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Abstract

This thesis addresses the challenges of utilization, efficiency, and scalability faced by
deep learning systems, which are essential for high-performance training and serving
of deep learning models. Deep learning systems play a critical role in developing
accurate and complex models for various applications, including image recognition,
natural language understanding, and speech recognition. This research focuses on un-
derstanding and developing deep learning systems that encompass data preprocessing,
resource management, multi-tenancy, and distributed model training.

The thesis proposes several solutions to improve the performance, scalability, and
efficiency of deep learning applications. Firstly, we introduce SwitchFlow, a scheduling
framework that addresses the limitations of popular deep learning frameworks in
supporting GPU sharing and multi-tasking. Secondly, we propose Atom, a distributed
training framework for large language models that utilizes decentralized training to
reduce communication costs and increase scalability. We discuss the challenges of
decentralized training and present the design and implementation of Atom. Lastly,
we introduce PerFect, a method that pre-trains the model using repetitive data to
improve data processing efficiency and fine-tunes it to achieve the desired accuracy.

Our approach provides a significant improvement in the performance, scalabil-
ity, and efficiency of deep learning applications. Specifically, SwitchFlow reduces
interference and eliminates out-of-memory errors by scheduling subgraphs instead of
computation graphs as a whole. Additionally, it allows subgraphs running on differ-
ent devices to overlap with each other, leading to a more efficient execution pipeline.
Atom achieves high training throughput and fault-tolerance in a decentralized en-
vironment, enabling the training of massive-scale models using affordable hardware
such as consumer-class GPUs and Ethernet. Finally, PerFect improves the through-
put performance of the data preprocessing stage and achieves the desired accuracy
when reusing cached data, without the need for additional hardware or third-party
libraries.

The proposed frameworks and solutions are evaluated using representative DL
models, and the results demonstrate their effectiveness and scalability. Overall, this
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thesis contributes to the development of deep learning systems and provides practi-
cal solutions to the challenges of utilization, efficiency, and scalability, making deep
learning applications more accessible and efficient for a wider range of users.

Thesis Supervisor: Jia Rao
Title: Associate Professor
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Chapter 1

Introduction

Deep Learning [65] has emerged as a powerful paradigm in the field of artificial intel-

ligence, enabling the development of highly accurate and complex models for tasks

such as image recognition [50], text to image generation [101], natural language un-

derstanding [21], speech recognition [96, 122], and structural biology and drug dis-

covery [62]. To effectively utilize deep Learning for these applications, it is crucial

to have robust deep Learning systems in place that provide efficient and scalable in-

frastructure for tasks such as data preprocessing, model training, and resource man-

agement. These systems play a critical role in supporting high-performance deep

Learning training and serving, and are essential for achieving state-of-the-art results

in various domains.

State-of-the-art deep learning systems have made significant advancements in re-

cent years, with various frameworks and tools being developed to address the unique

requirements of deep learning training and serving. Examples of such systems include

TensorFlow [6, 47, 1, 46, 43], PyTorch [93], and OneFlow [134]. These systems provide

efficient and scalable solutions for tasks such as distributed computing, data prepro-

cessing, model training, and resource management, and have been widely adopted by

the research and industry communities for developing high-performance deep learning

applications.
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Data 
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Monitoring

Model Training
(Distributed)

Runtime System
(Multi-tenancy)ML Code
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Figure 1-1: Deep learning system

1.1 Motivation

The increasing demand for high-performance deep learning applications in areas such

as computer vision, natural language processing, and speech recognition has led to

the development of complex and accurate models that require significant computing

resources. Deep learning systems presented in Figure 1-1 have been designed to

address these challenges and enable the development and deployment of large-scale

deep learning models. However, these systems still face several challenges, including

the need for efficient resource management, scalability, and multi-tenancy support.

Efficient resource management is critical in deep learning systems because the large

amount of data and computing resources required for training and inference can lead

to high costs and long processing times. Scalability is also essential in deep learning

systems because models need to be trained on large datasets, and as the amount

of data grows, the system must be able to scale to handle the increased workload.

Finally, multi-tenancy support is necessary because deep learning systems are often

shared by multiple users, each with their own unique requirements and preferences.

To address these challenges, my research focuses on developing frameworks and

solutions that improve the performance, scalability, and efficiency of deep learning

systems. Specifically, I propose SwitchFlow, a scheduling framework for deep learning

multitasking that addresses the limitations of current deep learning frameworks in

supporting GPU sharing. I also propose Atom, a distributed training framework for

large language models that utilizes decentralized training to reduce communication

costs and increase scalability. In addition, I present Perfect, a method to improve the

2



data processing efficiency by first pre-training repetitive data and then fine-tuning

the model to the target accuracy.

By proposing these frameworks and solutions, I aim to contribute to the advance-

ment of deep learning systems, which have the potential to significantly impact a

wide range of applications. My research seeks to improve the efficiency, scalability,

and performance of deep learning systems, ultimately enabling the development and

deployment of more complex and accurate deep learning models.

1.2 Challenges in Deep Learning Systems

Deep learning systems are critical for addressing the unique challenges posed by deep

learning applications.

Dealing with massive amounts of data can pose a significant challenge in the

context of data preprocessing. This process is crucial for preparing the data to be

suitable for training deep learning models, which typically require large quantities

of high-quality data. Without efficient data preprocessing, the time and resources

required to clean, transform, and augment the data can become a bottleneck in the

model training process. Therefore, optimizing the data preprocessing pipeline is es-

sential to maximize the performance of deep learning models on large datasets.

Model training, which involves optimizing the parameters of the deep learning

model using large datasets, requires powerful computing resources and distributed

computing techniques to achieve acceptable training times. Especially, for large lan-

guage models (LLMs), the resource requirements for model training can be even

more demanding. One promising solution to address these challenges is decentralized

training. However, this approach also brings its own set of challenges that need to be

overcome. In the thesis, I explore these challenges and propose potential solutions to

address them.

Resource management is crucial for allocating and managing computational re-

sources efficiently, especially in multi-tenancy settings, to avoid bottlenecks and en-

sure smooth execution of training and serving tasks. Multi-tenancy is crucial for
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supporting concurrent usage of deep learning systems by multiple users or applica-

tions, enabling efficient sharing of resources and ensuring fair allocation. Monitoring

and runtime system are essential for tracking the progress of model training, iden-

tifying and resolving issues, and ensuring smooth deployment and serving of deep

learning models in production.

1.3 Outlook: Towards Optimizing Resource Utiliza-

tion, Efficiency and Scalability in Deep Learning

Systems

Deep learning systems are essential for achieving high-performance deep learning

training and serving, and they play a critical role in enabling state-of-the-art results

across various domains. My research focuses on understanding and developing deep

learning systems that encompass infrastructure, data preprocessing, ML code, model

training, distributed computing, resource management, monitoring, runtime systems,

and multi-tenancy. Through my work, I aim to advance deep learning systems and

their impact on deep learning applications.

My research aims to provide valuable insights into state-of-the-art deep learning

systems and their relationship with deep learning applications, paving the way for

more efficient and scalable solutions in the field of artificial intelligence. I showcase

how advancements in deep learning systems directly impact the performance, scala-

bility, and efficiency of deep learning applications. By addressing the challenges and

advancements in deep learning systems, my research contributes to the field of deep

learning and accelerates the development of innovative and high-performance deep

learning applications.

The significance of deep learning systems in enabling the success of deep learning

applications cannot be overstated, given the increasing demand for these applica-

tions across various domains. In the following sections, I delve into the details of

deep learning systems, including their components, challenges, and state-of-the-art
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solutions.

1.4 Thesis organization

The remainder of this thesis will be structured as follows:

Chapter 2 delves into the design and implementation of SwitchFlow, a scheduling

framework for deep learning multitasking. The chapter first highlights the demand

and challenges of effectively sharing GPU resources among multiple DL models. It

then presents the current design limitations of popular DL frameworks, such as Ten-

sorFlow and PyTorch, in supporting GPU sharing. The proposed SwitchFlow frame-

work centers on two designs: subgraph scheduling and subgraph versioning. The

former prevents interference among subgraphs from different models running on a

single GPU, while the latter enables low-latency preemption by allowing subgraphs

to migrate across devices at a low cost. The chapter concludes by presenting the

results of representative DL models that demonstrate the effectiveness of SwitchFlow

in achieving up to an order of magnitude lower tail latency for inference requests

collocated with a training job. The material presented in this chapter is based on

joint work with Jia Rao, Wei Chen, Hang Huang, Chris Ding, and Heng Huang [129].

Chapter 3 introduces Atom, an elastic, fault-tolerant distributed training frame-

work designed to support the training of massive-scale language models on more

affordable hardware resources. The chapter first discusses the challenges that arise

when training large-scale models due to the lack of specialized hardware resources. It

then presents the proposed Atom framework, which utilizes model swapping and par-

allel training of multiple copies to achieve high training throughput. Unlike existing

model partitioning approaches, Atom aims to accommodate an entire LLM on a sin-

gle host and uses static analysis to determine an optimal model partitioning scheme

and schedule that seamlessly overlaps model execution with swapping. The chapter

also highlights the advantages of Atom, including its elimination of the single point

of failure in pipeline parallelism approaches and its superior performance and scala-

bility compared to tightly-coupled pipeline parallelism with low-speed networks. The
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chapter concludes by presenting the experimental results with various configurations

of the GPT-3 model that demonstrate the effectiveness of Atom in improving training

performance by up to 20× for poor network connections compared to state-of-the-art

decentralized pipeline parallelism approaches. The material presented in this chapter

is based on joint work with Jia Rao, and Wei Chen.

Chapter 4 presents PerFect, a novel method for improving the throughput per-

formance of the data preprocessing stage in deep learning pipelines. This chapter

discusses the limitations of existing solutions, including data echoing and specialized

data loading libraries, and proposes a new approach that avoids these limitations with-

out the need for additional hardware or third-party libraries. The chapter provides

theoretical insights and evaluates the proposed method on CIFAR10 and ImageNet

datasets using various models. The results of comprehensive experiments demon-

strate the efficacy of PerFect in achieving the target accuracy while reducing training

time. The material presented in this chapter is based on joint work with Jia Rao.

Overall, this thesis investigates challenges in deep learning pipelines and presents

innovative solutions to improve their performance. The following chapters cover topics

such as preemptive multitasking, distributed training, and data preprocessing, each

providing new insights and techniques to improve the efficiency and scalability of deep

learning models.
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Chapter 2

SwitchFlow: Preemptive Multitasking

for Deep Learning

Accelerators, such as GPU, are a scarce resource in deep learning (DL). Effectively

and efficiently sharing GPU leads to improved hardware utilization as well as user

experiences, who may need to wait for hours to access GPU before a long training

job is done. Spatial and temporal multitasking on GPU have been studied in the

literature, but popular deep learning frameworks, such as TensorFlow and PyTorch,

lack the support of GPU sharing among multiple DL models, which are typically

represented as computation graphs, heavily optimized by underlying DL libraries,

and run on a complex pipeline spanning CPU and GPU. Our study shows that GPU

kernels, spawned from computation graphs, can barely execute simultaneously on a

single GPU and time slicing may lead to low GPU utilization.

This section presents SwitchFlow, a scheduling framework for DL multitasking. It

centers on two designs. First, instead of scheduling a computation graph as a whole,

SwitchFlow schedules its subgraphs and prevents subgraphs from different models to

run simultaneously on a GPU. This results in less interference and the elimination of

out-of-memory errors. Moreover, subgraphs running on different devices can overlap

with each other, leading to a more efficient execution pipeline. Second, SwitchFlow

maintains multiple versions of each subgraph. This allows subgraphs to be migrated

across devices at a low cost, thereby enabling low-latency preemption. Results on
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representative DL models show that SwitchFlow achieves up to an order of magnitude

lower tail latency for inference requests collocated with a training job.

2.1 Introduction

Recent advances in deep learning (DL) [65] have led to the wide adoption of machine

learning techniques in image classification [50, 65], speech recognition [49], and natural

language processing [34]. The success of deep learning can be partially attributed to

the enormous amount of data available for model training and the advent of fast

graphics processing units (GPUs) that allows more sophisticated models (e.g., deep

neural networks (DNNs)) to be trained at a speed an order of magnitude faster

than that on CPUs. The surge of deep learning has also given rise to deep learning

frameworks, such as TensorFlow [6] and PyTorch [93], which make programming

complex models not only easier but also more efficient on various accelerators (e.g.,

GPUs, TPUs [61], and FPGAs).

As deep learning continues to gain popularity and is increasingly deployed in cloud

services [88, 67], there is a growing need for sharing accelerators [12, 128, 90, 14, 125,

81, 84] (e.g., GPUs) among multiple deep learning workloads. Multitasking has been a

key feature in modern computing systems to share a single device. Spatial multitasking

partitions resources among multiple tasks and executes them simultaneously if their

combined size can fit in the device. Temporal multitasking assigns each task a time

quantum during which the device is dedicated to one task at a time. Both mechanisms

are proven effective for improving GPU utilization [7, 90, 57, 131, 14]. However,

multitasking deep learning workloads, which are inherently more complex than simple

GPU kernels, presents unique challenges.

First, DNNs written with DL frameworks contain complex execution flows, typi-

cally in the form of a computation graph with thousands of nodes. Each node in the

graph is a mathematical operation to be executed on either CPU or GPU. Multitask-

ing deep learning workloads requires that the scheduling of the CPU and GPU nodes

(kernels) in the same graph be coordinated. The existing architectural support for
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GPU multitasking is limited to concurrent execution of independent kernels on GPU

hardware, thereby unable to handle the multitasking of complex deep learning models

due to the lack of knowledge of computation graphs from multiple users. There are

existing works that control the launching of GPU kernels in the runtime to enable

GPU sharing [128, 24]. However, switching computation graphs (i.e., DL models) is

non-trivial. DL frameworks support two graph execution modes. 1) Dynamic graph

mode, the default execution mode in PyTorch and TensorFlow (also known as eager

execution), generates graph nodes on-the-fly as model execution proceeds. It allows

for evaluating the output of graph nodes immediately after its execution, thereby

offering an intuitive programming interface and facilitating debugging. 2) In con-

trast, static graph mode builds the entire graph before model execution and performs

offline graph optimizations. The resulted graph allows for node merging, reorder-

ing, and concurrent node execution and is significantly faster than dynamic graphs,

especially for large models. Multitasking models with static graphs is much more

challenging because node execution does not follow user’s code and is asynchronous

and interleaved.

Pipeswitch [14] leverages dynamic graphs in PyTorch to enable fast model

switching via pipelined model transmission. It relies on layer-by-layer model ex-

ecution in dynamic graphs to overlap model transmission and execution, which is

critical to efficient DL multitasking. In this chapter, we take the challenge to support

DL multitasking on static graphs, which are widely adopted in production systems

due to high performance, efficient computation graph optimization, ease of co-design

of hardware acceleration and compiler optimization.

Second, DL frameworks, such as TensorFlow (TF), rely heavily on machine learn-

ing libraries, e.g., NVIDIA cuBLAS and cuDNN [83, 27] to accelerate frequently used

routines in DNNs, such as convolution and matrix multiplication. The DL libraries

carefully tune GPU kernels based on GPU resource availability, such as the number

of streaming multiprocessors (SMs), cores per SM, and the size of device memory.

Since there lack mechanisms for dynamically reconfiguring GPU resources, the tun-

ing must be performed before model execution. Therefore, users need to explicitly set
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resource limits, e.g., memory size, for each DL model. This requires that either DL

models be allocated with statically partitioned resources to allow concurrent model

execution or the entire GPU should be allocated to one model and models have to

be executed one after another. While TF allows for dynamic memory growth, which

allocates GPU memory only when models actually use it, TF does not support re-

claiming GPU memory until model execution is completed. Thus, it is not suitable

for DL multitasking. Recent work AntMan [131] realizes elastic memory manage-

ment for DL models based on GPU unified memory [80] and allows model data to be

freely allocated on both GPU and host memory. However, AntMan does not address

job preemption and can only switch DL jobs at the completion of mini-batches. In

practice, DNN training jobs are usually allocated dedicated GPUs [58, 44, 2] while

multiple inference jobs may be packed on a single GPU [88]. As a result, training

jobs cannot share a GPU for lack of memory and inference jobs may experience high

latency waiting for training jobs to complete due to the lack of an effective preemption

mechanism.

Third, new challenges and opportunities arise surrounding multitasking DL work-

loads: 1) Like in conventional workload collocation, DL multitasking should meet

different service-level objectives (SLOs) for heterogeneous workloads. While model

training is throughput oriented and requires high resource utilization, model serving

(i.e., inference) has stringent latency requirements. However, model training is sig-

nificantly more resource-intensive than inference, not only requiring an order of mag-

nitude more GPU memory but also computing power for model parameter updates

(i.e., updated weights) through iterations. In addition, inference could experience

high latency due to the long preemption latency of training. 2) New multitasking

scenarios emerge as DL continues to evolve [75]. Multi-task learning [104] trains mul-

tiple models from the same training data set. For example, separate models should be

trained to detect pedestrians and vehicles, respectively, from the same set of sensing

data in autonomous driving. Since these DL models share the input and possibly

some layers of a DNN, running them on the same GPU opens up new opportunities

for exploiting data locality. During model training, a large set of training samples
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is usually divided into mini-batches, each of which can fit in GPU memory. The

existing DL frameworks repeatedly load mini-batches into GPU for training separate

models even though each mini-batch can be shared among models. This motivates

the development of a new GPU multitasking scheme that allows for fine-grained data

reuse on GPU across different models.

In this chapter, we present SwitchFlow, a scheduling framework for multitasking

DL jobs. We identify several issues in static computation graph execution in Ten-

sorFlow, the arguably best-performing DL framework for production systems. First,

computation graph execution typically employs multiple worker threads to exploit

concurrency in executing computation graph nodes. There is a lack of an effective

and efficient preemption mechanism to enforce priority between different graphs from

multiple jobs in static execution mode. Second, our empirical study revealed that DL

operations, which are optimized and automatically configured by DL libraries, barely

can simultaneously execute on a single GPU, though there is ample concurrency in the

computation graph. Third, graph execution is a complex pipeline spanning CPU and

GPU. DL multitasking should efficiently utilize the heterogeneous devices. Existing

work such as session-based time slicing [130, 52], which allows models to exclusively

access both CPU and GPU and runs them iteration by iteration, leads to low GPU

utilization because GPU waits for CPU to feed input data [76] during each iteration.

SwitchFlow addresses these issues through two designs. First, SwitchFlow main-

tains multiple versions of a computation graph, which includes subgraphs that run

on different devices. Replicated subgraphs, each individually optimized for different

devices (CPU or GPU) for the same computation, enable SwitchFlow to freely mi-

grate the execution of subgraphs between CPU and GPU and vice versa. Second,

unlike in TensorFlow, wherein nodes in a computation graph are indistinguishably

scheduled by workers, SwitchFlow treats nodes to be executed on different devices,

e.g., CPU or GPU, differently in scheduling, following two principles: 1) GPU nodes

from different models are not scheduled simultaneously on a single GPU, allowing

exclusive access to GPU; 2) all other nodes, including CPU nodes and GPU nodes on

a different GPU, are allowed to run without restrictions to improve pipeline efficiency.
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The result is a design that allows users to provision GPU resources for their models

without concerns about interference from other models or memory over-commitment.

It also enables a low-latency, low-cost preemption mechanism to deschedule an entire

computation graph without throughput loss. Experimental results on representa-

tive DL models and three different GPUs show that 1) SwitchFlow achieves a 19.05x

tail latency improvement for inference requests when collocated with a heavy-weight

training job compared to an variant of TF. 2) SwitchFlow is more efficient than the

existing time slicing-based approaches in utilizing heterogeneous devices. 3) With

user-provided hints, SwitchFlow is able to merge multiple computation graphs of sim-

ilar models to share the data preprocessing stage and achieves up to 65% performance

improvement compared to time slicing in multi-task learning.

