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ABSTRACT 

 

STUDY OF VORTEX AND VORTICITY  

IN A LAMINAR FLOW 

 

Aayush Bhattarai, B.S. Mathematics 

 

The University of Texas at Arlington, 2022 

 

Faculty Mentor:  Chaoqun Liu 

Vortices are ubiquitous in nature. From kitchen sinks to galaxies, they can be found 

everywhere. Usually, the swirling motion of fluids comes to mind when one thinks of 

vortices. Being significantly important in various fields such as engineering, physics, 

chemistry, and aerospace, it has been extensively studied for centuries. Still, we do not 

have an unambiguous and universally accepted definition of a vortex. Often vorticity is 

used to describe the vortex, which is accurate for rigid body rotation; however, this 

explanation is simply not true for the fluid flow in the boundary layer. For fluid rotation, 

pure shear deformation needs to be considered. In order to demonstrate that, we recreated 

Shapiro’s experiment where he used the rigid body (vorticity meter) rotation to show that 

the vorticity is the same thing as the vortex. Additionally, we used dyed ink to investigate 

if the same results still hold in fluid rotation as they did for the vorticity meter.
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CHAPTER 1 

INTRODUCTION 

Many vortex identification methods have been established to scrutinize vortical 

structure in a fluid flow. In 1858, Helmholtz put forward an idea of vorticity tube/filament 

to represent the vortex in the fluid flow [1]. Mathematically, it was found that the 

magnitude of vorticity is twice the angular speed of rotation, and the direction of vorticity 

is the swirling axis for a solid body. With this result, many scientists were convinced with 

the explanation of vortex through the concentration of vorticity and other vorticity methods 

[1, 2]. This result holds for a rigid body but not for fluids. However, vorticity tubes cannot 

constitute vortices in the turbulent viscous flow as rotation strength is minimal near the 

wall and shear stress is dominant. In 1991, Robinson expressed that the relation between 

actual vortices and firm vorticity can be rather weak [3]. People began to be skeptical 

towards the vorticity-based methods, which are classified as the first-generation vortex 

identification methods. 

To overcome these inadequacies, new identification methods, such as Q, Δ, 𝜆𝜆2, 𝜆𝜆𝑐𝑐𝑐𝑐, 

and Ω, were introduced by different experts in this field. These methods were able to judge 

the presence of local rotational motion better and came with their limitations. Hunt et al. 

presented the Q- criterion method to visualize vortical structure more efficiently [4]. 

However, it is threshold-sensitive to express the area 𝑄𝑄 > 𝑄𝑄𝑄𝑄ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 as a vortex. With 

the help of critical point theory, Δ- criterion was proposed by Perry and Chong, which 

could depict vortical structure much better [5]. Unfortunately, to visualize the iso-surface 
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plotting effectively, we need to choose the proper threshold as this method is threshold-

sensitive, too. 

To deal with the downsides of the Q- and Δ- criterion, Jeong and Hussain presented 

the 𝜆𝜆2  method [6]. Still, this method is threshold-sensitive and only works well for a steady 

inviscid flow. The 𝜆𝜆𝑐𝑐𝑐𝑐 vortex identification method, similar to that of the Δ- criterion, was 

introduced by Zhou et al. [7]. This was an improvisation of the Δ- criterion method, which 

visualizes the vortex structure using the imaginary part of the complex eigenvalues of the 

velocity gradient tensor. The limitation of this method was that it was based on the concept 

of the arbitrary threshold. These methods to alleviate the deficiencies of vorticity-based 

vortex identification are categorized as the second-generation method. The major drawback 

was the user-specified threshold, and the different thresholds would show distinct vortex 

structures. In addition, these second-generation vortex identification methods were 

contaminated by shears in some degrees. 

As is the way of science, that is to keep pushing the boundary until the model is 

strictly accurate, Liu et al. published the new vortex identification method named Ω-

method [8]. One of the significant advantages of this method is that it is not sensitive to the 

moderate threshold change. Still, all the mentioned identification methods are scalar while 

the fluid rotation has magnitude and direction. In 2018, Liu gave us the Liutex/Rortex 

method, considered one of the most significant breakthroughs in modern fluid mechanics 

[9]. This method represents the vortex as a vector and can give a local direction and strength 

of the fluid rotation. Shrestha et. al. applied all three-generations (Liutex based) vortex 

identification methods to Direct Numerical Simulation (DNS) data to observe the vortex 
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structure in the flow transition. They reported that Modified Liutex-Omega method is not 

affected by threshold change and can show the iso-surface of vortex structure accurately 

[10]. Finally, Liutex-based methods provided the mathematical definition for the vortex. 
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CHAPTER 2 

VORTEX IDENTIFICATION METHODS 

2.1 First-Generation Vortex Identification Method 

In the past few decades, numerous vortex identification methods have been 

introduced to explain vortex structures. According to Liu [11], we can classify these vortex 

identification methods into three generations, starting from first to third. The first is the 

vorticity-based method, while the second is an eigenvalue-based method. Similarly, third-

generation methods are Liutex-based methods. In this chapter, we will briefly discuss all 

these identification methods. 

