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Abstract 

Increased application of composite materials in the military and civil applications renewed the 

interest to development of high-fidelity methodologies for predicting their performance 

characteristics. Besides the traditional autoclave processed structural composites such as 

IM7/8552 and IM7/977-3 widely used on various platforms, novel materials such IM7/5320-1 

suitable for Out-of-Autoclave (OoA) cure became of interest.  Static and fatigue performance 

prediction of Open-Hole quasi-isotropic laminates made from IM7/5320-1 was performed in this 

work by using the Finite Element Analysis software BSAM. Progressive failure simulation 

including delaminations, matrix cracks and fiber failure was performed.  Regularized eXtended 

Finite Element Methods (RXFEM) was used for mesh independent on-the-fly insertion of 

intralaminar matrix cracks. The Cohesive Zone Model (CZM), and the strength tracking methods 

were used for both inter and intralaminar crack propagation during fatigue loading. In addition, 

to capture the accurate stress ratio in each material point of the structure an algorithm for 

recoding local R-ratio was implemented. A Continuum Damage Mechanics (CDM) model was 

used for fiber failure initiation and propagation. It is the only damage mode modeled by CDM. 

Previously developed and validated static failure method was extended to fatigue damage 

prediction by applying S-N based strength reduction and proportional empirical reduction of the 

effective fiber fracture toughness in compression. The RXFEM methodology, previously applied 

to tension-tension cases was expanded to perform analysis under compression-compression and 

compression-tension loading conditions. Three different loading amplitudes were determined 

based on static strength. Delamination, matrix cracks, and fiber failure damage accumulation 

found during the fatigue analysis was compared with the experimental results found in the 

Advanced Material Characterization and Structural Certification (AMCS) Volume 1 by the 
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National Institute for Aviation Research (NIAR). All material properties required for analysis 

were provided by NIAR including static and fatigue properties. The results obtained under 

tension-tension loading showed the best correlation of extent and location of matrix cracks and 

delamination with the experimental data. Fiber damage was most notably found in the 

compression-compression model, predicting appropriate length in zero- and forty-five-degree 

plies. All three damage modes were observed in compression-tension in outer and zero-degree 

plies. The similarities and differences in computed results and experiment are discussed. 
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1 Introduction 

Composite materials have been at the forefront of the aerospace structures and the desire for 

stronger structures without a drastic increase in weight can be satisfied with advancements in 

laminate composites. However, the manufacturing and testing of laminate composites can be 

costly compared to the metallic counterparts. As new composites are developed, strength and 

fatigue tests must be performed to understand how the material will perform under expected 

loads and when the material might fail. The strength and fatigue tests executed account for a 

large portion of the cost and labor time, and any advancement in reducing both time and money 

is vital in expanding the functionality of composites.  

Gaining a fundamental understanding and accurate prediction of failure and damage 

propagation under fatigue loading in laminate composites is pertinent before the material is 

introduced into application. Over the past few decades, advancements in numerical computation 

in the form of Finite Element Analysis, FEA, has allowed for material and structure testing with 

a reduction in physical experiments. Although computational advancements have eased the need 

for physical testing, further progress in the field can provide results with more accuracy and 

efficiency. Through the present work, damage evolution found through fatigue loading of 

IM7/5320-1 Open-Hole specimens will be analyzed using FEA software and compared with the 

experimental results found by the National Institute of Aviation Research. Three Open Hole 

cases will be studied Compression-Compression, Compression-Tension, and Tension-Tension 

with the emphasis on observing delamination, matrix cracks, and fiber failure. 
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1.1 Use of Composites in the Aerospace Industry  

Composite materials were first introduced fifty years ago but were applied in a limited 

fashion, only being applied in sub-structures such as control surfaces [1].  As understanding of 

composites increased and the clear strength to weight ratio advantage to the common metals 

used, composites transitioned to being used in the primary structure of aerospace vehicles, 

namely wings and fuselages. A considerable jump was made in the transport industry with 

Boeing’s release of the 787 comprising of more than fifty percent composite material, compared 

to eleven percent usage in the 787’s running mate, the 777 [2]. A graphic depiction of the 

percentage of total weight comprised of composites in transport aircraft can be found in Figure 

1.1. Although composite materials are relevant in aerospace structures, an increased use can be 

found in other industries such as the automotive and sporting equipment industries. 

 

Figure 1.1 Composite Usage in Commercial Transports [3] 
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1.2 Mechanisms of Damage in Laminate Composites 

Damage in laminate composites can be observed to be both interlaminar and intralaminar 

[4][5]. The amount of damage observed during testing can be affected by many factors, including 

the stacking sequence of the laminate and the endured loading. The present work will focus 

primarily on two intralaminar damage mechanisms, matrix cracking and fiber failure, and one 

interlaminar damage mechanism, interlaminar cracking, also known as delamination. Damage 

mechanisms often interact with each other and can be affected by loading factors such as cyclic 

and thermal loading. Fatigue and thermal loading can lead to more damage compared to 

traditional static loading, reducing the overall strength of the laminate composite over time. 

Furthering the understanding of mechanisms in damage of laminate composites is essential in 

improving the functionality of composites in the future. 

1.2.1 Matrix Cracking 

Matrix cracking is often the first form of damage observed in laminate composite testing 

and are often categorized as transverse, through the thickness, or in-plane cracking. Transverse 

cracking is commonly found in the off-axis plies, plies not aligned in the loading direction, 

because of weaker material properties than plies orientated in the loading direction [4,6,7]. 

Transverse cracking can lead to other damage mechanisms such as delamination in the 

interfacing plies.  
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Figure 1.2 Matrix Cracking in Composite Laminates (a) Transverse Cracking, (b) Transverse Cracking and 

Delamination, and (c) In-Plane Cracking [6] 

In-plane cracking can occur because of manufacturing defects in the matrix or debonding 

between matrix and fibers. In-plane cracks propagate in the direction of the fiber orientation of 

the ply and is affected by the stacking sequence of the laminate and is normally first observed in 

the off-axis plies, much like transverse cracking.  

1.2.2 Delamination 

Interlaminar cracking, or delamination, is cracking found between adhering laminas 

leading to separation between the plies. Delamination is often first observed at the free edges of 

laminates, including holes, and will be emphasized in the current work, where the interlaminar 

stresses are the highest [4,8].  Interlaminar cracking is primarily produced by the mismatch of 

properties of neighboring plies as fiber orientation is a major factor in the ply’s strength, 

however, other factors i.e. manufacturing defects and even impact can lead to delamination [9].  

As ply separation increases, the load carrying capacity of the laminate drastically decreases, 

leading to complete failure of the specimen. Matrix cracking and delamination are commonly 
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observed together in composite testing as the stress redistribution caused by matrix cracking 

leads to delamination and further delamination leads to the connecting of other matrix cracks. 

This cycle in turn leads to catastrophic failure of the laminate. 

1.2.3 Fiber Failure 

Fibers are the main load carrying material in laminate composites and failure can lead to 

catastrophic failure in the specimen or structure. Fiber breakage will be the first of the fiber 

failures discussed, caused primarily by tensile loads exceeding the strength of the fiber. Once a 

fiber suffers a breakage, the stress must be redistributed to neighboring fibers and stress 

redistribution can cause a repeating effect on the neighboring fibers, eventually leading to 

complete failure of the specimen. From mechanical testing, it can be observed that cracks found 

in adjacent off-axis plies can affect fiber breakage [7].  

Under compressive loads fiber micro-bucking is the main damage mode observed. Fiber 

micro-buckling was first reported in literature by Argon [10] and is the primary damage 

mechanism triggered by compressive loads that leads to fiber kinking. The micro-buckling was 

found to form a kinking band, initiated by fiber misalignment due to the manufacturing processes 

[4,11]. At the kinking band, shear stresses begin to develop which eventually leads to the 

buckling of the fiber defined by two modes, shear and extensional. The shear failure is deemed to 

be the most dominant failure mechanism in fibers [12]. 
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 Figure 1.3 Formation of the kinking band in composites [13]  

1.3 Continuum and Discrete Damage Mechanics 

Damage mechanics is the study and predication of damage initiation and propagation and 

two main mechanics models have been used in the study of composites, continuum and discrete 

damage mechanics. Each damage mechanics model comes with both advantages and 

disadvantages; however, both are used extensively today. 

