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Cognition is the mental process of acquiring knowledge and understanding

through thought, experience and senses. Based on Embodied Cognition the-

ory, physical activities are an important manifestation of cognitive functions.

As a result, they can be employed to both assess and train cognitive skills. In or-

der to assess various cognitive measures, the ATEC system has been proposed.

It consists of physical exercises with different variations and difficulty levels,

designed to provide assessment of executive and motor functions.

This thesis focuses on obtaining human activity representation from

recorded videos of ATEC tasks in order to automatically assess embodied cogni-

tion performance. Representation learning is a collection of methods that allows

a model to be fed with raw data and to automatically encode the representations

needed for downstream task like activity recognition. Both supervised and self-

supervised approaches are employed in this work, But the emphasis is on the

latter which can exploit a small set of annotated data to obtain an effective rep-

resentation. The performance of different self-supervised approaches are inves-

tigated for automated cognitive assessment of children performing ATEC tasks.

This effort is the first step toward building a comprehensive digital phe-

notyping framework that can collect multi-modal data from variety of sensors

such as cameras, wearables, etc., for monitoring human behaviour. Digital phe-

notyping is the moment by moment, quantification of the individual-level hu-



man phenotype using data from personal digital devices. Digital phenotyping

will close the loop between detecting clinical phenomena and taking action by

using data to trigger and deliver personalized digital treatment or prevention

interventions.
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CHAPTER 1

INTRODUCTION

This thesis focuses on extracting human activity representations from recorded

video in order to automatically assess embodied cognition performance. This

is the first step toward developing a comprehensive digital phenotyping frame-

work capable of collecting multi-modal data from a variety of sensors in order

to monitor human behavior and recommend appropriate treatments. In this

work, both supervised and self-supervised approaches are used. Supervised

methods require all collected data to be carefully annotated by experts, whereas

self-supervised methods can use a small set of annotated data to obtain an ef-

fective representation. Some of the concepts mentioned above are further ex-

plained in the sections that follow.

1.1 Digital Phenotyping

In genetics, phenotype refers to an organism’s composite observable traits. Dig-

ital phenotyping is quantification of the individual-level human phenotype on

a moment-by-moment basis utilizing data from personal digital devices. Its

goal is to monitor and measure human behavior using data generated and col-

lected automatically by smartphones, cameras, wearables, and other connected

devices [51, 48].

Digital phenotyping will close the loop between detecting clinical phenom-

ena and taking action by using data to trigger, tailor and deliver personalized

digital treatment or prevention interventions as shown in Figure 1.1. The multi-
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modal data is recorded from participants based on studies defined by special-

ists, as shown in this diagram. This data is then examined using an automated

algorithm to help experts modify the experiment accordingly [51, 48].

This concept of the extended phenotype is supported by the growth and

evolution of digital devices and sensors. There is a growing collection of health-

related data that can impact assessments of human illness thanks to social me-

dia, wearable devices, and camera sensors. In the discipline of psychiatry, it’s

difficult to overestimate the value of data-driven, objective measurements of

individual behavior. Previously, psychiatrists relied almost entirely on self-

reports of mental health symptoms, which have few biological markers and

unclear diagnostic categories [48].

In order to identify individuals at risk for depression, anxiety, or even sui-

cide, digital phenotyping can include passive monitoring of activity changes

using an accelerometer, phone usage statistics, and natural language analysis of

social media posts. The online data gathering can also be used to detect changes

in the condition and relapse early on. Finally, medical professionals can use this

information to design interventions and treatments for individuals. The data,

for example, can be utilized to adapt therapy for people with depression in or-

der to boost their engagement and treatment effectiveness [48].

Accelerating progress in this paradigm involves scalable data collection in-

frastructure that addresses equity and privacy concerns, machine learning-

based data processing and analysis methodologies, and the development of

data quality validation tools that address bias and noise concerns.
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Figure 1.1: An integrated multi user platform for digital phenotyping
adopted from [48]. the multi-modal data is recorded from par-
ticipants based on some studies defined by experts. Then this
data is analyzed automatically and the resulting insight would
guide experts to recommend diagnosis or further data collec-
tion.

1.2 Cognition

Cognition is defined as the mental actions or process of acquiring knowledge

and understanding through thought, experience and senses [24, 27, 27]. There

are many different types of cognitive processes that include:

Attention: The cognitive process of selectively focusing on one piece of in-

formation while dismissing other perceptible data.

Language: The ability to comprehend and express oneself through spoken
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and written language, allowing humans to communicate with one another.

Learning: The cognitive processes involved in receiving new data, synthe-

sizing information, and integrating it with prior knowledge.

Memory: The faculty of the brain by which data or information is encoded,

stored, and retrieved when needed. It is the systematic collection of data

through time with the goal of influencing future behavior. [103]

Thought: An essential part of every cognitive process that lets people to

engage in decision-making, problem-solving, and higher reasoning. [24]

Everything in a person’s daily life, including their general health, is influ-

enced by cognitive processes. Every piece of information that humans pick up

from their surroundings has to be transformed into signals that their brain can

comprehend. It is critical that the world’s experience be simplified to the fun-

damentals in order for the brain to comprehend all of this incoming informa-

tion. Furthermore, cognition encompasses not just what happens within peo-

ple’s heads, but also how their thoughts and mental processes influence their

behaviors. Humans’ behavior and interactions with the environment are influ-

enced by their awareness of the world around them, their recollections of past

events, and their understanding of language [24]. Physical activities can be used

to both measure and teach cognitive skills, as they are a significant expression

of cognitive functions. This will be described further in the next subsection.
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1.2.1 Embodied Cognition

Embodied cognition is the theory that many characteristics of cognition, are

shaped by the entire body of the organism [1]. High-level mental constructs

such as concepts, as well as performance on various cognitive tasks such as rea-

soning and judgment, are among the cognition aspects. The motor system, the

perceptual system, physical interactions with the environment, and the world

assumptions built into the organism’s structure are all examples of physical fea-

tures [1].

Embodied cognition has a short history, having been presented by philoso-

phers Martin Heidegger, Maurice Merleau Ponty, and John Dewey in the early

twentieth century. Embodied cognition has also been empirically researched in

recent decades. Early scientists suggested that cognition could be represented

using formal logic, and that the brain might be viewed as a digital comput-

ing unit. To put it another way, the mind was viewed as a separate computer

program from the body, with the brain serving as general-purpose hardware

[81]. Chomsky’s theory of language as a series of meaningless symbols fit this

paradigm [25].

Cognitive linguists, such as Lakoff, argued that semantics evolved from the

nature of the body [66]. Their research looked into how, when, and why people

use metaphors. Humans, for example, understand having control as ”Up” and

being subject to control as ”Down” by using sentences such as ”I have control

over him,” ”I am on top of the situation,” and so on. Love is also described as a

physical force: ”I could feel the electricity between us” and ”They gravitated to

each other immediately” [66, 81].
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This concept not only demonstrated how common metaphors are in ordi-

nary language, but it also asserted that many key foundations of Western phi-

losophy, such as the notions of reason and language being separate from the

body, were erroneous. To summarize, it was proposed that the ordinary con-

ceptual framework of humans is basically metaphorical [81].

This notion was expanded by claiming that philosophical concepts are also

formed metaphorically. They asserted that the mind is inherently embodied,

that abstract concepts are mostly metaphorical, and that the majority of thought

is unconscious. As a result, because cognition is grounded in bodily experience,

reason does not rest on abstract laws. For example, thinking about the future

causes people to lean forward slightly, whereas thinking about the past causes

them to lean back slightly because the future is ahead [67]. This research focuses

primarily on executive functions, which coordinate, integrate, and control cog-

nition processes. The following subsection will provide a brief overview of the

Executive Function.

Despite the evidence for the functional importance of embodied cognition,

neuro-cognitive evaluation methodologies have remained largely unchanged.

Neuro-psychologists use seated activities to measure attention, memory, rea-

soning, and other executive function (EF) tests, whether they are trained on The

Halstead-Reitan battery or the clinically more flexible Boston Process Approach

(e.g., Edith Kaplan) [12].
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1.3 Executive Functions and ADHD

Executive functions are necessary for high-order problem solving and goal-

directed behavior [13]. Inhibitory control, cognitive flexibility, and working

memory are the three primary areas of executive functions. Executive functions

disorders in working memory, cognitive flexibility, response inhibition, multiple

simultaneous attention, and planning and sequencing, can cause lifetime issues

in academic success, employment, relationship development, and community

participation [13, 49, 102].

Attention Deficiency Hyperactivity disorder (ADHD) is a psychiatric neuro-

developmental illness characterized by cognitive deficits, particularly in execu-

tive functions. ADHD is common in children and young adolescents, beginning

around the age of six, and affects boys three times more than girls. Low aca-

demic success, grade retention, school suspensions and expulsions, poor peer

and family relations, anxiety and depression, aggression, early substance ad-

diction, driving accidents, and marital and work challenges are all linked to

ADHD.

Researchers discovered in 2009 that adolescents with ADHD had slower

brain maturation than their classmates, and that the area of the brain that al-

lows pupils to engage on dull repetitive tasks, such as schoolwork, has a lower

amount of dopamine receptors and transporters. It explains why children can

play video games for long periods of time but struggle to finish their school-

work on time. As a result, it’s critical to increase our understanding of exec-

utive functions and create better techniques for assessing children’s cognitive

abilities. [11].
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1.4 Cognitive Assessment

Many studies have been undertaken to better understand the relationship be-

tween cognitive deficiencies and various psychiatric neuro-developmental dis-

eases, and a number of diagnostic and management approaches have been rec-

ommended. Traditionally, a diagnosis begins with obtaining comprehensive

background information from children, parents, and school teachers, followed

by trained psychologists administering standardized tests and a feedback ses-

sion on performance to explain the findings and make recommendations for

possible treatments or interventions.

One of the most popular paper-based cognitive assessment test is The Swan-

son, Nolan and Pelham Teacher and Parent Rating Scale (SNAP). It is a 90-

question self-report inventory designed to measure attention deficit hyperac-

tivity disorder (ADHD) and oppositional defiant disorder (ODD) symptoms in

children and young adults [6]. Each question essentially counts the number of

times a particular symptom or behavior occurs. The survey is intended for use

by children and young adults. The findings shed light on inattention, hyperac-

tivity, impulsivity, and other factors.

1.4.1 Computerized Tests

Computerized tests for cognitive assessment provide the advantages of speed,

accuracy, and low cost. Computerized tests have several advantages over

paper-based tests, including standardized test administration over a wide range

of participants, automatic scoring and reporting, and self-paced instructions.
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Also Computerized assessments provide a consistent quantitative measurement

of performance, allowing for more regular evaluations of cognitive function. In

some circumstances, computerized examinations can be conducted at home for

a low cost [125, 107, 54].

Figure 1.2: Trial sequence for the Dimensional Change Card Sort test [125].

One commonly used computerized test for cognitive assessment is the Di-

mensional Change Card Sort test [125]. The purpose of this exam is to assess

cognitive flexibility, often known as task switching or set shifting. This test, cre-

ated by Zelazo and colleagues and based on Luria’s work on rule use, has been

widely used to investigate the development of cognition in children. Children

are shown two target cards (e.g., a blue rabbit and a red boat) and instructed to

sort a sequence of bivalent test cards (e.g., red rabbits and blue boats) first ac-

cording to one dimension (e.g., color), then according to the other (e.g., shape)

in the standard version of the DCCS. Both the standard and more difficult ver-

sions of this task have excellent test–retest reliability in children [125] (Figure

1.2).

9



1.4.2 Physical Tests

Because physical activities are an important manifestation of cognitive functions

[31], physical activities can be employed to both assess cognitive skills and to

train such skills [32]. Physical activities should be incorporated into cognitive

training since research shows that physical fitness and exercise in children leads

to quantifiable increases in cognitive skills and academic achievement [26]. Un-

derstanding the relationship between physical manifestations of cognitive skills

and other sorts of manifestations, such as response to computer-based problem-

solving activities, is still an open problem [46] which tackling it is the main focus

of this work.