2.1.1 Vorticity-based Method 

The first-generation vortex identification method consists of vorticity lines, 

vorticity tubes, and vorticity filaments. As proposed by Helmholtz in 1858 [1], it represents 

the idea of vortices containing vorticity tubes, the magnitude of the vorticity gives its 

strength. Here, the mathematical definition of vorticity is a curl of velocity, i.e., 

Vorticity = Curl 𝐯𝐯 =  ∇ × 𝐯𝐯 = �
𝐢𝐢 𝐣𝐣 𝐤𝐤
∂
∂x

∂
∂y

∂
∂z

u v w
� 

Vorticity   = 𝐢𝐢 �∂w
∂y
− ∂v

∂z
� − 𝐣𝐣 �∂w

∂x
− ∂u

∂z
� + 𝐤𝐤(∂v

∂x
− ∂u

∂y
) 

 

Helmholtz presented three theorems in fluid mechanics that explain the three-

dimensional motion of fluid particles in the surrounding area of vortex filaments. 



 

  5 

Helmholtz's first theorem: The strength of a vortex filament is constant along its 

length. 

Helmholtz's second theorem: A vortex filament cannot end in a fluid; it must extend 

to the boundaries of the fluid or form a closed path. 

Helmholtz's third theorem: In the absence of rotational external forces, a fluid that 

is initially irrotational remains irrotational [12]. 

2.2 Second-Generation Vortex Identification Method 

 Second-generation vortex identification methods are eigenvalue-based methods. 

These are also based on closed or spiraling streamlines. These methods were developed to 

undertake the limitations of the vorticity-based method. However, it comes with its own 

drawbacks as well. The identification methods that fall under these categories are Q 

criterion, Δ criterion, 𝜆𝜆𝑐𝑐𝑐𝑐 criterion, and 𝜆𝜆2 criterion. We will briefly discuss each of them 

below. 

2.2.1 Q Criterion 

Given by Hunt et al. [4], it is one of the most widely used methods to visualize 

vortex structure. Q is defined as the residual of the vorticity tensor norm squared subtracted 

from the strain-rate tensor norm squared. Mathematically,  

𝑄𝑄 =
1
2

(‖𝐵𝐵‖𝐹𝐹2 − ‖𝐴𝐴‖𝐹𝐹2) 

Where A, B are the symmetric and antisymmetric parts of the velocity gradient 

tensor and ‖∗‖𝐹𝐹2  represents the Frobenius norm. 
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𝐴𝐴 =
1
2

(𝛻𝛻�⃗�𝑣 + 𝛻𝛻�⃗�𝑣𝑇𝑇) =

⎣
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⎥
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 The region with Q > 0 can be thought as a vortex. 

2.2.2 Δ Criterion 

The vortex is found in the region where the velocity gradient tensor has complex 

eigenvalues in this method. The characteristics equation where 𝜆𝜆1, 𝜆𝜆2, and 𝜆𝜆3 are the 

eigenvalues of the 3 × 3 matrix of velocity gradient tensor can be written as  

𝜆𝜆3 + 𝐼𝐼1𝜆𝜆2 + 𝐼𝐼2𝜆𝜆 + 𝐼𝐼3 = 0 

Where 𝐼𝐼1, 𝐼𝐼2, and 𝐼𝐼3 are the first, second and third invariants of the characteristic 

equation. Mathematically they are given as 

𝐼𝐼1 = −(𝜆𝜆1 +  𝜆𝜆2  +  𝜆𝜆3) = −𝑄𝑄𝑟𝑟(𝛻𝛻�⃗�𝑣) 

𝐼𝐼2 = 𝜆𝜆1𝜆𝜆2 + 𝜆𝜆2𝜆𝜆3 + 𝜆𝜆3𝜆𝜆1 = −
1
2

[tr(𝛻𝛻�⃗�𝑣2) − tr(𝛻𝛻�⃗�𝑣)2] 

𝐼𝐼3 = −𝜆𝜆1𝜆𝜆2𝜆𝜆3 = − det(𝛻𝛻�⃗�𝑣) 

where tr represents trace of a matrix.  