1.3.1  Continuum Damage Mechanics 

Continuum Damage Mechanics, CDM, was first formulated by Kachanov in 1958 in the 

investigation of creep in materials [5,14,15]. However, since then, CDM has advanced in damage 

mechanics. The main premise of CDM is observing the damage of a material in a variety of 

damage variables, at first as a scalar value and then progressions to tensors in later 

developments. Damage accumulation in composites, such as matrix cracks and fiber breakage, 

are not modeled directly, and, instead, the damage is incorporated into the reduction in stiffness 

of the specimen. Subsequently, the damage variables involved in CDM model makes it easy for 

implementation into modern day analysis. An in-depth CDM analysis of laminate composites 
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can be reviewed by the works of Miamí et. al. and a fatigue approach by Llobet et. al. [5,16,17]. 

However, a key drawback of this method is complicated methods used to monitor damage 

interaction, a major factor in specimen failure.  

1.3.2 Discrete Damage Mechanics 

Discrete Damage Mechanics aims to address the shortcomings of CDM. Discrete 

Damage Mechanics, DDM, directly models the displacement discontinuities and allows for the 

interaction of the damage, such as the relationship of delamination and matrix cracks discussed 

previously. Camacho and Ortiz originally set the foundation of DDM in the modeling of impact 

damage on brittle materials using finite element methods [18]. In the original development of 

DDM, cracks were confined to follow the boundaries of the finite elements of the model using a 

cohesive zone. However, the DDM methodology has transformed to allow damage propagation 

to run through elements using mesh independent finite element techniques, allowing for more 

accurate representation and damage interaction. DDM methodologies have been applied in 

fatigue loading by Iarve, and is currently used in a standalone software BSAM, the software used 

in the analysis of the current work [19].  

 

Figure 1.4 Crack propagation using discrete damage mechanics [18] 
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1.4 Finite Element Advancements 

After the implementation of DDM into FEA software, several advances in different FE 

methods were made to increase both computational efficiency and accuracy. In Camacho and 

Ortiz’s first models, a set triangular element mesh was used, only allowing the crack to 

propagate along element edges, as seen in Figure 1.4. Three different methodologies using DDM 

will be introduced, adaptive remeshing, eXtended Finite Element Methods, and the Regularized 

eXtended Finite Element Method.  

1.4.1 Adaptive Remeshing 

One of the first advancements involved an adapting remeshing around the crack tip as 

computation occurs [20–22]. Using adaptive remeshing technique requires the crack path or a 

pre-crack inserted before computation begins. A fine mesh is found around the crack tip and 

becomes coarser based on distance from the crack tip. The remeshing then follows an algorithm 

in which loading occurs, static or fatigue, and a failure criterion is then checked to determine if 

the crack propagates. After crack propagation, the mesh is refined around the new crack tip and 

the process is repeated. Adaptive remeshing still was limited to crack propagation along element 

boundaries, but fine meshes along the crack tip allowed for a more accurate representation of 

crack propagation in materials. However, the constant remeshing throughout analysis can be 

computationally taxing and, in the case of laminate composites, surface element connectivity 

between neighboring laminas can be problematic in delamination studies. 

 

Figure 1.5 Adaptive remeshing technique for crack growth [22] 
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1.4.2 eXtended Finite Element Method  

Researchers looked to fill the flaws of adaptive remeshing techniques by developing the 

eXtended Finite Element Method, XFEM [23–26]. The basis of XFEM methodologies is nodal 

enrichment of elements in which the crack or crack tip lies within. A signed distance function is 

used to determine if arbitrary locations are “above” or “below” the crack, assigning positive and 

negative values respectively. A Heaviside step function is then deployed to define the 

displacement jump over the crack, splitting the domain into two separate domains. The classical 

finite element approach is then slightly changed, adding in the enriched functions to the 

approach. The issues found in the adaptive remeshing methods are resolved with XFEM, 

however, XFEM introduces a new issue of having a discontinuous function in the integrand 

when computing element stiffness, an issue in which the Regularized eXtended Finite Element 

Method resolves. The mathematical model for XFEM will be discussed in a later chapter. 

1.4.3 Regularized eXtended Finite Element Method 

To solve the issue of a discontinuous function in the integrand of the stiffness matrix, Iarve 

proposed replacing the Heaviside step function with a continuous function so that standard Gauss 

integration can be performed [27]. The computation of displacement discontinuities is then 

computed the same as XFEM. A further discussion of Regularized eXtended Finite Element 

Method will be found in the theoretical framework of the current work. 

2 Theoretical Framework 

The Theoretical Framework chapter is meant to establish the mathematical framework of the 

current work. Methodologies discussed in the Theoretical Framework provide a heightened 

knowledge and is pertinent in understanding damage analysis of laminate composites under 
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fatigue loading. RXFEM and XFEM will be discussed first, providing the foundation of how 

damage will be modeled in the current work. Following RXFEM and XFEM will be the 

constitutive model on how crack propagation will occur with an in-depth description of the 

Cohesive Zone Model. That last two that will be discussed will be Local R-Ratio and fiber 

failure methodologies incorporated in BSAM. In each section, an emphasis will be put on fatigue 

formulation for each method. 

2.1 XFEM Formulation in Damage Modeling 

Before the XFEM and RXFEM methodologies are defined, a background in classic Finite 

Element Analysis is required and will not be provided in this paper. The reader is directed to the 

work of Cook et. al. if needed [28]. Although RXFEM is the method used for damage modeling 

in the current work, some mathematical formation found in XFEM is required before the 

establishment of RXFEM.  

2.1.1 XFEM Formulation of Modeling Cracks 

As stated in the Introduction, XFEM looked to address the inability for the classic FEA to 

model displacement discontinuities in analysis by enriching nodes in elements in which 

discontinuities are found. XFEM has been used extensively in modeling fracture in composites, 

including both static and fatigue modeling [29–31]. There can be many formulations of XFEM, 

however, the methodology chosen is from the book by Mohammadi [26]. The classic FEA 

displacement field approach is expanded to include the nodal enrichment, found in Equation 

(2-1) through Equation (2-3).  

 
𝑢ℎ(𝑥) = 𝑢𝐹𝐸 + 𝑢𝑒𝑛𝑟  

 
(2-1) 
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Where the displacement approximation is broken into its classic 𝑢𝐹𝐸 and enriched portions 𝑢𝑒𝑛𝑟. 

Mohammadi proposes additional terms for the weak formulation; however, the strong 

formulation will be the focal point. 

 𝑢𝐹𝐸 = ∑𝑁𝑗(𝒙)𝒖𝑗

𝑛

𝑗=1

 (2-2) 

 𝑢𝑒𝑛𝑟 =∑𝑁ℎ(𝒙)𝜓(𝒙)𝒂ℎ

𝑚ℎ

ℎ=1

+ ∑𝑁ℎ(𝒙)

𝑚𝑡

𝑘=1

( ∑[𝐹𝑙(𝒙) − 𝐹𝑙(𝒙𝑘)]𝒃𝑘
𝑙

𝑚𝑓

𝑙=1

) (2-3) 

The classic FEA displacement approximation is shown in Equation (2-2), where uj is the 

vector of degrees of freedom not enriched and Nj is the corresponding shape functions. In the 

enriched displacement field term of Equation (2-3), ah is the vector of additional degrees of 

freedom containing the crack interface, Nh is the corresponding shape functions, and ψ is the 

enrichment functions. The second term contains the additional degrees of freedom containing the 

crack tip 𝒃𝑘
𝑙  and the crack-tip enrichment functions Fl  found in Equation (2-4) where 𝑟 and 𝜃 are 

polar coordinates.  

𝐹𝛼(𝑟, 𝜃) = {√𝑟 𝑠𝑖𝑛
𝜃

2
, √𝑟 𝑐𝑜𝑠

𝜃

2
, √𝑟 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛

𝜃

2
,√𝑟 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠

𝜃

2
} (2-4) 

The number of nodes represented by the classical FEA approach, crack face, and crack tip 

correlate to n, mh, and mt respectively.  