The difficulty of assessing performance in physical activities is a fundamen-

tal impediment to advancing this understanding. The tasks should be designed

in such a way that their cognitive demands correspond to those imposed by

computer-based training activities. As a result, these physical activities can be

used to improve sustained attention, self-control, working memory, and cogni-

tive flexibility [118].

1.5 The Role of Machine Learning

It’s difficult to overestimate the impact of machine learning technologies on

modern society. Machine learning algorithms are used to recognize objects in

photos, convert speech to text, match posts or products to users’ interests, and

select appropriate search results. Increasingly, these applications make use of a

brand of methods called deep learning [68, 64].
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Supervised learning is the most widely used approach in machine learning.

A massive dataset of photos of buildings, cars, and people, each labeled with its

category, is produced in order to design a system that can classify images. The

machine learning model is presented an image during training and produces

a vector of scores, one for each category. The true category should have the

highest score of all the categories, however this rarely occurs prior to training.

As a result, an objective function is created that calculates the difference between

the output scores and the intended score pattern. To mitigate this error, the

model adjusts its internal adjustable parameters (weights).

In practice, a procedure called stochastic gradient descent (SGD) is used for

adjusting the model weights.It entails feeding the model the input vector and

computing the outputs and errors. The weights are then modified based on

the average gradients computed. This process is repeated for many small sets

of examples (mini batches) from the training set until it converges. It is called

stochastic because each mini batch gives a noisy estimate of the average gra-

dient over all examples. When compared to significantly more advanced opti-

mization techniques, this simple procedure frequently succeeds in obtaining a

satisfying set of weights remarkably quickly. After training, the system’s per-

formance is evaluated using a different collection of examples known as a test

set to determine the machine’s generalization capabilities [68].

The ability of traditional machine learning approaches to analyze natural

data in its raw form was limited. As a result, designing a feature extractor (en-

coder) that turned raw data such as pixel values of an image into an appro-

priate internal representation or feature vector required rigorous engineering

and extensive domain experience. The resulting feature vector would then be
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processed by a learning module (classifier) to detect or classify patterns in the

input.

Figure 1.3: Inside a convolutional network: Each rectangular image is a
feature map corresponding to the output for one of the learned
features, detected at each of the image positions [68].

Representation learning is a group of techniques that enable a model to be

fed raw data and automatically encode the representations required for detec-

tion or classification. Deep learning methods are special case of representation

learning employing multiple levels of representation, obtained by composing

simple but non-linear layers that each transform the representation at one level

(starting with the raw input) into a representation at a higher and more abstract

level. Very complex functions can be learned by conforming to a sufficient num-

ber of such transformations. Higher layers of representation accentuate charac-

teristics of the input that are important for discriminating while suppressing

irrelevant variations in classification tasks [68].

Convolutional neural net (CNN) [64] is an example of deep learning meth-

ods frequently used for acquiring representation of images (Figure 1.3). After

an image is fed into a CNN, the first layer of representation’s learnt features

typically represent the presence or absence of edges at specific orientations and

12



positions in the image. The second layer recognizes motifs by recognizing spe-

cific edge configurations, despite of minor differences in edge placements. TThe

third layer can put motifs together in larger groups that resemble portions of rec-

ognized items. Finally, further layers recognize objects as assemblages of these

pieces. Deep learning is distinguished by the fact that these layers of represen-

tations are learned from data using a general-purpose learning technique rather

than by human engineers [68].

1.5.1 Self-supervised Learning

Due to the immense effort required in manually annotating millions of data

samples, the supervised technique to learning features from annotated data has

virtually hit its limit. This is because most modern supervised computer vision

systems attempt to learn some type of image representation by searching big

datasets for a pattern between data points and their annotations.

Despite the abundance of data available on the internet, the lack of anno-

tations has compelled researchers to seek for alternate methods for utilizing it.

Self-supervised methods are at the forefront of efforts to adapt deep learning

methods to learn feature representations without costly annotations [60]. In

other words, the data itself provides the supervision in self-supervised learn-

ing.

In order to learn the underlying representations from unlabeled data, self-

supervised learning algorithms have included both generative and contrastive

approaches. Creating numerous pretext assignments that aid in learning fea-

tures using pseudo labels has been a common strategy. Tasks such as context
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prediction [30], image inpainting [90], colorizing grey-scale images [128], solv-

ing jigsaw puzzles [86, 111], counting objects [87] and video frame prediction

[89, 70, 69] have proven to be effective for learning effective representations.

Generative models gained a great deal of popularity after the introduction

of Generative Adversarial Networks (GANs) [39, 93]. The work later became

the foundation for many successful architectures such as DiscimNet [4], Self-

Attention GAN [127], Rot-GAN [22] and FutureGAN [5]. These methods in-

spired more researchers to switch to training deep learning models with unla-

beled data in a self-supervised setting.

Contrastive learning (CL) is a discriminative method for grouping similar

samples together and separating dissimilar samples. A contrastive loss is cal-

culated for computer vision problems using feature representations retrieved

from an encoder network. For example, one sample from the training dataset is

taken and a transformed version of the sample is obtained by applying appro-

priate data augmentation techniques. During training, the augmented version

of the original sample is considered as a positive sample, and the rest of the sam-

ples in the batch/dataset (depends on the method being used) are considered

negative samples. Following that, the model is trained to learn to distinguish

positive from negative samples. As a result, the model learns input represen-

tations that can be employed in downstream tasks like activity recognition or

object detection as shown in Figure 1.4 [52, 73, 113, 109, 92].

In order to pull similar instances closer and push away dissimilar instances

from each other, a similarity metric that measures the closeness between the rep-

resentations of two instances is employed. The most common similarity metric

used is cosine similarity that acts as a basis for different contrastive loss func-
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tions. The cosine similarity of two variables (vectors) is the cosine of the angle

between them [52].

Figure 1.4: An overview of contrastive learning in practice [52].

Contrastive learning focuses on comparing the representations with a vari-

ant of Noise Contrastive Estimation function [41] called InfoNCE [113] that is

defined as follows:

L = −log
exp(sim(q, k+)/τ)

exp(sim(q, k+)/τ) +
∑K

i=0 exp(sim(q, ki)/τ)
(1.1)

where q is the original sample, k+ represents a positive sample, and ki rep-

resents a negative sample. τ is a hyper-parameter used in most of the recent

methods and is called temperature coefficient. The sim function can be any sim-

ilarity function, but generally a cosine similarity is used as mentioned earlier.

The initial idea behind Noise Contrastive Estimation was to perform a non-

linear logistic regression that discriminates between observed data and some

artificially generated noise [52].
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CHAPTER 2

ATEC: ACTIVATE TEST FOR EMBODIED COGNITION

The ATEC system has been proposed in order to examine multiple cognitive

parameters of children, such as working memory, reaction inhibition, and coor-

dination, using physical exercises [12, 29, 8]. This system was created to allow

both professionals and non-experts to handle it with ease. The ATEC system

features a recording and administration interface that were created to keep the

assessments running smoothly. Because sensor-based data collection is more

expensive and impractical with children, this system simply records video data.

The participants’ front and side views were recorded using two Microsoft

Kinect V2 cameras. RGB, depth, audio, and skeleton data are all recorded. The

recording modules are linked to an Android-based administrative interface that

manages the assessment’s flow and allows the administrator to choose between

tasks. Figure 2.1 represents the data collection setup. To guarantee that the sub-

jects understand the rules of the activity, each task comprises an instructional

film as well as practice videos [12, 29, 8]. The goal is to develop intelligent

software that will allow instructors to view automated system prediction and

performance visualizations alongside recorded video of participants, as shown

in Figure 3.

The instructional video provide a brief demonstration of how the current

task should be executed. The recording modules will activate once the eval-

uation is started, and Aliza, the on-screen instructor, will assist the students

through each task. Annotation software was also created to allow computer sci-

entists and cognitive experts to visualize and annotate the data. An expert ex-

amines each recording of the assessment based on a set of task-specific criteria.
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Figure 2.1: The ATEC data collection setup [29]. The participant performs
the tasks based on instructions while being recorded by two
Kinect cameras. The administrator monitor the whole task by
an intelligent GUI.

The automated scoring system is then evaluated using this expert annotation as

a baseline [12, 29, 8].

Children aged 5 to 11 (mean (sd) = 8.04 (1.36)) were recruited from the com-

munity (N = 55) through local public schools and through fliers displayed on

bulletin boards. In accordance with procedures approved by the University IRB,

their parents supplied written informed consent, and the children offered verbal

assent. Although all of the children were in regular classes, 9 (16.4 percent) of

them received additional services through a 504-plan approved by the school.

The population was ethnically diverse (56.4 percent Caucasian) and 58.2% male

[12].

Before the testing procedure, the parents are required to complete pre-

screening paperwork which collects information about the history of children

and the family. This pre-screening is followed by paper based assessment
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Figure 2.2: ATEC system GUI.

tests such as Child Behavior Checklist (CBCL) [3], Social Responsiveness Scale,

Swanson, Nolan and Pelham questionnaire [6], etc. Then participants are re-

quested to take part in standard computer tests from the NIH toolbox such

as Flanker and Working Memory Test (WMT) [125] to gauge various cognitive

measures such as attention, response inhibition, etc. Finally, the children will

perform all the tasks from the ATEC program in two trials one week apart.

ATEC was created to concretely quantify embodied cognition, a concept

with broad acceptance but limited consensus on its precise meaning. The

ATEC results show that it has contemporaneous validity with traditional neuro-
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psychological and parent-reported Executive Functioning (EF) measures. ATEC

demonstrated discriminant validity between children at risk for EF-related im-

pairments and children who were not, and it had a strong association with the

CBCL parent-rated assessment of real-world functioning [12].

ATEC Total Score alone explains a large amount of variance in CBCL parent-

rated functioning, according to multiple regression analysis, and no other

neuro-psychological measure contributed significantly to the model. None of

the other measures entered the model when ATEC Total Score was not included.

This conclusion could imply that a measure of cognition in action is more closely

related to functioning than traditional assessments that do not entail movement

[12]. The researchers discovered high test–retest reliability with acceptable prac-

tice effects, as well as an expected moderate connection with age, implying that

embodied cognition is linked to normal development. Bell et al. [12], provides

a more detailed examination of the ATEC system.

ATEC system consists of 17 physical exercises with different variations and

difficulty levels, designed to provide assessment of executive and motor func-

tions including sustained attention, self-regulation, working memory, response

inhibition, rhythm and coordination as well as motor speed and balance. The

measurements are converted to ATEC scores which describes the level of de-

velopment (early, middle, full development). Table 2.1 represents the list of all

ATEC tasks that has been devised for variety of cognitive measures. Descrip-

tion of the ATEC tasks that have been incorporated in this thesis are provided
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Category Test
Gross Motor, Gait and Balance Natural Walk, Gait on Toes, Tandem Gait,

Stand Arms Outstretched, Stand on One
Foot

Synchronous Movements March Slow, March Fast
Bilateral Coordination and
Response Inhibition

Bi-Manual Ball Pass with Green, Red and
Yellow Light

Visual Response Inhibition Sailor Step Slow, Sailor Step Fast
Cross Body Game Cross your Body (Ears, Shoulders, Hips,

Knees)
Finger-Nose Coordination Hand Eye Coordination
Rapid Sequential Movements Foot Tap, Foot-Heel, Toe Tap, Hand Pat,

Finger Tap, Appose Finger Succession

Table 2.1: ATEC tasks to assess various cognitive measures.

in following subsections [12].

2.1 Bi-manual Ball Pass

Bilateral coordination is defined as the ability to coordinate both sides of the

body at the same time in a controlled and orderly manner.Bilateral coordination

suggests that both sides of the brain are working together successfully. Fine mo-

tor skills such as buttoning shirts, visual motor tasks such as writing, and gross

motor activities such as walking, climbing stairs, and so on will be challenging

for children who are unable to coordinate both sides of their bodies appropri-

ately [12].