2.2 Background and Motivation

In machine learning frameworks, such as TensorFlow, learning algorithms are repre-

sented as computation graphs wherein nodes describe operations while edges specify

dataflows between those operations. Expressing machine learning models as com-

putation graphs offers several benefits. First, the execution of a learning algorithm

can be accelerated by optimizing the directed graph, e.g., pruning, merging, and par-

titioning. Second, the abstract representation of computation allows operations to

be individually implemented using different machine learning libraries, making them

portable across heterogeneous devices. For example, a graph can be executed entirely

on CPU or on a hybrid CPU/GPU system. Third and most importantly, computation

graphs specify the order of execution and allow concurrent operations to be scheduled

in parallel.

In what follows, we discuss the challenges of sharing a single GPU among multiple

DL models, each with its own computation graph. Without loss of generality, we fo-

cus our discussion on the graph execution mode in TensorFlow (TF), which is based

on static graphs. Our discussions are based on TensorFlow 1.13.1. TF 2.0 has under-

gone drastic changes to its runtime to improve programmability. The default eager
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Figure 2-1: computation graph scheduling in TensorFlow.

execution mode in TF 2.0 does not use computation graphs and thus is considerably

slower due to the lack of parallelism in model execution.

2.2.1 Executing Computation Graphs in TF

To execute a computation graph, resources need to be provisioned for graph nodes,

i.e., operators (ops), and a schedule plan needs to be determined to run them on

different devices, e.g., CPUs and GPUs, while enforcing node dependency. TF’s

graph execution centers on three techniques: session, executor, and thread pool.

Session is a runtime instance created by users to execute graph nodes associated

with an output node. The target output can be an intermediate node or the final

node of a graph. In the former case a subgraph is executed while in the latter the full

graph is executed. In deep learning, a session.run performs one iteration of training

or inference. For training, the parameters (weights) of the model are updated after

each session run. During session construction, different devices (e.g., CPU and GPU)
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are added to a session and a cost model is used to determine the backend device to

execute each node. TF makes use of external, highly-optimized numerical libraries,

such as MKL [4], cuBLAS [83], and cuDNN [27], to implement operations (kernels) on

CPU or GPU. Session also optimizes graph execution by partitioning the full graph

into subgraphs, which can be independently executed by executors.

Executor dispatches operations from a subgraph to several task queues from where

they are executed by worker threads in a thread pool. Figure 2-1 shows how opera-

tions are scheduled to run in an executor. Note that there could be multiple executors

in a session, each including nodes to be executed on a single device. For example, in

a 2-GPU system, there are typically three executors, one for operations running on

CPU and one for each of the two GPUs. Executor uses the input size and the type

of operation to determine the cost of each node and classifies them into expensive

and inexpensive ops. There is a single ready queue for each executor wherein nodes

in the subgraph are inserted in a breadth-first manner. Initially, all nodes (expensive

or inexpensive) in the ready queue are concurrent and dispatched to separate local

queues, each of which will be processed by a worker from the thread pool. Workers

launch ops (kernels) from their local queues in FIFO order. After a node is done,

its subsequent nodes which have a direct edge from the current node are inserted in

the ready queue. Unlike in the initial dispatch, only expensive nodes require to be

placed on a new local queue and inexpensive nodes are sent to the local queues of

their parent node. Each local queue is assigned to a worker for node processing and

a thread is put to sleep if its queue is empty. Before sleep, a thread performs random

work stealing from other threads to balance the load.

2.2.2 Challenges in Multitasking DL Workloads

Executor-based computation graph scheduling exposes ample concurrency to build

an efficient execution pipeline for DL models: 1) Since executors are associated with

different devices, their computation is independent from each other and can be done

in parallel except for cross-device data transfer. Therefore, stages (subgraphs) for

reading input data and preprocessing, which are typically done on CPU, can overlap
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with training or inference on GPU. 2) Concurrent nodes in a subgraph are processed

by multiple workers in parallel. However, expressing and executing DL algorithms us-

ing computation graphs present great challenges in sharing computing systems among

multiple DL workloads.

Task preemption is the mechanism to suspend the currently executing task, save

its states, and switch to another task. It is crucial to enable differentiation and

time sharing among tasks. However, there is no effective and efficient preemption

mechanism for DL workloads. Due to the parallelism in computation graphs, there

could be multiple GPU kernels of the same DL model simultaneously running on

GPU or waiting at the launch queue. Additionally, multiple CPU threads processing

the CPU executor can run asynchronously with their GPU counterparts on multiple

CPUs. To preempt a DL workload, all the three types of tasks associated with the

DL model should be suspended and their contexts be saved. The existing hardware

mechanisms for GPU context switching [91] lack the knowledge of computation graphs

and are limited to preempting a single GPU kernel (node).

Furthermore, DL operations, such as those in DNN training, are memory intensive.

The intermediate data generated during model training, e.g., gradients, could be an

order of magnitude larger than the input [102, 72]. For a mini-batch of 64-128 images,

its input size ranges from tens to hundreds of megabytes (MBs). Suspending tasks of

a DL model during training requires to save a context of a few to tens of gigabytes

of data, leading to not only high storage cost but also long context saving time.

Alternatively, preemption can happen until an iteration (a session in TF) is finished

so that only the data that should persist across iterations, such as model weights, is

saved. However, as reported in [130] and verified by our experiments, an iteration of

training can take up to 1s and add a sizable delay to preemption. Long preemption

latency is not acceptable for latency-sensitive DL inference workloads [32, 88, 52, 67].

As DL workloads are executed on complex pipelines across multiple devices, e.g.,

CPU and GPU, it is non-trivial to efficiently share heterogeneous devices among

DL workloads. While there have been extensive studies on spatial [7] and temporal

multitasking [90] on GPUs, we demonstrate that DL operations can hardly execute
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One training step starts

Figure 2-2: The timeline of training two ResNet50 sharing a single NVIDIA V100
GPU.

simultaneously on GPU and time slicing GPU can lead to low efficiency.

Ineffective spatial multitasking. Modern GPUs support concurrent execution of

several small kernels to improve device utilization. For example, with the help of

the Hyper-Q technology [20], NVIDIA multi-process service (MPS) [84] and CUDA

streams allow multiple kernels to be launched to multiple hardware work queues. If

the kernels are truly independent and their aggregate resource demand fits in the

GPU, they can be simultaneously executed. However, spatial multitasking is not

effective for DL workloads.

We executed two 2D convolution (tf.nn.conv2d) operations, a commonly used

routine in DNNs, from two CUDA streams and compared their execution with one

stream on a single NVIDIA GPU. We used nvprof [85] to collect statistics of primitive

routines, such as the block size, number of registers, and used shared memory. Con-

current kernel launch from two streams does not offer much performance benefit. The

completion time of two streams is close to executing the two operations sequentially.

An analysis of the limiting factors in the kernels using NVIDIA’s GPU occupancy

calculator [87] revealed that 10 of the 13 kernels were bottlenecked by GPU register
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files and cannot run concurrently.

We further train two ResNet50 models concurrently on a single NVIDIA V100

GPU with a batch size of 16 on the ImageNet dataset. Figure 2-2 shows the execution

timeline of the two models. The color areas are kernel execution on GPU and white

areas are the time spent on CPU. We made two observations: 1) while some kernels

of the two model can be simultaneously executed on GPU, their execution times were

significantly prolonged due to contentions on shared GPU resources. 2) There still

exists significant serialization on GPU between the two models in which kernels from

one model exclusively occupied GPU while those from the other model were waiting to

be issued by CPU. As a result, the training throughput of individual models dropped

from 226 to 116 images per second due to GPU sharing. It suggests that spatial

multiplexing is barely beneficial.

The reason no two heavy kernels can execute simultaneously without performance

loss even with multi streams in the GPU is that primitive routines in cuDNN or

cuBLAS are optimized to fully utilize resources on GPU. Although modern GPUs

support resource partitioning and library can adapt kernels to meet the constrains,

allocation needs to be done when the computation graph is constructed. As workloads

in shared systems are dynamic, static resource partitioning likely leads to underuti-

lization. Alternatively, it is possible to control the resource demand of DNNs during

runtime without static resource partitioning. By changing the input size, e.g., batch

size, the size of kernels can be dynamically adjusted to fit in GPU. However, chang-

ing the batch size may lead to longer training time, negating the benefit of resource

sharing. Furthermore, the memory demand of individual kernels need to be carefully

controlled not to exceed the capacity of GPU memory. Otherwise, DL jobs may crash

due to out-of-memory (OOM) errors.

Inefficient temporal multitasking. Time-slicing GPUs among multiple DL work-

loads has been explored to provide early feedback in training [130] and better quality-

of-service (QoS) for inference [52]. For time sharing, computation graphs are switched

at the end of a session. Therefore, during a time slice (consisting of one or more ses-

sions), only the nodes from one graph are executed and GPU is dedicated to one
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Figure 2-3: The percentage of GPU idle periods due to inefficient DL execution
pipeline on three different types of GPU.

DL workload. However, the DL execution pipeline comprises stages on CPU and

GPU. As GPUs continue to improve, the early stages on CPU for data loading and

preprocessing will increasingly become the bottleneck [28]. Session-based time slicing

dedicates the entire pipeline (both GPU and CPU) to one DL job. If the job cannot

efficiently utilize the heterogeneous resources, devices may be left idle.

To demonstrate the severity of pipeline inefficiency, we measured GPU idling

periods during training and inference on three NVIDIA GPUs: a cost-effective GPU

(GeForce RTX 2080 Ti), a high-end GPU (V100), and a power-efficient embedded

GPU (Jetson TX2). We used the TF timeline profiler [46] to measure the GPU busy

time in a session and the length of the session. The difference between the two is

the GPU idling period. Figure 2-3 shows the execution time breakdown of 9 CNN

models. The measurements were the average of 200 sessions in each model. The

white area above GPU time refers to GPU idling. The input was randomly selected

images in JPEG format from the ImageNet dataset. Images were grouped into batches

to improve GPU utilization. We chose the commonly used batch sizes for training

(32) and inference (128). tf.data.Dataset was used for data preprocessing. Input
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prefetching and parallel data workers (32 preprocessing threads) were enabled.

As shown in Figure 2-3 (d) and (e), most models caused long GPU idle periods

when performing inference. For instance, in model NASNetMobile, for more than

90% of the time, the V100 GPU was idle waiting for CPU to feed data. In contrast,

the computation on CPU and GPU can be better overlapped in training, as shown

in Figure 2-3 (a) and (b), because training includes one forward and one backward

pass in each session and requires more GPU computation. For the embedded GPU

(TX2), GPU was the bottleneck in most models for both training and inference.

We also observed two trends. First, faster GPU results in more GPU idling. Second,

increasing the batch size leads to more GPU compute time but will further exacerbate

GPU underutilization in a session as data preprocessing becomes even longer.

Summary. We have shown the difficulties in running multiple DL jobs on a GPU

simultaneously and the low efficiency of GPU time slicing. This motivated us to

develop a more flexible and efficient approach for DL multitasking.

2.3 SwitchFlow: System Design

2.3.1 Overview

Deep learning workloads can be broadly categorized into training and serving. Train-

ing workloads are throughput-oriented, computationally expensive, and long-term.

By contrast, serving workloads have a tight latency requirement but execute for the

short term, leading to low utilization in a production environment since online infer-

ence queries often arrive unpredictably and stochastically.

The major problem of session-based computation graph execution is the coupling

of stages (executors) running on heterogeneous devices. Simultaneously running mul-

tiple sessions causes contention on bottleneck devices, making it hard to guarantee

QoS and even resulting in OOM crashes due to memory overcommitment. On the

other hand, restricting only one session to access computational resources (time slic-

ing) leads to low utilization. In contrary, SwitchFlow views computation graphs as a
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Figure 2-4: Design of SwitchFlow.

set of executors that can be flexibly managed and scheduled across sessions.

This design offers several benefits: 1) By replicating executors for each available

device during graph construction, the execution of graphs can be timely suspended

and migrated, enabling low-latency, low-cost DL job preemption. 2) Executors from

similar jobs can be assembled to exploit data reuse in multi-task learning. 3) Execu-

tors of different types and from different jobs can be interleaved to efficiently utilize

heterogeneous resources.

2.3.2 Session Management

The central idea in SwitchFlow session management is allowing sessions from any

DL jobs to access all available devices on a machine. Unlike TF, in which sessions

are statically configured with a fixed number of devices and each session has its own

thread pool for graph execution, SwitchFlow shares all devices and a single global

thread pool among sessions, as shown in Figure 2-4. The temporary thread pool
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is used for fast preemption and will be discussed in Section 2.3.3. Furthermore,

SwitchFlow creates multiple executors, each corresponding to an available device on

the machine, for each subgraph during graph construction. Initially, for a subgraph,

the executor and its associated backend device are determined by the ML framework

based on a cost model. The additional copies of executors are used for migrating a

subgraph from one device to another.

The session manager determines when to schedule executors from sessions while

preserving the dependency within a session. It allows executors from different sessions

to interleave but ensures that executors from consecutive runs of the same session

follow sequential order. SwitchFlow supports independent DL jobs as well as multi-

job scenarios, where a user runs a set of jobs on the same training set to tune hyper-

parameters, such as the number of layers/weights, mini-batch size, and learning rate,

of a model [130] or to train multiple models. In multi-job scenarios, SwitchFlow merges

subgraphs from different but correlated sessions based on user-provided configuration.

2.3.3 Preemption

SwitchFlow addresses several challenges in task preemption. First, to preempt a DL

job, all its tasks queued in the ready queue, local thread queues, dispatched onto

GPUs, and currently running on CPUs must be stopped in a coordinated and timely

manner. Second, the context of the suspended job must be saved and the storage cost

should be contained. Third, task resumption should also be fast to avoid throughput

loss.

Recall from previous discussions that worker threads independently dispatch tasks

and can steal from each other. It is necessary to isolate high priority jobs (pre-

empters) from those to be preempted (preemptees). As shown in Figure 2-4, Switch-

Flow maintains a temporary thread pool to handle the preemptees until preemption

is completed. With the help of the executor scheduler (discussed in Section 2.3.4),

SwitchFlow guarantees low preemption latency.

Task suspension. Upon the arrival of a high priority DL job, the session manager

first aborts the nodes that are currently queued in the ready queue and thread local
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queues from the preempted job. The kernels that have been dispatched onto GPU

are allowed to finish as they may be interleaved with other jobs’ launched kernels

and there is a lack of mechanisms to selectively stop kernels of a particular job.

Second, the session manager reconstructs the computation graph of the preempted

job to replace the executor (subgraph) on the bottleneck device with an alternative

executor on a different device. For example, if job1 is to preempt job2 on GPU1,

job2’s executor on GPU1 will be replaced with an executor on GPU2 or CPU. As

such, subsequent sessions of job2 will be run on a different device, isolated from the

high priority job. Furthermore, subsequent sessions of the preempted job will be

handled by the temporary thread pool until preemption is completed. This ensures

that the launching of the new job is not interfered.

After preemption is done, the preempted job can be moved back to the global

thread pool. In the case that there is no GPU available and the preempted job has

to run on CPU, e.g., using an executor implemented with the Intel MKL library, we

keep it in the temporary pool to prevent a large number of MKL operations from

exhausting the global thread pool. At initialization, SwtichFlow spawns as many

threads as the number of cores in each thread pool and uses wakeup signals to control

the number of active threads. Thread count in the temporary pool can be configured

by configuration and is a tradeoff between isolation and the performance of preempted

jobs. SwitchFlow ensures that the total number of workers in the two thread pools

matches the number of cores.

Context saving and task resumption. For training jobs, model weights that

persist across iterations (i.e., session runs) need to be saved to preserve training

progress. For inference, no cross-session state needs to be saved since prediction

requests do not update model weights and are independent. ML frameworks keep

model weights in GPU memory across iterations and copy updated weights back to

host memory after training is completed. At the end of each iteration, intermediate

data, such as calculated gradients, is discarded but weights remain in GPU memory.

To save job context, SwitchFlow tracks persistent variables in a session through TF’s

resource manager on each device. To reduce the delay caused by state transfer,
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SwitchFlow does not initiate the transfer when preemption is in progress, i.e., the

session of a preempted job is being aborted. Instead, SwitchFlow waits until a new

session run of the preempted job is started.

A preempted job is migrated to a different device and allowed to resume immedi-

ately. The session manager uses the newly constructed graph to start a new session

run of the preempted job. The new session is populated with the tasks of the aborted

session run so that no work is lost. Most importantly, before the job is resumed,

SwitchFlow copies the model weights from the GPU where the job is preempted to

the new device using asynchronous memory copy. Note that the state transfer is off

the critical path of preemption and can be performed concurrently with the high pri-

ority job. However, this requires model weights to be preserved on the source GPU

until state transfer finishes, occupying GPU memory that can be used by the new job.

We think this is a necessary tradeoff for minimizing preemption latency. As will be

shown in Section 2.5.2, intermediate data dominates model memory usage [102, 72]

and weights only account for less than 10% of the total memory usage.

2.3.4 Scheduling

Recall the two issues of computation graph execution: 1) primitive routines (kernels)

are highly optimized by DL libraries to improve hardware efficiency, thereby unable

to co-run on a single GPU without performance loss; 2) the execution pipeline of a

single model cannot efficiently utilize both CPU and GPU. To this end, SwitchFlow

maintains two scheduling invariants:

First, no two GPU executors are scheduled on a single GPU simultaneously. It is

worth noting that this constraint not only helps more efficiently utilize GPU through

time slicing but also effectively avoids OOM errors as well as offering flexibility for

resource provisioning. Users can assume they have exclusive access to GPUs they

request and configure their models accordingly, e.g., selecting an appropriate batch

size. Since model weights need to be preserved on GPU, the aggregate size of persis-

tent variables of all models sharing the same GPU should not exceed GPU memory

size. SwitchFlow allows one GPU executor to finish before switching to another. As
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Figure 2-5: Input data reuse in multi-task learning.

such, intermediate data is discarded and a majority of GPU memory is freed.

We use preemption to demonstrate how this scheduling constraint achieves low

preemption latency without OOM errors. A high priority job is allowed to start imme-

diately after submission. The new job goes through computation graph construction

before its executors are ready to run. If the preempted job is still being aborted, its

GPU executor is running and will prevent the new job’s GPU executor from starting.

Therefore, the abort time and preparation time can be overlapped.

Second, executors on different devices can be scheduled freely. SwitchFlow does

not impose restrictions on the scheduling of CPU executors or executors on different

GPUs. This is in stark contrast to session-based time slicing wherein no executors

from other sessions can be scheduled. SwitchFlow allows any CPU executor to run

while a GPU is occupied. It helps to overlap data preprocessing on CPU in one job

with GPU processing in another job. Note that we did not observe much contention

on CPU because when one job’s GPU executor runs, its CPU executor only prefetches

input for the next session without processing them. Therefore, CPU executors may

not reach their peak demands at the same time.

SwitchFlow supports customized scheduling as directed by user configuration.

In multi-task learning, users use the same input to train or perform inference on

multiple models. During hyperparameter tuning, the same input data is used to
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navigate the hyperparameter space, e.g., learning rate, momentum, and dropout rate,

on the same model. For these use cases, a straightforward approach is to replicate

the input and run multiple jobs separately. Not only will it lead to redundant data

preprosessing but it also results in low pipeline efficiency. Research in DL showed that

multi-task learning can be achieved by sharing the hidden layers of a neural network

among multiple models while keeping model-specific output layers [23]. However,

the internal structure of these models must be similar and they have to be deployed

together.

As shown in Figure 2-5, SwitchFlow offers an alternative way to jobs with same

input pipeline. It merges multiple computation graphs to share the data preprocessing

stage. Specifically, the recv nodes on GPU executors are linked together to share

the tensors received from the CPU executor. Note that the input tensor may be

modified during GPU processing and is deallocated after the GPU executor finishes,

SwitchFlow maintains an immutable copy of the tensor in GPU global memory and

makes its address public to all GPU executors sharing the tensor. Models are executed

in lockstep. All models should finish processing an input tensor before moving onto

the next input batch. To this end, SwitchFlow executes a strict schedule: a shared

CPU executor for data loading and preprocessing followed by each model’s GPU

executor in a round-robin manner.