2.1.2 Signed and Jump Step Functions 

To determine where elemental nodes are positioned relative to the crack, a signed 

function is used, 

 𝜉(𝑥) = 𝑚𝑖𝑛‖𝒙 − 𝒙𝛤‖𝑠𝑖𝑔𝑛(𝒏 ∙ (𝒙 − 𝒙𝛤)) (2-5) 
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where xΓ is the normal projection of x on the crack Γ and n is the unit normal vector. The 

distance between any point x to the crack interface is defined as: 

 𝑑 = ‖𝒙 − 𝒙𝛤‖ (2-6) 

From the signed function, elemental nodes found “above” the crack are assigned ξ greater than 

zero and those found “below” are less than zero. At the crack interface, the signed function is 

zero. The sign function allows for a complete model of the crack’s geometry in a finite element 

model A visual example of a simple domain Ω and the use of the sign function can be found in 

Figure 2.1. 

 

Figure 2.1 Visual representation of the sign function [26] 

In the XFEM formulation, the Heaviside step function is used for the enriched function, 

shown as ψ in Equation (2-3). The jump function allows for a simple method of modeling the 

displacement discontinuity based on the signed function discussed previously.  

 H(ξ) = 𝑠𝑖𝑔𝑛(𝜉) = {
   1     𝜉 > 0
−1     𝜉 < 0

 (2-7) 

2.2 RXFEM Formulation 

As stated prior, the XFEM formulation becomes problematic using a discontinuous 

function in the integrands of the stiffness matrix. RXFEM follows closely to the XFEM 
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methodology except for an approximated Heaviside function. The use of a Heaviside 

approximation allows enriched function to be continuous, allowing for the integrals in the 

stiffness matrix calculation to be carried out by Gauss integration [24,27,32–34].  

2.2.1 Regularized Heaviside Function 

An approximation for the Heaviside function is defined, using the same shape functions 

used in the element force vector and stiffness matrix calculations, as: 

 𝐻(𝜉𝑒) = ∑ 𝑁𝑖
𝑒ℎ𝑖

𝑖∈𝛺𝑒

 (2-8) 

where 𝛺𝑒 is the set containing all nodes of an element, both enriched and classic, e and ξ are the 

parametric coordinates, and 𝑁𝑖
𝑒 are the shape functions. Continuity is ensured over the domain 

by a single field of nodal values ℎ𝑖 computed for each node, i and summed up over all elements 

that share the node. 

 ℎ̃𝑖 =
1

2
(1 +

∑ ∫ 𝑁𝑖
𝑒(𝒙)𝐹(𝛤)𝑑𝑉

𝑉𝑒∈℧𝑖

∑ ∫ 𝑁𝑖(𝒙)|𝐹(𝛤)|𝑑𝑉𝑉𝑒∈℧𝑖

) (2-9) 

℧i is the set of elements sharing the node of interest and F(Γ) is the signed distance function of 

the crack surface. The use of the approximated Heaviside function allows for more 

computational efficiency than XFEM because of the use of Gauss integration. Multiple cracks in 

plies are common, and for each crack Equations (2-8) and (2-9) are used independently for each 

crack. Crack surfaces are then defined as 𝛤𝑎 where the subscript a denotes the crack index. The 

signed distance and Heaviside functions then become 𝐹𝑎 and 𝐻𝑎 respectively.  
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2.2.2 Multi-Crack Methodology 

RXFEM uses a four-step process in generating the enriched approximation. A simple ten 

element model will be considered with nodes numbered from 1 to 11, shown in Figure 2.2(a). A 

two-crack enrichment is then introduced in Figure 2.2(b) with the value of the step function for 

the nodes located in the gradient zone of each crack using a two-digit number scheme.  

 

Figure 2.2 (a) Original 1D row of elements (b) enriched node and element set for two cracks [35] 

The four steps in generating the enriched approximation first starts with computing the 

regularized Heaviside function 𝐻𝑎 for each crack using the equations discussed in the previous 

section. Second, zone numbers are assigned to the original nodes. The first digit represents the 

crack, 1 or 2, followed by a 1 if  𝐻𝑎 > 0.5 or 2 if  𝐻𝑎 ≤ 0.5. Any nodes outside of the gradient 

zone are assigned 0. After zoning of the original nodes is complete, original nodes that are in 

non-zero zones are cloned, and phantom nodes are created that are complementary to the original 

nodes. This is done by changing the second digit of the original node’s zone number to the 

opposite, such as node 2’s zone of 11 to the phantom node’s 12 of node 12. The phantom nodes 

are given unique degrees of freedom and have the initial displacement values of the parent node. 
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Lastly, the enriched element set is created by twinning all elements, so each twinned element 

contains a combination of original and phantom nodes. The algorithm then collects all nodes, 

real and phantom, containing the same zone number. During the element twinning process, 

element twins spatially overlap by layering them under each other, introducing volumetric 

cohesive forces to tie displacements in the node pairs. 

BSAM is used in the current work and allows for much denser crack patterns in the 

analysis. This is possible by creating no separation between the gradient zones of the cracks as 

seen in Figure 2.2 by including Node 6. The same four step process established before is 

followed with a few changes. In Figure 2.3, Node 5 can be viewed to belong in two zones, for 

crack one and two, therefore step two of the process assigns two zone numbers to the single 

node. In step three, Node 5 will contain two phantom nodes, Node 15 and 16, one for each zone. 

Lastly, twinning of the elements containing original nodes with multiple phantom nodes only 

happens once, two zones are found for Node 5, 12 and 21. Thus, element 14-15 and 16-17 are 

deemed zones 11 and 22 respectively.  

 

Figure 2.3 Nodal enrichment configuration with no separation between gradient regions of cracks [35] 
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 With nodal enrichment complete, the potential energy 𝛱𝑛 for each cracked ply is 

established in Equation (2-10). 

 

𝛱𝑛 =  ∑∫ 𝑊(𝑢)
𝑉𝑒

+∫ 𝐻(𝐹𝑎)𝑊(𝑢𝑎1) + ∫ (1 − 𝐻(𝐹𝑎))𝑊(𝑢𝑎2)
𝑉𝑒𝑉𝑒

} 

𝑒

−∫ |𝛻𝐻(𝐹𝑎)|∫ 𝜏(𝜆)𝑑𝜆
𝜆

0𝑉𝑒

} 

(2-10) 

The summation is performed for all original elements. The first term is only present for 

non-twinned elements in zone 0. If the element is twinned, this term is zero and the others are 

present. The last term in Equation (2-10) is also integrated over the element volume, yielding the 

surface area of the crack from the step function gradient. The displacement fields between 

original and phantom nodes 𝑢𝑎1 and 𝑢𝑎2 are needed in the Cohesive Zone Model to relate 

cohesive tractions 𝜏 and displacement jumps 𝜆 which will be discussed in a later section. All 

functions used are continuous and therefore Gauss quadrature is used. The equilibrium equations 

for the laminate are then established in Equation (2-11), where Φ𝑛 is the cohesive traction work 

at the interface between plies n and n +1 and 𝐴 is the work of external forces. 

 𝛿 (∑Π𝑛

𝑁

𝑛

−∑Φ𝑛

𝑁−1

𝑛

− 𝐴) = 0 (2-11) 

 

2.3 Cohesive Zone Model 

RXFEM and XFEM methods allow for the modeling of cracks, but how the cracks 

propagate is described using the Cohesive Zone Model, CZM. Barenblatt theorized there is a 

region just aft of the physical crack tip that is held together by cohesive tractions, the cohesive 

zone [36]. In the current era, the CZM approach is one of the most common methods used to 
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model delamination in laminate composites, relating tractions to displacement jumps, which are 

easily attainable in a finite element model. The present work will focus on the static formulation 

by Turon and fatigue formulation by Iarve et. al., relating Fracture Mechanics to Damage 

Mechanics, which links the Paris Law to a singular damage variable [37–42]. The methodology 

was chosen as it pertains to high-cycle fatigue, the focus of the current work. 

2.3.1 CZM Approach and Kinematics 

As stated previously, the CZM model relates tractions to displacement jumps. Damage 

initiation is based on the interfacial strength and if after plotting the traction versus displacement 

jump the area under this curve is equal to the fracture toughness of the material, the traction 

reduces to zero and a new crack surface is formed: 

 {
𝜏 = (1 − �̅�)𝜏𝑜     Δ̅ < Δ̅𝑓

𝜏 = 0                      Δ̅ ≥ Δ̅𝑓
 (2-12) 

where τ is the traction, τo is the interfacial strength, Δ̅ is the displacement jump, and Δ̅𝑓 is the 

final displacement jump. The formulation uses a bilinear relationship between the tractions and 

the displacement jumps, which gives a linear elastic response before damage initiation. A 

stiffness parameter K is used to establish a connection between the two surfaces of the damaged 

region. The stiffness parameter and the interfacial strength then define a displacement jump in 

which damage is to begin. 
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Figure 2.4 Traction versus displacement jump for CZM 

The displacement jump is defined as the displacements of points located above and below 

the discontinuity, in the case of finite elements the nodes or integration points of elements are 

used.  