This method is a scalar method and is sensitive to the selection of iso-surface 

thresholds. 
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2.2.3 𝜆𝜆𝑐𝑐𝑐𝑐 Criterion 

This method is a further exploration of the Δ criterion. When zero threshold is 

applied, this method gives the same result as that of Δ criterion.  Here, the vortex structure 

is visualized by using the imaginary part of complex eigenvalues of the velocity gradient 

tensor. The tensor formation of a velocity gradient tensor can be written as  

𝛻𝛻�⃗�𝑣 = [�⃗�𝑣𝑟𝑟 �⃗�𝑣𝑐𝑐𝑟𝑟 �⃗�𝑣𝑐𝑐𝑐𝑐] �
𝜆𝜆𝑟𝑟 0 0
0 𝜆𝜆𝑐𝑐𝑟𝑟 𝜆𝜆𝑐𝑐𝑐𝑐
0 −𝜆𝜆𝑐𝑐𝑐𝑐 𝜆𝜆𝑐𝑐𝑟𝑟

�  [�⃗�𝑣𝑟𝑟 �⃗�𝑣𝑐𝑐𝑟𝑟 �⃗�𝑣𝑐𝑐𝑐𝑐]−1 

where 𝜆𝜆𝑟𝑟 is the real eigenvalue, �⃗�𝑣𝑟𝑟is eigenvector, 𝜆𝜆𝑐𝑐𝑟𝑟 ± 𝑖𝑖𝜆𝜆𝑐𝑐𝑐𝑐 are complex eigenvalues with 

corresponding eigenvectors �⃗�𝑣𝑐𝑐𝑟𝑟 ± 𝑖𝑖 �⃗�𝑣𝑐𝑐𝑐𝑐.   

2.2.4 𝜆𝜆2 Criterion 

This vortex identification is based on the cyclostrophic balance. This balance 

happens when centrifugal forces and horizontal pressure gradients push each other equally 

in the opposite direction. This is when we have minimal pressure on the axis of rotation. 

In this method, the calculation is done in a vortical region when we have minimum pressure 

on the axis of rotation, as mentioned above. Pressure representation in a Hessian matrix, 

the symmetric part S of the incompressible Navier-Stokes equation gradient can be written 

as:  

𝑆𝑆 = 𝐴𝐴2 + 𝐵𝐵2 = −
∇(∇𝑝𝑝)
𝜌𝜌

 

where p represents pressure. 

2.3 Third-Generation Vortex Identification Method 

 Starting with the Liutex method, we have the Liutex-Omega method (Ω𝐿𝐿), Modified 

Liutex-Omega method (Ω�𝐿𝐿), and the Liutex Core Lines method, all of which fall in third-

generation vortex identification methods. The significant difference between third and 
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other generation methods is that Liutex represents vortex as a vector while the second 

generation represents vector as scalar and eigenvalue related. This gives the vortex both 

magnitude as well as the direction of the rotation.  Here, I will only be discussing the Liutex 

method. 

2.3.1 Liutex Method  

As stated above, the prominent feature of the Liutex method is that it represents the 

vortex as a vector. Liutex is defined as  

𝑅𝑅�⃗ = 𝑅𝑅𝑟𝑟  
 

where R is the magnitude of Liutex and 𝑟𝑟  is the Liutex direction. 

Mathematically, Liutex represents a rigid rotation of fluids. Following the reference 

[13], the formula for magnitude and direction of Liutex can be given as  

𝑅𝑅 = ω��⃗ ∙ 𝑟𝑟 − �(ω��⃗ ∙ 𝑟𝑟)2 − 4𝜆𝜆𝑐𝑐𝑐𝑐2  

where  𝑟𝑟 is the real eigenvector of the velocity gradient tensor (𝛻𝛻𝑣𝑣)����⃗  and 𝜆𝜆𝑐𝑐𝑐𝑐 is the imaginary 

part of the conjugate complex eigenvalues of 𝛻𝛻�⃗�𝑣.
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CHAPTER 3 

VORTEX VS VORTICITY 

With completion of the discussion of different generations of vortex identification 

methods, we have reached the part where we will discuss the difference between the vortex 

and vorticity and the limitation of first-generation vorticity-based vortex identification 

methods.  