In Bi-manual Ball Pass task the participants are required to pass the ball from

one hand to another hand in rhythm with the beats for a total of 8 times. This

task has two trials. In the first (slow) trial, the beats are played every 1.5 seconds

but in the second (fast) trial, the beats are provided every 1 seconds [29].
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2.2 Ball Drop to the Beat

Another important component of cognitive functions is Attention. The ability to

focus on a certain aspect of information while ignoring other perceptible infor-

mation is characterized as attention. Similarly, response inhibition (inhibitory

control) is an executive function that allows an individual to regulate their nat-

ural or habitual dominant behavioral responses to stimuli by inhibiting their

impulses. It will enable them to adopt a more appropriate conduct that is com-

patible with their objectives. The following are two ATEC tasks for assessing

bilateral coordination and response inhibition [12, 29].

Ball Drop to the Beat is a core ATEC task devised to evaluate both audio

and visual cue processing while performing upper-body movements. In this

task, the participant is required to pass a ball from one hand to the other while

following verbal and visual instructions. According to the rules, the participants

are required to pass the ball for Green Light (Pass), keep the ball still in their

hand for Red Light (No Pass) and move the ball up and down with the same

hand for Yellow Light (Raise). The light colors are presented both audibly and

visually to gauge both audio and visual accuracy and response inhibition. The

task is assessed at 60 beats per minute (slow trial) and 100 beats per minute (fast

trial) for a total of 16 counts for each trial [29].

Apart from accuracy and response inhibition, ATEC exercises also measure

rhythm. During the test, the ATEC on-screen host, Aliza, announce the stimuli

in a rhythmic manner by saying Green/Red/Yellow Light in two beats; First

beat for the color and the second one for the word light. Thus the subjects are

required to perform the actions in two beats. For instance, for Green Light (Pass)
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Figure 2.3: Audio-visual stimuli during the Ball Drop to the Beat task [29].

and Yellow Light (Raise) commands, the ball is raised on the first beat and either

passed or lowered on the second beat. Figure 2.3 illustrates both audio and

visual stimuli. Each segment (activity) in this diagram is divided by red lines,

and each segment contains two beats separated by green lines [29]. Figure 2.4

represents a sample for each class of action performed by the children.

Figure 2.4: Samples actions from the dataset. Row (a): ball pass, (b): hand
raise, (c) no pass [95].

In this task, the score for Response inhibition (RI) is determined by dividing

the number of correct Red Light (No Pass) actions by total number of Red Light

commands. Similarly the score for attention is defined as number of correct
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Green Light (Pass) and Yellow Light (Raise) actions divided by total number of

Green Light and Yellow Light commands [12].

2.3 Finger Opposition

One of the important executive function tasks in ATEC system that assesses

the sensori-motor function is the well established Finger Opposition test. The

Finger Opposition test is an exercise where the subjects are instructed to sequen-

tially tap their index, middle, ring and little finger against their thumb 2.5. The

subjects are expected to perform the sequential movement for every count/beat

provided by the therapist [20, 19].

Figure 2.5: Examples of Finger Opposition task; (a) 4 different classes. (b)
Sample frame sequence for class 1 (top) and class 3 (bottom)
[8].

Finger Opposition as a task, has been used in multiple conditions like

Parkinsonism and cerebellar diseases [104]. Authors in [105] used Finger Op-

position task to identify brain activity related to cognitive behavior. Authors in

[112] has shown in their work, that learning sequential finger movements helps

in evolving reorganization within primary motor cortex through fMRI.
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2.4 Tandem Gait Forward

In this task, the participants are asked to walk in a straight line where for every

step, the heal of the foot moving froward is expected to touch the toes of the

leg behind. The subject’s score is calculated as the total number of correct steps

performed out of the total number of 8 expected steps [12, 121]. An example of a

valid and an invalid step are presented in Figure 2.6. In these figures, children’s

body are covered by their estimated SMPL body mesh [61] in order to protect

their privacy.

Figure 2.6: Example of tandem gait task; (a) Skeleton key points, (b) An
invalid step, (c) A valid step.

There has been a plethora of research in recent years that tackle the prob-

lem of analyzing body gait for prediction and diagnosis of multiple disorders.

In [79], machine learning methods have been widely used for gait assessment

through the estimation of spatio-temporal parameters. The proposed method-
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ology was tested on gait data recorded on two pathological populations (Hunt-

ington’s disease and post-stroke subjects) and healthy elderly controls. They

used data from inertial measurement units placed at shank and waist. In [80],

wearable sensor technologies were employed for development of new methods

for monitoring parameters that characterize mobility impairment such as gait

speed outside the clinic. In their work, authors try to extend these methods that

are often validated using normal gait patterns to subjects with gait impairments

[121].

The focus of the work described in [58] was on diagnosis of Vascular Demen-

tia during or prior to vascular cognitive impairment. They explored gait analy-

sis which include stride length, lateral balance, or effort exerted for a particular

class of activity. Although gait has clear links to motor activities, they investi-

gate an interesting link to visual processing since the visual system is strongly

correlated with balance. Various gait metrics have been investigated, and their

potential to identify vascular cognitive impairment has been evaluated [121].

In [108], the issue of support for diabetic neuropathy (DN) recognition is

addressed. In this research, gait biomarkers of subjects is used to identify peo-

ple suffering from DN. To achieve this, a home-made body sensor network was

employed to capture raw data of the walking pattern of individuals with and

without DN. The information was then processed using three sampling crite-

ria and 23 assembled classifiers in combination with a deep learning algorithm

[121].

In [57], the effects of human fatigue due to repetitive and physically chal-

lenging jobs that cause Work-related Musculoskeletal Disorder (WMSD) was

investigated. This study was designed to monitor fatigue through the develop-
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ment of a methodology that objectively classifies an individual’s level of fatigue

in the workplace by utilizing the motion sensors embedded in smartphones.

Using Borg’s Ratings of Perceived Exertion (RPE) to label gait data, a machine

learning algorithms was developed to classify each individual’s gait into dif-

ferent levels of fatigue. Finally, in [84], the aim of the study was to determine

whether gait and balance variables obtained with wearable sensors could be

utilized to differentiate between Parkinson’s disease and essential tremor [121].

2.5 Stand on One Foot

In this task, the participants are expected to stand on one foot for 10 seconds.

Participants are scored based on their capability to sustain for a given period of

time. Scores are determined based on the number of seconds, the participant

can withstand without stopping. In the first round, subjects stand on their left

foot and in the second round, they stand on their right foot [12, 29]. An example

of a participant standing on her right foot is depicted in Figure 2.7.
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Figure 2.7: An example of a participant standing on their right foot.
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CHAPTER 3

ATEC: SUPERVISED METHODS

In this chapter, three different approaches for designing an automated assess-

ment system for ATEC tasks are presented. All these approaches employ super-

vised learning, i.e., they need all the training data to be manually annotated by

experts [68].

3.1 Deep Learning based approach

This study presents a prototype of an intelligent automated system for evaluat-

ing participants’ performance on the Finger Opposition task. This system has

a graphical user interface (GUI) that allows you to view the subjects’ perfor-

mance statistics based on how accurately they complete the task.(Figure 2.2).

Deep learning techniques for hand detection [72] and action classification [110]

are used to build the proposed prediction system. Convolutional Neural Net-

works (CNN) are used in both methods, and have been shown to be extremely

effective in image and sequence classification. The hand detector extracts the

hand from the scene, which is then classified by the action recognition system.

Figure 2.5(a) depicts four classes based on the Finger Opposition task (class 1:

thumb against index finger, class 2: thumb against middle finger, class 3: thumb

against ring finger, and class 4: thumb against little finger).

Most state-of-the-art methods perform well only for specific datasets, so ac-

tion recognition remains an open problem. For the methods to work with other

datasets, extensive fine tuning of the hyper parameters is required. A dataset for
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the Finger Opposition task was created and combined with an existing dataset

built by Srujana et. al. [37]. The combined dataset is made up of RGB image

frames collected from subjects while they were performing the exercise. The

hands were cropped manually and saved as the most useful information for

predicting the task.

This dataset consists of data from 10 subjects (approximately 4500 images)

with various hand angles to increase the system’s robustness. The image frames

were manually divided into sequences (a group of image frames that deter-

mines a class) and annotated as shown in Figure 2.5(b). When one of the four

fingers touches the thumb and returns to its original position, the sequence is

complete. A total of 200 dollars in training sequences were annotated, with se-

quence lengths ranging from 10 to 28 dollars. Similarly, there were a total of 50

validation sequences, and the system was tested with 30 real-time sequences.

3.1.1 Proposed Method

The methodology used is explained in detail in this section. Figure 3.1 depicts

the proposed system’s pipeline. This will be used to evaluate and assess physi-

cal activities that may reveal executive function deficits. It is made up of several

parts that work together to achieve the desired result.

Hand Detector

The Hand Detector is the first component in the computer vision pipeline, and

its goal is to detect the active hand in the scene, for which we use an approach
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Figure 3.1: Deep Leaning based method architecture [8]

called Single Shot Multi-Box Detector (SSD) [72]. SSD distinguishes itself by

employing only a single deep neural network for the entire process of detecting

the hands, whereas other methods, such as Faster-RCNN [98], employ multiple

elements in their pipeline, making SSD more time efficient. Experiments also re-

vealed that SSD strikes a fine balance between detecting smaller objects, speed,

and mAP.

The algorithm divides the given input frame into a grid of size N × N, with

a set of default boxes with different ratios and scales generated for each cell

in the grid. The network generates scores for the presence of objects (hand) in

each of the default bounding boxes during prediction. If the score exceeds a

certain threshold, the system assumes there is a hand in the generated default

box. Finally, non-maximum suppression is used to remove duplicate predic-

tions. Furthermore, this procedure is carried out at various scales of the feature

map in order to capture hands of various sizes. The system was pre-trained with

Ego-Hands dataset [9, 115] which contains more than 4800 image frames with

approximately 15000 ground-truth labeled hands. This dataset was chosen be-

cause it contains images of people performing different activities that involved
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hand movements (playing chess, playing cards, solving puzzles etc.).

The dataset was divided into train (80%), validation (10%), and test (10%).

Mean Average Precision was used to evaluate the detector (mAP). When tested

at the 0.5 threshold, the system’s mAP was 96%. On a single GPU, the system

can produce 15 frames per second. Because other parts of the captured frames

are irrelevant for classification, only the detected hand is advanced to the next

stage.

Action Recognition System

The proposed action recognition system is built on 3D Convolutional Neural

Networks (CNNs) [110], which are the natural successors to standard 2D CNNs

[64]. They are a type of artificial neural network in which the weights of spatial

filters in each layer are shared across the entire image. Instead of 2D spatial fil-

ters, 3D spatio-temporal filters are used in 3D CNNs, which means they extract

features from both the spatial and temporal dimensions by performing 3D con-

volutions, capturing motion information encoded in multiple adjacent frames.

Residual Deep Neural Networks (ResNet) [44] were used as a special vari-

ant of CNNs for this work. To bypass some layers, the ResNet employs skip

connections or short-cuts. The goal of skipping layers is to avoid vanishing gra-

dient problems, which can make it easier to build deeper networks that are easy

to train and optimize.

One of the major challenges of 3D CNNs is that they have a large number

of learnable parameters, requiring a large amount of data for training. Training

such deep networks with a small amount of data results in overfitting of the
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model. Thus, in this experiment, a relatively shallow network (3D-ResNet10)

[42], which is essentially a ResNet with 10 layers, was used. Each block of 3D-

ResNet10 is comprised of convolutional layers with 3D kernel of size 3 × 3 × 3,

Batch Normalization (BN) [50] and Rectifier Linear activation units (ReLU) [85].

Figure 3.2: Confusion matrix for the action recognition system, demon-
strating that all actions in classes 1 and 2 have been correctly
classified, whereas actions in classes 3 and 4 are more difficult
[8].

