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Abstract

Robust Synthesis Methods for Cooperative Systems

Baris Taner, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Kamesh Subbarao

Cooperative systems, like any other dynamic systems, suffer in performance because

of uncertainty yet there is an added layer of uncertainty due to the communication among

agents. Therefore, analytic solution to these problems are hard if not impossible. With the

advancements in the linear and non-linear methods, i.e. linear matrix inequalities (LMI)

and non-linear transformations, robust performance analysis and controller synthesis for

cooperative systems can be reformulated as optimization problems with LMI constraints

as has been done in the last two decades. Another aspect of the problem becomes visible

as the cooperative system grows larger and that necessitates faster solution methodologies

to solve the aforementioned problem. Based on this context, the general objectives of

this research are to develop computationally efficient analysis and synthesis methods for

cooperative systems with uncertainties, which are

• Develop computationally efficient linear parameter varying (LPV) and Linear Time

Invariant (LTI) synthesis framework and regarding tailored optimization techniques

for cooperative systems, which suffer performance because of uncertainties.

- develop computationally efficient linear parameter varying controller synthesis

method that accommodates uncertainty analysis in a distributed fashion and
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provide a framework to synthesize a robust cooperative system starting from a

single agent

- develop a robust cooperative system synthesis method that consider uncertainty

analysis in edge weight synthesis

- develop a cooperative system synthesis method that is formulated in distributed

fashion to improve computational efficiency and suitable for distributed optimization.

- develop implementation strategies for cooperative synthesis methods to state of

the art applications.

The methods developed in this dissertation are verified using numerical simulations

using the short-period dynamics of an aircraft as an application to benchmark the computational

efficiency of the LMI-based methods. On top of that, the cooperative synthesis methodology

is implemented on a cooperative docking application and a bipedal locomotion application

through Model Predictive Control (MPC).

This dissertation develops a framework for a systematic design of robust controllers

to guarantee desired output performance for an interconnected group of multi-input-multi-

output dynamic systems. The framework enables the design of a robust Linear Parameter

Varying (LPV) controller for all individual vehicles and the interconnected group to account

for uncertainties associated with the individual vehicles and the interconnections. In this

dissertation, the robust controller design methodology for the individual and cooperative

systems is implemented in a nested manner to enhance performance. The application of

the nested robust controller is distributed wherein well-known robust performance analysis

is adopted and modified. The controller synthesis methodology is developed on top of the

same performance condition. Nested robust LPV controllers are synthesized for agents

of the cooperative system. Then the cooperative system of these agents is interconnected

using a connection topology that suffers time delays. A cooperative controller is designed

using two methods described in this work in a nested fashion. Robustness against given
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uncertainties is studied with an integral quadratic constraint (IQC) framework. A benchmark

is drawn by comparing conventional lumped and the developed distributed method in terms

of time efficiency.

Improving the robust performance of a cooperative system using cooperative controllers

is a method. However, it increases the complexity of the synthesis due to the added states,

and as the number of systems grows higher, the problem becomes intractable. A solution

to this is to synthesize a cooperative system to improve its robust performance. Therefore

the next problem studied in this work is implementing a non-linear programming method

to synthesize edge weights of an adjacency matrix for a cooperative system using bi-linear

matrix inequalities, which suffer uncertainties. First, convex-concave decompositions are

used on the bi-linear matrix inequality constraints for nominal H∞ synthesis. Then this

method is improved to consider uncertainties using the IQC framework. Agents composing

the cooperative system are represented as a linear time-invariant single input, single output

systems, which share their output information to achieve consensus. The topology of the

cooperative system is predefined, and edge weights are defined as functions of a variable.

Following a synthesis strategy that brings the best local robust performance of a

cooperative system without adding the complexity of controllers is valuable, as, without

loss of generality, these controllers have at least as many states as the agent. However, more

efficient ways exist to extract the best local performance than synthesizing a cooperative

system in lumped fashion. A more efficient way is to introduce distributed synthesis

methodologies. Based on this context, this work further studies a distributed edge weight

synthesis of a cooperative system for a fixed topology to improveH∞ performance, considering

that disturbances are injected at interconnection channels. Performance metrics for lumped

and distributed methods are common; therefore, constraints related to performance for

both methods are similar. However, the connection between agents of the cooperative

system is defined in a distributed fashion in terms of additional synthesis constraints,
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which constructs the optimization problem. Then this problem is cast into a linear matrix

inequality problem by replacing the original cooperative system with an equivalent ideal

cooperative system. Derivations of the method rely on the dissipative system framework.

The proposed method provides an upper bound for the induced L2 norm of the original

lumped cooperative system while reducing the computation time. A comparison of computation

time illustrates the advantage of the proposed method against the lumped counterpart.

As presented above, the implementation strategy for cooperative synthesis ideology

is presented in terms of a fast-slow MPC. The MPC is built with task prioritization to

perform docking maneuvers on cooperative systems. The studied method allows agents and

a single agent to perform a docking maneuver. In addition, agents give different priorities

to a specific subset of shared states. In this way, overall degrees of freedom to achieve

the docking task are distributed among various subsets of the task space. Fast-slow model

predictive control strategy uses non-linear and linear model predictive control formulations

such that docking is handled as a non-linear problem until agents are close enough, where

direct transcription is calculated using the Euler discretization method. During this phase

generated trajectory is tracked with a linear model predictive control. Then linear model

predictive control performs the sensitive close proximity motion to finish docking. The

proposed strategy is illustrated in a case study, where quadcopter docks on a non-holonomic

rover using a leader-follower topology.

Finally, this dissertation presents a graph theoretic modeling and trajectory optimization

technique for a biped robot named ASLB. This method utilizes a cooperative control

framework to divide the state propagation and trajectory optimization of the lumped multi-

body model of the robot into cooperative multi-bodies. The non-linear robot model is

linearized at the current state, and states are propagated using the discrete newton Euler

method. In addition, robot dynamics, contact location kinematics, and external forces

are represented with respect to the body frame. This allows the cooperative quadratic

viii



optimization method to handle trajectory optimization for ASLB, a highly non-linear system

with large degrees of freedom.
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2.3 Sub-systems Ĥ(ρ) and Ĝscl illustrated with the interconnections to construct

required extended systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Nested robust control synthesis algorithm . . . . . . . . . . . . . . . . . . . 43

2.5 Synthesis-ready extended single-agent system, G . . . . . . . . . . . . . . . 49

2.6 Robustly stable closed-loop system as a single agent. This system is constructed

from longitudinal dynamics of F16 Vista Aircraft. . . . . . . . . . . . . . . 50

2.7 Accumulated group of agents without any interconnection. . . . . . . . . . . 50

2.8 Construction of the synthetic system, Gcons. . . . . . . . . . . . . . . . . . . 51

2.9 Construction of synthesis and analysis ready system, Ĝ. . . . . . . . . . . . 51
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Chapter 1

Introduction

Finding an optimally robust cooperative system to uncertainties, especially with

varying dynamic properties, is a task that requires the integration of various analytic and

numeric frameworks. The frameworks, as mentioned earlier, are based on modeling the

varying nature and uncertainty of the system in order to cast it into an optimization problem,

where a locally optimal robust solution can be provided. These improved frameworks

for general dynamic systems are also suitable for analysis and synthesis for cooperative

systems. Based on this context, this research aims to develop analysis and synthesis

methods to improve the robust performance of cooperative systems with uncertainties in

a computationally efficient way and provide a systematic framework. In addition, this

dissertation illustrates application strategies of cooperative synthesis methods for state of

the art applications such as bipedal walking and cooperative docking.

1.1 Literature Review

Coordination among a group of agents has been a topic of long-standing interest.

Over the past years, considerable work has been devoted to the design of cooperative

control strategies among the agents for various applications such as formation flight [3],

satellite clustering [4], unmanned vehicle [5, 6] and space applications [7, 8]. Furthermore,

CSs are also used in wireless sensor networks, where distributed sensory data is being

processed as in [9], and sensory information is merged as in [10]. In addition to that, CSs

also fit in infrastructure applications such as AC power grid [11] and water distribution

networks [12], where sources and sinks are in large numbers and widely distributed (see
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[13–16] and references therein for further applications). Some of these applications cluster

a few agents and form a small CS, while the others make large-scale CS, which might

be geographically separated and life-critical [17]. As a further note, real-world dynamic

systems with cooperating agents occur on weighted Graphs such as neural and biochemical

networks [18–20]. Depending on the application, weights can be interpreted as conductance

[21] or strength of the communication, where a formation control strategy is given for

vertical takeoff and landing vehicles [22].

Recently, the assessment of stability and performance of a CS has been widely done

by convex optimization; specifically, semi-definite programming (SDP), where computational

algorithms are solving a set of linear matrix inequalities (LMIs) [23, 24]. The existence

of LMIs in control theory starts with the Lyapunov theory and Lyapunov inequality [25].

Practical applications of LMIs initially refer to graphical methods [26] yet with the recognition

that many LMIs for control problems can be solved by convex optimization and introduction

of efficient methods. So such as interior point methods, LMIs have gained popularity since

the late 90s up to now [25, 27, 28]. As the SDP emerges more into the control theory, it is

recognized that SDP is suitable for more practical applications. These applications can be

given in controller and observer synthesis problems [29, 30].

In essence, what is being done is a reformulation of the control theory problems, such

as controller/observer synthesis, system identification, and signal processing problems, into

LMIs such that a cost function and a constraint represent the goal and restrictions on the

intended identity of the resulting entity (a controller, an observer, or identified system,

depending on the problem) [31]. This reformulation makes sense if the cost and the

constraints are linear because there are efficient solvers, as denoted previously. However,

reformulating the control problem mentioned above into LMI-based optimization is not

straightforward for many applications, as in the linear feedback control synthesis case. The

problem is a bi-linear matrix inequality problem (BMI), a certain type of non-linearity. We
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know from the literature that the BMI problem is an NP-hard problem [32–34]. There are

multiple ways to address the non-linearity and transform it into an LMI problem, which

will be discussed in the following sections, yet a summary of the idea is given here. With

the results represented in [31, 35], bi-linear constraints in the optimization (a type of non-

linearity) depend non-linearly on decision variables and are transformed into a new set of

constraints that are affine functions of new variables. This leads to a non-linear but convex

set of inequalities that is easily transformed into LMIs using Schur complement [31, 36].

State-of-the-art algorithms are being studied that directly address the problem as a bi-linear

problem [37], which is a more general constraint in control synthesis applications.

1.1.1 Nested Robust Controller Design for Interconnected Linear Parameter Varying Agents

Coordination and cooperation is a high-level problem, where [13] presents the early

formulations of control problems using graphs to model information flow, [14] presents

optimal guidance laws in a cooperative setting using relative kinematics for an intercept

problem. [15] studies the leader-follower flocking control problem wherein the agents

follow time-varying reference velocities. The lower-level individual unit is assumed to be

sufficiently robust or perform optimally for several high-level formation and cooperative

control problems. On the other hand, myriad of control methodologies address just the

individual vehicle control problem.

This work considers a nested robust control synthesis problem for a group of uncertain

linear parameter varying (LPV) systems under a cooperative system framework. The

aforemetioned LPV systems contain uncertainties in individual agent dynamic model as

well as in the communication among the agents. Nested controllers can be realized in

cooperative systems through a hierarchical structure such that a parent controller organizes

the cooperative system and improves the group performance. In contrast, individual controllers

deal with stabilizing or enhancing the performance of the individual agents. An example
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of that can be given from the work [38], which considers a power distribution network

and uses three levels of controllers managing distinct tasks in different time scales. In

another work [39], a hierarchical controller shares control action among layers, where

lower layers of the hierarchy deal with the positioning and tracking in continuous time

while the higher layers focus on coordination, fault identification, and reconfiguration.

This work assign tasks for nested controllers such that the lower layer controllers carry out

continuous robust tracking. In comparison, the higher layer controllers produce the desired

robust cooperative performance under the influence of uncertainties within both individual

systems and communication media. Intuitively, cooperative systems’ performances are

enhanced by cooperative controllers hierarchically working with the controllers at the other

layers of the cooperative system.

Improving the robust performance of the cooperative systems can be addressed with

various approaches such as µ-synthesis, which is suggested in the literature for dynamic

systems and cooperative systems [40,41] and Integral Quadratic Constraints (IQCs), which

is described as a filter and a correlator in the literature [42]. This method provides a unified

framework by characterizing the input and output behaviors of these multiple uncertainties

[43–45]. A significant result for IQCs is provided in [44] emphasizing that the time-

domain IQCs that fall into a particular group called “Hard IQCs” are required to satisfy

a dissipation inequality for an LPV system with uncertainties [46]. If one considers a

stable linear system to be a function of some non-stationary parameter and if this system

satisfies certain strict dissipativity conditions under the effect of uncertainty, then one can

conclude that the system is asymptotically stable under the effect of uncertainties, thus

guaranteeing robustness [47]. For such an LPV system, this analysis can be done using

parametrized Linear Matrix Inequalities (LMI) as described in [46]. The idea of “analysis”

can also synthesize a controller since this system should satisfy a nominal performance

metric. The drawback of this approach is that the feasibility of the LMI is decided by some
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decision variable, which grows proportional to the square of the states in the system and

the method becomes inefficient if the system size grows too much [48]. Multiple ways

to treat this problem exist in the literature which include devising new approaches to solve

LMI problems like cutting plane algorithms [48] or novel implementations of interior-point

methods [49].

Motivations. Another way of treating the problem of finding a solution to the LMI

for large cooperative systems is by using distributed analysis and synthesis methods for

the LMI methodology. An example for distributed controller synthesis can be found in

[50] which relies on the contractiveness of the linear time-invariant (LTI) cooperative

system in addition to the well-posedness. In another work [51], cooperative LPV systems

are considered, and a distributed synthesis methodology is proposed. Distributed robust

analysis methodologies also exist in the literature that uses the internal stability of the

channel from the output of the cooperative system via the graph adjacency matrix back

into the cooperative system [43, 52]. The drawback of this method is that it restricts the

graph topology, i.e., each agent can have only one input. In addition, a sparse formulation

methodology of the cooperative LTI system using IQC framework is described in work

[53]; however, this approach does not allow valid time-domain IQC description. Robust

analysis and synthesis for LPV systems require valid time-domain IQC definition as discussed

in [1]; thus, the approach of [53] is not applicable for LPV cooperative systems. Moreover,

the work carried out in [1] for a single-agent system can be extended to LPV cooperative

systems with uncertainties in communication. Further, by introducing the distributed robust

analysis condition, this method can be extended to a distributed controller synthesis method

for LPV cooperative systems suffering uncertainties.
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1.1.2 Robust Edge Weight Synthesis for Cooperative Systems Suffering Uncertainties

CSs are investigated under two main subjects, which are denoted as analysis and

synthesis. Under the analysis, CSs are provided methods to certify metrics of stability and

performance or measure these metrics under certain conditions such as uncertainties. In the

synthesis of CSs, however, goal is to improve stability and performance of the system. One

way of improving these metrics is done by introducing a controller using methodologies

such as optimal and robust control frameworks [54, 55].

Based on the analysis, performance of CSs are revealed to be related to various

factors. As shown in [56], stability margin of a cooperative system is quantified for a

change in the feedback gain using minimum singular value of the cooperative system.

Cooperative system is shown to have an upper bound for the stability margin and this

can be achieved by changing the communication topology. In another work [57], a unified

analysis for consensus of CSs is provided using the Linear Matrix Inequalities (LMIs).

One of the outcomes of this work is the notion of consensus region, which is the region

that a CS can achieve consensus, and it is also provided that shape and size of this region

is related to a coupling gain that magnifies the feedback gain of the cooperative controller.

CSs are also investigated considering the post modern control frameworks such as integral

quadratic constraints (IQCs) and robust control [42, 58]. Work given in [59] applies IQCs

to employ synchronization analysis to cooperative systems having time-delays. This is a

unifying approach of employing uncertainty analysis to verify the consensus of cooperative

systems with uncertainties.

As the analysis illustrates, CSs are affected by how the communication between the

agents is set and it brings the question of how this can be improved. Numerous robust

controller synthesis methodologies are introduced in the literature for CS to achieve a

performance criteria under uncertainties [55, 60]. Alternatively, increase in performance

is also available if a certain communication topology and edge weighting is selected.
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Topology and edge weights of network defines which agents are connected and how strong

the connections are. As illustrated in work [61], effective resistance of the overall CS is

reduced by optimal allocation of the edge weights. In another work [62], convex optimization

is used to allocate edge weights to obtain better dynamic properties for the CS by meeting

upper and lower bound constraints on maximum and Fiedler eigenvalues respectively.

Before mentioned methods formulate the problems as convex optimization problems and

uses semi-definite programming (SDP) to find optimal solution. Alternatively, one can

optimize certain objectives for a CS by moving agents along optimal trajectories. This

is discussed in [63], where optimal trajectory for agents is calculated to obtain minimum

transmitting power by introducing topology constraints on the optimization problem. Design

problem can also be formulated as a non-convex quadratically constrained quadratic problem

(QCQP) and converted to a rank minimization optimization problem using semi-definite

relaxation methods. Thus, original QCQP problem, which is classified as NP-hard, is

converted to a linear problem and solved using SDP methods [64].

Formulation of synthesis problem is a difficult task using LMIs. Specifically, synthesis

problem for output feedback requires a bilinear matrix inequality (BMI) constraint on the

optimization. As illustrated in literature, this can be addressed by a decoupling of the

decision variables [65] or convexification via congruence transformation [36]. However, it

can also be taken as is and solved as a BMI optimization problem and means to solve this

problem are local methods, which does not guarantee global optimum. These methods are

augmented Lagrangian method [66], sequential semi-definite programming method [37]

and non-smooth methods for BMIs [67].

Motivations. CSs are becoming vastly used systems in recent years and like other

systems they are asked to meet certain performance criteria with unmodeled degradations

in the communication. This problem is addressed by robust controller synthesis, however,

structured controllers are introducing complexities into the CS design. One of these complexities
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is that increased system dimensions leads to infeasible calculation times, especially for

large systems. On the other hand, communication topology and edge weight design can

increase performance of the CS with no-added complexities into CS design. However, to

the best of authors’ knowledge there is not any work that incorporates the uncertainties in

network design either for topology or edge weights. Based on this motivation, this work

illustrates a method based on sequential LMI (sLMI) approach for synthesizing connectivity

weights of a CS using IQCs. CS used in this work is composed of agents that are defined

as linear and strictly proper systems. These systems share their output information within

the cooperative system over the prescribed communication grid defined by an adjacency

matrix. The topology for this adjacency matrix is initially provided.

1.1.3 Distributed H∞ Edge Weight Synthesis for Cooperative Systems

Conventional way to approach CS synthesis relies on lumped methods, where CS

is modeled as a single system. However, this approach impose a heavy computational

load in synthesis process even for relatively small CSs, which motivates the distributed

methodologies. Especially in the area of controller synthesis there are various examples

of distributed control methods. Some of the recent literature from different frameworks

can be given as follows. In [68], an optimal control framework is used to solve multi-

objective optimization problem for DC micro-grid using local-neighbour information. In

another work, distributed impedance control is synthesized for event-triggered cooperative

manipulation under disturbances using Lyapunov stability theory [69]. Finally, a distributed

robust controller synthesis methodology from a dissipation perspective is utilized in [55] to

consider uncertainties with CS.

As defined in previous section, synthesis of CSs are handled by synthesizing the CS

itself by modifying topology or edge weights, which is cast into a semi-definite programming

(SDP) [61, 62]. Conventionally, lumped problems are computationally heavy problems
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for large scale CS, however, they can also be effectively solved using sparsity promoting

methods. In a recent work, topology design of an undirected network is posed as an optimal

control problem and solved using proximal gradient and Newton methods [70]. Sparsity

of the controller is promoted using l1 regularization into the H2 formulation and derivation

of a dual problem, which allows application of proximal algorithms. Similar examples

can be given from distributed optimization of network systems, where cost function is

separable into smaller convex cost functions [71, 72]. Recently, edge weight synthesis of

CS is modeled in a distributed fashion and solved using set of linear matrix inequalities

(LMI) that satisfy the neutrality between agents and nominal H∞ performance conditions

[73]. Without the relaxations, this problem is NP-hard due to nature of the problem as

defined in [74], however, it is given a solution by collecting sources of non-linearity in a

synthetic system, which undertakes large scale matrix permutations. The communication

grid was parametrized with a single parameter and topology of the CS is predefined and

not synthesized.

Motivations.To the best of authors knowledge, edge weight synthesis of CSs is not

posed to improve H∞ performance in distributed fashion, which will benefit potentially

faster converging algorithms. Method originally defined in [75] and recently implemented

for controller synthesis in [55], imposes a constraint on the interconnections by assuming

the interconnections are ideal. This assumption results in a symmetric adjacency matrix,

which is a limitation on the synthesis. This method is utilized in this research for distributed

edge weight synthesis, where performance is measured in terms of induced L2 norm of the

system. Without the relaxations, this problem is NP-hard [74].

1.1.4 Cooperative Model Predictive Control Strategy for Docking with Task Prioritization

Autonomous aerial systems have become essential in numerous practical fields, such

as in public safety as a surveillance tool and first response [76–78]. It has also been studied
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for the delivery of goods by the industry [79, 80]. A critical task during the operation

of an aerial system is docking maneuver, where it might be approaching a stationary

or a moving platform [81, 82] to drop/load cargo. Besides that, aerial vehicles require

refueling or recharging to extend their workspace [83]. Docking is an intricate maneuver

that necessitates the awareness of the docking path’s constraints regarding flight safety and

the docked platform’s attitude [84]. In addition, nonlinear effects such as the wake of the

leading agent due to the proximity flight must be considered [85] as well as the ground

effect [86]. Thus it is clear that the characteristic of this maneuver requires the agent to

handle certain constraints and uncertainties.

A popular control method to handle previously described constraints and calculate

control actions is model predictive control (MPC). An MPC reaches the desired control

action by minimizing a given objective using linear and non-linear optimization theory

as applied in the case of a tracking controller [87]. MPC also allows the integration

of secondary tasks into decision-making as in [88], which makes it a unified strategy to

handle docking maneuvers without requiring ad-hoc integration of multiple frameworks

that increase complexity. Implementing MPC-based docking strategies for space applications

exists in case studies, where line of sight constraints are satisfied, energy-saving strategies

are pursued, and docking on tumbling objects are executed [89–91].

Autonomous docking for aerial vehicles requires state information of the docked

platform, which receives the docking agent. Therefore it certainly requires an on-board

or external mechanism to sense and estimate states. On-board sensors such as cameras

or lidar are widely implemented solutions (see [92]), yet they are bounded with range

limitations. External mechanisms to obtain state information of the docked platform are

sensors placed on the agents, except for the docking agent or external observers. As a

result, this information is shared over a communication grid as illustrated in [93]. Besides

state information, some of the autonomous docking literature can be grouped in terms of
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cooperation at the controller level. In one of the works, a central controller calculates lateral

and longitudinal velocity commands for both of the docking maneuver devices: uncrewed

ground vehicle (UGV) and uncrewed aerial vehicle (UAV). Then these control signals are

fed into these agents [94]. In the extension of this work, an MPC strategy is utilized on

the same system, where both agents are cooperatively trying to execute docking maneuvers

[95]. In another work, a multirotor docks onto a fixed-wing platform, where only the

multirotor executes the docking maneuver [82]. The aerial refueling problem is addressed

as a docking problem in [83]. However, only the docking platform and the boom are

manipulated. Recent work studies an uncrewed sea surface vehicle (USV) landing and

designs an MPC controller for a multirotor, where cooperative docking is executed [96].

However, the docking trajectory calculation is calculated on the multirotor and shared back

to the USV. Another essential feature of this controller is docking algorithm initiates once

the multirotor is in the vicinity of the USV, and another controller handles the approach.

Motivations When multiple agents are communicating with each other and obeying

specific rules, i.e., collision avoidance, velocity matching, and staying within the vicinity

of the neighbors, the aggregate of these agents are called cooperative agents [97] and the

application of these systems are vast due to the advantages. Popular applications are

uncrewed vehicle [98], and space applications citeYao2019. The nature of autonomous

docking makes the systems performing this maneuver a cooperative system. However,

it is not formally addressed as one in the vast majority of the literature since developed

algorithms are mostly developed for one of the agents. On the other hand, controllers

cooperatively addressing this problem are mainly centralized on a ground controller or in

one of the agents, which might suffer performance or even failure due to uncertainties in the

communication. Apart from the centralized implementation of cooperative docking, there

are a few applications where both agents are taking part in the docking maneuver. Since

the cooperative control framework allows various communication topologies, previously
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described methods are obtainable with a unified cooperative control framework that is

based on MPC with local neighbor state information. Besides the cooperative aspect,

a prioritization of the states to track during docking is not studied in the literature. As

summarized before, agents that are too far apart from each other first minimize the positional

difference, which is done to be in a feasible solution set when the MPC for docking is

initiated. Instead of handling this problem as two separate subproblems, an automated

prioritization of tracking certain states can be defined so that linear states can be given

higher priority over the angular states. Then this single problem can be solved. Therefore,

this highlights the motivation of this research.

1.1.5 Graph Theoretic Online Trajectory Optimization and for ASLB Biped Robot

Planning a trajectory for a biped robot is a complex task as free-floating base of the

robot is moved by the discontinuous contact forces acting on the feet. This propulsion

method requires attention in planning motion of the contact points and the contact forces

while considering the dynamic effects on the robot [99]. In addition to that, a straightforward

optimal control formulation results in a intractable non-linear programs as stated in the

literature [100, 101].

There are multiple causes of complexity in planning the trajectory of a floating base

robot. First of all, the pose of the floating base is described with six degrees of freedom

(DoF) unactuated base coordinates. Then actuated joint coordinates of legs are added on

top of that, which results in a relatively large joint coordinates [99]. Therefore, a trajectory

optimization of such a system should find optimal values for all these coordinates. Secondly,

contact between feet and the terrain must comply certain contact conditions such as unilateral

contact forces [102]. In literature, this problem is handled as a trajectory optimization

problem using numerical optimization techniques such as direct optimal control methods

[103], indirect optimal control methods [104], dynamic programming [105], and sequential
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methods [106]. By this way, trajectory of the robot along with calculated joint coordinates,

torques and contact forces are calculated considering the upper level constraints on the task.

Complexity of the problem is reduced in multiple ways. A way to do it is to use low

fidelity dynamic models for the robot such as single rigid body dynamics model, where a

lumped inertia is attached to the body frame and actuated links are assumed to be moving

slowly and having low inertia [100]. Another way to reduce complexity is to split the the

optimization into smaller sub-problems and pre-defining some portions of the trajectory

such as footholds [107].

However, simplifications in robot model and optimization problem compromise with

the complexity of the motion that can be calculated by the trajectory optimization. For

this reason means to simplify full-body dynamics without compromising the fidelity of

the model is vital. Recently, trajectory optimization problem is distributed into smaller

alternating sub-problems, where first one satisfy dynamic constraints of the problem by

finding robot momentum and contact forces, then second one finds the leg kinematics that

satisfy robot dynamics. This is denoted as centroidal and whole-body model splitting and

first introduced in work [106], where a sequential optimal control formulation is represented.

In another work based on the same splitting of whole-body motion and centroidal dynamics,

locomotion problem is cast into a mathematical framework based on Alternating Direction

Method of Multipliers (ADMM) [108]. This paper exploits the natural splitting between

centroidal and manipulator dynamics and ensures consensus between these models. Another

recent example uses same splitting and introduces an accelerated ADMM algorithm to

solve locomotion problem. [101].

Besides centroidal and whole body splitting of the dynamic model of a legged robot,

there is obviously another splitting between the portions of the body. This splitting is

naturally defined by the design of legged robots and named as body and limbs. Depending

on the design, they can contain a single body or a set of multi-bodies and interconnection
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between these sets maintained over a connection node, which is a joint. A formal way to

describe the cooperation between these sets already exist in the literature within cooperative

system framework [109]. This framework defines a relationship between independent

agents using communication Graph, which dictates a mapping to the information flow

among agents. Cooperative system framework is used in many areas such as increasing

performance of a sensory network in localization of data [110], or calculating the communication

topology between dynamic agents within the cooperative system [111]. It is also used in

designing controllers for agents within a network [112]. All the applications have one thing

in common and that is the distributed modelling of the cooperative system and distributed

calculation of the variables to reach desired objective.

1.2 Objectives

The objectives of the research are depicted as follows:

1. First objective is to introduce an robust controller for linear parameter varying cooperative

systems which suffers uncertainties both in single agent and cooperative system

levels. The robust performance metric is depicted as H∞. This goal is achieved

by developing an algorithm for synthesizing nested linear parameter varying robust

controller to be implemented on cooperative systems that ensures robust tracking

at the individual agent level (lower level) and robust performance at the cooperative

system level (higher level), which improves computational efficiency as the uncertainties

of each layer are dealt separately. On top of that, the nested robust linear parameter

varying controller is decentralized to further improve the computational efficiency.

2. The second objective of this research is to develop a synthesis method for cooperative

systems with uncertainties to improve their robust H∞ performance. This problem

is known to be non-convex and requires iteration between uncertainty analysis and
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H∞ performance steps. To achieve this goal, an integral quadratic constraint analysis

method is integrated into convex-concave decomposition based sequential linear matrix

inequality solution method. By this way, a general algorithm for synthesizing edge

weights of a cooperative system to improve robust performance is proposed in lumped

fashion.

3. The third objective of the research is to develop the cooperative system synthesis

method that incorporates nominalH∞ synthesis of cooperative systems in a distributed

fashion, which includes distributed modeling and optimization. To achieve this goal,

the cooperative system is represented by a group of agents and connection between

these agents is maintained with constraints in the synthesis. The method solves the

problem using dissipative system framework based on neutrality between agents.

4. The final objective of the research is to develop implementation strategies for cooperative

sytnthesis methods to improve scope of applications. To satisfy this goal, first a

cooperative docking of a quadcopter on a moving rover is deviced, where a task

prioritization is embedded into the controller design proces. The aforementioned

controller is designed as a cooperative MPC based on local neighbor state feedback.

Secondly, ASLB, which is a bipedal robot, is designed, and an online trajecotry

optimization is introduced using cooperative synthesis methodologies. The trajectory

generation strategy for this robot relies on partition of the lumped dynamics of whole

robot into subsystems such as floating base, right leg and left leg and treating them as

cooperative systems with individual dynamics. Then cooperative conrol framework

is applied on ASLB to generate an online walking trajectory.
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1.3 Contributions of the Proposed Research

This section provides key contributions of the research along with the regarding

publications.

1.3.1 Nested Robust Controller Design for Interconnected Linear Parameter Varying Agents

This research utilize robust analysis and synthesis methods in lumped fashion for

LPV systems suffering uncertainty and propose a decentralized version of the aforementioned

methods to improve its computational time efficiency. The proposed method allows valid

time-domain IQC description, which is necessary for IQC analysis LPV systems [44].

This paper introduces an algorithm for synthesizing nested LPV robust controller to be

implemented on cooperative systems that ensures robust tracking at the individual agent

level (lower level) and robust performance at the cooperative system level (higher level).

The main contributions of the paper are as stated below:

1. The paper extends the application of the LPV robust synthesis to cooperative systems

in a nested manner to address performance needs of single and cooperative system

layers individually.

- Effectiveness of the method proposed by [1] is projected on LPV cooperative

systems.

2. The paper transforms this extended application to a decentralized nested controller

synthesis by modifying and using the distributed robust analysis [43, 52] condition

within the LPV robust synthesis.

- Inefficiency of the LPV robust synthesis for cooperative systems is eliminated

by the decentralized nested approach.

Publications based on the research are listed as follows:
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• Baris Taner, Kamesh Subbarao, ”Nested Robust Controller Design for Interconnected

Linear Parameter Varying Aerial Vehicles”, Journal of Guidance, Control, and Dynamics,

Vol. 44, No. 8, pp. 1454-1468, 2021, https://doi.org/10.2514/1.G005323

• Rajnish Bhusal, Baris Taner, Kamesh Subbarao, ”Performance analysis of a team of

highly capable individual unmanned aerial systems”, AIAA Scitech 2020 Forum, pp.

2070, 2020, https://doi.org/10.2514/6.2020-2070

• Baris Taner, Rajnish Bhusal, Kamesh Subbarao, ”A nested robust controller design

for interconnected vehicles”, AIAA Scitech 2020 Forum, pp. 0602, 2020, https://doi.org/10.2514/6.2020-

0602

1.3.2 Robust Edge Weight Synthesis for Cooperative Systems Suffering Uncertainties

This research formulates robust H∞ performance synthesis using valid time domain

IQC description to synthesize edge weights of a cooperative system in a lumped fashion.