 ⟦𝑢𝑖⟧ = 𝑢𝑖
+ − 𝑢𝑖

− (2-13) 

The displacements used in Equation (2-13) are set in a fixed cartesian coordinate system 

of the undeformed model where positive and negative superscripts represent the top and bottom 

points or nodes of the discontinuity, 𝑢𝑖
+ and 𝑢𝑖

−. If the model of interest has been deformed from 

loading, a new coordinate system �̅�𝑖 is introduced: 

 �̅�𝑖 = 𝑋𝑖 +
1

2
(𝑢𝑖
+ + 𝑢𝑖

−)𝑠 (2-14) 

where Xi are the coordinates from the undeformed model. The components of the displacement 

vector of the undeformed model of Equation (2-13) on the deformed interface are expressed 

using the displacement field in the global coordinates: 

 Δ𝑚 = Θ𝑚𝑖⟦𝑢𝑖⟧ (2-15) 
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where Δ𝑚 are components of the displacement jump vector defined in the coordinates of the 

deformed interface and Θ𝑚𝑖 is the rotational tensor matrix. The displacement vector contains 

shear and normal components, Δ1, Δ2, and Δ3 respectively. 

2.3.2 Traction-Displacement Jump Constitutive Laws 

With the approach and kinematics of CZM established, the relationship between the 

tractions and displacement jump is required. The constitutive law used follows a CDM model 

using the free energy per unit surface of the interface [43–45]: 

 𝜓(Δ, 𝑑) = 𝜓(Δ, 𝑑)𝑐𝑜ℎ + 𝜓(Δ, 𝑑)𝑐𝑜𝑛 (2-16) 

where d is the damage variable and 𝜓 is the free energy per unit surface. From Equation (2-16), 

the right-hand side consists of two components,  𝜓𝑐𝑜ℎ and 𝜓𝑐𝑜𝑛 being the cohesive and contact 

energy contributions respectively. The energy contributions are then defined as: 

 𝜓(Δ, 𝑑)𝑐𝑜ℎ =
1

2
(1 − 𝑑)[Δ𝑖𝐾𝑖𝑗Δ𝑗 − 𝐾33〈−Δ3〉

2] (2-17) 

 𝜓(Δ, 𝑑)𝑐𝑜𝑛 =
1

2
[𝐾33〈−Δ3〉

2] (2-18) 

where 𝛿𝑖3 is the Kroenecker delta, Kij are elements of the stiffness matrix with K33 being the 

penalty stiffness for Mode I and K22 and K33 for the shear modes, and 〈∙〉 is the MacAuley 

bracket. With the free energy equations established, the constitutive equation between tractions 

and displacement jumps is written as: 

 𝜏𝑖 =
𝜕𝜓

𝜕Δ𝑖
= 𝐷𝑖𝑗Δ𝑗 (2-19) 

where Dij is the constitutive tensor: 



20 

 

 𝐷𝑖𝑗 = (1 − 𝑑)𝐾𝑖𝑗Δ𝑗 + 𝑑𝛿𝑖3𝐾33〈−Δ3〉     (𝑖, 𝑗 = 1,2 𝑜𝑟 3) (2-20) 

From the resulting constitutive relationship, one can see that only the cohesive 

component contributes to the formulation of Equation (2-19). Therefore, only cohesive tractions 

will be considered. A norm for the mixed-mode traction 𝜏 and displacement jumps 𝜆 are defined 

to proceed in formulating the damage evolution law: 

 𝜏 = √𝜏1
2 + 𝜏2

2 + 〈𝜏3〉2 = (1 − 𝑑)𝐾𝐵𝜆 (2-21) 

where KB is a mode-dependent penalty stiffness: 

 𝐾𝐵 =
𝐾11
2 Δ1

2 + 𝐾22
2 Δ2

2 +𝐾33
2 〈Δ3〉

2

𝐾11Δ1
2 + 𝐾22Δ2

2 +𝐾33〈Δ3〉2
 (2-22) 

Using Equation (2-21) and a relationship between the cohesive free energy, equivalent traction, 

and equivalent displacement jump, a formulation of the displacement jump norm is defined: 

 𝜓𝑐𝑜ℎ =
1

2
𝜏𝜆 (2-23) 

 𝜆 =
𝐾11Δ1

2 + 𝐾22Δ2
2 +𝐾33〈Δ3〉

2

√𝐾11
2 Δ1

2 + 𝐾22
2 Δ2

2 + 𝐾33
2 〈Δ3〉2

 (2-24) 

A local mixed mode ration B is defined using the energy release rate, ERR, for each mode: 

 𝐵 =
𝐺1 + 𝐺2
𝐺

 (2-25) 

where 𝐺1 and 𝐺2 is the ERR for each mode and 𝐺 is the total ERR. 
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 𝐺𝑖 = ∫ 𝜏𝑖𝑑Δ𝑖

Δ𝑡

0

 (2-26) 

 𝐺 = ∫ 𝜏𝑑𝜆
𝜆

0

 (2-27) 

Using the previously defined displacement jump norm and mode-dependent penalty 

stiffness, the mixed-mode ratio can also be defined as: 

 𝐵 =
𝐾11Δ1

2 + 𝐾22Δ2
2

𝐾11Δ1
2 +𝐾22Δ2

2 + 𝐾33〈Δ3〉
2
 (2-28) 

Lastly, the mode-dependent stiffness can be reduced using the new definition of the 

mixed-mode ratio and defining Ksh = K11 = K22. 

 𝐾𝐵 = 𝐾33(1 − 𝐵) + 𝐵𝐾𝑠ℎ  (2-29) 

 

2.3.3 Fatigue CZM Formulation 

The current work focuses on damage evolution under fatigue loading, therefor, the 

fatigue formulation is emphasized. For the fatigue formulation, a focus will be put on the work of 

Iarve et. al., a modified CZM methodology replacing the static strength Y with residual strength 

[42,46]. First, the initial Δ0 and final displacement jump Δ𝑐 in the static region is defined as: 

 Δ0 =
𝑌

𝐾
 (2-30) 

 Δ𝑐 =
2𝐺𝑐
𝑌

 (2-31) 
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where Gc is the critical ERR and K is the penalty stiffness of Equation (2-29). The fatigue 

loading amplitude f  where the material point is in the initiation phase is assumed to be: 

 𝑓 =
𝜆0
Δ0

 (2-32) 

As stated previously, the basis of the fatigue formulation is the changing of the static strength, 

using the strength tracking method, with the residual strength through analysis, such that: 

 𝑓𝑟′′𝑌 < 𝑓𝑟′𝑌 < 𝑌  (2-33) 

The residual strength factor 𝑓𝑟′′ is calculated by: 

 
1

𝑁𝑙𝑖𝑚(𝑓𝑟′′)
=

1

𝑁𝑙𝑖𝑚(𝑓𝑟′)
+

Δ𝑁

𝑁𝑙𝑖𝑚(𝑓)
 (2-34) 

where 𝑁𝑙𝑖𝑚 is the number of cycles at which failure is reached, a function of the residual strength 

factor, and Δ𝑁 is the number of cycles between each step.  

At some point in the fatigue analysis 𝑓 ≥ 𝑓𝑟 where the damage regime of CZM begins 

and the static strength is replaced with the residual strength Yr. 

 𝑌𝑟 = 𝑓𝑟𝑌 (2-35) 

The displacement jumps of the static regime are then replaced with their fatigue counterparts 𝜆0 

and 𝜆𝑐: 

 𝜆0 =
𝑌𝑟
𝐾

 (2-36) 

 𝜆𝑐 =
2𝐺𝑐
𝑌𝑟

 (2-37) 
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A new damage norm is then established, RT: 

 𝑅𝑇 =
𝜆 − 𝜆0
𝜆𝑐 − 𝜆0

 (2-38) 

where the displacement jump 𝜆 is the same as described in Turon’s formulation of Equation 

(2-24). The damage norm then defines the damage variable as: 

 𝐷 =
𝑅𝑇𝜆𝑐

𝑅𝑇𝜆𝑐 + (1 − 𝑅𝑇)𝜆0
 (2-39) 

Figure 2.5 shows a graphical depiction of the fatigue damage initiation for CZM. 

