized price is still increasing, albeit at slower 

rate, when the first derivative is positive and the second derivative is negative.   
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Figure 4. Graph of the First Derivative for Miami, FL 

 

This graph shows the first derivative of the normalized median price of a single-family home in Miami, FL from 

January 31, 1996 to August 31, 2021. “A housing bubble, or real estate bubble,” has been defined as,” a run-up in 

housing prices fueled by demand, speculation, and exuberant spending to the point of collapse.” (Investopedia Team, 

2020, December 25). The characteristic “V-shape” in the graph is typical of real estate markets that experienced a 

housing price bubble followed by a housing price crash. 
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Figure 5. Graph of the Second Derivative for Miami, FL 

 

This graph shows the second derivative of the normalized median price of a single-family home in Miami, FL from 

January 31, 1996 to August 31, 2021. The graph of the second derivative for this metropolitan area is similar to the 

graph of the first derivative, but it is more staggered even in the recovery phase (the years 2010-2020). 
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Figure 6. Graph of the First Derivative for Austin, TX 

 

This graph shows the first derivative of the normalized median price of a single-family home in Austin, TX from 

January 31, 1996 to August 31, 2021. The graph of the first derivative for Austin, TX is more stable than the graph 

of the first derivative for Miami, FL during the same time, but there is a rapid increase in the normalized median 

price from 2020-2021. This may indicate that a housing bubble was forming in this metropolitan area. 
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Figure 7. Graph of the Second Derivative for Austin, TX 

 

This graph shows the second derivative of the normalized median price of a single-family home in Austin, TX from 

January 31, 1996 to August 31, 2021. From 2018 to 2020, the normalized median price of a single-family home was 

increasing at an increasing rate in Austin, TX. This provides further evidence that a housing bubble was forming in 

this metropolitan area at that time. 
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In all the metropolitan areas displayed, there was a sharp decrease in housing prices 

during the 2008-2009 recession, also known as the “Great Recession.” For a while, the median 

price of a single-family home in cyclical markets such as Miami, FL was in “free fall” that is, the 

price was decreasing at an increasing rate. This can be determined from those points in the 

dataset at which the first derivative of price with respect to time is negative and the second 

derivative of price with respect to time is positive. 

Coastal states were defined as U.S. states that bordered either the Atlantic or the Pacific 

Ocean. Non-coastal states were defined as U.S. states that did not border the Atlantic nor the 

Pacific Ocean. It was observed that the median price of single-family homes grew faster in 

coastal states than in non-coastal states. 

Algorithm 9. 

“A housing bubble, or real estate bubble,” has been defined as,” a run-up in housing 

prices fueled by demand, speculation, and exuberant spending to the point of collapse.” 

(Investopedia Team, 2020, December 25). To identify when a real estate bubble occurred in a 

particular region and answer the ninth and tenth research questions, the first and second 

derivatives were computed for the metropolitan areas in the real estate dataset in order to 

determine the appreciation rate, or the increase in normalized median price in each metropolitan 

area. The following thresholds were tested for the increase in normalized median price: 10%, 

20%, and 25%, and the error ratio was computed for each threshold. If the real estate prices in a 

metropolitan area grew as fast as predicted based on the derivative from the previous year(s), 

then the prediction was considered to be correct. If the real estate prices in a metropolitan area 

grew much slower or much faster than predicted based on the derivative from the previous 

year(s), then the prediction was considered to be incorrect. Error ratio is defined as the number of 
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incorrect predictions divided by the total number of predictions. The results of this portion of the 

analysis are displayed in Table 2. 

 

Table 2. Error Ratios for Different Increase in Median Price Threshold Values 

Threshold Error Ratio 

10% 47.0% 

20% 50.3% 

25% 52.9% 

 

A bubble year was defined as a one-year period in which the following two conditions 

were met: the derivative of normalized price with respect to time in that year was greater than or 

equal to 120% of the median derivative of normalized price with respect to time in that 

metropolitan area over the entire 20-year span, and the first and second derivatives were positive. 

This means that the normalized median price was increasing at an increasing rate. Bubbles may 

begin or end at any time and may last for more or less than one year (12 months), but one year 

was a standard measure of time that could be used to compare growth rates in different 

metropolitan areas within a given region. These indicators were highly correlated with the 

appearance of real estate bubbles. For example, in the West Coast region, Los Angeles-Long 

Beach-Anaheim, CA; Riverside, CA; Sacramento, CA; Las Vegas, NV; Reno, NV; and Tucson, 

AZ all experienced a housing bubble from 2003 to 2005, as shown in Map 4. 
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Map 4. The Housing Bubble in California, Arizona, and Nevada in the early 2000s 

 

The median price of a single-family home doubled in less than 10 years in the metropolitan areas depicted in green. 

It should be noted that the bubble may have begun prior to 2003 or ended after 2005 in 

specific metropolitan areas. Because the real estate data was reported monthly, it was not 

possible to determine the exact start and end dates of the bubble. Nearby metropolitan areas (e.g. 

Phoenix, AZ, San Diego, CA) also experienced a housing bubble at approximately the same time 

(+/- 1 year). Therefore, it is concluded that there was a housing bubble in the states of California, 

Arizona, and Nevada in the early-to-mid 2000s. 
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A similar pattern was seen in Florida from 2001 to 2006. The conditions for a bubble year 

were met in most large metropolitan areas in Florida in the first half of the 2000s as shown in 

Map 5. The bubble there usually lasted from 3 to 5 years. 

 

Map 5. The Housing Bubble in Florida in the early 2000s 

 

Housing bubbles occurred in Daytona Beach, Fort Myers, Jacksonville, Melbourne, Miami-Fort Lauderdale, North 

Port-Sarasota-Bradenton, Orlando, Port St. Lucie, and Tampa, FL in the first half of the 2000s. Pensacola, FL was 

an outlier. Housing prices there doubled more slowly than they did in peninsular Florida. 

 

Of particular interest were the metropolitan areas in central Florida. This region 

experienced a sustained housing bubble from 2001 to 2005 as shown in Map 6. 
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Map 6. The Housing Bubble in Central Florida from 2001 to 2005 

 

There was a housing bubble in Fort Myers, Melbourne, North Port-Sarasota-Bradenton, Port St. Lucie, and Tampa, 

FL from 2001 to 2005. Lakeland, FL also experienced a housing bubble, but it did not last from 2001 to 2005. 

 

Discussion 

Real estate markets are first and foremost local to a specific metropolitan area and county, 

but they are also affected by national and regional trends. For example, the real estate bubble in 

the early-to-mid 2000s affected many metropolitan areas in the West Coast and Florida. This is 

an example of regional trends in the real estate market.  

An asset price bubble may occur in any market: residential real estate, commercial real 

estate, stocks and bonds, precious metals, etc. For example, an asset price bubble that occurs on a 
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national stock market or publicly traded exchange will take the form of a stock price bubble 

(a.k.a. stock market bubble). The characteristics and drivers of such a bubble are often the same 

as the characteristics and drivers of a real estate bubble (e.g. speculation drives up the price of 

the asset rapidly). 

In the DJIA dataset, each row is a trading day. The columns represent the features: the 

opening price that day, the highest price that day, the lowest price that day, the closing price that 

day, the adjusted closing price that day, and the trading volume that day. Ganti observes that the 

difference between the closing price and the adjusted closing price is, “The adjusted closing price 

amends a stock's closing price to reflect that stock's value after accounting for any corporate 

actions.” (Ganti, 2020). For this analysis, the raw closing price was used for calculating 

derivatives. This raw closing price over time is shown in Figure 8. 
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Figure 8. Graph of the Daily Closing Price of the Dow Jones Industrial Average 

 

This figure shows the closing prices (in points) of the Dow Jones Industrial Average (DJIA) from December 31, 

1999 to February 11, 2022. 

 

Asset price bubbles can be detected by derivative-based analysis in the Dow Jones 

Industrial Average dataset. To identify when the Dow Jones Industrial Average experienced a 

stock price bubble, the first and second derivatives of closing price with respect to time and the 

annual percentage change in the DJIA were computed and compared (Kenton, 2022). The 

median derivative for the closing price with respect to time was also computed and a threshold of 

120% was set, that is, if the derivative of closing price with respect to time was greater than or 
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equal to 120% of the median derivative of closing price with respect to time across the entire 21-

year timeframe, then it was considered a bubble year. The median of the first derivative of price 

with respect to time was 5.22. The median of the second derivative of price with respect to time 

was 1.93. The only year in which the first derivative was greater than or equal to 120% of the 

median derivative was 2022. However, this is likely due to the incomplete data available in the 

dataset concerning the performance of the DJIA in 2022. The dataset only contains data about the 

closing price for the DJIA from January 3rd through February 11th, 2022. Also, the DJIA was 

close to its all-time high of $36,799.65 during this period. It is likely that if data concerning the 

performance of the DJIA for the rest of 2022 was included, the first derivative for 2022 would 

not be greater than or equal to 120% of the median derivative for the 2000-2022 timeframe. 

Derivative-based analysis, with a threshold of 20% as used in this study, was better at detecting 

asset price bubbles in the real estate market than in the stock market. But this may be due to the 

incompleteness of the stock market data provided rather than an inherent weakness in the 

algorithm itself. 

When a large asset price bubble bursts, it sends shockwaves throughout the U.S. economy. 

But the observed pattern in all three of the economic/financial datasets has been a general 

upward trend. That is, as time passes (t increases), real estate prices usually increase, stock prices 

usually increase, and the price of goods and services usually increase. However, it is not a 

smooth linear increase because real estate and stock prices have also seen temporary, and 

sometimes sharp, decreases in value, e.g. the 2008-2009 financial crisis and recession. 

 



 

39 

 

Part III: Other Methods for Performing Time Series Analysis 

As shown in Part I, other methods have been proposed for multivariate time series data analysis 

and prediction. 

As Ferenti explains, “The methods of time series analysis can be very broadly divided 

into two categories: time-domain and frequency-domain methods. Frequency-domain methods 

are based on converting the time series, classically using Fourier transform, to a form where the 

time series is represented as the weighted sum of sinusoids… The vast majority of time series 

analyses, however, apply time-domain methods.” (Ferenti, 2017) 

 

Eq. 3. Fourier Transform formula [5] 

Autocorrelation, cross-correlation, and regression analysis are time domain methods. 

Two types of regression analysis that are frequently employed on time series data are support 

vector machines and neural networks. 

In this section, these machine learning representations will be explained at a high-level 

and a prospective approach for how they may be applied to the real estate dataset, the DJIA 

dataset, and the inflation dataset will be described. Support vector machines are frequently used 

for classification, but their use for regression has also been well-documented (Bishop, 2006; 

Ristanoski et al., 2013). A neural network of two or more layers can approximate any function, 

and this machine learning representation is frequently used for regression tasks also. 
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Support Vector Machine 

In Support Vector Machine regression, a support vector machine is trained by showing it 

examples of the data that it is supposed to perform regression on (see Figure 9). 

 

Figure 9. High-level Concept of a Support Vector Machine (SVM) 

 

Image Credit: Gaurav Chauhan (Chauhan, 2021) https://machinelearninghd.com/sklearn-svm-starter-guide/ 

 

For the economic/financial datasets, this data would be the median price of a single-

family home in the 911 largest U.S. metropolitan areas from 1996 to 2021 and the closing prices 

of the Dow Jones Industrial Average from 2000 to 2021. A support vector machine can be trained 

on these datasets and used to perform regression analysis on them. Support vector machines are 

resistant to outliers because “the model produced by Support Vector Regression depends only on 

a subset of the training data, because the cost function ignores samples whose prediction is close 

to their target,” according to the scikit-learn documentation (Pedregosa et al., 2011).  

https://machinelearninghd.com/sklearn-svm-starter-guide/
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The data about real estate prices and stock prices may be partitioned according to an 80-

10-10 split between the training set, the test set, and the validation set. Lazzeri said, “data 

scientists usually transform their time series data sets into a supervised learning [problem] by 

exploiting previous time steps and using them as input and then leveraging the next time step as 

output of the model.” (Lazzeri, 2020). The svm.SVR module from scikit-learn may be used to 

make predictions about future real estate and stock prices (Pedregosa et al., 2011). 

 

Neural Network 

Neural networks can be used to perform nonlinear regression on a dataset. The same data 

would be used to train the neural network that was used to train the support vector machine, 

although the preprocessing steps might differ slightly. The use of neural networks for time series 

analysis has been well-documented (Katarya & Rastogi, S., 2018; Shterev, Metchkarski, N.S., & 

Koparanov, K.A., 2022; Ghanbari & Borna 2021; Li, L., Huang, S., Ouyang, Z., & Li, N. 2022; 

Kasfi, K. T., Hellicar, A., & Rahman, A., 2016). According to Lazzeri, the first step in using a 

neural network on time series data is to “reframe [the] time series forecasting problem as a 

supervised learning problem.” (Lazzeri, 2020). Most neural network representations are designed 

to work on supervised learning problems. 

In a neural network there is an input layer, one or more hidden layers, and an output layer 

as shown in Figure 10. 
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Figure 10. A Feed-forward Neural Network 

 

Image Credit: Gaurav Chauhan (Chauhan, 2021) https://machinelearninghd.com/sklearn-svm-starter-guide/ 

 

“Neural networks learn by adjusting the weights,” (Kamangar, F., personal 

communication, September 2020). TensorFlow is a framework for training neural network 

machine learning models. It is based on the concept of a computational graph. Goodfellow et al. 

said, “In the general case, an array of numbers arranged on a regular grid with a variable number 

of axes is known as a tensor” (Goodfellow et al., 2016). TensorFlow performs automatic 

numerical differentiation by backpropagating partial derivatives of tensors through a 

computational graph. Keras is an easy-to-use API for TensorFlow. These tools may be used to 

build neural networks quickly and efficiently. 

Two important neural network architectures for regression problems are feed-forward 

neural networks and long-short term memory (LSTM) neural networks, which are a type of 

recurrent neural networks (RNN). Russell and Norvig contrast the two architectures as follows: 

https://machinelearninghd.com/sklearn-svm-starter-guide/
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A feed-forward network has connections only in one direction--that is, it forms a 

directed acyclic graph. Every node receives input from “upstream” nodes and delivers 

output to “downstream” nodes; there are no loops. A feed-forward network represents a 

function of its current input; thus, it has no internal state other than the weights 

themselves. A recurrent network, on the other hand, feeds its outputs back into its own 

inputs. This means that the activation levels of the network form a dynamical system that 

may reach a stable state or exhibit oscillations or even chaotic behavior. Moreover, the 

response to the network to a given input depends on its initial state, which may depend on 

previous inputs. Hence, recurrent networks (unlike feed-forward networks) can support 

short-term memory.” (Russell & Norvig, 2009). 

 

Figure 11. Long Term Short Term Memory (LSTM) Architecture

 

Image Credit: Christopher Olah (2015, August 27). http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

 

It is proposed to train a LSTM neural network using TensorFlow and Keras to perform 

nonlinear regression on the real estate and stock price datasets and the performance be compared 

to that of the support vector machine using the R2-score as the quantitative measure of 

performance.  

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Part IV: Time Series Forecasting 

Often, time series analysis is performed with the intent of predicting future values that the 

time series may take, which is called time series forecasting. Baheti & Toshniwal remark, 

“Identifying potential trends in time series is important because it imparts knowledge about what 

has taken place in the past and what will take place in time to come.” (Baheti & Toshniwal, 

2014). Some of the applications of time series forecasting were discussed in Part I. Now the 

methods used to perform such forecasting will be discussed in more detail. 

As Lazzeri observes, “[T]here are four main categories of components in time series 

analysis: long-term movement or trend, seasonal short-term movements, cyclical short-term 

movements, and random or irregular fluctuations.” (Lazzeri, 2020) It has been shown that the 

real estate dataset and the DJIA dataset both demonstrate an upward trend. This was observed in 

each of the datasets individually as well as across the approximately 21 years in which they 

overlap. An example of seasonal short-term movements would be homebuyers buying fewer new 

homes in the winter and prices decreasing during the winter months (December, January, 

February) because of decreased demand. More specialized techniques for time series analysis 

might be able to detect this phenomenon in the real estate dataset, but it was not seen via the 

derivative-based analysis in this study because the level of granularity was annual rather than 

monthly. Cyclical short-term movements could be the periodic ups and downs in the closing 

price of the DJIA. Over long timescales (several years or more) these short-term fluctuations 

average out. But they are significant to day traders and financial commentators. Random 

fluctuations could be considered noise in the data. Preprocessing was performed on the datasets 

to remove missing values and incomplete rows. Potential sources of noise and specific de-

noising algorithms are beyond the scope of this study. 
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Part V: Conclusion 

Time series analysis and forecasting are important to a wide range of fields across science, 

industry, technology, politics, economics, and the environment. The methods of time series 

analysis are diverse and multifaceted. By comparing the derivatives of time series data, 

researchers can ascertain whether a particular feature (e.g. the price of an asset) is increasing or 

decreasing in value and the rate at which this change is occurring. But the most valuable insights 

come as data is aggregated over many experimental units and over a long period of time. Then a 

general trend in the data points usually emerges. For example, when the economic datasets were 

analyzed using derivative-based analysis it was observed that the closing price of the Dow Jones 

Industrial Average increased from $11.497.12 on Dec 31, 1999 to $34,738.06 on February 11, 

2022. The inflation rate, as measured by the Consumer Price Index fluctuated from a low of 

2.7% in December 1999 to a high of 8.5% in March 2022. Therefore, there was a general upward 

trend in the economic datasets. 

Another insight that came out of this study was the importance of normalizing the data 

prior to performing computations and detailed analysis on it. Normalization is very important 

when the range of values of the variable of interest in a dataset is large. It permits apples-to-

apples comparisons of values in a dataset. 

Many representations, methods, and algorithms were researched during the course of this 

study. Some of them work better on time series data than others do. Sometimes modifying the 

structure of a representation can significantly improve its performance on time series data. For 

example, LSTMs have been shown to outperform feed-forward neural networks because the 

former take into the account the temporal component of the data (Lazzeri, 2020). 
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Derivative-based analysis was chosen for this study because it was simple to implement, 

easy to explain, and did not require time-consuming training iterations, massive amounts of 

training data, nor powerful GPUs. When data is aggregated over many experimental units and 

over a long period of time, a general trend in the data points usually emerges. Derivative-based 

analysis works well for identifying trends in the data and inflection points in the functions that 

model that data. For example, when the first and second derivatives change from being positive 

to negative, it may indicate that a market correction is imminent. However, derivative-based 

analysis is primarily a tool for understanding the past and identifying patterns in data, rather than 

forecasting the future, as it has limited predictive power. It was easier for the program that 

computed the first and second derivatives to detect when a bubble had occurred, than it was for it 

to predict when the next bubble would occur or how long it would last. Nevertheless, derivative-

based analysis is an important and useful tool that data scientists and machine learning 

practitioners can use to provide new insights into time series data.  In the future, this method 

could be added on to ML algorithms or incorporated as a library function in one of the popular 

machine learning libraries for Python. Derivative-based analysis may be used as an early-stage 

exploratory analysis tool to assist ML engineers in understanding their data and choosing more 

specific forecasting methods (e.g.) LSTMs, ARIMA, or regression algorithms.   
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Footnotes 

[1] Index Component Weights of Stocks in the Dow Jones Industrial Average 

indexArb https://indexarb.com/indexComponentWtsDJ.html 

Accessed 2022, November 19. Copyright 2000-2022 Ergo Inc. All Rights Reserved Worldwide. 

Dow JonesSM and Dow Jones Industrial AverageSM are famous, well-known, and internationally 

recognized trademarks of Dow Jones & Company, Inc. and have been licensed for use by Ergo 

Inc. 

[2] Weisstein, 2022, “L^1-Norm” 

[3] Weisstein, 2022, “L^1-Norm” 

[4] https://leafletjs.com/examples/custom-icons/ 

[5] Weisstein, 2022, “Fourier Transform” 
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Appendix I: M.S. Thesis Defense PowerPoint Slides 

Slide 1 

 

Data Discovery Analysis on 
Complex Time Series Data
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Slide 2 

 

Introduction

Image Credit: Plumplot.co.uk [9]

2

 

 

-> Complex time series are a ubiquitous form of data in the modern world. They have 
wide application across many different fields of scientific inquiry and business endeavor. -> 
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Slide 3 

 

Applications of Time Series

• weather patterns

• climate change

• voting patterns

• computer network traffic

• healthcare data

• demographics

3

 

 

Time series are used to understand and forecast -> weather patterns, -> climate change, 
-> voting patterns, -> computer network traffic, -> population health outcomes, -> demographic 
changes -> 
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Slide 4 

 

Applications of Time Series

• scientific observations

• economic data

4

 

 

-> the results of scientific experiments, and -> the performance of stocks and mutual 
funds. But time series can be difficult to analyze by conventional methods when the data is 
multivariate, incomplete, or in different formats. To address these issues, an investigation of 
several multivariate time series datasets was performed using the methods of automatic data 
discovery and derivative-based analysis. Interactive maps were constructed which displayed the 
results of the study. Conclusions were drawn and discussed, and an explanation was given of 
how this method can be applied to other multivariate time series datasets and real-world 
problems. -> 
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Slide 5 

 

Applications of Time 
Series: Weather 
forecasting

• Input: measurements of 
temperature, precipitation, humidity, 
air pressure, etc

• Processing: NOAA supercomputers

• Output: detailed weather forecasts

NOAA supercomputers used for weather forecasting

Image Credit: NOAA/NOAA News September 8, 2009 [1] 5

 

 

-> This atmospheric data constitutes time series. -> These time series are aggregated and 
fed as input to supercomputers run by the National Oceanic and Atmospheric Administration 
(NOAA), a division of the U.S. Department of Commerce. -> These supercomputers generate 
weather forecasts, but accurate weather forecasts are more than just a convenience.  
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Applications of Time 
Series: Weather 
forecasting

Significance of Accurate 
Forecasts

• Hurricane Ian and Hurricane Nicole 
devastated Florida in 2022

• Thousands of lives were saved because 
the National Weather Service accurately 
predicted the paths of the storms and 
residents in the affected areas evacuated

Hurricane Ian in 2022

Image Credit: NOAA Geostationary Operational Environmental Satellites (GOES) [2] 6

 

 

-> Each year, the United States averages some 10,000 thunderstorms, 5,000 floods, 1,300 

tornadoes and -> 2 Atlantic hurricanes, as well as widespread droughts and wildfires. Weather, 

water and climate events, cause an average of approximately 650 deaths and $15 billion in 

damage per year, and are responsible for some -> 90 percent of all presidentially-declared 

disasters. About one-third of the U.S. economy – some $3 trillion – is sensitive to weather and 

climate. The scientific consensus is that extreme weather events such as these are growing in 
frequency and severity due to climate change. -> 
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Applications of Time Series: Climate change

• Scientists use time series analysis to 
understand the origin and evolution 
of climate change

Image credit: NASA/JPL-Caltech [3]

Global temperature anomaly from 1880 to 2015

• Earth’s global mean surface 
temperature can be modeled as a 
time series.

• This temperature has been rising 
since the 1930s.

7

 

 

-> -> Climate change can be modeled using time series - > 
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Applications of Time Series: Climate change

• This is due to the greenhouse effect.

Image Credit: U.S. Environmental Protection Agency [4]

• The atmospheric concentration of 
CO2 and other greenhouse gases 
(GHGs) can be modeled as a time 
series.

• Kremer et al. used a clustering 
technique to detect climate change 
in  multivariate time series data from 
hydrology, meteorology, and 
oceanography (Kremer et al., 2010).

8

 

 

-> As human beings pump carbon dioxide gas into the Earth’s atmosphere by burning 
fossil fuels, -> this carbon dioxide absorbs infrared radiation and re-emits it, -> warming the 
planet’s surface and increasing the global mean surface temperature. -> 
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Applications of Time Series: Climate change

• The water level has dropped 
dramatically since 1983

• It was constructed in 1935 as a 
reservoir for Hoover Dam 

Lake Mead in 2010
Image Credit: Cmpxchg8b. [5]

9

 

 

-> This is Lake Mead. -> It shows the visible effects of climate change. -> -> I went there 
when I was a child, and the water level was above the so-called “bathtub ring” of white 
mineralized -> rock around the shore of the lake. The water level in Lake Mead may be 
represented as a time series  
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Applications of Time Series: Climate change

Image Credit: U.S. Bureau of Reclamation [6] 10

 

 

This time series is shown here. -> 
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Applications of Time Series: Voting Patterns

• Time series analysis is also helpful in understanding voting patterns and how they change over time.

• The party affiliation of the winning candidate in successive elections forms a time series.

• By analyzing these time series for each congressional district, it can be determined which political party is 
favored in that district.

• This information is used to target campaign advertising and plan voter mobilization efforts

11
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Applications of Time Series: Network Traffic

• Time series analysis is used to model computer network traffic, congestion, and cyberattacks.

• By monitoring the number of packets traveling across a network node at predefined intervals, it can be 
determined whether the network is congested at that node and will ultimately slow down.

• An anomalous and sudden increase in traffic from a particular subnet or range of IP addresses may indicate a 
distributed denial of service (DDoS) attack on a particular server or Web site. 

• Time series help network security professionals detect and prepare for such cyberattacks.

12
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Applications of Time Series: Public Health 
Policy
• The number of cases of an infectious disease, the number of positive tests, and the number of deaths 

attributable to the disease over time are all important factors that may be represented as time series.

• State public health departments routinely publish datasets of COVID-19 cases, tests, and deaths.

• Models and analyses based on these time series datasets inform decisions on public health measures that 
are designed to reduce transmission and prevent the healthcare system from becoming overburdened.

• Timely, comprehensive data and accurate, high-quality analysis are prerequisites for sound and effective 
public health policy.

13
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Applications of Time Series: Economic Data

• Many kinds of economic data may also be represented as time series:

• Residential real estate prices in large U.S. metropolitan areas

• The price of the Dow Jones Industrial Average

• The Consumer Price Index (CPI)

14

 

 

For this analysis, I will focus on three types of economic data 
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The Real Estate Dataset

• The Zillow Single-Family Homes 
Time Series Metro & U.S. dataset 
describes the monthly sale price 
of single-family homes in the 
911 largest U.S. metropolitan 
areas from January 1996 to 
August 2021.