The formulation of the problem leads to a bi-linear optimization problem and solution

to that is given by utilizing convex-concave decomposition and sequential programming.

Major contributions of this work are as follows:

1. This work proposes a sequential optimization algorithm that incorporatesH∞ performance

analysis to provide nominal H∞ performance for cooperative systems. The bi-linear

matrix inequality constraints are replaced by the linear approximations obtained by

convex-concave decomposition.

2. IQC analysis is integrated on the aforementioned method to incorporate various

uncertainties that occur in the cooperative system. By this way, a robustH∞ synthesis

methodology is provided for edge weight synthesis. To the best of the author’s

knowledge, this is the only work that accommodate robust H∞ technique in edge

weight synthesis.

Publication based on the research is listed as follows:
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• Baris Taner and Kamesh Subbarao, ”Robust Edge Weight Synthesis for LPV Multi-

Agent Systems with Integral Quadratic Constraints”, Journal of the Franklin Institute,

Submitted in June 2022 (Under Review)

1.3.3 Distributed H∞ Edge Weight Synthesis for Cooperative Systems

This work resolves limitations on classes of adjacency matrices that can be synthesized

by distributed cooperative system definition based on neutrality. Besides, this work also

resolves complexity due to NP-hard definition of the problem by redefining the cooperative

system. This is done by embedding adjacency matrix into a synthetic system definition and

making ideal interconnections between original agents of the cooperative system and the

synthetic one. This results in a unique communication topology, which allows distributed

cooperative system modeling for any adjacency matrix. In addition, when underlying

structure is exploited, this method eliminates the conditions leading to NP-hard problem

by promoting sparsity in defining interconnection constraints. On top of that, successive

linearization is adopted along with the sequential programming to improve computational

efficiency of the problem. Key contributions of this paper are as follows:

• Adopts distributed cooperative system modeling into an edge weight synthesis problem

by resolving its limitations on adjacency matrix.

• Resolves complexity due to NP-hardness by introducing an equivalent sparse and

ideal cooperative system definition to replace original cooperative system. By this

way, problem becomes linear matrix inequality optimization problem, which can be

solved using semi-definite programming solvers.

• Separates the non-linearities in the synthesis inequalities and addresses them by

successive and convex-concave-decomposition-based-sequential linear approximations.

Resulting algorithm can synthesize any class of adjacency matrix within the relative

interior.
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Publication based on the research is listed as follows:

• Baris Taner, Kamesh Subbarao, ”DistributedH∞ Edge Weight Synthesis for Cooperative

Systems,” 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp.

6652-6658, https://doi.org/10.1109/CDC45484.2021.9682966.

1.3.4 Cooperative Model Predictive Control Strategy for Docking with Task Prioritization

Key contributions of this paper are as follows:

• This paper proposes a cooperative control strategy based on MPC for docking. The

designed strategy implements a non-linear and a linear MPC for coarse approach

(long distance) and delicate docking maneuver (short distance) based on the same

objective function with tailored optimization strategies. A leader-follower type of

topology is adopted, where the quadcopter docks on the UGV. As a showcase, this

controller performs short, long-distance docking of a quadcopter on a UGV.

• Formulation of the MPC includes task prioritization, which is based on a null-space

projection of the tasks being ranked. The formulation is adopted from [113] by

defining the docking task in terms of the docking agents’ Degrees of Freedom (DoF).

Publication based on the research is listed as follows:

• Baris Taner and Kamesh Subbarao,”Model Predictive Control for Cooperative Systems

with Task Prioritization applied to Vehicle Rendezvous and Docking”, 2023 AIAA

SciTech, 01/23-27/2023, National Harbor, MD, USA, submission status: accepted

• Baris Taner and Kamesh Subbarao, ”Cooperative Model Predictive Control Strategy

for Docking with Task Prioritization”, IEEE TCST SI: State-of-the-art Applications

of Model Predictive Control, Submission Date: 09/13/2022, Submission Number:

22-0717
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1.3.5 Graph Theoretic Online Trajectory Optimization for ASLB Biped Robot

The method introduced in this paper is used to divide the lumped multi-body model

of the biped into cooperative multi-bodies and address the trajectory optimization problem

using this distributed model. Although the biped robot used in this work has light weight

legs compared to the shoulder and the floating base, biped robot will be modeled as three

cooperative agents, which are floating base, right shoulder and left shoulder, namely. All

agents are defined as multi-bodies as defined in the following sections. The contributions

of this paper is summarized as follows,

• This method divides the EoM of the biped robot into smaller cooperative agents,

which has simpler EoMs.

• Agents with simpler dynamics that are defined at velocity level results in faster

trajectory optimization.

• The quadratic programming formulation given in this paper executes an optimization

problem with single objective and single augmented Hamiltonian, however, the problem

can be split into multiple objectives and constraints. It should be noted that, distributed

solution to this problem is not evaluated in this paper.
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Chapter 2

A Nested Robust Controller Design for Interconnected Linear Parameter Variying Aerial

Vehicles

2.1 Preliminaries

2.1.1 Linear Parameter Varying Systems

LPV modeling and analysis is very helpful for transforming a nonlinear system into

LPV framework by embedding nonlinearities within the exogenous parameters, which

enables the extension of linear control techniques to nonlinear systems [114]. The transfer

matrix G(ρ) of an LPV system with input w ∈ Rnw and output z ∈ Rnz can be defined

over the feasible parameter trajectory A(ρ) as

G(ρ) :=

 A(ρ) B(ρ)

C(ρ) D(ρ)

 , A(ρ) := {ρ ∈ P ⊂ Rp, |ρ̇(t)| < r ≥ 0 ∀t ≥ 0} (2.1)

where A(ρ) ∈ Rnx×nx , B(ρ) ∈ Rnx×nw , C(ρ) ∈ Rnz×nw , and D(ρ) ∈ Rnz×nw are the

state-space matrices, and ρ(t) = [ρ1, ρ2, . . . , ρp] is an exogeneous parameter vector with

bounded derivatives.

Figure 2.1. LPV system H(ρ) maps input w to output z..

Let us consider the transfer matrix H(ρ) illustrated in Fig. 3.1, which is the lower-

fractional transformation (LFT) between G(ρ) and the controller K(ρ) defined as H(ρ) :=

21



Fl(G(ρ),K(ρ)). The performance of the closed-loop LPV system can be measured in

terms of induced L2 gain of the input/output map with zero initial conditions, and is defined

as [45],

∥H(ρ)∥ := sup
ρ∈A

sup
w∈L2

∥w∥≠0

∥z∥2
∥w∥2

(2.2)

The Bounded Real Lemma for linear time-invariant (LTI) systems can be extended

to obtain the upper bound of the induced L2 gain of the LPV system [45]. As discussed

in [115,116], an LPV system H(ρ) is exponentially stable over the parameter bounded set

P and ∥H(ρ)∥ < γ if there exists a differentiable matrix function X(ρ) = XT (ρ) such

that,

X(ρ) > 0∂X (ρ, ρ̇) +AT (ρ)X(ρ) +X(ρ)A(ρ) X(ρ)B(ρ)

BT (ρ)X(ρ) 0

+

 0 I

C(ρ) D(ρ)


T

P

 0 I

C(ρ) D(ρ)

 ≤ 0

(2.3)

where P =

−γI 0

0 1/γI

 and γ > 0. In Eq. (3.3), ∂X (ρ, ρ̇) is defined as [45]

∂X (ρ (t) , ρ̇ (t)) =
d

dt
X (ρ (t)) =

p∑
i=1

∂X (ρ (t))

∂ρi (t)
ρ̇i (t) (2.4)

Equation (3.3) introduces parameter dependent Linear Matrix Inequalities. Moreover,

if the system defined in Eq. 3.1 is an affine function on the set P , then X(ρ) becomes

stationary and ∂X(ρ, ρ̇) = 0. Eventually, the resulting LMI must be satisfied on the set

P , thereby resulting in finite set of LMIs [46]. Dropping the argument ρ from the matrices

for the sake of brevity, the LMIs can be written as

X > 0ATX +XA XB

BTX 0

+

0 I

C D


T

P

0 I

C D

 ≤ 0

(2.5)
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2.1.2 Integral Quadratic Constraints

IQCs are widely used tools in analysis of uncertain systems [42, 46] and offer a

framework for describing the noisy, uncertain elements of the system with a quadratic

constraint on its inputs and outputs. In this context, let us denote uncertainties of a system

by a bounded casual operator ∆ : Lnv2e [0,∞) → Lnd2e [0,∞). Also define signals, v ∈

Lnv2 [0,∞) and d ∈ Lnd2 [0,∞) satisfying d(t) = ∆(v(t)).

Suppose that there exists a bounded rational weighting function

Π ∈ RL(nv+nd)×(nv+nd)
∞ (2.6)

. Then, the signals v and d satisfy the frequency domain IQC defined by Π, if∫ ∞

−∞

v̂(iω)
d̂(iω)


∗

Π(iω)

v̂(iω)
d̂(iω)

 dω ≥ 0 (2.7)

where v̂(iω) and d̂(iω) are the Fourier transforms of signals v and d at frequency ω. Let

us factorize Π(iω) as

Π(iω) = Ψ(iω)∗ P Ψ(iω) (2.8)

where Ψ(iω) is a dynamic filter satisfying Ψ∗(iω) = Ψ(−iω)T, and P = P T is a

correlator. The dynamic filter Ψ(iω) has [dT vT]T as inputs and zψ as an output, and

can be associated to a state-space realization given by

GΨ =

 Aψ Bψ

Cψ Dψ

 , zψ = GΨ

 d

v

 (2.9)

Now, the signals v and d are said to satisfy the time domain IQC defined by Π if the

following quadratic inequality holds for all T ≥ 0∫ T

0

zTψPzψdt ≥ 0 (2.10)
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2.1.3 Modeling Networked Systems

The networked system in this paper is a composition of N LTI dynamic subsystems.

Let Gi denotes the ith subsystem with input ui ∈ Rnu and output yi ∈ Rny . The interconnections

among the subsystems is modelled in the graph theoretical framework [109]. To that end,

each subsystem Gi is represented by a node in the graph, and the two subsystems i and j

are connected to each other by an edge with an edge weight aij , where

{i ∈ N, j ∈ N | i ̸= j and 1 ≤ i ≤ N, 1 ≤ j ≤ N} (2.11)

Let A = [aij] ∈ RN×N be the adjacency (or connectivity) matrix of the underlying

graph structure. Now, the interconnections among the subsystems can be represented by

wi =
N∑
j=1

aij z
j, ∀i = 1, 2, . . . , N (2.12)

where zi ∈ Rnz is obtained as a result of duplicating the output yi of the subsystem Gi.

In this paper, each subsystem Gi is assumed to be uncertain characterized by a

multiplicative uncertainty ∆i ∈ Rnd × nv such that

di = ∆i v
i, ∀i = 1, 2, . . . , N (2.13)

where ∆i can be time invariant/varying and assumed to satisfy ∥∆i∥ ≤ 1. Here, di ∈ Rnd is

introduced as a signal containing the uncertainty that is extracted from the interconnections

among subsystems as defined in [53]. The extraction of the uncertainty can be carried out

in three steps, first of which is opening an exogenous input port for passing the signal wi

through the subsystem to have an output for the signal vi ∈ Rnv . The second one is opening

another input port for signal di to put in the effect of uncertainty back in the subsystem.

The last step is obtained as the result of duplicating the output yi of the subsystem in the

form of zi as discussed earlier. The resulting extended subsystem is denoted as Ĝi which
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has wi, di, and ui as inputs and zi, vi, and yi as the outputs. The extended subsystem Ĝi

has following state-space representation

ẋi

vi

zi

yi


=



Ai
Ĝ

Bi
d Bi

w Bi
u

0 0 I 0

Ci
z Di

zd Di
zw Di

z

Ci
x Di

yd Di
yw Di

u





xi

di

wi

ui


(2.14)

where xi ∈ Rnx is the state and Ai
Ĝ

∈ Rnx×nx , Bi
d ∈ Rnx×nd , Bi

w ∈ Rnx×nw , Bi
u ∈

Rnx×nu , Ci
z ∈ Rnz×nx , Di

zd ∈ Rnz×nd , Di
zw ∈ Rnz×nw , Di

z ∈ Rnz×nu , Ci
x ∈ Rny×nx ,

Di
yd ∈ Rny×nd , Di

yw ∈ Rny×nw , and Di
u ∈ Rny×nu are the system matrices of the

subsystem Ĝi.

Now, the overall networked system can be modeled in a lumped fashion. With w =[
w1T

,w2T
, . . . ,wNT

]T
∈ RNnw , z =

[
z1T

, z2T
, . . . ,zN

T
]T

∈ RNnz ,

v =
[
v1T

,v2T
, . . . ,vN

T
]T

∈ RNnv and d =
[
d1T

,d2T
, . . . ,dN

T
]T

∈ RNnd we can rewrite

Eqs. (2.12) and (2.13) in the global form as

w = Az, d = ∆v (2.15)

where A = A⊗Inz , nw = nz, ∆ = diag {∆i} |Ni=1. Here “diag” denotes the block diagonal

structure.

The lumped networked system of N subsystems is denoted as Ĝ such that Ĝ =

diag
{
Ĝi

}
|Ni=1. Figure 2.2 illustrates the lumped representation of the interconnected

system, Ĝ.
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Figure 2.2. Block Diagram Representation of the transformed interconnected system Ĝ.

2.2 Problem Statement - Nested Robust Controller Synthesis for Interconnected LPV

Systems

Consider a group of LPV modeled individual vehicles as in Eq. (3.1) (sec. 3.1.2)

connected through an adjacency matrix A (sec. 2.1.3). The paper seeks to develop a robust

control synthesis methodology, that not only guarantees robust performance as in Eq. (3.2)

for every single vehicle in the network but also guarantees robust performance as in Eq.

(3.2) for the group represented in Eq. (2.14) and shown in Fig. 2.2.

Further, it is noted that the modeling method represented in the previous section

(adopted from [117], and [43]) gives a transfer matrix for the cooperative system that

is suitable for IQC analysis to be carried out in the next section. It should be also be

noted that, the lumped modeling methodology introduces a greater computational cost in

calculation of feasible LMI solutions with the increasing system dimensions such as number

of vehicles in the system, number of IQCs introduced, and dimensions of the states of each

vehicle [43, 53].
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The problem of increased computational cost for analysis and synthesis for this

lumped system will be addressed and mitigated using a distributed analysis and synthesis

methodology in the next section.

2.3 Solution Methodology

Vehicles composing a multi-agent system are individually stable systems and stability

for individual vehicles and enhancement in performance of the multi-agent system are

achieved by robust controllers. In this section, a methodology to do that is provided

for lumped and distributed models. Following the results of [1] for designing a robust

controller for a single system case, a set of nested robust controllers are synthesized for

single-agent and lumped cooperative systems. The nested robust controller proposed in

this paper encapsulates the single-agent level robust controller with the robust controller

designed for cooperative system. This brings the benefit of distributing uncertainties to their

respective levels instead of targeting them at once in a single robust controller synthesis.

Moreover, it also improves the computational efficiency as targeting these uncertainties

all at once increases the synthesis time dramatically. Then, by adopting a distributed

IQC analysis formulation developed in [43] and providing some modifications to eliminate

restrictions on the adjacency matrix definition, a distributed analysis methodology is constructed.

Eventually the distributed analysis condition is accommodated in the synthesis step to

obtain a controller to increase quadratic performance of the cooperative system.

2.3.1 Methodology for the Lumped Model

This subsection essentially recaps key developments from [1] which are included

here for the sake of completeness and to motivate the subsequent developments in the

sections that follow.
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Having a system Ĝ defined as in Eq. (2.16) is useful in representing both the single

vehicle and cooperative systems. Here d-v and w-z are the uncertainty and performance

channels while u-y is the controller channel of the systems.



ẋ

v

z

y


=



AG(ρ(t)) Bd(ρ(t)) Bw(ρ(t)) Bu(ρ(t))

Cv(ρ(t)) Dvd(ρ(t)) Dvw(ρ(t)) Ev(ρ(t))

Cz(ρ(t)) Dzd(ρ(t)) Dzw(ρ(t)) Ez(ρ(t))

Cx(ρ(t)) Fd(ρ(t)) Fu(ρ(t)) D(ρ(t))





x

d

w

u


(2.16)

Consider a parameter-dependent linear feedback controller K(ρ) for the system Ĝ

in Eq. (2.16) with the following state-space representationẋc
u

 =

 Ac(ρ(t)) Bc(ρ(t))

Cc(ρ(t)) Dc(ρ(t))


xc
y

 (2.17)

where xc is the state of the controller and Ac, Bc, Cc, and Dc are the parameter dependent

system matrices of the controller. Denoting Ĥ as the closed-loop system, the closed-loop

state-space data of the LPV system using parameter dependent controller is given by


ẋ

v

z

 =


ACL
G (ρ(t)) BCL

d (ρ(t)) BCL
w (ρ(t))

CCL
v (ρ(t)) DCL

vd (ρ(t)) DCL
vw (ρ(t))

CCL
z (ρ(t)) DCL

zd (ρ(t)) DCL
zw (ρ(t))



x

d

w

 (2.18)

Denote ∆ ∈ ∆(Π1, · · · ,ΠM) as the multiplicative uncertainty for the system in Eq.

(2.18) that satisfies a collection of frequency domain IQCs defined by

{Πk}Mk=1 ⊂ RL(nv+nd)×(nv+nd)
∞ . We construct the factorization as in Eq. 2.8 as (Ψk,Pk),

where Ψk is stable and satisfies the time-domain IQC description given in Eq. (3.18).

As discussed in [1], in order to define the robust performance of a system, we

need to consider the notion of scaled uncertainty set. Following the notation in [1], let
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∆1/γ(Π1, · · · ,ΠM) be the scaled uncertainty set that satisfy the frequency domain IQCs

defined by S1/γΠkS1/γ for all k = 1, · · · ,M where S1/γ is defined in Eq. (2.20). Now,

the system is said to achieve robust performance of level γ if the induced L2 gain of the

system is upper bounded by γ over all the uncertainties in the set ∆1/γ(Π1, · · · ,ΠM). Next,

we consider the factorization of the scaled multipliers S1/γΠkS1/γ for all k = 1, · · · ,M

as (ΨkS1/γ, P ). The scaled filter ΨkS1/γ has zkψ1/γk
as output and [vT wT]T as input.

Further, the uncertainty set is said to have a valid time-domain IQC for the factorization

(ΨkS1/γ, Pk), if the following inequality holds true for all k = 1, . . . ,M∫ T

0

zk
T

ψ1/γ
(t) S1/γ Pk S1/γ z

k
ψ1/γ

(t) dt ≥ 0 (2.19)

The state-space representation of the scaled filter ΨkS1/γ for all k = 1, . . . ,M can

be written as

ΨkS1/γ =

 Aψ Bψv Bψd

Cψk Dψkv Dψkd




I 0 0

0 1
γ
Inv 0

0 0 Ind

 , ∀k = 1, · · · ,M (2.20)

Combinations of the state-space (SS) realizations given in Eqs. (2.18) and (2.20)

along with supplying the input w as an output, yields the system, H̃ , which is represented

by detailed and minimal transfer matrices given by

H̃ :=



ACL
G 0 BCL

d BCL
w

1
γ
BψvC

CL
v Aψ

1
γ
BψvD

CL
vd +Bψd

1
γ
BψvD

CL
vw

1
γ
DψkvC

CL
v Cψk

1
γ
DψkvD

CL
vd +Dψkd

1
γ
DψkvD

CL
vw

0 0 0 I

CCL
zd 0 DCL

zd DCL
zw


=



Ã B̃d B̃w

C̃zψ D̃ψkd D̃ψkw

C̃w D̃wd D̃ww

C̃z D̃zd D̃zw


(2.21)

On the other hand, the filter
{
ΨkS1/γ

}M
k=1

can be assembled into a single filter Ψ1/γ

with output zψ1/γ
= [z1T

ψ1/γ
, · · · , zMT

ψ1/γ
]T. Moreover, as discussed in [1], a connection is
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required between a combined multiplier, Πλ and Ψ1/γ for robust performance analysis.

Here, the multiplier Πλ is provided as follows

Πλ =
M∑
k=1

λkS1/γΠkS1/γ (2.22)

where λ1 > 0 and λk ≥ 0 for k = 2, · · · ,M . Further, if Πλ has a J-spectral factorization

(Ψ,P ), then one can also establish another factorization given by

J(Πλ) := (Ψλ, Pλ) = (Sγ Ψ, S1/γ P S1/γ), P =

I 0

0 I

 (2.23)

where Pλ =

 1
γ2
I 0

0 −I

. Besides, the filter Ψλ can be associated with a state-space

representation given by  ẋψ

zψλ

 =

 Aψ
1
γ
Bψv Bψd

Cψλ Dψλv Dψλd



xψ

v

d

 (2.24)

Combining the state-space representation of Ψλ in Eq. (2.24) with the transfer matrix

in Eq. (2.18) results in a new extended system ˜̃H given by

˜̃H :=



ACL
G 0 BCL

d BCL
w

1
γ
BψvC

CL
v Aψ

1
γ
BψvD

CL
vd +Bψd

1
γ
BψvD

CL
vw

DΨλvC
CL
v Cψλ DΨλvD

CL
vd +DΨλd DΨλvD

CL
vw

0 0 0 I

CCL
zd 0 DCL

zd DCL
zw


=



˜̃A ˜̃Bd
˜̃Bw

˜̃Czλ
˜̃DΨλd

˜̃DΨλw

˜̃Cw
˜̃Dwd

˜̃Dww

˜̃Cz
˜̃Dzd

˜̃Dzw


(2.25)

Following the main results of the work [1], extended systems H̃ and ˜̃H are used in

obtaining following LMI conditions
ÃTX̃ + X̃Ã X̃B̃d X̃B̃w

B̃T
d X̃ 0 0

B̃T
wX̃ 0 0

+

 C̃w D̃wd D̃ww

C̃z D̃zd D̃zw


T

Pp

 C̃w D̃wd D̃ww

C̃z D̃zd D̃zw



+
M∑
k=1

λk

[
C̃ψk D̃ψkd D̃ψkw

]T
Pk

[
C̃ψk D̃ψkd D̃ψkw

]
< 0

(2.26)
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
˜̃AT ˜̃X + ˜̃X ˜̃A ˜̃X ˜̃Bd

˜̃X ˜̃Bw

˜̃BT
d
˜̃X 0 0

˜̃BT
w
˜̃X 0 0

+


˜̃Cψλ

˜̃Dψλd
˜̃Dψλw

˜̃Cw
˜̃Dwd

˜̃Dww

˜̃Cz
˜̃Dzd

˜̃Dzw


T  Pλ 0

0 Pp




˜̃Cψλ
˜̃Dψλd

˜̃Dψλw

˜̃Cw
˜̃Dwd

˜̃Dww

˜̃Cz
˜̃Dzd

˜̃Dzw

 < 0 (2.27)

where

Pk =

I 0

0 −I

 , Pλ =

 1
γ2
I 0

0 −I

 , Pp =

−I 0

0 1
γ2
I


LMIs in Eqs. (2.26) and (2.27) have feasible solutions, X̃ and ˜̃X , respectively under

the assumptions in [1]. The assumptions guarantee the sufficient conditions so that the

LMI in Eq. (2.26) and LMI in Eq. (2.27) provides the same solution that is, the γ robust

performance obtained from the system ∥Fu

(
Ĥ(ρ),∆

)
∥ for all ∆ ∈ ∆1/γ is equal to

that obtained from ∥Fl

(
Ĝscl,K(ρ)

)
. Therefore satisfying LMI in Eq. (2.26) necessarily

implies ∥Fl

(
Ĝscl,K(ρ)

)
∥ ≤ γ.

Pre-multiplying and post-multiplying LMI condition in Eq. (2.27) with [x xψ d w]

and
[
xT xTψ dT wT

]T will yield a dissipation inequality as follows

V̇ +
1

γ2
vTλ vλ − dTλdλ −wTw +

1

γ2
zTz ≤ 0 (2.28)

V̇ ≤ wTw − 1

γ2
zTz + dTλdλ −

1

γ2
vTλ vλ (2.29)

Using the SS representation of the filter Ψλ and manipulating the signal channel d -

dλ, a new filter is obtained and called as Ψ+. This filter gives a system called Ĝscl, when an

upper LFT connection defined as Fu(Ĝ,Ψ
+) is made (see Eq. (2.16) for Ĝ and Eq. (2.30)

for Ψ+). Denoting zψλ =
[
vTλ , d

T
λ

]T , the transfer matrix of this new filter is provided as

follows [1]


ẋψ

vλ

d

 =


Aψ

1
γ
Bψv Bψd

Cvλ Dvλv Dvλd

0 0 I




I 0 0

0 0 I

−D−1
dλd

Cdλ D−1
dλd

−D−1
dλd

Ddλw




xψ

dλ

v


(2.30)
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Both upper and lower LFT interconnections are graphically illustrated in Fig. 2.3.

Here, Ĝscl represents a system obtained from the interpretation of the dissipation inequality

and manipulation of the transfer matrix of filter Ψλ in Eq. (2.28) and Eq. (2.24), respectively.

Figure 2.3. Sub-systems Ĥ(ρ) and Ĝscl illustrated with the interconnections to construct
required extended systems..

2.3.2 Methodology for the Distributed Model

Maintaining the alternative synthesis and analysis approach for the distributed case

needs a distributed robust performance definition first. A definition does exist in the literature

to prove stability in a distributed fashion (see [43]) for some restricted communication

graph. The existing definition verifies the internal stability of the communication channel

of a cooperative system to ensure the robust stability of the overall cooperative system for

arbitrarily large γ. This method, however, does not provide a γ value. In this subsection,

the LMI condition to calculate robust performance of the scaled system will be given based

on the approach pursued by [43]. Following that, the robust performance condition and

the idea adopted from work [1] in the previous section for introducing a scaled filter to
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accommodate IQC analysis is combined to obtain a distributed synthesis condition that is

suitable for simultaneous synthesis and analysis.

2.3.2.1 Robustness Analysis Formulation

While lumped modelling-based approach requires high computational effort, a robustness

analysis, which exploits some properties and structure of the connectivity (adjacency)

matrix can be employed to reduce the computational burden. This idea is proposed for

adjacency matrices that are composed of rows with only one non-zero entry in [43, 52]. In

contrast, we develop a framework to carry out distributed robustness analysis for a more

generic adjacency matrix.

Lemma 2.3.1 ( [52], proof in Appendix A, pg 1599) Assuming networked system Fl{Ĥ ,A}

is well-posed, which means
(
I −DCL

zw A
)−1 is regular. In addition, admissible trajectory

for varying parameter ρ is on finite subset of P , where parameters are frozen, then a

transfer function for Ĥzw (λ) at every frozen parameter is defined as Ĥzw (λ) = DCL
zw +

CCL
z

(
λI −ACL

G

)−1
BCL
w . Then λ is not a pole of system Fl{Ĥ ,A} if and only if |I −

AĤzw (λ) | ≠ 0.

In order to carry out the robustness analysis of the cooperative system, we first

provide some significant results from [52]. Let Ã be an adjacency matrix of the graph

such that each row of Ã has only one non-zero element as discussed in [52]. A matrix Γi

is constructed such that

ÃT Ã = diag
{
Γ2
i

}
|Ni=1 (2.31)

where Ã = Ã ⊗ Inz .

Lemma 2.3.2 ( [52], proof in Appendix B, pg 1599) Denote the transfer function matrix

DCLi

zw +CCLi

z

(
λI −ACLi

G

)−1

BCLi

w by Ĥ i
zw(λ) such that Ĥzw (λ) = diag{Ĥ i

zw (λ) |Ni=1}.
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Assume ∥ΓiĤ i
zw(λ)∥∞ < 1 for each subsystem i = 1, · · · , N . Then the system Fl{Ĥ , Ã}

is stable.

Remark 2.3.3 As each row of Ã has only one non-zero element, we can rewrite Eq. (2.31)

as ÃT Ã = diag {s2i Inz} |Ni=1 such that Γi = siInz . Define a diagonal matrix S such

that S = diag {s1, s2, · · · , sN}. For the diagonal matrix S, we can write max {si}Ni=1 =

∥S∥∞ = ∥S∥2. With this, ∥ΓiĤ i
zw(λ)∥∞ = ∥siĤ i

zw(λ)∥∞ for all i = 1, 2, . . . , N . Thus, if

max{si} ∥ Ĥ i
zw(λ)∥∞ < 1 for each subsystem i = 1, · · · , N . Then the system Fl{Ĥ , Ã}

is stable.

In the following result, the restrictions imposed on adjacency matrix in [52] are

eliminated and the conditions for the stability of Fl{Ĥ ,A} provided in Lemma 2.3.2 are

reformulated by defining a new scalar κ. The key purpose of redefining the following

stability condition is to carry out robust distributed performance analysis for a general

weighted adjacency matrix.

Lemma 2.3.4 Denote the transfer function matrix DCLi

zw +CCLi

z

(
λI −ACLi

G

)−1

BCLi

w by

Ĥ i
zw(λ). If A ∈ RN×N is the weighted adjacency matrix of the graph for the cooperative

system Fl{Ĥ ,A}, then the system Fl{Ĥ ,A} is stable if κ ∥Ĥ i
zw(λ)∥∞ < 1 for each

subsystem i = 1, · · · , N where κ is defined as

κ2 :=
√
Nnz ∥ATA∥∞ (2.32)

and A = A⊗ Inz .

Using equivalence of norms between ∥ATA∥2 and ∥ATA∥∞ [118], one can show

that κ provides an upper bound to max{si}Ni=1 (in Remark 2.3.3). This condition along

with Lemma 2.3.2 and Remark 2.3.3 guarantees the stability condition described in Lemma

2.3.4. The complete proof has been omitted for the brevity of the paper.

34



As already described in [43], this decoupled stability condition ensures internal stability

for a cooperative system, which equivalently means that cooperative system is robustly

stable. Conversely, this is not necessarily true, besides, robustly stable cooperative systems

have arbitrarily large κ∥Ĥzw (λ) ∥∞ values [119]. In fact, system Ĝ is composed of

robustly stable individual agents because of the progression of the nested algorithm proposed

in this work. Thus, Ĝ is robustly stable. Although the need for proving stability is not

required, still this channel can be used to improve cooperative performance. To calculate

robust performance level while including the uncertainties, a new system is created and

called as H̄ i. We utilize the same notation as in the original work [43] in Eq. (2.33).

Referring to the work [43], an upper LFT defined as Fu{H̄ i,∆i} is seen to be the same as

κĤ i
zw, therefore ∥Fu{H̄ i,∆i} := κĤ i

zw∥∞ < γ.


ẋi

vi

zi

 =


ACLi

G BCLi

d BCLi

w

0 0 I

κCCLi

z κDCLi

zd κDCLi

zw



xi

di

w̄i

 (2.33)

Each vehicle has a transfer function H̄ i and is represented with the following minimal

realization (2.34)

H̄ i :=

 H̄ i
vd H̄ i

vw

H̄ i
zd H̄ i

zw

 =


ĀCLi

H̄
B̄CLi

d B̄CLi

w

C̄CLi

v D̄CLi

vd D̄CLi

vw

C̄CLi

z D̄CLi

zd D̄CLi

zw

 (2.34)

Different than the lumped analysis case, here multiplier is defined as Πi ∈ RL(nvi+ndi)×(nvi+ndi)
∞ ,

which has different size, therefore factorization and scaling of this multiplier yields a filter

Ψi
1/γ with relevant size and has the following minimal realization.
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Ψi
1/γ := Ψi

kS1/γ =

 Ai
ψ Bi

ψv Bi
ψd

Ci
ψk

Di
ψkv

Di
ψkd




I 0 0

0 1
γ
Invi 0

0 0 Indi

 (2.35)

The output of the filter Ψi
1/γ denoted as ziψ is given by

ziψ = Ψi
1/γ

 I 0

H̄ i
vd H̄ i

vw


 di

wi

 (2.36)

For the state-space characterization of the LMI, SS realizations given in Eqs. (2.34)

and (2.35) and are used to build an extended system. The extended system’s transfer

matrix and minimal representation are introduced in Eqs. (2.37) and (2.38) respectively.

It should be noted that subscript p in Eq. (2.38) stands for the signal p and collects all the

performance outputs of the extended system i.e. p =
[
wT zT

]T . Then for this system, an

LMI characterization is given in Lemma 2.3.5 with Eq. (2.39).