2.4 Implementation

In this work, we have implemented a prototype of SwitchFlow in TensorFlow. We

made changes to TF with 3K+ lines of Python and C++ code. Most changes were

made to TF’s session and executor management as well as the provisioning of the

temporary thread pool and implementing preemption. Executor scheduling was im-

plemented in each session by imposing synchronization among GPU executors that

share the same GPU. As the number of models sharing a GPU is typically small (2-3),

we used atomic instructions to synchronize on a flag and did not observe noticeable

scalability issues. Sessions that do not share GPU schedule independently.
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Listing 1: The launch.py program for sharing the data preprocessing stage between
two models.

1 # Setup
2 os.environ['TF_SET_REUSE_INPUTS'] = 'True'
3 os.environ['TF_REUSE_INPUT_OP_NAME_MASTER_X'] = 'X00'
4 os.environ['TF_REUSE_INPUT_OP_NAME_MASTER_y'] = 'y00'
5

6 # For a master and a secondary model(X01,y01)
7 os.environ['TF_REUSE_INPUT_OPS_NAME_SUB_X'] = 'X01'
8 os.environ['TF_REUSE_INPUT_OPS_NAME_SUB_y'] = 'y01'
9

10 def launch():
11 # master graph
12 t0 = threading.Thread(
13 name='t0', target=user_00.BuildAndRunGraph,
14 args=('graph_00', 'X00', 'y00'))
15

16 # secondary graph
17 t1 = threading.Thread(
18 name='t1', target=user_01.BuildAndRunGraph,
19 args=('graph_01', 'X01', 'y01')

Since SwitchFlow runs models using one global thread pool, the models need to run

within one TF instance (process) as opposed to one model per instance in the vanilla

TF. In the prototype, we employed multiple Python threads to launch models from

the same TF instance. As such, users’ models written in Python need to be converted

into modules and imported to a main launch.py program. This implementation can

be improved to employ the gRPC interface for model submission, in a way similar to

TF serving [88].

It is straightforward to adapt Python TF models to run with SwitchFlow. It

takes 1 line of code (LOC) to configure priority for model preemption and 4 LOCs to

restrict one GPU executor at a time to run on a shared GPU. Listing 1 shows a more

sophisticated case to share the input preprocessing stage between two models. Only

5 LOCs need to be added to a launcher program. The required changes are to add

environment variables to configure input sharing. Input reuse can be conveniently
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enabled/disabled (line 1) and models which share the input with a master model link

their recv nodes on the GPU executor to the recv nodes in the master model (line

2-8). The two models are then launched from two Python threads with the shared

stage as an argument (line 10-19).

2.5 Evaluation

This section evaluates the effectiveness of SwitchFlow for representative DNNs on

four different GPUs. Since TF does not support sharing a GPU, we compare Switch-

Flow against two variants of TF: i) multi-threaded TF that uses multiple streams for

spatial sharing and ii) TF with session-based time slicing, similar to Gandiva [130].

iii) NVIDIA MPS [84]. Experimental results show that 1) SwitchFlow’s preemption

mechanism is effective, achieving up to an order of magnitude improvement on pre-

diction tail latency (Section 2.5.2) and maintaining high throughput (Section 2.5.2),

2) Input reuse among correlated models (Section 2.5.3) and interleaved execution of

independent models (Section 2.5.4) leads to significant performance improvements in

prediction jobs.

2.5.1 Experimental Setup

Machine configuration. Experiments were conducted on two servers and a Jetson

TX2 development kit, all running Ubuntu 16.04. One server was equipped with two

different NVIDIA GPUs: GeForce GTX 1080 Ti (11 GB device memory) and RTX

2080 Ti (11 GB) and the other server was with 4 NVIDIA Tesla V100 GPUs (32

GB). Both servers had dual 18-core Intel Xeon processors and over 250GB memory.

The CPU and memory performance of the servers is comparable. Jetson TX2 is an

embedded computing board with a quad-core ARM Cortex-A57, a 256-core Pascal

GPU, and 8GB memory shared between the CPU and GPU.

Software. We implemented SwitchFlow on TensorFlow and used variants of TF with

the same version for comparison. The CUDA version was v10.0 and the machine

learning library used was cuDNN v7.6.4.
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(a) MobileNetV2 (training). (b) ResNet50 (training).

(c) VGG16 (training).
(d) NMT inference with different CNN
training jobs (data series).

Figure 2-6: The 95𝑡ℎ percentile tail latency of inference when co-run with background
training jobs. The inference request has a higher priority and a batch size of 1. The
title of each subfigure shows the background training job.

Benchmarks. Multiple CNN models were selected from Keras applications: ResNet50,

VGG16, VGG19, DenseNet121, DenseNet169, InceptionResNetV2, InceptionV3, Mo-

bileNet, MobileNetV2, NasNetLarge, NasNetMobile; one recurrent neural network

(RNN) model: NMT.

The dataset for CNN models was ImageNet raw JPEG images for evaluation. The

dataset for NMT was German-English WMT’16 dataset [3]. For training, the mini-

batch size was 32; for inference, if not otherwise stated, batch size (BS) was set to

the largest that does not lead to an OOM error.
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2.5.2 Effectiveness of Preemption

Tail Latency

To evaluate the effectiveness of SwitchFlow’s preemption mechanism, we co-ran an

inference job with a background compute-intensive training job. Inference requests

were configured with higher priority and each contained only one image (BS=1). This

ensures that the GPU has sufficient resources to serve the requests and only scheduling

affects latency. We first launched the background training job, waited for its warmup,

and then submitted inference requests as a continuous stream. The baseline was the

multi-threaded TF running training and inference in separate threads, which allowed

the two jobs to freely run on GPU.

Figure 2-6 shows the 95𝑡ℎ tail latency of inference requests due to TF and Switch-

Flow. The results show that SwitchFlow achieved significant better tail latency com-

pared to TF. The performance gap varied depending on the resource intensity of the

training job. As shown in Figure 2-6 (a)-(c), the performance gap enlarges as models

become more computationally expensive. The largest improvement on tail latency

(19.05x) was from the test with NMT inference and VGG16 training (Figure 2-6 (d)).

RNN inference itself is fairly expensive on GPU and was significantly slowed down

when co-running with another expensive model VGG16.

We also evaluated two variants of multi-threaded TF and they incurred even

longer delay to inference requests, thereby their results not shown. The first TF

variant enforced task priority in the global thread pool. However, since worker threads

perform work stealing oblivious of job type, priority inversion occurred and tasks

execution of the training and inference jobs were interleaved. The second TF variant

employed session-based time slicing and assigned inference a higher priority. Because

this approach lacks preemption, in the worst case, inference had to wait for a full

session of training to finish.

In contrast, SwitchFlow achieved consistently low latency across all workloads.

The absolute tail latencies against different models were similar, suggesting that

SwitchFlow was able to timely preempt current jobs regardless of their resource inten-
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OOM Errors
(co-run)

(a) Threaded TF: Co-train with
ResNet50.

OOM Errors
(co-run)

(b) Threaded TF: Co-train with VGG16.

(c) MPS: Co-train with ResNet50. (d) Co-train with ResNet50 (low).

(e) Co-train with ResNet50 (low). (f) Co-train with VGG16 (low).

Figure 2-7: The throughput of two training jobs sharing a single GPU. The high
priority job is shown in data series and the low priority background job is indicated
in each figure. In (a)-(c), the bars in each group correspond to the performance of
the two models, with the arrows showing the performance degrations compared to
running in solo. (a) and (b) are under multi-threaded TF, (c) is under MPS, and
(d)-(f) are under SwitchFlow.
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sity. The key advantage of SwitchFlow is the isolation between training and inference

jobs.

Table 2.1: The overhead of model state transfer.

Model Name Stateful Variables Transfer time (ms)
(MiB) GPU to GPU (PCIe 3.0)

ResNet50 198.53 28.838
VGG16 1055.58 103.747
VGG19 1096.09 109.416
DenseNet121 64.83 39.823
DenseNet169 108.61 45.236
InceptionResNetV2 426.18 82.137
InceptionV3 182.00 31.613
MobileNetV2 27.25 17.505

Throughput

We are also interested in the performance of a preempted job and evaluated the

throughput of two co-running training jobs. We considered a scenario in which a

high priority training job needs to preempt a low priority job to run on a GPU. The

GPU could be the only one on a machine or the faster one among multiple GPUs.

In the vanilla TF that does not support GPU sharing, the low priority job has to be

killed. Therefore, we used the multi-threaded TF as the baseline, under which the

two models can freely share GPU. We also compared SwitchFlow with NVIDIA MPS

on the V100, the most powerful GPU in our testbed. Figure 2-7 (a) and (b) show

that resource contention on GPU led to significant slowdowns to both models. More

seriously, allowing models to freely access GPU resources resulted in some model

crashes due to OOM errors on both GPUs. Users need to carefully determine which

models cannot be collocated. This is a tedious process since memory demands also

depend on model input. Multi-threaded TF causes OOM errors when the aggregated,

real-time memory demand of the two models at any point exceeds device memory.

Worse, all models crash under NVIDIA MPS on the 1080 Ti and 2080 Ti GPUs

because the two processes in MPS, each running a separate model, do not share GPU

memory allocation. Thus, when the aggregated peak memory demand exceeds GPU
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Figure 2-8: Performance improvement due to input reuse among multiple identical
models against session-based time slicing.
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Figure 2-9: Performance improvement due to input reuse among different models.

capacity training crashes. Model co-training under MPS only can complete on V100

since it has triple device memory. Similar to multi-threaded TF, MPS also inflicted

significant slowdowns to both models.

In contrast, SwitchFlow does not require user-side tuning and allows models to

access full GPU capacity. Upon the arrival of a high priority model, the low priority

one is preempted and migrated to a different device, whether be another slower GPU

or CPU. We make the following observations in Figure 2-7 (d)-(f): 1) there was no

crash. 2) in all cases, the high priority job achieved much higher throughput than

that in multi-threaded TF. 3) The low priority job achieved acceptable throughput

when migrated to a slower GPU but suffered drastic throughput drop when migrated

to CPU since the DL operations were not designed to run on CPU. 4) The high

priority job still experienced throughput loss compared to running in solo. While it

ran a dedicate GPU, the low priority job occupied a few worker threads, which may

delay task dispatching in the high priority job.

Preemption Overhead

Preemption in SwitchFlow involves aborting the execution of outstanding nodes (ker-

nels), allocating space on a destination device, transferring model states (weights) to
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the destination, and freeing the memory of model states on the source device. Only

waiting for the outstanding nodes of a preempted job to complete is on the critical

path of a new job. Figure 2-3 shows kernel time ranging from a few tens of millisec-

onds. Therefore, the worst case preemption latency is approximately a few tens of

milliseconds. The aborted operations are stochastic when preemption occurs, so the

preemption latency is implicitly subject to the worst case operation.

Another source of overhead is the memory space needed to retain the model states

of the preempted job until they are transferred to the destination device. Since the

state transfer is asynchronous, the retained states occupy the GPU memory that

could otherwise be used by a new job. Table 2.1 shows the amount of data need to

be transferred as model states and the time required for GPU-to-GPU transfer via

x16 PCIe 3.0. The largest model (VGG19) occupied about 10% of the GPU memory,

e.g., 11GB device memory on GTX 1080 Ti and RTX 2080 Ti, and it takes at most

110𝑚𝑠 before the states are transferred and memory is released.

Figure 2-10: Performance improvement due to interleaving executors of independent
models against session-based time slicing.

2.5.3 Sharing Inputs among Similar Models

Allowing models to simultaneously share GPU may cause OOM errors while dedi-

cating heterogeneous devices to one model leads to low efficiency. In this section, we
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evaluate the efficacy of sharing the data preprocessing stage among models that take

the same input batches and can be trained in a lockstep manner [104]. SwitchFlow

is configured to alternate model executions before moving to the next input batch.

The baseline is session-based time slicing, an approach adopted by Gandiva [130],

wherein models have exclusive access to both CPU and GPU during one session run

and each model is allowed one session run at a time. Note that there is no data reuse

in the baseline. Performance is measured by the completion time of 200 iterations

(training or inference) from each model after warmup.

In cases where multiple models have same preprocessing pipelines, to mitigate the

upstream data preprocessing [82, 28] time, batched input data are reused between

different models. As downstream GPU keep consuming input data without involving

repeated data preprocessing, training or inference workloads which are bottlenecks

at CPU side can achieve speedup. Initially, the master model carries out data pre-

processing and data augmentation. Next, the processed input are cached for the

subsidiary models to exploit again in the following session runs.

Figure 2-8 shows normalized performance improvement due to SwitchFlow against

the baseline on three GPUs. In this evaluation, we co-ran two identical models as

their sessions are guaranteed to have the same length so that the maximum gain

of input reuse can be determined for each specific model. Figure 2-8 (a) and (b)

suggest that there was marginal performance gain due to input reuse for training jobs.

Since each iteration of training lasts hundreds of milliseconds on GPU, the existing

mechanisms in TF, such as input prefetching and parallel data preprocessing, can

effectively overlap GPU and CPU time, leaving little room for further improvements.

In contrast, Figure 2-8 (c) and (d) show significant improvements when two inference

jobs were collocated. Input reuse saved as much as 65% compared to session-based

time slicing. An interesting observation is that faster GPU (V100) led to higher

gain in complex models (e.g., ResNet50, VGG16, and InceptionResNetV2) but lower

gain in lightweight models (e.g., MobileNet and NASNetMobile). Jetson TX2 has

limited shared memory between CPU and GPU and thus is not intended for training.

Figure 2-8 (e) shows lower gain for inference on TX2 as the embedded GPU is much
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slower. Again, the higher gains were from lightweight models, which require less GPU

computation.

Next, we evaluate input sharing among different models. Although models have

different internal structures, they are CNN models for image classification. Thus, they

can share the preprocessing stage. Figure 2-9 shows the results with different batch

sizes and a varying number of collocated models. The findings are 1) larger batch

sizes led to higher improvements, indicating CPU increasingly became the bottleneck

as more images included in a batch. 2) Co-running more models had diminishing

gains, especially among complex models. According to the results, it is recommended

that no more than three models should co-run on a single GPU.

2.5.4 Interleaving Independent Models

In this section, we relax the requirement of sharing the input and evaluate how much

SwitchFlow improves executor scheduling among independent models. SwitchFlow

alternates GPU executors from different models but allows CPU executors to freely

run. Figure 2-10 shows performance improvements in three scenarios: (a) inference

jobs sharing with inference of a heavy-weight model (VGG16), (b) sharing with in-

ference of a lightweight model (NASNetLarge), and (c) sharing with training of a

heavy-weight model (VGG16). The GPU used was V100. The figure shows that

SwitchFlow’s performance gain compared to the baseline was much lower than that

in the input reuse tests. This is expected since scheduling may not perfectly overlap

GPU and CPU processing while sharing inputs entirely bypasses the CPU stage. Still,

SwitchFlow was able to consistently achieve 30% among inference jobs, regardless of

the model type. When co-ran with training, the gain diminished but for lightweight

models (e.g., MobileNetV2) the gain was up to 20%.

2.6 Related work

Various approaches to share GPUs in a multitasking environment are proposed to

meet a number of objectives, such as responsiveness, throughput, resource utilization,
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isolation.

Temporal and spatial GPU multitasking. Existing studies in GPU multitasking

include: (1) time-sliced scheduling [90]; (2) spatial partitioning scheduling [7, 92]; (3)

space-time scheduling [70, 57, 84]. The proposed strategies can be categorized into

different scheduling granularity: context level [124], kernel level [57, 121], thread block

level [24], SM level [133, 127], and graph nodes level for DL workloads [52]. Time-

sliced scheduling controls the state transitions, priority to ensure responsiveness and

fairness. Interrupt request triggers context switch between a serial of applications.

Spatial partitioning scheduling relies on data slicing, kernel slicing and fusion to split

data and kernel into a number of smaller chunks so that they can co-schedule sub-

kernels to different CUDA streams or SMs.

These work focus on low-level management of GPU kernels and memory copy.

SwitchFlow takes both low-level kernel launching constrains and DL DAG computa-

tion graph characteristics into consideration to enforce time-slicing a GPU exclusively.

Thus, high GPU utilization can be achieved without interference.

DL workloads scheduling, preemption and migration. ByteScheduler [95] is a

generic priority-based scheduler for DNN distributed training. Gandiva [130] is a clus-

ter scheduling framework to improve latency and efficiency of training DNN models

by time-slicing GPUs. Olympian [52] proposes a scheduling policy to enable fair shar-

ing multiple DNNs in TF-Serving [88]. Pretzel [67] applies multi-model optimizations

for ML.Net [9] prediction serving systems. Previous work consider either training or

inference phases, SwitchFlow instead focuses on both workloads to maximize GPU

utilization and throughput, and to minimize latency. While PipeSwitch [14] enables

fast model switching to allow multiple DL models to share a single GPU, it relies

on dynamic graph execution for layer-to-layer model transmission and execution. In

contrast, SwitchFlow focuses on DL multitasking on static graphs, which are more

efficient but challenging to switch. AntMan [131] proposes elastic memory manage-

ment, which can potentially help in DL multitasking and is orthogonal to SwitchFlow.

However, it requires unified GPU memory and may incur high overhead.

Olympian [52] interleaves with graph nodes but do not preempt ongoing graph.
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In Gandiva [130], preemption and migration is extended by the Tensorflow already

supported checkpoint APIs, which may incur considerable overhead compared with

SwitchFlow by saving and restoring several hundreds of MiB or few Gib check-

point [130] that cannot be tolerated for inference jobs. Our design does not preempt

an issued GPU kernel since it can be expensive [91, 128, 115]. We transfer stateful

variables to another device without involving checkpoint. Also, DL systems consists

of data preprocessing pipelines for both training and inference [28]. SwitchFlow lever-

ages overlapping data preprocessing and kernel execution to maximize throughput.

2.7 Conclusion

This chapter presents SwitchFlow, a scheduling framework for DL multitasking. Spa-

tial and temporal multitasking are either ineffective or inefficient in DL frameworks

that employ computation graphs. We demonstrated that by carefully controlling the

scheduling of GPU executors, one can simultaneously achieve high pipeline efficiency

and OOM-free execution. We evaluated SwitchFlow with representative DNN mod-

els. The results show that SwitchFlow achieved significant performance improvements

on both inference latency and training throughput compared to TensorFlow.
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Chapter 3

Atom: Asynchronous Training of

Massive Models for Deep Learning in

a Decentralized Environment

With the emergence of the Transformer architecture, natural language processing

(NLP) models have seen significant growth and achieved outstanding success across

a wide range of challenging NLP tasks. However, the lack of specialized hardware

resources such as large GPU memory and high-speed interconnects presents a chal-

lenge for training large-scale models. As a result, pre-training and fine-tuning large

language models (LLMs) can be difficult for the average user to experiment with

new ideas. In this chapter, we propose Atom , an elastic, fault-tolerant distributed

training framework that supports asynchronous training of massive-scale models in

a decentralized environment using more affordable hardware such as consumer-class

GPUs and Ethernet. Unlike existing model partitioning approaches that train sub-

models on distributed GPUs, Atom aims to accommodate an entire LLM on a single

host through model swapping and train a large number of copies in parallel to achieve

high training throughput. Atom uses static analysis to determine an optimal model

partitioning scheme and schedule that seamlessly overlaps model execution with swap-

ping. Atom offers several advantages: 1) it eliminates the single point of failure in

pipeline parallelism approaches; 2) its independent architecture proves to be more
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performant and scalable than tightly-coupled pipeline parallelism with low-speed net-

works. Our experiments with various configurations of the GPT-3 model show that

Atom improves training performance by as much as 20× for poor network connec-

tions compared to state-of-the-art decentralized pipeline parallelism approaches.

3.1 Introduction

Deep Neural Networks (DNNs) have advanced significantly in recent years with the

use of deeper layers and larger model capacity, leading to improved performance in

a variety of machine learning tasks such as computer vision [51], natural language

understanding [21], structural biology, and drug discovery [62]. The introduction of

Transformer models [120] has further enhanced the capabilities of DNNs, enabling the

development of large language models (LLMs) that can be applied to a wide range of

applications, such as the generation of programming code with OpenAI Codex [25]

and GitHub Copilot [41].