Image Credit: Sanjib Lemar

Single-family home

15

 

 

This data was collected by the real estate company Zillow and obtained from its website, 
zillow.com. A single-family home is a free-standing residential structure designed to be occupied 
by one group of biologically-related individuals. It is the preferred type of housing for most 
middle-class and upper-middle class families in the United States. 
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The Real 
Estate 
Dataset
There are five features 
in this dataset in 
addition to the monthly 
prices in the 
metropolitan areas:

• RegionID

• SizeRank

• RegionName

• RegionType

• StateName

16

 

 

-> -> RegionID is a unique identifier assigned to each metropolitan area. -> SizeRank is 
the relative population ranking of the metropolitan area in the dataset. -> RegionName is the 
name of the metropolitan area. A metropolitan area may consist of one city or multiple cities in 
the same geographical area. -> RegionType shows whether the data in that row is for the whole 
country or a single metropolitan statistical area (MSA). -> StateName is the name of the state 
where the metropolitan area is located. The median price of a single-family home in that 
metropolitan area each month is listed in the columns on the right. -> 
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About the DJIA
The Dow Jones Industrial Average (DJIA) is “a price-
weighted index that tracks 30 large…[publicly-traded] 
companies trading on the New York Stock Exchange and 
the Nasdaq…[and it] serve[s] as a proxy for the broader 
U.S. economy” (Ganti, 2022).

17

 

 

Here we see the current components of the Dow Jones Industrial Average and their 
weights in the index. The three largest components by weight are: UnitedHealth Group 
(10.11%), Goldman Sachs (7.42%), and Home Depot (6.28%). Dow Chemical is 1% of the index. 
These weights are assigned and regularly updated by Dow Jones and Company, Inc, which 
publishes the Dow Jones Industrial Average. 
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The DJIA dataset

There are seven features in this dataset:

• Date
• Open
• High
• Low
• Close*
• Adj Close**
• Volume

18

 

 

-> Date is the trading day on which this data was recorded. -> Open is the price of the 
DJIA at the opening of the stock exchange on that trading day. -> High is the highest price that it 
saw on that trading day. -> Low is the lowest price that it saw on that trading day. -> Close* is 
the price of the DJIA when the market closed, not accounting for any corporate actions, such as 
stock splits. -> Adjusted Close is the price after accounting for corporate actions. -> Volume is 
the number of shares traded that day. -> 
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The Inflation 
Dataset

• The Consumer Price Index 
dataset lists the inflation rate as 
measured by the Consumer Price 
Index (CPI) for each month from 
January 1996 to December 2021. 

Image Credit: Jernej Furman [8] 19

 

 

Inflation has hit record highs for the past two years and has become a major political 
issue. 
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The Consumer 
Price Index 
(CPI) Dataset

• The inflation rate is given as a 
percentage change in prices for each 
month in the dataset.

• The Monthly_Average column shows 
the average inflation rate for each year

20
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Research Questions

• “Given two metropolitan areas, which one had a greater increase in median price over the entire 24-year period?”

• “In a given metropolitan area, how many years will it take for the median price for a single-family home to double?”

• “Given the price data for a metropolitan area for 2021, will prices in that metropolitan area rise or fall in the next year?”

21

 

 

Several research questions were posed for this analysis, but I will focus on the last three. 
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Research Questions (cont.)

• “Is there a relationship between doubling time and the political party affiliation of the senators that represented the metropolitan 

areas and their respective states during the years in which the median price of a single-family home doubled?”

• “Is there a statistically significant correlation between doubling time and the population size of the metropolitan area, i.e. do 

smaller metropolitan areas double in price faster than larger ones?”

• “What is the regional distribution of the metropolitan areas that doubled in price, e.g. did metropolitan areas on the East and 

West Coasts of the United States double in price faster than metropolitan areas in the interior of the country?”

• “Can it be determined from the available data when there is a housing price bubble in a particular metropolitan area or region?”

• “How can a housing price bubble be defined mathematically?”

22

 

 

These three questions are important because they give insight into the regional trends 
that were occurring in the U.S. residential housing market at that time. Each method I tested 
made a unique contribution to the overall analysis. First, I implemented the following 
algorithms to answer the specific questions, and these gave me insight into the general trends. 
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Features from the Real Estate Dataset

• time

• median price

• normalized median price

• state

• region

23

 

 

These features were chosen to compare metropolitan areas from the real estate dataset 
because they were the most informative. Normalized median price and region are derived 
features. 
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Development of Methods and Algorithms

24

 

 

In order to answer the research questions, several methods and algorithms were 
developed.  
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Development of Methods and Algorithms

Algorithm 1

1) partition the dataset into user-specified equal length time periods

2) For a user-defined period

a) normalize the prices by dividing each price by the maximum price for its metropolitan area over the specified 

timespan

b) change in price = final price - initial price

c) store the name of the metropolitan area and the change in its normalized price in a data structure

3) sort the metropolitan areas in descending order by change in price

4) print the user-specified number of metropolitan areas and their respective increases in normalized price

25

 

 

-> In order to determine which metropolitan areas appreciated the fastest in a given 
time period, the following algorithm was developed. -> I partitioned the dataset into time 
periods. -> I normalized the prices in each time period. -> I computed the change in price -> I 
sorted the metropolitan areas by the change in price. -> And I printed the results for the user. -> 
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Development of Methods and Algorithms

Algorithm 2

1) set a user-defined threshold for the maximum initial starting price 

2) filter the dataset based on the threshold

3) for each metropolitan area under the threshold

a) normalize the prices by dividing each price by the maximum price for its metropolitan area over the entire timespan 

of the dataset

b) change in price = final price - initial price

c) store the name of the metropolitan area and the change in its normalized price in a data structure

4) sort the metropolitan areas in descending order by change in price

5) return the name of the metropolitan area with the highest increase in normalized price and its change in price

26

 

 

-> To find which city offered the best return on investment over the timespan of the real 
estate dataset, -> I filtered the cities based on the desired investment amount. -> I normalized 
the prices. -> I computed the change in price -> I sorted the metropolitan areas, by the change 
in price. -> And I printed the results to the user. -> 
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Development of Methods and Algorithms

Algorithm 3

1) for each metropolitan area in the dataset

a) normalize the prices by dividing each price by the maximum price for its metropolitan area over the entire timespan 

of the dataset

b) change in price = final price - initial price

c) store the name of the metropolitan area and the change in its normalized price in a data structure

2) sort the metropolitan areas in descending order by change in price

3) define two variables to store the increase in normalized price for the two user-specified metropolitan areas

4) iterate through the sorted list of metropolitan areas, updating each metropolitan area’s price variable

5) choose the metropolitan area that had the highest increase in normalized price over the entire timespan of the dataset

6) return the names and the respective increases in normalized price for the two metropolitan areas

27

 

 

In order to determine which of a PAIR of metropolitan areas had a greater increase in 
median price over the timespan of the dataset, a similar algorithm was used. The main 
difference in the two algorithms is that TWO variables were used to store the increase in 
normalized price the increases in normalized price for both metropolitan areas was returned. 
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Development of Methods and Algorithms

Algorithm 4

1) find the minimum monthly price for a user-specified metropolitan area

2) iterate through the succeeding columns until a price greater than or equal to twice the minimum price is found

3) count the number of months that occurred between these two price points

4) divide the number of months by 12 to obtain the doubling time in years

5) round the doubling time in years to the desired precision

28

 

 

To determine the doubling time for a metropolitan area,  
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Development of Methods and Algorithms

Algorithm 5

1) compute the derivative of normalized price with respect to time for each year in the dataset for a user-specified 
metropolitan area

2) compute the median derivative for that metropolitan area over the timespan of the dataset

3) If the derivative of price with respect to in the current year was more than 20% above the median derivative for 
that metropolitan area over the past 24 years, then the next year was predicted to be a good (above average) 
year for price increases in that metropolitan area.

4) If the derivative of price with respect to time in the current year was more than 20% below the median derivative 
for that metropolitan area over the past 24 years, then the next year was predicted to be a poor (below average) 
year for price increases in that metropolitan area.

5) If the derivative of price with respect to time in the current year was between 80% and 120% of the median 
derivative for that metropolitan area over the past 24 years, then the next year was predicted to be a fair 
(average) year for price increases in that metropolitan area.

29

 

 

-> To determine whether prices in a given metropolitan area would rise or fall in the next 
year, -> I normalized the prices -> took derivatives ->  and compared the derivative for the 
current year -> with the median derivative for that metropolitan area. -> 
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Results of the Analysis

• The DJIA Dataset

• The CPI Dataset

• The Real Estate Dataset
• Interactive maps of the 120 largest metropolitan areas

• Special focus area: The West Coast in 2003-2005

• Special focus area: Florida in 2001-2006

30

 

 

The results of this analysis, will be broken into five parts. -> First, the results of the DJIA 
Dataset will be discussed. -> Then the results of the CPI Dataset will be discussed. -> -> Next, the 
results of the analysis on the real estate will be discussed with a special focus on the West Coast 
and Florida in the first half of the 2000s. 
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Results of the Analysis
• There was a general upward trend in the closing 

price of the DJIA punctuated by large drops in 2009 
and 2020.

31

 

 

This is a graph of the closing price of the Dow Jones Industrial average from 2000 to 
2022. As you can see, there is a general upward trend in the price as time increases. Also notice 
the two dramatic drops in the price in 2009 and 2020. The former was caused by the 2008-2009 
recession, also know as the “Great Recession.” The latter was occurred during the first year of 
the COVID-19 pandemic. 
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Results of the Analysis
• There was a general upward trend in the closing 

price of the DJIA punctuated by large drops in 2009 
and 2020.

2009

2020

32

 

 

This is a graph of the closing price of the Dow Jones Industrial average from 2000 to 
2022. As you can see, there is a general upward trend in the price as time increases. Also notice 
the two dramatic drops in the price in 2009 and 2020. The former was caused by the 2008-2009 
recession, also know as the “Great Recession.” The latter occurred during the first year of the 
COVID-19 pandemic. 
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Results of the Analysis
Plot of Annual Inflation Rate vs. Time from 1996 to 2022

33

 

 

This graph shows the Annual Inflation Rate as measured by the Consumer Price Index 
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Results of the Analysis
Plot of Annual Inflation Rate vs. Time from 1996 to 2022

2009

34

 

 

As you can see from the graph, the annual inflation rate fell precipitously in 2009. Also, 
the annual inflation rate has risen sharply since 2020. 
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The 120 Largest U.S. Metropolitan Areas Grouped by the Time to 
Double 

35

 

 

This map shows the largest 120 U.S. metropolitan areas by population grouped by the 
time for the normalized median price of a single-family home in that metropolitan area to 
double. The metropolitan areas denoted by the green dollar sign icon doubled in price the 
fastest, and the metropolitan areas denoted by the black dollar sign icon doubled in price the 
slowest. 
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The 120 Largest U.S. Metropolitan Areas Grouped by Their Senate 
Representation

36

 

 

This map shows the largest 120 U.S. metropolitan areas by population grouped by the 
political affiliation of their state’s U.S. Senate delegation. Red means two Republican senators, 
blue means two Democratic senators, and purple means one Republican senator and one 
Democratic senator. 
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Average Doubling Time of the Metropolitan Areas by Political Party of 
their Senate Representation

Political Representation in the U.S. Senate Average Doubling Time in Years

Two Democratic senators 11.2

Two Republican senators 20.7

One Democratic and one Republican senator 7.7

37

 

 

This table shows the average time for the normalized median price of a single-family 

home to double in the 120 largest U.S. metropolitan areas compared to the political affiliation of 

their Senate representation. The average doubling time of the metropolitan areas represented by 

Democratic and Republican senators (7.7) was lower than either the average doubling time of the 

metropolitan areas represented by Democratic senators (11.2 years), or the metropolitan areas 

represented by Republican senators (20.7 years). While the average doubling time for 

metropolitan areas represented by Republican senators was almost twice as long as the average 

doubling time of the metropolitan areas represented by Democratic senators. 
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The 120 Largest U.S. Metropolitan Areas Grouped by Population

38

 

 

This map shows the largest 120 U.S. metropolitan areas by population grouped by the 
population size of the metropolitan area.  The metropolitan areas denoted by the black dollar 
sign icon were the most populous, and the metropolitan areas denoted by the light blue dollar 
sign icon were the least populous. 
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Anatomy of a Housing Bubble
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“A housing bubble, or real estate bubble,” has been defined as,” a run-up in housing 

prices fueled by demand, speculation, and exuberant spending to the point of collapse.” This 

graph shows the first derivative of the normalized median price of a single-family home in 

Miami, FL from January 31, 1996 to August 31, 2021. The characteristic “V-shape” in the graph 

is typical of real estate markets that experienced a housing bubble. 
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The Housing Bubble on the West Coast

Housing bubbles occurred in the following 
metropolitan areas in the West Coast region 
between 2002 and 2006:

• Las Vegas, NV
• Los Angeles-Long Beach-Anaheim, CA
• Phoenix, AZ
• Reno, NV
• Riverside, CA
• Sacramento, CA
• San Diego, CA
• Tucson, AZ

40

 

 

For this analysis, a year was considered a bubble year if the following two conditions 

were met: the derivative of normalized price with respect to time in that year was greater than or 

equal to 120% of the median derivative of normalized price w.r.t. time in that metropolitan area 

over the entire 20-year span, and the first and second derivatives of normalized price w.r.t. time 

were positive. The metropolitan areas denoted by the green icons doubled in price in less than 10 

years. These are the same areas that experienced a housing bubble between 2002 and 2006. 
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The Housing Bubble in Florida

Housing bubbles occurred in the following 
metropolitan areas in Florida between 2001 
and 2006:

• Daytona Beach
• Fort Myers
• Jacksonville
• Melbourne
• Miami-Fort Lauderdale
• North Port-Sarasota-Bradenton
• Orlando
• Port St. Lucie
• Tampa

41

 

 

A similar pattern was seen in Florida between 2001 and 2006. The conditions for a 
bubble year were met in most large metropolitan areas in Florida in the first half of the 2000s. 
The bubble usually lasted from 3 to 5 years. Pensacola was an outlier. Housing prices there 
doubled more slowly than they did in peninsular Florida. 
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The Housing Bubble in Florida

A housing bubble occurred in these 
metropolitan areas from 2001 to 2005:

• Fort Myers
• Melbourne
• North Port-Sarasota-Bradenton
• Port St. Lucie
• Tampa

42

 

 

Of particular interest were the metropolitan areas in central Florida. -> This region 
experienced a sustained housing bubble from 2001 to 2005. In Fort Myers -> -> Melbourne -> -> 
North Port-Sarasota-Bradenton -> -> Port St. Lucie -> -> and Tampa -> -> 

Lakeland also experienced a housing bubble, but it did not last from 2001 to 2005. 
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Alternative Methods for Time Series Analysis

• Support Vector Machine

• Neural Network

43

 

 

A time series dataset may be transformed into a supervised learning problem and fed as 
input to a support vector machine or a neural network to perform regression on it. This has the 
added advantage of being able to predict future values of the time series in a process called 
“time series forecasting.” 
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Summary

Advantages

• simple to implement

• easy to explain 

• can be performed in resource-
constrained environments

• works well for identifying trends in 
data and inflection points

• provides new insights into time series 
data

Disadvantages

• limited predictive power

44

 

 

By comparing the derivatives of time series data, researchers can ascertain whether a 

particular feature (e.g. the price of an asset) is increasing or decreasing in value and the rate at 

which this change is occurring. But the most valuable insights come as data is aggregated over 

many experimental units and over a long period of time. Then a general trend in the data points 

usually emerges.  
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Further Research

• Performing a regional analysis of the real estate dataset

• Correlation analysis of real estate, DJIA, and inflation datasets

45
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The image on the first slide shows “Annual crime rate per 1000 workday people” 
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Appendix II: Source Code 

ca_reader.py 

1 
2 import pandas as pd 
3 import matplotlib.pyplot as plt 
4 import sys 
5 import os 
6 import numpy as np 
7 from dateutil import parser 
8 
9 date_format = "%m/%d/%Y" 
10 COASTAL = False 
11 
12 def Rank_Cities_in_Descending_Order(t): 
13 t.sort(key = lambda x: x[1], reverse=True) 
14 return t 
15 
16 if __name__=="__main__": 
17 user_preference = input("Do you want cities in coastal or non-coastal states? ") 
18 user_preference = user_preference.upper() 
19 if user_preference == "COASTAL": 
20 COASTAL = True 
21 else: 
22 COASTAL = False 
23 mode = 1 
24 period_length = 1 
25 
26 #period_name = input_year 
27 str_number_of_cities_to_list = "911" 
28 
29 # process the dataframe 
30 original_df = pd.read_csv("Metro_zhvi_uc_sfr_tier_0.33_0.67_sm_sa_month.csv") 
31 
32 # pre-processing steps 
33 # step 1: get the column names 
34 complete_rows_df = original_df 
35 size_rank_column_df = original_df[['SizeRank']] 
36 region_name_column_df = original_df[['RegionName']] 
37 size_rank_column_series = size_rank_column_df.squeeze() 
38 region_name_column_series = region_name_column_df.squeeze() 
39 region_name_column_list = region_name_column_series.tolist() 
40 number_of_rows = original_df.shape[0] 
41 city_name_size_rank_dict = {} 
42 for i in range(0, number_of_rows): 
43 city_name_size_rank_dict[region_name_column_series[i]] = size_rank_column_series 
[i] 
44 
45 # step 2: drop "RegionID", "SizeRank", "RegionType", and "StateName" columns 
46 df = complete_rows_df.drop(columns=['RegionID', 'SizeRank', 'RegionType']) 
47 df = df.iloc[1: , :] 
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48 if COASTAL == True: 
49 df = df[df["RegionName"].str.contains( 
"CA|OR|WA|AK|HI|ME|NH|MA|RI|CT|NY|NJ|DE|MD|VA|NC|SC|GA|FL|TX|LA|MS|AL")] 
50 else: 
51 df = df[df["RegionName"].str.contains( 
"ID|MT|ND|MN|WI|MI|VT|WY|SD|IA|PA|NV|UT|CO|NE|IL|IN|OH|KS|MO|KY|WV|AZ|NM|OK|AR|TN 
|DC")] 
52 print(df.head()) 
53 
54 #if you want cities in a single state, do 
55 
56 #ca_cities = df[df["RegionName"].str.contains("CA")] 

djia_derivatives.py 

1 import numpy as np 
2 import pandas as pd 
3 import matplotlib.pyplot as plt 
4 import sys 
5 from datetime import datetime 
6 import statistics 
7 
8 if __name__ == "__main__": 
9 djia_df = pd.read_csv("DJIA2000-2022FebCSV.csv", parse_dates=[0]) # DJIA 
opening/closing price dataset 
10 djia_df['Close*'] = djia_df['Close*'].str.replace(',','') # remove commas before 
conversion to float 
11 closing_price_series = djia_df['Close*'] 
12 closing_price_array = closing_price_series.to_numpy('float64') 
13 djia_array = djia_df['Close*'].astype('float64') 
14 first_derivative_list = [] 
15 current_date_and_first_deriv_tuple_list = [] 
16 second_derivative_list = [] 
17 current_date_and_second_deriv_tuple_list = [] 
18 time_intervals = [] 
19 
20 for i in range(len(closing_price_array) - 1): 
21 initial_price = closing_price_array[i+1] # because the dataset is in reverse 
time order 
22 final_price = closing_price_array[i] 
23 change_in_price = final_price - initial_price 
24 initial_time = datetime.strptime(str(djia_df.iloc[i+1, 0]), "%Y-%m-%d %H:%M:%S") 
25 final_time = datetime.strptime(str(djia_df.iloc[i, 0]), "%Y-%m-%d %H:%M:%S") 
26 change_in_time = final_time - initial_time 
27 dp_dt = change_in_price / change_in_time.days 
28 time_intervals.append(initial_time) 
29 if dp_dt >= 0: 
30 is_positive = True 
31 else: 
32 is_positive = False 
33 first_derivative_list.append(dp_dt) 
34 current_date = djia_df.iloc[i, 0] 
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35 current_date_and_first_deriv_tuple = (current_date, dp_dt, is_positive) 
36 current_date_and_first_deriv_tuple_list.append( 
current_date_and_first_deriv_tuple) 
37 
38 first_derivative_array = np.array(first_derivative_list) 
39 for i in range(len(first_derivative_array) - 1): 
40 initial_price = first_derivative_array[i] 
41 final_price = first_derivative_array[i+1] 
42 change_in_price = final_price - initial_price # this is actually the change in 
the derivative of price w.r.t time 
43 initial_time = datetime.strptime(str(djia_df.iloc[i+2, 0]), "%Y-%m-%d %H:%M:%S") 
44 final_time = datetime.strptime(str(djia_df.iloc[i, 0]), "%Y-%m-%d %H:%M:%S") 
45 change_in_time = final_time - initial_time 
46 dp_dt = change_in_price / change_in_time.days 
47 if dp_dt >= 0: 
48 is_positive = True 
49 else: 
50 is_positive = False 
51 second_derivative_list.append(dp_dt) 
52 current_date = djia_df.iloc[i, 0] 
53 current_date_and_second_deriv_tuple = (current_date, dp_dt, is_positive) 
54 current_date_and_second_deriv_tuple_list.append( 
current_date_and_second_deriv_tuple) 
55 
56 # lists of first derivatives 
57 the_2000_derivatives = [] 
58 the_2001_derivatives = [] 
59 the_2002_derivatives = [] 
60 the_2003_derivatives = [] 
61 the_2004_derivatives = [] 

62 the_2005_derivatives = [] 
63 the_2006_derivatives = [] 
64 the_2007_derivatives = [] 
65 the_2008_derivatives = [] 
66 the_2009_derivatives = [] 
67 the_2010_derivatives = [] 
68 the_2011_derivatives = [] 
69 the_2012_derivatives = [] 
70 the_2013_derivatives = [] 
71 the_2014_derivatives = [] 
72 the_2015_derivatives = [] 
73 the_2016_derivatives = [] 
74 the_2017_derivatives = [] 
75 the_2018_derivatives = [] 
76 the_2019_derivatives = [] 
77 the_2020_derivatives = [] 
78 the_2021_derivatives = [] 
79 the_2022_derivatives = [] 
80 
81 print("Table of the first derivative of closing price w.r.t. time for the DJIA 
dataset.\n") 
82 print("------------------------") 
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83 for i in range(0, 30): 
84 entry = current_date_and_first_deriv_tuple_list[i] 
85 date_obj = entry[0] 
86 deriv = entry[1] 
87 deriv_2f = "{:.2f}".format(deriv) 
88 d = date_obj.date() 
89 if d.year == 2000: 
90 the_2000_derivatives.append(deriv) 
91 if d.year == 2001: 
92 the_2001_derivatives.append(deriv) 
93 if d.year == 2002: 
94 the_2002_derivatives.append(deriv) 
95 if d.year == 2003: 
96 the_2003_derivatives.append(deriv) 
97 if d.year == 2004: 
98 the_2004_derivatives.append(deriv) 
99 if d.year == 2005: 
100 the_2005_derivatives.append(deriv) 
101 if d.year == 2006: 
102 the_2006_derivatives.append(deriv) 
103 if d.year == 2007: 
104 the_2007_derivatives.append(deriv) 
105 if d.year == 2008: 
106 the_2008_derivatives.append(deriv) 
107 if d.year == 2009: 
108 the_2009_derivatives.append(deriv) 
109 if d.year == 2010: 
110 the_2010_derivatives.append(deriv) 
111 if d.year == 2011: 
112 the_2011_derivatives.append(deriv) 
113 if d.year == 2012: 
114 the_2012_derivatives.append(deriv) 
115 if d.year == 2013: 
116 the_2013_derivatives.append(deriv) 
117 if d.year == 2014: 
118 the_2014_derivatives.append(deriv) 
119 if d.year == 2015: 
120 the_2015_derivatives.append(deriv) 
121 if d.year == 2016: 
122 the_2016_derivatives.append(deriv) 
123 if d.year == 2017: 
124 the_2017_derivatives.append(deriv) 
125 if d.year == 2018: 
126 the_2018_derivatives.append(deriv) 
127 if d.year == 2019: 

128 the_2019_derivatives.append(deriv) 
129 if d.year == 2020: 
130 the_2020_derivatives.append(deriv) 
131 if d.year == 2021: 
132 the_2021_derivatives.append(deriv) 
133 if d.year == 2022: 
134 the_2022_derivatives.append(deriv) 
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135 
136 #print('|', date_obj.date(), '|', deriv_2f, '|') 
137 
138 print("| ... | ... |") 
139 print("------------------------") 
140 print(len(current_date_and_first_deriv_tuple_list), 'rows.') 
141 print('\n') 
142 first_entry = current_date_and_first_deriv_tuple_list[0] 
143 part0 = first_entry[0] 
144 #print('part0:', part0) 
145 first_median = statistics.median(first_derivative_list) 
146 first_median_2f = "{:.2f}".format(first_median) 
147 print("The median of the first derivative of price w.r.t time is", first_median_2f) 
148 
149 years_with_derivatives_greater_than_1_20_list = [] 
150 
151 for deriv in the_2000_derivatives: 
152 if deriv >= 1.2 * first_median: 
153 years_with_derivatives_greater_than_1_20_list.append(2000) 
154 for deriv in the_2001_derivatives: 
155 if deriv >= 1.2 * first_median: 
156 years_with_derivatives_greater_than_1_20_list.append(2001) 
157 for deriv in the_2002_derivatives: 
158 if deriv >= 1.2 * first_median: 
159 years_with_derivatives_greater_than_1_20_list.append(2002) 
160 for deriv in the_2003_derivatives: 
161 if deriv >= 1.2 * first_median: 
162 years_with_derivatives_greater_than_1_20_list.append(2003) 
163 for deriv in the_2004_derivatives: 
164 if deriv >= 1.2 * first_median: 
165 years_with_derivatives_greater_than_1_20_list.append(2004) 
166 for deriv in the_2005_derivatives: 
167 if deriv >= 1.2 * first_median: 
168 years_with_derivatives_greater_than_1_20_list.append(2005) 
169 for deriv in the_2006_derivatives: 
170 if deriv >= 1.2 * first_median: 
171 years_with_derivatives_greater_than_1_20_list.append(2006) 
172 for deriv in the_2007_derivatives: 
173 if deriv >= 1.2 * first_median: 
174 years_with_derivatives_greater_than_1_20_list.append(2007) 
175 for deriv in the_2008_derivatives: 
176 if deriv >= 1.2 * first_median: 
177 years_with_derivatives_greater_than_1_20_list.append(2008) 
178 for deriv in the_2009_derivatives: 
179 if deriv >= 1.2 * first_median: 
180 years_with_derivatives_greater_than_1_20_list.append(2009) 
181 for deriv in the_2010_derivatives: 
182 if deriv >= 1.2 * first_median: 
183 years_with_derivatives_greater_than_1_20_list.append(2010) 
184 for deriv in the_2011_derivatives: 
185 if deriv >= 1.2 * first_median: 
186 years_with_derivatives_greater_than_1_20_list.append(2011) 
187 for deriv in the_2012_derivatives: 
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188 if deriv >= 1.2 * first_median: 
189 years_with_derivatives_greater_than_1_20_list.append(2012) 
190 for deriv in the_2013_derivatives: 
191 if deriv >= 1.2 * first_median: 
192 years_with_derivatives_greater_than_1_20_list.append(2013) 
193 for deriv in the_2014_derivatives: 
194 if deriv >= 1.2 * first_median: 