ẋi
H̄

ẋiψ

ziψ

wi

zi


=



ĀCLi

H̄
0 B̄CLi

d B̄CLi

w

1
γ
Bi
ψvC̄

CLi

v Ai
ψ

1
γ
Bi
ψvD̄

CLi

vd +Bi
ψd

1
γ
Bi
ψvD̄

CLi

vw

1
γ
Di

ψkv
C̄CLi

v Ci
ψk

1
γ
Di

ψkv
D̄CLi

vd +Di
ψkd

1
γ
Di

ψkv
D̄CLi

vw

0 0 0 I

C̄CLi

z 0 D̄CLi

zd D̄CLi

zw





xi
H̄

xiψ

di

wi


(2.37)

Hi :=

 Hi
ψd Hi

ψw

Hi
pd Hi

pw

 =



Ai Bid Biw

Ciψ Di
ψd Di

ψw

Ciw Di
wd Di

ww

Ciz Di
zd Di

zw


(2.38)
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Lemma 2.3.5 ( [46], proof in Proposition 3.8, pg 54) For the system represented by Hi

in Eq. (2.38), if there exists a symmetric solution of X of the LMI in Eq. (2.39), then

system is strictly dissipative ( see Definition 2.3.1) with respect to the supply function

s([di , wi]T , [ziψ , z]T ) = γ2∥[di , wi]T∥2 − ∥[ziψ , z]T∥2, which equivalently means

system is asymptotically stable and ∥H∥∞ < γ.


AiTX i + X iAi X iBid X iBiw

BiTdX i 0 0

BiTwX i 0 0

+


Ciψ Di

ψd Di
ψw

Ciw Di
wd Di

ww

Ciz Di
zd Di

zw


T

 P 0

0 Pp




Ciψ Di
ψd Di

ψw

Ciw Di
wd Di

ww

Ciz Di
zd Di

zw

 < 0

(2.39)

Strict dissipativity is introduced in the following definition.

Definition 2.3.1 (Strict Dissipativity) [46] A system G, which has w as input, z as output

and x as state, with supply rate s(w, z) is said to be strictly dissipative if there exists a

non-negative V : X → R which attains a strong global minimum over trajectories of

(w, z,x) and an ϵ > 0 s.t.

V (x (t0)) +

∫ t1

t0

(
s(w(t), z(t))− ϵ2∥w(t)∥2

)
dt ≥ V (x (t1)) , ∀t0 ≤ t1 (2.40)

If V (x(·)) is differentiable then Eq. (2.40) can be written as

V̇ (t) ≤ s(t) (2.41)

To show strict dissipativity for the system given in Eq. (2.38), using the previously

provided information we need to pre-multiply and post-multiply the LMI condition given

in Eq. (2.39) with the vector
[
xi
H̄

xiψ di wi
]

and
[
xi
H̄

T
xiψ

T
di
T
wiT

]T
, respectively.

This will yield Eq. (2.41), and ensures strict dissipativity according to the Definition 2.3.1.
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We can conclude that system H̄ i with performance channel w → z and an uncertainty

channel d → v, is asymptotically stable.

2.3.2.2 Robust Synthesis Formulation

Describing system definitions, without considering the dependency on ρ, for open

loop system, Ḡi, scaled filter, Ψ+i, and the controller, Ki in an individual fashion, we

obtain SS definitions given in Eq. (2.42),(2.43) and (2.44). To accommodate distributed

robustness condition described in Section 2.3.2.1, a magnification of κ is applied to channel

z to the system Ĝi and Ḡi is generated. Having Ψi
1/γ , one can find Ψi+ in the same fashion

described in Section 2.3.1. Then Ḡi and Ψi+ is combined such that a scaled individual

system is constructed and subject to both synthesis and analysis steps alternatively as

described previously in Section 2.3.1.This scaled system is desired to have inputs diλ, wi,

ui and outputs viλ, zi, yi. In the synthesis step, the objective is to obtain a stabilizing

controller, which minimizes induced L2 norm of the system having input signals
[
di

T

λ wiT
]T

and output signals
[
vi

T

λ zi
T
]T

, respectively and in the following text this will be described.



ẋi

vi

zi

yi


=



Ai
G Bi

d Bi
w Bi

u

Ci
v Di

vd Di
vw Ei

v

κCi
z κDi

zd κDi
zw κEi

z

Ci
x F i

yd F i
yw 0





xi

di

wi

ui


=



Āi
G B̄i

d B̄i
w B̄i

u

C̄i
v D̄i

vd D̄i
vw Ēi

v

C̄i
z D̄i

zd D̄i
zw Ēi

z

C̄i
x F̄ i

yd F̄ i
yw 0





xi

di

wi

ui


(2.42)

ẋic
ui

 =

 Ai
c Bi

c

Ci
c Di

c


xic
yi

 (2.43)
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
ẋiψ

viλ

di

 =


A+i B+i

dλ
B+i
v

C+i
vλ

D+i
vλdλ

D+i
vλv

C+i D+i
ddλ

D+i
dv




xiψ

diλ

vi

 (2.44)

The upper LFT connection Fu

(
Ḡi,Ψi+

)
is nothing but recreation of Ĝscl for individual

vehicle in the cooperative system with a magnification in z channel, which is denoted by

Ḡi
scl, and yields a transfer matrix as in Eq. (2.45).

ẋi

ẋiψ

viλ

zi

yi


=



Āi
G B̄i

dC
+i B̄i

dD
+i
ddλ

B̄i
dD

+i
dv + B̄i

w B̄i
u

0 A+i B+i
dλ

B+i
v 0

0 C+i
vλ

D+i
vλdλ

D+i
vλv

0

C̄i
z D̄i

zdC
+i D̄i

zdD
+i
ddλ

D̄i
zdD

+i
dv + D̄i

zw Ēi
z

C̄i
x F̄ i

ydC
+i F̄ i

ydD
+i
ddλ

F̄ i
ydD

+i
dv + F̄ i

yw 0





xi

xiψ

diλ

wi

ui



=


Āi
scl B̄i

1scl
B̄i
scl

C̄i
1scl

D̄i
1scl

Ēi
1scl

C̄i
scl F̄ i

1scl
0





xi

xiψ

diλ

wi

ui



(2.45)

Assuming there exists a stabilizing controller Ki, then lower LFT Fl

(
Ḡi
scl,K

i
)

provides a stable system Hi
scl that is affine function of controller parameters as illustrated

in Eq. (2.46).

Hi
scl :=

 Ai
scl Biscl

Ciscl Di
scl

 =


Āi
scl 0 B̄i

1scl

0 0 0

C̄i
1scl

0 D̄i
1scl

+


0 B̄i

scl

I 0

0 Ēi
1scl


 Ai

c Bi
c

Ci
c Di

c


 0 I 0

C̄i
scl 0 F̄ i

1scl

 (2.46)

For this system, a matrix inequality condition can be written as described in Eq. (2.47)

and this condition defines the quadratic performance synthesis problem, whose nature is

contained within the quadratic performance matrix Pscl, and objective of this problem is to
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find controller parameters Ai
c, B

i
c, C

i
c, D

i
c and X > 0. Since Ai

scl depends on controller

parameters, XAi
scl is nonlinear. Note that Pscl := diag {Pλ , Pp} with compatible sizes.

X > 0,

 AiT

sclX + XAi
scl XBiscl

BiTsclX 0

+

 0 I

Ciscl Di
scl


T

Pscl

 0 I

Ciscl Di
scl

 < 0

(2.47)

The problem of nonlinearity already has a solution by a nonlinear transformation described

in [35, 46]. After this transformation nonlinear dependency on XAi
scl is transformed to a

affine dependency on parameter v as illustrated in Eq. (2.48).

X(v) > 0, AiT

scl(v) +Ai
scl(v) X(v)Bi

1scl
(v)

BiT

1scl
(v)X(v) 0

+

 0 I

Ci
1scl

(v) Di
1scl

(v)


T

P1

 0 I

Ci
1scl

(v) Di
1scl

(v)

 < 0

(2.48)

In this single objective output feedback problem, parameter elimination is executed as

described in [46] and following synthesis LMIs are obtained as in Eq. (2.49). If these LMI

conditions are feasible and there exist X and Y then this means system Hi
scl achieves robust

performance of γ, which indirectly means that system with specified controller satisfies the
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distributed robust performance condition with uncertainties defined by the scaled filter Ψi+.

Then controller Ki can be reconstructed as illustrated in [46, 50].

X(v) =

X I

I Y

 > 0

θT



I 0

Āi
scl B̄i

1scl

0 I

C̄i
1scl

D̄i
1scl



T 

0 X 0 0

X 0 0 0

0 0 −γI 0

0 0 0 (γI)−1





I 0

Āi
scl B̄i

1scl

0 I

C̄i
1scl

D̄i
1scl


θ < 0

ϕT



−ĀiT

scl −C̄iT

1scl

I 0

−B̄iT

1scl
−D̄iT

1scl

0 I



T 

0 Y 0 0

Y 0 0 0

0 0 − (γI)−1 0

0 0 0 γI





−ĀiT

scl −C̄iT

1scl

I 0

−B̄iT

1scl
−D̄iT

1scl

0 I


ϕ < 0

(2.49)

where θ = ker([C̄i
scl F̄

i
1scl

]) and ϕ = ker([B̄T i

scl Ē
T i

1scl
]).

Thus, the distributed robust performance analysis and extension of this analysis to

synthesis problem allows us to accommodate same algorithm for lumped and distributed

cases with ease and the algorithm used to synthesize controllers for both cases are given in

the next section 2.3.3.

2.3.3 Algorithm For Nested Robust Controller Synthesis

In this section, a single algorithm will be provided for synthesizing robust controllers

for both single-agent and cooperative system. The algorithm is provided in Fig. 2.4 for

methodology for lumped system, however, there is no difference between procedures of

lumped and distributed approaches except for the construction of the extended systems

Ĝscl and Ḡi
scl. Specifically, Ĝscl is constructed from the adjacency matrix A and therefore
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Table 2.1. Algorithm for lumped robust synthesis methodology given in Section 2.3.1. First
seven steps are common for single-agent and lumped cooperative systems. More details on
robust controller synthesis of a single-agent system can be found in [1].

Procedure Locator
1 Inputs: Gs, Wp, Wn, Wu, Wref , A, Πk(k = 1, · · · ,M) and N
2 Initialization: j = 1, λ1 = 1, λk>1 = 0, S 1

γ
= diag{Inv, Ind}

3 Calculate πλ Eq. (2.22)
4 Obtain Ψλ using J-spectral factorization J (Πλ) Eqs. (2.23) and (2.24)
5 Rearrange Ψλ to obtain Ψ+ Eq. (2.30)
6 Obtain G (see Fig. 2.5) and construct Gscl : Fu(G,Ψ

+) Fig. 2.3
7 Synthesize K(ρ) using minK(ρ) ∥Hscl(ρ) := Fl (Gscl,K(ρ)) ∥ Fig. 2.3

8 Find λk and the best upper bound of H(ρ) := Fu (G(ρ),K(ρ)),
which is ∥Fu (H(ρ),∆) ∥ ≤ γ. Eq. (2.26)

9
Find γerror = γj − γj−1.
If γerror < γtolerance, j = j + 1, λ1 > 0, λm>1 ≥ 0,
S 1
γ
= diag{ 1

γ
I, I} and go to step 3, else move to step 10.

10 Construct cooperative system Ĝ (see 2.4.1.2) Fig. 2.9
11 Follow steps 1 - 9 for cooperative system. G → Ĝ, Gscl → Ĝscl,

12 If γerror < γtolerance go to step 10,
else terminate and print the controller for cooperative system, Kco

contains topological effects, while Ḡi
scl is constructed to capture the effect of κ and scale

up the output z of communication channel. After the synthesis of the controller for single

vehicle as illustrated in single-agent portion of Fig. 2.4, stable individual agents, H i
s are

used to construct the cooperative system Ĝ, and the procedure for the cooperative system

is followed. The detailed procedure of Fig.2.4 for single-agent system and cooperative

system under lumped modeling is provided in Table 2.1. Similarly, Table 2.2 provides

the procedure for robust synthesis under distributed modeling. Controllers are synthesized

using the method represented in [46] for single-agent, lumped and distributed cooperative

cases. Formulation is illustrated only for distributed case in section 2.3.2.2 as in Eq. (2.49).

The construction of the state-space definitions of single-agent system for synthesis and

analysis phases are illustrated in section 2.4.1.2. In section 2.4.1.2, the construction of the

state-space definitions for cooperative system is also provided in detail.
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Figure 2.4. Nested robust control synthesis algorithm.

Table 2.2. Algorithm for distributed robust synthesis methodology given in Section 2.3.2.

(One should follow the first 9 steps of Table 2.1 before pursuing this one.)
Procedure Locator

13 Construct Ḡi (i = 1, · · · , N), using scalar κ Eq. (2.42)
14 Obtain Ψλ using J-spectral factorization J (Πλ) Eq. (2.24)
15 Rearrange Πλ to obtain Ψ+ Eq. (2.44)
16 Obtain Ḡi

scl : Fu(Ḡ
i,Ψ+i) Fig. 2.3

17 Synthesize Ki(ρ) using minKi(ρ) ∥Hi
scl(ρ) := Fl

(
Ḡi
scl,K

i(ρ)
)
∥ Eq. (2.49)

18 Find the best upper bound of Hi(ρ) := Fu

(
Ḡi(ρ),Ki(ρ)

)
,

which is ∥Fu (Hi(ρ),∆) ∥ ≤ γ
Eq. (2.39)

19
Find γerror = γj − γj−1.
If γerror < γtolerance go to step 2,
else terminate and print the controller for cooperative system, Ki
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2.4 Simulation and Results

Verification of the nested robust controller algorithm provided in this paper is executed

on Intel(R) Xeon(R) E-2124G CPU @ 3.40 GHz Computer with Matlab R18a software.

LMI problems to reach solutions are solved using Matlab LMI Toolbox. Individual vehicles’

dynamics are modeled by LPV model of short period dynamics of F16 Vista aircraft and

the cooperative system is composed of multiple of these agents. The LPV model [120],

uses Mach number and altitude as exogenous scheduling parameters.

The standard short period equations of motion of the vehicle can be modeled as,

α̇
q̇

 =

Zα 1

Mα Mq


α
q

+

Zδe
Mδe

 δe (2.50)

where, α is the angle of attack, q is the pitch rate and δe is the elevator deflection. Further,

Zα,Mα, andMq are the dimensional stability derivatives, andZδe andMδe are the dimensional

control derivatives for the aircraft’s longitudinal motion. The elevator actuator is modeled

as a first-order lag filter,

δe = Gactδec (2.51)

where, δec is the commanded elevator deflection and Gact =
−20.2

s+ 20.2
is the actuator

transfer function.

At trimmed level flight, the dimensional stability derivatives are the functions of

Mach number (M ) and the altitude (h) of the aircraft. The LPV model of F-16 VISTA

aircraft short period dynamics is taken from [120] which expresses these derivatives in

terms of Mach number and altitude as,
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Zα(h,M) = 0.22− 4.1× 10−7h− 2.6M + 5.15× 10−5Mh

Mα(h,M) = 17.1− 8.07× 10−4h− 68.4M + 3.31× 10−3Mh+ 56.2M2 − 10−3M2h

Mq(h,M) = − 0.228 + 7.06× 10−6h− 2.12M + 4.86× 10−5Mh

Zδe(h,M) = − 1.38× 10−3 + 8.75× 10−8h− 0.34M + 7.98× 10−6Mh

Mδe(h,M) = − 8.16 + 1.73× 10−4h+ 40.6M − 8.96× 10−4Mh− 99.3M2 + 2.42× 10−3M2h

(2.52)

The LPV model of Eq. (2.50) with stability and control derivatives in (3.57) is valid

throughout the flight envelope h ∈ [5000 ft, 25000 ft] and M ∈ [0.4, 0.8] [120]. For the

purpose of simulation, they are selected to be h = 15000 ft and M = [0.4, 0.6, 0.8].

The Weighting functionsWp,Wn,Wu,Wref for loop shaping and actuator dynamics,

GAct are provided in Eq. (2.53) for the single vehicle case. The angle of attack tracking

problem with Wref as the target model can be considered as a model-matching problem.

The selection of Wref can be made considering the flying qualities specifications into the

control design. In this problem, we consider the target model to be a second-order system

with natural frequency of 3 rad/s, and the damping ratio of 0.6. The performance weight

given as Wp serves to normalize the error in the model-following between the target model

and the LPV model. The weighting function Wp is selected to limit the tracking error less

than 10%. Wn is the scaling multiplier for noise input to the feedback, and Wu penalizes

the input in the synthesis of the robust controller.The schematic of the open loop model

with weighting functions and a disturbance input is illustrated in Fig. 2.5 in the Appendix.

Wp =
0.5s+ 50

s+ 5
, Wn = 0.01

Wref =
9

s2 + 0.36s+ 9
, Wu = 0.02

(2.53)

IQCs for single and cooperative systems are selected to compensate saturation uncertainty.

For cooperative system case, an IQC for slowly time varying signals and an IQC for
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constant time delay is defined as provided in work [42] and represented by Π2 and Π3 in

the Table 2.3. These IQCs compensate for the time varying variation of the graph topology

and time delay in edges. H(iω), Hs(iω) in IQC definitions are H(iω) = (jω + 1)−1,

Hs(iω) = H(iω), ϕ(H, d) = 1 and ν = 1. It should be noted that IQCs enlarge to

comply with the size of the system. If a multiplier is partitioned as in Eq. (3.19), then an

enlarged multiplier is as given in Eq. (3.63), where N and nz are the number of vehicles

and dimension of the output vector z of each vehicle.

Π :=

 Π11 Π12

Π21 Π22

 (2.54)

Π :=

 diag{Π11}Nnz1 diag{Π12}Nnz1

diag{Π21}Nnz1 diag{Π22}Nnz1

 (2.55)

Ψ0 is taken from [42] for θ ∈ [0, 1] s. Dead zone for the actuator signal is ∆d ∈

[−0.01, 0.01] and constant time delay is defined as ∆td = diag {∆i}, where

∆i =


0.25 i(mod 3), if i(mod 3) ̸= 0

0.75, if i(mod 3) = 0

(2.56)

Table 2.3. IQCs used for the simulation

Single-agent Multi-agent

Π1

[
1 0
0 −1

] [
1 0
0 −1

]

Π2

[
0 1
1 −2

] [
(1 + ν){H(−jω)H(jω) + ϕ(H,d)2

ν
I 0

0 −H(−jω)H(jω)

]

Π3

[
0 1 +H(jω)

1 +H(−jω) −2(1 +Re(H(jω)))

] [
|Ψ0(θ,ω)| 0

0 −1

]
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Tests are executed on various Graph topologies with different cooperative system

sizes, N , given in Table 2.4. These tests reveals the properties of each methodology and

make comparison between lumped and distributed methodologies. Comparison metrics are

defined in terms of elapsed CPU time to find controller for given decision variable size, nx

i.e. X ∈ Rnx × nx and robust performance of the resulting controllers. Robust performance

of these controllers are measured in terms ofH∞ norm of the system with given controllers,

which is given by the induced L2 norm or equivalently γ. To obtain comparable time

measurements, elapsed CPU time is defined as the average of elapsed CPU times for each

iteration of the algorithm, where iterations continue until the error between γj and γj−1

becomes smaller than than tolerance. Before introducing the results, it should be noted that

Knom is the controller that is synthesized without considering the uncertainties, while Krob

is the controller that is synthesized using the IQCs. After synthesis, both controllers are

plugged into the same system with uncertainty, where robust performance is measured. The

robust performance comparison between Knom and Krob is made by this way. For single

vehicle case, induced L2 gain, γ of the system with nominal controller under the uncertainty

in the actuators are calculated to be 2.29. With the robust controller, γ of the system is

calculated as 1.95. The stable single vehicle system with this synthesized controller is

used in both lumped and distributed methodologies and the comparison between the two

methodologies is made using the directed Graph for 3 vehicles (representative case) as

illustrated in 4th row of Table 2.4.
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Table 2.4. Results summary for the verification on various Graph topologies and
cooperative system sizes. (DP: Directed Path, DG: Directed Graph, DC: Directed Cycle)

Graph
Type

System
Size, N

Graph
Topology

Lumped Methodology Distributed Methodology

time,s γnom γrob
Size of

X time,s γnom γrob
Size of

X

1 DP 2 542.94 5.23 4.56 R68×68 203.79 5.61 4.91 R24×24

2 DP 3 287.16 5.41 5.03 R24×24

3 DG 3 362.99 5.64 5.23 R24×24

4 DG 3 3360 5.76 5.17 R102×102 306.55 5.59 5.22 R24×24

5 DC 3 331.16 5.60 5.35 R24×24

6 DP 4 450.30 5.62 4.91 R24×24

7 DC 4 454.87 5.62 5.14 R24×24

8 DP 5 558.54 5.62 5.15 R24×24

9 DC 5 555.07 5.62 5.15 R24×24

10 DP 6 1412.59 5.62 5.14 R24×24

11 DC 6 1424.58 5.62 5.14 R24×24

12 DP 10 922.3607 5.62 5.14 R24×24
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2.4.1 Implementation of Robust Controller Synthesis on Matlab

2.4.1.1 Construction of Single-agent System for Robust Synthesis

This section will walk through the construction of single-agent system for the readers.

Here Wp, Wref , Wu and Wn are the weighting functions. One can consider these weighting

functions as systems having input and output channels. For the sake of notational simplicity,

the output of these systems will be denoted with the name of the system itself e.g., the

output of Wp is called as Wp. For synthesizing a controller K for the single agent, an

open loop system has to be constructed. Let us denote the extended single-agent system by

G and the schematic representation of the system is provided in Fig. 2.5, which gives the

transfer function matrix as in Eq. (2.57). Gs in Fig. 2.5 contains the F16 Vista longitudinal

model given in (2.50).

Figure 2.5. Synthesis-ready extended single-agent system, G.

G :=



Gv,d Gv,ref Gv,n Gv,u

Gwp,d Gwp,ref Gwp,n Gwp,u

Gwu,d Gwu,ref Gwu,n Gwu,u

Gref,d Gref,ref Gref,n Gref,u

Gf,d Gf,ref Gf,n Gf,u


(2.57)
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Following the notation given in Algorithm 2.4, in every iteration a system called as

Gscl := Fu(G,Ψ
+) has to be constructed. This upper LFT connection can be realized in

MATLAB using ‘lft’ for G from Eq. (2.57) along with the calculated Ψ+ . Moreover, as

described in the Algorithm 2.4, a system H := Fl(G,Krob) should be constructed to find

the robust performance of H .

After completing the robust synthesis for single agent, closed-loop system in Fig. 2.6

is used in the construction of the cooperative system.

Figure 2.6. Robustly stable closed-loop system as a single agent. This system is constructed
from longitudinal dynamics of F16 Vista Aircraft..

2.4.1.2 Construction of Cooperative System for Robust Synthesis

Closed-loop single-agent system, Hi = H for all i = 1, · · · , N is used to construct

cooperative system as follows. First robustly stable single agents are grouped together to

obtain the system, Ggroup as illustrated in Fig. 2.7.

Figure 2.7. Accumulated group of agents without any interconnection..
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Subsequently, a synthetic system, Gcons is created to duplicate the outputs of the

single agent, which are
[
zT , ȳT

]T for given set of inputs
[
dT , uT

]T . Graphical representation

of the system is provided in Fig. 2.8. This system will be useful in creating the open loop

cooperative system that is ready for upper and lower LFT to construct systems for synthesis

and performance analysis.

Figure 2.8. Construction of the synthetic system, Gcons..

Finally, Ĝ is created as depicted in Fig. 2.9. This system has a simpler representation

in Fig. 2.2.

Figure 2.9. Construction of synthesis and analysis ready system, Ĝ..
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2.4.2 Results for Robust Controller Synthesis Using Lumped Model

For cooperative systems with Graph topology as given in 1st and 4th row of the

Table 2.4, performance of the cooperative system with nominal controller Knom and robust

controller Krob are measured along with the elapsed CPU time. The decision variable

size is also provided for these two Graph to illustrate the dependence of elapsed CPU

time to decision variable size. For Graph topology given in 1st row, Knom gives γ =

5.2301 and Krob gives γ = 4.5602. Elapsed CPU time for this Graph with X ∈ R68×68

is tlumped = 542s. Doing the same experiment for Graph topology given in 4th row, Knom

gives γ = 5.7552 and Krob gives γ = 5.1702. Elapsed CPU time for this Graph with

X ∈ R102×102 is tlumped = 3360s.

For the cooperative system output, which is α, the objective is to track the leader, G0,

which is a unit step input. The output α in this study is used as a surrogate for the speed

of each of the vehicles. For the specified Graph (3 vehicle directed Graph) and conditions,

output tracking of the agents over the grid is illustrated separately in Fig. (2.10). We can see

that system with Knom performs poorer in terms of rejecting disturbances than the one with

Krob except for the Vehicle 1, which is commented in Section 2.5. Krob has oscillations

due to constant time delay on the edges, however, the amplitude and time of the oscillations

are less than the one occurs for Knom.

Considering the lumped methodology, results of the algorithm reveals improvement

in the performance of the cooperative system as induced L2 gain of the system with Krob

get smaller. Observing the system behavior in simulation results for lumped methodology

case, system under control of Krob oscillates with smaller amplitudes and attenuate faster

than the one with Knom. Referring to the results, it was observed that Vehicle 1 with Knom

performs better than any vehicle with any controller. This is primarily due to the Adjacency

matrix, as Vehicle 1 is not receiving any signals back from the other vehicles which means

it is also not receiving any disturbance due to time delay either. The reason Vehicle 1
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Figure 2.10. Representative case: output tracking results of cooperative system with ∆ =
diag {0.25, 0.5, 0.75} s.
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with Krob degrades in performance is that, the controller Krob is a centralized controller

and designed considering the lumped system Ĝ, which has N many vehicles and N many

outputs. Therefore performance of the system is checked from these multiple inputs and

outputs and points out that performance of the controllers should be evaluated with respect

to overall cooperative system performance.

2.4.3 Results for Robust Controller Synthesis Using Distributed Model

For the specified Graph and conditions output tracking of the agents over the grid is

illustrated separately in Fig. 2.11. System with nominal controller Ki
nom gives γ = 5.59

and robust controller Ki
rob gives γ = 5.22 while the elapsed CPU time for the calculation is

tdist = 306.55s. It is observed by the induced L2 gains and verified in the figure that robust

controller performs slightly better than the nominal controller for this configuration for

each vehicle. It is realized that, cooperative systems with distributed controllers Ki
nom and

Ki
rob does not induce oscillations, when it is compared to the Fig. 2.10. The settling time

using the distributed methodology is slightly higher than the case with using the lumped

method which is understandable. However, we see a significant reduction in the CPU time

for the computation in the distributed case while recovering the robust performance.

Considering the directed path for 3 vehicle and 4 vehicle cases given in 2nd and

6th rows of Table 2.4, distributed synthesis method provides following results. For the

cooperative system with 3 vehicles, system with nominal controller Ki
nom gives γ = 5.412

and Ki
rob gives γ = 5.027. Elapsed CPU time for this calculation is tdistd = 287.16s.

It is observed from Fig. 2.12 that, system driven by Ki
rob provides better performance

compared to the Ki
nom in terms of overshoot. Improvement in convergence to the reference

is slightly better for Ki
rob. In the same figure, control input δe is also provided along with

the trajectory of the agents. It is illustrated in the figure that, input is bounded to 2.6◦ and
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goes upto 3.2◦ for small amount of time as a consequence of the unit step reference to the

cooperative system.

For the cooperative system with 4 vehicles, system with nominal controller Ki
nom

gives γ = 5.6230 and Ki
rob gives γ = 4.9106. Elapsed CPU time for this calculation is

tdistd = 450.29s.

The elapsed CPU time for all Graph topologies pertaining to the distributed methodology

are plotted in Fig. 2.14. It reveals that synthesis time for distributed methodology increases

almost linearly with the number of vehicles (system size N ) in the cooperative system,

while such a result cannot be concluded for the lumped method with the amount of experiments.

Further, for the lumped case, any result for a cooperative system with 4 or higher number

of vehicles was not feasible in terms of time for the system, where simulations executed.

Black asterisks shows elapsed CPU time to calculate robust controller for each Graph using

distributed methodology in Table 2.4. Fig. 2.14 reveals that while the configuration affects

the calculation time, the dominant parameter however is the system size, N .

Finally, the γrob values obtained for 2 and 3 vehicle cases are plotted in Fig. 2.15,

which shows the relation among number of vehicles, Graph topology and γrob. It is observed

that the graph topology affects the induced L2 gain of the cooperative system and we can

see that DP has the best robust performance, while DC has the least. Based on this it would

seem that, increasing number of vehicles in the system, results in an increase in the γrob,

which means a decrease in robust performance. For example in the 3 vehicle case, where

γrob is best for DP but worse than the 2 vehicle case, worst for DC, and DGs being in

between. However, for all cases with greater than 3 vehicles the performance is consistent

with that observed for the 3 vehicles case.

Observing the system behavior in simulation results for distributed methodology

case, system driven by Ki
rob shows better performance but improvement in the performance

depends on the configuration. It should be noted that performance of Ki
rob cannot be worse
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Figure 2.11. Representative case: output tracking results of cooperative system with ∆ =
diag {0.25, 0.5, 0.75} s..
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Figure 2.12. Output tracking of cooperative system with 3 vehicles and time delay of
∆ = diag {0.25, 0.5, 0.75}s..

than Ki
nom, since the algorithm converges. The dependence on configuration is immediate

if a comparison between figures Fig. 2.11 and Fig. 2.12 is made. Table 2.4 reveals that

cooperative systems with higher number of agents, shows resembling performances for

Ki
nom and Ki

rob. This is due to the search range provided for all Graph topologies. The

search range is provided by scaling the induced L2 norm of the system Fl

(
G̃i,Ki

nom

)
up

and down by 1 and 20. Therefore the bisection algorithm searches within this range and for

cases enumerated as 7 to 12 it hits the minimum.

As illustrated in Table 2.4 and Figs. 2.10, 2.11, 2.12, 2.13, 2.14 and 2.15 following

results can be summarized:

• The robust controller synthesis procedure achieves converging robust performance

values regarding to the decrease in γrob with respect to γnom for any Graph topology.

• The synthesis times are very small compared to lumped model case.

57



0 1 2 3 4 5 6 7 8 9 10

time, s

0

0.5

1

o

Output Tracking

H( ) with K
nom

H( ) with K
rob

0 1 2 3 4 5 6 7 8 9 10

time, s

0

1

2

3

e
,(

o
)

Control Input

u
nom

u
rob

Figure 2.13. Output tracking of cooperative system with 4 vehicles and time delay of
∆ = diag {0.25, 0.5, 0.75, 0.25} s..
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Figure 2.14. Elapsed time to find robust controller.

• The distributed synthesis is tractable in terms of calculation time as it increases

linearly with system size as illustrated in Fig. 2.14. As the system size grows,

calculation time for lumped model grows drastically.
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• The performance of the distributed methodology varies considerably with the varying

Graph structure.

2.5 Conclusions

This paper adopts methods proposed for design of a robust controller for a single

linear parameter varying system, which enables robust synthesis using IQC analysis, and

successfully extends and implements them for both single and mutli-agent systems in a

nested manner. The novel recasting of the dynamics of the single and mutli-agent systems,

in a form such that uncertainties and controllers are connected to the system in the same

manner as before, lends the methods to be tractable. This is important as there is a quadratic

relation between system size and the size of the decision variable which leads to intractable

simulations like the one calculated for test number four. For distributed case, synthesis

has to be done for every agent and that is why calculation time increases almost linearly.

The implementation of the robust controller synthesis algorithm provides a nested set
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of controllers that can potentially be extended to any hierarchical framework, such as

networks of networks of agents, address uncertainties at each of the layers and increase

the performance of the vehicle, as well as the layer in the hierarchy and the overall system.

The computation times are found to scale linearly hence manageable.
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Chapter 3

Robust Edge Weight Synthesis for Multi Agent Systems With Integral Quadratic

Constraints

3.1 Preliminaries

3.1.1 Notation

Let R and R++ denote real and positive real numbers, respectively. R+ be real

number that is equal or greater than 0. Sp denotes symmetric matrix of size p. Aij

represents element in the ith row jth column of matrix A. Matrix inequality conditions

are defined with < and >, which stands for ≤ and ≥, respectively. A matrix A := diag(·)

is a block matrix, where diagonal entries are the arguments of diag. A matrix A := col(·)

is a block matrix, where vertical entries are the arguments of col. Finally, FL and FU stands

for lower and upper LFT.