 

Figure 2.5 Cohesive-Displacement jump model for fatigue damage initiation [35] 

2.3.4 Fatigue Damage Propagation 

The Paris Law has been commonly used for crack propagation in laminate composites 

and has been proposed in a variety of forms [47,48]. The law, first proposed by Paris, aims to 

create a relationship between crack propagation rates with stress intensity factors [49]. The 

current work will focus on the modified Paris Law found in the formulation by Tao et. al. [50], 

which follows closely to the stress intensity factor formulation but with the use of ERR: 
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𝑑𝑎

𝑑𝑁
= 𝐶 (

√𝐺𝑚𝑎𝑥

√𝐺𝑐
−
√𝐺𝑚𝑖𝑛

√𝐺𝑐
)

2𝑚

 (2-40) 

where 𝐺𝑚𝑎𝑥, 𝐺𝑚𝑖𝑛, and 𝐺𝑐  are the maximum, minimum, and critical ERR during the cycle. C and 

m are material constants obtained through mechanical testing and depend on the mode mixity of 

Equation (2-28). The ERR is calculated based on the area under the curve of the traction-

displacement curve, mathematically represented in Equation (2-27).  

 First, we will consider an initial displacement jump of 𝜆1 corresponding to a material 

point in the damage phase with a damage variable D1. Calculation of the ERR from Equation 

(2-27), the ERR is defined as: 

 𝐺𝑚𝑎𝑥
[1]

=
1

2
[𝑌𝑟𝜆1 +𝐾(1 − 𝐷1)𝜆1(𝜆1 − 𝜆0)] (2-41) 

Now another displacement jump 𝜆2 with a designated damage variable D2 is examined 

after a number of fatigue cycles. A graphical depiction of this jump can be found in Figure 2.6. 

The ERR is calculated by adding the area under the traction-displacement jump curve between 

𝜆1 and 𝜆2 and the ERR found in the first calculation of Equation (2-41): 

 𝐺𝑚𝑎𝑥
[2]

= 𝐺𝑚𝑎𝑥
[1]

+
1

2
[(𝐾(1 − 𝐷1)𝜆1 + 𝐾(1 − 𝐷2)𝜆2)(𝜆2 − 𝜆1)] (2-42) 

Once the maximum ERR is obtained, the minimum ERR is found through the 

relationship between the fatigue stress ratio, R,  and the maximum ERR: 

 𝐺𝑚𝑖𝑛 = 𝑅
2𝐺𝑚𝑎𝑥 (2-43) 
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Using Equation (2-40), the crack propagation rate can be calculated for each integration 

point located in the element. The propagation rate in the element is determined by the maximum 

propagation rate found in all integration points in the element: 

 

𝐸𝑝 = max [𝐶 (
√𝐺𝑚𝑎𝑥,𝑖

√𝐺𝑐
−
√𝐺𝑚𝑖𝑛,𝑖

√𝐺𝑐
)

2𝑚

] (2-44) 

where i is each integration point in the element.  

 

Figure 2.6 Cohesive-Displacement jump model for fatigue damage propagation [35]  

To calculate the number of cycles for a crack to propagate through the entire element, an 

element effective length is established from the basis of Tao et. al. and the reader is directed 

there for the mathematical formulation [50]. The effective length, defined in the current paper as 

le, is a characteristic length that establishes the length of a crack or delamination needs to 

propagate for a local element to be considered to have failed and is always in the direction of 

crack or delamination propagation. With the element effective length established, the cycle 

increment needed to propagate the crack through the element can be defined ∆𝑁𝑝: 
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 ∆𝑁𝑝 = 𝑙𝑒/𝐸𝑝 (2-45) 

Now that the cycle increment needed for the crack to propagate through an entire element, the 

algorithm can update the damage norm of Equation (2-38): 

 
𝑅𝑇𝑓

𝑢 = 𝑅𝑇 + (1 − 𝑅𝑇)
∆𝑁

∆𝑁𝑝
  (2-46) 

where ∆𝑁 is the cycle increment in an analysis step, u superscript denotes update, and f subscript 

denotes fatigue. However, in the algorithm the damage norm is updated based on the maximum 

value of both the static and fatigue regime.  

 𝑅𝑇𝑢 = max (𝑅𝑇,𝑅𝑇𝑓
𝑢)  (2-47) 

Elements in a finite element model are often not all the same size or shape. Therefore, the 

effective length of each element can differ, causing the increment of cycles for the crack or 

delamination to go through each element is different. This observation affects the fatigue damage 

norm updating of Equation (2-46) to be different across different elements in the model.  

2.4 Fiber Failure in Compression 

As the current work involves methodologies that have expanded into compression-

compression and compression-tension validation, the establishment of fiber failure methodology 

is pertinent. The first mechanical model was developed by Argon, but the chosen methodology is 

based on the fiber misalignment concept by Rosen, which was further refined and implemented 

into a computation framework by a NASA lead effort resulting in a series of failure criteria 

LaRC03, LaRC04, LaRC05 [51–53]. According to this concept, a certain misalignment of fibers 

inevitably present in composite plies gives rise to shear stresses even if a pure unidirectional 

fiber direction compression is applied. The compression failure takes place when such shear 
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stresses exceed the shear strength of the material and, in the presence of nonlinear shear, when 

the matrix softens so much that it cannot sustain fiber rotation. At this point, a small increase in 

load will cause a drastic angle change, forming the kink band and leading to fiber failure. In the 

introduction, it was said that compression loading forms a kinking band occurred from micro-

buckling of the fibers. In this kink-band region, stresses endured must be transformed from the 

global coordinate frame into a new local coordinate frame for the misaligned region, where the 

rotation angle is defined as 𝜃 = 𝛾12
𝑚 + 𝜃𝑖 and 𝛾12

𝑚  is the shear strain in the misalignment frame 

and 𝜃𝑖 is the initial misalignment angle.  

 

Figure 2.7 Fiber kink-band orientation [12] 

2.4.1 BSAM Model 

The fiber failure model implemented in BSAM is based in LaRC04 failure criterion.  The 

stresses found in the misalignment frame are as follows where 𝜎11
𝑚, 𝜎22

𝑚, and 𝜏12
𝑚  are the 

longitudinal, transverse, and shear stresses. 

𝜎11
𝑚 =

𝜎11 + 𝜎22
2

+
𝜎11 − 𝜎22

2
𝑐𝑜𝑠(2𝜃) + 𝜏12𝑠𝑖𝑛 (2𝜃) (2-48) 

𝜎22
𝑚 =

𝜎11 + 𝜎22
2

−
𝜎11 − 𝜎22

2
𝑐𝑜𝑠(2𝜃) − 𝜏12𝑠𝑖𝑛 (2𝜃) (2-49) 



28 

 

𝜏12
𝑚 = −

𝜎11 − 𝜎22
2

sin(2𝜃) + 𝜏12cos (2𝜃) (2-50) 

For failure under pure compression (𝜎11 = −𝑋
𝐶 and 𝜎22 = 𝜏12 = 0), Equations (2-48)-

(2-50) are reduced to the following with 𝑋𝐶 being the compressive strength: 

𝜎11
𝑚 = −𝑋𝐶 cos2 𝜃 (2-51) 

𝜎22
𝑚 = 𝑋𝐶 sin2 𝜃 (2-52) 

𝜏12
𝑚 = 𝑋𝐶 sin(𝜃) cos (𝜃) (2-53) 

Using the stress state, one can find the specific misalignment angle that would lead to 

failure under pure compression. This angle is defined 𝜃𝑐 . Failure from kinking in pure 

compression because of matrix failure is defined using the LaRC04 matrix compression failure 

criterion. Equation (2-54) can then be rearranged to find the critical misalignment angle where 

𝑆𝐿 is the shear strength and 𝜂𝐿 is a friction coefficient.  