Let, �⃗�𝑣 = (𝜕𝜕, 𝑣𝑣,𝜕𝜕) be velocity, 𝑆𝑆𝑎𝑎����⃗ = (𝑆𝑆𝑥𝑥,𝑆𝑆𝑦𝑦,𝑆𝑆𝑧𝑧) be angular speed and 𝑟𝑟 = (𝜕𝜕,𝜕𝜕, 𝜕𝜕) 

is a location vector. Here velocity can be written as,  

�⃗�𝑣 = 𝑆𝑆𝑎𝑎����⃗ × 𝑟𝑟 = �𝑆𝑆𝑥𝑥, 𝑆𝑆𝑦𝑦,𝑆𝑆𝑧𝑧� × (𝜕𝜕,𝜕𝜕, 𝜕𝜕) = �𝑆𝑆𝑦𝑦𝜕𝜕 − 𝑆𝑆𝑧𝑧𝜕𝜕, 𝑆𝑆𝑧𝑧𝜕𝜕 − 𝑆𝑆𝑥𝑥𝜕𝜕, 𝑆𝑆𝑥𝑥𝜕𝜕 − 𝑆𝑆𝑦𝑦𝜕𝜕�  
 
since vorticity is a velocity curl. Mathematically, 

∇ × �⃗�𝑣 = �
𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕
𝜕𝜕𝜕𝜕
� × �𝑆𝑆𝑦𝑦𝜕𝜕 − 𝑆𝑆𝑧𝑧𝜕𝜕, 𝑆𝑆𝑧𝑧𝜕𝜕 − 𝑆𝑆𝑥𝑥𝜕𝜕, 𝑆𝑆𝑥𝑥𝜕𝜕 − 𝑆𝑆𝑦𝑦𝜕𝜕� = �2𝑆𝑆𝑥𝑥, 2𝑆𝑆𝑦𝑦, 2𝑆𝑆𝑧𝑧� = 2𝑆𝑆𝑎𝑎����⃗  

 
This implies that vorticity is twice that of the angular speed. This way, vorticity was 

associated with vortex, which is true for rigid body rotation since shear is zero to negligible 

in this case. However, for fluid rotation, we need to consider pure shear deformation. 

In simple words, vorticity can be written as, 

Vorticity = Vortex + Shear 

In a rigid body, with negligible shear,  

Vorticity = Vortex 

However, for fluid body, shear needs to be considered, so 

Vorticity ≠ Vortex
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 That means the first-generation vortex identification method (vorticity-based) is 

contaminated by shear, especially in the boundary layer flow transition [14]. In order to 

express this, we recreated and modified Shapiro’s experiment where he showed vorticity 

as the rotation axis and vorticity as the strength of the vortex. 

3.1 Vorticity Meter and Long Channel Device 

Two of the primary apparatus used in this experiment were the vorticity meter and 

long channel device. To observe the vorticity in a fluid flow, we designed, and 3-D printed 

the vorticity meter similar to the one Shapiro used in one of his experiments. 

 

Figure 3.1: Vorticity Meter 
 

The vanes are designed in such a way that they are at right angles and can act as 

paddle wheels. Vanes are attached to a plastic tube which helps the vorticity meter to float 

vertically. We can also change the water level inside the tube to make sure it remains afloat 

and does not “drown.” Finally, the arrowhead gives us the direction of rotation as the vanes 

turn about their axis. 

Another apparatus is a long channel device that consists of an open channel of 

rectangular cross-section supported at each end by frames. One of the frames is adjustable 
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so that the slope of the channel can be varied. The channel walls are made from clear acrylic 

plastic to achieve complete visibility of the flow characteristics. This Flow Channel 

provides a low-cost experiment with accuracy comparable to larger-scale channel 

investigations. The nominal dimensions of the P6245 channel are 55 x 175 x 2500 mm (W 

x H x L). 

 

Figure 3.2: Cussons P6245 Flow channels 

3.2 Reynolds Number and Laminar Flow 

To determine if the flow is laminar or turbulent, we need to calculate the Reynolds 

number of the flow. The parameters required to achieve that are velocity and hydraulic 

radius of the flow, and the kinematic viscosity. This viscosity is temperature dependent, 

which can be determined by checking lab temperature. As the flume’s width is constant, 

we need to determine the velocity and flow depth to calculate the Reynolds number. We 

used a regular ruler to determine the flow depth (ruler was attached to the flume), and 

velocity was determined by observing how much water the flume was discharging at a 

particular time. The unit we used was ‘liters per minute. 
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Here is the complete procedure for laminar flow calculation: 

1) To determine if the flow is laminar or turbulent, we need to calculate the Reynolds 

number of the flow. The equation for the Reynolds number is, 

𝑅𝑅𝑟𝑟 =  
𝑉𝑉𝑅𝑅
ν

 

Where, V= Average velocity of the flow (𝑚𝑚/𝑟𝑟),  

R = Hydraulic radius of the flow (𝑚𝑚), and 

ν = kinematic viscosity (𝑚𝑚2/𝑟𝑟).  