3.1.2 Linear Parameter Varying Systems

The transfer matrix G(ρ) of an LPV system with input w ∈ Rnw and output z ∈ Rnz

can be defined over the feasible parameter trajectory ι(ρ) as

G(ρ) :=

 A(ρ) B(ρ)

C(ρ) D(ρ)

 ,
ι(ρ) := {ρ ∈ P ⊂ Rp, |ρ̇(t)| < r ≥ 0 ∀t ≥ 0}

(3.1)

where A(ρ) ∈ Rnx×nx , B(ρ) ∈ Rnx×nw , C(ρ) ∈ Rnz×nw , and D(ρ) ∈ Rnz×nw

are the state-space matrices, and ρ(t) = [ρ1, ρ2, . . . , ρp] is an exogeneous parameter vector

with bounded derivatives.
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Figure 3.1. LPV system H(ρ) maps input w to output z..

Let us consider the transfer matrix H(ρ) illustrated in Fig. 3.1, which is the lower-

fractional transformation (LFT) between G(ρ) and the controller K(ρ) defined as H(ρ) :=

Fl(G(ρ),K(ρ)). The performance of the closed-loop LPV system can be measured in

terms of induced L2 gain of the input/output map with zero initial conditions, and is defined

as [45],

∥H(ρ)∥ := sup
ρ∈A

sup
w∈L2

∥w∥≠0

∥z∥2
∥w∥2

(3.2)

The Bounded Real Lemma for linear time-invariant (LTI) systems can be extended

to obtain the upper bound of the induced L2 gain of the LPV system [45]. As discussed

in [115,116], an LPV system H(ρ) is exponentially stable over the parameter bounded set

P and ∥H(ρ)∥ < γ if there exists a differentiable matrix function X(ρ) = XT (ρ) such

that,

X(ρ) ≥ 0∂X (ρ, ρ̇) +AT (ρ)X(ρ) +X(ρ)A(ρ) X(ρ)B(ρ)

BT (ρ)X(ρ) 0


+

 0 I

C(ρ) D(ρ)


T

P

 0 I

C(ρ) D(ρ)

 ≤ 0

(3.3)
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where P =

−γ2I 0

0 I

 and γ > 0. In Eq. (3.3), ∂X (ρ, ρ̇) is defined as [45]

∂X (ρ (t) , ρ̇ (t)) =
d

dt
X (ρ (t)) =

p∑
i=1

∂X (ρ (t))

∂ρi (t)
ρ̇i (t) (3.4)

Equation (3.3) introduces parameter dependent Linear Matrix Inequalities. Moreover,

if the system defined in Eq. 3.1 is an affine function on the set P , then X(ρ) becomes

stationary and ∂X(ρ, ρ̇) = 0. Eventually, the resulting LMI must be satisfied on the set

P , thereby resulting in finite set of LMIs. Dropping the argument ρ from the matrices for

the sake of brevity, the LMIs can be written as

X ≥ 0ATX +XA XB

BTX 0

+

0 I

C D


T

P

0 I

C D

 ≤ 0

(3.5)

3.1.3 Multi-agent System Modelling

Underlying Graph Structure. A MAS is represented by a Graph G = (N , E), which

is a pair of a node set N and a edge set E ⊂ N × N . Edge is described between nodes

i ∈ N and j ∈ N such that (j, i) ∈ E denotes that node j transmits information to node

i. The adjacency matrix A = [aij] ∈ RN×N of the Graph of N agents is defined as in the

following equation. The weighting scalar aij is called as an edge weight from jth to ith

agent. This connection is graphically illustrated as in Figure 3.2.

Aij =


aij > 0, j ̸= i, (j, i) ∈ E

aij = 0, otherwise

(3.6)

Construction of MAS. A group of unconnected agents, which is denoted by Gi, can

be treated as a single system, which is denoted with S and represented in state space form as
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Figure 3.2. Interconnection of agents and lumped representation of MAS H = FL(S,A).
.

in (6.22). S is simply a block diagonal concatenation of Gi such that S = diag{Gi}Ni=1.

Inputs and outputs of the system are
[
wT

1 wT
]T and

[
zT1 zT

]T , where w1 ∈ Rnw1 , w ∈

Rnw , z1 ∈ Rnz1 , and z ∈ Rnz . Vehicles within the system shares their output information

with regarding agents, and these shared signals are called as spatial signals, which flow

through the input output ports denoted as w − z such that w = Az. Channel through

ports w1 − z1 carry the information of reference input and output of the system. States of

the system are defined as x ∈ Rnx .


ẋ

z1

z

 =


A B1 B

C1 D1 E1

C F1 0




x

w1

w

 (3.7)

A cooperative system, H , can be constructed using an adjacency matrix (A) to

connect vehicles to each other as represented in lower linear fractional transformation

(LFT) such that H = FL(S,A). The state space representation of H is provided in (6.23).

The connection couples vehicles with a strength prescribed by a weighting scalar aij .
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 A B1

C1 D1

 =

 A B1

C1 D1

+

 B

E1

A
[
C F1

]

=

 A+BAC B1 +BAF1

C1 +E1AC D1 +E1AF1


(3.8)

3.1.4 Feasibility Condition for H∞ Performance

Assuming system given in (6.23) for a given A is asymptotically stable, the supremum

of the maximum singular value of the system is given by the scalar γ, which is also called

as induced L2 norm of the system. Latter result is provided by the following theorem.

Theorem 3.1.1 Assuming system in (6.23) is asymptotically stable then ∥H∥∞ < γ and

there is a solution for X such that linear matrix inequalities (LMIs) in (6.24) holds.

X ≥ 0 X

0

[
A B1

]
+

 AT

BT
1

[
X 0

]

+

 CT1

DT
1

[
C1 D1

]
+

 0 0

0 −γ2I

 ≤ 0

(3.9)

Given new variable names such that X =

[
X 0

]
, Y =

[
A B1

]
and Z, which

collects the remaining terms of second inequality in (6.24), inequality constraints given in

(6.24) has the following form as illustrated in (3.10).

X ≥ 0

XTY+ YTX+ Z ≤ 0

(3.10)
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Proof 3.1.2 (Proof of Theorem 3.1.1) Proof of the theorem comes after pre and post multiplying

the second inequality in (6.24) with
[
xT wT

1

]
and

[
xT wT

1

]T
, which yields γ2∥w1∥22−

∥z1∥22 < 0. Equivalently this means that ∥H∥∞ < γ.

If A is not predefined by the designer and needs to be synthesized, second inequality

given in (3.10) depends non-linearly on matrix variables X and A. This non-linear matrix

inequality is called as BMI and can be solved using sequential LMI approach, which will

be discussed in the following section.

Definition 3.1.1 [121] A mapping G(µ) : Rm → Sp is positive semi-definite convex(psd-

convex) on a convex subset C ⊆ Rm if the inequality

ηG(µ) + (1− η)G(ν) ≥ G(ηµ+ (1− η)ν) (3.11)

holds for any µ, ν ∈ C and all η ∈ [0, 1].

On a convex subset C, mapping G(µ) is said to be differentiable if its derivative

DG(µ) exist for all µ.

Definition 3.1.2 [121, 122] Derivative of the mapping G(µ) at µ is a linear mapping

DG(µ) from Rm to Rp×p that is defined as

DG(µ)h :=
m∑
i=1

hi
∂G

∂µi
(µ), ∀h ∈ Rm. (3.12)

where h is a real valued function on µ.

Lemma 3.1.3 [121,122] A matrix valued mapping G(µ) is psd-convex on a convex subset

C if and only if rTG(µ)r is convex on C. Proof is provided in [121].

Lemma 3.1.4 [122] A matrix valued mapping G(µ) is psd-convex on a convex subset C

if and only if inequality in (3.13) holds for all µ and ν.

G(ν)−G(µ) ≥ DG(µ)(ν − µ) (3.13)
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Sequential LMI approach relies on a decomposition called as convex-concave decomposition.

Multiple convex-concave decompositions provided in literature [122,123] and as expressed

in [122] different decompositions uniquely shifts the curvature between convex and concave

parts.

For given affine matrices X and Y, a bilinear matrix mapping can be defined as

M (X,Y) := XTY + YTX and following lemma provide an alternate way to verify the

convexity of the matrix function M(X,Y).

Lemma 3.1.5 [123] Affine functions X(η) and Y(β) are defined as in (3.14) for independent

variables ηi and βj for i = 1, . . . , k and j = 1, . . . , l respectively.

X = X0 +
k∑
i=1

ηiXi

Y = Y0 +
l∑

j=1

βjYj

(3.14)

A quadratic mapping can be defined based the bilinear mapping M (X,Y) := XTY+

YTX by redefining M (X,Y) as in (3.15). Then M (X,Y) is psd-convex on a convex subset

P ⊆ Rk+l if the matrix Q is positive semi-definite. Proof of the lemma is provided in [123].

M(X,Y) :=
[
XT YT

]
Q

 X

Y

 (3.15)

3.1.5 Integral Quadratic Constraints

IQCs are widely used tools to capture behaviour uncertainties in dynamic systems

by changing uncertain portions of the system with a quadratic constraint on its inputs and

outputs [124]. Let us define uncertainties by a bounded casual operator ∆ i.e. ∆ ∈ ∆,

where ∆ = {∆m | ∆m : Lnz2e [0,∞) → Lnw2e [0,∞), 1 ≤ m ≤M}. Signals z ∈ Lnz2 [0,∞)
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and w ∈ Lnw2 [0,∞) has following relation w(t) = ∆(z(t)) and has Fourier transforms of

Ẑ(jω) and Ŵ (jω).

Suppose Π ∈ RL(nz+nw)×(nz+nw)
∞ is a bounded rational weighting function that

defines an IQC, then signals z and w satisfy the frequency domain IQC, Π, if inequality

in (3.16) holds true.

∫ ∞

−∞

 Ẑ(iω)
Ŵ (iω)


∗

Π(iω)

 Ẑ(iω)
Ŵ (iω)

 dω ≥ 0 (3.16)

By factorizing Π(iω) = Ψ(iω)∗ P Ψ(iω), a dynamic filter (Ψ(iω)) and a correlator

(P ) is obtained. Here Ψ(iω) is given in state space form as in (3.17) and inputs and outputs

of this filter are [ w z ]T and zψ respectively.

Ψ =

 Aψ Bψ

Cψ Dψ

 , zψ = Ψ

 d

v

 (3.17)

Time domain form of (3.16) can be written in the quadratic form as illustrated in

(3.18). Then we can say that signals z and w satisfy the time domain IQC in (3.18).

∫ T

0

zTψPzψdt ≥ 0 (3.18)

In this work, J-spectral factorization [65] is used to decompose IQC multipliers. For

these multipliers to be valid time domain IQCs, following assumptions has to be satisfied.

Assumption 3.1.6 Let IQC multiplier Π be partitioned as in (3.19). Then multiplier

should satisfy Π11(jω) ≥ 0 and Π22(jω) ≤ 0, ∀ω ∪ {∞}.

Π :=

 Π11 Π12

Π21 Π22

 (3.19)
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Assumption 3.1.7 The uncertainty block has to satisfy ∥∆∥ ≤ 1. This is ensured by

assigning Π1 = diag{Inz1 , − Inw1}.

3.2 Methodology

This section devices sLMI method to synthesize adjacency matrix A. This is done

without uncertainty using the representation given in (6.23) in subsection 3.2.1. Then an

uncertainty channel is added to the MAS and an augmented sLMI method is proposed to

incorporate IQC analysis along with the performance certification in subsection 3.2.2.

3.2.1 Adjacency Matrix Synthesis for Nominal H∞ Performance

Originally, the optimization problem for synthesizing A is defined formally in (3.20),

which is a optimization with a BMI constraint.

minimize γ

s. t. X ≥ 0

XTY+ YTX+ Z ≤ 0

(3.20)

This optimization problem can be rewritten using convex-concave decomposition

[122]. In this work, a decomposition proposed in [123] is selected. Following this decomposition,

left hand side of the BMI constraint given in (3.20) is fractioned into M1 = XTY + YTX

and M2 = Z. Then M1 is redefined in a quadratic form as provided in (3.21).

M1 = XTY+ YTX =

[
XT YT

] 0 I

I 0


 X

Y

 (3.21)

The indefinite matrix in the quadratic form is then decomposed into two positive

semi-definite matrices, which are calculated as given in (3.22) and leads to a convex and a

concave matrix definitions. The decomposition uses generalized left eigenvectors defined
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as v and eigenvalues that are diagonally blocked in λ := diag(−I, I) with respective

sizes. When the diagonal eigenvalues are separated into two matrices while securing the

dimension of the original matrix, equation of (3.22) is obtained.

 0 I

I 0

 = v

 0 0

0 I

vT − v

 I 0

0 0

vT (3.22)

Then, M1 can be written using the convex-concave matrix definitions given in (3.22),

which is explicitly provided in (3.23).

M1 = M11 −M12 =

[
XT YT

]
v

 0 0

0 I

vT

 X

Y


−

[
XT YT

]
v

 I 0

0 0

vT

 X

Y


(3.23)

Finally BMI constraint given in (3.20) can be collected such that, M11 and M2 is

collected under a single matrix variable, which is named as M11,2, and M12 is left by

itself. Using these matrix definitions, decomposed constraint an optimization problem can

be written as provided in (3.24).

minimize γ

s. t. X ≥ 0

M11,2 −M12 ≤ 0

(3.24)

Recalling that the decision variables for this optimization problem are X and A,

sequential LMI approach requires the initial conditions for these matrix variables to be in a

relative interior (strictly feasible ball) to start. This requirement is satisfied by the following

strategy. A, which is given by the user can be used as an initial point. Using the standard
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optimization problem given in (3.25), we are able to find a strictly feasible initial solution

denoted as µ0 = {X 0, γ0} for given A0 assuming that such a solution exist for given

adjacency matrix. This can be verified easily by checking if cooperative system given in

(6.23) is Hurwitz. This automatically ensures that there exists a decision variable X for

the problem defined in (3.25) based on the result given in Theorem 3.1.1. In this equation

C(X ) represents the set of constraints, which is provided in (6.24).

minimize γ

s. t. C(X )

(3.25)

The solutions X 0, γ0 and given initial adjacency A0 is then passed to the sLMI

algorithm, which will be expressed in the following text. sLMI approach is an iterative

procedure and in the formulations same variable will have its existing solution and future

solution. Existing solution of any variable have a superscript t as {·}t, while future solution

will be expressed as is.

Considering the matrix decision variables X and Y, we can collect the decision

variables constructing them within a vector µ such that µ = [vec(X), vec(Y)]. Complying

with the notation, their existing and future representations are provided as µt and µ respectively.

Another point to be expressed here is the partial derivatives of the matrix decision variables

at existing solution with respect to µt. To do that a formal partial derivative of X is taken

as provided in (4.38).

∂

∂µt
{X} =

n∑
i=1

(
ηi − ηti

)
Xt
i

= X0 +
n∑
i=1

(ηi)Xi − X0 −
n∑
i=1

(
ηti
)
Xt
i

(3.26)

Clearly, right hand side of the partial derivative is nothing but X−Xt. Same manipulations

can be applied to Y and eventually they can be written as provided in (3.27).
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∂

∂µt
{X} = DtX = X− Xt

∂

∂µt
{Y} = DtY = Y− Yt

(3.27)

Based on what is provided in latter equation, partial derivative of M12 is written in

(3.28). This is used to linearise M12 and relying on the result provided in Lemma 4.1.2,

optimization problem given in (3.24) is reformulated as in (3.30).

DtM12 =

 X

Y


T

v

 I 0

0 0

vT

 Xt

Yt


+

 Xt

Yt


T

v

 I 0

0 0

vT

 X

Y


− 2

 Xt

Yt


T

v

 I 0

0 0

vT

 Xt

Yt



(3.28)

Linearised M12 is denoted as LM12 and provided the following equation.

M12 ≥ LM12 = M t
12 +DtM12 (3.29)

minimize γ

s. t. X ≥ 0

M11,2 − LM12 ≤ 0

(3.30)

Second constraint of the problem defined in (3.30) is a quadratic matrix inequality

which can be easily transformed to an LMI constraint using Shur Complement Lemma

[125], as given in (3.31).
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Φ =


−I

[
0 I

]
vT

 X

Y


 X

Y


T

v

 0

I

 Z− LM12


≤ 0 (3.31)

Eventually, optimization problem takes the final form as provided in (3.32).

minimize γ

s. t. X ≥ 0

Φ ≤ 0

(3.32)

Thus far two optimization problems have been discussed. First one is aimed to find the

initial strictly feasible solutions for a given initial adjacency matrix, which are denoted as

X 0, γ0 and A0, respectively and given in (3.25). The second one (see (3.32)) is desired

to find solutions to decision variables X , A while minimizing γ starting from the initial

values of X 0, γ0 and A0, which are passed from the first optimization problem. These two

higher level optimization problems are formally provided in Algorithm 1.
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Algorithm 1 Algorithm to solve problem given in Section 3.2.1
Optimization 1: Find initial feasible solution for given A0

minimize γ

for γerror > ϵ do

Compute γtry = (γup − γlw)/2

Compute feasibility of problem given in (3.25) for γtry

if (3.25) is feasible then

γup = γtry

else

γlw = γtry

end if

Compute γerror

end for

End Optimization 1

Optimization 2: Start sLMI for given initial solutions to find optimal Anom

Define X t = X 0, γt = γ0, At = A0

i = 1

for µerr > ϵµ & i < imax do

if i=1 then

X i = X t, γi = γt, Ai = At

end if

Solve (3.32) using X i, γi, Ai to obtain X i+1, γi+1, Ai+1

µi = [vec(X), vec(Y)], calculate µerr = |µi − µi−1|

if µerr < ϵµ then

break

end if

i = i + 1

end for

End Optimization 2
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This section is dedicated to implement sLMI method in synthesizing A in terms of

nominal H∞ performance. Next section extends this method to include uncertainties in

synthesis using IQCs.

3.2.2 Robust Adjacency Matrix Synthesis with IQCs

Including IQC analysis requires a modification in system defined in (6.22). Here

an uncertainty channel is introduced to the system denoted as Su that results in the state

space representation given in (3.33). Here z1 − w1 and z2 − w2 channels are designated

for uncertainty and performance channels, respectively. Inputs and outputs of the system

are
[
wT

1 wT
2 wT

]T and
[
zT1 zT2 zT

]T , where w1 ∈ Rnw1 , w2 ∈ Rnw2 , w ∈ Rnw , z1 ∈

Rnz1 , z2 ∈ Rnz2 and z ∈ Rnz . State vector of the system has a dimension of x ∈ Rnxs .

z1 − w1 channel is included in the system to transfer spatial information of the MAS

that is shared between the agents to uncertainty block. Therefore it is just a feed forward

channel and matrices within is defined as C1 = 0 ∈ Rnz1, nxs , D11 = 0 ∈ Rnz1, nw1 ,

D12 = 0 ∈ Rnz1, nw2 and E1 = I ∈ Rnz1, nw. Graphical representation of the MAS is

given in Figure 3.3.



ẋ

z1

z2

z


=



A B1 B2 B

C1 D11 D12 E1

C2 D21 D22 E2

C F1 F2 0





x

w1

w2

w


(3.33)

Given the uncertainty set ∆, satisfying the assumptions given in Section 3.1.5, multipliers

within the uncertainty set ∆ = (Πk, k = 1, · · · ,M) can be factorized as (Ψk,Pk), which

are given in (3.34).
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Figure 3.3. Interconnection of agents and lumped representation of MAS H =
FU(FL(Su,A),∆). .

Ψk =

 Aψk Bψk,w1 Bψk,z1

Cψk Dψk,w1 Dψk,z1



=


Aψ Bψk,w1 Bψk,z1

Cψk(1) Dψk(1),w1 Dψk(1),z1

Cψk(2) Dψk(2),w1 Dψk(2),z1


Pk =

 I(nw1,nw1) 0

0 −I(nz1,nz1)



(3.34)

System Su given in (3.33) is extended using Ψk as defined in Figure 3.4.Extended

state space definition for the group of vehicles is denoted as SE and given in (3.35).
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SE :=



A 0 · · · 0 B1 B2 B

0 Aψ1 · · · 0 Bψ1,w1 0 Bψ1,z1E1

... 0
. . . 0

...
...

...

0 0 · · · AψM BψM ,w1 0 BψM ,z1E1

0 Cψ1 · · · 0 Dψ1,w1 0 Dψ1,z1E1

... 0
. . . 0

...
...

...

0 0 · · · CψM DψM ,w1 0 DψM ,z1E1

C2 0 · · · 0 D21 D22 E2

C 0 · · · 0 F1 F2 0


(3.35)

As clearly seen in (3.35), number of multipliers increase the size of composite state

and output vectors such that composite state vector is

ζT :=
[
xT , xTψ,1, · · · , xTψ,M

]T ∈ Rnx+nxpsi,1+···+nxpsi,M and

zTe :=
[
zT2 , z

T
ψ,1, · · · , zTψ,M

]T ∈ Rnz2+nzpsi,1+···+nzpsi,M . To simplify this representation,

SE is rewritten as provided in (3.36), where AψK := diag{Aψk}Mk=1, CψK := diag{Cψk}Mk=1,

BψK ,w1 := col{Bψk,w1}Mk=1, DψK ,w1 := col{Dψk,w1}Mk=1, BψK ,z1E1 := col{Bψk,z1E1}Mk=1

and DψK ,z1E1 := col{Dψk,z1E1}Mk=1. Likewise, BψK ,z1E1AC := col{Bψk,z1E1AC}Mk=1

and DψK ,z1E1AC := col{Dψk,z1E1AC}Mk=1.
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SE :=



A 0 B1 B2 B

0 AψK BψK ,w1 0 BψK ,z1E1

0 CψK DψK ,w1 0 DψK ,z1E1

C2 0 D21 D22 E2

C 0 F1 F2 0


(3.36)

MAS can then be constructed by w = Az. This creates the system HE,K , which is

provided in (3.37).

HE,K :=


AK BK,1 BK,2

CKψ DKψ,1 DKψ,2

CK DK,1 DK,2

 (3.37)

AK =

 A+BAC 0

BψK ,z1E1AC AψK


BK,1 =

 B1 +BAF1

BψK ,w1 +BψK ,z1E1AF1


BK,2 =

 B2 +BAF2

BψK ,z1E1AF2


 CKψ

CK

 =

 DψK ,z1E1AC CψK

C2 +E2AC 0


 DKψ,1

DK,1

 =

 BψK ,w1 +BψK ,z1E1AF1

D21 +E2AF1


 DKψ,2

DK,2

 =

 BψK ,z1E1AF2

D22 +E2AF2



(3.38)
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Figure 3.4. a) Extended SE to include filter Ψ. b) Extended cooperative system is created
with A. .

Robust stability of HE,K is certificated by robust performance of the system, HE,λ,

that originates from S, which is extended with a combined multiplier Πλ. This multiplier

is defined as Πλ :=
∑M

k=1 λkΠk and can be factorized using the factorization given in

work [44], which yields (Ψλ,Pλ) as given in (3.39).

Ψλ =

 Aψλ Bψλ,w1 Bψλ,z1

Cψλ Dψλ,w1 Dψλ,z1



=


Aψ Bψλ,w1 Bψλ,z1

Cψλ(1) Dψλ(1),w1 Dψλ(1),z1

Cψλ(2) Dψλ(2),w1 Dψλ(2),z1


Pλ =

 I(nw1,nw1) 0

0 −I(nz1,nz1)



(3.39)

Specifically, HE,λ is obtained by extending S with combined multiplier Πλ and

connecting agents with each other through A as in Figure 3.4. This yields the state space

definition for HE,λas given in (3.40).
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HE,λ :=


Aλ Bλ,1 Bλ,2

Cλψ Dλψ,1 Dλψ,2

Cλ Dλ,1 Dλ,2



=



Aλ Bλ,1 Bλ,2

Cλψ(1) Dλψ,1(1) Dλψ,2(1)

Cλψ(2) Dλψ,1(2) Dλψ,2(2)

Cλ Dλ,1 Dλ,2



(3.40)

Aλ =

 A+BAC 0

Bψλ,z1E1AC Aψλ


Bλ,1 =

 B1 +BAF1

Bψλ,w1 +Bψλ,z1E1AF1


Bλ,2 =

 B2BAF2

Bψλ,z1E1AF2


 Cλψ

CK

 =

 Dψλ,z1E1AC Cψλ

C2E2AC 0


 Dλψ,1

Dλ,1

 =

 Bψλ,w1 +Bψλ,z1E1AF1

D21 +E2AF1


 Dλψ,2

Dλ,2

 =

 Bψλ,z1E1AF2

D22 +E2AF2



(3.41)

Theorem 3.2.1 [65] Assuming upper LFT of (S,∆) is well posed and {λk}Mk=1 satisfies

the assumptions given in Section 3.1.5. Let γ > 0 and λ1 ∈ R++ and λk>1 ∈ R+. Let Πk

has a factorization (Ψk,Pk), where Ψk is stable and Πλ :=
∑M

k=1 λkΠk has a J-Spectral
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factorization as (Ψλ,Pλ) based on the results given in work [44]. Let rk(⋆Kψ) denote

regarding rows of ⋆Kψ . Then following are equivalent.

1. HE,K achieves robust performance of γ if the matrix inequality in (3.42) holds true

for X T
K = XK ∈ RnS+nψ , scalar {λk}Mk=1 and γ.

XK ≥ 0
XK

0

0


[
AK BK,1 BK,2

]
+


AT
K

BTK,1

BTK,2


[
XK 0 0

]
+


CTK 0

DT
K,1 0

DT
K,2 γI

Pp

 CK DK,1 DK,2

0 0 γI

+

M∑
k=1

λk


rk(CKψ)T

rk(DKψ,1)
T

rk(DKψ,2)
T

Pk


rk(CKψ)T

rk(DKψ,1)
T

rk(DKψ,2)
T


T

≤ 0

(3.42)

2. HE,λ achieves robust performance of γ if the matrix inequality in (3.43) holds true

for X T
λ = Xλ ∈ RnxS+nxψ,λ and γ, where Pp = diag(I,−I) ∈ R(nz2+nw2,nz2+nw2).
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Xλ ≥ 0
Xλ

0

0


[
Aλ Bλ,1 Bλ,2

]
+


AT
λ

BTλ,1

BTλ,2


[
Xλ 0 0

]
+


CTλ 0

DT
λ,1 0

DT
λ,2 γI

Pp

 Cλ Dλ,1 Dλ,2

0 0 γI

+


CTλψ
DT
λψ,1

DT
λψ,2

Pλ


CTλψ
DT
λψ,1

DT
λψ,2


T

≤ 0

(3.43)

Proof 3.2.2 (Proof of the Theorem 3.2.1) Proof is provided in work [65].

Theorem 3.2.1 ensures that HE,K is a dissipative system and has a valid storage

function V (x(t)) = xT (t)XKx(t). Ensuring this allows the proceeding analysis to obtain

a BMI inequality. By investigating (3.37), one can see that HE,k is affine function of A

and inequality given in (3.42) contains bilinear terms. To investigate this inequality, matrix

variables are renamed as in (3.44). Here scalar {λk}Mk=1 ≥ 0, therefore a new variable

µk =
√
λk can be defined without loss of generality.
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XK(XK) =

[
XK 0 0

]
YK(A) =

[
AK BK,1 BK,2

]
RK(A, λk) = µk

[
CKψ(1) DKψ ,z1(1) DKψ ,w1(1)

]
QK(γ) =

[
0 0 γI

]
PK(A) =

[
CK DK,1 DK,2

]
LK(A, λk) = µk

[
CKψ(2) DKψ ,z1(2) DKψ ,w1(2)

]

(3.44)

Similar to Section 3.2.1, second inequality in (3.42) can be rewritten as in (3.46).

This is done by representing correlation matrices Pp and PK with an inverted eigenvalue

decomposition of an indefinite matrix as described in (3.45). Here w is the left eigenvector

with the respective size. Specifically, eigenvectors related to Pp and PK can be denoted as

wp and wK .

 0 I

I 0

 = w

 I 0

0 −I

wT

 I 0

0 −I

 = wT

 0 I

I 0

w

(3.45)

Redefining correlation matrices results in an inequality (3.46).
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 XK

YK


T  0 I

I 0


 XK

YK

+

 PK

QK


T

wT
p

 0 I

I 0

wp

 PK

QK

+

 RK

LK


T

wT
K

 0 I

I 0

wK

 RK

LK

 ≤ 0

(3.46)

This inequality can further be simplified to the inequality in (3.48) using the matrix

variables defined as in (3.47). Finally, matrix variables are collected in a single matrix

variable called as H and leads to a concise representation of the inequality as provided in

(3.51). Partitioning of the variable H is provided in (3.50).

 P̄λ

Q̄K

 = wp

 PK

QK


 R̄K

L̄K

 = wK

 RK

LK

 (3.47)

 XK

YK


T  0 I

I 0


 XK

YK

+

 P̄K

Q̄K


T  0 I

I 0


 P̄K

Q̄K

+

 R̄K

L̄K


T  0 I

I 0


 R̄K

L̄K

 ≤ 0

(3.48)
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

R̄K

P̄K

XK

YK

Q̄K

L̄K



T 

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0





XK

P̄K

R̄K

YK

Q̄K

L̄K


≤ 0 (3.49)

HT : =

[
HT

1 HT
2

]T
=

[
XT
K P̄TK R̄T

K YT
K Q̄T

K L̄TK

]T (3.50)

 H1

H2


T

QH

 H1

H2

 ≤ 0 (3.51)

At this stage, the matrix inequality given in (3.51) still contains nonlinear terms that

cannot be cast into bilinear problem. This is due to the fact that we have RK(A, λk) and

LK(A, λk) in the formulation. The solution to this nonlinearity is provided in the following

context and for now λk is assumed to be a constant. This assumption allows us to continue

on convex-concave decomposition of the inequality (3.51) by following the method applied

on the quadratic definition in (3.21) given in Section 3.2.1. Simply starting with eigenvalue

decomposition of QH as given in (3.52) a convex and a concave partition for the inequality

is obtained. Then following the formulation given between (3.23) and (3.29) for (3.51),

linear inequality given in (3.53) can be calculated. Linearised concave partition of the

inequality is denoted as LM12.

QH = vH

 0 0

0 I

vTH − vH

 I 0

0 0

vTH (3.52)
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Γ =


−I

[
0 I

]
vTHH

HTvH

 0

I

 −LM12 − sI

 ≤ 0 (3.53)

Eventually, optimization problem takes the final form as provided in (3.54).

minimize γ

s. t. XK ≥ 0

Γ ≤ 0

(3.54)

Once optimization problem given in (3.54) is set, a sequence of optimization has to

be solved to reach solution for robust adjacency matrix Arobust. This sequence is provided

in Algorithm 2 and convergence of the solution using these algorithms can be guaranteed

based on the Theorem 3.2.6. Let D := {µ ∈ Ω|Gi(µ) − Hµ ≤ 0, i = 1, · · · , l} be the

feasible set of problems defined in (3.32) and (3.54). Let ri(D) := {µ ∈ ri(Ω)|Gi(µ) −

Hµ ≤ 0, i = 1, · · · ,m} be the classical interiors.

Assumption 3.2.3 ri(D) is non-empty.

Assumption 3.2.4 Let mapping Gi(µ) be Schur PSD convex and objective function f(µ)

be convex quadratic on R.

Assumption 3.2.5 Suppose convex subproblems (3.32) and (3.54) be solvable and satisfy

second order sufficient condition.

Theorem 3.2.6 ( [122]) Objective function f(µ) is bounded from below on D if

Assumptions 3.2.3, 3.2.4 and 3.2.5 holds.