𝑋𝐶(sin θc cos 𝜃𝑐 − 𝜂𝐿 sin2 𝜃𝑐) = 𝑆𝐿 (2-54) 

𝜃𝑐 = arctan

(

 
1 − √1 − 4 (

𝑆𝐿

𝑋𝐶
+ 𝜂𝐿)

𝑆𝐿

𝑋𝐶
   

2 (
𝑆𝐿

𝑋𝐶
+ 𝜂𝐿)

)

  (2-55) 

Equation (2-54) is the basis of determining fiber failure in BSAM. Once the shear stress 

developed in the kink band from axial compressive stresses reaches the shear strength of the 

matrix, fiber failure is to occur as the matrix is unable to support the fibers. The compression 

failure takes place when the fiber rotation due to initial misalignment angle and applied shear 

becomes  𝜃𝑐 , i.e. 𝜃𝑐 =  𝛾12
𝑚,𝑐 + 𝜃𝑖. The critical value of shear strain can be obtained from shear 

stress in the misalignment frame Equation (2-56) and the stress-strain constitutive relationship. 
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𝜏12
𝑚 = 𝑓𝐶𝐿(𝛾12

𝑚) (2-56) 

𝛾12
𝑚,𝑐 = 𝑓𝐶𝐿

−1(
1

2
sin(2𝜃𝑐) 𝑋𝐶) (2-57) 

 In the current work, linear shear and small angle approximations is considered, reducing 

Equation (2-57) to the following: 

𝛾12
𝑚,𝑐 =

𝜃𝑐𝑋𝐶

𝐺12
 (2-58) 

where 𝐺12 is the shear modulus. Which allows to calculate the initial misalignment angle:  

𝜃𝑖 = 𝜃
𝑐 − 𝛾12

𝑚,𝑐
 (2-59) 

The failure initiation indicator 𝐹𝑖𝑓 is defined as the ratio of the shear stress to respective 

strength in the misalignment frame, i.e.  

𝐹𝑖𝑓 =
𝜏12
𝑚

𝑆𝐿
 (2-60) 

Where the misalignment angle in Equation (2-59) is a function of the shear stress. In the 

case of linear stress-strain shear relation and small angle rotation the misalignment angle can be 

approximated as:      

𝜃 =
𝜃𝑖𝐺12 + |𝜏12|

𝐺12 + 𝜎11 − 𝜎22
 (2-61) 

In this case the 𝐹𝑖𝑓 can be calculated by substituting Equation (2-61) in Equation (2-50) 

and subsequently in Equation (2-60). It is worth mentioning that in the case of linear shear 

constitutive equation and uniaxial loading the failure initiation factor Equation (2-60) simplifies 
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to 𝐹𝑖𝑓 ≅ −𝜎11/𝑋𝑐, under assumptions that the strength magnitude is much smaller than the 

elastic modulus and the rotation angles are small as well.  

The failure initiation factor 𝐹𝑖𝑓 > 1 corresponds to damage initiation, which for the fiber 

failure mode is modeled by CDM and a single damage variable property degradation model is 

used.  

𝐶 = (1 − 𝑑)𝐶0 (2-62) 

The damage variable 𝑑 becomes positive when 𝐹𝑖𝑓 > 1 and is calculated according to the 

tri-linear relationship introduced in Maimi et al [54]. 𝐶0 is the stiffness tensor of the pristine 

material. The reader is referred to Hoos et al. for details [55]. In a simplified case of a bi-linear 

failure envelope the damage variable is defined as  

𝑑 =
𝑞(𝐹𝑖𝑓 − 1)

𝐹𝑖𝑓(𝑞 − 1)
, 𝑞 ≥ 𝐹𝑖𝑓 ≥ 1  (2-63) 

where  

𝑞 =
2𝐺𝑥𝑐𝐸

𝐿𝑒𝑋𝑐2
 (2-64) 

for compression loading case. Similar expression is used in tension by replacing the respective 

strength and fracture toughness values. The finite element size 𝐿𝑒 is required for reducing the 

mesh dependence of the smeared crack model in CDM.  

2.4.2 BSAM Fatigue Damage Model for Fiber Failure 

The fiber direction damage modeling under fatigue loading, and the compression failure 

fatigue, is based on application of the strength tracking method and CZM envelope modification 
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like discussed in the section 2.3.3. The strength tracking method is directly applied to recalculate 

the shear strength in Equation (2-60) after each cycle increment. In this case, the load amplitude 

is 𝑓 = 𝐹𝑖𝑓 instead of Equation (2-32) and the Equations (2-33)-(2-35) apply without change for 

calculating the load reduction factor 𝑓𝑟, where the strength 𝑌 is replaced by shear strength 𝑆𝐿. 

The 𝑁lim is calculated by using the shear strength S-N curves. The reduced shear strength 𝑆𝐿
′ =

𝑓𝑆𝐿 is then applied to calculate new 𝐹𝑖𝑓
′ > 𝐹𝑖𝑓 in Equation (2-60). Thus, the failure initiation 

indicator will grow with each cycle increment even if the stress 𝜎11 remains constant. In the 

proposed empirical fatigue model, the fiber failure envelope is modified similar to the CZM 

envelope in Figure 2.5 so that the strength value is reduces to 𝑋𝑐
′ = 𝑓𝑋𝑐 , however, besides that 

modification the area of the envelope is also proportionally reduced so that 𝐺𝑥𝑐
′ = 𝑓2𝐺𝑥𝑐 . As a 

result, the stiffness reduction damage variable 𝑑 under fatigue loading is calculated by replacing 

𝐹𝑖𝑓 with 𝐹𝑖𝑓
′  in Equation (2-63), whereas the value of 𝑞 does not change. It is seen that for 𝑞 > 1 

and 𝐹𝑖𝑓 > 1 the damage variable 𝑑 is in an increasing function of 𝐹𝑖𝑓. In the case of tri-linear 

failure envelope the principal behavior is the same.   

2.4.3 Multi-Damage Variable Model 

Recently a physics-based compression fatigue model based on multi damage variable 

static model explained in by Hossain [12]. The reference model uses five damage variables, 

𝑑1+, 𝑑1−, 𝑑2+, 𝑑2−, and 𝑑6𝑠, related to fiber direction failure, transverse direction failure, and 

shear degradation. The conceptual model behind the fiber direction compression damage variable 

𝑑1− definition is like described above. However, the model utilizes non-linear stress strain 

definition 
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𝛾12
𝑚 =

�̃�12
𝑚

𝐺12
+ (

�̃�12
𝑚

𝐾12
)

1
𝑛12

 (2-65) 

In addition, it considers permanent plastic strain  𝛾𝑝accumulated during cyclic loading. This 

strain contributes to increasing the rotation misalignment angle so that the rotation angle is  

 𝜃 = 𝛾12
𝑚 + 𝜃𝑖 + 𝛾

𝑝 (2-66) 

Thus, an additional mechanism contributing to the kink band formation is considered. 

Calculation of the permanent cyclic plastic strain requires additional input data not available for 

the material at hand.  

2.4.4 Local Stress Ratio 

During fatigue loading, the applied stress ratio, ratio of minimum to maximum stress, is 

not the stress ratio found throughout the entire model, instead, a local stress ratio is defined. A 

local stress ratio is observed because of a variety of reasons such as residual stresses and the 

application of several loads on the specimen at once which can cause different rates of damage 

propagation through the model than taking the general applied stress ratio [56,57]. There have 

been several proposed methods in calculating the local stress ratio such as the minimum-

maximum load and cycle jump approaches [58,59]. However, the methodology chosen in the 

present work is developed by Lu et. al. and is implemented in the BSAM analysis software. 

The basis of the chosen methodology is monitoring the ERR during the loading and unloading of 

the model. At certain observation points, the ERR is noted and after the reloading is complete, 

the maximum and minimum ERR is calculated.  
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Figure 2.8 Tension-Tension loading and unloading ERR recording 

Figure 2.8 presents the loading and unloading process for a tension-tension test where i + 

n subscripts denote observation points during the test and Ntt is the total steps for the complete 

loading and unloading cycle. After the maximum and minimum ERR is found from the 

loading/unloading, the local stress ratio is obtained by Equation (2-43) and the damage variables 

are updated using the local stress ratio. The same process can be using for compression-tension 

loading as in Figure 2.9. 𝑁− are the total steps when the model is subject to negative shear 

loading and  𝑁+ is the total steps where the model is reloaded back with positive shear. The ERR 

is always positive in both loading scenarios and R-ratios are assumed to be zero in both the 

positive and negative region. 
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Figure 2.9 Compression-Tension loading and unloading ERR recording 

 With local R-ratio data collected, S-N parameters are modified based on the methodology 

by Dávila [60]. The allowable stress 𝜎𝑒𝑅  is defined as: 

 
𝜎𝑒𝑅 =

𝐶𝐿𝜎𝑐
2 − 𝑅

 (2-67) 

where 𝜎𝑐 is the ultimate stress and 𝐶𝐿 is the load correction factor for the endurance limit. 