195 years_with_derivatives_greater_than_1_20_list.append(2014) 
196 for deriv in the_2015_derivatives: 
197 if deriv >= 1.2 * first_median: 
198 years_with_derivatives_greater_than_1_20_list.append(2015) 
199 for deriv in the_2016_derivatives: 
200 if deriv >= 1.2 * first_median: 
201 years_with_derivatives_greater_than_1_20_list.append(2016) 
202 for deriv in the_2017_derivatives: 
203 if deriv >= 1.2 * first_median: 
204 years_with_derivatives_greater_than_1_20_list.append(2017) 
205 for deriv in the_2018_derivatives: 
206 if deriv >= 1.2 * first_median: 
207 years_with_derivatives_greater_than_1_20_list.append(2018) 
208 for deriv in the_2019_derivatives: 
209 if deriv >= 1.2 * first_median: 
210 years_with_derivatives_greater_than_1_20_list.append(2019) 
211 for deriv in the_2020_derivatives: 
212 if deriv >= 1.2 * first_median: 
213 years_with_derivatives_greater_than_1_20_list.append(2020) 
214 for deriv in the_2021_derivatives: 
215 if deriv >= 1.2 * first_median: 
216 years_with_derivatives_greater_than_1_20_list.append(2021) 
217 for deriv in the_2022_derivatives: 
218 if deriv >= 1.2 * first_median: 
219 years_with_derivatives_greater_than_1_20_list.append(2022) 
220 
221 years_with_derivatives_greater_than_1_20_set = set( 
years_with_derivatives_greater_than_1_20_list) 
222 print('Years in which the first derivative of closing w.r.t. time was >= 120 
percent of the median derivative: ', years_with_derivatives_greater_than_1_20_set) 
223 
224 print("Table of the second derivative of closing price w.r.t. time for the DJIA 
dataset.\n") 
225 print("-------------------------") 
226 for i in range(0, len(current_date_and_second_deriv_tuple_list)): 
227 entry = current_date_and_second_deriv_tuple_list[i] 
228 date_obj = entry[0] 
229 deriv = entry[1] 
230 deriv_2f = "{:.2f}".format(deriv) 
231 
232 print("| ... | ... |") 
233 print("-------------------------") 
234 print(len(current_date_and_second_deriv_tuple_list), 'rows.') 
235 print('\n') 
236 second_median = statistics.median(second_derivative_list) 
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237 second_median_2f = "{:.2f}".format(second_median) 
238 print("The median of the second derivative of price w.r.t time is", second_median_2f) 
239 
240 x = time_intervals 
241 y = first_derivative_array 
242 my_xticks = np.linspace(0, 56000, 1) 
243 plt.xticks(x, my_xticks) 
244 plt.plot(x, y) 
245 plt.show() 
246 

highest.py 

1 import pandas as pd 
2 import matplotlib.pyplot as plt 
3 import sys 
4 import os 
5 import numpy as np 
6 from dateutil import parser 
7 
8 if __name__=="__main__": 
9 
10 chosen_year = input("Which year? ") 
11 int_chosen_year = int(chosen_year) 
12 
13 mode = 1 
14 period_length = 1 
15 
16 # process the dataframe 
17 original_df = pd.read_csv("Metro_zhvi_uc_sfr_tier_0.33_0.67_sm_sa_month.csv") 
18 
19 # pre-processing steps 
20 # step 1: get the column names 
21 complete_rows_df = original_df 
22 size_rank_column_df = original_df[['SizeRank']] 
23 region_name_column_df = original_df[['RegionName']] 
24 size_rank_column_series = size_rank_column_df.squeeze() 
25 region_name_column_series = region_name_column_df.squeeze() 
26 region_name_column_list = region_name_column_series.tolist() 
27 number_of_rows = original_df.shape[0] 
28 city_name_size_rank_dict = {} 
29 for i in range(0, number_of_rows): 
30 city_name_size_rank_dict[region_name_column_series[i]] = size_rank_column_series 
[i] 
31 
32 # step 2: drop "RegionID", "SizeRank", "RegionType", and "StateName" columns 
33 df = complete_rows_df.drop(columns=['RegionID', 'SizeRank', 'RegionType', 
'StateName']) 
34 df = df.iloc[1: , :] # remove the first row because it doesn't have a state 
35 #if COASTAL == True: 
36 # df = 
df[df["RegionName"].str.contains("CA|OR|WA|AK|HI|ME|NH|MA|RI|CT|NY|NJ|DE|MD|VA|NC|SC| 
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GA|FL|TX|LA|MS|AL")] 
37 #else: 
38 # df = 
df[df["RegionName"].str.contains("ID|MT|ND|MN|WI|MI|VT|WY|SD|IA|PA|NV|UT|CO|NE|IL|IN| 
OH|KS|MO|KY|WV|AZ|NM|OK|AR|TN|DC")] 
39 
40 str_number_of_cities_to_list = df.shape[0] 
41 
42 # create a numeric dataframe consisting of only floats 
43 float_df = df.drop(columns=['RegionName']) 
44 
45 periods = [] 
46 period_dict = {} 
47 
48 # partition the floating point dataframe into 25 1-year periods 
49 for i in range(0,180,12): 
50 period = float_df.iloc[:, i:i+12] 
51 periods.append(period) 
52 period_dict[0] = '1996' 
53 period_dict[1] = '1997' 
54 period_dict[2] = '1998' 
55 period_dict[3] = '1999' 
56 period_dict[4] = '2000' 
57 period_dict[5] = '2001' 
58 period_dict[6] = '2002' 
59 period_dict[7] = '2003' 
60 period_dict[8] = '2004' 
61 period_dict[9] = '2005' 

62 period_dict[10] = '2006' 
63 period_dict[11] = '2007' 
64 period_dict[12] = '2008' 
65 period_dict[13] = '2009' 
66 period_dict[14] = '2010' 
67 period_dict[15] = '2011' 
68 period_dict[16] = '2012' 
69 period_dict[17] = '2013' 
70 period_dict[18] = '2014' 
71 period_dict[19] = '2015' 
72 period_dict[20] = '2016' 
73 period_dict[21] = '2017' 
74 period_dict[22] = '2018' 
75 period_dict[23] = '2019' 
76 period_dict[24] = '2020' 
77 print('periods', periods[0]) 
78 # the outer list is the states 
79 # the inner list is the cities in the state 
80 # Washington, DC will be treated as a state 
81 list_of_state_high_tuples = [[] for i in range(51)] 
82 list_of_state_low_tuples = [[] for i in range(51)] 
83 
84 # get the city names and put them in a list 
85 city_names_list = df['RegionName'].values.tolist() 
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86 #big_city_list = city_names_list[1:40] 
87 #all_period_list = [] 
88 for each_city in city_names_list: 
89 abs_price_inc_list = [] 
90 highest_prices = [] 
91 lowest_prices = [] 
92 for i in range(0, len(period)): 
93 #print('periods[j] is a', type(periods[j]) ) 
94 #print('the columns of this period are:', period.columns) 
95 first = i 
96 last = i+1 
97 row = period.iloc[first:last, :] 
98 # convert row to Panadas series 
99 row_series = row.squeeze(axis=0) 
100 rowmax = row_series.max() 
101 rowmin = row_series.min() 
102 city_names_list[i] 
103 name_price_tuple_high = (city_names_list[i], rowmax) 
104 name_price_tuple_low = (city_names_list[i], rowmin) 
105 highest_prices.append(name_price_tuple_high) 
106 lowest_prices.append(name_price_tuple_low) 
107 if name_price_tuple_high[0] == each_city: 
108 this_city_name = name_price_tuple_high[0] 
109 state_abbr = this_city_name[-2:] 
110 #print('highest price for that city was', name_price_tuple_high[1], 
'in', year) 
111 if state_abbr == "AL": 
112 list_of_state_high_tuples[0].append(name_price_tuple_high) 
113 if state_abbr == "AK": 
114 list_of_state_high_tuples[1].append(name_price_tuple_high) 
115 if state_abbr == "AZ": 
116 list_of_state_high_tuples[2].append(name_price_tuple_high) 
117 if state_abbr == "AR": 
118 list_of_state_high_tuples[3].append(name_price_tuple_high) 
119 if state_abbr == "CA": 
120 list_of_state_high_tuples[4].append(name_price_tuple_high) 
121 if state_abbr == "CO": 
122 list_of_state_high_tuples[5].append(name_price_tuple_high) 
123 if state_abbr == "CT": 
124 list_of_state_high_tuples[6].append(name_price_tuple_high) 
125 if state_abbr == "DC": 
126 list_of_state_high_tuples[7].append(name_price_tuple_high) 

127 if state_abbr == "DE": 
128 list_of_state_high_tuples[8].append(name_price_tuple_high) 
129 if state_abbr == "FL": 
130 list_of_state_high_tuples[9].append(name_price_tuple_high) 
131 if state_abbr == "GA": 
132 list_of_state_high_tuples[10].append(name_price_tuple_high) 
133 if state_abbr == "HI": 
134 list_of_state_high_tuples[11].append(name_price_tuple_high) 
135 if state_abbr == "ID": 
136 list_of_state_high_tuples[12].append(name_price_tuple_high) 
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137 if state_abbr == "IL": 
138 list_of_state_high_tuples[13].append(name_price_tuple_high) 
139 if state_abbr == "IN": 
140 list_of_state_high_tuples[14].append(name_price_tuple_high) 
141 if state_abbr == "IA": 
142 list_of_state_high_tuples[15].append(name_price_tuple_high) 
143 if state_abbr == "KS": 
144 list_of_state_high_tuples[16].append(name_price_tuple_high) 
145 if state_abbr == "KY": 
146 list_of_state_high_tuples[17].append(name_price_tuple_high) 
147 if state_abbr == "LA": 
148 list_of_state_high_tuples[18].append(name_price_tuple_high) 
149 if state_abbr == "ME": 
150 list_of_state_high_tuples[19].append(name_price_tuple_high) 
151 if state_abbr == "MD": 
152 list_of_state_high_tuples[20].append(name_price_tuple_high) 
153 if state_abbr == "MA": 
154 list_of_state_high_tuples[21].append(name_price_tuple_high) 
155 if state_abbr == "MI": 
156 list_of_state_high_tuples[22].append(name_price_tuple_high) 
157 if state_abbr == "MN": 
158 list_of_state_high_tuples[23].append(name_price_tuple_high) 
159 if state_abbr == "MS": 
160 list_of_state_high_tuples[24].append(name_price_tuple_high) 
161 if state_abbr == "MO": 
162 list_of_state_high_tuples[25].append(name_price_tuple_high) 
163 if state_abbr == "MT": 
164 list_of_state_high_tuples[26].append(name_price_tuple_high) 
165 if state_abbr == "NE": 
166 list_of_state_high_tuples[27].append(name_price_tuple_high) 
167 if state_abbr == "NV": 
168 list_of_state_high_tuples[28].append(name_price_tuple_high) 
169 if state_abbr == "NH": 
170 list_of_state_high_tuples[29].append(name_price_tuple_high) 
171 if state_abbr == "NJ": 
172 list_of_state_high_tuples[30].append(name_price_tuple_high) 
173 if state_abbr == "NM": 
174 list_of_state_high_tuples[31].append(name_price_tuple_high) 
175 if state_abbr == "NY": 
176 list_of_state_high_tuples[32].append(name_price_tuple_high) 
177 if state_abbr == "NC": 
178 list_of_state_high_tuples[33].append(name_price_tuple_high) 
179 if state_abbr == "ND": 
180 list_of_state_high_tuples[34].append(name_price_tuple_high) 
181 if state_abbr == "OH": 
182 list_of_state_high_tuples[35].append(name_price_tuple_high) 
183 if state_abbr == "OK": 
184 list_of_state_high_tuples[36].append(name_price_tuple_high) 
185 if state_abbr == "OR": 
186 list_of_state_high_tuples[37].append(name_price_tuple_high) 
187 if state_abbr == "PA": 
188 list_of_state_high_tuples[38].append(name_price_tuple_high) 
189 if state_abbr == "RI": 
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190 list_of_state_high_tuples[39].append(name_price_tuple_high) 
191 if state_abbr == "SC": 
192 list_of_state_high_tuples[40].append(name_price_tuple_high) 
193 if state_abbr == "SD": 

194 list_of_state_high_tuples[41].append(name_price_tuple_high) 
195 if state_abbr == "TN": 
196 list_of_state_high_tuples[42].append(name_price_tuple_high) 
197 if state_abbr == "TX": 
198 list_of_state_high_tuples[43].append(name_price_tuple_high) 
199 if state_abbr == "UT": 
200 list_of_state_high_tuples[44].append(name_price_tuple_high) 
201 if state_abbr == "VT": 
202 list_of_state_high_tuples[45].append(name_price_tuple_high) 
203 if state_abbr == "VA": 
204 list_of_state_high_tuples[46].append(name_price_tuple_high) 
205 if state_abbr == "WA": 
206 list_of_state_high_tuples[47].append(name_price_tuple_high) 
207 if state_abbr == "WV": 
208 list_of_state_high_tuples[48].append(name_price_tuple_high) 
209 if state_abbr == "WI": 
210 list_of_state_high_tuples[49].append(name_price_tuple_high) 
211 if state_abbr == "WY": 
212 list_of_state_high_tuples[50].append(name_price_tuple_high) 
213 
214 # AL is index 0 in list_of_state_high_tuples 
215 # WY is index 50 in list_of_state_high_tuples 
216 if name_price_tuple_low[0] == each_city: 
217 this_city_name = name_price_tuple_low[0] 
218 state_abbr = this_city_name[-2:] 
219 if state_abbr == "AL": 
220 list_of_state_low_tuples[0].append(name_price_tuple_low) 
221 if state_abbr == "AK": 
222 list_of_state_low_tuples[1].append(name_price_tuple_low) 
223 if state_abbr == "AZ": 
224 list_of_state_low_tuples[2].append(name_price_tuple_low) 
225 if state_abbr == "AR": 
226 list_of_state_low_tuples[3].append(name_price_tuple_low) 
227 if state_abbr == "CA": 
228 list_of_state_low_tuples[4].append(name_price_tuple_low) 
229 if state_abbr == "CO": 
230 list_of_state_low_tuples[5].append(name_price_tuple_low) 
231 if state_abbr == "CT": 
232 list_of_state_low_tuples[6].append(name_price_tuple_low) 
233 if state_abbr == "DC": 
234 list_of_state_low_tuples[7].append(name_price_tuple_low) 
235 if state_abbr == "DE": 
236 list_of_state_low_tuples[8].append(name_price_tuple_low) 
237 if state_abbr == "FL": 
238 list_of_state_low_tuples[9].append(name_price_tuple_low) 
239 if state_abbr == "GA": 
240 list_of_state_low_tuples[10].append(name_price_tuple_low) 
241 if state_abbr == "HI": 
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242 list_of_state_low_tuples[11].append(name_price_tuple_low) 
243 if state_abbr == "ID": 
244 list_of_state_low_tuples[12].append(name_price_tuple_low) 
245 if state_abbr == "IL": 
246 list_of_state_low_tuples[13].append(name_price_tuple_low) 
247 if state_abbr == "IN": 
248 list_of_state_low_tuples[14].append(name_price_tuple_low) 
249 if state_abbr == "IA": 
250 list_of_state_low_tuples[15].append(name_price_tuple_low) 
251 if state_abbr == "KS": 
252 list_of_state_low_tuples[16].append(name_price_tuple_low) 
253 if state_abbr == "KY": 
254 list_of_state_low_tuples[17].append(name_price_tuple_low) 
255 if state_abbr == "LA": 
256 list_of_state_low_tuples[18].append(name_price_tuple_low) 
257 if state_abbr == "ME": 
258 list_of_state_low_tuples[19].append(name_price_tuple_low) 
259 if state_abbr == "MD": 

260 list_of_state_low_tuples[20].append(name_price_tuple_low) 
261 if state_abbr == "MA": 
262 list_of_state_low_tuples[21].append(name_price_tuple_low) 
263 if state_abbr == "MI": 
264 list_of_state_low_tuples[22].append(name_price_tuple_low) 
265 if state_abbr == "MN": 
266 list_of_state_low_tuples[23].append(name_price_tuple_low) 
267 if state_abbr == "MS": 
268 list_of_state_low_tuples[24].append(name_price_tuple_low) 
269 if state_abbr == "MO": 
270 list_of_state_low_tuples[25].append(name_price_tuple_low) 
271 if state_abbr == "MT": 
272 list_of_state_low_tuples[26].append(name_price_tuple_low) 
273 if state_abbr == "NE": 
274 list_of_state_low_tuples[27].append(name_price_tuple_low) 
275 if state_abbr == "NV": 
276 list_of_state_low_tuples[28].append(name_price_tuple_low) 
277 if state_abbr == "NH": 
278 list_of_state_low_tuples[29].append(name_price_tuple_low) 
279 if state_abbr == "NJ": 
280 list_of_state_low_tuples[30].append(name_price_tuple_low) 
281 if state_abbr == "NM": 
282 list_of_state_low_tuples[31].append(name_price_tuple_low) 
283 if state_abbr == "NY": 
284 list_of_state_low_tuples[32].append(name_price_tuple_low) 
285 if state_abbr == "NC": 
286 list_of_state_low_tuples[33].append(name_price_tuple_low) 
287 if state_abbr == "ND": 
288 list_of_state_low_tuples[34].append(name_price_tuple_low) 
289 if state_abbr == "OH": 
290 list_of_state_low_tuples[35].append(name_price_tuple_low) 
291 if state_abbr == "OK": 
292 list_of_state_low_tuples[36].append(name_price_tuple_low) 
293 if state_abbr == "OR": 
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294 list_of_state_low_tuples[37].append(name_price_tuple_low) 
295 if state_abbr == "PA": 
296 list_of_state_low_tuples[38].append(name_price_tuple_low) 
297 if state_abbr == "RI": 
298 list_of_state_low_tuples[39].append(name_price_tuple_low) 
299 if state_abbr == "SC": 
300 list_of_state_low_tuples[40].append(name_price_tuple_low) 
301 if state_abbr == "SD": 
302 list_of_state_low_tuples[41].append(name_price_tuple_low) 
303 if state_abbr == "TN": 
304 list_of_state_low_tuples[42].append(name_price_tuple_low) 
305 if state_abbr == "TX": 
306 list_of_state_low_tuples[43].append(name_price_tuple_low) 
307 if state_abbr == "UT": 
308 list_of_state_low_tuples[44].append(name_price_tuple_low) 
309 if state_abbr == "VT": 
310 list_of_state_low_tuples[45].append(name_price_tuple_low) 
311 if state_abbr == "VA": 
312 list_of_state_low_tuples[46].append(name_price_tuple_low) 
313 if state_abbr == "WA": 
314 list_of_state_low_tuples[47].append(name_price_tuple_low) 
315 if state_abbr == "WV": 
316 list_of_state_low_tuples[48].append(name_price_tuple_low) 
317 if state_abbr == "WI": 
318 list_of_state_low_tuples[49].append(name_price_tuple_low) 
319 if state_abbr == "WY": 
320 list_of_state_low_tuples[50].append(name_price_tuple_low) 
321 
322 # Iterate through each list to find the highest and lowest price in each state 
in each 1-year period 
323 # repeat this for loop 50x, once for each state 
324 for i in range(0, len(list_of_state_high_tuples[0])): 
325 # for each state list, find the highest-priced city 

326 for item in list_of_state_high_tuples[0]: 
327 current_highest_city_for_this_state = "" 
328 current_high_for_this_state = 0 
329 if item[1] >= current_high_for_this_state: 
330 current_high_for_this_state = item[1] 
331 current_highest_city_for_this_state = item[0] 
332 # TODO: Add a dict that maps state abbreviations to state names 
333 if ((current_highest_city_for_this_state != "") and ( 
current_high_for_this_state != 0)): 
334 print("The city with the highest price in", 
current_highest_city_for_this_state[-2:], "is", 
current_highest_city_for_this_state, ".", "It had a high price of", 
current_high_for_this_state, "in", chosen_year) 
335 
336 for i in range(0, len(list_of_state_low_tuples)): 
337 # for each state list, find the lowest-priced city 
338 for item in list_of_state_low_tuples[i]: 
339 current_lowest_city_for_this_state = "" 
340 current_low_for_this_state = 0 
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341 if item[1] <= current_low_for_this_state: 
342 current_low_for_this_state = item[1] 
343 current_lowest_city_for_this_state = item[0] 
344 if ((current_lowest_city_for_this_state != "") and ( 
current_low_for_this_state != 0)): 
345 print("The city with the lowest price in", 
current_lowest_city_for_this_state[-2:], "is", 
current_lowest_city_for_this_state, ".", "It had a low price of", 
current_low_for_this_state, "in", chosen_year) 
346 
347 
348 

inflation_derivatives.py 

1 import numpy as np 
2 import pandas as pd 
3 import matplotlib.pyplot as plt 
4 import sys 
5 from datetime import datetime 
6 
7 if __name__ == "__main__": 
8 acceptable_inputs = ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 
'OCT', 'NOV', 'DEC', 'Monthly_Average'] 
9 month_dict = {'JAN': 'January', 'FEB': 'February', 'MAR': 'March', 'APR': 'April', 
'MAY': 'May', 'JUN': 'June', 'JUL': 'July', 'AUG': 'August', 'SEP': 'September', 
'OCT': 'October', 'NOV':'November', 'DEC': 'December', 'Monthly_Average': 
'Monthly_Average'} 
10 month = sys.argv[1] 
11 if month != "Monthly_Average": # input validation 
12 month = month.upper() 
13 if month not in acceptable_inputs: 
14 print("Invalid input! Exiting...") 
15 sys.exit() 
16 inflation_df = pd.read_csv("Inflation_1996-2021.csv", parse_dates=[0]) # inflation 
dataset 
17 month_series = inflation_df[month] 
18 month_array = month_series.to_numpy('float64') 
19 inflation_array = inflation_df[month].astype('float64') 
20 first_derivative_list = [] 
21 current_year_and_first_deriv_tuple_list = [] 
22 second_derivative_list = [] 
23 current_year_and_second_deriv_tuple_list = [] 
24 
25 for i in range(len(month_array) - 1): 
26 intial_cpi = month_array[i] 
27 final_cpi = month_array[i+1] 
28 change_in_cpi = final_cpi - intial_cpi 
29 initial_time = inflation_df.iloc[i, 0] 
30 final_time = inflation_df.iloc[i+1, 0] 
31 change_in_time = 1 # one year 
32 dp_dt = change_in_cpi / change_in_time 
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33 first_derivative_list.append(dp_dt) 
34 current_year = initial_time 
35 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
36 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
37 
38 first_derivative_array = np.array(first_derivative_list) 
39 for i in range(len(first_derivative_array) - 1): 
40 intial_cpi = first_derivative_array[i] 
41 final_cpi = first_derivative_array[i+1] 
42 change_in_cpi = final_cpi - intial_cpi # this is actually the change in the 
derivative of price w.r.t time 
43 initial_time = inflation_df.iloc[i, 0] 
44 final_time = inflation_df.iloc[i+1, 0] 
45 change_in_time = 1 # one year 
46 dp_dt = change_in_cpi / change_in_time 
47 second_derivative_list.append(dp_dt) 
48 current_year = initial_time 
49 current_year_and_second_deriv_tuple = (current_year, dp_dt) 
50 current_year_and_second_deriv_tuple_list.append( 
current_year_and_second_deriv_tuple) 
51 
52 if month == 'Monthly_Average': 
53 print("Table of the first derivative of CPI w.r.t. time for the inflation 
dataset for the monthly average.\n") 
54 else: 
55 print("Table of the first derivative of CPI w.r.t. time for the inflation 
dataset for the month of ", month_dict[month], '.\n', sep="") 
56 print("------------------------") 
57 for i in range(0, len(current_year_and_first_deriv_tuple_list)): 