Proof 3.2.7 (Proof of the Theorem 3.2.6) Suppose the LMI problem in (3.25) and (3.42)

is equivalent to

minimize γ

s. t. C(µ)− sI ≤ ϵI

(3.55)
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, where ϵ > 0 and s is the slack variable. In addition, they are the original problem of (3.32)

and (3.54). For nonlinear semidefinite problems of (3.32) and (3.54), initial conditions

are obtained from (3.25) and (3.42), respectively, which makes (3.32) and (3.54) strictly

feasible. Then Assumption 3.2.3 is satisfied. Second inequalities of (3.32) and (3.54)

problems are Schur PSD convex due to Lemma 3.1.5. Lemma 4.1.2 denotes the lower

bound of a PSD convex mapping and this is used on second inequalities of (3.32) and

(3.54). In addition f(µ) := γ is convex, therefore

Assumption 3.2.4 is satisfied. Finally, problems (3.32) and (3.54) are finite series of LMI

problems and due to Assumption 3.2.3 all of them are strictly feasible. This covers the

complete proof of the theorem for this problem.
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Algorithm 2 Algorithm to solve problem given in Section 3.2.2
1: Optimization 1: Find initial feasible solution for given A0 and for λK =

[1, 0, · · · , 0]

2: minimize γ

3: for γerror > ϵ do

4: Compute γtry = (γup − γlw)/2

5: Compute feasibility of problem given in (3.42) for γtry

6: if (3.42) is feasible then

7: γup = γtry

8: else

9: γlw = γtry

10: end if

11: Compute γerror

12: end for

13: End Optimization 1

14: Optimization 2: Start sLMI for given initial solutions to find optimal Ar

15: Define X t
K = X 0

K , γt = γ0, At = A0

16: i = 1

17: for µerr > ϵµ & i < imax do

18: if i=1 then

19: X i = X t
K , γi = γt, Ai = At

20: end if

21: Solve (3.54) using X i, γi, Ai to obtain X i+1, γi+1, Ai+1

22: µi = [vec(H)], calculate µerr = |µi − µi−1|

23: if µerr < ϵµ then

24: break

25: end if

26: i = i + 1

27: end for

28: End Optimization 2
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Algorithm 2 continued
1: Optimization 1: Find initial feasible solution for given A0 and for λK =

[1, 0, · · · , 0]

2: End Optimization 1

3: Optimization 2: Start sLMI for given initial solutions to find optimal Ar

4:

5: End Optimization 2

6: Optimization 3: Start LMI for given Ar. Optimize λK to minimize γ.

7: minimize γ

8: for γerror > ϵ do

9: Compute γtry = (γup − γlw)/2

10: Compute feasibility of problem given in (3.42) for γtry

11: if (3.42) is feasible then

12: γup = γtry

13: else

14: γlw = γtry

15: end if

16: Compute γerror

17: end for

18: End Optimization 3

Before moving to the numerical verifications, It should be noted that nominal and

robust synthesis procedures are similar. Step 3 of the Algorithm 2 is required for robust

synthesis due to the fact that λ cannot be optimized along with the adjacency matrix A and

decision variable X . Finally, difference between two algorithms is clearly illustrated in

Figure 3.5.
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Figure 3.5. Graphical illustration of Algorithm 1. .

3.3 Numerical Verification

Verification of the edge weight synthesis for nominal H∞ performance using convex

concave decomposition based sequential method is executed on Intel(R) Core i7-4720HQ

CPU @2.60 GHz 16GB RAM PC with Matlab 2019b software. Solutions are obtained

using MATLAB LMI toolbox. Dynamics of the individual agents are defined as LPV

model of short period dynamics of F16 Vista aircraft(see (3.56)) and cooperative system is

composed of three of these agents. LPV model for the agents [126] uses Mach number (M)

and altitude (h) as scheduling parameters.

Short period equations of motion is provided in (3.56) with first order approximation

of the actuator dynamics. xlng ∈ R2 denotes the states of the longitudinal dynamics, which

are angle of attack and pitch rate, α and q, respectively, while xact ∈ R denotes states of

the actuator dynamics. Elevator deflection is denoted as δe and dimensional stability and

control derivatives, which depends on altitude and Mach number (h,M) at trimmed level

flight, are denoted as Zα, Mα, Mq, Ze and Me. The derivatives are expressed as in (3.57).
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 ẋlng

ẋact

 =


Zα 1 20.2Ze

Mα Mq 20.2Me

0 0 −20.2


 xlng

xact

+


0

0

1

 δe

y =

[
1 0 0

] xlng

xact


(3.56)

Zα(h,M) = 0.22− 4.1× 10−7h− 2.6M

+ 5.15× 10−5Mh

Mα(h,M) = 17.1− 8.07× 10−4h− 68.4M

+ 3.31× 10−3Mh+ 56.2M2

− 10−3M2h

Mq(h,M) = − 0.228 + 7.06× 10−6h− 2.12M

+ 4.86× 10−5Mh

Zδe(h,M) = − 1.38× 10−3 + 8.75× 10−8h

− 0.34M + 7.98× 10−6Mh

Mδe(h,M) = − 8.16 + 1.73× 10−4h+ 40.6M

− 8.96× 10−4Mh− 99.3M2

+ 2.42× 10−3M2h

(3.57)

It should be noted that Agents 1, 2 and 3 are individually unstable and controllers

K1 = [−0.7445, − 1.3156, 6.8232]

K2 = [−0.7818− 1.3827, 7.1276]

K3 = [−0.8174− 1.4469, 7.4156]

(3.58)

are used to make these agents stable, respectively.
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3.3.1 Verification of Adjacency Synthesis for Nominal H∞ Performance

For nominal synthesis varying parameters are selected as h = 1000 ft andM = 0.35.

The agents are collected as a single group of agents in a block diagonal fashion such that

S = diag{Gi}Ni=1. Then these agents are connected to each other with an adjacency

matrix, A, which is defined as a function of a free scalar variable a and this is provided

in (3.59). a is contained in an interval defined as a = [0, 1]. This interval is selected

arbitrarily without violating the fact that edge weight aij is 0 ≤ aij ≤ 1. Using the system

S and the adjacency matrix A(a), a MAS H is created as described as in (6.23).

A(a) =


0 a (1− a)

a 0 (1− a)

(1− a) a 0

 (3.59)

Verification of the method of synthesizing adjacency weights is performed by comparing

the results of sequential LMI approach against the results of conventional calculation of γ

over the entire range of a. For this reason, MAS (H) is calculated for a range of a value

over its prescribed range with increments of ∆a = 0.1 and then γ is calculated for every

single MAS using the optimization defined in (3.25). Collection of these results projects

the behaviour of the γ of the MAS with the change in a and they are provided in Figure 3.6.

In this figure, red line shows value of H∞ metric γ of the system.

After γ with respect to a is calculated as a benchmark, sequential LMI approach is

applied to a MAS created with S and A0 for a0 = 0.3. This results in a A0 as provided in

(3.60).
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Figure 3.6. Nominal Anom(a) synthesis results are h = 1000 ft and M = 0.35..

A0 =


0 0.3 0.7

0.3 0 0.7

0.7 0.3 0

 (3.60)

For initial A0, initial solutions for X 0 and γ0 are calculated using the optimization

described in (3.25) and γ0 is calculated to be γ0 = 1.0874, which is illustrated with a

magenta diamond in Figure 3.6.

Set of initial solutions are then supplied to the sequential LMI approach as existing

solutions, which are plugged into the variables that has the superscript {·}t. For the first
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iteration existing solution is the initial solution and for consequent steps existing solution

is the result of the optimization described in (3.32) obtained in the previous step. Starting

from the initial solution, a converging set of solutions are calculated iteratively until the

termination criteria is satisfied, which is ∥{γ}t − {γ}∥ < 0.001. γ values obtained in this

phase are illustrated with green squares and final value is represented with a red diamond

in Figure 3.6.

After the iterations γ converges to its minimum, which is γ = 0.832 and a converges

to a = 0.491. Resulting adjacency matrix is denoted as An and provided in (3.61).

An =


0 0.491 0.509

0.491 0 0.509

0.509 0.491 0

 (3.61)

3.3.2 Verification of Robust Adjacency Matrix Synthesis with IQCs

Identical MAS with three vehicles are introduced an uncertainty channel w1 − z1

as given in Section 3.2.2. To inject effects of uncertainty, extended system is constructed.

This extended system is graphically given in Figure 3.3. Its state space representation

is denoted as HE,K and given in (3.37). Interval for a is contained in the same interval

defined previously. IQC multipliers Π1 and Π2 are given in (3.62) to ensure ∥∆∥ ≤ 1 and

monotonically odd non-linearities are modelled, where H(jω) = (jω + 1)−1.

Π1 =

 1 0

0 −1


Π2 =

 0 1 +H(jω)

1 +H(−jω) −2(1 +Re(H(jω)))


(3.62)
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If the multipliers are partitioned as in (3.19), then an enlarged multiplier is as given

in (3.63), where N and nz are the number of agents and dimension of the output vector z

of each vehicle, which is 1 for this work.

Π :=

 diag{Π11}Nnz1 diag{Π12}Nnz1

diag{Π21}Nnz1 diag{Π22}Nnz1

 (3.63)

Once the uncertain MAS is set, the same numerical verification procedure is conducted

for the robust synthesis case. First, a γ mapping for the entire range of α is calculated. The

range of a is given as a = [0, 1] with increments of ∆a = 0.1. Then the mapping for γ

is calculated using optimization of γ with LMI constraints given in (3.42). The results for

these calculations are illustrated in Figure 3.7 with red crosses. It should be noted that in

these calculations λ = [1, 0]. Then steps of Algorithm 2 is followed. Magenta diamond

in Figure 3.7 shows the initial γ0 that is calculated along with the X 0 for A0 given in (3.60).

These results satisfy the Assumption 3.2.3. Then Step 2 of the algorithm, which is the sLMI

method for robust synthesis given in (3.54), is conducted. The sequential optimization

reveals results given with green squares in Figure 3.7. Finally, Step 3 of the algorithm

is run for optimization of the λ to reveal the upper bound for γ. In this step, γfinal (red

diamond in Figure 3.7) is obtained for optimized λ denoted as λopt. To illustrate the effect

of the final step, a final mapping for γ for optimized λ is plotted in Figure 3.7 with blue

diamonds. Numerical values for these results are λopt = [17.029 42.073], γfinal = 0.812

and aopt = 0.4816.

Another numerical verification test is designed to show how robust adjacency matrix

affects the time response of the MAS. To do that, cooperative systems are created as

provided in Figure 3.8 using nominal and robust adjacency matrices A0 and Ar, respectively.

Here topology of the adjacency matrices are kept same. For time response comparison, the

95



0 0.2 0.4 0.6 0.8 1

a

0

0.5

1

1.5

2

2.5

3

3.5
 w.r.t. a for 

0

 w.r.t. a for 
opt

0
, =

0

t

final
, =

opt

Figure 3.7. Robust A(α) synthesis results at h = 1000 ft and M = 0.35. .

uncertainty ∆i is created such that wT
1 =

[
wT

1,1, w
T
1,2, w

T
1,3

]T and zT1 =
[
zT1,1, z

T
1,2, z

T
1,3

]T
are mapped as given in (3.64), where ζ > 0 and tset,i|N=3

i=1 = {1, 1, 1} seconds.

w1,i = ∆i(z1,i)

w1,i = δ(t− tset,i) · z1,i

δ(t− tset,i) =


1 if t ≥ tset,i,

t− tset,i < t < tset,i + ζ

0 otherwise

(3.64)
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Figure 3.8. Graphical representation of the MAS for time response comparison of MAS
with A0 and Ar ..

Time response of the MAS with A0 and Ar are provided in Figure 3.9. ”Initial MAS”

and ”Robust MAS” denotes MAS with A0 and Ar, respectively. Gi are the agents. As it is

clearly seen, ”Robust MAS” (black color coded in the figure) shows a better performance

in terms of peak values and rejection of the change in inflow conditions in terms of α

A final analysis that is done for the LPV MAS with developed method is to find

robustH∞ metric over the flight envelope of h = [1000, · · · , 10000] with 1000 ft increments

and M = [0.5, 0.6, 0.7]. It should be noted that, (3.56) are trimmed for a larger flight

envelope and this analysis can be extended throughout the entire envelope. During this

analysis, agent dynamics, controllers and adjacency matrix topology is kept same as in

3.3.1 and 3.3.2. The method used for this analysis is the robust synthesis method that as

is defined in 3.2.2. The strategy followed here is to provide an initial A(a = 0.3) for each

grid point in the flight envelope and find optimal a and γ. The results for this method is

illustrated in Figure 3.10, where results are partitioned into two subplots that are titled as

H∞ Mapping and a Mapping. In H∞ Mapping, areas color coded with blue represents

higher robustness while yellow represents lower robustness for the MAS. In a Mapping,

areas color coded with blue represents lower a while yellow represents higher a for the

A(a). H∞ Mapping reveals that MAS has better H∞ performance as it operates at lower
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Figure 3.9. Time response comparison of A0 and Ar(α) for described uncertainty in (3.64)
..

altitude with higher air speed. The performance drops as the MAS operates at higher

altitude and lower air speed. It should be noted that this performance characteristic is not

only related to the altitude and air speed but also related to the a Mapping as this is a

product of the robust synthesis methodology along with the a Mapping. When a Mapping

is investigated for previously described H∞ Mapping, it can be seen that a ranges from

0.36 to 0.385.
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Figure 3.10. γ(h,M) and a(h,M) mapping for the LPV MAS using the method provided
in 3.2.2 ..

3.4 Conclusions

This paper focuses on designing a LPV MAS system by finding the optimal values for

edge weights in terms of enhancing H∞ performance criteria under uncertainties. Without

considering the uncertainties, this is an optimization problem with a BMI constraint, and

in this paper it is converted to LMI optimization problem and solved in an iterative fashion

using sequential LMI approach with convex-concave decomposition. Then the methodology

is extended to include valid time domain IQCs as described in 3.3.2. By this way, sLMI

method is extended to be used for robust edge weight synthesis for LPV MAS.

This is illustrated on a cooperative system with three F16 Vista aircrafts. Given the

topology, edge weights of these systems are synthesized and final results are represented.

These results reveal following key conclusions.

1. As shown in in Figure 3.6 and Figure 3.7, synthesized adjacency matrices provide

optimal γ values in terms of H∞ performance for nominal and uncertain MAS.

Agents of these systems have slightly different dynamics due to difference in controllers
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K1, K2 and K3. For the MAS, optimal γ and a values calculated to be similar,

however, this result is not necessarily true as explained in the next item.

2. The MAS with the Ar is compared to the one with A0 in time response comparison

plot illustrated in Figure 3.9. The disturbance is given in terms of change in inflow

conditions as formalized in (3.64). This plot proves that, edge weight synthesis

allows improved robust performance without providing cooperative controllers.

3. Finally, an a(h,M) mapping for LPV MAS is provided for the entire flight envelope

of the F16 Vista longitudinal dynamics.
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Chapter 4

Distributed H∞ Edge Weight Synthesis for Cooperative Systems Using Layered

Successive Linearization and Sequential Optimization

4.1 Preliminaries

Let R and R++ denote real and positive real numbers, respectively. R+ be real

number that is equal or greater than 0. Similarly, R−− and R− represent negative and non-

positive real numbers, respectively. Sp denotes symmetric matrix of size p. Kij represents

element in the ith row jth column of a matrix K.Matrix inequality conditions are defined

with ≥ and ≤, respectively. A matrix K = diag{·}, K = col{·} represent block diagonal

and column concatenation of the arguments within diag{·} and col{·}. FL and FU stands

for lower and upper linear fractional transformation (LFT).

4.1.1 Lemmas and Definitions

Lemma 4.1.1 [121] A matrix valued mapping K(µ) is psd-convex on a convex subset C

if and only if rTG(µ)r is convex on C. Proof is provided in [121].

Lemma 4.1.2 [122] A matrix valued mapping K(µ) is psd-convex on a convex subset C

if and only if inequality in (4.1) holds for all µ and β. Proof is provided in [122].

K(β)−K(µ) ≥ DK(µ)(β − µ) (4.1)
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Definition 4.1.1 [121, 122] Derivative of the mapping K(µ) at µ is a linear mapping

DK(µ) from Rl to Rp×p that is defined as

DK(µ)h :=
m∑
i=1

hi
∂K

∂µi
(µ), ∀h ∈ Rl. (4.2)

where h is a real valued function on µ.

Definition 4.1.2 [122] A matrix-valued mapping F : Rl → Sp is denoted to be psd-

convex concave mapping if F = K1 −K2, such that K1 and K2 are psd-convex.

4.1.2 Underlying Graph Structure

The interaction/communication among agents in the cooperative systems are described

by Graph G = (N , E), which consists of node set N and edge set E [128]. Edge set

E ⊂ N × N is given between nodes i ∈ N and j ∈ N such that (j, i) ∈ E denotes node

i receives information from j. Adjacency matrix1 Υ = [υij] ⊗ Inwj ∈ RN ·nwi×N ·nwi of G

is composed of weighting scalars υ, where υ quantifies the strength of the connection from

node j to node i. N is the number agents in the cooperative system (CS). Formally, Υij is

described as in the following equation.

Υij =


υ > 0, j ̸= i, (j, i) ∈ E

υ = 0, otherwise

(4.3)

4.1.3 Construction of the Lumped CS

Construction of CS is described starting from agents, which are denoted as iG for

i = [1, · · · , N ]. The state space definition of iG is given as in (4.4), where ix ∈ Rnxi ,

iw1 ∈ Rnw1i , iw ∈ Rnwi , iz1 ∈ Rnz1i and iz ∈ Rnzi . Agents share output information over

1Shared signal sizes denoted as nwi and nzi for all i are assumed to be equal.
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the input - output ports denoted as iw − iz such that w = Υz. Signals over this port is

denoted as spatial signals. Channel through ports iw1 − iz1 is the performance channel.


iẋ

iz1

iz

 =


iA iB1

iB

iC1
iD1

iE1

iC iF1 0




ix

iw1

iw

 (4.4)

A system G is created that represents a group of agents, which is simply described as

G = diag{iG}Ni=1 and given in (4.5), where x ∈ Rnx , w1 ∈ Rnw1 , w ∈ Rnw , z1 ∈ Rnz1

and z ∈ Rnz . Here nx = N · nxi and rest of the signal sizes are calculated likewise.


ẋ

z1

z

 =


A B1 B

C1 D1 E1

C F1 0




x

w1

w

 (4.5)

A cooperative system, H , can be constructed using Υ to connect vehicles to each

other as represented by lower LFT such that H = FL(G,Υ). The state space representation

of H is provided in (4.6).

 A B1

C1 D1

 =

 A+BΥC B1 +BΥF1

C1 +E1ΥC D1 +E1ΥF1

 (4.6)

Definition 4.1.3 (Dissipativity [129]) W being input space, Z being output space and X

being state space, let P : W × Z → R be a supply function. A system G with supply

function P is dissipative if there exists a non-negative storage function V : X → R for

admissible trajectories of w, z and x, such that

V (x(t0)) +

∫ t1

t0

P (w(t), z(t))dt ≥ V (x(t1)), ∀ t0 ≤ t1 (4.7)

Considering the H∞ performance, a quadratic supply function is known to be given

by bounded real lemma [55, 130] that is given as in (4.8) for the system iG.
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iΨ =

 iz1

iw1


T  − 1

γ2
I 0

0 I


 iz1

iw1

 (4.8)

A general quadratic supply function denoted as ijΦ can be given as in (4.9) to stand for

the supply rate carried on edge (j, i). Then interconnections for a cooperative system can be

imposed using i
jΦ as provided in the literature [55, 75]. Spatial signals are mapped within

CS by Υ, and in (4.9), Υ is embedded in the correlation matrix, ijY ∈ Rnzi+nwi×nzi+nwi .

This definition basically represents supply rate to agent iG due to interconnection with jG.

To describe problem efficiently, let input iw and output iz be the collection of inputs and

outputs between iG and jG such that iw := col{ijw}j and iz := col{ijz}j , respectively.

Then a general supply function can be written for agent iG as given in (4.10).

i
jΦ =

 i
jw

i
jz


T

i
jY

 i
jw

i
jz


i
jY =

 i
jY11

i
jY12

i
jY21

i
jY22


(4.9)

iΦ =
N∑
j=1

 i
jw

i
jz


T

i
jY

 i
jw

i
jz


=

 iw

iz


T

iZ

 iw

iz


iZ =

 iZ11
iZ12

iZT
12

iZ22



(4.10)

, where iZ11 ∈ Rnwi·N×nwi·N , iZ12 ∈ Rnwi·N×nzi·N and iZ22 ∈ Rnwi·N×nzi·N .

Similar to (4.9), jiΦ represents the supply function of agent jG and given in (4.11) as

follows,
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j
iΦ =

 j
iw

j
iz


T

j
iY

 j
iw

j
iz

 (4.11)

Definition 4.1.4 (Neutrality [75]) Interconnections are considered to be neutral for neighboring

dissipative agents with respect to supply functions as defined in the form of (4.9) amd

(4.11), if (4.12) is satisfied along with the condition in (4.13), where and i
jΦ is the supply

function of agent iG for i, j = [1, · · · , N ] , i ̸= j.

 i
jz

i
jw

 =

 j
iw

j
iz

 ∀ i, j, ∀ t ≥ 0 (4.12)

i
jΦ + j

iΦ = 0, ∀ i = [1, · · · , N ] (4.13)

4.1.4 Feasibility Condition for H∞ Performance of Lumped CS

Assuming system given in (4.6) for a given Υ is well-posed and asymptotically

stable, then induced L2 norm of the system is given by the scalar γ and ∥H∥2 < γ for

all inputs w1 ∈ ℓnw1
2 [55]. This equivalently means that matrix inequalities (MIs) in (4.14)
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holds true. Pre- and post-multiplying the second inequality in (4.14) with
[
xT wT

1

]
and[

xT wT
1

]T
, yields γ2∥w1∥22 − ∥z1∥22 ≤ 0.

X ≥ 0 X

0

[
A B1

]
+

 AT

BT
1

[
X 0

]

+
1

γ2

 CT1

DT
1

[
C1 D1

]
+

 0 0

0 −I

 ≤ 0

(4.14)

Second inequality given in (4.14) depends non-linearly on matrix variables X and Υ.

This non-linear matrix inequality falls into the class of bilinear matrix inequalities (BMIs).

Linearization and solution to this BMI can be obtained by multiple methods, where one

of them is given as in [123]. Drawback of lumped methods are computational burden to

calculate feasible solutions to X and Υ. Number of unknowns to be solved for this set

of MIs is given by (N · nxi(1 + N · nxi)/2) + nα, where nα ∈ N denotes the number of

independent variables used to define adjacency matrix to be synthesized. As clearly seen,

state size of each agent and number of agents in the system quadratically increases the

number of unknowns to be solved.

4.2 Problem Formulation

Interconnections in distributed CS model are not defined algebraically but rather

they are showing themselves as a supply function in the feasibility analysis. Based on the

method proposed in [75], CS given in (4.6) can also be described in a distributed fashion

and this is realized by imposing constraints on the spatial signal channel of the agents.

106



Unlike in lumped CS, constraints cannot reveal themselves in the state space representation,

however, they are introduced as supply functions to the storage function of the CS. This is

done by introducing these constraints in the MIs.

Distributed CS model relies on an interconnection constraint on spatial signal ports

of each agent. This constraint is characterized by a supply function given as in (4.7). The

relevance of the supply functions to synthesize edge weight is described in the Definitions

4.1.3 and 4.1.4. However, edge weights in (4.10) are not explicit. Investigating CS, which

is given in Figure 4.1, shows that iz is scaled by νji and this scaling can be revealed as in

(4.15) based on (4.10) by braking down the segments of iz into the out degrees of agent

iG, which are i
jz and shared with agents jGN

j=1, j ̸=i.

Figure 4.1. Interconnection of agents..

iΦ =

 iw

iz


T



I 0

0 Iν1i
...

...

0 IνNi



T  iZ11
iZ12

iZT
12

iZ22




I 0

0 Iν1i
...

...

0 IνNi


 iw

iz

 (4.15)

Using iΨ and iΦ, H∞ performance of γ for iG in a CS with N agents and given Υ

is equivalent to the statements given in (4.16) (Theorem 1 in [55]).
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iX ≥ 0

iMT
1
iM2

iM1 ≤ 0

(4.16)

Given the decision variables γ > 0 ∈ R, iX ≥ 0 ∈ Snxi , iZ11, iZ12, iZ21 = iZT
12,

iZ22 and νji ∈ R for i, j = [1, · · · , N ] , j ̸= i, matrix valued functions iM1(νji) and

M2(γ,
iX, iZ) are given in (4.17). For brevity, decision variables of matrix valued function

representations will be omitted in the notation throughout the paper.

iM1 =

 iM1,1

iM1,2

 =



Innxi 0 0

iA iB1 row{iB}Ni=1

0 Inw1i
0

iC1
iD1 row{iE1}Ni=1

0 0 Inw

ν1i
iC ν1i

iF1 0

...
...

...

νNi
iC νNi

iF1 0


iM2 =

 iM2,1 0

0 iM2,2



=



0 iX 0 0 0 0

iX 0 0 0 0 0

0 0 −I 0 0 0

0 0 0 1
γ2
I 0 0

0 0 0 0 iZ11
iZ12

0 0 0 0 iZ21
iZ22



(4.17)

Set of inequalities given in (4.16) can be partitioned into linear and non-linear parts

of the form given in (4.18), where partitions iT1 and iT2 are provided explicitly in (4.19).
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iT1 +
iT2 ≤ 0 (4.18)

iT1 :=
iMT

1,1
iM2,1

iM1,1

iT2 :=
iMT

1,2
iM2,2

iM1,2

(4.19)

Thus, the distributed nominal H∞ edge weight synthesis problem can be written as in

(4.20), where iΦ = iT2.

minimize iγ

s. t. iX ≥ 0

iT1 +
iT2 ≤ 0

(4.20)

By looking at (4.19) and (4.20), it is seen that one of the resulting MIs are non-linear and

synthesis of the edge weights is a non-linear problem. Section 4.3 provides a solution to

the problem given in (4.20).

4.3 Methodology

Solution to the problem given in (4.20) relies on recomposition of the CS as illustrated

in Figure 4.2, where all the mapping due to edge weights are substituted into a new system

denoted as cG. As a result, a new CS is constructed, where agents iG are talking only with

cG with new edge weights denoted as νic such that νic = νci = 1, while all the mapping

that is related to the original mapping is kept within cG.

Signal definitions and formulation given in previous sections are revisited based on

this new mapping and this reveals itself as j = c. As a result of this, partitions of iM1 and

iM2 in (4.17) for i = 1, · · · , N simplifies as given in (4.21), which makes a quadratic term

once multiplied.
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Figure 4.2. New interpretation of the cooperative system..

iM1,2 =

 0 0 Inwi

iC iF1 0


iM2,22 =

 i
cY11

i
cY12

i
cY21

i
cY22


(4.21)

There is an additional agent in the CS in the new composition and that is cG, where

partitions of iM1 and iM2 in (4.17) becomes as given in (4.22).
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cM1,1 =



0 0 0

0 0 0

0 Inw 0

0 Υ 0


cM1,2 =

 0 0 Inw

0 0 Υ



cM2,1 =



0 0 0 0

0 0 0 0

0 0 −I 0

0 0 0 1
γ2
I


cM2,2 =

 cZ11
cZ12

cZ21
cZ22



(4.22)

, where
cZ11 = diag{ciY11}Ni=1,

c
iY11 = −i

cY22

cZ12 = diag{ciY12}Ni=1,
c
iY12 = −i

cY
T
12

cZ22 = diag{ciY22}Ni=1,
c
iY22 = −i

cY11

(4.23)

Based on the redefined terms given in (4.21, 4.22 and 4.23), inequality given in (4.18)

are written for i and c. Then following lemma can be proposed.

Lemma 4.3.1 Assuming iG and cG maintain neutrality as defined in Definition 4.1.4,

let iG for i = 1, · · · , N be dissipative agents with state space realization of (4.4). CS

consisting of iG have a robust performance of γ for input icw ∈ ℓnwi2 for i = [1, · · · , N ]

if there exists iX ∈ Snxi , i
cY11 ∈ Snwi , i

cY22 ∈ Snwi , i
cY12 ∈ Snwis , cZ11 ∈ SN ·nwi ,

cZ12 ∈ SN ·nwi
s and cZ22 ∈ SN ·nwi such that
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iX̂ ≥ 0

iT1 +
iT2 ≤ 0

cT1 +
cT2 ≤ 0

(4.24)

It should be noted that, second inequality in (4.24) is quadratic, which can be linearized,

however, third inequality is non-linear. Assuming there is a valid linear approximation to

and cT2 that satisfies inequalities in (4.24), Theorem 4.3.2 can be written. Proof to Lemma

4.3.1 will be provided along with the proof of Theorem 4.3.2 in proof.

Theorem 4.3.2 Let iG for i = 1, · · · , N be dissipative agents with state space realization

of (4.4). The following two statements are valid:

1. Assuming agents maintain neutrality as defined in Definition 4.1.4, CS consisting of

iG achieves induced L2 gain performance of γ∗ for input iw1 ∈ ℓN ·nw1i
2 for i =

[1, · · · , N ] if there exist matrices iX = iXT , ijY11, ijY12, ijY22 and νji such that

LMIs in (4.20) is satisfied for i, j = [1, · · · , N ].

2. CS consisting of iG and cG achieves induced L2 gain performance of γ such that

γ2 := γ∗2 + α2 if Lemma 4.3.1 is satisfied.

Proof. Second inequality in (4.20) is pre- and post-multiplied with state-input vector

of
[
ixT iwT

1
iwT

]T . Summing these inequalities over i yields the results as in (4.25). It

should be noted that iw is as given in (4.10).

N∑
i=1

iV̇ +
N∑
i=1

(
1

γ2
izT1

iz1 − iwT
1
iw1) +

N∑
i=1

iΦ ≤ 0. (4.25)
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, where
iV̇ = ixT (iX iA+ iAT iX)ix +

ixT iX iB1
iw1 + ixT iX iB iw +

iwT iBT iX ix + iwT
1
iBT

1
iX ix

iΦ = izT iZ22
iz + izT iZT

12
iw +

iwT iZ12
iz + iwT iZ11

iw

(4.26)

Integrating (4.25) along the admissible trajectory for
[
ix iwT

1
iwT

]T from time t = 0

to t = T and taking
∑N

i=1
iΦ = 0 yields

V ({ix(T )}Ni=1)−V ({ix(0)}Ni=1)+
1

γ2

∫ T

0

N∑
i=1

izT1
iz1dt−

∫ T

0

N∑
i=1

iwT
1
iw1dt ≤ 0 (4.27)

Same procedure is applied to the second and third inequalities of (4.24) for i =

[1, · · · , N ] and following results are obtained. This time column matrix that is being pre-

and post-multiplied with the second and third inequalities are
[
ixT iwT

1
i
cw

T
]T for i =

[1, · · · , N ] and
[
0 cwT

1
cwT

]T , respectively. Summation of the resulting inequalities give

(4.28).

N∑
i=1

i
c
˙̂
V +

N∑
i=1

(
1

γ2
izT1

iz1 − iwT
1
iw1) +

N∑
i=1

i
cΦ

+ cΦ + (
1

γ2
czT1

cz1 − cwT
1
cw1) ≤ 0

(4.28)
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, where
i
c
˙̂
V = ixT (iX̂ iA+ iAT iX̂)ix +

ixT iX̂ iB1
iw1 + ixT iX̂ iB iw +

iwT iBT iX̂ ix + iwT
1
iBT

1
iX̂ ix

i
cΦ = i

cz
T i
cY22

i
cz + i

cz
T i
cY

T
12

i
cw +

i
cw

T i
cY12

i
cz + i

cw
T i
cY11

i
cw

cΦ = czT cZ22
cz + czT cZT

12
cw +

cwT cZ12
cz + cwT cZ11

cw

(4.29)

∑N
i=1

i
cΦ + cΦ = 0 due to the fact that interconnections are neutral, which is

dictated to the inequality by relationship given in (4.23).

N∑
i=1

i ˙̂V +
N∑
i=1

(
1

γ2
izT1

iz1 − iwT
1
iw1) +

(
1

γ2
czT1

cz1 − cwT
1
cw1) ≤ 0

(4.30)

Integrating (4.30) along the admissible trajectory for
[
ixT iwT

1
i
cw

T
]T for i = [1, · · · , N ]

and
[
0 cwT

1
cwT

]T from time t = 0 to t = T yields V̂ ({ix(T )}Ni=1) − V̂ ({ix(0)}Ni=1) +

1
γ2

∫ T
0

∑N
i=1

izT1
iz1dt−

∫ T
0

∑N
i=1

iwT
1
iw1dt+

1
γ2

∫ T
0
czT1

cz1dt−
∫ T
0
cwT

1
cw1dt ≤ 0.