We divided our dataset into training and validation with a 4 to 1 ratio during

training. During our training process, we used K-fold cross validation. We used

30 real-time sequences for testing. The length of the sequence during training

was 8, implying that we trained our network with 8 images for each sample. The

image frames were RGB images with a resolution of 64 × 64. Our network was

optimized using the Adam optimizer [59] with a learning rate of 0.1, which was

divided by 10 when the validation loss became saturated. The confusion ma-

trix generated for the test dataset with the best performing model (ResNet10) is

shown in Figure 3.2. According to the confusion matrix, the system correctly

classified classes 1 and 2, but incorrectly classified classes 3 and 4. The Pytorch
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[88] framework was used for training.

Scoring System

Based on the task rules and guidelines, the scoring system computes the

scores for the task performed. The predictions are pre-processed in order

to smooth them before calculating the scores. We use a smoothing opera-

tion similar to the moving average technique to avoid duplicate predictions

of the same class when subjects switch from one finger to another and to cor-

rect any errors in right classification. A prediction output example might be

(1,1,1,1,2,2,3,2,3,3,4,4,4,4), where the number represents the class predictions of

a window and a confidence score is associated with each prediction.

If the confidence score for a prediction is less than a certain threshold (i.e. the

system is not confident in its prediction) and the current prediction differs from

its neighbors, the current prediction will be updated. The duplicate predictions

are combined into one prediction after the smoothing process by averaging their

confidences. When the subject performs all four sub-sequences (thumb to index

finger, thumb to middle finger, thumb to ring finger, and thumb to little finger),

he or she has completed a sequence. When a complete sequence is achieved,

the subject receives a full point. The score ranges from zero to the total number

of times the entire sequence is performed (The maximum is considered as five

in this case). Subjects are expected to switch from one sub sequence to another

only after hearing the system’s beat.
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Method Accuracy
2D-CNN+LSTM 0.655
2D-CNN + GRU 0.60
Multi-Stream Network 0.76
3D-CNN (ResNet10) 0.89

Table 3.1: Experimental results for Deep Learning based method [8].

3.1.2 Results and Discussion

Multiple attempts were made to select the best method for the Finger Opposi-

tion task. Based on recent surveys on action recognition [45, 63] we developed

and trained methods that have been shown to work best on public datasets.

Table 3.1 shows the methods that were tried, and the best method was chosen

based on the validation results. Based on the validation results, we discovered

that 3D Convolutional Networks performed the best on our dataset.

Because residual networks perform better for action recognition [42] ResNet-

18 was built and trained first. However, the model performed poorly, with val-

idation and test accuracy of less than 40%. The model’s inability to generalize

could be one of the reasons. As a result, an attempt was made to vary the net-

work depth by using ResNet-50 and ResNet-10. While ResNet-50 performed

poorly as predicted, ResNet-10 achieved both validation and testing accuracy,

as well as precision and recall greater than 80%, which was the best of all ap-

proaches tested.
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3.2 Multimodal Approach

Human Activity Recognition (HAR) is still an active area of research in the

field of computer vision. In recent years, HAR has taken giant leaps with deep

learning-based approaches [116]. Several approaches have been proposed re-

cently that have taken advantage of various feature extraction techniques such

as video-based features [56] and skeleton-based features [97] to recognize hu-

man activities. However, the nature of the data and the problem to be solved

have a high influence on system performance.

To address this, attempts have been made to fuse various combinations of

features such as body poses, optical flow, objects in the scene, hand pose, and

so on [35, 55]. However, an optimal combination of features and an effective ap-

proach to fusing them is still a work in progress in HAR [126]. In this work [95]

a combination of the following three modalities for HAR is proposed: optical

flow, objects in the scene, and human poses (skeletal information). In addi-

tion, an attention-based approach is proposed to combine the aforementioned

modalities.

A quick survey of literature shows that the fusion of multiple modalities can

improve HAR performance. Franco et al. fused skeleton-based features with

video-based such as Histogram of oriented gradients (HOG) [35]. The results

showed that the fusion of the two modalities improved the performance of the

HAR tasks. Object detection is an important computer vision modality, which

has been extensively researched in the last decades [129]. Kapidis et. al. com-

bined hand and object detection to recognize human actions from an egocentric

view camera [55]. The combination of the two modalities improved the perfor-
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mance of the HAR system.

To the best of our knowledge, there is no work proposing to combine the

following three modalities for HAR tasks; Optical flow (video-based HAR), hu-

man poses (skeleton-based HAR), and object detection. The proposed system

is evaluated on a real-world dataset built for the ATEC task: Ball Drop to the

beat. The results show that the proposed method outperforms state of the art

approaches when applied to the Ball-Drop dataset.

Data from 25 children between the age of 6 and 10 were collected for two

sessions (two weeks apart), providing a dataset of 50 sessions. Each session had

multiple trials with different pace (1 sec, 1.5 sec) and cues (visual, auditory).

The distribution of the scores of the dataset was µ = 14.4 and var = 2.03 with

0 being the lowest score and 16 being the maximum score for every trial. Each

video recording was broken down into multiple segments with each of them

annotated based on their action and rhythm by psychologists. Hence, a total of

3300 annotated video segments were extracted from the recordings. Figure 2.4

represents a sample for each class of action performed by the children.

3.2.1 Proposed Method: Multimodal

In this work, human action recognition (HAR) is performed based on a multi-

modal approach. Each modality is discussed with its architectural details and

the approach used to fuse the output from the modalities is addressed as repre-

sented in Figure 3.4.
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Modality 1: Optical Flow

Optical flow is one of the most widely used features to represent motion for

HAR. It is often formulated as a problem of estimating the 2D projection of a

true 3D motion. For a given segment of video, optical flow aims at capturing

the motion information between consecutive frames [100]. In this work, optical

flow is computed using the off the shelf implementation of from the OpenCV

toolbox [15].

With optical flow being computed, a deep neural network based architec-

ture inspired from [42] was used to extract useful information from the optical

flow segment. The architecture is based on 3D Convolutional Neural Networks

(CNNs). In 3D CNNs, instead of 2D spatial filters, 3D spatio-temporal filters are

employed to extract features from both the spatial and the temporal dimensions

by performing 3D convolutions, thereby capturing the motion information en-

coded in multiple adjacent frames. In addition, for this modality, a special vari-

ant of the CNNs called Residual Deep Neural Networks (ResNet) was built with

3D filters (3× 3× 3). Figure 3.3(a) represents the architecture used, with the dot-

ted blocks representing the residual blocks. Every convolutional operation was

followed by a batch normalization operation to reduce the internal covariate

shift, and a Rectified Linear Activation Unit (ReLU) [85]. Down-sampling of the

inputs is performed at conv3 x, conv4 x and conv5 x while increasing the feature

size. A comparatively shallow network with 18 layers was empirically selected

as represented in Figure 3.3.(a). After training, the features were extracted from

pre-logit layer which was used during fusion.
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Figure 3.3: (a) Optical flow based encoder network. (b) Action prediction
using sequence of body key-points. (c) Prediction of objects
coordinates in the scene [95].

Modality 2: Human Body Pose

Recent research on human detection and pose estimation in RGB image frames

shows that deep learning-based methods [34, 16] have achieved better results

in any complex scene, paving the way for human action feature learning. These

2D/3D human poses acting as trajectories of skeleton joints, is one of the most

effective representations for characterizing the dynamics of human actions.

Each coordinate in the skeleton is known as a joint or a key-point and a valid

connection between two key-points is referred to as a limb or a pair. An open-

source pose estimation framework is used for this purpose [61]. During pose

estimation, any missing key-points in a given image frame is fixed with infor-

mation from the previous frames. This top-down method first detects humans

in the scene and subsequently performs pose estimation on each detected re-

gion.

For a given video segment containing n frames, 18 key-points are extracted

from each frame that represent various body joint positions including facial key-

points such as eyes, ears, and nose. In this work, only 9 key-points (only upper

38



body excluding facial key-points) out of the 18 key-points are considered as the

remaining key-points do not contribute significantly towards predicting actions

in this scenario. Each key-point is represented as a 3D coordinate (x, y, z) on the

image plane. Hence, a given frame P at time t is represented by the coordinates

of the 9 key-points as shown in the following equation:

Pt = [(z1,t, y1,t, v1,t), (z2,t, y2,t, v2,t), ..., (z9,t, y9,t, v9,t)] (3.1)

where z denotes the coordinate extending from left to right and y extending top

to bottom and v representing the depth for each key-point. Hence, for a given

frame, the input dimension is of size (9, 3).

The proposed subnet to extract spatial and temporal features from skeletal

points is comprised of a series of 1D convolutional layers and batch normal-

ization followed by a pooling layer. A single layered Long-Short Term Mem-

ory (LSTM) unit with a hidden state (h) dimension of 32 is used to capture the

temporal relation among the frames. The architecture is initially trained with

a softmax layer at the end. During the fusion process, features ht which is the

hidden state of the last LSTM block is extracted. The subnet is represented in

Figure 3.3(b).

Modality 3: Object detection

This modality aims at detecting objects in the scene. It is essential to identify the

objects being interacted along with its positional information at a given point of

time to predict the actions. Identification of the positional information of objects

in the scene provides a sequence of coordinates. The sequence of coordinates
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Figure 3.4: Multi-modal fusion [95].

are fed into a subnet to identify the trajectories of the objects being interacted

with leading to identification of the actions [55]. Objects recognized in the scene

oi = li, si consists of a bounding box li and its category si ∈ S where S is the

set of all possible object categories (e.g. ball, person) being encoded in the form

of Binary Presence Vector (BPV) and i ranging from 0 to k with k representing

the total number of objects detected in the scene. A popular object detection

algorithm YOLO V3 [96] is used to identify the objects of interest in the scene at

any time t. During detection, any missing objects in a given image frame was

fixed with information from the previous frames.

For every image frame, the object’s coordinates are normalized and con-

catenated along with the class vector. A single layered LSTM layer with hid-

den state(h) size being 32 is built to capture the temporal relation between the

frames. The architecture is initially trained with a softmax layer at the end.

During the fusion process, features ht which is the hidden state of the last LSTM

block is extracted. The subnet is represented in Figure 3.3(c) represents the ar-
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chitecture to predict actions through objects in the scene.

Multi-Modal Fusion

In a multi-modal action recognition problem, not all modalities or features

within a modality equally contribute towards the prediction. Identifying the

modalities and features within them that have the most contribution and pri-

oritizing them have proved to be very effective in every domain. In order to

solve this problem, a self-attention [114, 117] based fusion approach is proposed

inspired from [47]. In this approach, every feature within each modality is pro-

vided with a corresponding weight which learns during the training process

based on their contribution towards predicting the target. The overall architec-

ture, including the attention-based fusion module is represented in the Figure

3.4. In order to calculate the weights of features of each modality, first all fea-

tures are concatenated into one vector as follows:

x = [x f , xk, xb] (3.2)

where x f ∈ RC f is the feature vector obtained from optical flow subnet, Figure

3.3(a), xk ∈ RCk is the feature vector from the pose subnet, Figure 3.3(b), xb ∈ RCb

is the feature vector from objects position based subnet, Figure 3.3(c) and finally

x ∈ RC(C = C f + Ck + Cb) comprising of features from all modalities. Further,

to calculate attention weights for features of x, function Fw is introduced as rep-

resented in equation 3. For Fw to fully capture feature-wise dependencies, it

should meet two criteria. First, it must be capable of learning nonlinear interac-

tion between features. Second, it must learn a non-mutually-exclusive relation-
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ship that ensures multiple features are allowed to be emphasised. To meet these

criteria, a gating mechanism with a sigmoid activation is employed.

α = Fw(x,W) = σ(g(x,W)) = σ(W2δ(W1x)) (3.3)

where delta refers to the ReLU [85] function, W1 ∈ R
C
r ×C and W2 ∈ RC×C

r .