Recent advances in natural language processing (NLP) have led to the develop-

ment of large models such as BERT-Large [35], GPT-2 [97], Megatron-LM [112],

T5 [98], and GPT-3 [21], with model sizes ranging from 0.3 billion to 175 billion

parameters. These models require significant resources to train from scratch, such

as the use of thousands of accelerators and large text datasets. For example, GPT-3

175B, which has 175 billion parameters, was trained using 45 TB of text data and

required over one month to complete training. This is a significant increase in model

size compared to image recognition models such as ResNet-50 [51] which has 25.6

million parameters, outpacing the development of computational, networking, and

storage hardware.

While training large language models from scratch can be a challenging task for

individual users and small- or medium-sized institutions and companies, there is an

increasing effort to make pre-trained LLMs publicly available [89, 73, 135]. This

allows users to experiment with pre-trained models and adapt them to their own

datasets. However, LLMs are too large to fit on a single GPU, so researchers have

40



been exploring ways to split the model and perform training in a distributed manner.

This includes techniques such as model parallelism [110, 68, 132, 11] and pipeline

parallelism [54, 78, 38] which divide the model into sub-models and train them on

multiple GPUs. These approaches enable the use of LLMs by leveraging the device

memory on distributed GPUs.

Despite the efforts to make pre-trained LLMs publicly available and the develop-

ment of techniques to split and train them in a distributed manner, there are still

challenges for average users to adopt these approaches. First, access to a large number

of GPUs to accommodate LLMs is still limited to a few large institutions. Second,

tight coupling between sub-model training on different GPUs is a major issue, requir-

ing not only high-speed interconnects for transmitting model output and intermediate

data, but also creating a single point of failure. Third, in cases where nodes can dy-

namically join and leave, a model needs to be re-partitioned before training can be

resumed, and this can lead to a restart of training. Fourth, if the network bandwidth

is constrained, it can limit the training performance.

In this chapter, we propose a solution for training large language models (LLMs)

on a small number of commodity GPUs in a decentralized network environment with

low-bandwidth and unreliable connections. Our key insight is that, although LLMs

are extremely large in size, individual operators/layers, the building blocks of a com-

putation graph representing the model, can be easily fit in a single commodity GPU.

This opens up opportunities to execute the computation graph layer by layer through

device-to-host memory swapping. Theoretically, even the GPT-3 175B model can fit

in a single server given sufficient host memory. We explore an alternative approach

to distributed training using loosely coupled GPUs, each training a complete LLM

through memory swapping, to process massive mini-batches in parallel.

To this end, we present Atom , a distributed training approach that supports

asynchronous training of massive-scale models in a decentralized environment. As

shown in Figure 3-1, Atom takes a computation graph of an LLM1 as input and par-

1In this chapter, we focus on using GPT as the large language model (LLM) due to its widespread
usage and popularity in the field of natural language processing.
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Figure 3-1: The figure illustrates the process and functionality of the Atom system
for training large language models. The system is composed of several components:
(a) the user model, (b) the automated partitioning of the computation graph, (c)
the compilation of sub-models code, (d) the Atom runtime for swapping sub-models
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titions the graph into sub-models based on a layer-by-layer profiling. Atom automat-

ically generates an optimal schedule of the sub-models to streamline model execution

and loading. Atom addresses the following challenges. First, memory swapping has

been long criticized for low performance and high overhead. Atom avoids swapping

overhead by asynchronously scheduling swapping and prefetching upcoming layers.

To avoid GPU idleness, we also overlap the execution time of sub-models and the load-

ing time of an upcoming sub-model. Second, searching an optimal model partitioning

is difficult and time-consuming. Atom addresses this issue via a heuristic exhaus-

tive search algorithm that integrates domain knowledge about the GPT-3 model. For

elasticity and fault tolerance, Atom uses a DHT (distributed hash table) and a global

batch size to coordinate the training on independent participants, which allows nodes

to join and leave.

We implement Atom using Pytorch and Hivemind [118]. Evaluation results us-

ing GPT-3 model configurations and various network conditions show that Atom

consistently outperforms Petals [18] by using the schedule policy of GPipe [54] and

PipeDream [78] by a large margin. Experiments with three types of commodity GPUs

demonstrate that the loosely coupled distributed architecture of Atom is more per-

formant and scalable than the tightly-coupled pipeline architecture, especially when

the interconnect is slow.

3.2 Background and Related Work

In deep learning frameworks, such as TensorFlow [6] and PyTorch [93], model training

is usually represented as a computation graph wherein nodes are operators, such as

matrix multiplication, and edges are dataflows connecting individual operators or a

group of operators (called a layer). Each training iteration comprises of a forward

propagation and backward propagation. In forward propagation, a mini-batch of

training examples from a dataset is fed into the model from the first layer to the

last layer to compute a loss value. In backward propagation, the gradient for each

model parameter is derived from the loss value from the last layer to the first layer
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reversely. In the optimization step (e.g., using the stochastic gradient descent (SGD)

algorithm), each model parameter is updated by adding a scaled gradient controlled

by a learning rate and other hyper-parameters.

3.2.1 GPT-3 and the Transformer Structure

GPT-3 [89, 21] is an auto-regressive language model with 175 billion parameters

(a.k.a. GPT-3 175B) that consumes 700 GB memory with 32-bit single precision

floating point (f32) parameters (4 bytes). GPT-3’s training set contains 499 billion

tokens from datasets Common Crawl, Wikipedia, and WebText2, etc. The input of

GPT-3 is a sentence of tokens (words) (𝑥0, 𝑥1, . . . , 𝑥𝐿−1), and the output 𝑥𝐿 coming

at the end of the sentence is a token (word) predicted with the highest probability to

complete the sentence. The GPT-3 model is a stack of 96 decoder blocks based on

the attention mechanism [13], a key module in GPT-3 drawing global dependencies of

hidden representations between different positions of the input and output. Decoder

is from the Transformer [120] encoder-decoder architecture. Each decoder block has a

multi-head masked self-attention module and a fully connected feed-forward layer or

multilayer perception (MLP). The loss value between the input sentence and target

sentence tokens is computed after decoder head.

Training a GPT-3 model requires a daunting amount of memory. Not only GPT-3

model parameters (700 GB in GPT-3 175B), including those in token embeddings,

positional encodings, transformers, and fully-connected layers, need to be resident

in memory, training also generates a large amount of intermediate data, mainly in

optimizer states. In general, the optimizer states are about 3× of the size of model

parameters, leading to a total memory size of more than 2.8 TB. Apparently, GPT-3

cannot fit in a single GPU.
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3.2.2 Volunteer Computing

Volunteer computing (VC) [107, 36, 105] is a distributed training paradigm to har-

vest geographically idle computing power and storage resources without advanced

computing and networking devices. The academic institutes [119, 10] and communi-

ties [37, 55] seek to democratize the access to large language models via collaborative

training on voluntary resources. Hivemind [106, 19, 36] trains a Mixture of Experts

(MoE) [111, 68] model in an asynchronous manner by volunteer device over a decen-

tralized network. Distributed Deep Learning in Open Collaborations (DeDLOC) [36]

demonstrates the feasibility of collaborative training using model ALBERT [63]. Nev-

ertheless, these VC frameworks are only able to train small models that can fit en-

tirely in any volunteer device. Petal [18] and Swarm [105] seek to extend pipeline

parallelism to a large number of heterogeneous volunteer servers. While they focus

on fault tolerance in distributed training, it does not adequately address the low

network bandwidth and high latency in a decentralized network, thereby unable to

efficiently perform LLM training.

Table 3.1 summarizes and compares Atom with various existing distributed train-

ing schemes, and highlights their main pros and cons when adopted in decentralized

LLM training.

3.2.3 Distributed Training

Distributed training distributes training workloads across multiple GPUs to either

reduce training time or accommodate large models. Data parallelism [109, 60, 77]

splits up the training data set on multiple GPUs and processes them in parallel.

Each GPU trains a copy of the model on a different batch of the training data and

communicates the gradients to keep model parameters in sync. Since each GPU

maintains a complete model, data parallelism does not address large model size.

In contrast, model parallelism partitions a model into sub-models and places them

on separate GPUs. Sub-models are trained on different GPUs using the same train-

ing data following the topological order in the model’s computation graph. Model
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parallelism reduces the memory requirements for individual GPUs, allowing much

larger models to be trained across GPUs as long as the aggregated GPU device mem-

ory can accommodate the complete model size and sub-models can fit in each GPU.

However, model parallelism suffers two drawbacks. First, due to the dependencies

between sub-models, only one GPU is active at a time executing a single sub-model,

causing low GPU utilization. Second, activations, i.e., the output of a layer, need

to be communicated to a downstream sub-model, which requires significant band-

width between GPUs. In cases where a single layer cannot fit in a GPU, intra-layer

partitioning [110, 68, 132, 11] is needed and incurs even more inter-GPU communi-

cation [38].

To address low GPU utilization in model parallelism, pipeline parallelism similarly

partitions a model into sub-models but allows them to be executed simultaneously on

different GPUs with different training mini-batches. There are various pipeline par-

allelism designs and they differ in how model parameters are updated by distributed

workers (GPUs). Synchronous training is an approach where all workers train the

same global model in lockstep on every mini-batch while in asynchronous training,

each worker trains its own model on multiple mini-batches and periodically updates

the shared global model through all-to-all communication. In general, synchronous

training converges faster than asynchronous training but the training throughput,

i.e., the number of mini-batches processed per unit time, and GPU utilization are

lower.

Pipeline parallelism. Figure 3-2 depicts two representative pipeline parallelism

schemes, GPipe [54] and PipeDream [78], overlap the processing of multiple mini-

batches (numbered 1 through 7). The model is divided into four sub-models and

distributed on four workers. As shown in Figure 3-2(a), GPipe adopts synchronous

pipeline parallelism and accumulates the gradients calculated in the forward propa-

gation for four mini-batches before the backward propagation can start. The back-

ward pass reversely updates model parameters from mini-batch 4 through 1. Due to

synchronous training, there is significant idleness (denoted as white spaces) on the

workers between the forward and backward propagation. In contrast, PipeDream
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Figure 3-2: GPipe and PipeDream.

employs asynchronous training and allows workers to process different mini-batches

while model updates due to other mini-batches are ongoing. This leads to high GPU

utilization (as shown in Figure 3-2 (b)) though at a cost of slower convergence. [38]

is an asynchronous pipeline parallelism approach similar to PipeDream that relaxes

the topology constraints to allow non-adjacent layers to be placed on the same GPU.

While FTPipe embraces higher GPU utilization, it relies even more heavily on a fast

interconnect.

GPU memory saving. While distributed training partitions models among GPUs,

sub-models could still be too large to fit in a single GPU. Various GPU memory

saving techniques are proposed to further reduce the footprint of sub-models in GPU

device memory. ZeRO (Zero Redundancy Optimizer) is a family of memory optimiza-

tion approaches [99, 117, 100] for deep learning under the DeepSpeed [116] framework.

ZeRO [99] and FSDP [74] both split model states, including model parameters, gradi-

ents, and optimizer states, and distributes them on multiple GPUs. Model states are

fetched on-demand when they are needed to update a particular sub-model at the cost

of high bandwidth intra-node communication. ZeRO-Offload [117] moves the interme-

diate data generated during training, i.e., gradients and optimizer states, from device

memory to host memory to alleviate GPU memory pressure. ZeRO-Infinity [100]

further exploits CPU, GPU, and NVMe memory to allow even larger model training.
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Another common technique employed in GPipe and PipeDream is forward recomputa-

tion during the backward propagation (shown as the duplicate mini-batch processing

in purple color in Figure 3-2). Instead of storing activation outputs and intermediate

data for each sub-model, which are usually 3× of the size of sub-model parameters,

they are recomputed in the backward propagation.

Limitations. First, the existing distributed training schemes require high-speed in-

terconnect, such as NVLink [86], Infiniband, and 40Gbps Ethernet, to effectively con-

struct a training pipeline that overlaps sub-model computation with the transmission

model states between sub-models (GPUs). However, advanced network devices are

as scarce and expensive as high-end accelerators, rarely accessible to average users.

Second, there is a lack of fault tolerance in the design of distributed training and

failures at any workers will stall the entire training pipeline. Third, a model must be

statically partitioned offline before execution. Any changes to the number of workers

or the network condition requires the model to be re-partitioned, lacking flexibility

and elasticity.

3.3 Atom

In this section, we shed light on how Atom addresses the drawbacks of distributed

training schemes designed for high-performance data centers and volunteer comput-

ing to enable elastic, fault tolerant yet efficient training of LLMs over commodity

networks. We first characterize the memory usage and computation requirements for

each layer in model GPT-3 and elaborate on how the insights obtained in the pro-

filing guides Atom design. Without loss of generality, we discuss Atom’s design in

training model GPT-3 but note that Atom can be extended to other complex deep

learning models.

3.3.1 Design Overview

Atom centers on a key design different from the existing distributed learning schemes.

Instead of distributing partitioned sub-models on different GPUs, Atom maintains
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a complete model on a single server in host memory and only loads a sub-model

on GPU device memory when needed via memory swapping. Unlike the existing

schemes that the aggregated device memory on distributed GPUs to accommodate

LLMs but at a cost of communication overhead, Atom leverages host memory, which

is more accessible for average users than a large number of accelerators and high-

speed networks, to host LLMs. Models trained locally at each GPU are synchronized

through an allreduce communication when participating GPUs reach a predefined

global batch size.

Atom does not have a single point of failure and is able to make training progress

in the presence of worker failures, joining, and departure. In what follows, we elabo-

rate on the profiling results of model GPT-3 that motivated Atom design (§ 3.3.2),

the design of sub-model swapping that achieves high GPU utilization (§ 3.3.3), and

automated model partitioning and code generation (§ 3.3.4).

3.3.2 Characterization of GPT-3

We perform a comprehensive profiling of GPT-3 to measure the memory footprint,

the execution time, and the memory swapping time of its key operators/layers and

their associated data during training. We study the feasibility of partitioning GPT-3

to fit in a single GPU and streamlining sub-model execution and switching. The

full version of GPT-3 175B includes a chain of 96 identical decoders and requires

approximately 2.8 TB memory. To fit GPT-3 in our server, which is configured with

384 GB host memory, we trimmed GPT-3 175B down to including two decoders. Note

that the trimmed GPT-3 model has identical structure in model execution, including

the profiling of one of the 96 identical decoders, but differs in the accuracy of the

trained model. We constructed the GPT-3 computation graph2 through PyTorch

module torch.nn.Module and enabled tracing. Layers and operators were executed

according to the graph’s topological order. All results were the average of 10 runs.

The experiments were conducted on an NVIDIA Tesla V100 GPU with 32 GB device

memory running on a PCI-e 3.0 bus.
2https://github.com/karpathy/minGPT
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Figure 3-3: GPT-3 memory usage in forward propagation.
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Figure 3-4: GPT-3 memory usage in backward propagation.
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Memory usage breakdown

Figure 3-3 and Figure 3-4 show the memory footprints of individual layers in GPT-3 in

forward propagation and backward propagation, respectively. We show eight variants

of GPT-3 ranging from 125 million (small) to 175 billion (175B) parameters. Memory

usage was measured by reset_peak, _memory_stats, and max_memory_allocated

from the PyTorch library torch.cuda. The measured memory consumption of each

layer includes activation inputs, intermediate outputs, model parameters, and mem-

ory for temporary workspace at runtime.

Inspired by ZeRO memory optimizations, we configured GPT-3 to offload opti-

mizer states to the host memory and performed model updates on CPU. Thus, the

memory footprints shown in Figure 3-3 and Figure 3-4 exclude the optimizer states.

As shown in the figures, the peak memory usage in GPT-3 175B are the dropout layer

(1,920 MB) in forward propagation and the softmax layer (3,072 MB) in backward

propagation. The results suggest that even the most memory-intensive layer in the

GPT-3 175B model can fit in an entry-level GPU, e.g., NVIDIA GTX 1080 with 8 GB

device memory, without a need to further perform intra-layer partitioning [59, 68, 38].

Another observation is that if the optimizer states, which includes a copy of the model

parameter (4 bytes), the momentum (4 bytes), and the variance (4 bytes) for each

4-byte f32 model parameter, were not offloaded to host memory, the total size of a

layer (4× of the peak memory size shown in Figure 3-3 and Figure 3-4) may exceed

GPU capacity. This highlights the significance of optimizer state offloading. Switch-

ing the model to SSD or NVMe as a storage solution for GPT-3 175B is a topic of

future research since GPT-3 175B requires a substantial amount of memory, more

than 2 terabytes, which exceeds the memory capacity of most commodity personal

computers.

Model partitioning may include multiple layers in a sub-model, which is expressed

as a sub-graph of the computation graph and need to be independently compiled and

optimized by the runtime. We further verified that the memory usage of a sub-model

containing multiple layers is less than or equal to the sum of the memory usage of
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each individual layer. In summary, there always exists a model partitioning, in the

worst case a layer-by-layer partitioning, that allows GPT-3 175B to execute on a

consumer-class GPU.

Memory swapping vs. network transmission

As we have proved the feasibility of fitting a GPT-3 model on a single GPU, we

next study the efficiency of executing LLMs on a single GPU compared with that on

multiple GPUs over a network. For fair comparison, we ensure the number of and

type of GPUs used for training remain the same. Atom executes complete copies of

models on individual GPUs via sub-model swapping and uses allreduce communica-

tion to synchronize the models while pipeline parallelism approaches split the model

on multiple GPUs and rely on network transmissions for sending activation outputs

between sub-models. In this section, we compare the cost of sub-model swapping

with that of sub-model activation via network transmission. A more comprehensive

comparison considering the allreduce communication can be found in § 3.5.

Table 3.2: GPT-3 configurations to measure the cost of network transmissions in
model partitioning.

GPT-3 Model 𝐿 𝑑𝑚𝑜𝑑𝑒𝑙 𝑛ℎ𝑒𝑎𝑑𝑠 activation payload (MiB)

Small (125M) 2048 768 12 6
Medium (350M) 2048 1024 16 8
Large (760M) 2048 1536 16 12
XL (1.3B) 2048 2048 24 16
2.7B 2048 2560 32 20
6.7B 2048 4096 32 32
13B 2048 5120 40 40
175B 2048 12288 96 96

To quantify the cost to transmit activation inputs and intermediate output be-

tween sub-models over network, we set up distributed training in Pytorch on two

servers using asynchronous gRPC [45] APIs. The interconnect was 10 Gbps Ethernet

and we used bandwidth throttling to evaluate transmission rates at 400 Mbps, 800

Mbps, and full-speed 10 Gbps. The 400 Mbps rate represents a typical wide-area
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Figure 3-5: Achievable bandwidth in distributed training.

bandwidth in decentralized data analytics [123]. We also used the loopback network

device (denoted as localhost) to derive a upper bound on the achievable bandwidth.

We optimally partitioned GPT-3 models at the boundary of the transformer block

(decoder) since it has the least activation output. This serves the lower bond on the

amount of network transmission in any model partitioning. Table 3.2 shows the con-

figuration of GPT-3 and the resulted activation payload that needs to be transmitted

over network. The shape of the activation tensor is [𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ, 𝑑_𝑚𝑜𝑑𝑒𝑙],

where batch size is set to 1, the input sequence length 𝐿 is 2048, and the embedding

dimension is 𝑑_𝑚𝑜𝑑𝑒𝑙.

Figure 3-5 shows the achieved bandwidth by transmitting activation payloads be-

tween sub-models under various network conditions. Note that the actual bandwidth

in distributed training is much lower than the line speed of the network. For the 10

Gbps network, activation transmissions are bottlenecked at 610 Mbps, which is also

reported by [17]3. Although gRPC is a widely adopted communication mechanism

to implement distributed training, it requires activation payloads to be transferred

from GPU to CPU for serialization before they are sent to a downstream sub-model.

Figure 3-6 reports the round-trip transmission time, from GPU to CPU and to the

GPU for the next sub-model, for activation payloads in various GPT-3 models.