To prove H∞ performance, assume ix(0) = 0 and ix(T ) ̸= 0. Let iw1 ̸= 0

and cw1 ̸= 0 concatenated as w1 and let iz1 and cz1 concatenated as z1, where (4.31)

provides to formal definitions to w1 and z1, respectively.

w1 =

 col{iw1}Ni=1

cw1

 =

 col{iw1}Ni=1

col{icz}Ni=1


z1 =

 col{iz1}Ni=1

cz1

 =

 col{iz1}Ni=1

Υcol{icz}Ni=1


(4.31)

Then from (4.30 and 4.31) we get
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∥z1∥22
∥w1∥22

≤ γ2 (4.32)

for the CS an this completes the proof for Lemma 4.3.1.

Due to triangle inequality [131], w1 and z1 are upper bounded such that ∥col{iw1}Ni=1∥22+

∥cw1∥22 ≥ ∥w1∥22 and ∥col{iz1}Ni=1∥22 + ∥cz1∥22 ≥ ∥z1∥22. Then rewrite (4.32) as in (4.33),

where w1 and z1 are replaced by their upper bounds.

∥z1∥22
∥w1∥22

:=
∥col{iz1}Ni=1∥22 + ∥Υcol{icz}Ni=1∥22
∥col{iw1}Ni=1∥22 + ∥col{icz}Ni=1∥22

(4.33)

Recall ∥Υcol{icz}Ni=1∥22 ≤ ∥Υ∥22∥col{icz}Ni=1∥22 due to Cauchy-Schwartz inequality

[131] and let Υ be a weighted and fully populated adjacency matrix, where ∥Υ∥22 ≥ 1.

Then,

∥col{iz1}Ni=1∥22 + ∥Υcol{icz}Ni=1∥
∥col{iw1}Ni=1∥22 + ∥col{icz}Ni=1∥

≤

∥col{iz1}Ni=1∥22 + ∥Υ∥22∥col{icz}Ni=1∥
∥col{iw1}Ni=1∥22 + ∥col{icz}Ni=1∥

≤

∥col{iz1}Ni=1∥22
∥col{iw1}Ni=1∥22

+ α2

(4.34)

,where

α2 ≤ ∥Υ∥22
∥col{iz1}Ni=1∥22
∥col{iw1}Ni=1∥22

≤ γ∗2
(4.35)

Second inequality in (4.35) is the 1st result of Theorem 4.3.2, therefore following

γ∗2 + α2 can be related to the performance of the modified system as given in the (4.36)

whose inputs and outputs are denoted as w1 and z1, respectively. This completes the proof

of Theorem 4.3.2.

∥z1∥22
∥w1∥22

≤ γ∗2 + α2 (4.36)
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cT2 is composed of two classes of non-linearities, which are explicitly revealed in

(4.37) and denoted as cT2,1 and cT2,2, which are due to the partitions of diagonal and off-

diagonal blocks of cZ.

cT2 :=
cT2,1 +

cT2,2

cT2,1 =
cMT

1,2

 0 cZ12

cZT
12 0

 cM1,2

cT2,2 =
cMT

1,2

 cZ11 0

0 cZ22

 cM1,2

(4.37)

Non-linearity due to cT2,1 is a bilinear matrix function of Υ and cZ12.

Linear Approximation for cT2,1: To address non-linearity in cT2,1, it is convenient to

partition cM1,2 :=

[
cMT

1,2w
cMT

1,2z

]T
such that

cM1,2w =

[
0 0 Inw

]
cM1,2z =

[
0 0 Υ

] (4.38)

.

Then cT2,1 can be rewritten as in (4.39), which displays a convex concave pattern as

defined in Definition 4.1.2 ,where Q, Q1, Q2 ≥ 0.
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iT2,1 :=
iT2,1(Q1)− iT2,1(Q2) = iM1,2w

iM1,2z


T  0 iZ12

iZT
12 0


 iM1,2w

iM1,2z

 =

 iZT
12
iM1,2w

iM1,2z


T  0 I

I 0


 iZT

12
iM1,2w

iM1,2z

 =

 iZT
12
iM1,2w

iM1,2z


T

V (Q1 −Q2)V
T

 iZT
12
iM1,2w

iM1,2z



(4.39)

The decomposition for Q, which is given in (4.40) uses generalized left eigenvectors

defined as V and eigenvalues that are diagonally blocked in λ := diag(−I, I) with

respective sizes [123]. When the diagonal eigenvalues are separated into two matrices

while securing the dimension of the original matrix, equation of (4.40) is obtained.It should

be noted that, convex-concave decomposition is not unique and depending on the selection

curvature can shift between convex and concave partitions, as denoted in [122].

Q = V (Q1 −Q2)V
T = V (

 0 0

0 I

−

 I 0

0 0

)V T (4.40)

If cT2,1(Q2) partition of the decomposition provided in (4.39) is linearized as given

in (4.41) and denoted as L{cT2,1(Q2)}, then cT2,1(Q2) ≥ L{cT2,1(Q2)}k therefore cT2,1 ≥
cT2,1(Q1)−L{L{cT2,1(Q2)}k} is true due to due to Lemma 4.1.1 and Lemma 4.1.2, where

k in L{·}k represents the linearization around existing solution. {·}k in (4.41) represents

existing solutions of the decision variables.

117



L{cT2,1(Q2)}k =

 cZk
12
T cM k

1,2w

cM k
1,2z


T

Q2

 cZT
12
cM1,2w

cM1,2z

+

 cZT
12
cM1,2w

cM1,2z


T

Q2

 cZk
12
T cM k

1,2w

cM k
1,2z

−

 cZk
12
T cM k

1,2w

cM k
1,2z


T

Q2

 cZk
12
T cM k

1,2w

cM k
1,2z



(4.41)

Linear Approximation for cT2,2: Let L{cT2,2} denote linear approximation of cT2,2.

cZ11 and cZ22 dictate in and out supply rate to cG. Therefore an intuitive selection for

cZ11 and cZ22 with a priori definiteness assumption can be cZ11 = cZT
11 ≤ 0 and cZ22 =

iZT
22 ≥ 0, respectively.

Let ηγ := 1
γ2
Inz and ϵ := {ηγ}

γoptimal
γ=γ0 , where γ0 ≥ γ ≥ γoptimal ≥ 0. Then ϵ is

non-decreasing sequence and cZ22 ≥ lim supγ→γoptimal
ηγ ≥ 0. Then cT2,2 ≥ L{cT2,2},

therefore L{cT2,2} as given in (4.42) along with L{cT2,2} as given in (4.41), results in

L{cT2,2} := cMT
1,2

 cZ̃11 0

0 cZ̃22

 cM1,2 (4.42)

, where cZ̃11 = cZ11 and cZ̃22 = 1
cγ2

Inz . This represents successive linearization as

provided in [132].

Finally, linear approximation L{cT2} is provided in (4.43) will satisfy inequality

given in (4.44) and with that problem given in (4.20) can be written as in (4.45).

L{cT2} = L{cT2,1}+ L{cT2,2} (4.43)

cT2 ≥ L{cT2,1}+ L{cT2,2} (4.44)
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Given the linear approximations L{iT2,1}, the distributed nominal H∞ edge weight

synthesis problem in (4.20) can be rewritten as given in (4.45). It should be noted that cT2

is linear when Υ is given, which is the 1st phase in the Algorithm 4.

minimize γ

s. t. iX ≥ 0

iT1 +
iT2 ≤ 0

cT1 + L{cT2} ≤ 0

(4.45)
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Algorithm 4 Distributed H∞ optimization algorithm
Require: Υ0

Ensure: Υ0 is within the relative interior [122].

Phase 1 - Finding relative interior

1: Solve (4.45) as a linear program since Υ0 is given.

2: Result: γ0, X0, iZ0, cZ0.

Phase 2 - Successive minimization

3: Letm be the iteration step of Phase 2 andmmax be the maximum number of iterations.

4: Set Υ → Υm=1, cZ0 → cZm=1

5: Define γm, γm to be lower and upper bound to γm. Define γm = (γm + γm)/2 and set

γm=1 = γ0 − E, γm=1 = γ0 + E, where E > 0 ∈ R.

6: loop 1: Successive Minimization

7: while m < mmax & γm − γm > tolerance do

8: Solve loop 2

9: if loop 2 is feasible then

10: Set γm+1 = γm

11: else

12: Set γm+1 = γm

13: end if

14: Set m = m+ 1

15: end while

16: end loop

17: loop 2: Sequential Optimization

18: Let k be iteration step of loop 2 and kmax be the maximum number of iterations.

19: Set Υk=1 = Υm, cZk=1 = cZm

20: while k < kmax & ∥Υk∥22 − ∥Υk−1∥22 > tolerance do

21: Solve (4.45) such that Υk, cZk are the current values(k=1) and Υ and cZ are

variables.

22: Set Υk+1 = Υ, cZk+1 = cZ of kth iteration.

23: Set k = k + 1

24: end while

25: Result: γkmax , Xkmax , iZkmax , cZkmax and Υkmax .

26: end loop
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4.4 Verification

Methodology described under Section 4.3, is verified using a CS of six vehicles.

Adjacency matrix for lumped and distributed cases are compared in terms of edge weights

Υ and the robust performance level given by γ. Simulations are executed on a PC with

Intel(R) Core(TM) i7-4720HQ CPU @2.6GHz, 16GB RAM running on Windows 10 OS

and MATLAB 2019b.

Dynamics of the agents are defined with the state space representation given in

(4.46).

iG =



0 2 0 0

−0.5 −3 1 1

1 0 0 0

0 1 1 0


(4.46)

Agents are connected to each other with an adjacency matrix, Υ, which is fully

populated such that edge weights νij for i, j = [1, · · · , N ] and i ̸= j are defined by a

uniformly distributed random number in the interval (0,1). Constructing edge weights in

this form makes row sum of Υ ≥ 0. Therefore before implementing the algorithm, a

weighted Υ is calculated. As a result, of that initial adjacency matrix is provided in (4.47).

Υ0 =



0 0.4546 0.2472 0.0530 0.1555 0.0897

0.1089 0 0.1705 0.2042 0.1772 0.3392

0.1571 0.2861 0 0.1934 0.2904 0.0730

0.2817 0.1204 0.2799 0 0.2896 0.0283

0.1091 0.0959 0.2859 0.3615 0 0.1475

0.3184 0.2755 0.0027 0.2456 0.1578 0


(4.47)
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Using (4.46) as iG, a CS of six agents (N = 6) is created. Solver starts from the

initial guess provided in (4.47).Υ0 being the initial adjacency matrix for the Algorithm

4, Υ∞ is synthesized and given in (4.48). Initial robustness of the CS is calculated to be

γ = 2.05 for Υ0. CS with Υ∞ on the other hand provide a robustness γ = 1.58, which

clearly represents an improvement in nominal H∞ performance. Algorithm 4 has a mean

calculation time of tµ = 53.1028s with a standard deviation of σ = 12.6443s for 100

runs, where Υ0 is fully populated and constructed from uniformly distributed random edge

weights every time. It should be noted that, topology is not synthesized and can be defined

arbitrarily.

Υ∞ =



0 0.9167 0.0431 0.0121 0.0124 0.0158

0.0117 0 0.0091 0.0404 0.0129 0.9259

0.0213 0.0935 0 0.0419 0.8313 0.0121

0.1156 0.0386 0.2211 0 0.6191 0.0056

0.0056 0.0138 0.5910 0.3791 0 0.0106

0.8617 0.0732 0.0000 0.0553 0.0097 0


(4.48)

Υ0 and Υ∞ are provided in Figure 4.3 with the black and red color code. In this

plot edge weights are provided, where thickness of edges are modified based on maximum

edge weight of each adjacency matrix and only provided to visualize intensity of the

edge νji among the edge set of regarding adjacency matrix. Verification runs show that,

adjacency matrices that resembles complete cycles are turned into directed path and cycles

by minimizing weights on certain edges almost zero. In the example given in Figure 4.3,

algorithm optimizes edge weights such that Agents 1, 2 and 6 and Agent 3, 4 and 5

become separate groups with high strength edge weights while edge weights between these

groups are weakened. The only considerable weighting exist between Agent 1 and Agent

4, Agent 6 and Agent 4 and Agent 2 and Agent 3.
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Figure 4.3. Comparison of the initial and synthesized adjacency matrices in a Graph plot.
Initial and synthesized adjacency matrices Υ0 and Υ∞ are provided in (4.47) and (4.48),
respectively..

The time performance of these agents are verified by injecting disturbances at different

nodes of a CS which is expected to have consensus. It should be noted that no controller

is assigned to this CS for tracking and CS is constructed using the lumped model given in

(4.6). The disturbances are calculated such that

i∆(t, iz1) =


kiz1, if t < iT1 <

iT2

kiz1, if t > iT2

(4.49)

, where k and k are defined as rectangular pulses with magnitude of -1 and 1 with duration

of 0.5 s. The visualization of i∆ are provided in Figure 4.4. As illustrated in Figure 4.4,
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perturbations are given until t = 9 s to every agent. Selection of k, k, iT1 and iT2 are

arbitrary.

For the agent dynamics given in (4.46) and i∆ CS system is constructed with Υ0

and Υ∞ and denoted as H0 and H∞.
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Figure 4.4. Inejcted disturbances i∆ to the performance channel through iw1..
The performance of H0 and H∞ are provided in Figure 4.5, where dashed red and solid

black lines illustrate iz1 of agents within H0 and H∞, respectively. Markers denoting each
agent are provided in the plot for further elaboration. Figure 4.5 illustrates that injected

disturbances are attenuated faster at every node in H∞.
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Figure 4.5. Initial and synthesized out-degrees of agent iG denoted as νji..

4.5 Conclusions

This paper focuses on finding the optimal values for edge weights in terms of enhancing

H∞ performance criteria of a CS in a distributed fashion. This problem is solved by

modeling communication media as a synthetic agent denoted as cG and making ideal

interconnections between original agents and this synthetic agent in [73]. By this way,

information on adjacency matrix is secured and distributed edge weight synthesis is executed

in a distributed fashion. Yet This work improves the deficiencies in original methodology

by minimizing the iZ22 definition by finding a supremum to it with a successively magnifying

quadratic term defined as γInz as given in linear approximation of cT2,2 in (4.42). Here, a

non-decreasing sequence is defined by γ which is being minimized. The off-diagonal terms

in iZ are given a linear approximation in linear approximation of cT2,1 and this relies on

convex-concave decomposition method. Finally, L{cT2,1} and L{cT2,2} are iterated in

different layers of the optimization, where L{cT2,1} is being optimized in loop 2, whose

steps are denoted with k, while L{cT2,2} is being optimized in loop 1, where γ is being

minimized.
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Chapter 5

Cooperative Model Predictive Control Strategy for Docking With Task Prioritization

5.1 Preliminaries

The notation of this work is as follows. s ∈ R, v ∈ Rnv and M ∈ Rnr×nc represent

arbitrary scalar, vector and matrix. FI and FB represent inertial and body frames, where

the expression of a vector for these frames is written as iv, i = I, B. Unit vectors in

orthonormal frames are denoted as u1 =

[
1 0 0

]T
, u2 =

[
0 1 0

]T
and u3 =[

0 0 1

]T
. Composite rotation matrix ICB ∈ SO(3) is written from FB to FI and

rotation sequence is depicted as z − y − x and associated Euler angles are denoted as

ψ, θ and ϕ. g = 9.81 m/s2 is the gravitational acceleration. col{·}Mm=1, row{·}Ml=1 and

diag{·}Mm=1 represents column, row and diagonal concatenation of the entity within the

parenthesis.

5.1.1 Quadrotor Dynamics

A 6 Degree of Freedom (DoF) rigid body dynamics with mass (mq) and moment of

inertia (Jq) express the dynamics of the quadcopter, as in (5.1). Model states are denoted

as xq =
[
pTq vTq θTq wT

q

]T
∈ R12, where pq = Ipq ∈ R3, vq = Ivq ∈ R3, θq ∈ R3

and wq = Bwq ∈ R3 are inertial position, inertial velocity, Euler angles and angular

velocity, respectively. Given the Euler angles rotation matrix for quadrotor is denoted as

ICq(θq) = ICq. Inputs of the system are denoted as uq =

[
fq tTq

]T
∈ R4, where

fq is the total thrust generated by the motors on FB and tq ∈ R3 is the column matrix of

moments generated on the body defined in FB. Eq is the mapping between wq and θ̇q such
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that wq = Eqθ̇q for predefined rotation sequence. Quadcopter properties are taken from

the work [133].

ẋq =



ṗq

v̇q

ėq

ẇq


= f(xq,uq)

=



vq

gu3 − (1/mq)ICqfqu3

E−1wq

J−1
q (−wq × Jqwq + tq)



(5.1)

5.1.2 Rover Dynamics

Dynamics of the rover is calculated with massmr and moment of inertia Jr assuming

that it runs on a flat surface and provided in (5.2). Based on this assumption, model

states are denoted as xr = [pr,x pr,y Ψr vr,x wr,z]
T , where pr,x and pr,y represents inertial

position on x− y plane, Ψr is the Euler angle about z axis, Bvr,x = vr,x is the horizontal

velocity of the rover and Bwr,z = wr,z is the angular velocity of the rover. Composite

rotation matrix for the is denoted as ICr = ICr(Ψr). Inputs to the system are denoted as

ur = [fr,1 fr,2]
T , which represents the traction forces applied on the surface by a set of

the wheel on the right and the left-hand side of the rover, respectively. mr is taken as 1 kg

and and Jr = diag{0.1} kg ·m2.
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ẋr =



ṗr,x

ṗr,y

Ψ̇r

v̇r,x

ẇr,z


= f(xr,ur)

=



uT1 ICrvr,xu1

uT2 ICrvr,xu1

wr,z

(1/mr)(fr,1 + fr,2)

J−1(r1 × fr,1 + r2 × fr,2)



(5.2)

5.1.3 Underlying Graph Structure

The communication among agents in the cooperative systems are described by Graph

G = (N , E), which consists of node set N and edge set E [134]. Edge set E ⊂ N × N

is given between nodes i ∈ N and j ∈ N such that (j, i) ∈ E denotes node i receives

information from j. Let nw be an arbitrary signal dimension, then adjacency matrix1 A =

[aij] ⊗ Inw ∈ RN ·nw×N ·nw of G is composed of weighting scalars aij , where aij quantifies

the strength of the connection from node j to node i. N is the number of agents in the

cooperative system (CS). Formally, Aij is described as in the following equation.

Aij =


aij > 0, j ̸= i, (j, i) ∈ E

aij = 0, otherwise

(5.3)

1Shared signal sizes among agents are assumed to be identical and equal to nw.
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5.2 Methodology

This section introduces a unified MPC strategy to maintain a docking approach

for long-range and a finer docking maneuver in short-range by accommodating a non-

linear and a linear MPC designed with edge weight information and task prioritization.

This section is divided into four sections where Non-linear MPC (NMPC), Linear MPC

(LMPC), cooperative task prioritization, and implementation of the control strategy is

described in subsections section 5.2.1, section 5.2.2, section 5.2.3 and section 5.2.4, respectively.

Introduced method can be applied on all of the agents as formulation only considers

local neighbor information therefore formulations will be provided for agent denoted as i,

which is defined by the states xi(t) ∈ Rnx , inputs ui(t) ∈ Rnu and outputs yi(t) ∈ Rny .

Given the states and inputs, non-linear dynamics of agent i are given in the form:

ẋi(t) = fi(xi(t), ui(t))

yi = hi(xi(t), ui(t))

(5.4)

Equation (5.5) provides the discrete linear representation of the agents’ dynamics.

This is obtained by linearizing about current state and input, which is denoted as (xi,c, ui,c)

and then by converting the continuous time system in discrete system using Euler discretization

(see [135]).

∆xi,k+1 = Ai∆xi,k +Bi∆ui,k

∆yi,k = Ci∆xi,k +Di∆ui,k

(5.5)

where k is the current sample such that, ∆xi,k = xi,k − xi,c and ∆ui,k = ui,k − ui,c.

In this work, we assumed full state information is shared among the agents. Therefore Ci

and Di matrices are assumed to be I and 0, respectively, with compatible sizes.
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5.2.1 Non-linear MPC Formulation

Equation (5.6) represents the non-linear problem that runs in NMPC where Li(xi,k, ui,k, xi,ref )

is the objective function, and Ceq(xi,k, ui,k) and Cineq(xi,k, ui,k) are equality and inequality

constraints, respectively. M in (5.6) denotes the prediction horizon for the NMPC.

minimize
xi,k,ui,k

M∑
k=1

Li(xi,k, ui,k, xi,ref )

s. t. ẋi(t)− fi(xi(t), ui(t)) = 0

Ceq(xi,k, ui,k) = 0

Cineq(xi,k, ui,k) ≤ 0

(5.6)

The objective function implemented in this work has the following quadratic form.

Li(xi,k, ui,k, xi,ref ) =

M∑
k=1

Li,tp(xi,ref , xi,k) + uTi,kRui,k + xTi,kQxi,k

(5.7)

where Q ∈ Rnx×nx and R ∈ Rnu×nu are square matrices. This objective function drives

system to achieve the cooperative task defined by Li,tp(xi,ref , xi,k), which brings a nuance

cooperativeness with task prioritization to the tracking and it is explained in section 5.2.3.

The equality and inequality constraints serve the following purposes. Ceq(xi,k, ui,k)

is introduced to ensure initial conditions, which are xi,c = xi(t = 0) and ui,c = ui(t =

0), and Cineq(xi,k, ui,k) is introduced to enforce states and inputs to stay in predefined

ranges. These constraints are provided in [133].

5.2.2 Linear MPC Formulation

The LMPC method implemented in this work is implicit LMPC applied in [87,

133], and details can be found therein. Therefore the method is summarized here for

completeness. The quadratic problem for the LMPC is provided in (5.8).
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minimize
ui,K

Li(xi,K , ∆ui,K , xi,ref )

Ceq(xi,K , ui,K) = 0

Cineq(xi,K , ui,K) ≤ 0

(5.8)

The quadratic objective function is denoted as Li(xi,K , ∆ui,K , xi,ref ) and given in

(5.9), where decision variable is ∆ui,K and xi,K is a function of ∆ui,K .

Li(xi,K , ∆ui,K , xi,ref ) =

Li,tp(xi,ref , xi,K) + uTi,KRui,K + xTi,KQxi,K

(5.9)

where R = diag{R}M1 , Q = diag{Q}M1 and Li,tp(xi,ref , xi,K) is calculated in

section 5.2.3.

Due to the implicit formulation, state predictions are described with respect to the

decision variables and combined in a lumped representation. Similarly, decision variables,

which are the inputs, are also collected under a lumped term. These lumped states and

inputs are denoted as ∆xi,K and ∆ui,K and provided in (5.10).

∆xi,K =


∆xi,k

...

∆xi,k+M−1



∆ui,K =


∆ui,k

...

∆ui,k+M−1


(5.10)

Relationship between ∆xi,K and ∆ui,K is provided below with matrices Fi ∈

RMnx×nx and Hi ∈ RMnx×Mnu for prediction horizon of M .
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∆xi,K = Fixi,c +Hi∆ui,K

Fi = col{Fi,m}Mm=1

Fi,m = A
(m−1)
i , m = [1, · · · ,M ]

Hi = col{Hi,m}Mm=1

Hi,m = 0 m = 1

Hi,m = row{hi,l} m = [2, · · · ,M ]

hi,l = A
(m−l−1)
i Bi , l = [1, · · · ,m− 1]

(5.11)

Terminal states are given as a function of xi,k and ∆ui,K below.

∆xi,k+M = AM
i xi,k +Bi∆ui,K

Bi =

[
AM−1
i Bi · · · A1

iBi Bi

] (5.12)

Ceq(xi,K , ui,K) and Cineq(xi,K , ui,K) serve the same purpose with Ceq(xi,k, ui,k)

and Cineq(xi,k, ui,k), however, they are modified to comply with LMPC notation. Calculation

of these constraints are provided in [87].

5.2.3 Cooperative Task Prioritization

Let ϵi,t ∈ Rnϵt as provided in (5.13) represent a cooperative task for agent i based

on local neighbor state information that is received from neighboring agents denoted as j.

Assume that ϵi,t ∈ Rnϵt is defined for a subset of states denoted as x̂i ⊂ xi and x̂j ⊂ xj ,

where x̂i ∈ Rns and x̂j ∈ Rns . It should be noted x̂i and x̂j are assumed to be measured

with respect to same coordinate frame. Otherwise the task ϵi,t becomes non-linear.

ϵi,t = aij(x̂j − x̂i), t = 1, · · · , T (5.13)
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where T is the maximum number of tasks. First derivative of ϵi,t is calculated as

follows
ϵ̇i,t = aij( ˙̂xj − ˙̂xi)

ϵ̇i,t =

[
aijIns −aijIns

] ˙̂xj

˙̂xi

 (5.14)

Collecting the terms on the right-hand side as Mi(aij) =

[
aijIns −aijIns

]
and

Ṡi,t =

[
˙̂xTj

˙̂xTi

]T
∈ Rnst , the mapping in (5.14) between task space (TS) velocities and

local state space (LSS) velocities takes the form

ϵ̇i,t = Mi(aij)Ṡi,t (5.15)

Following that, the inverse mapping from TS to LSS is calculated as

Ṡi,t = M+
i ϵ̇i,t (5.16)

where M+
i is the pseudo inverse of Mi,t and aij is dropped from the expression for brevity.

Note that xj is the states of a neighboring agent.

As illustrated in [136] for robots, excessive(redundant) LSS can be utilized to manage

secondary tasks. Let ϵi,1 and Si,1 denotes first TS and LSS and ϵi,t and Si,t, t = 2, · · · , T

denotes the remaining, respectively, then following task management methodology can be

used [137],

Ṡi,1 = M+
i,1ϵ̇1

Ṡi,t = Ṡi,t−1 + (Mi,tΦi,t−1)
+(ϵ̇i,t −Mi,tṠi,t−1)

(5.17)

where Φi,t is the null space projection matrix and calculated as follows,

Φi,1 = Inst −M+
i,1Mi,1

Φi,t = Φi,t−1 − (Mi,tΦi,t−1)
+(Mi,tΦi,t−1)

(5.18)

Formulation defined in (5.17) is collected in a minimal representation as in (5.19).
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Ṡ = Ψϵ̇ (5.19)

where Ṡi =

[
ṠT
i,1 ṠT

i,t · · · ṠT
i,T

]T
and ϵ̇i =

[
ϵ̇Ti,1 ϵ̇Ti,t · · · ϵ̇Ti,T

]T
. Thus, a

quadratic function can be written as in (5.20) based on (5.19).

L(ϵ̇i) := ṠT Ṡ = ϵ̇Ti Ψ
TΨϵ̇i (5.20)

Finally, based on (5.20), Li,tp(xi,ref , xi,k) and Li,tp(xi,ref , xi,K) are calculated as

given in (5.21) and (5.25), respectively, where QT
s = Qs ≥ 0 ∈ Rnϵt×nϵt .

Li,tp(xi,ref , xi,k) = ϵ̇Ti Ψ
T

 Qs 0

0 Qs

Ψϵ̇i

= ϵ̇Ti Qϵϵ̇i

(5.21)

Remark 5.2.1 If states of the agents i and j are linearly related, then x̂i and x̂j are linearly

related, therefore Mi,1 is constant. As a result,

• L(ϵ̇i) outputs a quadratic function of ϵ̇i,t with scalars γt such thatL(ϵ̇i) =
∑T

t=1 γtϵ̇
2
i,t,

where γ1 ≥ · · · ≥ γt ≥ · · · ≥ γT .

• Relationship given for derivatives of state space and task space in (5.20) is also valid

for state space and task space as follows

L(ϵi) := STS = ϵTi Ψ
TΨϵi (5.22)

which results in

Li,tp(xi,ref , xi,k) = ϵTi Ψ
T

 Qs 0

0 Qs

Ψϵi

= ϵTi Qϵϵi

(5.23)

Let Qϵ partitioned as in (5.24), and let Xi,ref := 1⊗xi,ref , where 1 = [1 · · · 1]T ∈

RM . Then overall task matrix ϵi can be written as an affine function of Xi,ref and xi,K)

and Li,tp(xi,ref , xi,K) is calculated as provided in (5.25).
134



Qϵ =

 Qϵ,11 Qϵ,12

Qϵ,21 Qϵ,22

 (5.24)

Li,tp(xi,ref , xi,K) = ϵTi Qϵϵi (5.25)

,where Qϵ,⋆∗ = diag{Qϵ,⋆∗}M1 and ⋆, ∗ = {1, 2}.

Qϵ =

 Qϵ,11 Qϵ,12

Qϵ,21 Qϵ,22

 (5.26)

5.2.4 Implementation of the MPCs

The docking controller is designed to have several layers to decide how to perform

the docking maneuver based on the distance between the agent i and neighboring agents.

The layers, as mentioned earlier, are namely, Selector NMPC and LMPC. Essentially,

Selector works as a governor and decides the reference trajectory that the LMPC tracks.

If the absolute distance between agent i and neighboring agents is greater than a threshold,

NMPC generates a trajectory towards the neighboring agents using neighboring state information.

Note that NMPC is not aiming to achieve terminal state constraint, but it repeatedly minimizes

the state error within the given prediction horizon. Then generated trajectory, which creeps

towards the neighbors, is passed to LMPC. If the distance is smaller than the threshold,

LMPC receives the neighboring state information to generate control inputs without needing

NMPC. The distance and threshold are denoted as e = ∥ [pj] − [pi] ∥22 ∈ R and ed ∈ R.

Currently available state and input information are denoted as xi(t − 1), xj(t − 1) and

ui(t − 1) ,where t represents current sample and (t − 1) represents previous sample. The

pipeline for the control strategy described above is given in Figure 5.1.

When triggered, NMPC generates a rough trajectory towards agent j for given prediction

horizon M based on the formulation given in (5.6). Then a portion of this trajectory

that is determined by the control horizon Mu is extracted, and this is denoted as xnmpc.
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Figure 5.1. Unified MPC framework for docking..

Optimization parameters for NMPC such as M , tf , and Mu are selected empirically to

achieve a rough trajectory and allow a time interval to queue a new trajectory to guide

the agent i to the vicinity of other agents. Selection of the optimization parameters with

the right-hand-side sparsity template described in [135] provides a longer time to queue a

new trajectory. Before LMPC receives the output of the NMPC or the neighboring state

information that are xnmpc and xj(t − 1), respectively, a line or a set of line segments are

populated based on the prediction horizon of the LMPC. Finally, the tracking based on the

optimization provided in (5.8) is done by the LMPC.
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Table 5.1. (a) LMPC parameters. (b) NMPC parameters. tf is the regarding time for
prediction horizon. * for discrete algebraic Riccati solution, see [2].

5.3 Simulation and Results

This section presents the simulation results for the proposed strategy based on the

simulation setup of a quadrotor and a rover, as illustrated in Fig. 5.5.

NMPC and LMPC parameters are provided in Table 5.1 and quadcopter properties

are given in [133] in Table 1. Two scenarios are illustrated: 1) proximity docking on a

moving agent and 2) large range docking on a moving agent, where LMPC and NMPC

- LMPC strategies are tested, respectively. Let Ps = {1, 2, 3, 4} represent the priority of

states, where 1 is the highest priority and 4 is the lowest priority, and s = p, v, e, w represent

the subset of states that P is representing. Based on this, LMPC uses the priority map of

{Pp,Pv,Pe,Pw} = {2, 3, 1, 4}. Priority mapping is used to arrange tasks defined as ϵi,t,

where i ∈ {1, 2, 3, 4}. This mapping is valid for both LMPC and NMPC.

137



5.3.1 Case Study 1: Proximity docking on the rover

Initial condition for quadcopter and the rover are

xq,0 = [0 0.5 − 10 0 0 0 0 0 0 0 0 0]T

xr,0 = [0 0 0 0.5 0 0 0 0 0 0 0 0]T
(5.27)

, respectively. Initial inputs for the quadcopter is ui,c = [9.81mq 0 0 0]
T to temper the

behavior of the fq. Given the initial values, the quadcopter is guided to the rover with −0.1

m offset in z−direction as illustrated in Fig. 5.2. Evaluating Fig. 5.2, the quadcopter makes

a free fall 3/4th of a second, then recovers. During this phase, it loses altitude and gains

speed in thew component up to 6m/s. The duration of the free fall is correlated to R in the

cost function and inequality constraints provided to the LMPC, which is Cineq(xi,K , ui,K).