2) Velocity can be determined by observing how much water the flume was discharging in 

a particular time divided by the flow area. 

𝑉𝑉 =  
𝑄𝑄
𝐴𝐴

 

Where, Q = Discharge of the flow (𝑚𝑚3/𝑟𝑟) 

A = Area of the flow section (𝑚𝑚2) 

3) Discharge of the flow can be determined by measuring the volume of water in a 

particular time. 

𝑄𝑄 =  
𝑉𝑉
𝑄𝑄

 

V = collected volume of water (in liter) 

t = time for the water collection (s)  

4) Hydraulic Radius can be defined by area divided by the wetted perimeter of the channel. 

𝑅𝑅 =  
𝐴𝐴
𝑃𝑃

 

Where, P is the wetted perimeter of the channel 

The wetted perimeter can be defined as: 
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P = W + 2 × D 

Where, W= Width of the channel (m) 

D = Depth of the water (m) 

If we measure all the parameters and insert them in equation 1, we will find the Re of the 

flow. For an open channel, if the Re < 500, the flow keeps laminar. 

3.3 Modified Shapiro’s Experiment 

 With all the essential things described, we are ready to dive into our experiment. 

First, we recreated the same experiment Shapiro did to show that vortex and vorticity are 

the same through rigid body rotation. The experimental setup was a long channel device 

with a laminar flow and vorticity meter on it. As expected, the vorticity meter rotated as it 

moved in the direction of the fluid flow.  

 

Figure 3.3: Vorticity Meter Rotation in a Laminar Flow 

After that, we removed the vorticity meter and used dyed ink instead. Doing so, we 

observed that the dyed ink just moved in a straight line without any form of rotation.  
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Figure 3.4: Dyed Ink Injector 
 
 The vorticity meter used in Shapiro’s and our first experiment was an instrument 

half-submerged in water to detect the vortices formed in the water. However, the tool itself 

is rigid; hence it will only rotate for a rigid body where shear is negligible or zero. But the 

shear cannot be ignored in a real fluid. This means the fluid does not rotate, but the meter 

must rotate as it is a rigid body.  

 The major takeaway from this experiment is that even through there is no vortex in 

a streamline flow, the vorticity meter still rotated while the ink just moved in a straight 

line. This means, vorticity is not proper way to represent vortex. 

3.4 Mathematical Analysis 

Rewriting the derivation that shows vorticity is twice the angular speed. 

Let, �⃗�𝑣 = (𝜕𝜕, 𝑣𝑣,𝜕𝜕) be velocity, 𝑆𝑆𝑎𝑎����⃗ = (𝑆𝑆𝑥𝑥, 𝑆𝑆𝑦𝑦,𝑆𝑆𝑧𝑧) be angular speed and 𝑟𝑟 = (𝜕𝜕,𝜕𝜕, 𝜕𝜕) 

is a location vector. Here velocity can be written as,  

�⃗�𝑣 = 𝑆𝑆𝑎𝑎����⃗ × 𝑟𝑟 = �𝑆𝑆𝑥𝑥, 𝑆𝑆𝑦𝑦,𝑆𝑆𝑧𝑧� × (𝜕𝜕,𝜕𝜕, 𝜕𝜕) = �𝑆𝑆𝑦𝑦𝜕𝜕 − 𝑆𝑆𝑧𝑧𝜕𝜕, 𝑆𝑆𝑧𝑧𝜕𝜕 − 𝑆𝑆𝑥𝑥𝜕𝜕, 𝑆𝑆𝑥𝑥𝜕𝜕 − 𝑆𝑆𝑦𝑦𝜕𝜕�  
 
since vorticity is a velocity curl. Mathematically, 

∇ × �⃗�𝑣 = �
𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕
𝜕𝜕𝜕𝜕
� × �𝑆𝑆𝑦𝑦𝜕𝜕 − 𝑆𝑆𝑧𝑧𝜕𝜕, 𝑆𝑆𝑧𝑧𝜕𝜕 − 𝑆𝑆𝑥𝑥𝜕𝜕, 𝑆𝑆𝑥𝑥𝜕𝜕 − 𝑆𝑆𝑦𝑦𝜕𝜕� = �2𝑆𝑆𝑥𝑥, 2𝑆𝑆𝑦𝑦, 2𝑆𝑆𝑧𝑧� = 2𝑆𝑆𝑎𝑎����⃗  
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Here, the derivation works for a rigid body, but it won’t for the fluid as the derivation 

does not take decomposition into account. We will explore this from a different aspect. 