In comparison, we measured the time to load key layers of the GPT-3 model from

host memory to GPU device memory via memory swapping. Similar to activation

3a round-trip to invoke the remote sub-model functions
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models.
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transmission time in model and pipeline parallelism, the layer loading time is on the

critical path of model execution and significantly affects training performance and

GPU utilization. Figure 3-7 plots the layer loading time in eight GPT-3 models. It

suggests that the loading time of any layers, even for the largest GPT-3 175B model,

is an order of magnitude lower than the reported activation transmission time in Fig-

ure 3-6. Note that the activation transmission time is due to an optimal partitioning

at the transformer block, other partitioning schemes will incur even higher transmis-

sion overhead. While the size of the activation tensor to be transmitted depends on

the type of activation output and how model partitioning is done, the layer load-

ing time is more predictable and proportional to the number of model parameters

included in the layer.

Figure 3-8 shows this linear relationship. Note that the loading time of the Logits

layer, the one immediately following the Transformer block, is approximately 6×
lower than transmitting the activation output of the transformer block using a 10

Gbps network. The gap will be larger when the training occurs in a decentralized

environment with wide-area networks. With the forthcoming PCI-e 5.0 protocol

and an expected higher PCI-e bandwidth, the gap between sub-model loading and

activation transmission will likely widen.
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3.3.3 Streamlining Sub-model Swapping

Although our profiling results clearly show advantages of memory swapping over

network transmission, building a model swapping schedule to seamlessly overlap

model execution and loading is challenging. Figure 3-9 and Figure 3-10 show the

layer-by-layer breakdown of forward and backward propagation time, respectively.

The figures suggest that backward propagation time is approximately 3× of the cor-

responding forward propagation time for each layer. Furthermore, the backward

propagation times are comparable to the loading times in Figure 3-7, opening up

opportunities for overlapping sub-model execution and loading during the backward

pass. The first challenge is that the forward propagation times are consistently shorter

than the corresponding layer loading time, which stalls model execution waiting for

the next sub-model to be loaded. To address this issue, Atom prolongs the execution

times of forward propagation by feeding multiple mini-batches to the forward pass be-

fore the backward pass starts. Such a gradient accumulation technique is commonly

used in asynchronous training and helps maintain a high computation-to-swapping

ratio in the forward pass.

A more difficult challenge is to deal with layers that have significant loading time

yet trivial computation time. Layer embedding is one such example. It incurs non-

trivial loading time due to its size (as shown in Figure 3-7) but negligible execution

time (not shown in Figure 3-9 and Figure 3-10). Figure 3-11 shows the execution

time of layer embedding relative to those of other layers in a transformer block. As

shown in the figure, layer embedding’s contribution to transformer’ execution time is

negligible in both forward and backward propagation and its percentage decreases as

model size increases. The embedding layer encodes an input word from a sentence

into a numerical vector featuring the word in the context. It is always placed in

front of a transformer block right after a training step starts. The problem with

caching the embedding layer on a GPU is that it increases memory usage, while using

the CPU to run the embedding (∼2.4 GB, 50K vocal, d_model=12288, FP32) on
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Figure 3-9: Breakdown of forward propagation time in GPT-3.
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resource-constrained GPUs can lead to slow performance.

Figure 3-12 shows a schedule of sub-model swapping in Atom . The dotted vertical

lines separate training steps, each containing a forward (yellow) and backward (blue)

pass. The execution line shows the timeline of sub-model execution and the device

and host lines show when the sub-models are placed in device memory and host

memory, respectively. As shown in Figure 3-12, an advantage of model swapping
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Figure 3-13: The formulation of model partitioning.

in LLM training is that there exists important locality: the last sub-model in the

forward pass is immediately executed in the backward pass; the last sub-model in the

backward pass is the first needed in the forward pass of the next training step. Since

the embedding layer belongs to sub-model 1 and it does not need to swapped out at

the end of the backward pass, it will be readily available when the next forward pass

begins. This eliminates the potential GPU idleness due to the mismatch between

the execution time and loading time in the embedding layer. Figure 3-12 also shows

gradient accumulation from multiple mini-batches ensures that the execution time of

any layers in the forward and backward pass exceeds their corresponding loading time

to avoid GPU idleness.

3.3.4 Model Partitioning and Code Generation

The key to build a model swapping schedule that seamless overlaps model execution

and loading is to determine a model partitioning scheme that satisfies that 1) any sub-

model fits in the GPU device memory; 2) adjacent sub-models in the topological order

in the model’s computation graph have comparable execution and loading time. To

guide model partitioning, we augment the computation graph with operator/layer’s

forward/backward execution time, loading time, and memory usage. To collect each
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operator’s information, the model is profiled offline, in which the computation graph

is executed operator (layer) by operator (layer). Profiled operators are swapped out

to host memory to ensure that even the largest GPT-3 175B model can be profiled

on a single GPU. We devise an heuristic exhaustive search algorithm to find a valid

partitioning that satisfies all constraints.

Problem definition. A neural network can be represented as a directed computation

graph (DAG) 𝐺(𝐸, 𝑉 ), where each node 𝑣 ∈ 𝑉 is a layer or an operator, and an edge

𝑒 ∈ 𝐸 is an intermediate input or output tensor to the neighboring nodes. The graph

partitioning problem can be expressed as an optimization problem subject to multi-

ple constraints, as shown in Figure 3-13. We design an algorithm to automatically

partition the model in Atom subject to constraints, including the computation-to-

loading ratio between adjacent sub-models, GPU memory capacity, the minimization

of tensor size at the cutting of edges. Node ID 𝑖 is sorted in the topological order of

the computation graph and indexed from 0 to 𝑙. Attribute information of each node

includes the max working memory size 𝑚𝑖 at runtime, the forward execution time 𝑡𝑓𝑖 ,

the backward execution time 𝑡𝑏𝑖 , and the loading time 𝑡𝑢𝑖 from host memory to device

memory.

The objective function is to minimize the computation time, i.e., the sum of all

sub-model forward and backward propagation time, and to minimize the partition-

ing cost, i.e., the total size of intermediate tensors (the size of cutting edge) across

different partitions. One constraint is GPU memory capacity. The mainstream com-

modity GPU memory size is 11 GiB, 16 GiB, or 32 GiB. Another constraint the

computation/prelading ratio where the partitioning result should ensure that the

current sub-model computation time can overlap the next sub-model layer preload-

ing time. Given a bipartite model partitioning {𝑛0, . . . , 𝑛𝑖} and {𝑛𝑖+1, . . . , 𝑛𝑙}, it

should satisfy the condition that both
∑︀𝑝

𝑖=0𝑚𝑖 and
∑︀𝑙

𝑘=𝑖+1 𝑚𝑘 do not exceed the

GPU memory capacity. Besides, computation can overlap with next sub-model load-

ing 𝐶 ·∑︀𝑖−1
𝑘=0 𝑡

𝑓 |𝑏
𝑘 ≥

∑︀𝑙
𝑘=𝑖 𝑡

𝑜
𝑘, where 𝐶 is a constant to specify the degree of gradient

accumulation in order to match the execution time of forward propagations with

their sub-model loading time. We empirically determine 𝐶 offline via profiling for a
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Algorithm 1: Partitioning a GPT-3 model.

1: function ValidConstraints(𝐺, 𝑐𝑠, 𝑐𝑒, 𝑙𝑠, 𝑙𝑒)
2: if 𝐺.𝑚𝑒𝑚(𝑐𝑠, 𝑐𝑒) ≤ 𝐺𝑃𝑈_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦//𝑝𝑟𝑢𝑛𝑖𝑛𝑔

𝐺.𝑚𝑒𝑚(𝑙𝑠, 𝑙𝑒) ≤ 𝐺𝑃𝑈_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝐺.𝑐𝑜𝑚𝑝_𝑡(𝑐𝑠, 𝑐𝑒) ≥ 𝐺.𝑙𝑜𝑎𝑑_𝑡(𝑙𝑠, 𝑙𝑒) then

3: return True
4: else
5: return False
6: end if
7: end function
8: // 𝑐𝑠 and 𝑐𝑒 are the begin and end operator indexes considered for sub-model

execution; 𝑙𝑠 and 𝑙𝑒 are operator indexes for sub-model preloading; the objective
is to match the computation time between 𝑐𝑠 and 𝑐𝑒 with the loading time between
𝑙𝑠 and 𝑙𝑒.

9: function PartitionModel(𝐺, 𝑐𝑠, 𝑐𝑒, 𝑙𝑠, 𝑙𝑒, 𝑡, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠)
10: if !𝑉 𝑎𝑙𝑖𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝐺, 𝑐𝑠, 𝑐𝑒, 𝑙𝑠, 𝑙𝑒) then
11: return
12: end if
13: if 𝑙𝑒 = 𝐺.𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝑠− 1 len(𝑡) ≥ 0 then
14: 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠.insert(𝑡)
15: return
16: end if
17: // squeeze boundary to keep more nodes within a certain range
18: for 𝑙𝑒 ← (𝐺.𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝑠− 1 to 𝑙𝑒, 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒) do
19: 𝑡.insert((𝑙𝑠, 𝑙𝑒), (𝑙𝑒 + 1, 𝑙𝑒))
20: // recursively search for a valid partition
21: 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙(𝐺, 𝑙𝑠, 𝑙𝑒, 𝑙𝑒 + 1, 𝑙𝑒, 𝑡, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠)
22: 𝑡.pop((𝑙𝑠, 𝑙𝑒), (𝑙𝑒 + 1, 𝑙𝑒)) // backtracking
23: end for
24: end function
25: function Main(𝐺) // graph G is topologically sorted
26: 𝑐𝑠, 𝑡, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠← 0, [], [] // partial and final results
27: // search valid partitions of the computation graph
28: for 𝑐𝑒 ← 𝐺.𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝑠− 2 to 𝑐𝑠; 𝑙𝑠 ← 𝑐𝑒 + 1 do
29: for 𝑙𝑒 ← (𝐺.𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝑠 to 𝑙𝑠, 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒) do
30: 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙(𝐺, 𝑐𝑠, 𝑐𝑒, 𝑙𝑠, 𝑙𝑒, 𝑡, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠)
31: end for
32: end for
33: end function
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particular GPU.

Model partitioning algorithm. Based on the augmented computation graph, we

design an exhaustive layer-wise search algorithm to find a feasible partitioning that

satisfies all constraints. Algorithm 1 shows the pseudo code for a feasible partitioning.

The input to the algorithm is the computation graph 𝐺 of a GPT-3 model that is

sorted according to the nodes’ execution order on GPU. The output is a candidate

partitioning stored in 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠. The algorithm recursively evaluates the last edge

of a computation graph (line 9) to see if a partitioning that generates the largest sub-

model given the computation graph satisfies the constraints. The sub-model evaluated

for computation is indexed by 𝑐𝑠 and 𝑐𝑒 while the sub-model tested for its loading

time is indexed by 𝑙𝑠 and 𝑙𝑒. The search is performed with a 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 of 1. Graph

partitioning is an NP-hard problem and an exhaustive search could be prohibitively

expensive when the graph contains hundreds of thousands of nodes. Knowledge on

the structure of GPT-3 helps accelerate the search and can be input to the algorithm

as an additional constraint. GPT-3 contains identical transformer blocks and this

domain knowledge greatly reduces the search space. Among the multiple feasible

partitions returned by the algorithm, Atom selects the one that minimizes the total

tensor sizes between sub-models.

The time complexity of the given algorithm is exponential in the number of nodes

in the input graph G, and also depends on step size of the nested for-loops in the main

function. The time complexity is determined by the number of recursive calls made

in the PartitionModel function, which is a combination of the number of nodes in G

and the step size. The complexity of the ValidConstraints function is constant as it is

a simple comparison of memory and computation time between two sub-models. The

complexity of the Main function is determined by the number of recursive calls made

by the PartitionModel function, as well as the number of iterations in the for-loops,

which depend on the number of nodes in G and step size.

Model compilation and code generation. Atom does not require any changes to

user code and automatically generates Python code for the partitioned model. The

compiler runtime takes as input the augmented computation graph, the partitions

63



returned by the search algorithm, and the original model (torch.nn.Module). The

output of the code generation engine is Python source code of the partitioned with

each sub-model being a separate class. The same Python source code is distributed

to all Atom worker nodes in a decentralized network. The process of code refactoring

can be automated.

3.3.5 Model Distribution and Fault Tolerance

Node failures and transient network disruptions are common in a large-scale decen-

tralized network. Unlike model and parallelism that suffer from single point of failure

or do not support dynamic node join/leave, Atom allows volunteer nodes to inde-

pendently train a copy of the complete model and relies on an periodic allreduce

communication to synchronize copies of the model, in a way similar to data paral-

lelism. Atom employs a distributed hash table (DHT) to monitor the status of vol-

unteer nodes. Each node periodically publish its status to the DHT via a heartbeat

message. Among the information included the heartbeat, nodes report the number

of mini-batches they have processed so far. Atom summarizes the total number of

mini-batches processed by all nodes and triggers an allreduce communication if a

global batch size has been reached. In cases when node failure or departure occurs,

training can still proceed as long as other nodes are still able to process mini-batches

and compensate the loss due to the leaving node.

The shared GPU clusters contributed by volunteers can handle multiple training

jobs simultaneously given enough host memory. Management of different training jobs

submitted by volunteers require individual progress of their training jobs. In a shared

environment with different training jobs, each job will be scheduled for a timeslot

to execute. Participants publish the generated model code and store the model to

the distributed hash table so the model can be retrieved without any central storage

even volunteer hardware continuously join, leave, and fail. Also, the compiled model

can be reused for the same hardware configuration. Therefore, Atom can coordinate

multi-tasking globally by means of service orchestration which is a future direction.
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3.4 Implementation

Atom is implemented based on the PyTorch framework with ∽4K lines of code

in Python. It uses the DHT implementation in Hivemind [118] to coordinate vol-

unteer nodes in a decentralized network and the code generation engine in FT-

Pipe [38] to generate code for sub-models. The system consists of model trac-

ing, profiling, model partitioning, and compilation. In profiling, a model is ana-

lyzed with a sample input and operators and layers are traced to construct a com-

putation graph in the form of an internal representation. We measure the for-

ward and backward step time, and loading time from CPU to GPU of each oper-

ator and layer by torch.cuda.Event.elapsed_time, and the timing runs are re-

peated multiple times. We measure the memory consumption of each layer by

torch.cuda.max_memory_allocated.

In the partitioning phase, we apply Algorithm 1 to assign partition id for each node

based on the profiling statistics in the computation graph. At code generation phase,

the compiler populates the initial function to define operators and layers of a sub-

model, and define the execution flow in the torch.nn.Module.forward function base

on the computation graph. The input shape is derived from the cutting edge between

sub-models. During model execution, Atom maintains two CUDA streams. One is

responsible for executing the current sub-model and the other one asynchronously

prefetches the next sub-model immediately after the current sub-models starts. The

former stream also swaps out a completed sub-model to host memory. Note that

Atom does not swap out the last sub-model at the end of the forward pass or the

first sub-model at the end of the backward pass to exploit locality between the forward

and backward propagation.

3.5 Evaluation

In this section, we seek to answer the following questions:

• How well do model swapping perform on a single GPU in training LLMs com-
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pared with baseline pipeline parallelism strategies across servers in a low-bandwidth

network environment? (§ 3.5.2)

• How well does Atom scale with an increasing number of volunteer nodes?

(§ 3.5.2)

• Does decentralized training in Atom affect the convergence of the trained model

in the presence of node join and leave (fault tolerance) ? (§ 3.5.2)

3.5.1 Evaluation Methodology

Experimental setup. We use three types of GPU servers coded high, medium, and

low. High is configured with four NVIDIA Tesla V100 GPUs, 72 cores (dual Intel

Xeon Gold 6140 CPU@2.30GHz), and 385 GB host memory. Medium is configured

with four GeForce GTX 1080 Ti GPUs, 72 cores (dual Intel Xeon CPU E5-2695

v4@2.10GHz), and 256 GB host memory. Low is configured with four GeForce GTX

1080 GPUs, 40 cores (dual Intel Xeon Silver 4114 CPU@2.20GHz), and 256 GB host

memory. All servers have PCI-e 3.0x16. The CUDA Version is 11.3, and the PyTorch

version is 1.11.0.

Workloads. We mainly focus on GPT-3 models with various configurations [21],

including GPT-3 Small, Medium, Large, XL, 2.7B, 6.7B, 13B, 175B. Note that Atom

requires that a model can fit in host memory. The full version GPT-3 175B model

needs 2.8 TB memory and does not fit in our platforms. In general, GPT-3 175B can

be trimmed down by removing a few identical transformer blocks to fit in our 385 GB

host memory. For fair comparison with pipeline parallelism, in which the model size

cannot exceed the aggregate GPU device memory, we evaluate a GPT-3 175B model

with two transformer blocks and a model size of 68 GB.

Baseline. For each GPT3 model configuration, we compare Atom against Petals [18]

based on BigScience [55] Project BLOOM [108] by using the schedule policy of

GPipe [54] and PipeDream [78]. The baselines were also implemented in Hive-

mind [118] similar as Atom to account for the effect of software architecture on

training performance. Other state-of-the-art approaches are not directly comparable

since many assume the availability of high-speed interconnect. For example, ZeRO-
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Offload [117] has comparable performance of a single GPU swapping scheduling but

it distributes optimization states, gradients, and parameters across GPUs, which can

be inefficient over low-bandwidth networks. This is a significant contrast to our ap-

proach, which utilizes distributed decentralized training to avoid single-point failure.

FTPipe [38] achieves high GPU utilization by aggressively packing the pipeline with

mini-batches and relies on the PCI-e bus for data transmission between sub-models.

In contrast, Atom focuses on LLM training over low-bandwidth networks. Similar

approaches that exploit intra-layer parallelism, such as Megatron-LM [112], require

even higher bandwidth.

Evaluation metrics. We use per result GPU time, defined as the time to process

one mini-batch per GPU, to measure training performance. Practically, we measure

the number of mini-batches processed per GPU per unit time and take the reciprocal.

We are also interested in the total time required to finish one training step, including

the forward and backward propagation time, allreduce communication time, and the

optimization time. We use the allreduce time to study Atom’s scalability.

3.5.2 Experimental Results

Table 3.3: The configuration to compare training performance.

Setting Configuration

Schedule policy Petals (GPipe, PipeDream), Atom
Bandwidth 400 Mbps, 800 Mbps, localhost
Model config GPT-3-Small, Medium, Large, XL, 2.7B, 6.7B,

13B (18 layers), 175B (2 transformer blocks)
GPUs 4×1080 (8 GB), 4×1080Ti (11 GB),

4×V100 (32 GB)

Training performance

We first compare per result GPU time due to Atom and the two baselines, GPipe

and PipeDream, with three network bandwidth settings: 400 Mbps, 800 Mbps, or

localhost, the hypothetical upper bound on bandwidth. We throttled the bandwidth
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Figure 3-14: Comparison of per result (mini-batch) GPU time (w/o allreduce and
optimizer step).

using Wonder Shaper [15]. The configurations are summarized in the Table 3.3. In

this experiment, we disabled allreduce communication and the optimization step to

focus only on the forward and backward passes. In all experiments, we used four GPUs

on a single host without communications between hosts. This controlled environment

helps compare the efficiency of the training pipeline in the baselines with that in

Atom. Models are optimally partitioned on four GPUs with minimal inter-sub-

model tensor transmission for the baselines. Atom uses the automatically partitioned

models by its search algorithm. We set the degree of gradient accumulation to 4 mini-

batches.
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Figure 3-15: GPU utilization over different network bandwidth of GPT-3 175B (2
transformer blocks) by nvidia-smi.

Figure 3-14 shows the averaged step time (both forward and backward) to pro-

cess a mini-batch per GPU. Among the three approaches, Atom significantly and

consistently outperformed GPipe and PipeDream in all experiments. The gap be-

tween Atom and the baselines widens as model size increases or the bandwidth

decreases, suggesting that Atom is most suitable for training large-scale models with

low-bandwidth networks. PipeDream also consistently outperformed GPipe due to

its asynchronous training pipeline that is able to overlap the processing of multiple

mini-batches.