58 entry = current_year_and_first_deriv_tuple_list[i] 
59 date_obj = entry[0] 
60 deriv = entry[1] 
61 deriv_2f = "{:.2f}".format(deriv) 
62 print('|', date_obj.date(), '|', deriv_2f, '|') 
63 #print("| ... | ... |") 
64 print("------------------------") 
65 print(len(current_year_and_first_deriv_tuple_list), 'rows.') 
66 print('\n') 
67 
68 #plt.rcParams["figure.figsize"] = [7.00, 3.50] 
69 #plt.rcParams["figure.autolayout"] = True 
70 #x = np.arange(2000, 2022, 1, int) 
71 #x = [2000, 2001, 2002, 2003, 2004, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 
2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022] 
72 #y = first_derivative_list[0:-2] 
73 #default_x_ticks = range(len(x)) 
74 #plt.plot(default_x_ticks, y) 
75 #plt.xticks(default_x_ticks, x) 
76 #plt.show() 
77 
78 if month == 'Monthly_Average': 
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79 print("Table of the first derivative of CPI w.r.t. time for the inflation 
dataset for the monthly average.\n") 
80 else: 
81 print("Table of the first derivative of CPI w.r.t. time for the inflation 
dataset for the month of ", month_dict[month], '.\n', sep="") 
82 print("-------------------------") 
83 for i in range(0, len(current_year_and_second_deriv_tuple_list)): 
84 entry = current_year_and_second_deriv_tuple_list[i] 
85 date_obj = entry[0] 
86 deriv = entry[1] 
87 deriv_2f = "{:.2f}".format(deriv) 
88 print('|', date_obj.date(), '|', deriv_2f, '|') 
89 
90 #print("| ... | ... |") 
91 print("-------------------------") 
92 print(len(current_year_and_second_deriv_tuple_list), 'rows.') 
93 print('\n') 
94 
95 plt.rcParams["figure.figsize"] = [7.00, 3.50] 
96 plt.rcParams["figure.autolayout"] = True 
97 x = np.arange(2000, 2022, 1, int) 
98 x = [2000, 2001, 2002, 2003, 2004, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 
2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020] 
99 y = second_derivative_list[0:-3] 
100 default_x_ticks = range(len(x)) 
101 plt.plot(default_x_ticks, y) 
102 plt.xticks(default_x_ticks, x) 
103 plt.show() 
104 

ml1.py 

1 import numpy as np 
2 import pandas as pd 
3 from sklearn.linear_model import LinearRegression 
4 import datetime 
5 import matplotlib.pyplot as plt 
6 import sys 
7 
8 if __name__=="__main__": 
9 
10 # read the datasets into Pandas dataframes 
11 djia_df = pd.read_csv("DJIA2000-2022FebCSV.csv", parse_dates=[0]) # DJIA 
opening/closing price dataset 
12 cpi_df = pd.read_csv("Inflation_1996-2021.csv") # CPI inflation dataset 
13 re_df = pd.read_csv("Metro_zhvi_uc_sfr_tier_0.33_0.67_sm_sa_month.csv") # Zillow 
real estate dataset 
14 
15 # extract the numeric features from each dataframe 
16 numeric_feature_names_of_the_djia_df = ['Open', 'High', 'Low', 'Close*', 'Adj 
Close**', 'Volume'] 
17 
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18 numeric_feature_names_of_the_inflation_df = ['Year', 'JAN', 'FEB', 'MAR', 'APR', 
'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC', 'Monthly_Average'] 
19 numeric_feature_names_of_the_real_estate_df = ['1/31/1996', '2/29/1996', '3/31/1996' 
, '4/30/1996', '5/31/1996', '6/30/1996', '7/31/1996', '8/31/1996', '9/30/1996', 
'10/31/1996', '11/30/1996', '12/31/1996', '1/31/1997', '2/28/1997', '3/31/1997', 
'4/30/1997', '5/31/1997', '6/30/1997', '7/31/1997', '8/31/1997', '9/30/1997', 
'10/31/1997', '11/30/1997', '12/31/1997', '1/31/1998', '2/28/1998', '3/31/1998', 
'4/30/1998', '5/31/1998', '6/30/1998', '7/31/1998', '8/31/1998', '9/30/1998', 
'10/31/1998', '11/30/1998', '12/31/1998', '1/31/1999', '2/28/1999', '3/31/1999', 
'4/30/1999', '5/31/1999', '6/30/1999', '7/31/1999', '8/31/1999', '9/30/1999', 
'10/31/1999', '11/30/1999', '12/31/1999', '1/31/2000', '2/29/2000', '3/31/2000', 
'4/30/2000', '5/31/2000', '6/30/2000', '7/31/2000', '8/31/2000', '9/30/2000', 
'10/31/2000', '11/30/2000', '12/31/2000', '1/31/2001', '2/28/2001', '3/31/2001', 
'4/30/2001', '5/31/2001', '6/30/2001', '7/31/2001', '8/31/2001', '9/30/2001', 
'10/31/2001', '11/30/2001', '12/31/2001', '1/31/2002', '2/28/2002', '3/31/2002', 
'4/30/2002', '5/31/2002', '6/30/2002', '7/31/2002', '8/31/2002', '9/30/2002', 
'10/31/2002', '11/30/2002', '12/31/2002', '1/31/2003', '2/28/2003', '3/31/2003', 
'4/30/2003', '5/31/2003', '6/30/2003', '7/31/2003', '8/31/2003', '9/30/2003', 
'10/31/2003', '11/30/2003', '12/31/2003', '1/31/2004', '2/29/2004', '3/31/2004', 
'4/30/2004', '5/31/2004', '6/30/2004', '7/31/2004', '8/31/2004', '9/30/2004', 
'10/31/2004', '11/30/2004', '12/31/2004', '1/31/2005', '2/28/2005', '3/31/2005', 
'4/30/2005', '5/31/2005', '6/30/2005', '7/31/2005', '8/31/2005', '9/30/2005', 
'10/31/2005', '11/30/2005', '12/31/2005', '1/31/2006', '2/28/2006', '3/31/2006', 
'4/30/2006', '5/31/2006', '6/30/2006', '7/31/2006', '8/31/2006', '9/30/2006', 
'10/31/2006', '11/30/2006', '12/31/2006', '1/31/2007', '2/28/2007', '3/31/2007', 
'4/30/2007', '5/31/2007', '6/30/2007', '7/31/2007', '8/31/2007', '9/30/2007', 
'10/31/2007', '11/30/2007', '12/31/2007', '1/31/2008', '2/29/2008', '3/31/2008', 
'4/30/2008', '5/31/2008', '6/30/2008', '7/31/2008', '8/31/2008', '9/30/2008', 
'10/31/2008', '11/30/2008', '12/31/2008', '1/31/2009', '2/28/2009', '3/31/2009', 
'4/30/2009', '5/31/2009', '6/30/2009', '7/31/2009', '8/31/2009', '9/30/2009', 
'10/31/2009', '11/30/2009', '12/31/2009', '1/31/2010', '2/28/2010', '3/31/2010', 
'4/30/2010', '5/31/2010', '6/30/2010', '7/31/2010', '8/31/2010', '9/30/2010', 
'10/31/2010', '11/30/2010', '12/31/2010', '1/31/2011', '2/28/2011', '3/31/2011', 
'4/30/2011', '5/31/2011', '6/30/2011', '7/31/2011', '8/31/2011', '9/30/2011', 
'10/31/2011', '11/30/2011', '12/31/2011', '1/31/2012', '2/29/2012', '3/31/2012', 
'4/30/2012', '5/31/2012', '6/30/2012', '7/31/2012', '8/31/2012', '9/30/2012', 
'10/31/2012', '11/30/2012', '12/31/2012', '1/31/2013', '2/28/2013', '3/31/2013', 
'4/30/2013', '5/31/2013', '6/30/2013', '7/31/2013', '8/31/2013', '9/30/2013', 
'10/31/2013', '11/30/2013', '12/31/2013', '1/31/2014', '2/28/2014', '3/31/2014', 
'4/30/2014', '5/31/2014', '6/30/2014', '7/31/2014', '8/31/2014', '9/30/2014', 
'10/31/2014', '11/30/2014', '12/31/2014', '1/31/2015', '2/28/2015', '3/31/2015', 
'4/30/2015', '5/31/2015', '6/30/2015', '7/31/2015', '8/31/2015', '9/30/2015', 
'10/31/2015', '11/30/2015', '12/31/2015', '1/31/2016', '2/29/2016', '3/31/2016', 
'4/30/2016', '5/31/2016', '6/30/2016', '7/31/2016', '8/31/2016', '9/30/2016', 
'10/31/2016', '11/30/2016', '12/31/2016', '1/31/2017', '2/28/2017', '3/31/2017', 
'4/30/2017', '5/31/2017', '6/30/2017', '7/31/2017', '8/31/2017', '9/30/2017', 
'10/31/2017', '11/30/2017', '12/31/2017', '1/31/2018', '2/28/2018', '3/31/2018', 

'4/30/2018', '5/31/2018', '6/30/2018', '7/31/2018', '8/31/2018', '9/30/2018', 
'10/31/2018', '11/30/2018', '12/31/2018', '1/31/2019', '2/28/2019', '3/31/2019', 
'4/30/2019', '5/31/2019', '6/30/2019', '7/31/2019', '8/31/2019', '9/30/2019', 
'10/31/2019', '11/30/2019', '12/31/2019', '1/31/2020', '2/29/2020', '3/31/2020', 
'4/30/2020', '5/31/2020', '6/30/2020', '7/31/2020', '8/31/2020', '9/30/2020', 
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'10/31/2020', '11/30/2020', '12/31/2020', '1/31/2021', '2/28/2021', '3/31/2021', 
'4/30/2021', '5/31/2021', '6/30/2021', '7/31/2021', '8/31/2021'] 
20 
21 numeric_features_of_djia_df = djia_df[numeric_feature_names_of_the_djia_df] 
22 numeric_features_of_inflation_df = cpi_df[numeric_feature_names_of_the_inflation_df] 
23 numeric_features_of_real_estate_df = re_df[ 
numeric_feature_names_of_the_real_estate_df] 
24 
25 djia_array = numeric_features_of_djia_df.to_numpy() 
26 cpi_array = numeric_features_of_inflation_df.to_numpy() 
27 re_array = numeric_features_of_real_estate_df.to_numpy() 
28 
29 print('djia_array.shape:', djia_array.shape) 
30 print('cpi_array.shape:', cpi_array.shape) 
31 print('re_array.shape:', re_array.shape) 
32 
33 # plot each dataset as a timeseries in matplotlib 
34 if sys.argv[1] == 're': 
35 # plot the real estate dataset 
36 list_of_columns = list(re_df.columns) 
37 print(list_of_columns) 
38 
39 if sys.argv[1] == 'djia': 
40 # plot the DJIA dataset 
41 djia_df["Date"] = djia_df["Date"].astype("datetime64") 
42 djia_df = djia_df.set_index("Date") 
43 djia_df['Close*']=djia_df['Close*'].str.replace(',','') 
44 djia_df['Close*']=djia_df['Close*'].str.replace('.','') 
45 djia_df["Close*"] = djia_df["Close*"].astype("float64") 
46 plt.plot(djia_df["Close*"], marker='o') 
47 plt.xlabel("Date") 
48 plt.ylabel("Closing Price") 
49 plt.title("Plot of Daily Closing Price vs. Time for the Dow Jones Industrial 
Average from 2000 to 2021") 
50 plt.show() 
51 
52 if sys.argv[1] == 'cpi': 
53 # plot a dataset 
54 cpi_df["Year"] = cpi_df["Year"].astype("datetime64[ns]") 
55 cpi_df = cpi_df.set_index("Year") 
56 plt.plot(cpi_df["Monthly_Average"], marker='o') 
57 plt.xlabel("Date") 
58 plt.ylabel("Annual Inflation Rate") 
59 plt.title("Plot of the Consumer Price Index (CPI) vs. Time from 2000 to 2021") 
60 plt.show() 

plot_data.py 

1 #!/usr/bin/env python3 
2 
3 import pandas as pd 
4 import matplotlib.pyplot as plt 
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5 import sys 
6 import os 
7 import numpy as np 
8 from dateutil import parser 
9 
10 if __name__=="__main__": 
11 filename = sys.argv[1] 
12 choice = sys.argv[2] 
13 col_name = str(choice) 
14 acc_inputs = ['Open','High','Low','Close*','Adj Close**','Volume', 'Year', 'JAN', 
'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC', 
'Monthly_Average'] 
15 if col_name not in acc_inputs: 
16 print("Invalid input!!! Exiting...") 
17 sys.exit() 
18 df = pd.read_csv(str(filename)) 
19 
20 if filename == "Inflation_1999-2021.csv": 
21 if str(choice) == 'Year': 
22 selected_year = input('Enter a year in range [1996, 2021]: ') 
23 int_selected_year = int(selected_year) 
24 # 1996 is index 0 
25 index = int_selected_year - 1996 
26 # print the row for that year 
27 subset = df.iloc[index,:] 
28 else: 
29 selected_month = str(choice) 
30 first_col = df['Year'] 
31 second_col = df[selected_month] 
32 subset = pd.concat([first_col, second_col], axis=1) 
33 print(subset) 
34 
35 if filename == "DJIA2000-2022FebCSV.csv": 
36 print(df.head()) 
37 print() 
38 print('There are', df.shape[0], 'rows in the dataset.') 
39 print('There are', df.shape[1], 'columns in the dataset.') 
40 dates = df["Date"] 
41 d_list = dates.to_list() 
42 ndl = [] 
43 for d in d_list: 
44 numb = parser.parse(d) 
45 ndl.append(numb) 
46 nda = np.array(ndl) 
47 
48 closing_prices = df[col_name] 
49 cpl = closing_prices.to_list() 
50 cpf = [] 
51 for x in cpl: 
52 num = x.replace(',', '') 
53 cpf.append(float(num)) 
54 cpa = np.array(cpf) 
55 title_str = 'Plot of Year vs. Closing Price for the DJIA' 
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56 plt.title(title_str) 
57 plt.plot(nda, cpa) 
58 plt.show() 
59 
60 if filename == "statewide-covid-19-cases-deaths-tests.csv": 
61 print(df.head()) 
62 print() 
63 print('There are', df.shape[0], 'rows in the dataset.') 
64 print('There are', df.shape[1], 'columns in the dataset.') 
65 dates = df["Date"] 

66 d_list = dates.to_list() 
67 ndl = [] 
68 for d in d_list: 
69 numb = parser.parse(d) 
70 ndl.append(numb) 
71 nda = np.array(ndl) 
72 
73 closing_prices = df[col_name] 
74 cpl = closing_prices.to_list() 
75 cpf = [] 
76 for x in cpl: 
77 num = x.replace(',', '') 
78 cpf.append(float(num)) 
79 cpa = np.array(cpf) 
80 title_str = 'Plot of Date vs. '+col_name+' for the DJIA' 
81 plt.title(title_str) 
82 plt.plot(nda, cpa) 
83 plt.show() 

process_dija.py 

1 #!/usr/bin/env python3 
2 
3 import pandas as pd 
4 import matplotlib.pyplot as plt 
5 import sys 
6 import os 
7 import numpy as np 
8 from dateutil import parser 
9 
10 date_format = "%m/%d/%Y" 
11 COASTAL = False # determines whether we include only cities in coastal or non-coastal 
states in our analysis 
12 
13 def Rank_Cities_in_Descending_Order(t): 
14 t.sort(key = lambda x: x[1], reverse=True) 
15 return t 
16 
17 if __name__=="__main__": 
18 
19 filename = sys.argv[1] 
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20 df = pd.read_csv(str(filename)) 
21 col_name = "Close*" 
22 #print(df.head()) 
23 print() 
24 #print('There are', df.shape[0], 'rows in the dataset.') 
25 #print('There are', df.shape[1], 'columns in the dataset.') 
26 dates = df["Date"] 
27 d_list = dates.to_list() 
28 ndl = [] 
29 for d in d_list: 
30 numb = parser.parse(d) 
31 ndl.append(numb) 
32 nda = np.array(ndl) 
33 
34 # calculate the stock market appreciation rate for selected year 
35 
36 closing_prices = df[col_name] 
37 
38 percentage_change_dict = {} 
39 
40 # 2000 
41 last_day_price = df["Close*"][5315 - 2] 
42 first_day_price = df["Close*"][5566 - 2] 
43 last_day_price_no_comma = last_day_price.replace(',', '') 
44 first_day_price_no_comma = first_day_price.replace(',','') 
45 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
46 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
47 percentage_change_2f = "{:.2f}".format(percentage_change) 
48 percentage_change_dict[2000] = percentage_change_2f 
49 
50 # 2001 
51 last_day_price = df["Close*"][5067 - 2] 
52 first_day_price = df["Close*"][5314 - 2] 
53 last_day_price_no_comma = last_day_price.replace(',', '') 
54 first_day_price_no_comma = first_day_price.replace(',','') 
55 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
56 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
57 percentage_change_2f = "{:.2f}".format(percentage_change) 
58 percentage_change_dict[2001] = percentage_change_2f 
59 
60 # 2002 
61 last_day_price = df["Close*"][4815 - 2] 
62 first_day_price = df["Close*"][5066 - 2] 
63 last_day_price_no_comma = last_day_price.replace(',', '') 
64 first_day_price_no_comma = first_day_price.replace(',','') 
65 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
66 percentage_change = (diff / float(first_day_price_no_comma)) * 100 

67 percentage_change_2f = "{:.2f}".format(percentage_change) 
68 percentage_change_dict[2002] = percentage_change_2f 
69 
70 # 2003 
71 last_day_price = df["Close*"][4563 - 2] 
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72 first_day_price = df["Close*"][4814 - 2] 
73 last_day_price_no_comma = last_day_price.replace(',', '') 
74 first_day_price_no_comma = first_day_price.replace(',','') 
75 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
76 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
77 percentage_change_2f = "{:.2f}".format(percentage_change) 
78 percentage_change_dict[2003] = percentage_change_2f 
79 
80 # 2004 
81 last_day_price = df["Close*"][4311 - 2] 
82 first_day_price = df["Close*"][4562 - 2] 
83 last_day_price_no_comma = last_day_price.replace(',', '') 
84 first_day_price_no_comma = first_day_price.replace(',','') 
85 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
86 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
87 percentage_change_2f = "{:.2f}".format(percentage_change) 
88 percentage_change_dict[2004] = percentage_change_2f 
89 
90 # 2005 
91 last_day_price = df["Close*"][4059 - 2] 
92 first_day_price = df["Close*"][4310 - 2] 
93 last_day_price_no_comma = last_day_price.replace(',', '') 
94 first_day_price_no_comma = first_day_price.replace(',','') 
95 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
96 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
97 percentage_change_2f = "{:.2f}".format(percentage_change) 
98 percentage_change_dict[2005] = percentage_change_2f 
99 
100 # 2006 
101 last_day_price = df["Close*"][3808 - 2] 
102 first_day_price = df["Close*"][4058 - 2] 
103 last_day_price_no_comma = last_day_price.replace(',', '') 
104 first_day_price_no_comma = first_day_price.replace(',','') 
105 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
106 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
107 percentage_change_2f = "{:.2f}".format(percentage_change) 
108 percentage_change_dict[2006] = percentage_change_2f 
109 
110 # 2007 
111 last_day_price = df["Close*"][3557 - 2] 
112 first_day_price = df["Close*"][3807 - 2] 
113 last_day_price_no_comma = last_day_price.replace(',', '') 
114 first_day_price_no_comma = first_day_price.replace(',','') 
115 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
116 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
117 percentage_change_2f = "{:.2f}".format(percentage_change) 
118 percentage_change_dict[2007] = percentage_change_2f 
119 
120 # 2008 
121 last_day_price = df["Close*"][3304 - 2] 
122 first_day_price = df["Close*"][3556 - 2] 
123 last_day_price_no_comma = last_day_price.replace(',', '') 
124 first_day_price_no_comma = first_day_price.replace(',','') 
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125 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
126 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
127 percentage_change_2f = "{:.2f}".format(percentage_change) 
128 percentage_change_dict[2008] = percentage_change_2f 
129 
130 # 2009 
131 last_day_price = df["Close*"][3052 - 2] 
132 first_day_price = df["Close*"][3303 - 2] 
133 last_day_price_no_comma = last_day_price.replace(',', '') 

134 first_day_price_no_comma = first_day_price.replace(',','') 
135 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
136 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
137 percentage_change_2f = "{:.2f}".format(percentage_change) 
138 percentage_change_dict[2009] = percentage_change_2f 
139 
140 # 2010 
141 last_day_price = df["Close*"][2800 - 2] 
142 first_day_price = df["Close*"][3051 - 2] 
143 last_day_price_no_comma = last_day_price.replace(',', '') 
144 first_day_price_no_comma = first_day_price.replace(',','') 
145 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
146 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
147 percentage_change_2f = "{:.2f}".format(percentage_change) 
148 percentage_change_dict[2010] = percentage_change_2f 
149 
150 # 2011 
151 last_day_price = df["Close*"][2548 - 2] 
152 first_day_price = df["Close*"][2799 - 2] 
153 last_day_price_no_comma = last_day_price.replace(',', '') 
154 first_day_price_no_comma = first_day_price.replace(',','') 
155 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
156 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
157 percentage_change_2f = "{:.2f}".format(percentage_change) 
158 percentage_change_dict[2011] = percentage_change_2f 
159 
160 # 2012 
161 last_day_price = df["Close*"][2298 - 2] 
162 first_day_price = df["Close*"][2547 - 2] 
163 last_day_price_no_comma = last_day_price.replace(',', '') 
164 first_day_price_no_comma = first_day_price.replace(',','') 
165 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
166 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
167 percentage_change_2f = "{:.2f}".format(percentage_change) 
168 percentage_change_dict[2012] = percentage_change_2f 
169 
170 # 2013 
171 last_day_price = df["Close*"][2046 - 2] 
172 first_day_price = df["Close*"][2297 - 2] 
173 last_day_price_no_comma = last_day_price.replace(',', '') 
174 first_day_price_no_comma = first_day_price.replace(',','') 
175 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
176 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
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177 percentage_change_2f = "{:.2f}".format(percentage_change) 
178 percentage_change_dict[2013] = percentage_change_2f 
179 
180 # 2014 
181 last_day_price = df["Close*"][1794 - 2] 
182 first_day_price = df["Close*"][2045 - 2] 
183 last_day_price_no_comma = last_day_price.replace(',', '') 
184 first_day_price_no_comma = first_day_price.replace(',','') 
185 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
186 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
187 percentage_change_2f = "{:.2f}".format(percentage_change) 
188 percentage_change_dict[2014] = percentage_change_2f 
189 
190 # 2015 
191 last_day_price = df["Close*"][1542 - 2] 
192 first_day_price = df["Close*"][1793 - 2] 
193 last_day_price_no_comma = last_day_price.replace(',', '') 
194 first_day_price_no_comma = first_day_price.replace(',','') 
195 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
196 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
197 percentage_change_2f = "{:.2f}".format(percentage_change) 
198 percentage_change_dict[2015] = percentage_change_2f 
199 
200 # 2016 

201 last_day_price = df["Close*"][1290 - 2] 
202 first_day_price = df["Close*"][1541 - 2] 
203 last_day_price_no_comma = last_day_price.replace(',', '') 
204 first_day_price_no_comma = first_day_price.replace(',','') 
205 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
206 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
207 percentage_change_2f = "{:.2f}".format(percentage_change) 
208 percentage_change_dict[2016] = percentage_change_2f 
209 
210 # 2017 
211 last_day_price = df["Close*"][1039 - 2] 
212 first_day_price = df["Close*"][1289 - 2] 
213 last_day_price_no_comma = last_day_price.replace(',', '') 
214 first_day_price_no_comma = first_day_price.replace(',','') 
215 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
216 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
217 percentage_change_2f = "{:.2f}".format(percentage_change) 
218 percentage_change_dict[2017] = percentage_change_2f 
219 
220 # 2018 
221 last_day_price = df["Close*"][788 - 2] 
222 first_day_price = df["Close*"][1038 - 2] 
223 last_day_price_no_comma = last_day_price.replace(',', '') 
224 first_day_price_no_comma = first_day_price.replace(',','') 
225 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
226 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
227 percentage_change_2f = "{:.2f}".format(percentage_change) 
228 percentage_change_dict[2018] = percentage_change_2f 
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229 
230 # 2019 
231 last_day_price = df["Close*"][536 - 2] 
232 first_day_price = df["Close*"][787 - 2] 
233 last_day_price_no_comma = last_day_price.replace(',', '') 
234 first_day_price_no_comma = first_day_price.replace(',','') 
235 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
236 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
237 percentage_change_2f = "{:.2f}".format(percentage_change) 
238 percentage_change_dict[2019] = percentage_change_2f 
239 
240 # 2020 
241 last_day_price = df["Close*"][283 - 2] 
242 first_day_price = df["Close*"][535 - 2] 
243 last_day_price_no_comma = last_day_price.replace(',', '') 
244 first_day_price_no_comma = first_day_price.replace(',','') 
245 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
246 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
247 percentage_change_2f = "{:.2f}".format(percentage_change) 
248 percentage_change_dict[2020] = percentage_change_2f 
249 
250 # 2021 
251 last_day_price = df["Close*"][31 - 2] 
252 first_day_price = df["Close*"][282 - 2] 
253 last_day_price_no_comma = last_day_price.replace(',', '') 
254 first_day_price_no_comma = first_day_price.replace(',','') 
255 diff = float(last_day_price_no_comma) - float(first_day_price_no_comma) 
256 percentage_change = (diff / float(first_day_price_no_comma)) * 100 
257 percentage_change_2f = "{:.2f}".format(percentage_change) 
258 percentage_change_dict[2021] = percentage_change_2f 
259 
260 input_year = input("Which year do you want to search for? Enter a year in [2000, 
2010]: ") 
261 if (int(input_year) < 2000) or (int(input_year) > 2010): # check the years 2010-2020 
262 print("Year outside acceptable range. Exiting...") 
263 sys.exit() 
264 coastal_preference = input("Do you want cities in coastal or non-coastal states? ") 
265 coastal_preference = coastal_preference.upper() 
266 if coastal_preference == "COASTAL": 