In order to generalize, the gating mechanism is parameterized by forming a

bottleneck with two Fully-Connected (FC) layers (W1 and W2) around the non-

linearity, i.e. a dimensionality reduction layer with reduction ratio r, a ReLU and

then a dimensionality increasing layer returning to the original feature dimen-

sion of X. The final output is obtained by element-wise product of combined

feature vector X and calculated attention weights vector α:

x′ = Fa(x, α) = αx (3.4)

where x′ represents the output of the attention block with the features from

the modalities combined and weighted which in turn is succeeded by a softmax

layer for final prediction.

3.2.2 Results and Discussion

Prior to the development of the proposed multi-modal approach, several

methodologies that have achieved the state of the art results on existing pop-

ular action recognition datasets were attempted. Table 3.2 shows the differ-

ent attempted methods with their results. All of the mentioned methods used

different features such as optical flow, RGB images, Pose information etc. as
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Method Accuracy Features
3D CNN [42] 73.0% RGB
Two Stream I3D [17] 82.5% RGB + Flow
CNN+LSTM [36] 69.0% RGB
DeepGRU [77] 61.0% KP
Dillhoff et. al. [29] 78.0% KP
Attnsense [76] 81.0% RGB
Multimodal [95] 89.8% KP + Object Pose + Flow

Table 3.2: A comparison of the proposed Multimodal method’s perfor-
mance to that of other supervised methods [95].

mentioned in the modalities column. For the modalities column, RGB repre-

sents RGB based video segments, flow represents optical flow based sequence

of frames, object pose represents objects in the scene based action recognition

and body key-points (KP) represents human pose-based action recognition.

In Table 3.2, for 3D convolution-based approach, ResNet with variable depth

sizes (18, 34, 51) and inception model were trained. Although, it was observed

that as the depth of the model increased, the model started to overfit. Hence,

the results shown is only for resNet-18. For the two Stream I3D, inception-based

model was trained for RGB based sequences and optical flow based sequences.

During testing, the outcome of both the models were combined for final predic-

tion. The hyper-parameters for initial training were used as recommended by

the authors of the papers followed by fine tuning in the later trials.

For training, the dataset was split into training, validation and testing set

based on participants. This was done to ensure that the training set did not

include video segments from the participants that were in validation and test-

ing set as it might influence the results. The validation was performed after

every epoch of training in order to identify the right epoch to stop the train-
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ing to avoid overfitting. At the end of training, the model was evaluated on

the test set. Stochastic Gradient Descent based optimization with momentum

was used during the training. Since the dataset is comparatively smaller than

the other publicly available datasets, extensive temporal and spatial augmen-

tation was performed during the training. A video clip of size t is generated

with a randomly selected temporal position as the starting frame. If the video is

shorter than t frames, then its looped through until it matches the size t. For spa-

tial augmentation, a spot is randomly chosen between four corners and center

of the image and multi-scale cropping was performed after which the images

were spatially resized. Cross-entropy loss was used during training with start-

ing learning rate set to 0.0001 and divide by 10 every time the validation loss

saturates, a weight decay of 0.001 and 0.9 for momentum. To train the models,

four NVIDIA GTX 1080 Ti GPUs were used whereas for testing, one GPU was

used.

As mentioned before, several features can be extracted from RGB image se-

quences that include body pose, optical flow, objects in the scene, and an effec-

tive combination of modalities is still unsolved and depends on the problem.

To identify the effective combination, training was performed extensively on

different combinations and with different fusion approaches. Table 3.3 contains

the results of the experiments. All results were averaged over 5-folds.

Similarly, to fuse the features from individual modalities, in addition to the

approach mentioned in Figure 3.4, other approaches were also attempted. The

natural concatenation (nat. Concat) is a vanilla approach where output features

of different modalities were directly concatenated followed by a softmax layer

to classify the actions. On the other hand, balanced concatenation (bal. Concat)

44



Figure 3.5: (a) Confusion matrix of proposed method in [95]. (b) Graph
representing model accuracy as a function of number of
frames.

aims to convert the feature vectors from different modalities into same dimen-

sional size followed by concatenation and a softmax layer. As the goal was to

deploy the proposed system for future data collection, it was important to mea-

sure the execution time of the model which is presented in Table 3.3, especially

when multi-modal approaches are used. Figure 3.5(a) presents the normalized

confusion matrix of the proposed method on the test data to predict actions.

As mentioned in section 4.2, for a given segment, the system detects at what

point of time in a given segment, an action takes place, but does not provide any

information about what the action is. The approach compares the prediction

from HAR system with the command fired, if the predicted action does not

match with the command fired, the child gets ”0” points assuming that the child

did not either complete the task or did a different action for the command. If

the command matches with the prediction from the HAR system, the rhythm

scores were calculated with approach mentioned in section 4.2. The rhythm
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Method Accuracy Time (sec.)
Optical Flow (Flow) 72.0% 0.229
Body Key-points (KP) 76.0% 0.106
Objects Trajectories (Obj) 68.0% 0.103
Flow+KP (natural-concat) 82.0% 0.236
Flow+KP (balanced-concat) 83.9% 0.239
Flow+KP (self-Attn) 84.6% 0.240
Flow+Obj (natural-concat) 84.1% 0.232
Flow+Obj (balanced-concat) 83.9% 0.236
Flow+Obj (self attn) 84.0% 0.241
KP+Obj (natural-concat) 79.0% 0.118
KP+Obj (balanced-concat) 76.3% 0.123
KP+Obj (self-Attn) 79.5% 0.139
KP+Obj+Flow (natural-concat) 89.0% 0.254
KP+Obj+Flow (balanced-concat) 87.5% 0.259
KP+Obj+Flow (self-attn) 89.8% 0.260

Table 3.3: Ablation study for Multimodal method [95].

detection system was evaluated on the test set. The data in the training set

was used to empirically identify the optimal upper bound and lower bound in

order to maximize the prediction accuracy. On the test set, the system was able

to achieve an average accuracy of 88.5 percent in detecting the rhythm score.

Table 3.2 conveys that many existing methods did not perform as expected

on the ball drop dataset with the proposed method outperforming all of them

which could be because of the nature of the data. For example, the ball drop

task contains actions that are very similar to each other such as raising the hand

and passing the ball unlike actions in other popular datasets, requiring multiple

modalities to solve the problem. It can be observed in Table 3.2 that two-stream

I3D has produced second to the best results showing that optical flow could

play a vital role in solving the problem.

In Table 3.3 it can be observed that the body key-point based model has

46



achieved the highest accuracy as a single modality. However, the accuracy is not

as high as needed for the assessment system. Although usage of three modal-

ities has produced satisfactory results when compared to the previous works

for action recognition, extensive tests were necessary with a different combina-

tion of modalities and fusion strategies to find an optimal solution with a much

less complex method. It was observed that no other combination of modalities

and fusion methods outperformed the proposed Multimodal method. Adding

the object detection as an additional modality has improved the accuracy by

5.2% for attention-based fusion. Furthermore, the combination of optical flow

and object position, as well as the combination of optical flow and body key-

points, provide comparable accuracy, which is higher than the combination of

key-points and object position.

This result verifies the important contribution of optical flow as an addi-

tional modality. When looking at the fusion strategies, literature has proven

that usage of attention to weigh features based on their importance has worked,

similarly, Table 3.3 proves the same. Irrespective of what the modalities are be-

ing combined, the attention based fusion produce slightly better results. It was

necessary to investigate the time taken for each of the models to process one

segment. As expected, the attempt with 3 modalities has the highest execution

time of 0.2603 seconds. Since the proposed system does not have the require-

ment to process the frames in real-time, the execution time is acceptable. Tests

were done in order to identify the optimal number of frames/time steps that can

be considered for the model. Figure 3.5(b) shows that initially, as the number

of frames increases, the model performance increases, but then saturates and

drops beyond a certain point. This could be because the model sampled the

same set of frames during training while performing temporal augmentation,
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resulting in over-fitting of the model.
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CHAPTER 4

ATEC: SELF-SUPERVISED METHODS

Recent advances in Deep Learning [68] and the challenge of collecting mas-

sive amounts of labeled data have sparked interest in unsupervised or self-

supervised learning research. Because unlabeled image and video sequences

can be gathered automatically without human intervention, successful models

that learned abstract low-dimensional features of images and videos without

supervision could greatly benefit Computer Vision tasks [63, 18].

As a result, much research effort has been directed toward methods that

can adapt to new conditions without requiring costly human supervision. This

chapter’s main focus is on using self-supervised visual representation learning

to recognize human activity in ATEC system recorded videos. Self-supervised

learning techniques that include generative [39] and contrastive [52] approaches

have produced state-of-the-art low-dimensional representations on the majority

of computer vision benchmarks [30, 22, 86, 111, 21]. The video representation

obtained from self-supervised methods can be used to obtain participants’ dig-

ital phenotype [51, 48, 2, 7].

4.1 Generative Approach

The method proposed in this work (Figure 4.1) is inspired by [39, 93, 22], which

augments Generative Adversarial Networks (GAN) with self-supervised rota-

tion loss to improve discriminator network representation capability. However,

the proposed work differs significantly from the existing methods. First and
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foremost, the goal of this work is to develop a low-dimensional representation

of videos rather than still images. Second, an auxiliary loss is added to the

discriminator network in [22] to detect random rotation angles on still images.

However, in this work, the discriminator distinguishes between three different

spatial transformations, such as rotation, translation, or shearing, as well as a

temporal transformation that shuffles the temporal order of frames. All of the

aforementioned transformations are applied at random to video frames. Fur-

thermore, a thorough ablation study is carried out to investigate the impact of

each different transformation.

Figure 4.1: Architecture of proposed Augmented GAN method [122].

4.1.1 Proposed Method: Augmented GAN

This section begins by introducing GAN, which serves as the foundation for the

methods used in this work. The proposed Augmented GAN is then described

in detail, as well as how video representation (features) are extracted from it.
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These features are fed into a simple two-layer multi-layer perceptrons (MLP)

network for subsequent classification tasks like human activity recognition.

Generative Adversarial Networks (GAN)

GAN [39, 93] is a framework for producing a model distribution that mimics

a given target distribution, and it consists of a generator G(z; θg) that produces

the model distribution and a discriminator D(x; θd) that distinguishes the model

distribution from the target. Training data is denoted by x and input noise is z

with probability distribution of Pz(z).

In practice, differentiable CNNs with parameters are used to implement both

the generator and the discriminator: θg and θd. D is trained to maximize the

probability of assigning the correct label to both training examples and samples

from G. At the same time G is trained to minimize log(1 − D(G(z))). In other

words, D and G play the following two-player minimax game with value func-

tion V(D,G) :

min
G

max
D

V(D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1 − D(G(z)))]. (4.1)

But using GAN in practice is challenging because of instability occurring in

training, mode collapsing, etc., as shown in [75, 65]. However, in recent years a

variety of novel techniques such as gradient penalty [40] or spectral normaliza-

tion [83] have been proposed to solve some of the challenges.
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Self-supervised Learning

Discriminator forgetting is one of the main issues with GANs that limits their

ability to provide good representation [22]. Because in practice, as the parame-

ters of the generator G change, so does the distribution PG, causing the discrim-

inator’s learning process to be non-stationary. In other words, the discriminator

is not encouraged to maintain a useful data representation as long as the current

representation is useful for class discrimination.

To address the aforementioned issue, the discriminator network is aug-

mented with a self-supervised task such as predicting rotation angle [38] or

counting objects in an image [87] to encourage GAN to learn useful compact

representations. This work proposes a method for spatial and temporal trans-

formation of video frames. One transformation is chosen at random and applied

to frames of input video in this method (Figure 4.1). The self-supervised task af-

ter that is to predict the transformation used on video frames. As a result, both

the generator and discriminator’s loss functions are modified as follows:

LG = −V(D,G) − αEx∼PGEt∼T [logQD(T = t|xt)] (4.2)

LD = V(D,G) − Ex∼PdataEt∼T [logQD(T = t|xt)] (4.3)

where V(D,G) is the value function from Equation 1 and t ∈ T is a transforma-

tion selected from a set of possible spatial and temporal transformations. xt is

input x transformed by transformation t, QD(T |xt) is discriminator distribution

over possible transformations and α is self-supervised loss weight. Three differ-

ent spatial affine transformations, such as rotation, translation, and shearing, as
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well as a temporal transformation, in which the temporal order of video frames

is shuffled, are chosen for this method. Figures 4.2 and 4.3 show examples of

spatial and temporal transformations, respectively.