To further study the causes of differences in training performance, we plot GPU

utilizations over the same period of time for Atom , GPipe, and PipeDream in Fig-

ure 3-15. Both GPipe and PipeDream suffered from substantial idleness in GPU

across all experiments. The idleness increases as network bandwidth drops. It sug-

gests that even with multiple mini-batches being fed to the pipelines, computation

cannot overlap with and hide inter-model communications, causing bubbles in the

pipeline. In comparison, Atom is not affected by network speed and the automat-
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ically generated model partitioning helps streamline model execution and loading,

leading to high GPU utilization. Both GPipe and PipeDream achieved the high-

est GPU utilization of 18.3% and 46.3%, respectively. with the localhost network.

On contrary, Atom achieved a GPU utilization of 91.9%, almost twice as much as

PipeDream with an asynchronous pipeline.

Scalability

The scalability in distributed training is usually determined by the allreduce com-

munication phase for model synchronization. For pipeline parallelism, there is a

limit on how much a model can be partitioned to maintain a high computation-to-

communication ratio. To scale to a large number of GPUs, a common practice is

to have independent pipelines, each spanning multiple GPUs and servers. Similar

to data parallelism, the pipelines are periodically synchronized via allreduce com-

munication. To study Atom’s scalability, we focus on how is Atom’s performance

compared with the baselines when using the same number of GPUs and the changes

in its allreduce time as the number of GPU increases.

Due to no access to a large GPU cluster, which motivated this work, we placed

the three GPU servers, i.e., high, medium, and low, into three subnets connected by

campus Internet to emulate a decentralized network. We configured the baselines

with two settings and two scales. Suffix local indicates GPUs on the same host

can communicate with unlimited bandwidth while remote indicates the bandwidth

between any GPUs are throttled to emulate a wide-area network. We evaluated

a 2-pipeline and 3-pipeline setting for the baselines. For example, the 2-pipeline

experiment ran one pipeline on the V100 and 1080Ti server, respectively. For all

experiment, Atom was configured to use the same type and number of GPUs as the

baselines. All approaches were configured to perform an allreduce communication

once a global batch size of 256 is reached.

Figure 3-16a and Figure 3-16b show the comparison of the average training time

that is needed to finish one global batch, i.e., 256 mini-batches. Note that in this

experiment allreduce communication and optimizer updates were enabled. Again,

70



V100+1080Ti V100+1080Ti+1080
0

250
500
750

1000
1250
1500
1750
2000

25
6 

gr
ad

ie
nt

 a
cc

um
 p

er
 G

PU
 (s

ec
)

GPipe-remote
Pipedream-remote

GPipe-local
Pipedream-local

Atom-remote

(a) 400 Mbps.

V100+1080Ti V100+1080Ti+1080
0

200

400

600

800

1000

1200

25
6 

gr
ad

ie
nt

 a
cc

um
 p

er
 G

PU
 (s

ec
)

GPipe-remote
Pipedream-remote

GPipe-local
Pipedream-local

Atom-remote

(b) 800 Mbps.

400 Mbps 800 Mbps
0

10

20

30

40

50

60

70

Al
lre

du
ce

 ti
m

e 
(s

ec
)

8 GPUs
10 GPUs
12 GPUs

(c) Change of allreduce time in Atom .

Figure 3-16: Comparison of total training time among GPipe, PipeDream, and Atom
under different bandwidth.

Atom clearly outperformed the other two approaches by a large margin. It indicates

that Atom’s decentralized architecture built on GPUs training on independent mod-

els is more scalable than the pipeline architecture that requires frequent inter-machine

communication. Figure 3-16c shows the change in Atom’s allreduce time as the num-

ber of GPU increases. The results suggest that there is no dramatic change in the

allreduce time as the system scaled. Because Atom consists of largely independent

GPUs, its scalability is determined by the selection of an allreduce communication

algorithm, which is orthogonal to Atom’s design.

Effectiveness of training and fault tolerance

Model convergence. To improve training efficiency, Atom differs from the two

baselines in training method. GPipe uses a synchronous pipeline that suffers from low

GPU utilization but offers fast model convergence. PipeDream uses an asynchronous

pipeline to overlap the training of multiple mini-batches. It improves GPU utilization

but allows for updates on stale model parameters that results in slower convergence.

In Atom , gradient accumulation is necessary for prolonging the forward pass to
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Figure 3-17: Convergence of a GPT-3 Small model in Atom.

match its model loading time. However, gradient accumulation can negatively affect

convergence. To verify Atom’s convergence, we trained a GPT-3 small model from

scratch using the Wikipedia dataset [126] until convergence and compare that with

the baselines. The training used a learning rate 1 × 10−4, 300K total training steps

with a linear warmup of 3K steps. We used the CPU AdamW [71] optimizer (𝛽1 = 0.9,

𝛽2 = 0.999). We set the target global gradient accumulation size to 512 samples. The

target group size to do the model averaging (ring-allreduce step) and optimization is

12. The total number of GPUs is 12 from 3 servers: 4×V100, 4×1080Ti, and 4×1080.

Figure 3-17 shows the training loss over 20 billion tokens. We observe that the training

loss steadily decreased and eventually converged to an accuracy comparable to the

published result. We conclude that Atom’s architecture design for training efficiency

does not undermine training effectiveness.

Fault tolerance. During the experiment, we also deliberately killed two to four

GPUs to emulate dynamically node joining/leaving. The training did not experience

a disruption and was able to complete, though training performance dropped.

3.6 Conclusion

We present Atom , a system for asynchronous training of massive models in a de-

centralized environment. The key insight that motivated Atom design is that huge

LLMs can be executed on a single GPU layer by layer via memory swapping. Atom
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addresses the overhead of memory swapping by deriving an optimal schedule of model

swapping through detailed profiling of individual layers of an LLM. The overarching

objective that guides Atom design is to avoid GPU idleness as much as possible.

Through comprehensive experiments, we demonstrate that the loosely-coupled dis-

tributed training architecture is advantageous than the tightly-coupled pipeline par-

allelism. We acknowledge that individual servers still needs to equip sufficient host

memory to accommodate LLMs. We envision that with the development of the com-

pute express link (CXL) interconnect, host memory will be more accessible than

accelerators and high-speed networks.
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Chapter 4

Accelerating Data Preprocessing in

Deep Learning: An Empirical Study

on the PerFect Data Reuse Method

As deep learning (DL) models grow in complexity and scale, data preprocessing has

emerged as a critical stage in the pipeline. However, the CPU’s processing speed can

often become a bottleneck for downstream training processes, despite the increas-

ing power of GPUs. To mitigate this challenge, researchers have proposed various

solutions, including data echoing with or without augmentation, specialized data

loading libraries such as NVIDIA DALI, and additional hardware devices. However,

these approaches have limitations, such as the need for additional GPU memory with

DALI and difficulty achieving the desired level of accuracy with data echoing. In

this chapter, we present a novel method, named PerFect, to improve the through-

put performance of the data preprocessing stage and achieve the desired accuracy

when reusing cached data. Our proposed approach involves pre-training the model

using cached data for most epochs, followed by fine-tuning to achieve the desired

accuracy. This method avoids the limitations of data echoing approaches without the

need for additional hardware or third-party libraries. We provide theoretical insights

to analyze the problem and evaluate our approach on both CIFAR10 and ImageNet

datasets using various models. Comprehensive experiments demonstrate the efficacy
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of PerFect in achieving the target accuracy while reducing training time. As such, our

proposed method provides a promising avenue for accelerating the data preprocessing

stage in deep learning pipelines.

4.1 Introduction

The exponential growth of Big Data has empowered the success of Deep Learning (DL)

applications, which have become a prevalent approach for a wide range of tasks [65].

For instance, DL has shown outstanding performance in image classification [50],

natural language understanding [21], and drug discovery [62]. However, training DL

models requires significant computing resources, and one of the critical stages in this

process is the data preprocessing stage. The data preprocessing stage is responsible

for loading and parsing input data and preparing it for a DL model by applying data

augmentations [113].

Despite its importance, the data preprocessing stage can become a bottleneck in

the overall DL workflow [48, 76]. This is mainly due to the fact that data preprocessing

is primarily performed on CPUs, whereas GPUs are becoming more and more powerful

due to Moore’s law. When dealing with massive datasets, the problem becomes even

more pronounced, as the data preprocessing stage can require extensive computational

resources.

To address this issue, several approaches have been proposed. While these ap-

proaches have demonstrated success in enhancing DL system performance, they also

have limitations. One approach is to use specialized hardware accelerators like GPUs

or FPGAs to offload data preprocessing tasks. The NVIDIA Data Loading Library

(DALI) is an example of such an approach . DALI [39] allows users to transfer all or

part of the data preprocessing workload from the CPU to the GPU, thereby reducing

the total training time. However, DALI requires additional GPU memory which may

be limited compared to CPU memory. DLBooster [26], for instance, relies on the

availability of extra hardware like FPGAs which may not always be feasible. The

second approach is to utilize algorithms that make use of idle accelerator cycles to
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Figure 4-1: The effect on model performance with PerFect data reuse.

boost the efficiency of data preprocessing. One such algorithm is data echoing [29],

which stores a copy of the data on the accelerator and reuses it during idle periods,

reducing data transfer between the CPU and accelerator and improving DL system

performance. However, data echoing and partial data reuse methods cannot meet

desired accuracy requirements even with partial data reuse [66]. A recent study

proposed a third approach MinIO cache that involves caching sharded datasets and

fetching them through a high-speed network to enhance DL system performance [76].

Network latency in MinIO cache can slow down the overall system performance and

increase response times for users. Moreover, caching may not scale well as the dataset

size grows, leading to prohibitive memory requirements and increased costs for main-

taining a high-speed network as the number of nodes increases. Overall, while these

solutions have shown promise in enhancing data preprocessing performance, they also

have limitations that must be considered when selecting the appropriate solution for

a particular use case.
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Table 4.1: Summary of key takeaways, findings and implications of pre-training
reusing input data and fine-tuning.

Considerations Finding & Implications

Determining the optimal timing for Initiate fine-tuning after observing a plateau
fine-tuning in the model’s performance during validation.
Impact of shuffle buffer size Larger shuffle buffer sizes make it easier to

reach the target accuracy due to randomness.
Before and after data augmentation Data augmentation can speed up convergence

and assist with fine-tuning.
Impact of repetitive times Fewer repetitive times make the fine-tuning

process easier.
Learning rate scheduler Higher learning rates can compensate for

shifted data distribution.
Hyperparameter tuning The choice of hyperparameters significantly

impacts a model’s performance.

In this chapter, we introduce PerFect, a novel method to improve the accuracy

performance of the data preprocessing stage in DL systems while retaining the original

accuracy targets, without the need for additional accelerators. Our approach consists

of a two-phase training process: pre-training and fine-tuning. During the pre-training

phase, we train the model for a majority of the epochs using data reuse, enabling the

model to learn general features. In the fine-tuning phase, we refine the model without

data reuse, allowing the model to learn task-specific features through training on

data that is more relevant to original data distribution, thereby achieving the desired

accuracy performance. As depicted in Figure 4-1, we first pre-trained the model for

40 epochs, repeating the process three times, for a total of 120 pre-training epochs.

We then fine-tuned the model for an additional 80 epochs, bringing the total number

of training epochs to 200. The training was conducted using a batch size of 2048 and

a shuffle size of 2048 on 4 GPUs. The results demonstrate that applying data reuse

three times increased the testing accuracy to 93.25%, matching the baseline, while

decreasing the decoding time by 40% in pre-training. This emphasizes the efficacy of

data reuse in enhancing model performance and optimizing training efficiency.

Although the concept of fine-tuning after pre-training may seem straightforward,

it presents significant challenges in determining the optimal approach. In addition,
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we provide other examples and case studies, which we will consider in Table 4.1.

This work aims to address several key questions related to fine-tuning, including

determining the appropriate time to initiate pre-training, evaluating the benefits and

drawbacks of initiating pre-training and fine-tuning earlier or later, identifying the

most effective method for pre-training the model either through immediate data reuse

without augmentation or through data augmentation for reused samples, analyzing

the influence of buffer size and data shuffling on fine-tuning, and assessing the impact

of repeating data samples on final accuracy. Our ultimate goal is to provide an

empirical study and theoretical insights to better understand this problem and guide

future research in this area.

In this study, we present a novel method called PerFect (Pre-train-Fine-tune) to

enhance the data preprocessing stage in deep learning systems through a two-stage

training approach. We evaluate the effectiveness of our approach on the CIFAR10

and ImageNet datasets, using various deep learning models, and demonstrate that it

achieves the target accuracy while decreasing training time. Our approach outper-

forms the existing data echoing method [29] in improving the overall performance of

deep learning systems while achieving the target accuracy. The contributions of our

study can be summarized as follows:

• We propose a novel method, PerFect, that enhances the data preprocessing

stage in deep learning systems through a two-stage training approach. This

approach provides theoretical insights to analyze the overfitting problem and

tweaks learning rate and hyperparameters to overcome the issue.

• We discuss the metrics used to determine the transition to the fine-tuning stage

when the model reaches the target accuracy. We address the challenges of

determining the appropriate learning rate scheduler and hyperparameters for

training the model and propose a method to resolve these issues.

• We compare our approach to the existing data echoing method and demonstrate

its superiority in improving the overall performance of deep learning systems

while achieving the target accuracy.

• We provide a rigorous evaluation of our method on both the CIFAR10 and
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ImageNet datasets, using representative deep learning models, and demonstrate

its effectiveness in achieving the target accuracy.

In conclusion, our study presents a novel method for enhancing the data prepro-

cessing stage in deep learning systems, which improves their overall performance while

achieving the target accuracy. Our approach provides theoretical insights and prac-

tical guidance for overcoming the overfitting problem and determining appropriate

hyperparameters and learning rate schedulers.

4.2 Background

4.2.1 The Impact of Data Preprocessing Overhead on Deep

Learning Systems

The data preprocessing stage is a crucial component of the deep learning workflow,

as it prepares the data for input to the model. This stage involves ETL (extract-

transform-load) operations such as loading and parsing (decoding) input data, ap-

plying data augmentation, and converting the data into a form suitable for input to

the model. Data augmentation is used to increase the amount of training data by

applying transformations such as rotation, scaling, and cropping to the input data.

These transformations help to prevent overfitting, which occurs when the model is

too closely fit to the training data and is unable to generalize to new data.

However, the data preprocessing stage can be a major bottleneck in the deep

learning workflow, especially when working with large datasets or lightweight deep

learning models. To investigate the impact of data preprocessing on deep learning

performance, we conducted an experiment using one to twelve data loader workers to

preprocess the ImageNet dataset for three deep learning models: ResNet18, ResNet50,

and ResNet152. We used a testbed server equipped with four NVIDIA Tesla V100

GPUs, each with 32 GB of memory, and a total of 72 vCPUs powered by an Intel(R)

Xeon(R) Gold 6140 CPU running at 2.30GHz.

The results of our experiment, as depicted in Figure 4-2, indicate that the data
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Figure 4-3: Preprocessing time per image for 1 worker using various transform oper-
ations, with decoding being the main contributor and data read from memory.

loading stage became increasingly pronounced as the size of the DL model decreased.

The time taken for each image processing operation is shown in Figure 4-3. To

maximize GPU memory usage, the batch size was set to 512 for ResNet18, 256 for

ResNet50, and 128 for ResNet152. The images were processed using a varying number

of workers from 1 to 12, with the PyTorch library and the PIL library utilized to load

and decode the raw JPEG images into RGB format. The decoding step is a crucial

part of the preprocessing process, but it can be reduced or eliminated by reusing data

in the data buffer so we do not need to decode images every time.

The NVIDIA DALI library is designed to improve the efficiency of data prepro-

cessing pipelines by offloading partial or all transformations to the GPU. As shown in

Figure 4-4, the use of DALI requires additional GPU memory to process images for

ResNet18. Specifically, the extra memory required for processing 512 images is 2916
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Figure 4-4: Memory usage comparison of NVIDIA DALI library vs PyTorch while
processing various batch sizes for a ResNet18 model during training.

MiB, which is 14.28% more than the baseline. The memory required for processing

128 and 256 images is 1468 MiB (24.20%) and 1820 MiB (16.15%), respectively.

4.2.2 Deep Learning Training

Problem Definition. Let xi be an input sample and 𝑦𝑖 be the corresponding label

in the training set {xi, 𝑦𝑖}, where 𝑁 is the number of samples in the training set.

The loss function, ℓ(𝑝, 𝑦), measures the discrepancy between the model’s prediction

𝑝 for a given input xi and the ground truth label 𝑦𝑖. The goal is to find the set of

model parameters that minimize the average loss over the training set, as formulated

in Eq.(4.1):

E(x,𝑦)∼𝐷 [ℓ (𝑓𝜃(x), 𝑦)] := min
𝜃

1

𝑁

𝑁∑︁

𝑖=1

ℓ(𝑝(xi; 𝜃), 𝑦𝑖) (4.1)

where 𝜃 represents the model parameters, and 𝐷 denotes the training dataset

distribution.

To solve this optimization problem, we employ optimization algorithms such as

stochastic gradient descent (SGD) or its variants. These algorithms iteratively update

the parameters in the direction of the negative gradient of the expected loss with

respect to the parameters. The iteration continues until a stopping criterion is met,

such as convergence to a local minimum or reaching a maximum number of iterations.
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𝜃𝑡 = 𝜃𝑡−1 − 𝜂∇𝜃ℓ(𝜃𝑡−1) (4.2)

where 𝜃𝑡 is the updated model parameters at iteration 𝑡 and ∇𝜃ℓ(𝜃𝑡−1) is the

gradient of the loss function with respect to the model parameters 𝜃 at iteration 𝑡−1.

Weight decay is a regularization technique that helps to prevent overfitting by

adding a term to the objective function that penalizes large parameter values. The

weight decay hyperparameter 𝜆 determines the strength of this penalty. The objective

function with weight decay can be expressed as:

min
𝜃

1

𝑁

𝑁∑︁

𝑖=1

ℓ(𝑝(xi; 𝜃), 𝑦𝑖) +
𝜆

2
‖𝜃‖22 (4.3)

where ‖𝜃‖22 is the squared 𝐿2 norm of the model parameters.

The update rule becomes:

𝜃𝑡 = 𝜃𝑡−1 − 𝜂(∇𝜃ℓ(𝜃𝑡−1) + 𝜆𝜃𝑡−1) (4.4)

Momentum is a technique that helps the optimization algorithm to escape from

local minima and to converge faster. It does this by adding a fraction of the previous

weight update to the current weight update. The momentum hyper-parameter 𝜇

determines the strength of this fraction.

To perform SGD with momentum, we initialize an additional momentum term

𝑔0 = ∇𝜃ℓ(𝜃0) and update it at each iteration using the following rule:

𝑣𝑡 = 𝜇𝑣𝑡−1 +∇𝜃ℓ(𝜃𝑡−1)

𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑣𝑡

(4.5)

where 𝜃, g, v and 𝜇 are the parameters, gradient, velocity, and momentum respec-

tively.

To perform SGD with weight decay and momentum and update the parameters

using:
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𝑣𝑡 = 𝜇𝑣𝑡−1 + (∇𝜃ℓ(𝜃𝑡−1) + 𝜆𝜃𝑡−1)

𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑣𝑡

(4.6)

4.2.3 Parameter Updating using Data Reuse

If we reuse data for 𝜏 times, the model parameters are updated:

𝑣𝑡,𝑖 = 𝜇𝑣𝑡,𝑖−1 + (∇𝜃ℓ(𝜃𝑡,𝑖−1) + 𝜆𝜃𝑡,𝑖−1) , 𝑖 = 1, 2, . . . , 𝜏

𝜃𝑡,𝑖 = 𝜃𝑡,𝑖−1 − 𝜂𝑣𝑡,𝑖, 𝑖 = 1, 2, . . . , 𝜏
(4.7)

where 𝜏 is the times of reusing data from shuffle buffer size.