Let’s describe angular speed and vorticity through change of velocity, i.e.,  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

.  

∇ × �⃗�𝑣 = �
𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕
𝜕𝜕𝜕𝜕
� × (𝜕𝜕, 𝑣𝑣,𝜕𝜕) = (

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) 

Velocity gradient tensor is a tensor made up of all derivatives of the velocity. 

∇�⃗�𝑣 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

We will get, ∇ × �⃗�𝑣 = (𝛻𝛻�⃗�𝑣)32 − (𝛻𝛻�⃗�𝑣)23, (𝛻𝛻�⃗�𝑣)13 − (𝛻𝛻�⃗�𝑣)31, (𝛻𝛻�⃗�𝑣)21 − (𝛻𝛻�⃗�𝑣)12 

or,∇ × �⃗�𝑣 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕
� − �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� −    �

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

−  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 

 Suppose the angular speed for the x-axis and y-axis are zero, and there is only 

angular speed along the z-axis. In that case, the first two terms will be equal to zero, and 

we will have 

∇ × �⃗�𝑣 = (𝛻𝛻�⃗�𝑣)21 − (𝛻𝛻�⃗�𝑣)12 =  
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

There can be two possibilities here. 
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Here, the object is rotating in an anti-clockwise direction as both 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 𝑎𝑎𝑎𝑎𝑜𝑜 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

 are in an 

anti-clockwise direction. 

 

Next, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

 have the same magnitude. However, their direction is in opposite 

direction as 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 is moving anti-clockwise while 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

 is moving in a clockwise direction.  

For a rigid body, since there is no deformation, we have �𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
� = �𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
�. Suppose an 

object is rotating around a fixed axis with a fixed angular speed 𝑆𝑆𝑎𝑎����⃗ = (0,0, 𝑆𝑆𝑧𝑧). Let the 

velocity be �⃗�𝑣 = (𝜕𝜕, 𝑣𝑣, 0) and the location vector 𝑟𝑟 = (𝜕𝜕, 𝜕𝜕, 0). 

So,  

�⃗�𝑣 = 𝑆𝑆𝑎𝑎����⃗ × 𝑟𝑟 = (0,0, 𝑆𝑆𝑧𝑧) × (𝜕𝜕, 𝜕𝜕, 0) = (−𝑆𝑆𝑧𝑧𝜕𝜕, 𝑆𝑆𝑧𝑧𝜕𝜕, 0) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕 − 𝑆𝑆𝑧𝑧𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑆𝑆𝑧𝑧 
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𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑆𝑆𝑧𝑧𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑆𝑆𝑧𝑧 

With this, we can see that the result that implies vorticity is rotation means �𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
� = �𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
� i.e., 

the absolute value of change in the x-component (u) of velocity with respect to y and 

change in the y-component (v) of velocity with respect to x are equal. The matrix to 

represent rigid body rotation at different axes are as follows. 

Rotation matrix (rigid rotation) around the z-axis. 

�
0 −𝑎𝑎 0
𝑎𝑎 0 0
0 0 0

� 

Rotation matrix (rigid rotation) around the y-axis. 

�
0 0 𝑎𝑎
0 0 0
−𝑎𝑎 0 0

� 

Rotation matrix (rigid rotation) around the x-axis. 

�
0 0 0
0 0 −𝑎𝑎
0 𝑎𝑎 0

� 

However, in most cases for fluid, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
≠ − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
. Also, when  𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦
≠ − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
, there will be a 

problem in decomposing the velocity gradient tensor to a rotational matrix. The velocity 

gradient tensor does not only have a rotation but is coupled with rotation, shear and 

stretching. Hence, we use Cauchy-Stokes decomposition to decompose the velocity 

gradient tensor. We have, 

∇�⃗�𝑣 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎥
⎥
⎤
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From Cauchy-Stokes decomposition,  

∇�⃗�𝑣 = 𝐴𝐴 + 𝐵𝐵 

where,  

𝐴𝐴 =
1
2

(∇�⃗�𝑣 + ∇�⃗�𝑣𝑇𝑇) 

𝐵𝐵 =
1
2

(∇�⃗�𝑣 − ∇�⃗�𝑣𝑇𝑇) 

Now,  

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕
�

1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕
�

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

1
2
�
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
2
�
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

𝐵𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 0 −

1
2
�
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
2
�
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 0 −

1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕
�

−
1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕
� 0

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Here, A and B represent a deformation and rotation matrix respectively. Also, B is the 

matrix that represents vorticity, which does not consider deformation at all.  