267 COASTAL = True 
268 else: 
269 COASTAL = False 
270 print("In ", int(input_year), ", the change in the Dow Jones Industrial Average 
was: ", percentage_change_dict[int(input_year)], " percent.", sep ="") 
271 
272 # calculate the real estate appreciation rate for selected year(s) 
273 
274 # add color to the terminal 
275 os.system('color') 
276 
277 mode = 1 
278 period_length = 1 
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279 
280 period_name = input_year 
281 
282 # process the dataframe 
283 original_df = pd.read_csv("Metro_zhvi_uc_sfr_tier_0.33_0.67_sm_sa_month.csv") 
284 
285 # pre-processing steps 
286 # step 1: get the column names 
287 complete_rows_df = original_df 
288 size_rank_column_df = original_df[['SizeRank']] 
289 region_name_column_df = original_df[['RegionName']] 
290 size_rank_column_series = size_rank_column_df.squeeze() 
291 region_name_column_series = region_name_column_df.squeeze() 
292 region_name_column_list = region_name_column_series.tolist() 
293 number_of_rows = original_df.shape[0] 
294 city_name_size_rank_dict = {} 
295 for i in range(0, number_of_rows): 
296 city_name_size_rank_dict[region_name_column_series[i]] = size_rank_column_series 
[i] 
297 
298 # step 2: drop "RegionID", "SizeRank", "RegionType", and "StateName" columns 
299 df = complete_rows_df.drop(columns=['RegionID', 'SizeRank', 'RegionType', 
'StateName']) 
300 df = df.iloc[1: , :] # remove the first row because it doesn't have a state 
301 if COASTAL == True: 
302 df = df[df["RegionName"].str.contains( 
"CA|OR|WA|AK|HI|ME|NH|MA|RI|CT|NY|NJ|DE|MD|VA|NC|SC|GA|FL|TX|LA|MS|AL")] 
303 else: 
304 df = df[df["RegionName"].str.contains( 
"ID|MT|ND|MN|WI|MI|VT|WY|SD|IA|PA|NV|UT|CO|NE|IL|IN|OH|KS|MO|KY|WV|AZ|NM|OK|AR|TN 
|DC")] 
305 
306 str_number_of_cities_to_list = df.shape[0] 
307 
308 # create a numeric dataframe consisting of only floats 
309 float_df = df.drop(columns=['RegionName']) 
310 
311 periods = [] 
312 period_dict = {} 
313 
314 # partition the floating point dataframe into 25 1-year periods 
315 for i in range(0,180,12): 
316 period = float_df.iloc[:, i:i+12] 
317 periods.append(period) 
318 period_dict[0] = '1996' 
319 period_dict[1] = '1997' 
320 period_dict[2] = '1998' 
321 period_dict[3] = '1999' 
322 period_dict[4] = '2000' 
323 period_dict[5] = '2001' 
324 period_dict[6] = '2002' 
325 period_dict[7] = '2003' 
326 period_dict[8] = '2004' 
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327 period_dict[9] = '2005' 

328 period_dict[10] = '2006' 
329 period_dict[11] = '2007' 
330 period_dict[12] = '2008' 
331 period_dict[13] = '2009' 
332 period_dict[14] = '2010' 
333 period_dict[15] = '2011' 
334 period_dict[16] = '2012' 
335 period_dict[17] = '2013' 
336 period_dict[18] = '2014' 
337 period_dict[19] = '2015' 
338 period_dict[20] = '2016' 
339 period_dict[21] = '2017' 
340 period_dict[22] = '2018' 
341 period_dict[23] = '2019' 
342 period_dict[24] = '2020' 
343 
344 # get the city names and put them in a list 
345 city_names_list = df['RegionName'].values.tolist() 
346 big_city_list = city_names_list[1:40] 
347 all_period_list = [] 
348 for period in periods: 
349 # declare a list to store the normalized price increase for each city for that 
period 
350 abs_price_inc_list = [] 
351 for i in range(0, len(period)): 
352 first = i 
353 last = i+1 
354 row = period.iloc[first:last, :] 
355 # convert row to Panadas series 
356 row_series = row.squeeze(axis=0) 
357 rowmax = row_series.max() 
358 # normalized row for a city 
359 norm_series = row_series.divide(rowmax) 
360 limit = len(norm_series) - 1 
361 first_element_in_row = norm_series[0] 
362 last_element_in_row = norm_series[limit] 
363 difference_between_the_elements = last_element_in_row - first_element_in_row 
364 city_names_list[i] 
365 name_price_tuple = (city_names_list[i], difference_between_the_elements) 
366 abs_price_inc_list.append(name_price_tuple) 
367 sorted_period_list = Rank_Cities_in_Descending_Order(abs_price_inc_list) 
368 all_period_list.append(sorted_period_list) 
369 for k in range (0, len(all_period_list) - 1): 
370 # get the kth period's sorted list of city name-price increase pairs 
371 current_period = all_period_list[k] 
372 highest_city_price_inc_pair = current_period[0] 
373 highest_city = highest_city_price_inc_pair[0] 
374 highest_city_increase = highest_city_price_inc_pair[1] 
375 
376 fp_number_of_cities_to_list = float(str_number_of_cities_to_list) 
377 number_of_cities_to_list = int(np.ceil(fp_number_of_cities_to_list)) 
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378 period_list = list(period_dict.keys()) 
379 year_list = list(period_dict.values()) 
380 idx = year_list.index(period_name) 
381 period_number = period_list[idx] 
382 city_names_list = df['RegionName'].values.tolist() 
383 # input validation 
384 if number_of_cities_to_list <= 0: 
385 print("You are trying to list too few cities! Exiting...") 
386 sys.exit() 
387 if number_of_cities_to_list > len(city_names_list): 
388 print("You are trying to list more cities than there are in the dataset! 
Exiting...") 
389 sys.exit() 
390 period = periods[period_number] 
391 # declare a list to store the normalized price increase for each city for that period 
392 abs_price_inc_list = [] 

393 for i in range(0, len(period)): 
394 first = i 
395 last = i+1 
396 row = period.iloc[first:last, :] 
397 # convert row to Pandas series 
398 row_series = row.squeeze(axis=0) 
399 rowmax = row_series.max() 
400 # normalized row for a city 
401 norm_series = row_series.divide(rowmax) 
402 limit = len(norm_series) - 1 
403 first_element_in_row = norm_series[0] 
404 last_element_in_row = norm_series[limit] 
405 difference_between_the_elements = last_element_in_row - first_element_in_row 
406 city_names_list[i] 
407 name_price_tuple = (city_names_list[i], difference_between_the_elements) 
408 abs_price_inc_list.append(name_price_tuple) 
409 sorted_list = Rank_Cities_in_Descending_Order(abs_price_inc_list) 
410 avg_inc_in_normalized_price_list = [] 
411 for j in range (0, number_of_cities_to_list): 
412 highest_city_price_inc_pair = sorted_list[j] 
413 highest_city = highest_city_price_inc_pair[0] 
414 highest_city_increase = highest_city_price_inc_pair[1] 
415 avg_inc_in_normalized_price_list.append(highest_city_increase) 
416 avg_inc_in_normalized_price_array = np.array(avg_inc_in_normalized_price_list) 
417 avg_inc_in_normalized_price = np.nanmean(avg_inc_in_normalized_price_array) 
418 avg_inc_in_normalized_price_2f = "{:.2f}".format(avg_inc_in_normalized_price * 100) 
419 print("The average increase in the normalized median price of single family homes 
was: ", avg_inc_in_normalized_price_2f, " percent.", sep="") 
420 
421 # calculate the inflation rate for the selected year(s) 
422 
423 filename2 = sys.argv[2] 
424 df2 = pd.read_csv(str(filename2)) 
425 int_selected_year = int(input_year) 
426 selected_month = "Monthly_Average" 
427 first_col = df2['Year'] 
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428 second_col = df2[selected_month] 
429 subset = pd.concat([first_col, second_col], axis=1) 
430 # 1996 is index 0 
431 index = int_selected_year - 1996 
432 row = df2[index:index+1] 
433 inflation_rate_df = row['Monthly_Average'] 
434 inflation_rate = inflation_rate_df.to_string(index=False) 
435 print("The inflation rate was", inflation_rate, " percent.", sep="") 

re1.py 

1 #!/usr/bin/env python 
2 
3 import numpy as np 
4 import pandas as pd 
5 import matplotlib.pyplot as plt 
6 import sys 
7 import os 
8 import termcolor as tm 
9 import scipy.stats 
10 from datetime import datetime 
11 from OSMPythonTools.nominatim import Nominatim 
12 
13 # named constants 
14 
15 date_format = "%m/%d/%Y" 
16 
17 # sorting functions 
18 
19 def Rank_Cities_in_Descending_Order(t): 
20 t.sort(key = lambda x: x[1], reverse=True) 
21 return t 
22 
23 def Rank_Cities_in_Ascending_Order(t): 
24 t.sort(key = lambda x: x[1], reverse=False) 
25 return t 
26 #TODO: Add a dict that maps user-friendly string command line arguments to numeric modes 
27 
28 if __name__ == "__main__": 
29 # add color to the terminal 
30 os.system('color') 
31 # take command line arguments 
32 cmd = str(sys.argv[1]) 
33 mode = int(cmd) 
34 period_length = 10 # default value 
35 # choose mode and take corresponding user input 
36 if (mode < 0) or (mode > 20): 
37 print('Invalid command line argument! Exiting...') 
38 sys.exit() 
39 if mode == 1: 
40 period_length_arg = input('Select period length of 1, 2, 5, or 10 years: ') 
41 period_length = int(period_length_arg) 
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42 # input validation 
43 if (period_length < 1) or (period_length > 10): 
44 period_length = 10 # default value 
45 city1 = input("Enter a city and state: ") 
46 elif mode == 2: 
47 period_length_arg = input('Select period length of 1, 2, 5, or 10 years: ') 
48 period_length = int(period_length_arg) 
49 # input validation 
50 if (period_length < 1) or (period_length > 10): 
51 period_length = 10 # default value 
52 if period_length == 1: 
53 period_name = input("Enter a 1-year period between 1996 and 2020 (in YYYY 
format): ") 
54 elif period_length == 2: 
55 period_name = input("Enter a 2-year period between 1996 and 2020 (in 
YYYY-YYYY format): ") 
56 elif period_length == 5: 
57 period_name = input("Enter a 5-year period between 1996 and 2020 (in 
YYYY-YYYY format): ") 
58 elif period_length == 10: 
59 period_name = input("Enter a 10-year period between 1996 and 2020 (in 
YYYY-YYYY format): ") 
60 str_number_of_cities_to_list = input("How many cities do you want to list? ") 
61 elif mode == 3: 
62 amount = input("Enter an amount to invest (in thousands): ") 
63 elif mode == 4: 

64 city1 = input("Enter a city and state: ") 
65 city2 = input("Enter another city and state: ") 
66 elif mode == 5: 
67 city1 = input("Enter a city and state: ") 
68 elif mode == 6: 
69 city1 = input("Enter a city and state: ") 
70 elif mode == 7: 
71 city1 = input("Enter a city and state: ") 
72 elif mode == 8: 
73 city1 = input("Enter a city and state: ") 
74 str_requested_year = input("Enter a year: ") 
75 requested_year = int(str_requested_year) 
76 elif mode == 9: 
77 city1 = input("Enter a city and state: ") 
78 str_requested_years = input("Enter a series of years (separated by spaces): ") 
79 requested_years_string_list = list(str_requested_years.split(' ')) 
80 requested_years = [int(i) for i in requested_years_string_list] 
81 elif mode == 10: 
82 city1 = input("Enter a city and state: ") 
83 elif mode == 11: 
84 city1 = input("Enter a city and state: ") 
85 elif mode == 13: 
86 upper_bound_str = input("Enter the upper bound: ") 
87 lower_bound_str = input("Enter the lower bound: ") 
88 upper_bound = float(upper_bound_str) 
89 lower_bound = float(lower_bound_str) 
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90 if lower_bound > upper_bound: 
91 print("Invalid input!!!") 
92 sys.exit(0) 
93 elif mode == 15: 
94 city1 = input("Enter a city and state: ") 
95 
96 # process the dataframe 
97 original_df = pd.read_csv("Metro_zhvi_uc_sfr_tier_0.33_0.67_sm_sa_month.csv") 
98 senators_df = pd.read_csv("Senators_Political_Affiliations_1996_2021.csv") 
99 
100 # define the regions of the United States 
101 west_coast_states = ["WA", "OR", "CA", "NV", "AZ", "AK", "HI"] 
102 rocky_mountain_states = ["MT", "ID", "WY", "UT", "CO"] 
103 gulf_coast_states = ["NM", "TX", "LA", "AR", "MS", "AL"] 
104 midwest_states = ["ND", "SD", "NE", "KS", "OK", "MN", "IA", "MO", "WI", "IL", "IN", 
"OH", "MI", "KY", "TN"] 
105 east_coast_states = ["ME", "VT", "NH", "MA", "CT", "RI", "NY", "PA", "NJ", "MD", 
"DE", "WV", "VA", "NC", "SC", "GA", "FL"] 
106 
107 #index 0 is 1996 
108 AL_series = senators_df["AL"] 
109 AL_senators = AL_series.tolist() 
110 
111 AR_series = senators_df["AR"] 
112 AR_senators = AR_series.tolist() 
113 
114 AZ_series = senators_df["AZ"] 
115 AZ_senators = AZ_series.tolist() 
116 
117 CA_series = senators_df["CA"] 
118 CA_senators = CA_series.tolist() 
119 
120 CO_series = senators_df["CO"] 
121 CO_senators = CO_series.tolist() 
122 
123 CT_series = senators_df["CT"] 
124 CT_senators = CT_series.tolist() 
125 
126 FL_series = senators_df["FL"] 
127 FL_senators = FL_series.tolist() 
128 

129 GA_series = senators_df["GA"] 
130 GA_senators = GA_series.tolist() 
131 
132 HI_series = senators_df["HI"] 
133 HI_senators = HI_series.tolist() 
134 
135 IA_series = senators_df["IA"] 
136 IA_senators = IA_series.tolist() 
137 
138 ID_series = senators_df["ID"] 
139 ID_senators = ID_series.tolist() 
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140 
141 IL_series = senators_df["IL"] 
142 IL_senators = IL_series.tolist() 
143 
144 IN_series = senators_df["IN"] 
145 IN_senators = IN_series.tolist() 
146 
147 KS_series = senators_df["KS"] 
148 KS_senators = KS_series.tolist() 
149 
150 KY_series = senators_df["KY"] 
151 KY_senators = KY_series.tolist() 
152 
153 LA_series = senators_df["LA"] 
154 LA_senators = LA_series.tolist() 
155 
156 ME_series = senators_df["ME"] 
157 ME_senators = ME_series.tolist() 
158 
159 MD_series = senators_df["MD"] 
160 MD_senators = MD_series.tolist() 
161 
162 MA_series = senators_df["MA"] 
163 MA_senators = MA_series.tolist() 
164 
165 MI_series = senators_df["MI"] 
166 MI_senators = MI_series.tolist() 
167 
168 MN_series = senators_df["MN"] 
169 MN_senators = MN_series.tolist() 
170 
171 MS_series = senators_df["MS"] 
172 MS_senators = MS_series.tolist() 
173 
174 MO_series = senators_df["MO"] 
175 MO_senators = MO_series.tolist() 
176 
177 NE_series = senators_df["NE"] 
178 NE_senators = NE_series.tolist() 
179 
180 NV_series = senators_df["NV"] 
181 NV_senators = NV_series.tolist() 
182 
183 NJ_series = senators_df["NJ"] 
184 NJ_senators = NJ_series.tolist() 
185 
186 NM_series = senators_df["NM"] 
187 NM_senators = NM_series.tolist() 
188 
189 NY_series = senators_df["NY"] 
190 NY_senators = NY_series.tolist() 
191 
192 NC_series = senators_df["NC"] 
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193 NC_senators = NC_series.tolist() 
194 
195 OH_series = senators_df["OH"] 

196 OH_senators = OH_series.tolist() 
197 
198 OK_series = senators_df["OK"] 
199 OK_senators = OK_series.tolist() 
200 
201 OR_series = senators_df["OR"] 
202 OR_senators = OR_series.tolist() 
203 
204 PA_series = senators_df["PA"] 
205 PA_senators = PA_series.tolist() 
206 
207 RI_series = senators_df["RI"] 
208 RI_senators = RI_series.tolist() 
209 
210 SC_series = senators_df["SC"] 
211 SC_senators = SC_series.tolist() 
212 
213 TN_series = senators_df["TN"] 
214 TN_senators = TN_series.tolist() 
215 
216 TX_series = senators_df["TX"] 
217 TX_senators = TX_series.tolist() 
218 
219 UT_series = senators_df["UT"] 
220 UT_senators = UT_series.tolist() 
221 
222 VA_series = senators_df["VA"] 
223 VA_senators = VA_series.tolist() 
224 
225 WA_series = senators_df["WA"] 
226 WA_senators = WA_series.tolist() 
227 
228 WI_series = senators_df["WI"] 
229 WI_senators = WI_series.tolist() 
230 
231 # pre-processing steps 
232 # step 1: get the column names 
233 complete_rows_df = original_df 
234 size_rank_column_df = original_df[['SizeRank']] 
235 region_name_column_df = original_df[['RegionName']] 
236 size_rank_column_series = size_rank_column_df.squeeze() 
237 region_name_column_series = region_name_column_df.squeeze() 
238 region_name_column_list = region_name_column_series.tolist() 
239 number_of_rows = original_df.shape[0] 
240 city_name_size_rank_dict = {} 
241 for i in range(0, number_of_rows): 
242 city_name_size_rank_dict[region_name_column_series[i]] = size_rank_column_series 
[i] 
243 
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244 # step 2: drop "RegionID", "SizeRank", "RegionType", and "StateName" columns 
245 df = complete_rows_df.drop(columns=['RegionID', 'SizeRank', 'RegionType', 
'StateName']) 
246 
247 # create a numeric dataframe consisting of only floats 
248 float_df = df.drop(columns=['RegionName']) 
249 
250 periods = [] 
251 period_dict = {} 
252 
253 if period_length == 1: 
254 # partition the floating point dataframe into 25 1-year periods 
255 for i in range(0,180,12): 
256 period = float_df.iloc[:, i:i+12] 
257 periods.append(period) 
258 period_dict[0] = '1996' 
259 period_dict[1] = '1997' 
260 period_dict[2] = '1998' 

261 period_dict[3] = '1999' 
262 period_dict[4] = '2000' 
263 period_dict[5] = '2001' 
264 period_dict[6] = '2002' 
265 period_dict[7] = '2003' 
266 period_dict[8] = '2004' 
267 period_dict[9] = '2005' 
268 period_dict[10] = '2006' 
269 period_dict[11] = '2007' 
270 period_dict[12] = '2008' 
271 period_dict[13] = '2009' 
272 period_dict[14] = '2010' 
273 period_dict[15] = '2011' 
274 period_dict[16] = '2012' 
275 period_dict[17] = '2013' 
276 period_dict[18] = '2014' 
277 period_dict[19] = '2015' 
278 period_dict[20] = '2016' 
279 period_dict[21] = '2017' 
280 period_dict[22] = '2018' 
281 period_dict[23] = '2019' 
282 period_dict[24] = '2020' 
283 
284 if period_length == 2: 
285 # partition the floating point dataframe into 25 2-year periods 
286 for i in range(0,180,12): 
287 period = float_df.iloc[:, i:i+24] 
288 periods.append(period) 
289 period_dict[0] = '1996-1997' 
290 period_dict[1] = '1997-1998' 
291 period_dict[2] = '1998-1999' 
292 period_dict[3] = '1999-2000' 
293 period_dict[4] = '2000-2001' 
294 period_dict[5] = '2001-2002' 
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295 period_dict[6] = '2002-2003' 
296 period_dict[7] = '2003-2004' 
297 period_dict[8] = '2004-2005' 
298 period_dict[9] = '2005-2006' 
299 period_dict[10] = '2006-2007' 
300 period_dict[11] = '2007-2008' 
301 period_dict[12] = '2008-2009' 
302 period_dict[13] = '2009-2010' 
303 period_dict[14] = '2010-2011' 
304 period_dict[15] = '2011-2012' 
305 period_dict[16] = '2012-2013' 
306 period_dict[17] = '2013-2014' 
307 period_dict[18] = '2014-2015' 
308 period_dict[19] = '2015-2016' 
309 period_dict[20] = '2016-2017' 
310 period_dict[21] = '2017-2018' 
311 period_dict[22] = '2018-2019' 
312 period_dict[23] = '2019-2020' 
313 period_dict[24] = '2020-2021' 
314 
315 if period_length == 5: 
316 # partition the floating point dataframe into 20 5-year periods 
317 for i in range(0,252,12): 
318 period = float_df.iloc[:, i:i+60] 
319 periods.append(period) 
320 period_dict[0] = '1996-2001' 
321 period_dict[1] = '1997-2002' 
322 period_dict[2] = '1998-2003' 
323 period_dict[3] = '1999-2004' 
324 period_dict[3] = '2000-2005' 
325 period_dict[4] = '2001-2006' 
326 period_dict[5] = '2002-2007' 
327 period_dict[6] = '2003-2008' 

328 period_dict[7] = '2004-2009' 
329 period_dict[8] = '2005-2010' 
330 period_dict[9] = '2006-2011' 
331 period_dict[10] = '2007-2012' 
332 period_dict[11] = '2008-2013' 
333 period_dict[12] = '2009-2014' 
334 period_dict[13] = '2010-2015' 
335 period_dict[14] = '2011-2016' 
336 period_dict[15] = '2012-2017' 
337 period_dict[16] = '2013-2018' 
338 period_dict[17] = '2014-2019' 
339 period_dict[18] = '2015-2020' 
340 period_dict[19] = '2016-2021' 
341 
342 if period_length == 10: 
343 # partition the floating point dataframe into 15 10-year periods 
344 for i in range(0,180,12): 
345 period = float_df.iloc[:, i:i+132] 
346 periods.append(period) 
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347 period_dict[0] = '1996-2006' 
348 period_dict[1] = '1997-2007' 
349 period_dict[2] = '1998-2008' 
350 period_dict[3] = '1999-2009' 
351 period_dict[4] = '2000-2010' 
352 period_dict[5] = '2001-2011' 
353 period_dict[6] = '2002-2012' 
354 period_dict[7] = '2003-2013' 
355 period_dict[8] = '2004-2014' 
356 period_dict[9] = '2005-2015' 
357 period_dict[10] = '2006-2016' 
358 period_dict[11] = '2007-2017' 
359 period_dict[12] = '2008-2018' 
360 period_dict[13] = '2009-2019' 
361 period_dict[14] = '2010-2020' 
362 
363 # get the city names and put them in a list 
364 city_names_list = df['RegionName'].values.tolist() 
365 big_city_list = city_names_list[1:40] 
366 all_period_list = [] 
367 for period in periods: 
368 # declare a list to store the normalized price increase for each city for that 
period 
369 abs_price_inc_list = [] 
370 for i in range(0, len(period)): 
371 first = i 
372 last = i+1 
373 row = period.iloc[first:last, :] 
374 # convert row to Pandas series 
375 row_series = row.squeeze(axis=0) 
376 rowmax = row_series.max() 
377 # normalized row for a city 
378 norm_series = row_series.divide(rowmax) 
379 limit = len(norm_series) - 1 
380 first_element_in_row = norm_series[0] 
381 last_element_in_row = norm_series[limit] 
382 difference_between_the_elements = last_element_in_row - first_element_in_row 
383 city_names_list[i] 
384 name_price_tuple = (city_names_list[i], difference_between_the_elements) 
385 abs_price_inc_list.append(name_price_tuple) 
386 sorted_period_list = Rank_Cities_in_Descending_Order(abs_price_inc_list) 
387 all_period_list.append(sorted_period_list) 
388 for k in range (0, len(all_period_list) - 1): 
389 # get the kth period's sorted list of city name-price increase pairs 
390 current_period = all_period_list[k] 
391 highest_city_price_inc_pair = current_period[0] 
392 highest_city = highest_city_price_inc_pair[0] 
393 highest_city_increase = highest_city_price_inc_pair[1] 

394 
395 # the modes 
396 if mode == 1: 
397 current_highest_price = 0 
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398 index_of_best_period = 0 
399 for i in range (0, len(all_period_list) - 1): 
400 current_period = all_period_list[i] 
401 for j in range (0, len(current_period)): 
402 this_tuple = current_period[j] 
403 if this_tuple[0] == city1: 
404 price_in_period_i = this_tuple[1] 
405 if price_in_period_i > current_highest_price: 
406 current_highest_price = price_in_period_i 
407 index_of_best_period = i 
408 current_highest_price_3f = "{:.3f}".format (current_highest_price) 
409 print('The best ', period_length, '-year span to invest in ', city1, ' was ', 
period_dict[index_of_best_period], '. It had an increase in normalized price of 
', current_highest_price_3f, ' during that period.', sep='') 
410 
411 if mode == 2: 
412 fp_number_of_cities_to_list = float(str_number_of_cities_to_list) 
413 number_of_cities_to_list = int(np.ceil(fp_number_of_cities_to_list)) 
414 period_list = list(period_dict.keys()) 
415 year_list = list(period_dict.values()) 
416 idx = year_list.index(period_name) 
417 period_number = period_list[idx] 
418 city_names_list = df['RegionName'].values.tolist() 
419 # input validation 
420 if number_of_cities_to_list <= 0: 
421 print("You are trying to list too few cities! Exiting...") 
422 sys.exit() 
423 if number_of_cities_to_list > len(city_names_list): 
424 print("You are trying to list more cities than there are in the dataset! 
Exiting...") 
425 sys.exit() 
426 period = periods[period_number] 
427 # declare a list to store the normalized price increase for each city for that 
period 
428 abs_price_inc_list = [] 
429 for i in range(0, len(period)): 
430 first = i 
431 last = i+1 
432 row = period.iloc[first:last, :] 
433 # convert row to Pandas series 
434 row_series = row.squeeze(axis=0) 
435 rowmax = row_series.max() 
436 # normalized row for a city 
437 norm_series = row_series.divide(rowmax) 
438 limit = len(norm_series) - 1 
439 first_element_in_row = norm_series[0] 
440 last_element_in_row = norm_series[limit] 
441 difference_between_the_elements = last_element_in_row - first_element_in_row 
442 city_names_list[i] 
443 name_price_tuple = (city_names_list[i], difference_between_the_elements) 
444 abs_price_inc_list.append(name_price_tuple) 
445 sorted_list = Rank_Cities_in_Descending_Order(abs_price_inc_list) 
446 print("The", number_of_cities_to_list, "highest performing cities in", 
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period_name, 'were:\n') 
447 for j in range (0, number_of_cities_to_list): 
448 highest_city_price_inc_pair = sorted_list[j] 
449 highest_city = highest_city_price_inc_pair[0] 
450 highest_city_increase = highest_city_price_inc_pair[1] 
451 highest_city_increase_3f = "{:.3f}".format(highest_city_increase) 
452 print(j+1, highest_city, 'which had an increase in normalized price of', 
highest_city_increase_3f) 
453 
454 if mode == 3: 