4.2.4 Pre-training and Fine-tuning

Pretraining and fine-tuning are essential techniques in the field of deep learning that

improve the accuracy and efficiency of machine learning models, especially when

dealing with large datasets or transfer learning scenarios.

Pre-training involves training a deep learning model on a large and representative

dataset, allowing the model to learn general features that can be applied to a wide

range of tasks. This process makes the model more versatile and robust, which is

crucial for real-world applications. Data echoing is a method that can be used during

pre-training to speed up the process by duplicating data instances. Moreover, a

pre-trained model can be saved and reused for future tasks, reducing the need for

retraining from scratch and saving time and resources.

Fine-tuning is a technique that involves taking a pre-trained model and adjusting

its parameters on a smaller, more specific dataset. This process allows the model

to learn task-specific features that are not present in the original dataset used for

pre-training. As a result, fine-tuning can significantly improve the performance of

the model on the specific task at hand. Additionally, fine-tuning can speed up the

training process since the model starts with a good set of initial weights that have
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already been learned during pre-training.

Overall, pre-training and fine-tuning enable the development of highly accurate

and efficient models. Pre-training allows the model to learn general features that can

be applied to a wide range of tasks, while fine-tuning helps the model to adapt to

more specific tasks, improving its performance.

4.3 The Risk Reusing Data: Overfitting

Overfitting is a common challenge in machine learning, which arises when a model

becomes too complex and fits the training data too closely, leading to poor gener-

alization performance. In this context, we present a case study to illustrate how

overfitting can occur for a simple model when reusing data and highlight the impor-

tance of fine-tuning in the final stage of training to improve the model’s generalization

ability.

Furthermore, we suggest several considerations that can help alleviate the effects

of overfitting, which are outlined in Table 4.1 and are based on theoretical analysis.

These considerations include carefully selecting an appropriate shuffle buffer size,

applying data augmentation, adjusting the number of repetitions, learning rate, and

hyperparameters. By following these guidelines, we can enhance the generalization

performance of machine learning models and reduce the risk of overfitting.

Overfitting case study. The linear regression model under consideration is repre-

sented as:

ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥 (4.8)

where 𝑥 is the input data, and 𝜃0 and 𝜃1 are model parameters. To evaluate the

model’s performance, we conduct an experiment where we generate a set of 50,000

data points around the line 𝑦 = 7+3𝑥+𝜖, where 𝜖 is a random noise term. Figure 4-5

shows the training data points and the linear regression model used for fitting. The

cost function for this model is defined as the mean square error (MSE) between the

predicted value and the actual value:
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𝐽(𝜃0, 𝜃1) =
1

2𝑚

𝑚∑︁

𝑖=1

(ℎ𝜃(𝑥𝑖)− 𝑦𝑖)
2 (4.9)

We use stochastic gradient descent (SGD) with a learning rate of 5e−5 for opti-
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mization. Figure 4-6 displays the updates of model parameters 𝜃0 and 𝜃1 with and

without data reuse to the true values 𝜃0 = 7 and 𝜃1 = 3. We observe that the variance

of the parameters increases when data reuse is employed. The sum of all variable vari-

ances was 2.17 with data reuse, which is higher than the value of 1.85 without data

reuse. Additionally, Figure 4-7 illustrates the training loss, showing that the training

loss with data reuse is lower than that without due to overfitting to the training data.

Bias-variance tradeoff. To simplify the discussion, we consider the mean squared

error (MSE) of the estimate ̂︀𝑋 of the true value 𝑋 of a model as follows:

MSE( ̂︀𝑋) = E
(︁
( ̂︀𝑋 −𝑋)2

)︁
= Var( ̂︀𝑋) +

(︁
Bias( ̂︀𝑋)

)︁2

(4.10)

If we repeat the data reuse 𝑛 times, the expected mean squared error at a single

training example ̂︀𝑋 will increase 𝑛2 times:

MSE(𝑛 ̂︀𝑋) = 𝑛2

(︂
Var( ̂︀𝑋) +

(︁
Bias( ̂︀𝑋)

)︁2
)︂

(4.11)

Thus, reusing the same training data for each iteration can result in accumulating

mean squared error for the entire dataset.

𝐿2 Regularization and Repetitive Data. One way to prevent overfitting is by

applying 𝐿2 regularization, which also provides insights into how repetitive usage of

data can lead to overfitting.

The regularized objective function, denoted by 𝐽 , can be expressed as:

𝐽(𝜃;𝑋,𝑦) = 𝐽(𝜃;𝑋,𝑦) + 𝛼Ω(𝜃) (4.12)

Here, (𝑋,𝑦) represents the training set, 𝜃 represents all the parameters including

𝑤 and any unregularized parameters, 𝐽 is the original objective function on the train-

ing data, Ω(𝜃) is the parameter norm penalty, and 𝛼 is a hyperparameter controlling

the strength of the parameter norm penalty.

We can achieve weight decay regularization by setting 𝜃 = 𝑤 and Ω(𝜃) = 𝛼
2
‖𝑤‖22,

which yields the following equation:
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𝐽(𝑤;𝑋,𝑦) = 𝐽(𝑤;𝑋,𝑦) +
𝛼

2
‖𝑤‖22 (4.13)

To obtain the gradient of 𝐽 with respect to 𝑤, we take the derivative of Eq.( 4.13)

with respect to 𝑤, which yields:

∇𝑤𝐽(𝑤;𝑋,𝑦) = ∇𝑤𝐽(𝑤;𝑋,𝑦) + 𝛼𝑤 (4.14)

To obtain the quadratic approximation of 𝐽 , we use a Taylor series expansion

around the minimum point 𝑤*:

𝐽(𝑤) ≈ 𝐽(𝑤) +
1

2
(𝑤 −𝑤)⊤𝐻(𝑤 −𝑤*) (4.15)

Here, 𝐻 is the Hessian matrix of 𝐽 with respect to 𝑤 evaluated at 𝑤*.

Gradient descent can be used to update the parameters as follows:

𝑤(𝜏) = 𝑤(𝜏−1) − 𝜖∇𝑤𝐽
(︀
𝑤(𝜏−1)

)︀
(4.16)

= 𝑤(𝜏−1) − 𝜖𝐻
(︀
𝑤(𝜏−1) −𝑤*)︀ (4.17)

where 𝜖 is the learning rate.

The value of 𝛼 can be approximately calculated from Eq.(7.33)-(7.45) [42]:

𝑤(𝜏) −𝑤* = (𝐼 − 𝜖𝐻)
(︀
𝑤(𝜏−1) −𝑤*)︀ (4.18)

Rewrite this expression by eigendecomposition 𝐻 = 𝑄Λ𝑄⊤, where Λ is a diagonal

matrix and 𝑄 is an orthonormal basis of eigenvectors

𝑤(𝜏) −𝑤* =
(︀
𝐼 − 𝜖𝑄Λ𝑄⊤)︀ (︀𝑤(𝜏−1) −𝑤*)︀

𝑄⊤ (︀
𝑤(𝜏) −𝑤*)︀ = (𝐼 − 𝜖Λ)𝑄⊤ (︀

𝑤(𝜏−1) −𝑤*)︀ (4.19)

Further,
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(𝐼 − 𝜖Λ)𝜏 = (Λ+ 𝛼𝐼)−1𝛼 (4.20)

We can derive the relationship between how much to apply weight decay and

repetitive steps:

𝛼 ≈ 1

𝜏𝜖
(4.21)

The study presented in [40] suggests that an increased number of training itera-

tions (𝜏) leads to a decreased value of 𝛼, indicating less regularization during model

training when we reuse data. This implies that the neural network is more likely to

become overfitted. Additionally, even for a single training example, subjecting it to

repeated training through data reuse with an increased 𝜏 has a greater risk of overfit-

ting. Another study [114] investigates the manipulation of the order of SGD, which

degrades the convergence performance of the model.

To mitigate overfitting, we can leverage the theoretical insights from the above

analysis and reduce the repetitive times of a single training sample by decreasing the

number of training iterations (𝜏). One way to achieve this is by increasing the shuffle

buffer size and applying different data augmentation techniques to introduce more

diversity into the training data. Additionally, adjusting hyperparameters, such as the

learning rate, can improve the accuracy during the fine-tuning stage.

By reducing the number of training iterations, we can decrease the risk of overfit-

ting and improve the generalization performance of the model. Therefore, it is crucial

to carefully consider and tune the hyperparameters, as well as apply appropriate data

preprocessing and augmentation techniques, in order to achieve optimal results. In

the following sections, we will delve into these factors in greater detail, exploring their

impact on model performance and discussing various approaches for mitigating their

effects.
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4.4 Reusing data in pre-training and fine-tuning for

target accuracy

Pre-training and fine-tuning are used to improve the performance of a model on a

specific task. We will delve into the details of how to pre-train and fine-tune a model

to ensure the validation accuracy, including a discussion of the various approaches

and strategies that can be used empirically.

Data echoing [29] and refurbishing partial data [66] are two methods that aim to

improve the throughput of the data loader by reusing all or part of the preprocessing

pipeline. These methods have been shown to ensure the convergence of the training

process [8]. However, simply reusing the data without adjusting hyperparameters

can be difficult to achieve the original optimal validation accuracy. Additionally,

conducting a thorough hyperparameter search from scratch for a large model can be

time-consuming.

4.4.1 Metrics to switch to fine-tuning.

Determining the optimal time to start fine-tuning after pre-training is critical for

maximizing computation time and improving model accuracy. Fine-tuning allows

the model to specialize in the target task by leveraging the knowledge acquired from

reused data during pre-training. However, starting too early or too late can negatively

impact the training efficiency and model’s performance. Two metrics can be used to

determine the optimal time to start fine-tuning: accuracy and loss value.

One effective approach is to monitor the model’s accuracy during pre-training.

The pre-training process should continue until the model reaches a plateau in accu-

racy, indicating that it has learned all it can from the available data. Once the model

has reached this point, the fine-tuning phase can commence. During fine-tuning, we

can experiment with a range of epochs to find the optimal number for fine-tuning

while adjusting hyperparameters as needed. Another metric to consider is the loss

value. Monitoring the loss value during pre-training and looking for a decrease in
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Figure 4-8: Illustration of data loading with a shuffle buffer architecture, caching
multiple mini-batches in memory and shuffling them for randomness. Data is loaded
from SSD/HDD/network and transferred to GPU for model training.

the rate of change of the loss function can indicate that the model has reached a

satisfactory pre-trained state and is ready for fine-tuning. However, it’s worth noting

that the optimal time for this transition may vary based on the dataset and task.

Besides, if time or computation budget is limited, it is better to allow the model

to train for the maximum number of epochs of the original training process and then

switch to fine-tuning at the end of the final fine-tuning stage, e.g., 1/4 of the total

original training budget, for improving the accuracy.

Overall, determining the optimal time to start fine-tuning involves monitoring

both accuracy and loss value during pre-training when they are stable and adjusting

hyperparameters as needed during the fine-tuning phase. By doing so, we can optimize

computation time and improve the model’s accuracy for the target task. Additionally,

it avoids starting hyperparameter search from scratch at the beginning of training.

4.4.2 Examining the Effect of Shuffle Buffer Size on Pre-training

Our study aims to examine how the size of a shuffle buffer affects the accuracy per-

formance of a model when reusing mini-batches. The buffer size plays a crucial role

in optimizing the data loading process for efficient model training. Firstly, it impacts

91



the randomness of the generated mini-batches, which can affect the convergence of

optimization algorithms such as stochastic gradient descent (SGD) [31]. Secondly,

caching data without repetitive decoding can improve data preprocessing throughput

as shown in Figure 4-3 but significantly increase the size of the decoded dataset by 5

- 7x times in memory [76]. Striking a balance between caching data for saving mem-

ory and maintaining sufficient randomness in the mini-batches is crucial for optimal

model performance.

In addition, using an internal buffer, as depicted in Figure 4-8, can greatly en-

hance the performance and efficiency of the data loading process for training deep

learning models. These buffers manage the loading and caching of pre-processed or

unprocessed input data, creating a seamless pipeline for data flow. They can even

prefetch data elements from the input dataset using background threads, anticipat-

ing the data needs of the downstream system and pre-loading data ahead of time to

reduce waiting times.

To gain a deeper understanding of the correlation between shuffle size and training

performance, we conduct experiments using shuffle sizes of 1 batch size (2048 training

examples, 4.096% of the entire dataset), 2 batch sizes (8.192%), and 3 batch sizes

(12.288%) on 4 GPUs, each repeated three times, with the CIFAR10 dataset and

the ResNet18 model. By systematically altering the shuffle size and repeating the

tests, we aim to gain insights into how varying shuffle sizes affect the randomness of

mini-batches and the accuracy of the model training process.

Figure 4-9 demonstrates the impact of the shuffle buffer on training performance

using the CIFAR10 dataset and a ResNet18 model. The results indicate that the

accuracy of the model is significantly affected by different shuffle sizes. Among them,

the 3 batch size condition performs the best, surpassing the baseline accuracy. The

experiments utilized SGD optimizer, a learning rate of 0.1, momentum of 0.9, and

weight decay of 5e-4. Data augmentation was applied. The baseline condition without

the shuffle buffer achieves 93.25% accuracy. However, when the shuffle size is set to

1 batch size, the accuracy does not improve significantly and falls short of the target

accuracy. The 2 batch size condition performs better, but still falls short of the target
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Figure 4-9: The effect of the shuffle buffer size on the accuracy of a ResNet18 model
trained on the CIFAR10 dataset.

accuracy. Only the 3 batch size condition, which occupies 12.288% of the total dataset

size, surpasses the baseline accuracy and reaches the desired target.

Findings of our experiment emphasize the significance of shuffle size in the pre-

training phase’s success. A larger shuffle size increases randomness, which reduces the

𝜏 value in Eq.(4.21), thus reducing the risk of overfitting and enhancing the model’s

performance, as demonstrated in the 3 batch size conditions’ results. On the other

hand, an inappropriately small shuffle size can prevent the model from reaching the

target accuracy. Thus, choosing the shuffle size carefully is crucial when designing

the data loading process for training a machine learning model.

But how can we still achieve the target accuracy when memory constraints limit

the shuffle buffer size? Fine-tuning involves training a pre-trained model on a specific

task by initializing it with pre-trained weights. The motivation behind fine-tuning is

to leverage the features learned during pre-training on data with a similar distribution

and adjust the model to the target dataset, ultimately achieving the desired validation

accuracy. The primary issue of fine-tuning is that even though the data in pre-training

may be reused, the ordering of the data is differ from the original order during pre-

training, potentially affecting the behavior of SGD algorithms. In fact, [114] identified

issues like batch-order poisoning and backdoors that can arise due to this discrepancy.

We conducted an experiment with a shuffle size of one batch (2048), which is
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Figure 4-10: The effect of fine-tuning on the accuracy of a ResNet18 pre-trained for
35x3 epochs on the CIFAR10.
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Figure 4-11: Accuracy of ResNet18 after 35x3 epochs of pretraining with unsuccessful
learning rate scheduler and fine-tuning, shown for several trials.
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Figure 4-12: Learning rates for ResNet18 pre-trained on CIFAR10 with 35x3 epochs
and shuffle size of 1, and then fine-tuned.
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known to be insufficient for the ResNet18 model in Figure 4-9, and repeated it three

times. The model underwent a pre-training phase of 35 epochs and was fine-tuned

for an additional 95 epochs (from epoch 106 to 200 in the baseline condition). Our

goal was to investigate the impact of fine-tuning on the accuracy of a ResNet18

model trained on the CIFAR10 dataset. We focused on the challenges posed by

memory limitations and suboptimal data shuffling. Our results, depicted in Figure 4-

10, demonstrate that fine-tuning significantly improved the accuracy of the model,

reaching the baseline accuracy despite the memory limitations and inefficient shuffling.

This supports the conclusion that fine-tuning can be an effective method for enhancing

the performance of deep learning models, even under memory constraints.

The importance of selecting an appropriate learning rate for a model is widely

recognized, as it can significantly affect performance. A learning rate scheduler allows

for adjustment of the learning rate during training, in response to the current state of

the model. In our study, we aimed to ensure that the learning rate was appropriately

high during the initial stages of fine-tuning, to compensate for any differences between

the original case and the drifted case. As training progressed, the learning rate

gradually decreased to facilitate convergence to the desired level of accuracy.

During the fine-tuning stage of our experiments, we performed a manual search

to identify the optimal initial learning rate using a cosine annealing-based learning

rate scheduler that gradually reduced the learning rate as training progressed. We

started with an initial learning rate of 0.35 and reduced it to 0.16 at the 106th baseline

epoch. Figure 4-12 shows both successful and unsuccessful learning rate schedulers,

with the unattained accuracy displayed in Figure 4-11. Our experiment emphasizes

the importance of selecting the learning rate carefully during the fine-tuning stage of

model training. The results highlight the criticality of this process, and by utilizing a

learning rate scheduler and conducting a manual search for the optimal initial value,

we can significantly enhance the model’s performance and obtain better results.

The results from Figure 4-13 indicate that pre-training the ResNet18 model for 45

epochs repeated 3 times with a shuffle size of 1 batch size failed to achieve the desired

accuracy. Despite our attempts to fine-tune the model, the performance remained
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Figure 4-13: Accuracy of ResNet18 pre-trained for 45 epochs repeated 3 times with
a shuffle buffer size of 1 batch, and fine-tuned from epochs 136 to 200.
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Figure 4-14: ResNet18 pre-trained for 45 epochs repeated 3 times, and fine-tuned
from epochs 136 to 200 with various initial learning rates.

unsatisfactory, possibly due to the insufficient shuffle size, which may have limited

the model’s generalization ability. To address this issue, we increased the shuffle size

to 2 batch sizes in Figure 4-15, which accounted for 8.2% of the data. This change

led to the achievement of the target accuracy.

Figure 4-14 presents the learning rate curve for the ResNet18 model pre-trained for

45 epochs repeated 3 times (i.e., 135 epochs in total in pre-training). Fine-tuning was

conducted from epochs 136 to 200 with different initial learning rates, as indicated

in the legend. Despite our efforts to optimize the learning rate, the results were

insufficient to reach the target accuracy. However, in Figure 4-15, we present the

96



Figure 4-15: Fine-tuning of ResNet18 model with pre-training of 45 epochs repeated
3 times, using a shuffle buffer size of 2 batches.

Figure 4-16: The VGG16 model was pre-trained for 45 epochs repeated 3 times. The
accuracy and learning rate were plotted in the left and right figures, respectively.

learning curve for the model, which utilized the ResNet18 and was pre-trained for

45 epochs with a shuffle buffer size of 2 batch sizes, repeated 3 times. Fine-tuning

was carried out from epochs 136 to 200 with an initial learning rate of 0.2 and a

cosine annealing scheduler, which enabled us to easily reach the baseline accuracy. In

addition, we demonstrate the training process of VGG16 architecture pre-trained for

45 epochs, repeated three times, using a different learning rate scheduler in Figure 4-

16. We were able to achieve the desired level of accuracy by fine-tuning the model

with data augmentation and a shuffled batch size of 2432. This is highlighted in our

results.

We conducted an experiment to validate our findings on a larger dataset using the
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Figure 4-17: Accuracy and learning rate curves for a ResNet50 model trained on
Imagenet dataset with 56 epochs (15 epochs of pre-training repeated 3 times and 11
epochs of fine-tuning).

Imagenet-1K dataset [33] using the FFCV data loader library [64]. The experiment

involved training a ResNet50 model for 15 epochs of pre-training, which was repeated

three times, followed by 10 epochs of fine-tuning, resulting in a total of 55 training

epochs. We use the OneCycle learning rate scheduler and the learning rate was

initialized at a peak of 1.7 at the first epoch, with a batch size of 512 per GPU

and four GPUs in total. We used SGD optimization with a momentum of 0.9, weight

decay of 1e-4, and label smoothing of 0.1. The results are shown in Figure 4-17, where

the accuracy improved during fine-tuning and reached the original baseline accuracy

of 77.5%. Prior to fine-tuning, the accuracy was lower than the baseline. To optimize

the training process, we set the shuffle buffer size to 8192, which is equal to 16 times

the batch size of 512, representing 0.64% of the entire Imagenet-1K dataset.