3.5 Vorticity and Liutex 

A local fluid rotation axis is defined as a vector that can only have stretching 

(compression) along its length. It is one of the fundamental properties that the rotational 

axis cannot be stretched or compressed or deform or rotate itself in any other direction 

than along its length. Also, the change in velocity of the rotational axis can only be in its 

rotational axis direction. 
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All rotations must follow this property of the rotational axis. We can write the 

increment of �⃗�𝑣  in the direction of  𝑜𝑜𝑟𝑟 is 𝑜𝑜�⃗�𝑣 = ∇�⃗�𝑣 ∙ 𝑜𝑜𝑟𝑟. By following the property of the 

rotational axis, it must satisfy that 𝑜𝑜�⃗�𝑣 = ∇�⃗�𝑣 ∙ 𝑜𝑜𝑟𝑟 = 𝛼𝛼𝑜𝑜𝑟𝑟  along the rotation axis, which 

indicates 𝑜𝑜𝑟𝑟 is the real eigenvector of ∇�⃗�𝑣. 

First, let’s analyze if the vorticity satisfies this fundamental concept of the 

rotational axis. We have, 

𝑜𝑜�⃗�𝑣 = ∇�⃗�𝑣 ∙ 𝜔𝜔��⃗   

where 𝜔𝜔��⃗  is a vorticity. From Cauchy-Stokes decomposition,  

𝑜𝑜�⃗�𝑣 = (𝐴𝐴 + 𝐵𝐵) ∙ 𝜔𝜔��⃗  

𝑜𝑜�⃗�𝑣 = 𝐴𝐴 ∙ 𝜔𝜔��⃗ + 𝐵𝐵 ∙ 𝜔𝜔��⃗  

Assuming 𝜔𝜔��⃗ = 𝑎𝑎1𝑟𝑟1���⃗ + 𝑎𝑎2𝑟𝑟2���⃗ + 𝑎𝑎3𝑟𝑟3���⃗   where 𝑟𝑟1���⃗ , 𝑟𝑟2���⃗  𝑎𝑎𝑎𝑎𝑜𝑜 𝑟𝑟3����⃗  and B is a rotation (vorticity) 

matrix, we have, 

𝑜𝑜�⃗�𝑣 = 𝐴𝐴 ∙ (𝑎𝑎1𝑟𝑟1���⃗ + 𝑎𝑎2𝑟𝑟2���⃗ + 𝑎𝑎3𝑟𝑟3���⃗ ) + (∇ × �⃗�𝑣) × 𝜔𝜔��⃗   

Now, A𝑟𝑟1���⃗  = 𝜆𝜆𝑟𝑟1���⃗ , 

𝑜𝑜�⃗�𝑣 = 𝑎𝑎1𝜆𝜆1𝑟𝑟1���⃗ + 𝑎𝑎2𝜆𝜆2𝑟𝑟2���⃗ + 𝑎𝑎3𝜆𝜆3𝑟𝑟3���⃗ + 0 

Unless 𝜆𝜆1 = 𝜆𝜆2 = 𝜆𝜆3 = 𝜆𝜆 

𝑜𝑜�⃗�𝑣 = 𝑎𝑎1𝜆𝜆1𝑟𝑟1���⃗ + 𝑎𝑎2𝜆𝜆2𝑟𝑟2���⃗ + 𝑎𝑎3𝜆𝜆3𝑟𝑟3���⃗ + 0 ≠ 𝜆𝜆(𝑎𝑎1𝑟𝑟1���⃗ + 𝑎𝑎2𝑟𝑟2���⃗ + 𝑎𝑎3𝑟𝑟3���⃗ ) = 𝜆𝜆𝜔𝜔��⃗  

From here, we can see that, in general, Vorticity is not a local fluid rotational axis. 

Now, let’s compare if Liutex satisfies this condition. Based on the definition of 

Liutex (section 2.3.3), Liutex is defined as  

𝑅𝑅�⃗ = 𝑅𝑅𝑟𝑟  

where R is the magnitude of Liutex and 𝑟𝑟  is the Liutex direction. Here, R is given as  

𝑅𝑅 = ω��⃗ ∙ 𝑟𝑟 − �(ω��⃗ ∙ 𝑟𝑟)2 − 4𝜆𝜆𝑐𝑐𝑐𝑐2  
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where  𝑟𝑟 is the real eigenvector of the velocity gradient tensor (𝛻𝛻𝑣𝑣)����⃗  and 𝜆𝜆𝑐𝑐𝑐𝑐 is the imaginary 

part of the conjugate complex eigenvalues of 𝛻𝛻�⃗�𝑣. Since the Liutex direction (𝑟𝑟)���⃗  is an 

eigenvector of the velocity gradient tensor, it automatically satisfies this condition. 