After the free fall approximately after t = 1 (s), controller makes a correction in e and

starts approaching to the rover in x- and y-directions.
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Figure 5.2. State trajectory of agent of the quadrotor..
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Previously mentioned free fall can also be seen in Fig. 5.3 in the fq subplot, where

fq stays at 0 N for that period. During the maneuver, fq is upper bounded by 12 N. The

maximums for tq are reached in the x-direction, where −0.52 and 0.05 Nm of toque are

observed at extremes.
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Figure 5.3. Inputs fq and tq over the duration of the docking maneuver..

Fig. 5.4 provides an overview of the performed trajectory along with the heading

direction of the quadcopter, which is aligned with the u1 axis of FB.

5.3.2 Case Study 2: Long range docking on the rover

Initial conditions for the quadcopter and the rover are

xq,0 = [0 0 − 10 0 0 0 0 0 0 0 0 0]T

xr,0 = [10 10 0 0.5 0 0 0 0 0 0 0 0]T
(5.28)
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Figure 5.4. Trajectory and heading of the quadrotor.

, respectively. Initial inputs for the quadcopter is ui,c = [9.81mq 0 0 0]
T . This case

illustrates the long-range capability of the proposed control strategy. The overview of the

scenario is provided as a set snapshot in Fig. 5.5, and the video of the performed scenario

can be found in the following link.

In this scenario, LMPC tracks the xnmpc the NMPC generates until e is less than

ed. At about 41th s a transition happens and LMPC starts tracking the xj(t − 1). Figures

5.6 and 5.8 reveal the difference in proximity and long-range docking maneuvers, to which

LMPC is more sensitive to the magnitude of the tracking error e. An important feature of

this motion is that signal oscillates at velocity level both in linear and angular motion. The

same oscillatory behavior is visible for inputs fq and tq as provided in Fig. 5.7, which is

because the quadcopter’s current states are changing as the xnmpc is generated on NMPC

side, sent to the LMPC and populated as line segments.
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Figure 5.5. Snaps of the realized trajectory during long range docking maneuver..

The positional errors between rover and quadrotor in Fig. 5.8 illustrates positional

errors in x− and y−directions approach to zero, while the error in z− direction approach

to −0.1 m.
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Figure 5.6. State trajectory of agent of the quadrotor..

0 5 10 15 20 25 30 35 40 45 50

t, s

-12

-10

-8

-6

-4

-2

0

2

, 
m

x

y

z

Figure 5.8. Position error between rover and quadrotor..
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Figure 5.7. Inputs fq and tq over the duration of the docking maneuver..

Figure 5.9 illustrates calculation time of each NMPC trigger. Initially, generation

costs approximately 0.1 s and as the quadcopter settles on the trajectory trajectory generation

times reduces to 0.05 s. For given elapsed time profile, overall calculation time is calculated

to be 13.91 s. The upper bound line illustrates the control horizon Mu for the NMPC.
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5.4 Conclusions

This work proposes a unified MPC control strategy capable of handling long-range

to proximity docking maneuvers. A rough but fast NMPC method is run to propagate

the agent to a closer vicinity then LMPC handles more sensitive proximity motion. The

sensitivity of the LMPC is apparent in Figures 5.6 and 5.8, where a smooth approach

suddenly becomes relatively violent. Based on the simulations, the selection of the matrices

Q, R and Qs makes the transition from NMPC-LMPC to LMPC smoother. Note that the

docking of the quadrotor is almost tangential to the x−y plane, and during the final section

of the maneuver, it penetrates the docking platform. The latter problem can be resolved

with an approach constraint to the MPC controllers. Most importantly, the proposed method

is readily applicable among dynamic systems, including non-linear systems, since the
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controller’s structure stays the same. Using local neighbor information instead of external

sensors or observers makes this control strategy decentralized naturally.
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Chapter 6

Graph Theoretic Trajectory Optimization of ASLB Biped Robot

6.1 ASLB - A Bipedal Robot for Dynamics Locomotion

6.1.1 System Composition

ASLB is a floating bipedal platform that each leg is composed of hybrid three degrees

of freedom (DoF) structure. Specifically, starting from the body, kinematic structure of

legs are revolute joint (at shoulder) followed by a parallel 5R mechanism. This kinematics

results in three actuated and two passive joint coordinates in each leg. A rendered 3D model

and manufactured prototype of ASLB is provided in Fig. 6.1.

Figure 6.1. 3D model (left) and manufactured prototype of ASLB (right)..

6.1.2 Kinematics

Kinematic model of the floating platform starts with a set of unactuated joints that

gives six DoF to the mobile platform. These joints are collected in column matrix qB ∈

R3×SO(3). Starting from the inertial frame, joints are located in a sequence such that first

translational joints qt,B = [q1, q2, q3]
T ∈ R3 are located in respective x, y and z directions.
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Assuming the euler sequence of Y ZX , rotational joints are qr,B = [q4, q5, q6]
T ∈ R3.

Body frame FB is kinematically represented with respect to FI by qB = [qTt,B, q
T
r,B]

T

such that rB(qt,B) and CIB(qr,B) are translation and rotation matrices from FI to FB,

respectively. Kinematic complexity starts after the origin of FB, where actuated legs are

attached. There are two legs attached to the body and regarding joints are represented by

θi ∈ Rni , where ni = 5 and i = R,L. In total, combined DoF for legs are given as

na = 10. Composition of θi for each leg is given as θi = [θ0,i θ1,i θ2,i θ3,i θ4,i]
T , where

there are three active and two passive joints, respectively θa,i = [θ0,i θ1,i θ3,i]
T ∈ R3 and

θp,i(θa,i) = [θ2,i(θa,i) θ4,i(θa,i)]
T . Passive joints can be written as a function of θa,i based

on a velocity contraint as described in § 6.1.2.1. As a result, total joint space of ASLB is

given by q = [qB, θa,R, θa,L]
T ∈ R12. The kinamtic structure of right leg is illustrated

in Fig. 6.2

Figure 6.2. Kinematic structure of ASLB.
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6.1.2.1 Passive - Active joint Relation

As described in [138] starting from the origin of the body frame FB, there are two

chains to reach point v on both legs. Let R∗ represent elementary rotation matrix, where

∗ = x, y, z are active axes. Then these two chains can be written as in Eq. (6.1).

rv,1 = a12 +Rz(θ1,R)a2 +Rz(θ1,R + θ2,R)a2

rv,2 = a14 +Rz(θ3,R)a2 +Rz(θ3,R + θ4,R)a2

(6.1)

Differentiating Eq. (6.1) results in velocity equations of vr,1 and vr,2, which are equal.

Writing this relationship as below relates the passive joints to active joints as described in

Eq. (6.2). Let θa,i = [θ1,i θ3,i]
T denote the set of active joints related to the closed loop,

then Ja,i ∈ R2 becomes a square matrix.

vr,1 = Jr,1

[
θ
T

a,i θTp,i

]T
vr,2 = Jr,2

[
θ
T

a,i θTp,i

]T
0 = (Jr,1 − Jr,2)

[
θ
T

a,i θTp,i

]T
=

[
Ja Jp

] [
θ
T

a,i θTp,i

]T
(6.2)

Finally passive joints are related to active joints as given in Eq. (6.3).

θp,i = Jpaθa,i

Jpa = − J−1
p,i Ja,i

(6.3)

6.1.2.2 Forward Kinematics

Forward kinematics for each leg calculates the position of the contact point c with

respect to origin of FB, as illustrated in Fig. 6.2. The aforementioned position vector is

denoted as rc. As mentioned in § 6.1.2.1 the active and passive joint angles are related to
148



each other and unless the passive joints are measured by sensors, they have to be calculated

from this relationship. To do that position vectors rv,1 and and rv,2 are arranged as below.


cos(θ3,R + θ4,R)

sin(θ3,R + θ4,R)

0

 a5,x =

−


cos(θ1,R + θ2,R)

sin(θ1,R + θ2,R)

0

 a3,x +

a12,x − a14,x

a12,y − a14,y

a12,z − a14,z



+


cos(θ1,R)

sin(θ1,R)

0

 a2,x −

cos(θ3,R)

sin(θ3,R)

0

 a4,x

(6.4)

First two rows of Eq. (6.4) can be written in a minimal form as provided in Eq. (6.5)

such that terms including θ3,R, θ4,R are left alone.

 cos(θ3,R + θ4,R)

sin(θ3,R + θ4,R)

 =

 Tx

Ty

+
a3,x
a5,x

 cos(θ1,R + θ2,R)

sin(θ1,R + θ2,R)


Tx =

1

a5,x
(a12,x − a14,x + cos(θ1,R) + cos(θ3,R))

Ty =
1

a5,x
(a12,y − a14,y + sin(θ1,R) + sin(θ3,R))

(6.5)

Elements of Eq. (6.5) are squared and summed to obtain Eq.(6.6). Then trigonometric

expressions are written in terms of tangents of the half angles, which leads to the a solution

to θ12,R = θ1,R + θ2,R as provided in Eq. (6.7).

T 2
x + T 2

y +
a3,x
a5,x

2

+ 2Tx
a3,x
a5,x

cos(θ12,R) + 2Bsin(θ12,R) = 1 (6.6)
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θ12,R = 2atan(T12)

T12 =
−2C3 ±

√
(2C3)2 − 4(C1 − C2)(C1 + C2)

2(C1 − C2)

C1 = T 2
x + T 2

y +
a3,x
a5,x

2

− 1

C2 = 2Tx
a3,x
a5,x

C3 = 2Ty
a3,x
a5,x

(6.7)

Using θ12,R one can write Eq. (6.8) and solve for θ34,R = θ3,R + θ4,R. Finally, tip

point location rc is calculated as provided in Eq. (6.9).

θ34,R = atan2(s34,R, c34,R) c34,R

s34,R

 =

 Tx +
a3,x
a5,x

cos(θ12,R)

Ty +
a3,x
a5,x

sin(θ12,R)

 (6.8)

rc = a0 +Rx(θ0,R)(a14 +Rz(θ3,R)a4

+Rz(θ34,R)(a5 + a6))

(6.9)

6.1.2.3 Inverse Kinematics

Inverse kinematics is illustrated on right leg and calculations provided here can

be duplicated for left leg. Inverse kinematics solution in this work relies on geometric

calculation of θ0,R as provided in Eq. (6.10). The geometric entities are illustrated in

Figure 6.3.
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Figure 6.3. Geometric entities realted to calculation of θ0,R..

θ0 = atan2(sin(θ0,R), cos(θ0,R)) cos(θ0)

sin(θ0)

 =

 a142,z −ra

−ra −a142,z


−1  rz − a0,z

ry − a0,y


r1 = r − a0

ra =
√
r21,y + r21,z − a214,z

a142,z = a14,z + a2,z

(6.10)

To calculate active joints θ1,R and θ3,R x- and y- components of the position vector

rpc as given in Eq. (6.11) is exploited as in Eq. (6.12).

rpc,x = a4,xcos(θ3,R) + a56,xcos(θ3,R + θ4,R)

rpc,y = a4,xsin(θ3,R) + a56,xsin(θ3,R + θ4,R)

(6.11)

rpc,x = a4,xcos(θ3,R) + a56,x(cos(θ3,R)cos(θ4,R)− sin(θ3,R)sin(θ4,R))

rpc,y = a4,xsin(θ3,R) + a56,x(cos(θ3,R)sin(θ4,R) + sin(θ3,R)cos(θ4,R))

(6.12)

Equation (6.12) is rewritten as in Eq. (6.13) and each scalar equation can be squared

and summed as in Eq. (6.14).
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cos(θ3,R) = (rpc,x/a4,x) + (a56,x/a4,x)cos(θ3,R + θ4,R)

= C4 + C5cos(θ3,R + θ4,R)

sin(θ3,R) = (rpc,y/a4,x) + (a56,x/a4,x)(sin(θ3,R + θ4,R)

= C6 + C5sin(θ3,R + θ4,R)

(6.13)

1 = C2
4 + C2

6 + C2
5 + 2C4C5cos(θ3,R + θ4,R) + 2C6C5sin(θ3,R + θ4,R)

0 = (C2
4 + C2

6 + C2
5 − 1) + (2C4C5)cos(θ3,R + θ4,R) + (2C6C5)sin(θ3,R + θ4,R)

0 = C7 + C8cos(θ3,R + θ4,R) + C9sin(θ3,R + θ4,R)

(6.14)

Then using tangents of half angle, Eq. (6.14) can be further manipulated in Eq. (6.15).

The solution to θ34,R can be calculated by solving the quadratic problem for T34 as illustrated

in Eq. (6.7).

0 = (C7 − C8)T
2
34 + 2C9T34 + (C7 + C8) (6.15)

After finding solution to θ34,R, these values are inserted into Eq. (6.11) to calculate

θ3,R. This completes the solution to one chain of the leg mechanism.

Geometric definitions such as rpcl, rcl are provided in Figure 6.4 to calculate the joint

variables on the other chain that contains a2 and a3.

Using the known joint variables, point v is represented from origin of the joint 3 with

a vector denoted as rpcl. Alternatively, point v can also be represented from origin of the

joint 1 with a vector that is rcl. These vectors are defined on (P,R) plane, where the 5R

mechanism lies on, and provided in Eq. (6.16) and Eq. (6.17), respectively.

rpcl,x = rpc,x − a6,xcos(θ3,R + θ4,R)

rpcl,y = rpc,y − a6,xsin(θ3,R + θ4,R)

(6.16)
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Figure 6.4. Geometric entities realted to calculation of θ0,R..

rcl,x = a2,xcos(θ1,R) + a3,xcos(θ1,R + θ2,R)

rcl,y = a2,xsin(θ1,R) + a3,xsin(θ1,R + θ2,R)

(6.17)

Scalar equations rcl,x and rcl,y of Eq. (6.17) are squared, summed and reorganized as

provided in Eq. (6.18) to calculate βR, which leads to θ2,R.

cos(βR) = (−1)
r2cl,x + r2cl,y − a22,x − a23,x

2a2,xa3,x

βR = acos((−1)
r2cl,x + r2cl,y − a22,x − a23,x

2a2,xa3,x
)

θ2,R = π + βR

(6.18)

To calculate θ1,R, rcl,x and rcl,y is represented as a function of rpcl. This is given in

Eq. (6.19) in matrix form, where terms with θ1,R are the unknown variables. Solution to

Eq. (6.19) for θ1,R finishes the inverse kinematic solution of the right leg. Procedure for

left leg is identital.
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 rpcl,x + (a14,x − a12,x)

rpcl,y

 =

 a2,x + a3,xcos(θ2,R) −a3,xsin(θ2,R)

a3,xsin(θ2,R) a2,x + a3,xcos(θ2,R)


 cos(θ1)

sin(θ1)


θ1,R = atan2(sin(θ1), cos(θ1))

(6.19)

6.1.3 Dynamics

Based on the generalized coordinates, multi-body dynamics of ASLB is formulated

as in (Eq. 6.20)

M(q)q̈ +C(q, q̇) +G(q) = Sτ + JT
C,iFC,i (6.20)

,where M (q) ∈ R12×12, C(q, q̇) ∈ R12, G(q) ∈ R12 are generalized mass, Coriolis &

centrifugal term and gravitational term matrices. S ∈ R12×6, τ ∈ R6, FC,i ∈ R3 and

JC,i ∈ R3×12 are the selection matrix for the actuated joints of regarding legs, actuated

joint torques, external force on the tip of ith leg and geometric Jacobian of the tip point of

the ith leg.

Let x = [q, q̇]T ∈ R24, uτ = τ and uc = FC,i ∀i are the states, inputs to motors

and external forces acting on tip point of the legs, respectively, then non-linear dynamics

of the robot can be written as in Eq. 6.21.

ẋ = f(x,uτ ,u)

f(x,uτ ,u) =

 q̇

M (q)−1Θ


θ = −C(q, q̇)−G(q) + Sτ +

∑
i

JT
C,iFC,i

(6.21)
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6.2 Graph Theoretic Modeling of ASLB

Separating legs, which are defined as Agent 2 and Agent 3, from the floating base

introduces simplifications to the overall complexity of the model and optimization. One

of the simplifications appears in modeling as leg dynamics is not necessarily needs to be

modeled with respect to the FI using qB but rather preferred to be defined with respect

to the FB. This local representation of leg dynamics leads to following outcomes for the

dynamics of the agents:

• Leg is only used to find adjacency and contact forces on the floating base and ground,

• State space representation of the leg dynamics can be kept at velocity level.

• Contact forces and geometric properties of contact point must be converted to FB

Following subsections explain underlying Graph structure, kinematics, and dynamics

of the agents.

6.2.1 Underlying Graph Structure

The interaction among agents in the cooperative systems are described by Graph

G = (N , E), which consists of a node set N and an edge set E [109]. Edge set E ⊂ N ×N

is given between nodes m ∈ N and n ∈ N such that (n,m) ∈ E denotes node m receives

information from n. Adjacency matrix is composed of edge weights such that A = [amn] ∈

RN×N of G, where amn is the strength of the connection between node n and node m. N is

the number agents in the cooperative system (CS). Amn represents element in the mth row

nth column of matrix A. Formal description of Amn is given as follows.

Amn =


amn = 1, n ̸= m, (n,m) ∈ E

amn = 0, otherwise

(6.22)

Floating base of the robot is denoted as Agent 1, right leg is denoted as Agent 2

and left leg is denoted as Agent 3. Agent 1 is defined with two nodes that are node 1
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and node 2, Agent 2 is defined with node 3 and Agent 3 is defined with node 4. The

location of these nodes are illustrated in Fig. 6.5 and it should be noted that node 1 and

node 2 are coincident. Without any interconnection constraint, agents are independent of

each other , however, there are rigid joints connecting them. In this case there are two

bi-directional edges and these are (node 3,node 1) ∈ E and (node 2,node 4) ∈ E .

Connection between nodes are assumed to be rigid then adjacency matrix is composed of

edge weights amn = 1. This yields an adjacency matrix as in (6.23).

A =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


(6.23)

Finally, relationship between cooperative agents are given in (6.24) by Laplacian matrix.

Ip represents identity matrix with size p.

L = I4 − A (6.24)

Let W ∈ Rp be the signal that is being shared between agents then L can be expanded as

in (6.25) to comply with the signal dimension. ⊗ is the Kronecker product operator.

L = L⊗ Ip (6.25)
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Recalling that node 1 and node 2 are coincident, one can define following adjacency

constraints using the extended Laplacian definition given in (6.25)

Lx = L



x1

x1

x2

x3


= 0

Lw = L



WA,1

WA,2

WA,3

WA,4


= 0

(6.26)

Another aspect of splitting a lumped multi-body model into distributed cooperating

multi-body models is generalized coordinates. This operation necessarily duplicates the

generalized coordinates of the floating base in lumped model to the distributed models.

In addition to that Agent 2 and Agent 3 have actuated joints of qa,i , i = 2, 3. Due

to this, generalized coordinates of the agents are defined as q1 =
[
qTt,1 q

T
r,1

]T ∈ R6,

q2 =
[
qTt,2 q

T
r,2 q

T
a,2

]T ∈ R9 and q3 =
[
qTt,3 q

T
r,3 q

T
a,3

]T ∈ R9, respectively for Agent 1,

Agent 2 and Agent 3. This is illustrated in Fig. 6.5.

6.2.2 Agent Kinematics

YZX Euler sequence is used in defining the composite rotations CIi(qr,i) from FI to

Fi, where subscript i is agent index and Fi is the local origin of the agent. Contact point

position and velocity of Agent 2 and Agent 3 are calculated with respect to FB, which

is denoted as in (6.27). K+(qi) represents forward kinematics of the leg i in Eq. (6.27),

which is explained in § 6.1.2.
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Figure 6.5. Cooperative interconnection between agents and generalized coordinates at
every agent..

rc,i(qi) = K+(qi)

ṙc,i(qi, q̇i) = Jc,iq̇i

(6.27)

6.2.3 Agent Dynamics

Dynamics of agents yield a similar equation as given in (6.21) and for brevity a

representative Equation of Motion (EoM) is given in this section.

Generalized velocities are assigned to states of each agent as xi = q̇i. External

forces in distributed notation is divided into two, where first one is denoted as FC,i and

acting on the agents as a result of ground contact. The second external force is denoted

as FA,m and exerted on the agents from the adjacent nodes. Adjacent nodes also transmit

moment, MA,m, therefore it is convenient to collect forces and moments at adjacent nodes

as a wrench denoted as WA,m =
[
F T
A,m MT

A,m

]T . As a result, non-linear dynamics

of each agent is written as given in (6.28). Let xi = q̇ ∈ Rnxi , uτ,i = τ ∈ Rnti ,

uc,i = FC,i ∈ Rnfi , and uw,i = WA,i ∈ Rnwi are the states, torques, contact forces,
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and adjacency wrench, respectively, then non-linear dynamics of the robot can be written

as in Eq. 6.21. Signal sizes for Agent 1 is nx1 = 6, nt1 = 0, nf1 = 0, nw1 = 6,

while Agent 2 and Agent 3 has signal sizes of nxi = 9, nti = 3, nfi = 3, nwi = 6 for

i = 2, 3.

ẋi = fi(qi,uτ,i,uc,i)

fi = Mi(qi)
−1Θi

Θi = −Ci(qi, q̇i)−Gi(qi)

+ Siτi + JT
C,iFC,i +

∑
m

JT
A,mWA,m

(6.28)

6.3 Graph Theoretic Online Trajectory Generation

Graph theoretic online trajectory generation relies on cooperative modeling of the

robot and composed of a series of optimizations. These optimizations are, contact phase,

swing phase and force optimizations, where contact optimization finds optimal finite horizon

for the current contact phase and a sequence of contact trajectories that will keep the robot

states bounded for defined phase horizon. Due to this reason, resultant contact phase

trajectories except for the one associated with the current contact leg are not passed to

the next optimization. Another cardinal data set that is passed to the next optimization

from contact phase is the initial point of the subsequent contact phase. This information is

required to generate a rough swing trajectory for the leg that is in the air. It should be noted

that, both contact and swing trajectories are calculated to provide an initial trajectory for

the force optimization, where trajectories are refined using cooperative system framework.

Regarding trajectories to previously defined optimizations are illustrated in Figure 6.6.
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Figure 6.6. Cooperative interconnection between agents and generalized coordinates at
every agent..

6.3.1 Contact Phase Optimization

Contact phase optimization calculates a set of trajectories using Linear Inverted

Pendulum Model (LIPM) and contact constraints. LIPM dynamics we used in this work is

widely used in vast majority of the literature. As denoted in § 6.2, dynamics are written

with respect to body frame FB. Besides that, dynamics are also kept at velocity level.

Under these circumstances the contact conditions for the leg in contact need to be defined

accordingly.

Contact Condition Under contact conditions with no slip assumption, rc,i has no relative

motion with respect to the ground if this condition is observed from the inertial frame
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FI . This condition is observed from FB as if ṙc,i = − uB, which is illustrated in

Eq. (6.29) for agents i = 2, 3. Recall that states of agents i = 2, 3 are denoted as

xi =
[
qTt,i q

T
r,i q

T
a,i

]T
, i = 2, 3 and q̇t,i, i = 2, 3 is duplicate of uB assuming that

connection between nodes are as defined in Eq. (6.22).

0 =

[
−I −Jr,i Ja,i

]
q̇t,i

q̇r,i

q̇a,i

 =

[
−I −Jr,i Ja,i

]
uB

q̇r,i

q̇a,i

 (6.29)

Assuming body is slowly rotating, q̇r,i ≈ 0, i = 2, 3, Eq. (6.29)

LIPM Model Implementation of the LIPM model in this work have some nuances compared

to the the work where it is proposed [139, 140]. Let Fxz ∈ R2 be the virtual force created

on x − z plane due to the displacement between origin and contact locations xzrc,2 and

xzrc,3. Note that origin represents the center of mass (CoM) and is not the origin of the FB.

Although CoM moves with respect to the origin of FB, in practice it is assumed to be fixed

with an offset from FB.

Under these assumptions the LIPM dynamics is provided as in Eq. (6.30) in state

space form. States for this system is denoted as xc and defined as the contact point and this

point is denoted as ∆rxz as any of the two contact locations can be assigned to it, which

are xzrc,2 and xzrc,3, respectively. Explicitly states are defined as xc,1 = ∆rxz ∈ R2,

xc,2 = ∆̇rxz ∈ R2, which are combined as xc =
[
xTc,1 xTc,2

]T .

ẋc =

 ẋc,1

ẋc,2

 =

 0 I

Iω2
0 0


 xc,1

xc,2

 = Alipmxc (6.30)

This system is an inherently unstable system therefore what is being pursued with

this system is to find a set of initial conditions denoted as 0xc, that will propel the CoM

of the robot towards the desired velocity vector. While doing that, a set of state bounds
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Figure 6.7. LIPM dynamics projected on x− z plane.

are also satisfied. Equation (6.30) is dicretized using Euler propogation as provided below,

where ∆t is the sampling time.

xc,k+1 = (I +∆tAlipm)xc,k (6.31)

Contact Phase Optimization This method relies on finding set of trajectories that will

keep proceeding steps within bounds, therefore a phase horizon is defined as Np ∈ N,

which represents the number of phases to be calculated during the optimization inlcuding

the current phase. A finite horizon for each phase is defined as Nn ∈ N, which will be

minimized for Np = 1 and kept at its nominal for Np > 1. States of the LIPM dynamics

in each phase are denoted as pxc,k, where p = [1, · · · , Np] and k = [1, · · · , Nn].

Combined states for each phase are denoted as pxc,K as provided below.

162



pxc,K =


pxc,1

...

pxc,Nn

 , ∀ p (6.32)

Equation (6.33) represents the quadratic problem that runs in contact optimization

phase, where Lc(pxc,1, uB,ref ) is the objective function, and Ccont(pxc,1) and Cbounds(pxc,1)

are equality and inequality contstraints to ensure continuity of the states between phases

and to keep states within predefined bounds.

minimize
pxc,1

M∑
k=1

Lc(pxc,1, uB,ref )

s. t. Ccont(pxc,1) = 0

Cbounds(pxc,1) ≤ 0

(6.33)

Continuity Constraint As explained earlier, contact optimization seeks to find several

contact phase trajectories and these trajectories should be continuous ideally. This is

achieved by an equaltiy constraint defined as in Eq. (6.34) for p = 1, · · · , Np − 1.

pxc,Nn = p+1xc,1[
0 I

]
pxc,Nn =

[
0 I

]
p+1xc,1

(6.34)

Constraint for State Bounds State bounds are defined based on the leg in contact,

therefore state bounds are switching between the bounds of Agent 2 and Agent 3. Let

c2 = [0, 1] and c3 = [0, 1] be the contact indicators of Agent 2 and Agent 3, respectively.

Under contact ci = 1 otherwise ci = 0 for i = 2, 3 at phase p. Bounds for Agent 2 and

Agent 3 are defined as Si =
[
ST
i,UB, S

T
i,LB

]T and assigned to Sp such that Sp = Si if

ci = 1. Note that we are assuming single point contact. Using the bounds state boundary

constraints are defined as in Eq. (6.35).
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 I

−I

[
I 0

]
pxc,k ≤

 Sp,UB

Sp,LB

 (6.35)

Cost Function Contact phase optimization desires to reach the x−z projection of reference

velocity that is provided by the user uB,ref , which is uB,xz. Recall that ṙc,i = − uB,

therefore, cost function is written as in Eq. (6.36).

Jcontact =

[
uB,xz +

[
0 I

]
pxc,K

]T
Qs

[
uB,xz +

[
0 I

]
pxc,K

]T
+[[

0 I

]
pxc,K

]T
Qp

[[
0 I

]
pxc,K

]T (6.36)

6.3.2 Swing Phase Optimization

Swing pahse optimization calculates a rough trajectory for the swinging leg by connecting

current position of the tip of the swinging leg to the initial point of the proceeding contact

phase trajectory with a bezier curve. Instances of the swing trajectory is denoted as pxs,k,

current and final positions of the swing trajectory are denoted as pxs,1 and pxs,Nn , respectively.

pxs,1 and pxs,Nn are the projections of the vectors on x − z plane, and initial point of

the proceeding contact phase trajectory is p+1xc,1. Note that, contact phase optimization

generates a planar trajectory. Therefore, implementation to swing phase trajectory optimization

requires a modification of these vectors by adding height of the CoM to y axis of any

projected vector if it needs to be passed to swing trajectory. Figure 6.8 illustrates previously

mentioned vectors. Dashed lines represent projection of the swing trajectory, while solid

lines show contact trajectory. n0, nf and L represents unit vector to CoM, unit vector

from CoM, and straight line on x− z plane between initial and final positions of the swing

trajectory. Formal definitions for n0, nf and L are provided in Eq. (6.37).
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Figure 6.8. Swing phase trajectory generation.

n0 = −
p=1xs,1
|p=1xs,1|

nf =
p=1xs,Nn
|p=1xs,Nn|

L = p=1xs,Nn − p=1xs,1

(6.37)

Swing Phase Optimization Swing phase optimization is run for the current phase, therefore

unlike the contact phase optimization p = 1. Finite horizon for this phase is theNn at p = 1.

Note that at p = 1, Nn is being optimized at contact phase optimization.

Let bx,j , by,j , and bz,j be the coefficients of the bezier curve, where j = 1, · · · , nb.

Define cb and vb, which are sorted collections of bx,j , by,j , and bz,j . This classification

collects coefficients related to initial and final positions of the curve under cb and coefficients

thatare being optimized under vb. Specifically cb is defined as,

cb =

[
p=1xTs,1

p=1xs,Nn

]T
(6.38)

. Based on previously described notation, Bezier curves for swing trajectory are defined as

in Eq.(6.40), where Jb,c and Jb,v are matrix valued functions of k, which can be populated

for k = 1 < · · · , Nn and maps cb and vb to p=1xs,k ∈ R3. Similarly, cb and vb are mapped

to p=1ẋs,k ∈ R3 using dJb,c and dJb,v.
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Equation (6.39) represents the quadratic problem that runs in swing optimization

phase, where Ls(vb) is the objective function, and Sbounds(vb) is the set of inequality

contstraints to keep states within predefined bounds.

minimize
vb

M∑
k=1

Ls(vb)

s. t. Cbounds(vb) ≤ 0

(6.39)

p=1xs,k =

[
Jb,c(k) Jb,v(k)

] cb

vb


p=1ẋs,k =

[
dJb,c(k) dJb,v(k)

] cb

vb


(6.40)

Implementation of swing phase optimization requires calculation of 0
dJb,c,

f
dJb,c,

0
dJb,v,

f
dJb,v using Eq. (6.40) at k = 1 and k = Nn.

Constraint for State Bounds State bounds are defined based on the leg in swing, therefore

state bounds are switching between the bounds of Agent 2 and Agent 3. Bounds for

Agent 2 and Agent 3 are defined as Si =
[
ST
i,UB, S

T
i,LB

]T and assigned to Sp such

that Sp = Si if ci = 0. Using the bounds state boundary constraints are defined as in

Eq. (6.41).

 Jb,c(k)cb + Jb,v(k)vb

−Jb,c(k)cb − Jb,v(k)vb

 ≤ Sp

 Jb,v(k)

−Jb,v(k)

vb ≤ Sp −

 Jb,c(k)

−Jb,c(k)

 cb

(6.41)
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Cost Function Swing phase optimization desires to pull swinging leg to the CoM in the

beginning of the swing motion and then pushes it towards the final position. Along with

these, it also tries to approach the straight line L. Therefore, cost function of swing phase

optimization is written as in Eq. (6.42).

Jswing =

n0 −
[

0
dJb,c

0
dJb,v

] cb

vb



T

Q0

n0 −
[

0
dJb,c

0
dJb,v

] cb

vb


+

nf −
[

f
dJb,c

f
dJb,v

] cb

vb



T

Qf

nf −
[

f
dJb,c

f
dJb,v

] cb

vb


+

L−
[
Jb,c Jb,v

] cb

vb



T

Qt

L−
[
Jb,c Jb,v

] cb

vb




(6.42)

6.3.3 Cooperative Force Optimization

Approximate trajectories are obained in contact and swing phase optimizations and

these trajectories are used in cooperative force optimization as initial trajectory. In order

to follow the method easily agent dynamics are rewritten in Eq. (6.44), where Mh and Ch

are partitioned as given in Eq. (6.43). In addition to that Mi, Ci, and Gi for i = 2, 3 are

assigned to Mh, Ch and Gh, where h = S represents swing, h = C represents contact

and h = B represents floating base matrices. Minimal representation of the dynamics

are provided in Eq. (6.45). Floating base dynamics do not switch, however, Agent 2 and

Agent 3 dynamics are assigned to h = C or h = S depending on ci for i = 2, 3. Similarly,

wrenches WA,m are assigned to WA,h based on ci such that if c2 = 1, then WA,C = WA,2
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and if c3 = 1 then WA,C = WA,3 for i = 2, 3. Finally, r̃C is the tip point position rc,i of

the leg with ci = 1. FC is the interaction between contact leg and ground.