Figure 4.2: Examples of spatial transformation used. From left to right:
Original Image, rotation, translation, shear.

Figure 4.3: Examples of temporal transformations used in the Augmented
GAN method; the classifier attempts to determine whether
the temporal order of video frames has been shuffled or not.
(Adopted from [82])

Only four rotation classes corresponding to rotation angles were considered:

0◦, 90◦, 180◦ and 270◦. Respectively, three classes for translation (vertical, hori-

zontal and both), three for shearing (vertical, horizontal and both) and one class

for temporal transformation (shuffled or not) were chosen. So in total eleven
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different transformation classes were selected.

As explained in [22], the generator and discriminator work together to pre-

dict the transformation task. The discriminator is trained only on true data to

detect transformations. This means that the generator is motivated to generate

images that are easy to detect by the discriminator. The discriminator has two

heads, as shown in Figure 4.1, with the former, like normal GANs, predicting

whether non-transformed video frames are real or fake. In contrast, the latter

head predicts the transformation class of transformed inputs.

After training is completed, output of the last layer before the heads is ex-

tracted as a compact representation of the input video. Then a simple 2-layer

feed forward MLP is trained on extracted video representations for human ac-

tivity recognition.

4.1.2 Results and Discussion

In this section, the datasets used in this experiment are introduced. This is fol-

lowed by a discussion of how the neural network models are used and how

they are trained. Finally, results of both baseline and proposed method are pre-

sented. It should be noted that in this work the focus is on providing compact

representation of videos that can be exploited for activity recognition, thus eval-

uating fidelity of generated image frames is not pursued.
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Datasets

Three different video datasets were used in this work to evaluate the perfor-

mance of the proposed method for providing video representation useful for

activity recognition. The first two are publicly accessible video datasets such

as KTH [99] and UCF101 [106], which contain short video clips of humans per-

forming various activities. The third dataset, dubbed Ball-Drop (Ball Drop to the

Beat) for simplicity, is based on one of the tasks designed for the ATEC system

to assess both audio and visual cue processing of children while performing

upper-body movements [29, 8, 95]. One of the primary reasons for pursuing

self-supervised learning is that manually annotating this dataset proved to be

time-consuming and error-prone.

All of the datasets used in this article were divided into three groups. First,

80% of each dataset was considered unlabeled and was only used to train self-

supervised GANs. The remaining 20% (labeled data) were fed into a trained

discriminator network to extract video representations after training (features).

The features were then divided into train and test sets in a 4 to 1 ratio for activity

recognition.

Models

A 6 layer convolutional neural net (CNN) was used in self-supervised GANs

for both the generator and the discriminator. Since the input is video, in dis-

criminator the first 2 layer and for generator the last 2 layers employ 3D convo-

lutional nets [42, 110]. As discussed by [75, 65] performance of GANs depends

on many different hyper-parameters and there is no set of hyper-parameters
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that guarantee superior performance on all datasets and finding one require

massive computational budget. Due to our limited computational budget, very

deep complex networks such as densenet and resnet101 [44] were avoided and

a small grid search was performed for tuning the hyper-parameters.

All models, including the baseline GAN and the proposed self-supervised

GAN, were trained for 100 epochs using the PyTorch framework [88] with

ADAM [59] as the optimizer and the following empirically selected parame-

ters. The generator learning rate is 0.0001, the generator learning rate is 0.0004,

beta1 is 0.5, and beta2 is 0.999. To stabilize the training process, all methods used

spectral normalization. In addition, the self-supervised GAN parameter alpha

in equation 4.2 was set to 0.25. Finally, a two-layer MLP was trained with the

ADAM optimizer with similar hyper-parameters for classification on extracted

features.

Results

After training all the baseline and proposed methods including GAN, features

(representation) of labeled video were extracted. Then, a supervised (MLP-

based) human activity recognition method was trained on features and the av-

erage top-1 classification accuracy on test set was calculated by using 5-fold

cross validation and presented in Table 4.1. Baseline methods include GAN [39]

and self-supervised GAN with only rotation as learning task (GAN+Rotation)

[22] and proposed methods are self-supervised GAN with three different spatial

transformations such as rotation, translation and shearing (GAN+Spatial), self-

supervised GAN with only temporal transformation (shuffling) of video frames

(GAN+Temporal) and finally self-supervised GAN with both spatial and tem-
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Method KTH UCF101 Ball-Drop
GAN 71.46 ± 2.5 64.68 ± 0.4 77.93 ± 2.7
GAN+Rotation 74.47 ± 2.5 66.86 ± 0.6 80.47 ± 2.5
GAN+Spatial 76.41 ± 2.0 66.95 ± 1.6 81.99 ± 4.5
GAN+Temporal 76.09 ± 3.2 70.88 ± 0.7 80.69 ± 3.7
GAN+SpatioTemporal 77.13 ± 3.6 69.17 ± 1.8 84.53 ± 3.0

Table 4.1: Experimental results for Augmented GAN method [122].

poral transformations (GAN-SpatioTemporal).

The experimental results prove superiority of the proposed Augmented

GAN method over baseline GAN and GAN+Rotation for providing a useful

representation of videos, specially for Ball-Drop dataset which is the focus of

this paper. It is also interesting to see that in UCF101 dataset, GAN+Temporal

outperforms GAN+Spatial and even GAN-SpatioTemporal.

Following that, an ablation study is carried out to investigate the effect of

various spatial transformations used in the proposed method on downstream

classification accuracy. The Augmented GAN method was trained in the first

step using only one spatial transformation (rotation, translation or shearing).

Then two transformations were used, and finally all three. Table 4.2 shows the

top 1 classification accuracy of using features extracted from these methods ap-

plied to the Ball-Drop dataset. Although rotation outperforms other transforma-

tions like translation and shearing when used alone, combining different spatial

transformations yields the best results.
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Method Ball-Drop
GAN 77.93 ± 2.7
GAN+Rotate 80.47 ± 2.5
GAN+Translate 80.04 ± 3.3
GAN+Shear 79.52 ± 3.3
GAN+Rotate+Translate 81.32 ± 5.1
GAN+Translate+Shear 80.33 ± 3.1
GAN+Rotate+Shear 81.01 ± 4.6
GAN+Rotate+Translate+Shear 81.99 ± 4.5

Table 4.2: Impacts of different transformation combinations on classifica-
tion accuracy for the Ball-Drop dataset in [122]. It demonstrates
that no spatial transformation is redundant.

4.2 Contrastive Approach

Contrastive learning (CL) is a self-supervised learning approach for grouping

similar samples together and separating dissimilar samples. Its goal is to train

a model to distinguish between positive and negative samples. As a result, the

model learns input representations that it can use in downstream tasks such as

activity recognition or object detection [52, 73, 43]. Along with state-of-the-art

contrastive methods, this work employs a new family of self-supervised meth-

ods that do not require a large number of negative samples and are thus easier

to train [43, 23, 10]. This thesis proposes a novel Self-supervised architecture

(Figure 1) for Human Activity Modeling (SelfHAM). It is the first time that a

self-supervised approach is used to improve the accuracy of computer vision

models used in Embodied Cognition assessment by utilizing publicly available

unlabeled data.

for this method, the focus of the automated assessment system is on three

core tasks: bi-manual ball pass, ball drop to the beat, and tandem gait forward.
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Figure 4.4: Proposed architecture for SelfHAM: top (pink)—supervised
classification; bottom (blue)—self-supervised pre-training
[123].

These tasks are part of a larger system called ATEC [12, 29, 95], which is de-

scribed in detail in Chapter 2. In order to automatically evaluate a subject’s per-

formance, first the VIBE [61] human pose estimation system was used to extract

3D-body key-points. Then, a deep learning-based model was trained to clas-

sify subject actions. Furthermore, in order to improve the accuracy of the sys-

tem, the model was pre-trained on the NTU-RGB+D 120 dataset [101, 71] and

then fine-tuned on our ATEC dataset [12]. Three different state-of-the-art self-

supervised learning methods, including those from MoCo [43], SimSiam [23],

and VICReg [10], were employed to pre-train the model in a self-supervised

manner, and their performances were compared to a supervised learning ap-

proach. The results show that a pre-trained model can outperform a supervised

learning approach when a small amount of annotated data is available for train-

ing. It should be mentioned that all of the self-supervised methods used in

this work were originally designed to extract features from still images, so we

adapted them to extract representations from a sequence of human body key-

points.
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4.2.1 Proposed Method: SelfHAM

Methodology

Contrastive learning (CL) [52] tries to group similar (positive) samples closer

and diverse (negative) samples further from each other. Representations are

obtained by feeding input data into an encoder network. Contrastive learning

focuses on comparing the representations with a variant of the noise contrastive

estimation function [41] called InfoNCE [113], which is defined as follows:

L = −log
exp(sim(q, k+)/τ)

exp(sim(q, k+)/τ) +
∑K

i=0 exp(sim(q, ki)/τ)
(4.4)

where q is the original sample (query), k+ represents a positive sample, and ki

represents a negative sample. τ is a hyper-parameter used in most of the recent

methods and is called the temperature coefficient. The sim function can be any

similarity function, but generally a cosine similarity is used. The cosine similar-

ity of two vectors is defined as the cosine of the angle between them. The initial

idea behind noise contrastive estimation was to perform a non-linear logistic

regression that discriminates between observed data and some artificially gen-

erated noise [52].

Since the number of negative samples affects the performance of CL methods

[52], different strategies are used for selecting a large number of negative sam-

ples. In the first contrastive learning methods, a large batch size is used and all

the samples in the batch except for the query and one positive sample are con-

sidered as negative. Because large batch sizes inversely affect optimization dur-

ing training, one possible solution is to maintain a separate dictionary known

as a memory bank containing representations of negative samples. However,

since maintaining a memory bank during training is complicated, the mem-
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ory bank can be replaced by a momentum encoder. The momentum encoder

(MoCo) (Figure 4.5 left) generates a dictionary as a queue of encoded samples,

with the current mini-batch enqueued and the oldest mini-batch dequeued [43].

The momentum encoder shares the same parameters as the query encoder (θq)

and its parameters (θk) are updated based on the parameters of the query en-

coder (θk = mθk + (1 − m)θq,m ∈ [0, 1): momentum coefficient).

Figure 4.5: Different self-supervised learning architectures (x1 and x2 stand
for different augmentations of image x): left—MoCo [43];
middle—SimSiam [23]; right—VICReg [10]

Most self-supervised methods involve specific forms of Siamese net-

works [14]. Weight-sharing neural networks with two or more inputs are known

as Siamese networks. All outputs collapsing to a constant are undesirable triv-

ial solutions to Siamese networks. There have been various general solutions

for preventing the collapse of Siamese networks. The SimSiam method [23]

proposed by Chen et al. prevents collapsing solutions by directly maximizing

the similarity of an image’s two views, using neither negative pairs [21], nor

a momentum encoder [43]. The authors argue that stop-gradient operation is

critical in preventing collapsing solutions. The SimSiam method architecture is

depicted in Figure 4.5 (middle).
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SimSiam methods take as input two randomly augmented views x1 and x2

from an image x. The two views are processed by an encoder network f . The en-

coder f shares weights between the two views. A prediction MLP network h

matches the output of one view to the output of another view. The negative

cosine similarity of two output vectors p1 = h( f (x1)) and z2 = f (x2) is defined as

follows:

D(p1, z2) = −
p1

||p1||2
.

z2

||z2||2
(4.5)

where ||.||2 is l2-norm. Finally, the final loss function is defined below:

L =
1
2

D(p1, stopgrad(z2)) +
1
2

D(p2, stopgrad(z1)) (4.6)

In the first term, the encoder on x2 receives no gradient from z2, but in the

second term, it receives gradients from p2 (and vice versa for x1) [23]. The loss

is calculated for each sample, and the total loss is averaged across all samples.