455 # filter the rows of the dataframe based on the initial amount entered 
456 reduced_df = float_df.loc[float_df['1/31/1996'] <= ( float(amount) * 1000) ] 
457 # get the city names and put them in a list 
458 city_names_list = df['RegionName'].values.tolist() 
459 # declare a list to store the normalized price increase for each city 
460 abs_price_inc_list = [] 
461 for i in range(0, reduced_df.shape[0]): 
462 first = i 
463 last = i+1 
464 row = reduced_df.iloc[first:last, :] 
465 # convert row to Pandas series 
466 row_series = row.squeeze(axis=0) 
467 rowmax = row_series.max() 
468 # normalized row for a city 
469 norm_series = row_series.divide(rowmax) 
470 limit = len(norm_series) - 8 
471 first_element_in_row = norm_series[0] 
472 last_element_in_row = norm_series[limit] 
473 difference_between_the_elements = last_element_in_row - first_element_in_row 
474 city_names_list[i] 
475 name_price_tuple = (city_names_list[i], difference_between_the_elements) 
476 abs_price_inc_list.append(name_price_tuple) 
477 sorted_list = Rank_Cities_in_Descending_Order(abs_price_inc_list) 
478 highest_city_price_inc_pair = sorted_list[0] 
479 highest_city = highest_city_price_inc_pair[0] 
480 highest_city_increase = highest_city_price_inc_pair[1] 
481 highest_city_increase_3f = "{:.3f}".format(highest_city_increase) 
482 print('The best place to invest', amount, 'thousand dollars in 1996-2020 was', 
highest_city, 'which had an increase in normalized price of', 
highest_city_increase_3f) 
483 
484 if mode == 4: 
485 # get the city names and put them in a list 
486 city_names_list = df['RegionName'].values.tolist() 
487 # declare a list to store the normalized price increase for each city 
488 abs_price_inc_list = [] 
489 for i in range(0, float_df.shape[0]): 
490 first = i 
491 last = i+1 
492 row = float_df.iloc[first:last, :] 
493 # convert row to Panadas series 
494 row_series = row.squeeze(axis=0) 
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495 rowmax = row_series.max() 
496 # normalized row for a city 
497 norm_series = row_series.divide(rowmax) 
498 limit = len(norm_series) - 8 
499 first_element_in_row = norm_series[0] 
500 last_element_in_row = norm_series[limit] 
501 difference_between_the_elements = last_element_in_row - first_element_in_row 
502 name_price_tuple = (city_names_list[i], difference_between_the_elements) 
503 abs_price_inc_list.append(name_price_tuple) 
504 sorted_list = Rank_Cities_in_Descending_Order(abs_price_inc_list) 
505 
506 current_highest_price_for_city1 = 0 
507 current_highest_price_for_city2 = 0 
508 for j in range (0, len(sorted_list)): 
509 this_tuple = sorted_list[j] 
510 if this_tuple[0] == city1: 
511 price_in_period_i = this_tuple[1] 
512 if price_in_period_i > current_highest_price_for_city1: 
513 current_highest_price_for_city1 = price_in_period_i 
514 if this_tuple[0] == city2: 
515 price_in_period_j = this_tuple[1] 
516 if price_in_period_j > current_highest_price_for_city2: 
517 current_highest_price_for_city2 = price_in_period_j 
518 current_highest_price_for_city1_3f = "{:.3f}".format( 
current_highest_price_for_city1) 

519 current_highest_price_for_city2_3f = "{:.3f}".format( 
current_highest_price_for_city2) 
520 if current_highest_price_for_city1 > current_highest_price_for_city2: 
521 print(city1, 'was a better place to invest than', city2, 'in 1996-2020.') 
522 print(city1, 'had an increase in normalized price of', 
current_highest_price_for_city1_3f) 
523 print(city2, 'had an increase in normalized price of', 
current_highest_price_for_city2_3f) 
524 if current_highest_price_for_city2 > current_highest_price_for_city1: 
525 print(city2, 'was a better place to invest than', city1, 'in 1996-2020.') 
526 print(city2, 'had an increase in normalized price of', 
current_highest_price_for_city2_3f) 
527 print(city1, 'had an increase in normalized price of', 
current_highest_price_for_city1_3f) 
528 
529 if mode == 5: 
530 # Find how long it will take to double your initial investment in city1 
531 idx = city_names_list.index(city1) 
532 first = 0 
533 last = float_df.shape[1] 
534 row = float_df.iloc[idx, :] 
535 # convert row to Panadas series 
536 row_series = row.squeeze(axis=0) 
537 rowmax = row_series.max() 
538 rowmin = row_series.min() 
539 string_starting_idx = row.idxmin() 
540 numeric_starting_idx = 0 
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541 numeric_ending_idx = 0 
542 
543 month_dict = {} 
544 months = float_df.columns.values.tolist() 
545 for i in range(0, len(months)): 
546 month_dict[months[i]] = i 
547 numeric_starting_idx = month_dict[string_starting_idx] 
548 double_price = rowmin * 2 
549 current_price = 999999 
550 for j in range(numeric_starting_idx, len(months)): 
551 current_price = row[j] 
552 if current_price >= double_price: 
553 numeric_ending_idx = j 
554 break 
555 #convert numeric_ending_idx to string_ending_idx 
556 string_ending_idx = months[numeric_ending_idx] 
557 min_years = (numeric_ending_idx - numeric_starting_idx) / 12 
558 start_year = string_starting_idx[-4:] 
559 end_year = string_ending_idx[-4:] 
560 int_start_year = int(start_year) 
561 int_end_year = int(end_year) 
562 int_start_index = int_start_year - 1996 
563 int_end_index = int_end_year - 1996 
564 senators = [] 
565 state_abbr = city1[-2:] 
566 if state_abbr == 'AL': 
567 senators = AL_senators[int_start_index:int_end_index] 
568 
569 if state_abbr == 'AZ': 
570 senators = AZ_senators[int_start_index:int_end_index] 
571 
572 if state_abbr == 'AR': 
573 senators = AR_senators[int_start_index:int_end_index] 
574 
575 if state_abbr == 'CA': 
576 senators = CA_senators[int_start_index:int_end_index] 
577 
578 if state_abbr == 'CO': 
579 senators = CO_senators[int_start_index:int_end_index] 
580 

581 if state_abbr == 'CT': 
582 senators = CT_senators[int_start_index:int_end_index] 
583 
584 if state_abbr == 'FL': 
585 senators = FL_senators[int_start_index:int_end_index] 
586 
587 if state_abbr == 'GA': 
588 senators = GA_senators[int_start_index:int_end_index] 
589 
590 if state_abbr == 'HI': 
591 senators = HI_senators[int_start_index:int_end_index] 
592 
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593 if state_abbr == 'ID': 
594 senators = ID_senators[int_start_index:int_end_index] 
595 
596 if state_abbr == 'IL': 
597 senators = IL_senators[int_start_index:int_end_index] 
598 
599 if state_abbr == 'IN': 
600 senators = IN_senators[int_start_index:int_end_index] 
601 
602 if state_abbr == 'IA': 
603 senators = IA_senators[int_start_index:int_end_index] 
604 
605 if state_abbr == 'KS': 
606 senators = KS_senators[int_start_index:int_end_index] 
607 
608 if state_abbr == 'KY': 
609 senators = KY_senators[int_start_index:int_end_index] 
610 
611 if state_abbr == 'LA': 
612 senators = LA_senators[int_start_index:int_end_index] 
613 
614 if state_abbr == 'ME': 
615 senators = ME_senators[int_start_index:int_end_index] 
616 
617 if state_abbr == 'MD': 
618 senators = MD_senators[int_start_index:int_end_index] 
619 
620 if state_abbr == 'MA': 
621 senators = MA_senators[int_start_index:int_end_index] 
622 
623 if state_abbr == 'MI': 
624 senators = MI_senators[int_start_index:int_end_index] 
625 
626 if state_abbr == 'MN': 
627 senators = MN_senators[int_start_index:int_end_index] 
628 
629 if state_abbr == 'MS': 
630 senators = MS_senators[int_start_index:int_end_index] 
631 
632 if state_abbr == 'MO': 
633 senators = MO_senators[int_start_index:int_end_index] 
634 
635 if state_abbr == 'NE': 
636 senators = NE_senators[int_start_index:int_end_index] 
637 
638 if state_abbr == 'NV': 
639 senators = NV_senators[int_start_index:int_end_index] 
640 
641 if state_abbr == 'NJ': 
642 senators = NJ_senators[int_start_index:int_end_index] 
643 
644 if state_abbr == 'NM': 
645 senators = NM_senators[int_start_index:int_end_index] 
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646 
647 if state_abbr == 'NY': 

648 senators = NY_senators[int_start_index:int_end_index] 
649 
650 if state_abbr == 'NC': 
651 senators = NC_senators[int_start_index:int_end_index] 
652 
653 if state_abbr == 'OH': 
654 senators = OH_senators[int_start_index:int_end_index] 
655 
656 if state_abbr == 'OK': 
657 senators = OK_senators[int_start_index:int_end_index] 
658 
659 if state_abbr == 'OR': 
660 senators = OR_senators[int_start_index:int_end_index] 
661 
662 if state_abbr == 'PA': 
663 senators = PA_senators[int_start_index:int_end_index] 
664 
665 if state_abbr == 'RI': 
666 senators = RI_senators[int_start_index:int_end_index] 
667 
668 if state_abbr == 'SC': 
669 senators = SC_senators[int_start_index:int_end_index] 
670 
671 if state_abbr == 'TN': 
672 senators = TN_senators[int_start_index:int_end_index] 
673 
674 if state_abbr == 'TX': 
675 senators = TX_senators[int_start_index:int_end_index] 
676 
677 if state_abbr == 'UT': 
678 senators = UT_senators[int_start_index:int_end_index] 
679 
680 if state_abbr == 'VA': 
681 senators = VA_senators[int_start_index:int_end_index] 
682 
683 if state_abbr == 'WA': 
684 senators = WA_senators[int_start_index:int_end_index] 
685 
686 if state_abbr == 'WI': 
687 senators = WI_senators[int_start_index:int_end_index] 
688 if min_years <= 0: 
689 print('The shortest amount of time to double your money in', city1, 'is 
unknown. Senate representation during the doubling time cannot be 
determined.') 
690 else: 
691 min_years_1f = "{:.1f}".format(min_years) 
692 print('The minimum price was:', rowmin) 
693 print('The minimum price occured on:', string_starting_idx) 
694 if city1 == 'Washington, DC': 
695 print(city1, 'This city does not vote for U.S. senators.') 
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696 else: 
697 print(city1, 'was represented by', senators, 'in the U.S. Senate during 
this time.') 
698 print('A price greater than or equal to twice the minimum price first 
occured on:', string_ending_idx) 
699 print('The shortest amount of time to double your money in', city1, 'was', 
min_years_1f, 'years.') 
700 
701 
702 if mode == 6: 
703 # compute the derivative of normalized price w.r.t. time for a city, determine 
its good years and poor years in the dataset, 
704 # and make a prediction about next year based on the derivative in 2021. 
705 sz = city_name_size_rank_dict[city1] 
706 derivative_list = [] 
707 current_year_and_deriv_tuple_list = [] 
708 good_years_list = [] 

709 fair_years_list = [] 
710 poor_years_list = [] 
711 current_year = 1996 
712 print('TABLE OF THE FIRST DERIVATIVE OF THE NORMALIZED PRICE W.R.T TIME IN', 
city_names_list[sz]) 
713 print('---------------------------------') 
714 for i in range(0,300,12): 
715 year = float_df.iloc[:, i:i+12] 
716 row = year.iloc[sz, :] 
717 rowmax = row.max() 
718 norm_series = row.divide(rowmax) 
719 initial_price = norm_series[0] 
720 final_price = norm_series[len(norm_series) - 1] 
721 change_in_price = final_price - initial_price 
722 change_in_time_days = 12 
723 dp_dt = change_in_price / change_in_time_days 
724 derivative_list.append(dp_dt) 
725 current_year_and_deriv_tuple = (current_year, dp_dt) 
726 current_year_and_deriv_tuple_list.append(current_year_and_deriv_tuple) 
727 print('|', current_year, '|', dp_dt,'|') 
728 current_year = current_year + 1 
729 
730 partial_year = float_df.iloc[:, 300:308] 
731 row = partial_year.iloc[sz, :] 
732 rowmax = row.max() 
733 norm_series = row.divide(rowmax) 
734 initial_price = norm_series[0] 
735 final_price = norm_series[len(norm_series) - 1] 
736 change_in_price = final_price - initial_price 
737 change_in_time_days = 12 
738 dp_dt = change_in_price / change_in_time_days 
739 derivative_list.append(dp_dt) 
740 current_year_and_deriv_tuple = (current_year, dp_dt) 
741 current_year_and_deriv_tuple_list.append(current_year_and_deriv_tuple) 
742 print('|', current_year, '|', dp_dt, '|') 
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743 current_year = current_year + 1 
744 print('---------------------------------') 
745 derivative_series = pd.Series(derivative_list) 
746 series_median = derivative_series.median() 
747 print('\nThe median derivative in', city_names_list[sz], 'was:', series_median) 
748 current_year = current_year_and_deriv_tuple_list 
749 for j in range(0, len(derivative_list)): 
750 current_tuple = current_year_and_deriv_tuple_list[j] 
751 current_year = current_tuple[0] 
752 # a year is considered a "good year" if the derivative of price w.r.t time 
is greater than or equal to 20% above the median derivative 
753 if current_tuple[1] >= series_median * 1.2: 
754 good_years_list.append(current_year) 
755 # a year is considered a "fair year" if the derivative of price w.r.t time 
is between 20% below the median derivative and 20% above the median 
derivative 
756 if (current_tuple[1] > series_median * 0.8) and (current_tuple[1] < 
series_median * 1.2): 
757 fair_years_list.append(current_year) 
758 # a year is considered a "poor year" if the derivative of price w.r.t time 
is less than or equal to 20% below the median derivative 
759 if current_tuple[1] <= series_median * 0.8: 
760 poor_years_list.append(current_year) 
761 
762 current_tuple = current_year_and_deriv_tuple_list[len( 
current_year_and_deriv_tuple_list) - 1] 
763 current_year = current_tuple[0] 
764 
765 print(tm.colored('The good years to invest in', 'green'), tm.colored( 
city_names_list[sz], 'green'), tm.colored('were:', 'green'), tm.colored( 
good_years_list, 'green')) 
766 print(tm.colored('The fair years to invest in', 'yellow'), tm.colored( 

city_names_list[sz], 'yellow'), tm.colored('were:', 'yellow'), tm.colored( 
fair_years_list, 'yellow')) 
767 print(tm.colored('The poor years to invest in', 'red'), tm.colored( 
city_names_list[sz], 'red'), tm.colored('were:', 'red'), tm.colored( 
poor_years_list, 'red')) 
768 
769 # code to plot the derivative graph 
770 x_axis_values = np.arange(1996, 2022, 1) 
771 plt.rcParams["figure.figsize"] = [7.00, 3.50] 
772 plt.rcParams["figure.autolayout"] = True 
773 x = x_axis_values 
774 y = derivative_list 
775 default_x_ticks = range(len(x)) 
776 plt.plot(default_x_ticks, y) 
777 title_str = "Graph of the First Derivative for " + city_names_list[sz] 
778 plt.title(title_str) 
779 plt.xticks(default_x_ticks, x) 
780 plt.show() 
781 
782 
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783 if mode == 7: 
784 
785 # compute the second derivative of normalized price w.r.t. time for a city. 
786 sz = city_name_size_rank_dict[city1] 
787 first_derivative_list = [] 
788 second_derivative_list = [] 
789 current_year_and_first_deriv_tuple_list = [] 
790 current_year_and_second_deriv_tuple_list = [] 
791 current_year = 1996 
792 print('TABLE OF THE SECOND DERIVATIVE OF THE NORMALIZED PRICE W.R.T TIME IN', 
city_names_list[sz]) 
793 print('---------------------------------') 
794 for i in range(0,308,12): 
795 year = float_df.iloc[:, i:i+12] 
796 if current_year == 2021: 
797 year = float_df.iloc[:, i:i+8] 
798 row = year.iloc[sz, :] 
799 rowmax = row.max() 
800 norm_series = row.divide(rowmax) 
801 initial_price = norm_series[0] 
802 final_price = norm_series[len(norm_series) - 1] 
803 change_in_price = final_price - initial_price 
804 change_in_time_days = 12 
805 dp_dt = change_in_price / change_in_time_days 
806 first_derivative_list.append(dp_dt) 
807 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
808 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
809 current_year = current_year + 1 
810 current_year = 1996 
811 for j in range(0, 25): 
812 change_in_derivative_of_price = first_derivative_list[j + 1] - 
first_derivative_list[j] 
813 change_in_time_years = 1 # year 
814 d2p_dt2 = change_in_derivative_of_price / change_in_time_years 
815 second_derivative_list.append(d2p_dt2) 
816 current_year_and_second_deriv_tuple = (current_year, d2p_dt2) 
817 current_year_and_second_deriv_tuple_list.append( 
current_year_and_second_deriv_tuple) 
818 print('|', current_year, '|', d2p_dt2,'|') 
819 current_year = current_year + 1 
820 # code to plot the derivative graph 
821 x_axis_values = np.arange(1996, 2021, 1) 
822 plt.rcParams["figure.figsize"] = [7.00, 3.50] 
823 plt.rcParams["figure.autolayout"] = True 
824 x = x_axis_values 
825 y = second_derivative_list 

826 default_x_ticks = range(len(x)) 
827 plt.plot(default_x_ticks, y) 
828 title_str = "Graph of the Second Derivative for " + city_names_list[sz] 
829 plt.title(title_str) 
830 plt.xticks(default_x_ticks, x) 
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831 plt.show() 
832 
833 partial_year = float_df.iloc[:, 300:308] 
834 row = partial_year.iloc[sz, :] 
835 rowmax = row.max() 
836 norm_series = row.divide(rowmax) 
837 initial_price = norm_series[0] 
838 final_price = norm_series[len(norm_series) - 1] 
839 change_in_price = final_price - initial_price 
840 change_in_time_days = 12 
841 dp_dt = change_in_price / change_in_time_days 
842 first_derivative_list.append(dp_dt) 
843 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
844 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
845 print('|', current_year, '|', dp_dt, '|') 
846 current_year = current_year + 1 
847 print('---------------------------------') 
848 first_derivative_series = pd.Series(first_derivative_list) 
849 series_median = first_derivative_series.median() 
850 print('\nThe median derivative in', city_names_list[sz], 'was:', series_median) 
851 current_year = current_year_and_first_deriv_tuple_list 
852 
853 
854 if mode == 8: 
855 # compute the second derivative of normalized price w.r.t. time for a city for 
one year 
856 sz = city_name_size_rank_dict[city1] 
857 first_derivative_list = [] 
858 second_derivative_list = [] 
859 current_year_and_first_deriv_tuple_list = [] 
860 current_year_and_second_deriv_tuple_list = [] 
861 current_year = 1996 
862 #print('TABLE OF THE SECOND DERIVATIVE OF THE NORMALIZED PRICE W.R.T TIME IN', 
city_names_list[sz]) 
863 #print('---------------------------------') 
864 for i in range(0,308,12): 
865 year = float_df.iloc[:, i:i+12] 
866 if current_year == 2021: 
867 year = float_df.iloc[:, i:i+8] 
868 row = year.iloc[sz, :] 
869 rowmax = row.max() 
870 norm_series = row.divide(rowmax) 
871 initial_price = norm_series[0] 
872 final_price = norm_series[len(norm_series) - 1] 
873 change_in_price = final_price - initial_price 
874 change_in_time_days = 12 
875 dp_dt = change_in_price / change_in_time_days 
876 first_derivative_list.append(dp_dt) 
877 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
878 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
879 current_year = current_year + 1 
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880 current_year = 1996 
881 for j in range(0, 25): 
882 change_in_derivative_of_price = first_derivative_list[j + 1] - 
first_derivative_list[j] 
883 change_in_time_years = 1 # year 
884 d2p_dt2 = change_in_derivative_of_price / change_in_time_years 
885 second_derivative_list.append(d2p_dt2) 
886 current_year_and_second_deriv_tuple = (current_year, d2p_dt2) 
887 current_year_and_second_deriv_tuple_list.append( 

current_year_and_second_deriv_tuple) 
888 if requested_year == current_year: 
889 print('The second derivative of the normalized price w.r.t time in', 
city1, 'in', requested_year, 'was:', d2p_dt2) 
890 #print('|', current_year, '|', d2p_dt2,'|') 
891 current_year = current_year + 1 
892 
893 #plt.plot(second_derivative_list) 
894 #plt.show() 
895 partial_year = float_df.iloc[:, 300:308] 
896 row = partial_year.iloc[sz, :] 
897 rowmax = row.max() 
898 norm_series = row.divide(rowmax) 
899 initial_price = norm_series[0] 
900 final_price = norm_series[len(norm_series) - 1] 
901 change_in_price = final_price - initial_price 
902 change_in_time_days = 12 
903 dp_dt = change_in_price / change_in_time_days 
904 first_derivative_list.append(dp_dt) 
905 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
906 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
907 #print('|', current_year, '|', dp_dt, '|') 
908 current_year = current_year + 1 
909 #print('---------------------------------') 
910 first_derivative_series = pd.Series(first_derivative_list) 
911 series_median = first_derivative_series.median() 
912 #print('\nThe median derivative in', city_names_list[sz], 'was:', series_median) 
913 current_year = current_year_and_first_deriv_tuple_list 
914 
915 if mode == 9: 
916 # compute the second derivative of normalized price w.r.t. time for a city for 
several years. 
917 sz = city_name_size_rank_dict[city1] 
918 first_derivative_list = [] 
919 second_derivative_list = [] 
920 current_year_and_first_deriv_tuple_list = [] 
921 current_year_and_second_deriv_tuple_list = [] 
922 current_year = 1996 
923 #print('TABLE OF THE SECOND DERIVATIVE OF THE NORMALIZED PRICE W.R.T TIME IN', 
city_names_list[sz]) 
924 #print('---------------------------------') 
925 for i in range(0,308,12): 
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926 year = float_df.iloc[:, i:i+12] 
927 if current_year == 2021: 
928 year = float_df.iloc[:, i:i+8] 
929 row = year.iloc[sz, :] 
930 rowmax = row.max() 
931 norm_series = row.divide(rowmax) 
932 initial_price = norm_series[0] 
933 final_price = norm_series[len(norm_series) - 1] 
934 change_in_price = final_price - initial_price 
935 change_in_time_days = 12 
936 dp_dt = change_in_price / change_in_time_days 
937 first_derivative_list.append(dp_dt) 
938 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
939 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
940 current_year = current_year + 1 
941 current_year = 1996 
942 for j in range(0, 25): 
943 change_in_derivative_of_price = first_derivative_list[j + 1] - 
first_derivative_list[j] 
944 change_in_time_years = 1 # year 
945 d2p_dt2 = change_in_derivative_of_price / change_in_time_years 
946 second_derivative_list.append(d2p_dt2) 
947 current_year_and_second_deriv_tuple = (current_year, d2p_dt2) 

948 current_year_and_second_deriv_tuple_list.append( 
current_year_and_second_deriv_tuple) 
949 if current_year in requested_years: 
950 print('The second derivative of the normalized price w.r.t time in', 
city1, 'in', current_year, 'was:', d2p_dt2) 
951 #print('|', current_year, '|', d2p_dt2,'|') 
952 current_year = current_year + 1 
953 
954 plt.plot(second_derivative_list) 
955 plt.show() 
956 partial_year = float_df.iloc[:, 300:308] 
957 row = partial_year.iloc[sz, :] 
958 rowmax = row.max() 
959 norm_series = row.divide(rowmax) 
960 initial_price = norm_series[0] 
961 final_price = norm_series[len(norm_series) - 1] 
962 change_in_price = final_price - initial_price 
963 change_in_time_days = 12 
964 dp_dt = change_in_price / change_in_time_days 
965 first_derivative_list.append(dp_dt) 
966 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
967 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
968 #print('|', current_year, '|', dp_dt, '|') 
969 current_year = current_year + 1 
970 #print('---------------------------------') 
971 first_derivative_series = pd.Series(first_derivative_list) 
972 series_median = first_derivative_series.median() 
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973 #print('\nThe median derivative in', city_names_list[sz], 'was:', series_median) 
974 current_year = current_year_and_first_deriv_tuple_list 
975 
976 if mode == 10: 
977 # compute the second derivative of normalized price w.r.t. time for a city and 
display its +/- sign 
978 sz = city_name_size_rank_dict[city1] 
979 first_derivative_list = [] 
980 second_derivative_list = [] 
981 positive_second_derivative_list = [] 
982 negative_second_derivative_list = [] 
983 current_year_and_first_deriv_tuple_list = [] 
984 current_year_and_second_deriv_tuple_list = [] 
985 current_year = 1996 
986 #print('TABLE OF THE SECOND DERIVATIVE OF THE NORMALIZED PRICE W.R.T TIME IN', 
city_names_list[sz]) 
987 #print('---------------------------------') 
988 for i in range(0,308,12): 
989 year = float_df.iloc[:, i:i+12] 
990 if current_year == 2021: 
991 year = float_df.iloc[:, i:i+8] 
992 row = year.iloc[sz, :] 
993 rowmax = row.max() 
994 norm_series = row.divide(rowmax) 
995 initial_price = norm_series[0] 
996 final_price = norm_series[len(norm_series) - 1] 
997 change_in_price = final_price - initial_price 
998 change_in_time_days = 12 
999 dp_dt = change_in_price / change_in_time_days 
1000 first_derivative_list.append(dp_dt) 
1001 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
1002 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
1003 current_year = current_year + 1 
1004 current_year = 1996 
1005 for j in range(0, 25): 
1006 change_in_derivative_of_price = first_derivative_list[j + 1] - 
first_derivative_list[j] 
1007 change_in_time_years = 1 # year 