4.4.3 Without augmentation in pre-training

We have chosen not to use data augmentation in our approach to further conserve

computational resources during data preprocessing. By foregoing operations such

as rotation, cropping, and scaling, we can minimize the time and memory required.

However, this approach may result in a dataset that is biased towards less augmented

versions of the original examples, potentially impeding the model’s capacity to gen-
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Figure 4-18: Accuracy of ResNet18 models pretrained for 40x3 epochs each (120
epochs total). The left figure used shuffled batch size of 1 with data augmenta-
tion, while the right figure had immediate reuse without augmentation. Both models
reached the target accuracy after fine-tuning from epochs 121 to 200.

eralize to new data.

Data augmentation is a technique used to increase the amount of new and syn-

thetic data examples available for training a model. By expanding the size of the

training dataset, data augmentation reduces the number of times a single example is

utilized during the training process, i.e., reduce the 𝜏 in Eq.(4.21). This helps to mit-

igate the risk of overfitting, where a model memorizes the training data rather than

learning the underlying patterns. By reducing the number of repeated exposures to

a single example, data augmentation prevents overfitting and results in more robust

and accurate models.

To address overfitting and achieve optimal accuracy, we incorporate the aug-

mented data into the fine-tuning process after a certain number of pre-training epochs.

This allows the model to learn from the original examples with increased augmen-

tation transformations. This strategy balances the trade-off between computational

efficiency and generalization performance. It is essential to consider both the advan-

tages and disadvantages of data augmentation while making this decision.

In this experiment, we aim to demonstrate that immediate data reuse without

augmentation can be a practical option in certain scenarios, particularly after fine-

tuning. We evaluated the performance of ResNet18 models pre-trained for a total
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Figure 4-19: Accuracy of ResNet18 on CIFAR-10 using immediate reuse without
augmentation, with 3 repetitions and OneCycle learning rate scheduler during fine-
tuning.

of 120 epochs by repeating the training example for three times for 40 epochs in

the pre-training process. The accuracy results are presented in Figure 4-18. The

left graph illustrates the outcomes when the shuffle size was set to 1 batch, and data

augmentation was applied each time the data was reused. In contrast, the right graph

shows the results when immediate reuse was performed without augmentation. We

further conducted fine-tuning from epoch 121 to 200. The findings indicate that both

models achieved the desired accuracy after fine-tuning. These results suggest that

immediate data reuse without data augmentation can be a viable option in certain

cases, especially after fine-tuning. However, it is essential to note that without data

augmentation, the fine-tuning process becomes more challenging to reach the desired

accuracy. Therefore, a careful consideration of the trade-offs between computational

efficiency and impact on model generalization must be made before deciding whether

to use data augmentation. We will discuss these considerations further in the following

sections.

Enhancing Model Performance through Fine-Tuning after Immediate Data

Reuse. Our objective is to achieve a target accuracy by fine-tuning the model. Our

initial experiments revealed that immediate data reuse without augmentation did not

consistently achieve the target accuracy on the CIFAR-10 dataset using ResNet18

models. Thus, we explored the use of fine-tuning during the final training phase as a
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Figure 4-20: OneCycle learning rate schedule during fine-tuning for a ResNet18 model
on CIFAR-10 using immediate reuse without augmentation and 3 repetitions.

Figure 4-21: Accuracy of ResNet18 on CIFAR-10 using immediate reuse with 3 rep-
etitions and cosine annealing learning rate scheduler during fine-tuning.

potential solution to improve model performance.

Figure 4-19 depicts the accuracy of ResNet18 models on the CIFAR-10 dataset

using immediate reuse without augmentation and with fine-tuning. The models were

pre-trained for 45 epochs, resulting in a total of 135 epochs, followed by fine-tuning

from epoch 136 to 200 using OneCycleLR with a peak learning rate of 0.0723, weight

decay of 0.0005, batch size of 896, and momentum of 0.9. The hyper-parameters

were selected using a Weights&Biases Sweeps [16]. We were able to achieve the

target accuracy during the fine-tuning phase. Figure 4-20 displays the learning rate

schedule for OneCycleLR with a peak learning rate of 0.0723. Our findings suggest

that fine-tuning can effectively enhance the performance of models using immediate

data reuse without augmentation.
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Figure 4-22: Cosine annealing learning rate schedule used during pre-training and
fine-tuning for ResNet18 on CIFAR-10 dataset.

Impact of Learning Rate Scheduler Strategies on Fine-Tuning. We evaluated

the impact of two learning rate scheduler strategies on the accuracy of deep learning

models during fine-tuning. Our experiments demonstrated that both the One Cycle

policy and cosine annealing learning rate schedulers improved model accuracy, as de-

picted in Figures 4-20 (One Cycle) and 4-22 (Cosine Annealing). In our experiments,

we used a shuffle size of 3 times the batch size, a total of 200 epochs, and 3 repetitions

of 45 pre-training epochs using ResNet18 for both learning rate scheduler strategies.

The accuracy results of the models are presented in Figure 4-21. Our findings indi-

cate that utilizing various learning rate schedulers can significantly improve model

accuracy during fine-tuning, provided that we identify appropriate hyperparameters.

To verify that our findings are not limited to a specific type of model, we con-

ducted an additional experiment using the MobileNetV2 architecture. Specifically,

we pre-trained the MobileNetV2 model on the CIFAR-10 dataset for 45 epochs with

immediate data reuse, which was repeated three times. We then fine-tuned the model

for 65 epochs without data augmentation and evaluated its performance. The results

of this experiment are shown in Figure 4-23. MobileNetV2 can achieve the desired

level of accuracy.

Immediate Data Reuse Results on ResNet50 for ImageNet. We conducted

an experiment to evaluate the effectiveness of immediate data reuse on ResNet50 for

the large-scale ImageNet dataset. Our results are presented in Figure 4-24. In this

experiment, we aimed to achieve the desired level of accuracy by using immediate
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Figure 4-23: Accuracy and learning rate of MobileNetV2 trained on the Cifar10 using
immediate data reuse. The model was pre-trained for 45 epochs repeated 3 times and
fine-tuned 65 epochs.

Figure 4-24: Accuracy of ResNet50 trained on the ImageNet dataset using immediate
data reuse. The model was trained for 60 epochs, consisting of 45 pre-training epochs
(repeated 3 times) and 15 fine-tuning epochs.

data reuse. The baseline training lasted for 56 epochs, and the immediate data

reuse case involved 45 pre-training epochs (repeated three times) and 15 fine-tuning

epochs, totaling 60 epochs, which is four more than the baseline training. Our results

demonstrate that immediate data reuse improved the training process and enabled

us to achieve the desired level of accuracy.

Our study showed that reusing data without applying augmentation techniques

can be more challenging than reusing data while using different augmentation methods
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Figure 4-25: Accuracy of ResNet18 on the CIFAR-10 using immediate reuse without
augmentation, with varying numbers of repetitions. The models were trained for 200
epochs, but were unable to reach the target accuracy.

to increase the size of the dataset, as shown in Figure 4-17. Although our immediate

data reuse approach required an additional four epochs to achieve the target accuracy,

it was accomplished at an acceptable cost. These findings suggest that immediate

data reuse may require more effort during fine-tuning to attain the desired accuracy

compared to reusing data with various augmentation techniques. Our results indicate

that using data augmentation techniques during data reuse can help achieve the

desired accuracy more efficiently than immediate data reuse alone.

4.4.4 The Effect of Repeat Times on Fine-tuning

Pre-training with Varying Data Reuse Frequencies. In this study, we aimed

to investigate the impact of data reuse frequency on model performance during pre-

training. We conducted experiments with different numbers of repetitions to immedi-

ately reuse the same data, but the target accuracy was not achieved, possibly due to

oversampling [22]. Specifically, we pre-trained models with repetition counts of 3, 4,

5, and 6, using a shuffle buffer size of 1 batch size. However, as shown in Figure 4-25,

these models failed to attain the desired accuracy.

Repeated use of the same data during pre-training, as shown in Eq.(4.21), can lead

to overfitting, making it harder to achieve the desired accuracy during fine-tuning.

Thus, understanding the impact of data reuse frequency on model performance is
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Figure 4-26: Accuracy of ResNet18 with varying repeat times during pre-training
with shuffle size as 3 times of batch size (2048) and different data augmentation.

critical in designing effective pre-training processes.

As depicted in Figure 4-26, our experiments have highlighted a significant rela-

tionship between data reuse frequency and shuffle size. Specifically, increasing the

number of times data is repeated may lead to a decrease in model accuracy, likely

because of overfitting. This occurs because repeatedly using the same data can cause

the model to become too focused on specific details, making it perform poorly on

new and unseen data. Conversely, increasing the shuffle size can improve accuracy by

introducing a more diverse range of data. This diversity can help prevent overfitting

and enhance the model’s ability to generalize to new data compared with the Fig-

ure 4-25. Therefore, determining the optimal data reuse frequency and shuffle size is

crucial for achieving the best pre-training performance.

To summarize, our findings suggest that while immediate data reuse can be helpful

to save memory and reduce computation overhead, it’s essential to balance it with

the introduction of new and diverse data to prevent overfitting. This can be achieved

by increasing the shuffle size to introduce more varied data into the training process.

As part of our investigation, we aimed to assess the impact of repeating a large

amount of data during pre-training on the accuracy and learning rate of the ResNet18

model. Specifically, we wanted to determine whether this approach could still lead

to improved model accuracy during fine-tuning, even with a high number of data

repeats. To do this, we trained the ResNet18 model for a total of 200 epochs, with 20
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Figure 4-27: Accuracy of ResNet18 improved with a 3x batch size shuffle, repeated
6 times over 200 epochs, through pretraining for 20x6 epochs and fine-tuning for 80
epochs.
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Figure 4-28: Learning rate in the fine-tuning stage with a 3x batch size shuffle buffer,
repeating 6 times over 200 epochs using ResNet18.

epochs dedicated to pre-training and repeated 6 times, and 80 epochs for fine-tuning.

During training, we employed data augmentation and set the shuffle size to three

times the batch size to enhance the model’s ability to generalize.

Our results, as illustrated in Figure 4-27, demonstrated that repeating a large

amount of data during pre-training can indeed lead to improved model accuracy

during fine-tuning. The model was able to achieve the desired accuracy compared to

the baseline, even with a high number of data repeats.

However, it is important to note that we observed significant changes in the learn-

ing rate scheduler during both pre-training and fine-tuning, as shown in Figure 4-28.

This suggests that the learning rate needs to be heavily tweaked when employing this
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Figure 4-29: Accuracy of ResNet18 pre-training for 55 epochs with 3 repetitions, and
fine-tuned for 35 epochs.
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Figure 4-30: Learning rate of ResNet18 pre-training for 55 epochs with 3 repetitions,
and fine-tuned for 35 epochs.

approach. Therefore, while repeating a large amount of data during pre-training can

be an effective way to enhance model accuracy during fine-tuning, it is important to

carefully consider the learning rate changes that may occur as a result.

4.4.5 The Timing to Fine-tuning

Analysis of Pre-Training Epochs for Immediate Data Reuse. To investigate

the effectiveness of pre-training for immediate data reuse, we conducted experiments

with pre-training epochs of 45x3, 55x3, and 65x3. Analyzing the results of different

fine-tuning start epochs enables us to determine the trend of timing for fine-tuning

after pre-training. It is worth noting that fine-tuning for immediate data reuse, where
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Figure 4-31: Accuracy of ResNet18 with 3 repetitions, pre-training for 65 epochs, and
fine-tuned for 10 epochs.
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Figure 4-32: Learning rate of ResNet18 with 3 repetitions, pre-training for 65 epochs,
and fine-tuned for 10 epochs.

the pre-trained model is used without any data augmentation, is more challenging

than fine-tuning for data reuse after augmentation. This is because fine-tuning re-

quires a higher learning rate to compensate for the discrepancy between the baseline

and the model based on the repetitive data distribution. In the previous section, we

discussed the results of pre-training at 45x3 epochs, as shown in Figure 4-19. Here, we

further evaluate the effectiveness of pre-training at different epochs and their impact

on fine-tuning performance.

Fine-Tuning for Immediate Reuse Case: Pre-train 55x3, Total 200 Epochs.

In our experiments, we pre-trained the ResNet18 model with a batch size of 2048 for

4 GPUs, weight decay of 0.0005, and momentum of 0.9, repeating the process 3 times
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Figure 4-33: W&B Sweep hyperparameter searching for improved performance of
resNet18 model with 3 Repetitions and pre-training for 55 epochs.

for a total of 55x3 epochs. Then, we fine-tuned the model for 35 epochs with a

batch size of 2432 using a OneCycle learning rate scheduler with a peak learning rate

of 0.118, as depicted in Figure 4-30. The results showed that the model achieved

an accuracy of 93.43%, as depicted in Figure 4-29. To further evaluate the model’s

performance, we conducted a hyperparameter search, as depicted in Figure 4-33.

In the hyperparameter searching, we select two main hyperparameters to tune the

test accuracy. The Sweep results indicated that the combination of 55x3 epochs of

pretraining and 35 epochs of fine-tuning was the most effective in reaching the target

accuracy.

Fine-Tuning for Immediate Reuse Cases: Repeat Pretraining 65x3, Total

205 Epochs. In our experiments, we first pretrained the ResNet18 model using a

batch size of 2048 and 4 GPUs, with a weight decay of 0.0005 and a momentum of

0.9. We repeated this process 3 times, for a total of 65x3 epochs. Then, we fine-tuned

the model with a batch size of 320 for an additional 10 epochs, using a OneCycleLR

learning rate scheduler with a peak learning rate of 0.195, as shown in Figure 4-

32. Our results indicated that the model achieved an accuracy of 93.43%, as shown

in Figure 4-31. We also performed a hyperparameter sweep to achieve the desired

accuracy.

Our findings suggest that it’s possible to achieve high accuracy with short fine-
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tuning periods, even after extensive pre-training. However, it’s important to balance

computational efficiency with model generalization when determining the extent of

pre-training for efficient fine-tuning. For fine-tuning starting from 65x3 epochs, a

higher peak learning rate is required compared to the 55x3 case, as the former has

fewer opportunities to converge to the optimal valley. A higher learning rate com-

pensates for the drifted hyperplane distance in high-dimensional space.

4.4.6 Discuss about learning rate scheduler and hyperparam-

eters

When fine-tuning a pre-trained model for data reuse, selecting the appropriate hy-

perparameters is critical. Several key factors must be taken into account, including

the initial learning rate and learning rate scheduler, batch size, and various optimizer

hyperparameters such as weight decay coefficient. Choosing the right hyperparam-

eters requires careful consideration of the specific task and an understanding of the

various trade-offs involved. To optimize hyperparameters effectively, it is essential to

experiment with different combinations of hyperparameters and optimizer settings.

This approach allows for the identification of the best possible solution for a particular

task.

One effective way to explore different hyperparameters is to use hyperparameter

tuning techniques, such as those offered by Sweeps [5]. These techniques can help

to automate the search process and make it more efficient. Therefore, selecting the

right hyperparameters is crucial when fine-tuning a pre-trained model for data reuse.

Careful consideration of the specific task and experimentation with different hyper-

parameter and optimizer combinations are essential. Using hyperparameter tuning

techniques can help to streamline this process and improve the overall efficiency of

the search.

When fine-tuning a pre-trained model for data reuse, it is essential to consider

several trade-offs in order to achieve the desired accuracy. One trade-off that can be

made is selecting several key hyperparameters to optimize during fine-tuning. These
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hyperparameters include the initial learning rate and batch size. By focusing on

these key hyperparameters, we can reduce the number of trials needed to achieve

optimal results. In addition to hyperparameters, the choice of optimizer [79] and

its associated hyperparameters can significantly impact the results of fine-tuning.

Different optimizers may be more or less suitable for specific types of problems and

datasets. It is important to carefully evaluate the performance of different optimizers

and their hyperparameters to determine the best solution for a particular task.

Therefore, selecting the right hyperparameters and optimizer for fine-tuning a pre-

trained model for data reuse is essential in achieving the desired accuracy. Careful

consideration of the specific task, as well as the trade-offs involved, is necessary.

4.5 Related Work

Data Reuse. [29] introduces data echoing to reduce the computation used by earlier

stages of the training pipeline and speed up neural network training. By reusing inter-

mediate outputs from earlier pipeline stages, the proposed technique can match the

baseline’s predictive performance using less upstream computation. [66] proposes data

refurbishing, a sample reuse mechanism that accelerates training by reusing partially

augmented samples to reduce CPU computation while preserving sample diversity

obtained by data augmentation. Both papers address the issue of reducing computa-

tion and accelerating the training process of deep neural networks by reusing data and

features. However, data echoing requires hyperparameter tuning at the beginning of

each training process to achieve optimal accuracy, which is time-consuming. On the

other hand, data refurbishing still faces the challenge of not being able to reach the

target accuracy.

Feature Reuse. Traditional backpropagation algorithm for training neural networks

requires sequential processing, which limits parallelization and computing efficiency.

[56] propose a novel parallel-objective formulation and features replay algorithm to

address the limitations of sequential processing in backpropagation for training deep

neural networks, achieving faster convergence, lower memory consumption, and better
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generalization error compared to other methods. This approach is more general, as

it can reuse hidden feature data as well.

Convergence, Accuracy, and Imbalanced Data. Agarwal et al. [8] examine

the convergence of data-echoed extensions of standard optimization methods, which

builds upon the work proposed by Choi et al. [29]. However, the paper does not

delve into achieving desired accuracy or fine-tuning hyperparameters. Additionally,

we have identified an issue with Theorem 7 in the paper and have reached out to the

author to clarify that the step size should be 𝐷
2𝐾𝜌

√︁
𝐵
𝑇

instead of 𝜌
𝐾𝐷

√︁
𝐵
𝑇
.

Imbalanced datasets pose a challenge for deep learning algorithms [22]. Cao et al.

propose methods such as re-weighting, re-sampling, cost-sensitive learning, margin-

based loss functions, and generalization bounds to address this issue. Our findings

suggest that fine-tuning using the original dataset can also help correct imbalanced

and re-ordered datasets that affect optimization algorithms. Shumailov et al. [114]

introduce training-time attacks that can disrupt model training or introduce back-

doors in machine learning models by manipulating the order of data without changing

the underlying dataset or model architecture. The authors observe that even a sin-

gle adversarially-ordered epoch can slow down model learning or reset all learning

progress. It is crucial to note that the order and distribution of data significantly

affect stochastic optimization algorithms.

Dataloader as a Service. To mitigate data stalls, [76] utilizes a distributed in-

memory cache in their data-loading library, CoorDL, as a simple but effective tech-

nique to speedup the data loading stage. In the meantime, the significance of com-

prehending data storage and ingestion for training large-scale deep recommendation

models using datacenter-scale AI training clusters is emphasized in [136]. The pa-

per introduces Meta’s comprehensive a data storage and ingestion (DSI) pipeline,

which includes a central data warehouse constructed on distributed storage and a

Data PreProcessing Service that is scalable enough to eliminate data stalls. Ad-

ditionally, the paper illustrates how diverse and continuous training jobs are used

to collaboratively train hundreds of models across geo-distributed datacenters. Fur-

thermore, Cachew [48] built for TensorFlow suggests autoscaling and autocaching
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policies to offer a comprehensive data loader service for data processing. These poli-

cies allow resources to scale dynamically to prevent training job stalls and automati-

cally apply caching to reuse preprocessed data within and across jobs whenever it is

performance/cost-effective.

4.6 Conclusion

In conclusion, the proposed PerFect method offers a new approach to optimize the

data preprocessing stage in DL systems, with a two-phase training process consist-

ing of pre-training and fine-tuning. This method not only enables the retention of

desired accuracy targets but also reduces the overall training time by reusing cached

data. Our experiments demonstrate that PerFect effectively achieves the desired ac-

curacy while also decreasing training time. Our work provides theoretical insights

into the trade-offs and limitations of this method, and offers practical guidance for

practitioners to adopt and utilize PerFect in their own DL workflows.
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