VICReg (Variance-Invariance-Covariance Regularization) proposed by

Bardes et al. [10] is another self-supervised method tackling the collapsing so-

lution problem. The VICReg architecture illustrated in 4.5 (right) is symmetric

and is based on three simple principles: variance, invariance, and covariance.

The variance principle is a simple but efficient strategy for preventing collapse

by constraining the variance of the representations along each dimension inde-

pendently. Without requiring any negative pairs, the invariance principle learns

invariance to various views of an image employing a standard mean-squared

Euclidean distance. Finally, the covariance principle uses the Barlow twins’ co-

variance criterion [124], which decorrelates the different dimensions of learned

representations with the goal of spreading information across dimensions and

avoiding dimension collapse [10].

62



In the VICReg method, given an image x, two augmented views x1 and x2

are encoded using the encoder network f into representations z1 = f (x1) and

z2 = f (x2). The overall loss function is a weighted average of the invariance,

variance, and covariance terms [10]:

L(z1, z2) = S (z1, z2) + λ(V(z1) + V(z2)) + γ(C(z1) +C(z2)) (4.7)

where λ and γ are hyper-parameters that regulate how important each phrase

in the loss is. The overall objective function is computed as the sum of the

loss function taken on all samples in the dataset. The variance, invariance, and

covariance terms that make up the loss function are described here. First the

variance term is defined as follows:

V(z) =
1
d

d∑
i=1

max(0, 1 −
√

Var(z) + ε) (4.8)

where d is the dimension of feature vector z, ε is a small scalar for avoiding

numerical instabilities, and Var(x) is the unbiased variance estimator. Inspired

by the Barlow twins [124], the covariance regularization term C is defined as the

sum of the squared off-diagonal coefficients of covariance matrix of z (Cov(z)),

with a factor 1/d that scales the criterion as a function of the dimension:

C(z) =
1
d

∑
i, j

Cov(z)2
i, j (4.9)

This term makes the off-diagonal coefficients close to 0 in order to decorre-

late the different dimensions of the projections and prevent them from encoding

the same information. Finally, the invariance criteria S between Z1 and Z2 is de-

termined as the mean-squared Euclidean distance between each pair of vectors:

S (z1, z2) =
1
n

∑
i

||z1i − z2i||
2
2 (4.10)
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Proposed System

The architecture of the proposed computer vision system is depicted in Fig-

ure 4.4. First, the subject’s 3D body key-points were extracted using the VIBE

system [61]. VIBE (Video Inference for Body Pose and Shape Estimation) is a

video pose and shape estimation method that predicts the parameters of SMPL

body models for each frame of an input video. From these key-points, 17 of

them including head, hands, hip, feet, and toes were selected. Finally, the ex-

tracted data were divided into equal segments (with overlap), with each seg-

ment corresponding to an action. The numbers of segments for each task were

as follows: ball drop to the beat—16; tandem gait forward—8; and stand on

one foot—10. Each segment (X ∈ R32×51) included 32 samples with 51 features.

The features were x,y,z coordinates for each of the 17 key-points rasterized into

one vector. Then, the input was fed into an encoder network to obtain the com-

pact representation z ∈ R256. Finally, a linear classifier was used to classify input

segments into action classes according to each task (Figure 4.4).

In order to pre-train the classifier model, the publicly available NTU-RGB+D

120 [101, 71] was used. This dataset contains 120 action classes and 114,480

video samples. In this work, only 3D skeletal data were employed. Similar to

the gait dataset, 17 equivalent key-points (head, hands, hip, feet, and toes) were

selected. In this work, a four-layer 1D convolutional neural network (CNN)

with one penultimate transformer layer [114] was used as the encoder network.

For all self-supervised methods, a projector network consisting of three fully

connected layers was used. The projector network mapped the representations

to a higher dimension of 1024. The SimSiam method also incorporates a two-

layer fully connected predictor network that acts as a bottleneck by decreasing
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dimension of feature vectors to 256 and increasing it back to 1024. All networks

used in this work employed batch normalization, except for the last layer.

4.2.2 Results and Discussion

All of the models used in this work were trained using the Pytorch frame-

work [88] for 200 epochs. Stochastic gradient descent (SGD) was employed

as an optimizer with a batch size of 512, learning rate of 0.1, and weight de-

cay of 1 × 10−4. The learning rate followed a cosine decay schedule [74] with

10 warm-up epochs. Furthermore, for the contrastive learning method MoCo,

the temperature hyper-parameter τ and momentum coefficient µ were chosen

as 0.1 and 0.999, respectively. For the VICReg method parameters, λ and γ were

chosen as 1.0 and 0.04, respectively.

For evaluating the performance of the proposed methods in the case of a

small amount of annotated data, three scenarios were defined. In the first sce-

nario, 50% of the data were used for training and the other 50% for testing. In the

second scenario, 25% of the data were used for training and the remaining 75%

for testing. Finally, for the third scenario, 10% of data was used for training and

the remaining 90% was used for testing. The average classification accuracy was

calculated by cross-validation. The results for the baseline supervised method

are shown in the first row of Table 4.3.

It is clear from the results that the baseline method classification accuracy

decreases as training set becomes smaller, whereas the self-supervised meth-

ods maintain their performance and even outperform the supervised meth-

ods. We also compared the proposed methods to a supervised multi-modal ap-
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Table 4.3: Different methods’ top-1 classification accuracy for different
training/test splits of ATEC tasks: 50%— using 50% of the
dataset for training and the remaining 50% for testing; 25%—
using 25% of the dataset for training and the remaining 75% for
testing; 10%—using 10% of the dataset for training and the re-
maining 90% for testing.

Approach
Ball Drop to the Beat Tandem Gait Stand on One Foot

50% 25% 10% 50% 25% 10% 50% 25% 10%

Supervised 77.61 61.98 54.79 74.81 60.21 51.72 88.98 79.36 76.93

Multimodal 75.29 52.77 48.13 69.52 55.46 51.11 87.82 75.55 71.96

MoCo 74.70 71.87 70.63 75.52 73.70 72.36 89.63 88.07 85.59

SimSiam 75.44 74.08 71.91 75.81 74.42 73.46 89.76 88.05 87.24

VICReg 77.11 74.65 72.59 75.96 74.45 73.51 90.54 89.86 89.59

proach that had previously been used successfully on the ball-drop-to-the-beat

task [95]. Results show that among self-supervised methods, VICReg attains

the highest overall accuracy. When the size of the training set was reduced from

50% of the total dataset to 10% in the ball-drop-to-the-beat task, the accuracy of

the supervised approach dropped by about 23%, whereas the accuracy of the

VICReg method dropped by about 5%. In the tandem gait task, when the size

of the training set decreased from 50% to 10% of the total dataset, the accuracy

of the supervised approach declined by around 23%, while the VICReg tech-

nique only dropped by about 3%. In the stand-on-one-foot task, the supervised

approach’s accuracy was reduced by roughly 12% when the training set was de-

creased from 50% to 10% of the whole dataset, whereas the VICReg technique’s

performance was lowered by just around 1%. One reason for the multimodal

approach’s poor performance is that it uses a more complicated model that in-
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cludes optical flow and object location in addition to the human body skeleton,

making it prone to over-fitting in cases with small training datasets.

To summarize, an integrated self-supervised system using publicly available

unlabeled data was proposed to improve the accuracy of computer vision mod-

els used in Embodied Cognition assessment. It was able to achieve acceptable

performance despite only being trained on 10% of the data. Furthermore, new

neural network models that excel at extracting representations from a sequence

of human body key-points were proposed for all of the self-supervised methods

used in this work.
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CHAPTER 5

PHYSIOLOGICAL DATA PROCESSING

5.1 Cognitive Fatigue detection from fMRI

Cognitive fatigue is defined as subjective lack of mental energy that will inter-

fere with habitual and required activities of an individual. Although cognitive

fatigue has been known as a symptom of neurological damage for over a cen-

tury, but a precise and thorough model for studying cognitive fatigue remains

elusive. One major hurdle is the absence of consistent correlation between ob-

jective measures of cognitive fatigue such as response time (RT), error rate (ER)

or even brain lesions and subjective reports of fatigue [119]. As a result when

participants are asked to perform a cognitive task repeatedly, they are likely to

experience cognitive fatigue while their performance would not be affected.

Furthermore, another limiting factor in cognitive fatigue research has been

the fact that historically, researchers have evaluated subjective fatigue using

scales which assess trait fatigue, rather than state fatigue. For example, one

commonly used fatigue questionnaire is the Fatigue Severity Scale (FSS), which

asks subjects to rate their fatigue over the past week. Thus, the FSS is a measure

of trait fatigue, or the degree of fatigue that subject are vulnerable to experience

over an extended period of time. On the contrary, assessment of state fatigue,

or the extent to which subjects are experiencing fatigue at the moment of assess-

ment, may more consistently correlate with behavior because it is measured at

the same time the behavior is measured. [119]

Although there are plenty of approaches to evaluate cognitive fatigue
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through various tasks and assessment tests [28, 94], using objective measures,

such as Response Time (RT) and Error Rate (ER), have certain limitations. Dur-

ing an assessment, objective measures of cognitive fatigue do not suffer even if

the self-reported fatigue increases. Therefore, self-reported fatigue scores can-

not be used as a reliable assessment of cognitive fatigue. In this work [120],

response in brain activity was investigated through Functional Magnetic Reso-

nance Imaging (fMRI) data for healthy individuals when they experience cog-

nitive fatigue. The main hypothesis is that, as the cognitive fatigue increases,

there would be an increase in the brain activation even if the subjects perfor-

mance, such as RT and ER, does not change.

In order to induce cognitive fatigue, a cognitive task called N-back task is

used. In the N-Back task, participants are presented a sequence of stimuli one-

by-one. For each stimulus, they need to decide if the current stimulus is the

same as the one presented N trials ago, where N = 0, 1, 2, .... The higher the

number, the more difficult the task is. The factors that seem to impact the per-

formance are not only the N, but also the speed of presentation and the size of

the stimuli set. For our experiments, the N is chosen to be 0 and 2.

Figure 5.1: Overview of the proposed System for detection of CF from
fMRI images [120].

Figure 5.1 presents an overview of the proposed system for cognitive fatigue

assessment. Based on prior research [119, 62], it was identified that the Caudate
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nucleus of the basal ganglia in the brain is the Region of Interest (RoI) when it

comes to assessment of cognitive fatigue. Thus, input fMRI images were mul-

tiplied by Caudate mask, which is a spatial mask with binary values. Since the

dimension of Caudate mask used in this experiment was higher than input im-

age, it was down-sampled. Down-sampling the mask directly, totally erased

some parts of mask, so the mask was first dilated and then down-sampled. Ap-

plying the mask, allows to extract a more focused region of the scan.

In order to further extract the most contributing region, dimensionality re-

duction was performed with Principle Component Analysis (PCA) [91] and

the most relevant principle components were selected. Two Machine Learning

models were trained on the data including; Logistic Regression, and Convolu-

tional Neural networks (CNN). For CNN model, 3D Convolutional Neural net-

work was applied [42] directly on input images and the spatial dimensionality

reduction by PCA was skipped.

Figure 5.2: Data collection setup [120]. Subject are required to participants
in eight N-back tasks (four 0-backs and four 2-backs) while
fMRI data being recorded. After each trial a subjective fatigue
score (SR) was self reported.