 𝐶𝐿 = 1 − 0.42𝐵 (2-68) 

The S-N relationship is defined: 

 𝜎𝑒𝑅
𝜎𝑐
= 1 − 𝑠𝐿𝑜𝑔10(𝑁) (2-69) 

where the 𝑠 coefficient is dependent on the shear and normal stress combination. The new S-N 

parameters 𝑠𝑛 based on old 𝑠𝑜 parameters and the new and old stress ratios for mode I and mode 

II fatigue are defined. 
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𝑠𝐼
𝑛 = 𝑠𝐼

𝑜
(1 − 𝑅𝑛)(2 − 𝑅0)

(1 − 𝑅0)(2 − 𝑅𝑛)
 (2-70) 

 
𝑠𝐼𝐼
𝑛 = 𝑠𝐼𝐼

𝑜
(1.42 − 𝑅𝑛)(2 − 𝑅0)

(1.42 − 𝑅0)(2 − 𝑅𝑛)
 (2-71) 

 

2.5 Methodology Verification 

Since RXFEM and CZM is the chosen FE methodology for modeling damage of 

composites in BSAM, it is important to perform validation studies to ensure it can accurately 

represent fatigue damage and show the damage interaction between matrix cracks and 

delamination. Although the current work focuses on open hole models, it is important to ensure 

the theory is applicable at the most basic level, therefore, double cantilever beam and end 

notched flexure models are first considered. The verification is then moved over to the three 

Open Hole Tension-Tension, OHT-T, specimens each using different layups to demonstrate 

accurate predictions by the methodologies [42]. 

2.5.1 Double Cantilever Beam 

The Double Cantilever Beam, DCB, model is one of the most basic experimental tests 

performed on laminate composites to observe delamination between laminates caused by mode 1 

loading [61]. An FEA model of IM7/8552, material properties can be found in Table 1, is created 

by modeling a two-ply composite that is 206.1 mm long, 25.4 mm wide, and 2.286 mm thick. 

The interface between the two plies contains a pre-inserted crack and a bonded region. An edge 

of the lower and upper ply at the negative x-axis face is then displaced in the z-direction by -1.5 

mm (uz = -1.5) and 1.5 mm (uz = 1.5) respectively. After the static loading is complete, a fatigue 
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analysis is performed. The model is post-processed using the methods by Dávila, obtaining the 

ERR and crack growth [60]. The results are then plotted against the true material’s Paris Law, 

seen in Figure 2.10. 

Table 1 IM7/8552-1 Material Properties 

Property Value Unit 

E11 157.2 GPa 

E22, E33 9.38 GPa 

G12, G13 5.03 GPa 

G23 3.24 GPa 

v12, v13 0.30  

v23 0.496  

α1 0.00  

α2 30.0 E – 6  1/C 

GIC 0.256 N/mm 

GIIC  0.649 N/mm 

YT 81.0 MPa 

YC 312.0 MPa 

S 133.8 MPa 

XT 2490 MPa 

XC 1990 MPa 

S1 0.026  

S2 0.071  

m1 12.39  

m2 5.49  

C1 0.0055 mm 

C2 0.305 mm 

 



37 

 

 

Figure 2.10 Paris Law results from DCB model of IM7/8552-1 

From the results, the crack propagation follows very closely to the true Paris Law curve 

obtained through mechanically testing the material. Confirming that the CZM methodology 

implemented in BSAM is accurate for validating fatigue results obtained experimentally.  

2.5.2 End Notched Flexure 

The second methodology verification was performed on an end notched flexure (ENF) 

model, ensuring that damage propagation from mode 2 loading can be modeled. For the 

verification, IM7/8552-1 was once again used. The model used is 203.2 mm long, 25.4 mm wide 

and consists of two plies with thicknesses of 1.905 mm. Two rollers are placed 23 mm and 180 

mm from the left edge of the bottom ply. A 53 mm crack is pre-inserted between the interface of 

the two plies. Static loading begins by applying a -2.97 mm displacement (uz = -2.97), 

corresponding to 60% of the ultimate stress, through the width at 101.6 mm of the top ply. After 

static loading, fatigue loading is started. After the simulation is complete, post processing is 

performed, calculating the ERR and crack growth once again. The computational results are then 
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plotted against the true mode II Paris Law in Figure 2.11. From the results, the crack growth 

follows very closely to the true Paris Law function, except for a few outlier data points that can 

be determined to be in region 1 of the Paris Law, where crack propagation is not yet linear, and 

the cohesive zone is forming. 

 

Figure 2.11 Paris Law results from ENF model of IM7/8552-1 

 

2.5.3 Open Hole Tension 

The material used in all three specimens is IM7/977-3 with stacking sequences 

[30°/60°/90°/−60°/−30°]𝑠, [0°/45°/90°/−45°]2𝑠, and [60°/0°/−60°]3𝑠. The dimensions 

of the specimens are 250 mm long, 38.1 mm wide, and have a 6.35 mm hole in the center. For 

the analysis, the left edge of the specimens is constrained in the x-direction, ux = 0, while a 

loading tab is attached on the right edge. A uniform stress is applied to the right side of the tab 

based on a percentage of the failure force divided by the laminate’s side area found in static 
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testing. A fatigue simulation is then performed in BSAM and the results are then compared with 

x-ray images of the experiment. The material properties of IM7/977-3 is found in Table 2 and the 

fatigue analysis compared with the experimental results are in the following figures. 

Table 2 Material Properties of IM7/977-3 [42] 

Property Value Unit 

E11 164.0 GPa 

E22, E33 8.97 GPa 

G12, G13 5.02 (NLS) GPa 

G23 3.00 GPa 

v12, v13 0.32  

v23 0.496  

α1 0.00  

α2 30.0 E – 6  1/C 

GIC 0.256 N/mm 

GIIC  0.649 N/mm 

YT 100.0 MPa 

YC 247.0 MPa 

S 100.0 MPa 

XT 2900 MPa 

XC 1680 MPa 

S1 0.03  

S2 0.075  

m1 7.32  

m2 6.354  

C1 0.025 mm 

C2 0.065 mm 
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Figure 2.12 Matrix cracks and delamination between 30° and 60° plies of the [30°/60°/90°/−60°/−30°]𝑠 layup at 

200k cycles 

 

Figure 2.13 Matrix cracks and delamination at the inner 45° and 90° plies of the [0°/45°/90°/−45°]2𝑠 layup at 

300k cycles 
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Figure 2.14 Damage evolution of inner -60 and 60 plies of the [60°/0°/−60°]3𝑠 layup after 50k, 100k, and 200k 

cycles 

In all images the thin grey lines in the experimental and red lines in the prediction 

represent the matrix cracks, and the white and blue areas represent delamination in the 

experimental and the BSAM results respectively. In the first image of Figure 2.12, the crack path, 

shown as black lines displays the RXFEM closed and open matrix cracks and is limited to the 

user-defined domain boundary. The middle picture of Figure 2.12 shows open cracks in which the 

damage variable is equal to one with two primary 30° and many short 60° cracks extending 

outwards from the hole. Delamination is found extended outwards from the hole, constrained by 

the matrix cracks. In the experimental inter 45°/90° interface of Figure 2.13 depicts short 90° 

cracks extending outwards at a -45° because of the ply below. Close to the hole, longer 90° 

cracks are found at the top and bottom of the hole along with 45° cracks with very little 

delamination. The prediction follows closely to the mentioned damage. Lastly, Figure 2.14 shows 

the damage propagation as the number of cycles accumulate. A high quantity of crossing 60° and 
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-60° cracks are observed starting around the hole and expanding to the outer edges of the 

specimen in both the prediction and experiment. Delamination is found expanding on the left and 

right side of the hole bounded by the crossing cracks. For further images from this case study, 

the reader is directed to Figure 6.1 through Figure 6.3 in the Appendix. 

The above cases show the accurate crack depiction, propagation, and density of the RXFEM 

and CZM methodologies implemented in BSAM at the coupon level and will be used in the 

analysis of the current work. 