Mh =

 bbMh bqMh

qbMh qqMh


Ch =

 bbCh bqCh

qbCh qqCh


(6.43)

bbMBẋB + bbCBxB + bbGB = W A,C +W A,S[
bbMS bqMS

]
ẋS +

[
bbCS bqCS

]
xS + bbGS = WA,S

[
bbMC bqMC

]
ẋC +

[
bbCC bqCC

]
xS + bbGC = WA,C +

 I

r̃C

FC

(6.44)

M̂BẋB + ĈBxB + ĜB = W A,C +W A,S

M̂SẋS + ĈSxS + ĜS = WA,S

M̂CẋC + ĈCxS + ĜC = WA,C +

 I

r̃C

FC

(6.45)

Then continuous models in Eq. (6.44) are converted to discrete models using Euler

discretization and Eq. (6.46) provides the discrete system model that is used in cooperative

force optimization. Current states are denoted as xh,k, where h and k represent model

identifier and prediction step, respectively.
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[
∆tĈB,k − M̂B,k M̂B,k

] xB,k

xB,k+1

−∆tW S,k −∆tW C,k = ∆tĜB

[
∆tĈS,k − M̂S,k M̂S,k

] xS,k

xS,k+1

−∆tWS,k = ∆tĜS,k

[
∆tĈC,k − M̂C,k M̂C,k

] xC,k

xC,k+1

−∆tWC,k −∆tĴC,kFC,k = ∆tĜC,k

(6.46)

For brevity Eq. (6.46) are represented with a minimal representation as follows.

M̃h,k =

[
M̃h1,k M̃h2,k

]
=

[
∆tĈB,k − M̂B,k M̂B,k

]
J̃C,k = −∆tĴC,k

G̃h,k = ∆tĜh,k

P̃h,k = −∆tÎ

(6.47)

Cooperative Force Optimization Problem This method relies on initially provided trajectories

that is provided by contact and swing phase. In this phase, decision variables are defined

as corrections to the nominal trajectories and a complete trajectory is defined such that.

Nominal trajectories for states are denoted with 0xh,k and corrections to the nominal trajectories

at every intant is denoted as ∆xh,k. Similarly, force trajectorries are defined in the same

fashion such that 0FC,k and 0WA,m are the nominal force trajectories, while ∆FC,k and

∆WA,m are the corrections to regarding trajectories.

xTh,k = 0xh,k +∆xh,k

F T
C,k = 0FC,k +∆FC,k

W T
h,k = 0Wh,k +∆Wh,k

(6.48)

States, contact forces and wrenches for the entire trajectory are combined as follows.
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xTh,K =

[
xTh,1 · · · xTh,Nn

]T
F T
C,K =

[
F T
C,1 · · · F T

C,Nn

]T
W T

h,K =

[
W T

h,1 · · · W T
h,Nn

]T (6.49)

Relationship between xh,K , FC,K and Wh,K can be written for the entire trajectory

using combined matrices as provided in Eq. (6.50).

.

M̃h,K =


M̃h1,1 M̃h2,2 0 · · ·

0 M̃h1,2 M̃h2,3

... . . . . . .



J̃C,K =


−∆tĴC,1 0 · · ·

0 −∆tĴC,2
... . . .



G̃h,K =


G̃h,1

G̃h,2

...



P̃h,K =


P̃h,1 0 · · ·

0 P̃h,2

... . . .



(6.50)

Dynamics for the floating base, contacting and swinging bodies are written as provided

in Eq. (6.51).

170



[
M̃B,K P̃S,K P̃C,K

]
xB,K

W S,K

W C,K

 = GB,K

[
M̃S,K P̃S,K

] xS,K

WS,K

 = GS,K

[
M̃C,K P̃C,K J̃C,K

]
xC,K

WC,K

FC,K

 = GC,K

(6.51)

Optimization for the three agents are represented in a single objective Eq. (6.52)

and a set of constraints in this work, however, problem is readily available for distributed

optimization.

minimize
∆xh,k,∆FC,k,∆Wh,k

M∑
k=1

Lc(xh,k,FC,k,Wh,k)

s. t. Cdyn(∆xh,k,∆FC,k,∆Wh,k) = 0

Ccoop(∆xh,k,∆FC,k,∆Wh,k) = 0

Ccntct(∆xh,k) = 0

Cfc(∆FC,k) ≤ 0

(6.52)

Dynamics Based on the dynamics given in Eq. (6.50) and representation of the trajectories

as provided in Eq. (6.48), matrices for equality constraints are denoted as Ah,dyn and

Bh,dyn. The equality constraint is provided for only floating base for brevity.
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[
M̃B,K P̃S,K P̃C,K

]
∆xB,K

∆W S,K

∆W C,K

 = GB,K −
[
M̃B,K P̃S,K P̃C,K

]
0xB,K

0W S,K

0W C,K


(6.53)

Contact Constraint Contact constraint is provided previously in Eq. (6.29). This condition

is modified for the definition of the trajectory that is provided in Eq. (6.48). Simpliy

contact point velocity has to be equal to the body velocity in ooposite direction in no slip

condition and Eq. (6.54) projects the relationship on the decision variables for the quaratic

optimization.

0 =

[
−I Ja,i

]
xB,K

0 =

[
−I Ja,i

]
∆xB,K +

[
−I Ja,i

]
0xB,K

−
[
−I Ja,i

]
∆xB,K =

[
−I Ja,i

]
0xB,K

(6.54)

Force Cone Constraint Cooperative force optimization phase is designed as a quadratic

problem therefore constraints have to be set accordingly. Contact constraints are dedicated

to keep tangential forces small so that no sliping occurs. To do that a friction pyramid is

created inside a friction cone. The friction cone is geometric interpretation of the magnitude

of the allowable tangential force that can be applied on the ground. The allowable limit is

calculated simply multiplying the normal component of the applied force by the contact

point with the friction coefficient. Normal component of the force is denoted as Bfc,n and

the tangential components of the applied force are denoted as Bfc,t, Bfc,s, respectively. It

should be noted that applied force is defined with respect to FB. The friction coefficient is

denoted as µ. Radius of the friction cone is define as rfc = µBfc,n. The friction pyramid
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is defined such that it is always upper bounded by the rfc and this is achieved by setting

linear bounds that are denoted as rfc,s and rfc,t. These bounds are calculated such that

|rfc,s| ≈ 0.707rfc and |rfc,s| ≈ 0.707rfc. It should be noted that bounding rfc creates

a non-linear relationship and make optimizationa no-linear problem, however, bounds that

are defined for tangetial components can be implemented in linear fashion. The geometric

interpretation of the friction cone (red solid line) and pyramid (blue solid line) is provided

in Figure 6.9.

Figure 6.9. Geometric interpretation of the friction pyramid.

Based on the linear and conservative bounds following linear constraints are defined

for the tangential forces.

−0.707µBfc,n ≤ Bfc,t ≤ 0.707µBfc,n

−0.707µBfc,n ≤ Bfc,s ≤ 0.707µBfc,n

−2× 0.707µBfc,n ≤ Bfc,t + Bfc,s ≤ 2× 0.707µBfc,n

(6.55)
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The relationship given in Eq. (6.55) is written compactly as provided in Eq.. (??),

where BFC,k is the vector containing the decision variables. Bn, Bt and Bs are the unit

vectors attached on the contact points and defined in FB. As a practical note, calculating

these unit vectors with respect to FB is straight forward calculation when there are passive

joints at the ankle of the contact legs. Depending on the kinamatic structure of the leg

certain unit vectors can be assumed to be in the same direction with the axes of the body

frame.

(
−2× 0.707µBn

T − Bt
T − Bs

T
)
BFC,k ≤ 0(

2× 0.707µBn
T + Bt

T + Bs
T
)
BFC,k ≤ 0

(6.56)

Within current work Bn, Bt and Bs are assumed to be constant and defined as

Bn
T =

[
0 1 0

]T
, Bt =

[
1 0 0

]T
and Bs =

[
0 0 1

]T
.

Cost Function Force phase optimization tries to keep the commanded motion intact

while minimizing the disturbance injected on the system due to the joint accelerations. The

joint accelerations are affecting each agent due to the Ccoop, which is provided in Eq. (6.26).

The constraints that are introduced in this chapter previously maintain contact, force cone

constraints satisfied. Cost function for this optimization is defined as in Eq. (6.57).

Lc(xh,k,FC,k,Wh,k) =−uB,xz +

 1 0 0 0 0

0 0 1 0 0

xB,k


T

QT

−uB,xz +

 1 0 0 0 0

0 0 1 0 0

xB,k

+

xTB,kII
T
QQWIIQxB,k

(6.57)

where IIQ is a matrix that selects the states that are joint velocities of contact and swing

legs and give an approximation of acceleration of these selected states. Joint velocities
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within states xh,k are denoted as qh,k for h = C, S and the selection of these states is

defined as in Eq. (6.58).

q̇h,k =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

xh,k

q̇h,k = IIqxh,k

(6.58)

The approximation for acceleration is given as below, where states are assumed to

propogate with first order Euler method.

q̈h,k = IIq
(xh,k+1 − xh,k)

∆t
(6.59)

Finally, accelerations q̈h,k for h = C, S for k = 1, · · · , Nn is given as provided in

Eq. (6.60)

q̈h,k =


−∆tIIq ∆tIIq

−∆tIIq ∆tIIq

. . .





xh,1

xh,2
...

xh,Nn


q̈h,k = IIQxh,K

(6.60)

6.4 Results

This section presents the simulation of the algorithm for the proposed method. The

simulation is not executed in a physics environment and trajectories illustrated in the section

are extimated trajectories only. Solutions are obtained on Intel(R) Core i7-4720HQ CPU

@2.60 GHz 16GB RAM PC with Matlab 2019b software.
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The sampling time ∆t for the discrete model is selected to be ∆t = 0.05s. Nominal

values for Nn and Np are selected as Nn = 20 and Np = 4, respectively. Qs and Qp

for contact phase optimization is selected to be Qs = 5 and Qp = 2. Q0, Qf and Qt

for swing phase optimization is selected to be Q0 = 12.5, Qf = 12.5 and Qt = 30.

Finally, Qu and Qw for cooperativev force optimization is selected to be Qu = 100 and

Qw = 5.

Based on these settings and from initial conditions of uB(t = 0) =

[
0 0 0

]T
,

r2(t = 0) =

[
0.01 −0.344 0.063

]T
and r3(t = 0) =

[
0.045 −0.344 −0.239

]T
,

ASLB is asked to move forward by uB,ref =

[
0.1 0 0

]T
. The results are provided

in the following figures.

Figure 6.10 illustrates calculated swing and contact trajectories. Nn for the first

optimization is minimized to Nn = 6 from nominal 20 as contact initial position for

p=1rc,1 is already provided by the sensor information. For a feasible finite horizon Nn = 6,

contact leg, which is the right leg or Agent 2, calculates an approximate trajectory for rc

starting from r2(t = 0) and diverge from the CoM towards (+)x and (+)z directions. Note

that this trajectory is calculated with resect to FB. Swing phase optimization connects

r3(t = 0) to the p=2rc,1 without violating the kinematic bounds.

Figure 6.11 illustrates nominal force trajectory for contact leg as it interacts with the

ground. 0FC is the initial trajectory that is calculated by substituting qa,i and xi into the

agent dynamics. optFC is the resultant contact force trajectory. It is visible from the figure

that, there is not a significant change in y-axis. However, optFC is shifted in (+)x direction

approximately 0.4 N.

Figure 6.12 shows the contact and swing trajectories for the second step, whereNn is

minimized to Nn = 16. Similar to the first step, p=1rc,1 for contact phase optimization is

176



Figure 6.10. Calculated swing and contact leg trajectories for first step.

the initial position of the current contact leg, which is Agent 3. rc in Figure 6.12 converges

to the CoM in the beginning of this phase then pushes away towards (-)x and (-)z directions.

A smaller correction occurs in contact force as 0FC and optFC have slight differences

in all three directions.

Figure 6.14 provides uB trajectory throughout the walking simulation along with the

rc,i for i = 2, 3. This figure illustrates the characteristic difference of the method, which

is calculating contact positions and forces to track a reference velocity uB,ref . Black circle

in Figure 6.14 indicates the CoM and decision variables are defined with respect to that.

Trajectory of uB, which is given with blue line, settles in a cyclic pattern. The mean of the

magnitude in x direction is approximately 0.28 m/s, while it is almost zero for z direction.
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Figure 6.11. Calculated force trajectory for first step.

Figure 6.15 provides a more intuitive illustration of the motion of the robot as IrB

is calculated from uB. IrB gives the position of the origin of the FB with respect to the

FI . Trajectory of IrB reveals that body drifts away from the line z = 0, while achieving

forward motion as desired. The drift is due to the first contact leg, which is the Agent 2,

and cannot be corrected.
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Figure 6.12. Calculated swing and contact leg trajectories for second step.
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Figure 6.13. Calculated force trajectory for second step.
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Figure 6.14. uB trajectory plot along with leg motion with respect to CoM.
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Figure 6.15. rB plot along with leg motion with respect to FI .
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6.5 Conclusions

This work proposes a cooperative online trajectory generation algorithm. The proposed

algorithm utilizes distributed modeling of ASLB robot to generate contact and swing trajectories.

This is done by a series of optimization that generates approximate trajectoiries and passes

them to a final optimization that refines the motion with cooperative system framework.

With the proposed method given velocity command was able to be tracked with some

offset. During simulation of the algorithm, it is observed that relaxation of the state

bounds decreases the offsets between velocity command and mean of the actual velocity. In

addition to that, since this method is designed for velocity level dynamics, a drift in walking

line occurs. However, extracting dynamics from kinematics and developing a controller for

this simpler set equations allows faster calculation of the future steps.

6.6 Future Work

This method is not simulated on a physics environment or on the real robot. Therefore,

in this we can only illustrate the concept of making optimization lightweight such that we

do not include kinematics into an optimization that needs to be calculated several times a

second or define dynamics with respect to the inertial frame, which creates complexity due

to additional Euler angles. Therefore, proposed method has to be implemeted on a physics

simulation.
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Chapter 7

Summary and Closing Remarks

Contributions listed in § 1.3 led to computationally efficient robust synthesis methods

for cooperative system that suffers uncertainty in the Dissertation. Besides that, this Dissertation

studies possible applications for cooperative synthesis methods for practical state of the art

applications such as docking on a cooperating target and online trajectory generation for

ASLB, a biped robot.

Outcomes of this dissertation was that recasting of the dynamics of the single and

mutli-agent systems, in a form such that uncertainties and controllers are connected to

the system in the same manner makes method applicable as a nested controller. The nested

implementation of single and coopeartive controller allows distribution of the uncertainties,

which leads to faster computation for a lumped model. The performance of the method

shows dramatic increase with the distributed adaptation of the same nested method.

Second outcome of this dissertation is that cooperative systems’ robust performance

can be increased by finding locally optimal edge weights. By this way complexity in

synthesis of a cooperative controller can be eliminated. This dissertation shows that there

is an LPV edge weight mapping that increases H∞ performance of an LPV cooperative

system. The method used to obtain this result includes implementation of IQC analysis

with valid time domain IQCs into LPV robust H∞ synthesis.

Third outcome is that a distributed method forH∞ edge weight systhesis is introduced

based on neurality of the interconnections and dissipativity. Neutrality condition in interconnections

are implemented by introducing a synthetic agent into the system, which secures the communication
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topology and edge weight information within. With the proposed method calculation time

for edge weight are reduced compared to the lumped counterpart.

Fourth outcome of this dissertation illustrates practical implementations of cooperative

control framework on a cooperative system that executes docking. A unified framework

for cooperative docking is proposed as an MPC, which prioritize certain set of states. The

prioritization allows designer of the controller to dedicate each docking party to handle

certain sub-task of the docking allowing a greater DoF to handle docking.

Finally, cooperative control framework is used in calculation of a walking trajectory

for a biped robot. The proposed method models ASLB as cooperative agents and executes

a series of optimizations to calculate contact, swing and force trajectories. The force

optimization phase uses cooperative control framework to refine contact and swing trajectories.

By this way, a nonlinear problem is converted into smaller quadratic problems that is

efficiently solved in a pace that is suitable for online implementations.

185



References

[1] S. Wang, H. Pfifer, and P. Seiler, “Robust synthesis for linear parameter varying

systems using integral quadratic constraints,” Automatica, vol. 68, pp. 111–118,

2016.

[2] A. Ferrante and L. Ntogramatzidis, “The generalised discrete algebraic riccati

equation in linear-quadratic optimal control,” Automatica, vol. 49, no. 2, pp.

471–478, feb 2013. [Online]. Available: https://doi.org/10.1016%2Fj.automatica.

2012.11.006

[3] W. Yu, Y. Yao, and W. Chen, “Analytical cooperative entry guidance for

rendezvous and formation flight,” Acta Astronautica, vol. 171, pp. 118–138,

2020, doi: https://doi.org/10.1016/j.actaastro.2020.02.044.

[4] L. Bai, L. Zhu, X. Zhang, W. Zhang, and Q. Yu, “Multi-satellite relay transmission

in 5g: Concepts, techniques, and challenges,” IEEE Network, vol. 32, no. 5, pp.

38–44, 2018, doi: http://doi.org/10.1109/MNET.2018.1800038.

[5] H. X. Pham, H. M. La, D. Feil-Seifer, and M. C. Deans, “A distributed control

framework of multiple unmanned aerial vehicles for dynamic wildfire tracking,”

IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 4, pp.

1537–1548, 2020.

[6] S. Zhang, H. Zhang, B. Di, and L. Song, “Cellular cooperative unmanned aerial

vehicle networks with sense-and-send protocol,” IEEE Internet of Things Journal,

vol. 6, no. 2, pp. 1754–1767, 2019.

186

https://doi.org/10.1016%2Fj.automatica.2012.11.006
https://doi.org/10.1016%2Fj.automatica.2012.11.006


[7] H. Zhang and P. Gurfil, “Distributed control for satellite cluster flight under different

communication topologies,” Journal of Guidance, Control, and Dynamics, vol. 39,

no. 3, pp. 617–627, 2016.

[8] F. Yao, J. Li, Y. Chen, X. Chu, and B. Zhao, “Task allocation strategies for

cooperative task planning of multi-autonomous satellite constellation,” Advances

in Space Research, vol. 63, no. 2, pp. 1073–1084, 2019. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0273117718307713

[9] R. Casado-Vara, F. Prieto-Castrillo, and J. M. Corchado, “A game theory approach

for cooperative control to improve data quality and false data detection in wsn,”

International Journal of Robust and Nonlinear Control, vol. 28, no. 16, pp. 5087–

5102, 2018.

[10] F. de Ponte Müller, E. M. Diaz, and I. Rashdan, “Cooperative positioning and radar

sensor fusion for relative localization of vehicles,” in 2016 IEEE Intelligent Vehicles

Symposium (IV), 2016, doi: http://doi.org/10.1109/IVS.2016.7535520, pp. 1060–

1065.

[11] M. W. Khan, J. Wang, L. Xiong, and M. Ma, “Modelling and optimal

management of distributed microgrid using multi-agent systems,” Sustainable

Cities and Society, vol. 41, pp. 154 – 169, 2018. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S2210670718302312

[12] Y. Zhang, Y. Zheng, and S. Li, “Enhancing cooperative distributed model

predictive control for the water distribution networks pressure optimization,”

Journal of Process Control, vol. 84, pp. 70–88, 2019. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0959152418303780

[13] J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle

formations,” IEEE transactions on automatic control, vol. 49, no. 9, pp. 1465–1476,

2004.

187

https://www.sciencedirect.com/science/article/pii/S0273117718307713
http://www.sciencedirect.com/science/article/pii/S2210670718302312
https://www.sciencedirect.com/science/article/pii/S0959152418303780


[14] V. Shaferman and T. Shima, “Cooperative optimal guidance laws for imposing

a relative intercept angle,” AIAA Journal of Guidance, Control, and Dynamics,

vol. 38, no. 8, pp. 1395–1408, 2015.

[15] W. Yu, G. Chen, and M. Cao, “Distributed leader–follower flocking control for

multi-agent dynamical systems with time-varying velocities,” Systems & Control

Letters, vol. 59, no. 9, pp. 543–552, 2010.

[16] S. B. Sarsilmaz, T. Yucelen, and T. Oswald, “A distributed adaptive control

approach for heterogeneous uncertain multiagent systems,” in 2018 AIAA Guidance,

Navigation, and Control Conference, January 2018.

[17] D. Ding, Q. Han, Z. Wang, and X. Ge, “A survey on model-based

distributed control and filtering for industrial cyber-physical systems,” IEEE

Transactions on Industrial Informatics, vol. 15, no. 5, pp. 2483–2499,

2019, doi: http://doi.org/10.1109/TII.2019.2905295.

[18] C. Poignard, T. Pereira, and J. P. Pade, “Spectra of laplacian matrices

of weighted graphs: Structural genericity properties,” SIAM Journal on

Applied Mathematics, vol. 78, no. 1, pp. 372–394, 2018. [Online]. Available:

https://doi.org/10.1137/17M1124474

[19] A. Arenas, A. Dı́az-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization

in complex networks,” Physics Reports, vol. 469, no. 3, pp. 93–153, 2008. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0370157308003384

[20] H.-J. Li, Z. Bu, Z. Wang, J. Cao, and Y. Shi, “Enhance the performance of network

computation by a tunable weighting strategy,” IEEE Transactions on Emerging

Topics in Computational Intelligence, vol. 2, no. 3, pp. 214–223, 2018.

[21] A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective resistance of a graph,”

SIAM review, vol. 50, no. 1, p. 37–66, 2008 doi: .

188

https://doi.org/10.1137/17M1124474
https://www.sciencedirect.com/science/article/pii/S0370157308003384


[22] Y. Zou, Z. Zhou, X. Dong, and Z. Meng, “Distributed formation control for

multiple vertical takeoff and landing uavs with switching topologies,” IEEE/ASME

Transactions on Mechatronics, vol. 23, no. 4, pp. 1750–1761, 2018.

[23] L. El Ghaoui and S.-l. Niculescu, Advances in linear matrix inequality methods in

control. SIAM, 2000.

[24] A. Ataei and Q. Wang, “An ellipsoid algorithm for linear optimization with uncertain

lmi constraints,” in 2012 American Control Conference (ACC), 2012, pp. 857–862.

[25] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in

system and control theory. SIAM, 1994.

[26] V. A. Yakubovich, “A frequency theorem for the case in which the state and control

spaces are hilbert spaces, with an application to some problems of synthesis of

optimal controls, ii,” Siberian Mathematical Journal, vol. 16, no. 5, pp. 828–845,

1975.

[27] J. G. VanAntwerp and R. D. Braatz, “A tutorial on linear and bilinear matrix

inequalities,” Journal of process control, vol. 10, no. 4, pp. 363–385, 2000.

[28] G.-R. Duan and H.-H. Yu, LMIs in control systems: analysis, design and

applications. CRC press, 2013.

[29] F. Wang and V. Balakrishnan, “Improved stability analysis and gain-scheduled

controller synthesis for parameter-dependent systems,” IEEE Transactions on

Automatic Control, vol. 47, no. 5, pp. 720–734, 2002.

[30] Y. Yang and S. Dubljevic, “Linear matrix inequalities (lmis) observer and controller

design synthesis for parabolic pde,” European Journal of Control, vol. 20, no. 5, pp.

227–236, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0947358014000430

189

https://www.sciencedirect.com/science/article/pii/S0947358014000430
https://www.sciencedirect.com/science/article/pii/S0947358014000430


[31] I. Masubuchi, A. Ohara, and N. Suda, “Lmi-based controller synthesis: A unified

formulation and solution,” International Journal of Robust and Nonlinear Control,

vol. 8, no. 8, pp. 669–686, 1998.

[32] P. Gahinet and P. Apkarian, “An lmi-based parametrization of all h∞ controllers

with applications,” in Proceedings of 32nd IEEE Conference on Decision and

Control, 1993, pp. 656–661 vol.1.

[33] A. Nobakhti and H. Wang, “Noniterative h∞-based model order reduction of lti

systems using lmis,” IEEE Transactions on Control Systems Technology, vol. 17,

no. 2, pp. 494–501, 2009.

[34] M. Fu and Z.-Q. Luo, “Computational complexity of a problem arising in fixed

order output feedback design,” Systems & Control Letters, vol. 30, no. 5, pp.

209–215, 1997. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0167691197000145

[35] M. Chilali, P. Gahinet, and C. Scherer, “Multi-objective output-feedback control via

lmi optimization,” IFAC Proceedings Volumes, vol. 29, no. 1, pp. 1691–1696, 1996.

[36] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback control via

lmi optimization,” IEEE Transactions on Automatic Control, vol. 42, no. 7, pp. 896–

911, 1997.

[37] Q. Tran Dinh, S. Gumussoy, W. Michiels, and M. Diehl, “Combining

convex–concave decompositions and linearization approaches for solving bmis, with

application to static output feedback,” IEEE Transactions on Automatic Control,

vol. 57, no. 6, pp. 1377–1390, 2012.

[38] A. Bidram, F. L. Lewis, and A. Davoudi, “Distributed control systems for small-

scale power networks: Using multiagent cooperative control theory,” IEEE Control

systems magazine, vol. 34, no. 6, pp. 56–77, 2014.

190

https://www.sciencedirect.com/science/article/pii/S0167691197000145
https://www.sciencedirect.com/science/article/pii/S0167691197000145


[39] A. R. Girard, J. B. de Sousa, J. A. Misener, and J. K. Hedrick, “A control

architecture for integrated cooperative cruise control and collision warning systems,”

in Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.

01CH37228), vol. 2. IEEE, 2001, pp. 1491–1496.

[40] A. Helmersson, “µ synthesis and lft gain scheduling with

real uncertainties,” International Journal of Robust and Nonlinear

Control, vol. 8, no. 7, pp. 631–642, 1998. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-1239%

28199806%298%3A7%3C631%3A%3AAID-RNC335%3E3.0.CO%3B2-D

[41] H. Bevrani, M. R. Feizi, and S. Ataee, “Robust frequency control in an islanded

microgrid: H∞ and µ -synthesis approaches,” IEEE Transactions on Smart Grid,

vol. 7, no. 2, pp. 706–717, 2016.

[42] A. Megretski and A. Rantzer, “System analysis via integral quadratic constraints,”

IEEE Transactions on Automatic Control, vol. 42, no. 6, pp. 819–830, June 1997.

[43] Z. Wang and T. Zhou, “Iqc based robust stability verification for a networked system

with communication delays,” Science China Information Sciences, vol. 61, no. 12,

p. 122201, 2018.

[44] P. Seiler, “Stability analysis with dissipation inequalities and integral quadratic

constraints,” IEEE Transactions on Automatic Control, vol. 60, no. 6, pp. 1704–

1709, June 2015.

[45] H. Pfifer and P. Seiler, “Robustness analysis of linear parameter varying systems

using integral quadratic constraints,” International Journal of Robust and Nonlinear

Control, vol. 25, no. 15, pp. 2843–2864, 2015.

[46] C. Scherer and S. Weiland, “Linear matrix inequalities in control,” Lecture Notes,

Dutch Institute for Systems and Control, Delft, The Netherlands, vol. 3, no. 2, 2000.

191

https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-1239%28199806%298%3A7%3C631%3A%3AAID-RNC335%3E3.0.CO%3B2-D
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-1239%28199806%298%3A7%3C631%3A%3AAID-RNC335%3E3.0.CO%3B2-D


[47] F. Wu, “Control of linear parameter varying systems,” Ph.D. dissertation,

Department of Mechanical Engineering, University of California, Berkeley, January

1995.

[48] C.-Y. Kao, A. Megretski, and U. Jönsson, “Specialized fast algorithms for iqc

feasibility and optimization problems,” Automatica, vol. 40, no. 2, pp. 239–252,

2004.

[49] A. Hansson and L. Vandenberghe, “A primal-dual potential reduction method

for integral quadratic constraints,” in Proceedings of the 2001 American Control

Conference.(Cat. No. 01CH37148), vol. 4. IEEE, 2001, pp. 3013–3018.

[50] C. Langbort, R. S. Chandra, and R. D’Andrea, “Distributed control design for

systems interconnected over an arbitrary graph,” IEEE Transactions on Automatic

Control, vol. 49, no. 9, pp. 1502–1519, 2004.

[51] P. Viccione, C. W. Scherer, and M. Innocenti, “Lpv synthesis with integral quadratic

constraints for distributed control of interconnected systems,” IFAC Proceedings

Volumes, vol. 42, no. 6, pp. 13–18, 2009.

[52] T. Zhou and Y. Zhang, “On the stability and robust stability of networked dynamic

systems,” IEEE Transactions on Automatic Control, vol. 61, no. 6, pp. 1595–1600,

2015.

[53] M. S. Andersen, S. K. Pakazad, A. Hansson, and A. Rantzer, “Robust stability

analysis of sparsely interconnected uncertain systems,” IEEE Transactions on

Automatic Control, vol. 59, no. 8, pp. 2151–2156, 2014.

[54] C. Mu, K. Wang, Z. Ni, and C. Sun, “Cooperative differential game-based optimal

control and its application to power systems,” IEEE Transactions on Industrial

Informatics, vol. 16, no. 8, pp. 5169–5179, 2020.

192



[55] E. P. van Horssen and S. Weiland, “Synthesis of distributed robust h-infinity

controllers for interconnected discrete time systems,” IEEE Transactions on Control

of Network Systems, vol. 3, no. 3, pp. 286–295, 2016.

[56] Y. Kim, “On the stability margin of networked dynamical systems,” IEEE

Transactions on Automatic Control, vol. 62, no. 10, pp. 5451–5456, 2017.

[57] Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent systems and

synchronization of complex networks: A unified viewpoint,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 57, no. 1, pp. 213–224, 2010.

[58] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice hall Upper Saddle

River, NJ, 1998, vol. 104.

[59] S. Z. Khong, E. Lovisari, and A. Rantzer, “A unifying framework for robust

synchronization of heterogeneous networks via integral quadratic constraints,” IEEE

Transactions on Automatic Control, vol. 61, no. 5, pp. 1297–1309, 2016.

[60] T. Feng, H. Zhang, Y. Luo, and H. Liang, “Globally optimal distributed cooperative

control for general linear multi-agent systems,” Neurocomputing, vol. 203, pp. 12 –

21, 2016.

[61] A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective resistance of a graph,”

SIAM Rev., vol. 50, no. 1, p. 37–66, Feb. 2008.

[62] S. Y. Shafi, M. Arcak, and L. El Ghaoui, “Designing node and edge weights of a

graph to meet laplacian eigenvalue constraints,” pp. 1016–1023, 2010.

[63] R. Dai, J. Maximoff, and M. Mesbahi, “Optimal trajectory generation for

establishing connectivity in proximity networks,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 49, no. 3, pp. 1968–1981, 2013.

[64] S. C. and D. R., “Identification of network topology via quadratic optimization,” pp.

5752–5757, 2015.

193



[65] S. Wang, H. Pfifer, and P. Seiler, “Robust synthesis for linear parameter varying

systems using integral quadratic constraints,” Automatica, vol. 68, pp. 111 – 118,

2016.

[66] D. Noll, “Local convergence of an augmented lagrangian method for matrix

inequality constrained programming,” Optimisation Methods and Software, vol. 22,

no. 5, pp. 777–802, 2007.

[67] P. Apkarian, D. Noll, and O. Prot, “A proximity control algorithm to minimize

nonsmooth and nonconvex semi-infinite maximum eigenvalue functions,” J. Convex

Anal, vol. 16, no. 3-4, pp. 641–666, 2009.

[68] L. Ding, Q. Han, L. Y. Wang, and E. Sindi, “Distributed cooperative

optimal control of dc microgrids with communication delays,” IEEE

Transactions on Industrial Informatics, vol. 14, no. 9, pp. 3924–3935,

2018, doi: http://doi.org/10.1109/TII.2018.2799239.

[69] P. B. g. Dohmann and S. Hirche, “Distributed control for cooperative manipulation

with event-triggered communication,” IEEE Transactions on Robotics, vol. 36, no. 4,

pp. 1038–1052, 2020, doi: http://doi.org/10.1109/TRO.2020.2973096.

[70] S. Hassan-Moghaddam and M. R. Jovanović, “Topology design for stochastically
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