1008 d2p_dt2 = change_in_derivative_of_price / change_in_time_years 
1009 if d2p_dt2 > 0: 
1010 positive_second_derivative_list.append(current_year) 
1011 else: 
1012 negative_second_derivative_list.append(current_year) 
1013 second_derivative_list.append(d2p_dt2) 
1014 current_year_and_second_deriv_tuple = (current_year, d2p_dt2) 
1015 current_year_and_second_deriv_tuple_list.append( 
current_year_and_second_deriv_tuple) 
1016 current_year = current_year + 1 
1017 
1018 #plt.plot(second_derivative_list) 
1019 #plt.show() 
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1020 partial_year = float_df.iloc[:, 300:308] 
1021 row = partial_year.iloc[sz, :] 
1022 rowmax = row.max() 
1023 norm_series = row.divide(rowmax) 
1024 initial_price = norm_series[0] 
1025 final_price = norm_series[len(norm_series) - 1] 
1026 change_in_price = final_price - initial_price 
1027 change_in_time_days = 12 
1028 dp_dt = change_in_price / change_in_time_days 
1029 first_derivative_list.append(dp_dt) 
1030 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
1031 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
1032 #print('|', current_year, '|', dp_dt, '|') 
1033 current_year = current_year + 1 
1034 #print('---------------------------------') 
1035 first_derivative_series = pd.Series(first_derivative_list) 
1036 series_median = first_derivative_series.median() 
1037 #print('\nThe median derivative in', city_names_list[sz], 'was:', series_median) 
1038 current_year = current_year_and_first_deriv_tuple_list 
1039 print("The second derivative was positive in these years:", 
positive_second_derivative_list) 
1040 print("The second derivative was negative in these years:", 
negative_second_derivative_list) 
1041 
1042 if mode == 11: 
1043 # compute the second derivative of normalized price w.r.t. time for a city. 
1044 # print whether it's increasing-increasing, decreasing-decreasing, etc 
1045 sz = city_name_size_rank_dict[city1] 
1046 first_derivative_list = [] 
1047 second_derivative_list = [] 
1048 inc_inc_years = [] 
1049 inc_dec_years = [] 
1050 dec_inc_years = [] 
1051 dec_dec_years = [] 
1052 negative_second_derivative_list = [] 
1053 current_year_and_first_deriv_tuple_list = [] 
1054 current_year_and_second_deriv_tuple_list = [] 
1055 current_year = 1996 
1056 #print('TABLE OF THE SECOND DERIVATIVE OF THE NORMALIZED PRICE W.R.T TIME IN', 
city_names_list[sz]) 
1057 #print('---------------------------------') 
1058 for i in range(0,308,12): 
1059 year = float_df.iloc[:, i:i+12] 
1060 if current_year == 2021: 
1061 year = float_df.iloc[:, i:i+8] 
1062 row = year.iloc[sz, :] 
1063 rowmax = row.max() 
1064 norm_series = row.divide(rowmax) 
1065 initial_price = norm_series[0] 
1066 final_price = norm_series[len(norm_series) - 1] 
1067 change_in_price = final_price - initial_price 
1068 change_in_time_days = 12 
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1069 dp_dt = change_in_price / change_in_time_days 

1070 first_derivative_list.append(dp_dt) 
1071 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
1072 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
1073 current_year = current_year + 1 
1074 current_year = 1996 
1075 for j in range(0, 25): 
1076 change_in_derivative_of_price = first_derivative_list[j + 1] - 
first_derivative_list[j] 
1077 change_in_time_years = 1 # year 
1078 d2p_dt2 = change_in_derivative_of_price / change_in_time_years 
1079 if ((first_derivative_list[j] > 0) and (d2p_dt2 > 0)): 
1080 inc_inc_years.append(current_year) 
1081 elif ((first_derivative_list[j] > 0) and (d2p_dt2 < 0)): 
1082 inc_dec_years.append(current_year) 
1083 elif ((first_derivative_list[j] < 0) and (d2p_dt2 > 0)): 
1084 dec_inc_years.append(current_year) 
1085 elif ((first_derivative_list[j] < 0) and (d2p_dt2 < 0)): 
1086 dec_dec_years.append(current_year) 
1087 current_year_and_second_deriv_tuple = (current_year, d2p_dt2) 
1088 current_year_and_second_deriv_tuple_list.append( 
current_year_and_second_deriv_tuple) 
1089 current_year = current_year + 1 
1090 
1091 #plt.plot(second_derivative_list) 
1092 #plt.show() 
1093 partial_year = float_df.iloc[:, 300:308] 
1094 row = partial_year.iloc[sz, :] 
1095 rowmax = row.max() 
1096 norm_series = row.divide(rowmax) 
1097 initial_price = norm_series[0] 
1098 final_price = norm_series[len(norm_series) - 1] 
1099 change_in_price = final_price - initial_price 
1100 change_in_time_days = 12 
1101 dp_dt = change_in_price / change_in_time_days 
1102 first_derivative_list.append(dp_dt) 
1103 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
1104 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
1105 #print('|', current_year, '|', dp_dt, '|') 
1106 current_year = current_year + 1 
1107 #print('---------------------------------') 
1108 first_derivative_series = pd.Series(first_derivative_list) 
1109 series_median = first_derivative_series.median() 
1110 #print('\nThe median derivative in', city_names_list[sz], 'was:', series_median) 
1111 current_year = current_year_and_first_deriv_tuple_list 
1112 print("The median price of a single-family home was increasing at an increasing 
rate in: ", inc_inc_years) 
1113 print("The median price of a single-family home was increasing at an decreasing 
rate in: ", inc_dec_years) 
1114 print("The median price of a single-family home was decreasing at an increasing 
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rate in: ", dec_inc_years) 
1115 print("The median price of a single-family home was decreasing at an decreasing 
rate in: ", dec_dec_years) 
1116 
1117 if mode == 12: 
1118 complete_rows_df = original_df.dropna() 
1119 state_names_df = complete_rows_df.drop(columns=['RegionID', 'RegionType', 
'SizeRank']) 
1120 west_coast_region_df = state_names_df.loc[state_names_df['StateName'].isin( 
west_coast_states)] 
1121 rocky_mountain_region_df = state_names_df.loc[state_names_df['StateName'].isin( 
rocky_mountain_states)] 
1122 gulf_coast_region_df = state_names_df.loc[state_names_df['StateName'].isin( 
gulf_coast_states)] 
1123 midwest_region_df = state_names_df.loc[state_names_df['StateName'].isin( 
midwest_states)] 

1124 east_coast_region_df = state_names_df.loc[state_names_df['StateName'].isin( 
east_coast_states)] 
1125 
1126 current_year = 1996 
1127 
1128 west_coast_float_df = west_coast_region_df 
1129 rocky_mountain_float_df = rocky_mountain_region_df.drop(columns=['StateName']) 
1130 gulf_coast_float_df = gulf_coast_region_df.drop(columns=['StateName']) 
1131 midwest_float_df = midwest_region_df.drop(columns=['StateName']) 
1132 east_coast_float_df = east_coast_region_df.drop(columns=['StateName']) 
1133 
1134 CA_highs = [] 
1135 CA_lows = [] 
1136 # for loop for west coast 
1137 for i in range(0,300,12): 
1138 year_df = west_coast_float_df.iloc[:, i:i+12] 
1139 for index, row in year_df.iterrows(): 
1140 prices = row[2:] 
1141 maximum_price = prices.max() 
1142 normalized_prices = prices.divide(maximum_price) 
1143 highest_price_for_this_city = normalized_prices.max() 
1144 lowest_price_for_this_city = normalized_prices.min() 
1145 city_name = row[0] 
1146 city_highest_price_tuple = (city_name, highest_price_for_this_city) 
1147 city_lowest_price_tuple = (city_name, lowest_price_for_this_city) 
1148 # append the tuple to a list 
1149 if city_name[-2:] == 'CA': 
1150 CA_highs.append(city_highest_price_tuple) 
1151 CA_lows.append(city_lowest_price_tuple) 
1152 
1153 print('CA highs', CA_highs) 
1154 print('CA_lows', CA_lows) 
1155 
1156 if mode == 13: 
1157 threshold = (upper_bound + lower_bound) / 2 
1158 # total number of cities seen so far 
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1159 total_count = 1 
1160 # total number of cities mis-predicted so far 
1161 error_count = 0 
1162 # list to store sum of squared errors 
1163 see_list = [] 
1164 
1165 for city1, sz in city_name_size_rank_dict.items(): 
1166 # compute the derivative of normalized price w.r.t. time for a city, 
determine its good years and poor years in the dataset, 
1167 # and make a prediction about next year based on the derivative in 
2020. 
1168 derivative_list = [] 
1169 current_year_and_deriv_tuple_list = [] 
1170 good_years_list = [] 
1171 fair_years_list = [] 
1172 poor_years_list = [] 
1173 current_year = 1996 
1174 #print('TABLE OF THE DERIVATIVE OF THE NORMALIZED PRICE W.R.T TIME IN', 
city_names_list[sz]) 
1175 #print('---------------------------------') 
1176 for i in range(0,288,12): 
1177 year = float_df.iloc[:, i:i+12] 
1178 row = year.iloc[sz, :] 
1179 rowmax = row.max() 
1180 norm_series = row.divide(rowmax) 
1181 initial_price = norm_series[0] 
1182 final_price = norm_series[len(norm_series) - 1] 
1183 change_in_price = final_price - initial_price 
1184 change_in_time_days = 12 
1185 dp_dt = change_in_price / change_in_time_days 
1186 derivative_list.append(dp_dt) 

1187 current_year_and_deriv_tuple = (current_year, dp_dt) 
1188 current_year_and_deriv_tuple_list.append(current_year_and_deriv_tuple) 
1189 #print('|', current_year, '|', dp_dt,'|') 
1190 current_year = current_year + 1 
1191 
1192 #print('---------------------------------') 
1193 derivative_series = pd.Series(derivative_list) 
1194 series_median = derivative_series.median() 
1195 #print('\nThe median derivative in', city_names_list[sz], 'was:', 
series_median) 
1196 current_year = current_year_and_deriv_tuple_list 
1197 for j in range(0, len(derivative_list)): 
1198 current_tuple = current_year_and_deriv_tuple_list[j] 
1199 current_year = current_tuple[0] 
1200 # a year is considered a "good year" if the derivative of price w.r.t 
time is greater than or equal to 10% above the median derivative 
1201 if current_tuple[1] >= series_median * 1.1: 
1202 good_years_list.append(current_year) 
1203 # a year is considered a "fair year" if the derivative of price w.r.t 
time is between 10% below the median derivative and 10% above the 
median derivative 
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1204 if (current_tuple[1] > series_median * 0.9) and (current_tuple[1] < 
series_median * 1.1): 
1205 fair_years_list.append(current_year) 
1206 # a year is considered a "poor year" if the derivative of price w.r.t 
time is less than or equal to 10% below the median derivative 
1207 if current_tuple[1] <= series_median * 0.9: 
1208 poor_years_list.append(current_year) 
1209 
1210 current_tuple = current_year_and_deriv_tuple_list[len( 
current_year_and_deriv_tuple_list) - 1] 
1211 current_year = current_tuple[0] 
1212 
1213 # compute the derivative of price w.r.t. for the test year 2020 
1214 test_year = float_df.iloc[:, 288:300] 
1215 row = test_year.iloc[sz, :] 
1216 rowmax = row.max() 
1217 norm_series = row.divide(rowmax) 
1218 initial_price = norm_series[0] 
1219 final_price = norm_series[len(norm_series) - 1] 
1220 change_in_price = final_price - initial_price 
1221 change_in_time_days = 12 
1222 dp_dt = change_in_price / change_in_time_days 
1223 derivative_list.append(dp_dt) 
1224 test_tuple = (2020, dp_dt) 
1225 
1226 # predicted condition 
1227 # 0 == poor year to invest / slower than expected growth in price 
1228 # 1 == fair year to invest / expected growth in price 
1229 # 2 == good year to invest / faster than expected growth in price 
1230 predicted_condition = 0 
1231 
1232 # actual condition 
1233 # 0 == poor year to invest / slower than expected growth in price 
1234 # 1 == fair year to invest / expected growth in price 
1235 # 2 == good year to invest / faster than expected growth in price 
1236 actual_condition = 0 
1237 
1238 # a year is considered a "good year" if the derivative of price w.r.t time 
is greater than or equal to 20% above the median derivative 
1239 if current_tuple[1] >= series_median * upper_bound: 
1240 print(tm.colored('2020 is predicted to be a good year to invest in', 
'green'), tm.colored(city_names_list[sz], 'green'), tm.colored(' 
because the predicted derivative is: ', 'green'), current_tuple[1]) 
1241 predicted_condition = 2 
1242 # a year is considered a "fair year" if the derivative of price w.r.t time 
is between 20% below the median derivative and 20% above the median 

derivative 
1243 elif (current_tuple[1] > series_median * lower_bound) and (current_tuple[1] 
< series_median * upper_bound): 
1244 print(tm.colored('2020 is predicted to be a fair year to invest in', 
'yellow'), tm.colored(city_names_list[sz], 'yellow'), tm.colored(' 
because the predicted derivative is: ', 'yellow'), current_tuple[1]) 
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1245 predicted_condition = 1 
1246 # a year is considered a "poor year" if the derivative of price w.r.t time 
is less than or equal to 20% below the median derivative 
1247 else: 
1248 print(tm.colored('2020 is predicted to be a poor year to invest in', 
'red'), tm.colored(city_names_list[sz], 'red'), tm.colored(' because 
the predicted derivative is: ', 'red'), current_tuple[1]) 
1249 predicted_condition = 0 
1250 # if the actual derivative of price w.r.t. time for the year was >= the 
predicted derivative of price w.r.t. for the year, 
1251 # then it was a good year for that city because real estate prices grew 
faster than expected 
1252 if test_tuple[1] >= series_median * upper_bound: 
1253 print(tm.colored('2020 was a good year to invest in', 'green'), tm. 
colored(city_names_list[sz], 'green'), tm.colored(' because the 
derivative was: ', 'green'), test_tuple[1]) 
1254 actual_condition = 2 
1255 elif (test_tuple[1] > series_median * lower_bound) and (test_tuple[1] < 
series_median * upper_bound): 
1256 print(tm.colored('2020 was a fair year to invest in', 'yellow'), tm. 
colored(city_names_list[sz], 'yellow'), tm.colored(' because the 
derivative was: ', 'yellow'), test_tuple[1]) 
1257 actual_condition = 1 
1258 # if the actual derivative of price w.r.t. time for the year was < the 
predicted derivative of price w.r.t. for the year, 
1259 # then it was a bad year for that city because real estate prices grew 
slower than expected or decreased 
1260 else: 
1261 print(tm.colored('2020 was a poor year to invest in', 'red'), tm.colored 
(city_names_list[sz], 'red'), tm.colored(' because the derivative was: ' 
, 'red'), test_tuple[1]) 
1262 actual_condition = 0 
1263 sse = np.sqrt((current_tuple[1] - test_tuple[1]) ** 2) 
1264 see_list.append(sse) 
1265 total_count = total_count + 1 
1266 if predicted_condition != actual_condition: 
1267 error_count = error_count + 1 
1268 # error ratio 
1269 error_ratio = error_count / total_count 
1270 print("The total number of cities seen is: ", total_count) 
1271 print("The total number of cities mis-predicted is: ", error_count) 
1272 print("The error ratio for threshold ==", threshold, "is: ", error_ratio) 
1273 
1274 if mode == 15: 
1275 # compute the derivative of normalized price w.r.t. time for a city, determine 
its good years and poor years in the dataset, 
1276 # and make a prediction about next year based on the derivative in 2021. 
1277 sz = city_name_size_rank_dict[city1] 
1278 derivative_list = [] 
1279 current_year_and_deriv_tuple_list = [] 
1280 good_years_list = [] 
1281 fair_years_list = [] 
1282 poor_years_list = [] 
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1283 current_year = 1996 
1284 print('TABLE OF THE FIRST DERIVATIVE OF THE NORMALIZED PRICE W.R.T TIME IN', 
city_names_list[sz]) 
1285 print('---------------------------------') 
1286 for i in range(0,300,12): 
1287 year = float_df.iloc[:, i:i+12] 
1288 row = year.iloc[sz, :] 

1289 rowmax = row.max() 
1290 norm_series = row.divide(rowmax) 
1291 initial_price = norm_series[0] 
1292 final_price = norm_series[len(norm_series) - 1] 
1293 change_in_price = final_price - initial_price 
1294 change_in_time_days = 12 
1295 dp_dt = change_in_price / change_in_time_days 
1296 derivative_list.append(dp_dt) 
1297 current_year_and_deriv_tuple = (current_year, dp_dt) 
1298 current_year_and_deriv_tuple_list.append(current_year_and_deriv_tuple) 
1299 print('|', current_year, '|', dp_dt,'|') 
1300 current_year = current_year + 1 
1301 
1302 partial_year = float_df.iloc[:, 300:308] 
1303 row = partial_year.iloc[sz, :] 
1304 rowmax = row.max() 
1305 norm_series = row.divide(rowmax) 
1306 initial_price = norm_series[0] 
1307 final_price = norm_series[len(norm_series) - 1] 
1308 change_in_price = final_price - initial_price 
1309 change_in_time_days = 12 
1310 dp_dt = change_in_price / change_in_time_days 
1311 derivative_list.append(dp_dt) 
1312 current_year_and_deriv_tuple = (current_year, dp_dt) 
1313 current_year_and_deriv_tuple_list.append(current_year_and_deriv_tuple) 
1314 print('|', current_year, '|', dp_dt, '|') 
1315 current_year = current_year + 1 
1316 print('---------------------------------') 
1317 derivative_series = pd.Series(derivative_list) 
1318 series_median = derivative_series.median() 
1319 print('\nThe median derivative in', city_names_list[sz], 'was:', series_median) 
1320 current_year = current_year_and_deriv_tuple_list 
1321 for j in range(0, len(derivative_list)): 
1322 current_tuple = current_year_and_deriv_tuple_list[j] 
1323 current_year = current_tuple[0] 
1324 # a year is considered a "good year" if the derivative of price w.r.t time 
is greater than or equal to 20% above the median derivative 
1325 if current_tuple[1] >= series_median * 1.2: 
1326 good_years_list.append(current_year) 
1327 # a year is considered a "fair year" if the derivative of price w.r.t time 
is between 20% below the median derivative and 20% above the median 
derivative 
1328 if (current_tuple[1] > series_median * 0.8) and (current_tuple[1] < 
series_median * 1.2): 
1329 fair_years_list.append(current_year) 
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1330 # a year is considered a "poor year" if the derivative of price w.r.t time 
is less than or equal to 20% below the median derivative 
1331 if current_tuple[1] <= series_median * 0.8: 
1332 poor_years_list.append(current_year) 
1333 
1334 current_tuple = current_year_and_deriv_tuple_list[len( 
current_year_and_deriv_tuple_list) - 1] 
1335 current_year = current_tuple[0] 
1336 
1337 #print(tm.colored('The good years to invest in', 'green'), 
tm.colored(city_names_list[sz], 'green'), tm.colored('were:', 'green'), 
tm.colored(good_years_list, 'green')) 
1338 #print(tm.colored('The fair years to invest in', 'yellow'), 
tm.colored(city_names_list[sz], 'yellow'), tm.colored('were:', 'yellow'), 
tm.colored(fair_years_list, 'yellow')) 
1339 #print(tm.colored('The poor years to invest in', 'red'), 
tm.colored(city_names_list[sz], 'red'), tm.colored('were:', 'red'), 
tm.colored(poor_years_list, 'red')) 
1340 
1341 # code to plot the derivative graph 
1342 #x_axis_values = np.arange(1996, 2022, 1) 
1343 #plt.rcParams["figure.figsize"] = [7.00, 3.50] 

1344 #plt.rcParams["figure.autolayout"] = True 
1345 #x = x_axis_values 
1346 #y = derivative_list 
1347 #default_x_ticks = range(len(x)) 
1348 #plt.plot(default_x_ticks, y) 
1349 #title_str = "Graph of the First Derivative for " + city_names_list[sz] 
1350 #plt.title(title_str) 
1351 #plt.xticks(default_x_ticks, x) 
1352 #plt.show() 
1353 
1354 # compute the second derivative of normalized price w.r.t. time for a city. 
1355 # print whether it's increasing-increasing, decreasing-decreasing, etc 
1356 sz = city_name_size_rank_dict[city1] 
1357 first_derivative_list = [] 
1358 second_derivative_list = [] 
1359 inc_inc_years = [] 
1360 inc_dec_years = [] 
1361 dec_inc_years = [] 
1362 dec_dec_years = [] 
1363 negative_second_derivative_list = [] 
1364 current_year_and_first_deriv_tuple_list = [] 
1365 current_year_and_second_deriv_tuple_list = [] 
1366 current_year = 1996 
1367 #print('TABLE OF THE SECOND DERIVATIVE OF THE NORMALIZED PRICE W.R.T TIME IN', 
city_names_list[sz]) 
1368 #print('---------------------------------') 
1369 for i in range(0,308,12): 
1370 year = float_df.iloc[:, i:i+12] 
1371 if current_year == 2021: 
1372 year = float_df.iloc[:, i:i+8] 
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1373 row = year.iloc[sz, :] 
1374 rowmax = row.max() 
1375 norm_series = row.divide(rowmax) 
1376 initial_price = norm_series[0] 
1377 final_price = norm_series[len(norm_series) - 1] 
1378 change_in_price = final_price - initial_price 
1379 change_in_time_days = 12 
1380 dp_dt = change_in_price / change_in_time_days 
1381 first_derivative_list.append(dp_dt) 
1382 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
1383 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
1384 current_year = current_year + 1 
1385 current_year = 1996 
1386 for j in range(0, 25): 
1387 change_in_derivative_of_price = first_derivative_list[j + 1] - 
first_derivative_list[j] 
1388 change_in_time_years = 1 # year 
1389 d2p_dt2 = change_in_derivative_of_price / change_in_time_years 
1390 if ((first_derivative_list[j] > 0) and (d2p_dt2 > 0)): 
1391 inc_inc_years.append(current_year) 
1392 elif ((first_derivative_list[j] > 0) and (d2p_dt2 < 0)): 
1393 inc_dec_years.append(current_year) 
1394 elif ((first_derivative_list[j] < 0) and (d2p_dt2 > 0)): 
1395 dec_inc_years.append(current_year) 
1396 elif ((first_derivative_list[j] < 0) and (d2p_dt2 < 0)): 
1397 dec_dec_years.append(current_year) 
1398 current_year_and_second_deriv_tuple = (current_year, d2p_dt2) 
1399 current_year_and_second_deriv_tuple_list.append( 
current_year_and_second_deriv_tuple) 
1400 current_year = current_year + 1 
1401 
1402 #plt.plot(second_derivative_list) 
1403 #plt.show() 
1404 partial_year = float_df.iloc[:, 300:308] 
1405 row = partial_year.iloc[sz, :] 
1406 rowmax = row.max() 

1407 norm_series = row.divide(rowmax) 
1408 initial_price = norm_series[0] 
1409 final_price = norm_series[len(norm_series) - 1] 
1410 change_in_price = final_price - initial_price 
1411 change_in_time_days = 12 
1412 dp_dt = change_in_price / change_in_time_days 
1413 first_derivative_list.append(dp_dt) 
1414 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
1415 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
1416 #print('|', current_year, '|', dp_dt, '|') 
1417 current_year = current_year + 1 
1418 #print('---------------------------------') 
1419 first_derivative_series = pd.Series(first_derivative_list) 
1420 series_median = first_derivative_series.median() 
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1421 #print('\nThe median derivative in', city_names_list[sz], 'was:', series_median) 
1422 current_year = current_year_and_first_deriv_tuple_list 
1423 #print("The median price of a single-family home was increasing at an 
increasing rate in: ", inc_inc_years) 
1424 #print("The median price of a single-family home was increasing at an 
decreasing rate in: ", inc_dec_years) 
1425 #print("The median price of a single-family home was decreasing at an 
increasing rate in: ", dec_inc_years) 
1426 #print("The median price of a single-family home was decreasing at an 
decreasing rate in: ", dec_dec_years) 
1427 for y in range(1999, 2021): 
1428 if (y in good_years_list and inc_inc_years): 
1429 print(y, 'was a bubble year for', city_names_list[sz]) 
1430 
1431 if mode == 16: 
1432 
1433 # compute the second derivative of normalized price w.r.t. time for a city. 
1434 sz = city_name_size_rank_dict[city1] 
1435 first_derivative_list = [] 
1436 second_derivative_list = [] 
1437 current_year_and_first_deriv_tuple_list = [] 
1438 current_year_and_second_deriv_tuple_list = [] 
1439 current_year = 1996 
1440 #print('TABLE OF THE SECOND DERIVATIVE OF THE NORMALIZED PRICE W.R.T TIME IN', 
city_names_list[sz]) 
1441 #print('---------------------------------') 
1442 for i in range(0,300,12): 
1443 year = float_df.iloc[:, i:i+12] 
1444 row = year.iloc[sz, :] 
1445 print(row) 
1446 rowmax = row.max() 
1447 norm_series = row.divide(rowmax) 
1448 initial_price = norm_series[0] 
1449 final_price = norm_series[len(norm_series) - 1] 
1450 change_in_price = final_price - initial_price 
1451 change_in_time_days = 12 
1452 dp_dt = change_in_price / change_in_time_days 
1453 first_derivative_list.append(dp_dt) 
1454 current_year_and_first_deriv_tuple = (current_year, dp_dt) 
1455 current_year_and_first_deriv_tuple_list.append( 
current_year_and_first_deriv_tuple) 
1456 current_year = current_year + 1 
1457 
1458 # write a color-coded list of cities to a file based on their Senators' political 
party and the doubling time 
1459 elif mode == 17: 
1460 default_stdout = sys.stdout 
1461 output_file = open('party_list.txt', 'w') 
1462 # redirect stdout to a file 
1463 sys.stdout = output_file 
1464 
1465 red_cities_count = 0 
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1466 red_cities_total_years = 0 
1467 red_cities_average_doubling_time = 0 
1468 
1469 blue_cities_count = 0 
1470 blue_cities_total_years = 0 
1471 blue_cities_average_doubling_time = 0 
1472 
1473 purple_cities_count = 0 
1474 purple_cities_total_years = 0 
1475 purple_cities_average_doubling_time = 0 
1476 
1477 for k in range(1, 122): 
1478 city1 = region_name_column_list[k] 
1479 state_abbr = city1[-2:] 
1480 # special cases 
1481 if city1 == "Denver, CO": 
1482 latitude = "39.7392" 
1483 longitude = "-104.9850" 
1484 elif city1 == "Richmond, VA": 
1485 latitude = "37.53" 
1486 longitude = "-77.47" 
1487 elif city1 == "Urban Honolulu, HI": 
1488 latitude = "21.315603" 
1489 longitude = "-157.858093" 
1490 elif city1 == "Ventura, CA": 
1491 latitude = "34.275" 
1492 longitude = "-119.228" 
1493 elif city1 == "North Port-Sarasota-Bradenton, FL": 
1494 cityX = "Sarasota, FL" 
1495 # find cityX's location 
1496 nominatim = Nominatim() 
1497 city_json = nominatim.query(cityX).toJSON()[0] 
1498 latitude = city_json["lat"] 
1499 longitude = city_json["lon"] 
1500 elif city1 == "Minneapolis-St Paul, MN": 
1501 cityY = "Minneapolis, MN" 
1502 # find cityY's location 
1503 nominatim = Nominatim() 
1504 city_json = nominatim.query(cityY).toJSON()[0] 
1505 latitude = city_json["lat"] 
1506 longitude = city_json["lon"] 
1507 else: 
1508 # find city1's location 
1509 nominatim = Nominatim() 
1510 city_json = nominatim.query(city1).toJSON()[0] 
1511 latitude = city_json["lat"] 
1512 longitude = city_json["lon"] 
1513 
1514 # get city1's size rank 
1515 sz = city_name_size_rank_dict[city1] 
1516 # Find how long it will take to double your initial investment in city1 
1517 idx = city_names_list.index(city1) 
1518 first = 0 
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1519 last = float_df.shape[1] 
1520 row = float_df.iloc[idx, :] 
1521 row_series = row.squeeze(axis=0) 
1522 rowmax = row_series.max() 
1523 rowmin = row_series.min() 
1524 string_starting_idx = row.idxmin() 
1525 numeric_starting_idx = 0 
1526 numeric_ending_idx = 0 
1527 month_dict = {} 
1528 months = float_df.columns.values.tolist() 
1529 for i in range(0, len(months)): 
1530 month_dict[months[i]] = i 
1531 numeric_starting_idx = month_dict[string_starting_idx] 
1532 double_price = rowmin * 2 