 By finding the flaw in vorticity to represent rotation direction, we investigate the 

magnitude calculation from vorticity and Liutex in Couette flow.   

 

Figure 3.5: Couette Flow 
 
Some of the assumptions made in Couette Flow are: 

• Couette flow is constant pressure flow (𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

 ; the variation of pressure in y–direction 

is zero). 

• The only nonzero velocity component is u (v = w = 0) as the flow is consistent and 

directed in the x-direction. 

Here, the velocity gradient tensor takes the given form. 

∇�⃗�𝑣 = �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

� = �0 𝑎𝑎
0 0�; where a is some magnitude. 
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 Now, calculating the magnitude of vorticity in a Couette flow.  

Vorticity = ∇ × �⃗�𝑣 = �
𝒊𝒊 𝒋𝒋 𝒌𝒌
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕 𝑣𝑣 𝜕𝜕
�= (0, 0, -a). 

Even though there is no rotation in the Couette flow, the vorticity is still giving us some 

magnitude value. This is the same as our experiment result where the vorticity meter 

rotated even when there is no rotation in the laminar (streamline) flow.  

 With this, we will calculate the magnitude of Liutex in a Couette flow. The 

magnitude of Liutex is given as follows: 

𝑅𝑅 = ω��⃗ ∙ 𝑟𝑟 − �(ω��⃗ ∙ 𝑟𝑟)2 − 4𝜆𝜆𝑐𝑐𝑐𝑐2  

Calculating the eigenvalues of Liutex from the characteristic equation: 

| 𝐴𝐴 − 𝜆𝜆𝐼𝐼| = 0 

 � �0 𝑎𝑎
0 0�  − �𝜆𝜆 0

0 𝜆𝜆� � = 0 

�  �𝜆𝜆 −𝑎𝑎
0 𝜆𝜆 � � = 0 

⇒ 𝜆𝜆 = 0,0   

which are both real eigenvalues. Hence, 𝜆𝜆𝑐𝑐𝑐𝑐 goes to zero. Now, we have,  

𝑅𝑅 = ω��⃗ ∙ 𝑟𝑟 − �(ω��⃗ ∙ 𝑟𝑟)2 = 0 

Here, we have the magnitude of Liutex as zero, which is accurate for the Couette flow as 

there is no rotation in the system.  

From these, we can conclude that Liutex is more reasonable than vorticity to 

investigate both magnitude and rotation of the vortex. 
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CHAPTER 4 

CONCLUSION AND DISCUSSION 

The two major misunderstandings regarding vortex come from the derivation of 

vorticity as an equivalent of a vortex and the uses of a solid body to show fluid rotation. In 

Shapiro’s experiment, he used rigid body rotation to show that vorticity is the same as the 

vortex. This is not essentially wrong for a rigid body rotation as it lacks shear. Vorticity 

can act as a rotation when there is negligible to zero shear, so the vorticity becomes rotation 

for the rigid body. However, fluid does not have the same properties as that of a rigid body. 

In fluid rotation, there is a pure shear deformation that needs to be considered. 

Proper understanding of fundamental concepts such as vortex and vorticity in fluid 

mechanics can help us to expand our research extensively. This can also provide aid in 

turbulence research as vortices constitute a significant component of turbulent flow. 

Turbulence is a fluid motion characterized by chaotic changes in pressure and flow 

velocity. By detecting the vortex precisely, we will learn about the turbulence in the fluid 

flow properly. These results can be used in engineering designs to tackle the pressure and 

flow velocity changes in fluid motion. 

In conclusion, vortex and vorticity are two different things in a fluid motion. 

Vorticity cannot represent vortex in a fluid flow as a pure shear deformation is present in 

the fluid, especially near the wall. Hence, vorticity does not always imply rotation.  
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APPENDIX A 

LIST OF SYMBOLS
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Q = Q Criterion 

Δ = Delta Criterion  

 𝜆𝜆2 = Lambda-2 Criterion  

 𝜆𝜆𝑐𝑐𝑐𝑐 = Lambda-ci Criterion 

 Ω = Omega Criterion 

‖∗‖𝐹𝐹2  = Frobenius Norm 

𝛻𝛻�⃗�𝑣 = Gradient Velocity Tensor 

 Ω𝐿𝐿= Liutex-Omega Method 

 Ω�𝐿𝐿= Modified Liutex-Omega Method 

𝑅𝑅�⃗  = Liutex Vector 

𝑅𝑅 = Liutex Magnitude 

𝑟𝑟 = Liutex Direction 

Re = Reynolds Number
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