For the data collection, 22 participants participated. Their average age was

41 years, and 12 of them were female. Each participant performed four repeti-

tion of each task with either first four trials being the 0-back task or 2-back task
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Method Test Accuracy
Logistic Regression 73%
Convolutional Neural Networks 34%

Table 5.1: Experimental results for the proposed methods for detection of
CF from fMRI images [120].

and the following four trials being the other, while fMRI data being recorded.

Figure 5.2 represents the data collection procedure. As represented in the fig-

ure, fatigue scores (SR) were self-reported by the participants after every trial.

The participants were asked to provide a fatigue SR between 0 to 100 after every

trial and the scores were converted into 5 classes for the classification with the

fatigue ranging from no fatigue to severe fatigue. Each fMRI data block is a 4D

tensor with the dimension 135 × 54 × 64 × 50 where 135 represents the number

of frames in time.

After applying the Caudate mask, both temporal and spatial dimensionality

reduction was performed. For spatial dimensionality reduction, multiple meth-

ods were attempted with PCA working the best for the given scenario. For each

sample, the block was rasterized into a vector of size, 2592000 (54× 64× 50) and

the top 72 principal components were chosen after applying PCA. In order to

perform temporal augmentation on the data, chunks of size equal to 72 were

extracted for every epoch. Hence, the final dimension of the data being fed

to the model were of dimension 72x72. All the hyper-parameters were chosen

empirically by employing grid search.

The data was split into train and validation set with the ratio of 4 to 1 with

k-fold cross validation (k=5). Table 5.1 presents the average validation accuracy

of different machine learning methods on predicting the fatigue score. From
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the preliminary results it can be observed that, the logistic regression method

achieves the highest accuracy while CNN model does not work well. One of

the reasons could be because of the small size of the dataset, the model would

over-fit and not be able to learn any relevant features from the training set. One

possible avenue for future research would be to perform similar experiments on

patients affected with Traumatic Brain Injury (TBI) and Multiple Sclerosis (MS)

to evaluate the robustness of the proposed model.

5.2 Assessment of Fatigue using wearable sensors

The development of an experimental apparatus for causing cognitive fatigue

(CF) through a variety of cognitive and physical tasks while simultaneously

capturing physiological data is the main goal of this work. Furthermore, the

self-reported visual analog scores (VAS) of participants are reported following

each activity to validate the induction of fatigue. Last but not least, an assess-

ment system is created that uses machine learning (ML) models to detect CF

conditions from sensor data, offering an objective evaluation [53].

As shown in Figure 5.3, an experimental setup was constructed around a

custom-built wearable t-shirt (Pneumon) that was used to record physiological

data using the attached sensors and a MUSE 2.0 headband. In two separate

study sessions, data from 32 healthy people (18-33 years old, average age 24

years, 28/72% female/male) were collected. A MUSE 2.0 headband sensor was

used to collect brain EEG data. Throughout the experiment, participants were

required to wear the t-shirt and the MUSE headband. The researchers began

by taking a baseline reading from the sensors for one minute while the subject
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Figure 5.3: Flow diagram of the tasks performed by a participant [53].

stood still. The experiment’s goal was to induce Cognitive Fatigue (CF) while

simultaneously collecting sensory data. Following that, the participants were

asked to complete several sets of N-Back tasks to induce CF, as shown in Figure

5.4. In these tasks, the subject is shown a series of letters one after the other. The

subject’s goal is to see if the current letter matches the letter shown N steps back.

If it does, the subject must carry out the specified action (pressing the space bar

on the keyboard). After the subjects stood still for 90 seconds after completing

the physical task, additional data was collected (sensor reading 3 in Figure 5.4

[53].

The study was split into two separate sessions on different days for each par-

ticipant. Both a morning and an evening session were required of the subjects.

The impact of the time of day on the data was eliminated. The order in which

the tasks were finished was the only distinction between the two sessions. In

contrast to the second session, which gave preference to the intellectually de-

manding 2-Back game over the physically demanding activity, the first session

followed the flow depicted in Figure 5.4. Participants were required to answer
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Figure 5.4: System Flow Diagram: Data collection using the sensors at-
tached on the PNEUMON t-shirt and MUSE 2.0 worn by one
of the participants while performing tasks presented in Fig. 5.3.
Features extracted from the recorded signals were used to train
ML models for detection of state of CF [53].

a brief survey detailing their current degrees of physical and mental exhaus-

tion after completing each assignment. Additionally, they offered VAS scores,

which ranged from 1 to 10. According to the survey results, CF appears to be

induced in more than 80% of the subjects after the fourth block, supporting the

hypothesis on which our experimental setup was based [53].

We collected EEG signals using the MUSE 2.0 headset while the subjects per-

formed various tasks during the experiment. It is made up of four electrodes

(FP1, FP2, TP9, TP10) that make contact with different parts of the head, as

shown in Figure 5.5 (d). EEG signals are used to measure electrical activity in

the brain. The wearable t-shirt contained physiological sensors that collected

ECG, EDA, and EMG signals simultaneously throughout the experiment, as
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(a) (b) (c) (d)

Figure 5.5: Sensor placements on the human body (a) ECG: right shoul-
der, the left and the right hip forming Einthoven’s triangle [33]
(b) EDA/GSR electrodes on the left shoulder to record the skin
conductivity, (c) EMG electrodes recording muscle twitches
from the right calf, (d) EEG sensor positions in the 10-10 elec-
trode system used by MUSE. It records data from the TP9, FP1,
FP2, and TP10 positions in the system [53].

shown in Figure 5.5 (a-c). Fatigue can harm the cardiovascular, endocrine, and

nervous systems. As a result, these multi-modal signals aid in the tracking of

the subject’s physical state and can provide accurate information on whether

the person is fatigued or not. ECG signals, which reflect the electrical activity of

the heart, reveal changes in the cardiovascular system. EDA, on the other hand

(also known as galvanic skin response, or GSR) measures the skin conductiv-

ity of the body to reflect the activity of the sympathetic nervous system, which

is dependent on physiological and emotional activation. Finally, EMG signals

measure the voltage difference between two electrodes as muscles contract and

relax [53].

For training the ML models, we extracted 100 domain and frequency fea-

tures from EEG signals and 169 combined features from ECG, EDA, and EMG

using the neurokit2 framework [78]. Data collected in sensor readings 1, 2, and 3

(before the 2-Back tasks in Figure 5.4) were labeled as ”No CF” condition based

on participant responses. The data collected during the final two readings (4
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and 5, following the 2-Back rounds) were labeled as ”CF” conditions. Instead of

processing the entire signal for a task as a single input, we divide the time sig-

nal into multiple slices based on different window sizes for training (5 seconds,

10 seconds, 20 seconds). Each signal slice received the same label as the orig-

inal signal, and features were extracted. During training, it also increased the

number of input data points to the ML models. Similarly, the input signal was

divided into smaller slices during inference based on the window size chosen

during training, and each slice was classified as one of the classes by the model.

Finally, the entire signal block was classified based on the class with the highest

count among the classified slices. Because noise in some of the slices may not

contribute significantly to the final classification result, this technique makes the

model more robust to noise or outliers in the signals [53].

The dataset was randomly divided into three sets: train (70%, 22 subjects),

validation (15%, 5 subjects), and test (15%, 5 subjects). In addition, each model

was subjected to 5-fold cross-validation. In the analysis, three different ML

models were used: Logistic Regression (Log Reg.), Support Vector Machines

(SVM) and Random Forest (RF). The features extracted from the signals were

used to train the first three models. Finally, for the detection of CF, features

from all data modalities were combined and normalized, as shown in Table 5.2

[53].

The average recall (Avg. Recall) shown in all four tables is the average recall

obtained through 5-fold cross-validation for each model. The best value ob-

tained for each model among different window sizes was considered. Because

our primary goal is to detect true fatigue conditions in subjects while avoiding

false negatives, recall is critical. Table 5.2 shows that RF performs the best, with
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Table 5.2: Detection of CF with EEG + ECG + EDA + EMG Features [53].

Model
Accuracy (Window Size) Avg.

Recall5s 10s 20s Full Block

Log Reg. 64.0% 66.9% 66.1% 60.4% 0.69

SVM 70.3% 74.6% 74.5% 70.3% 0.79

RF 67.9% 77.2% 76.8% 74.5% 0.81

a CF prediction accuracy of 77.2% and an average recall of 81%. Furthermore,

we can confirm that a window size of 10s appears to be the most effective.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this work, the technical description of ATEC, an integrated computer-vision

system for assessing embodied cognition in children with executive function

disorder, is presented. The ATEC system includes both recording and adminis-

trative interfaces, which were designed to streamline the assessments without

any interruptions. This system only records video data, since sensor-based data

collection can be more expensive and impractical with child participants. The

ATEC system consists of variety of physical exercises with different variations

and difficulty levels designed to provide assessment of executive and motor

functions. The main focus of this work was applying self-supervised visual rep-

resentation learning for human activity recognition in ATEC system recorded

videos. Finding an effective human activity representation will help us to im-

prove the accuracy of the automated computer-vision system with much less

annotated training data.

In order to improve the performance of the proposed system, we tried to

pre-train the encoder network on large public dataset (NTU) by using self-

supervised learning. Different self-supervised methods were investigated to

obtain the best representations. The results supported our claim that pre-trained

models can outperform supervised learning approaches when small amounts of

annotated data are available for training. When the size of the training set was

reduced from 50% of the total dataset to 10% in the ATEC task, the accuracy of

the supervised approach dropped by about 20%, whereas the accuracy of the

self-supervised methods dropped by less than 5%. Improving the efficacy of

the proposed approach in order to deploy it in real-world applications, as well
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as applying it to the remaining ATEC tasks, such as sailor step [12, 29], finger-

oppose [8], etc., will be the focus of future works. The ultimate goal of this work

is to create a comprehensive digital phenotyping framework capable of collect-

ing multimodal data from a variety of sensors such as cameras, wearables, and

so on, in order to monitor human behavior.
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Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019.

[89] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell, and Bharath
Hariharan. Learning features by watching objects move, 2016.

[90] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and
Alexei A. Efros. Context encoders: Feature learning by inpainting, 2016.

[91] Karl Pearson. LIII. On lines and planes of closest fit to systems of points
in space, November 1901.

[92] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng
Wang, Serge Belongie, and Yin Cui. Spatiotemporal contrastive video rep-
resentation learning, 2020.

[93] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised represen-
tation learning with deep convolutional generative adversarial networks,
2015.

[94] Akilesh Rajavenkatanarayanan, Varun Kanal, Maria Kyrarini, and Fillia
Makedon. Cognitive performance assessment based on everyday activi-
ties for human-robot interaction. In Companion of the 2020 ACM/IEEE In-
ternational Conference on Human-Robot Interaction, page 398–400, 2020.

[95] Ashwin ramesh babu, Mohammad Zadeh, Ashish Jaiswal, Alexis Lueck-
enhoff, Maria Kyrarini, and Fillia Makedon. A multi-modal system to
assess cognition in children from their physical movements. 10 2020.

[96] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement,
2018.

[97] Bin Ren, Mengyuan Liu, Runwei Ding, and Hong Liu. A survey on 3d
skeleton-based action recognition using learning method, 2020.

[98] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks, 2016.

88
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low twins: Self-supervised learning via redundancy reduction, 2021.

[125] P. D. Zelazo, J. E. Anderson, J. Richler, K. Wallner-Allen, J. L. Beaumont,
and S. Weintraub. Nih toolbox cognition battery (cb): Measuring execu-
tive function and attentionk. Monographs of the Society for Research in Child
Development, 78(4):16–33, 2013.

[126] H. Zhang, Yi-Xiang Zhang, B. Zhong, Qing Lei, Lijie Yang, Ji-Xiang Du,
and Duan-Sheng Chen. A comprehensive survey of vision-based human
action recognition methods. Sensors (Basel, Switzerland), 19, 2019.

[127] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena.
Self-attention generative adversarial networks, 2018.

[128] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image col-
orization, 2016.

[129] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detec-
tion in 20 years: A survey, 2019.

91