1533 current_price = 999999 
1534 for j in range(numeric_starting_idx, len(months)): 
1535 current_price = row[j] 
1536 if current_price >= double_price: 
1537 numeric_ending_idx = j 
1538 break 
1539 #convert numeric_ending_idx to string_ending_idx 
1540 string_ending_idx = months[numeric_ending_idx] 
1541 min_years = (numeric_ending_idx - numeric_starting_idx) / 12 
1542 start_year = string_starting_idx[-4:] 
1543 end_year = string_ending_idx[-4:] 
1544 int_start_year = int(start_year) 
1545 int_end_year = int(end_year) 
1546 int_start_index = int_start_year - 1996 
1547 int_end_index = int_end_year - 1996 
1548 # if the median home price in the given city did not double in during the 
24 years in the dataset, 
1549 # then use the senate representation for the entire 24-year period as the 
senate representation for 
1550 # this city 
1551 if int_end_index < int_start_index: 
1552 int_start_index = 0 
1553 int_end_index = int(len(row) / 12) 
1554 if numeric_ending_idx == 0: 
1555 int_start_index = 0 
1556 int_end_index = int(len(row) / 12) 
1557 senators = [] 
1558 if state_abbr == 'AL': 
1559 senators = AL_senators[int_start_index:int_end_index] 
1560 
1561 if state_abbr == 'AZ': 
1562 senators = AZ_senators[int_start_index:int_end_index] 
1563 
1564 if state_abbr == 'AR': 
1565 senators = AR_senators[int_start_index:int_end_index] 
1566 
1567 if state_abbr == 'CA': 
1568 senators = CA_senators[int_start_index:int_end_index] 
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1569 
1570 if state_abbr == 'CO': 
1571 senators = CO_senators[int_start_index:int_end_index] 
1572 
1573 if state_abbr == 'CT': 
1574 senators = CT_senators[int_start_index:int_end_index] 
1575 
1576 if state_abbr == 'FL': 
1577 senators = FL_senators[int_start_index:int_end_index] 
1578 
1579 if state_abbr == 'GA': 
1580 senators = GA_senators[int_start_index:int_end_index] 
1581 
1582 if state_abbr == 'HI': 
1583 senators = HI_senators[int_start_index:int_end_index] 
1584 
1585 if state_abbr == 'ID': 
1586 senators = ID_senators[int_start_index:int_end_index] 
1587 
1588 if state_abbr == 'IL': 
1589 senators = IL_senators[int_start_index:int_end_index] 
1590 
1591 if state_abbr == 'IN': 
1592 senators = IN_senators[int_start_index:int_end_index] 
1593 
1594 if state_abbr == 'IA': 
1595 senators = IA_senators[int_start_index:int_end_index] 
1596 
1597 if state_abbr == 'KS': 

1598 senators = KS_senators[int_start_index:int_end_index] 
1599 
1600 if state_abbr == 'KY': 
1601 senators = KY_senators[int_start_index:int_end_index] 
1602 
1603 if state_abbr == 'LA': 
1604 senators = LA_senators[int_start_index:int_end_index] 
1605 
1606 if state_abbr == 'ME': 
1607 senators = ME_senators[int_start_index:int_end_index] 
1608 
1609 if state_abbr == 'MD': 
1610 senators = MD_senators[int_start_index:int_end_index] 
1611 
1612 if state_abbr == 'MA': 
1613 senators = MA_senators[int_start_index:int_end_index] 
1614 
1615 if state_abbr == 'MI': 
1616 senators = MI_senators[int_start_index:int_end_index] 
1617 
1618 if state_abbr == 'MN': 
1619 senators = MN_senators[int_start_index:int_end_index] 
1620 
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1621 if state_abbr == 'MS': 
1622 senators = MS_senators[int_start_index:int_end_index] 
1623 
1624 if state_abbr == 'MO': 
1625 senators = MO_senators[int_start_index:int_end_index] 
1626 
1627 if state_abbr == 'NE': 
1628 senators = NE_senators[int_start_index:int_end_index] 
1629 
1630 if state_abbr == 'NV': 
1631 senators = NV_senators[int_start_index:int_end_index] 
1632 
1633 if state_abbr == 'NJ': 
1634 senators = NJ_senators[int_start_index:int_end_index] 
1635 
1636 if state_abbr == 'NM': 
1637 senators = NM_senators[int_start_index:int_end_index] 
1638 
1639 if state_abbr == 'NY': 
1640 senators = NY_senators[int_start_index:int_end_index] 
1641 
1642 if state_abbr == 'NC': 
1643 senators = NC_senators[int_start_index:int_end_index] 
1644 
1645 if state_abbr == 'OH': 
1646 senators = OH_senators[int_start_index:int_end_index] 
1647 
1648 if state_abbr == 'OK': 
1649 senators = OK_senators[int_start_index:int_end_index] 
1650 
1651 if state_abbr == 'OR': 
1652 senators = OR_senators[int_start_index:int_end_index] 
1653 
1654 if state_abbr == 'PA': 
1655 senators = PA_senators[int_start_index:int_end_index] 
1656 
1657 if state_abbr == 'RI': 
1658 senators = RI_senators[int_start_index:int_end_index] 
1659 
1660 if state_abbr == 'SC': 
1661 senators = SC_senators[int_start_index:int_end_index] 
1662 
1663 if state_abbr == 'TN': 
1664 senators = TN_senators[int_start_index:int_end_index] 

1665 
1666 if state_abbr == 'TX': 
1667 senators = TX_senators[int_start_index:int_end_index] 
1668 
1669 if state_abbr == 'UT': 
1670 senators = UT_senators[int_start_index:int_end_index] 
1671 
1672 if state_abbr == 'VA': 
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1673 senators = VA_senators[int_start_index:int_end_index] 
1674 
1675 if state_abbr == 'WA': 
1676 senators = WA_senators[int_start_index:int_end_index] 
1677 
1678 if state_abbr == 'WI': 
1679 senators = WI_senators[int_start_index:int_end_index] 
1680 # define and initialize counter variables 
1681 RR_ctr = 0 # number of years the city was represented by 2 Republicans 
1682 DD_ctr = 0 # number of years the city was represented by 2 Democrats 
1683 DR_ctr = 0 # number of years the city was represented by 1 Democrat and 1 
Republican 
1684 RD_ctr = 0 # number of years the city was represented by 1 Republican and 1 
Democrat 
1685 RI_ctr = 0 # number of years the city was represented by 1 Republican and 1 
Independent 
1686 DI_ctr = 0 # number of years the city was represented by 1 Democrat and 1 
Independent 
1687 IR_ctr = 0 # number of years the city was represented by 1 Independent and 
1 Democrat 
1688 ID_ctr = 0 # number of years the city was represented by 1 Independent and 
1 Democrat 
1689 II_ctr = 0 # number of years the city was represented by 2 Independents 
1690 for m in range (0, len(senators)): 
1691 if senators[m] == 'RR': 
1692 RR_ctr = RR_ctr + 1 
1693 elif senators[m] == 'DD': 
1694 DD_ctr = DD_ctr + 1 
1695 elif senators[m] == 'DR': 
1696 DR_ctr = DR_ctr + 1 
1697 elif senators[m] == 'RD': 
1698 RD_ctr = RD_ctr + 1 
1699 elif senators[m] == 'RI': 
1700 RI_ctr = RI_ctr + 1 
1701 elif senators[m] == 'DI': 
1702 DI_ctr = DI_ctr + 1 
1703 elif senators[m] == 'IR': 
1704 IR_ctr = IR_ctr + 1 
1705 elif senators[m] == 'ID': 
1706 ID_ctr = ID_ctr + 1 
1707 elif senators[m] == 'II': 
1708 II_ctr = II_ctr + 1 
1709 
1710 # compute the total number of years that the city was represented by a 
Republican during the doubling time 
1711 R_total = RR_ctr + RD_ctr + DR_ctr + RI_ctr + IR_ctr 
1712 # compute the total number of years that the city was represented by a 
Democrat during the doubling time 
1713 D_total = DD_ctr + RD_ctr + DR_ctr + DI_ctr + ID_ctr 
1714 if city1 == "Washington, DC": 
1715 colorIcon = "blueIcon" 
1716 elif R_total > D_total: 
1717 colorIcon = "redIcon" 
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1718 elif D_total > R_total: 
1719 colorIcon = "blueIcon" 
1720 elif R_total == D_total: 
1721 colorIcon = "purpleIcon" 
1722 elif (R_total == 0) and (D_total == 0): 
1723 colorIcon = "blackIcon" 

1724 
1725 string_ending_idx = months[numeric_ending_idx] 
1726 min_years = (numeric_ending_idx - numeric_starting_idx) / 12 
1727 if (min_years > 0) and (colorIcon == "blueIcon"): 
1728 blue_cities_count = blue_cities_count + 1 
1729 blue_cities_total_years = blue_cities_total_years + min_years 
1730 elif (min_years > 0) and (colorIcon == "redIcon"): 
1731 red_cities_count = red_cities_count + 1 
1732 red_cities_total_years = red_cities_total_years + min_years 
1733 elif (min_years > 0) and (colorIcon == "purpleIcon"): 
1734 purple_cities_count = purple_cities_count + 1 
1735 purple_cities_total_years = purple_cities_total_years + min_years 
1736 if min_years <= 0: 
1737 min_years_1f = "unknown" 
1738 else: 
1739 min_years_1f = "{:.1f}".format(min_years) 
1740 if min_years_1f == "unknown": 
1741 print("L.marker([", latitude, ", ", longitude, "], {icon: ", colorIcon, 
"}).bindPopup(\"The median home price in ", city1, " did not double 
between 1996 and 2021.\").addTo(map);", sep="") 
1742 else: 
1743 print("L.marker([", latitude, ", ", longitude, "], {icon: ", colorIcon, 
"}).bindPopup(\"The shortest amount of time to double your money in ", 
city1, " was ", min_years_1f, " years.\").addTo(map);", sep="") 
1744 blue_cities_average_doubling_time = blue_cities_total_years / blue_cities_count 
1745 red_cities_average_doubling_time = red_cities_total_years / red_cities_count 
1746 purple_cities_average_doubling_time = purple_cities_total_years / 
purple_cities_count 
1747 print() 
1748 blue_cities_average_doubling_time_1f = "{:.1f}".format( 
blue_cities_average_doubling_time) 
1749 red_cities_average_doubling_time_1f = "{:.1f}".format( 
red_cities_average_doubling_time) 
1750 purple_cities_average_doubling_time_1f = "{:.1f}".format( 
purple_cities_average_doubling_time) 
1751 print('The average doubling time in the cities represented by Democratic 
senators was:', blue_cities_average_doubling_time_1f, ".") 
1752 print('The average doubling time in the cities represented by Republican 
senators was:', red_cities_average_doubling_time_1f, ".") 
1753 print('The average doubling time in the cities represented by Democratic and 
Republican senators was:', purple_cities_average_doubling_time_1f, ".") 
1754 
1755 sys.stdout = default_stdout 
1756 output_file.close() 
1757 sys.exit() 
1758 
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1759 # write a color-coded list of cities grouped by size 
1760 elif mode == 18: 
1761 default_stdout = sys.stdout 
1762 output_file = open('size_list.txt', 'w') 
1763 # redirect stdout to a file 
1764 sys.stdout = output_file 
1765 colorIcon = "" 
1766 # size rank is the independent variable 
1767 size_rank_list = [] 
1768 # doubling time is the dependent variable 
1769 doubling_time_list = [] 
1770 for k in range(1, 122): 
1771 city1 = region_name_column_list[k] 
1772 # special cases 
1773 if city1 == "Denver, CO": 
1774 latitude = "39.7392" 
1775 longitude = "-104.9850" 
1776 elif city1 == "Richmond, VA": 
1777 latitude = "37.53" 
1778 longitude = "-77.47" 
1779 elif city1 == "Urban Honolulu, HI": 

1780 latitude = "21.315603" 
1781 longitude = "-157.858093" 
1782 elif city1 == "Ventura, CA": 
1783 latitude = "34.275" 
1784 longitude = "-119.228" 
1785 elif city1 == "North Port-Sarasota-Bradenton, FL": 
1786 cityX = "Sarasota, FL" 
1787 # find cityX's location 
1788 nominatim = Nominatim() 
1789 city_json = nominatim.query(cityX).toJSON()[0] 
1790 latitude = city_json["lat"] 
1791 longitude = city_json["lon"] 
1792 elif city1 == "Minneapolis-St Paul, MN": 
1793 cityY = "Minneapolis, MN" 
1794 # find cityY's location 
1795 nominatim = Nominatim() 
1796 city_json = nominatim.query(cityY).toJSON()[0] 
1797 latitude = city_json["lat"] 
1798 longitude = city_json["lon"] 
1799 else: 
1800 # find city1's location 
1801 nominatim = Nominatim() 
1802 city_json = nominatim.query(city1).toJSON()[0] 
1803 latitude = city_json["lat"] 
1804 longitude = city_json["lon"] 
1805 # get city1's size rank 
1806 sz = city_name_size_rank_dict[city1] 
1807 # Find how long it will take to double your initial investment in city1 
1808 idx = city_names_list.index(city1) 
1809 first = 0 
1810 last = float_df.shape[1] 
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1811 row = float_df.iloc[idx, :] 
1812 # convert row to Panadas series 
1813 row_series = row.squeeze(axis=0) 
1814 rowmax = row_series.max() 
1815 rowmin = row_series.min() 
1816 string_starting_idx = row.idxmin() 
1817 numeric_starting_idx = 0 
1818 numeric_ending_idx = 0 
1819 
1820 month_dict = {} 
1821 months = float_df.columns.values.tolist() 
1822 for i in range(0, len(months)): 
1823 month_dict[months[i]] = i 
1824 numeric_starting_idx = month_dict[string_starting_idx] 
1825 double_price = rowmin * 2 
1826 current_price = 999999 
1827 for j in range(numeric_starting_idx, len(months)): 
1828 current_price = row[j] 
1829 if current_price >= double_price: 
1830 numeric_ending_idx = j 
1831 break 
1832 # convert numeric_ending_idx to string_ending_idx 
1833 string_ending_idx = months[numeric_ending_idx] 
1834 min_years = (numeric_ending_idx - numeric_starting_idx) / 12 
1835 if min_years <= 0: 
1836 min_years_1f = "unknown" 
1837 else: 
1838 size_rank_list.append(sz) 
1839 doubling_time_list.append(min_years) 
1840 min_years_1f = "{:.1f}".format(min_years) 
1841 # if the city is in the 40 largest U.S. cities by population, color it red 
1842 if sz <= 41: 
1843 colorIcon = 'blackIcon' 
1844 # if the city is in the second 40 largest U.S. cities by population, color 
it blue 
1845 elif (sz >= 42) and (sz <= 81): 

1846 colorIcon = 'blueIcon' 
1847 # if the city is in the third 40 largest U.S. cities by population, color 
it green 
1848 elif (sz >= 82) and (sz <= 122): 
1849 colorIcon = 'skyBlueIcon' 
1850 if min_years_1f == "unknown": 
1851 print("L.marker([", latitude, ", ", longitude, "], {icon: ", colorIcon, 
"}).bindPopup(\"The median home price in ", city1, " did not double 
between 1996 and 2021.\").addTo(map);", sep="") 
1852 else: 
1853 print("L.marker([", latitude, ", ", longitude, "], {icon: ", colorIcon, 
"}).bindPopup(\"The shortest amount of time to double your money in ", 
city1, " was ", min_years_1f, " years.\").addTo(map);", sep="") 
1854 size_rank_array = np.array(size_rank_list) 
1855 doubling_time_array = np.array(doubling_time_list) 
1856 r = scipy.stats.pearsonr(size_rank_array, doubling_time_array)[0] 
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1857 print('pearson_correlation_coefficient', r) 
1858 sys.stdout = default_stdout 
1859 output_file.close() 
1860 sys.exit() 
1861 
1862 # write a color-coded list of cities grouped by doubling time 
1863 elif mode == 19: 
1864 default_stdout = sys.stdout 
1865 output_file = open('fastest_doublers.txt', 'w') 
1866 # redirect stdout to a file 
1867 sys.stdout = output_file 
1868 number_of_cities_in_east_coast_states_where_prices_doubled_in_less_than_10_years 
= 0 
1869 number_of_cities_in_west_coast_states_where_prices_doubled_in_less_than_10_years 
= 0 
1870 total_number_of_cities_where_prices_doubled_in_less_than_10_years = 0 
1871 number_of_interior_state_cities = 0 
1872 total_doubling_time_of_interior_state_cities = 0 
1873 colorIcon = "" 
1874 for k in range(1, 122): 
1875 city1 = region_name_column_list[k] 
1876 state_abbr = city1[-2:] 
1877 # special cases 
1878 if city1 == "Denver, CO": 
1879 latitude = "39.7392" 
1880 longitude = "-104.9850" 
1881 elif city1 == "Richmond, VA": 
1882 latitude = "37.53" 
1883 longitude = "-77.47" 
1884 elif city1 == "Urban Honolulu, HI": 
1885 latitude = "21.315603" 
1886 longitude = "-157.858093" 
1887 elif city1 == "Ventura, CA": 
1888 latitude = "34.275" 
1889 longitude = "-119.228" 
1890 elif city1 == "North Port-Sarasota-Bradenton, FL": 
1891 cityX = "Sarasota, FL" 
1892 # find cityX's location 
1893 nominatim = Nominatim() 
1894 city_json = nominatim.query(cityX).toJSON()[0] 
1895 latitude = city_json["lat"] 
1896 longitude = city_json["lon"] 
1897 elif city1 == "Minneapolis-St Paul, MN": 
1898 cityY = "Minneapolis, MN" 
1899 # find cityY's location 
1900 nominatim = Nominatim() 
1901 city_json = nominatim.query(cityY).toJSON()[0] 
1902 latitude = city_json["lat"] 
1903 longitude = city_json["lon"] 
1904 else: 
1905 # find city1's location 

1906 nominatim = Nominatim() 
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1907 city_json = nominatim.query(city1).toJSON()[0] 
1908 latitude = city_json["lat"] 
1909 longitude = city_json["lon"] 
1910 # get city1's size rank 
1911 sz = city_name_size_rank_dict[city1] 
1912 # Find how long it will take to double your initial investment in city1 
1913 idx = city_names_list.index(city1) 
1914 first = 0 
1915 last = float_df.shape[1] 
1916 row = float_df.iloc[idx, :] 
1917 # convert row to Panadas series 
1918 row_series = row.squeeze(axis=0) 
1919 rowmax = row_series.max() 
1920 rowmin = row_series.min() 
1921 string_starting_idx = row.idxmin() 
1922 numeric_starting_idx = 0 
1923 numeric_ending_idx = 0 
1924 
1925 month_dict = {} 
1926 months = float_df.columns.values.tolist() 
1927 for i in range(0, len(months)): 
1928 month_dict[months[i]] = i 
1929 numeric_starting_idx = month_dict[string_starting_idx] 
1930 double_price = rowmin * 2 
1931 current_price = 999999 
1932 for j in range(numeric_starting_idx, len(months)): 
1933 current_price = row[j] 
1934 if current_price >= double_price: 
1935 numeric_ending_idx = j 
1936 break 
1937 #convert numeric_ending_idx to string_ending_idx 
1938 string_ending_idx = months[numeric_ending_idx] 
1939 min_years = (numeric_ending_idx - numeric_starting_idx) / 12 
1940 if min_years <= 0: 
1941 min_years_1f = "unknown" 
1942 else: 
1943 min_years_1f = "{:.1f}".format(min_years) 
1944 # check if the city is in an interior state 
1945 if (state_abbr not in ["WA", "OR", "CA"]) and (state_abbr not in ["ME", "NH" 
, "MA", "RI", "CT", "NY", "NJ", "DE", "MD", "DC", "VA", "NC", "SC", "GA", 
"FL"]): 
1946 number_of_interior_state_cities = number_of_interior_state_cities + 1 
1947 total_doubling_time_of_interior_state_cities = 
total_doubling_time_of_interior_state_cities + min_years 
1948 # if the city has a doubling time between 0 and 9.9 years, color it green 
1949 if (min_years > 0) and (min_years < 10.0): 
1950 colorIcon = 'greenIcon' 
1951 # increment the count 
1952 total_number_of_cities_where_prices_doubled_in_less_than_10_years = 
total_number_of_cities_where_prices_doubled_in_less_than_10_years + 1 
1953 # check if the city is in a West Coast state 
1954 if state_abbr in ["WA", "OR", "CA"]: 
1955 
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number_of_cities_in_west_coast_states_where_prices_doubled_in_less_th 
an_10_years = 
number_of_cities_in_west_coast_states_where_prices_doubled_in_less_th 
an_10_years + 1 
1956 # check if city is in an East Coast state 
1957 if state_abbr in ["ME", "NH", "MA", "RI", "CT", "NY", "NJ", "DE", "MD", 
"DC", "VA", "NC", "SC", "GA", "FL"]: 
1958 
number_of_cities_in_east_coast_states_where_prices_doubled_in_less_th 
an_10_years = 
number_of_cities_in_east_coast_states_where_prices_doubled_in_less_th 
an_10_years + 1 
1959 # if the city has a doubling time between 10.0 and 19.9 years, color it 

yellow 
1960 elif (min_years >= 10.0) and (min_years < 20.0): 
1961 colorIcon = 'yellowIcon' 
1962 # if the city has a doubling time between 20.0 and 29.9 years, color it red 
1963 elif (min_years >= 20) and (min_years < 29.9): 
1964 colorIcon = 'blackIcon' 
1965 # if the median price for a single-family home did not double in that city 
between 1996 and 2021 
1966 else: 
1967 colorIcon = 'grayIcon' 
1968 if min_years_1f == "unknown": 
1969 print("L.marker([", latitude, ", ", longitude, "], {icon: ", colorIcon, 
"}).bindPopup(\"The median home price in ", city1, " did not double 
between 1996 and 2021.\").addTo(map);", sep="") 
1970 else: 
1971 print("L.marker([", latitude, ", ", longitude, "], {icon: ", colorIcon, 
"}).bindPopup(\"The shortest amount of time to double your money in ", 
city1, " was ", min_years_1f, " years.\").addTo(map);", sep="") 
1972 
1973 
number_of_cities_in_states_on_either_coast_where_prices_doubled_in_less_than_10_y 
ears = 
number_of_cities_in_west_coast_states_where_prices_doubled_in_less_than_10_years 
+ 
number_of_cities_in_east_coast_states_where_prices_doubled_in_less_than_10_years 
1974 fraction_of_cities_in_coastal_states_where_prices_doubled_in_less_than_10_years 
= 
number_of_cities_in_states_on_either_coast_where_prices_doubled_in_less_than_10_y 
ears / total_number_of_cities_where_prices_doubled_in_less_than_10_years 
1975 
fraction_of_cities_in_coastal_states_where_prices_doubled_in_less_than_10_years_2 
f = "{:.2f}".format( 
fraction_of_cities_in_coastal_states_where_prices_doubled_in_less_than_10_years) 
1976 print('\n', 
fraction_of_cities_in_coastal_states_where_prices_doubled_in_less_than_10_years_2 
f, "percent of the cities that doubled in less than 10 years were located in a 
state that borders the Atlantic Ocean or the Pacific Ocean.") 
1977 
1978 average_doubling_time_of_interior_state_cities = 
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total_doubling_time_of_interior_state_cities / number_of_interior_state_cities 
1979 print('average_doubling_time_of_interior_state_cities:', 
average_doubling_time_of_interior_state_cities) 
1980 sys.stdout = default_stdout 
1981 output_file.close() 
1982 sys.exit() 
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