3 Current Work 

The model used throughout the open hole tests in the current work is obtained from the 

Advanced Material Characterization and Structural Certification, AMSC, report developed by 

the Air Force Research Laboratory, AFRL, and the National Institute for Aviation Research, 

NIAR and will involve higher cycle counts [62]. The current work will focus on verification of 

fatigue damage found in experimental tests using BSAM of three loading conditions tension-

tension, compression-compression, and compression-tension found in the report. The purpose of 

the work is to ensure that fatigue damage at different loading types of laminate composites can 

accurately be predicted using an FEA software. The Current Work chapter will, in order, contain 

model specifications, a mesh study, and both static and fatigue analysis. 

3.1 Model Specifications 

3.1.1 Model Geometry, Material and Layup 

The specimen used throughout the study is a rectangular coupon measuring 304.8 mm 

long, 38.1 mm wide, and 3.3 mm thick (12.0 in x 1.5 in x 0.1296 in). A 6.4 mm (0.252 in) 
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diameter hole is located at the center of the specimen. The model is created in Abaqus in which 

only half the layup is modeled because of symmetry. A 38.1 mm by 44.45 mm loading tab is 

added at the positive x-axis edge of the layup to carry the applied stress appropriately to the 

specimen. The model geometry can be visualized in Figure 3.2 and Figure 3.3. 

The composite follows a [45/0/-45/90]3s layup made from IM7/5320-1, which the 

properties can be viewed in Table 3. Comparing the material properties of IM7/5320-1 and 

IM7/977-3 used in previous analysis, a much higher shear and compressive strength, both 

longitudinal and transverse, is found. A decrease in both modes’ critical ERR is observed. 

Table 3 IM7/5320-1 Material Properties 

Property IM7/5320-1 Unit 

E11 157.2 GPa 

E22, E33 9.38 GPa 

G12, G13 5.03 GPa 

G23 3.24 GPa 

v12, v13 0.30  

v23 0.496  

α1 0.00   

α2 30.0 E -6 1/C 

GIC 0.226 N/mm 

GIIC  0.511 N/mm 

YT 81.0 MPa 

YC 312.0 MPa 

S 133.8 MPa 

XT 2490 MPa 

XC 1990 MPa 

S1 0.026  

S2 0.071  

m1 11.38  

m2 5.86  

C1 0.039 mm 

C2 0.021 mm 
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Equations (2-67)-(2-71) provide the expression for S-N parameters as a function of R 

ratio. However, the independent measurement of the shear S-N relation for R=-1 performed for a 

similar material IM7/8552 does not follow this trend [63]. Figure 3.1 shows the trend line for the 

R = 0.1 and R = -1 functions of Equations (2-67)-(2-71) and the experimental results of 

IM7/8552 at R = -1. Due to significant difference between the measured and predicted trend line, 

it was decided to use an R= -1 relation which follows the experimental data by shifting the static 

shear strength to ~73% of the original static strength, therefor 𝑆𝐿=93.7 MPa was used in the 

compression-tension analysis. The initial 𝑆2 was not changed during this procedure as the 

deduction rates across all loading conditions remained closely identical. 

 

Figure 3.1 S-N curve used for compression-tension analysis 
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Figure 3.2 Model outer dimensions 

 

 

Figure 3.3 Model hole dimensions 



46 

 

3.1.2 Meshing and Boundary Conditions 

Each ply consists of a single element through the thickness and six elements through the 

width at the outer regions of the specimen. The mesh begins to get finer towards the middle of 

the specimen, in which the finest is found around the area of interest, consisting of a size twice 

the diameter of the specimen’s hole. Elements around the hole varied circumferentially from 

0.250 mm to 0.625 mm and radially from 0.125 mm to 0.250 mm. The mesh size around the hole 

used throughout the analysis was determined by performing a parametric study to provide 

accurate results while also retaining computational efficiency and will be discussed in the next 

section. C3D8 elements were used aimed to be as square as possible in the area of interest to 

provide accurate damage propagation form the Paris Law.  

The boundary conditions applied to the model to simulate the environment the specimen 

would endure during the physical experiment. An imposed ux = 0 constraint is placed on the 

faces of all plies at the negative x-axis, simulating the non-loading grip found in the experiment. 

The midplane ply is constrained in the z-direction, uz = 0, on the negative z-axis face to prevent 

unwanted displacements along the z-axis. Two nodes on both sides of the mid-plane ply are 

constrained in the y direction, uy = 0 to prevent any twist in the model. To simulate the loading 

on the specimen, a uniform stress is applied on the positive x-axis face of the loading block. 

Lastly, a temperature change ΔT= -180 is imposed to simulate the residual stresses from the 

curing process.  

3.2 Mesh Study 

Three different mesh sizes around the hole of the specimen were analyzed to determine an 

optimal size for balancing computational efficiency and accurate results as cycle counts found in 
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the experiment, specifically tension-tension, are much higher than what is normally performed 

with BSAM. Only the region of interest was considered as much of the damage across all tests 

are found around the hole.   

In each study, the mesh sizing is changed both radially and circumferentially in the area of 

interest. The finer mesh consists of elements that are 0.2 mm through the circumference at the 

hole edge and 0.5 mm at the outer region of interest. The element size is radially increased 

outwards from the hole from 0.1 mm to 0.2 mm. A course mesh is then generated following the 

same guidelines as the fine mesh. The element size around the circle, circumferentially, is 0.4 

mm and is 1.0 mm at the outer region of interest. The element size radially increases outward 

from 0.2 mm to 0.4 mm. Lastly, a mesh size in between was chosen with elements sizes from 

0.25 mm to 0.625 mm circumferentially and 0.125 mm to 0.25 radially. All three meshes can be 

visualized in Figure 3.4-Figure 3.6. 

 

Figure 3.4 Fine mesh around specimen hole 
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Figure 3.5 Coarse mesh around specimen hole 

 

 

Figure 3.6 Medium mesh around specimen hole 
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All three meshes were used in an OHT-T fatigue test with an applied load of 80% of the 

static strength of IM7/5320-1 to analyze the impact of the mesh sizing on results and analysis 

time. Since the highest loading for of the NIAR experiments reach a run-out of one million 

cycles for the OHT-T tests, it was a goal for each mesh to reach this point at the end of the FEA 

analysis. A table comprising of the final cycles reached and the time for the mesh to reach that 

point can be found in Table 4. 

Table 4 Mesh analysis final cycle and run time 

Mesh Sizing Final Cycle Analysis Run Time 

Fine 383,340 15d 0h (Max) 

Medium 1,000,000 5d 0h 

Coarse 1,000,000 1d 8h 

 

Without looking at the damage results, the fine mesh was not able to reach the desired 

million cycles and took the maximum run time allowed by the high-performance computing. 

This is highly undesirable in validating damage with experimental work if the analysis is unable 

to reach the cycles performed in the experiment. Computational efficiency is also of high priority 

in validating results in a timely manner and having too fine of a mesh greatly increases the 

computational time. The medium and coarse mesh were able to reach the million cycles in 

substantially less time than the fine mesh, making both possible choices in terms of 

computationally efficiency. 
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Figure 3.7 Delamination in different meshes compared with experimental result 

Comparing the different meshes one can observe differences as the mesh is getting coarser. 

The fine mesh provides the most accurate result than the others. The medium mesh follows the 

same damage pattern as the experimental but to a smaller extent. The coarse mesh is seen show 

very little damage and does not accurately depict the experimental damage.  

 Considering analysis time and the ability to accurately depict damage accumulation, the 

medium mesh was chosen for the current work. 

Result

Experimental

Fine Mesh

Medium Mesh

Coarse Mesh
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3.3 Static Analysis 

The first step in the current work was to reproduce static strength data obtained in the 

experimental procedures. The goal of the static FEA was to be within a five percent threshold for 

both compression and tension tests. In the static analysis, instead of a loading block used in the 

fatigue, a uniform displacement was applied on the positive x-faces of each ply in the layup. 

After the static simulation is complete, the force-displacement data or Critical Volume Failure 

(CFV) of the zero-degree plies is obtained through post-processing to determine static failure. 

3.3.1 Tension 

CFV was used in the tension-tension static analysis to determine static strength of the 

specimen. Using load factor data produced by the analysis, the obtained stress before single ply 

failure of one of the zero-degree plies was determined to be 433 MPa. Comparing this value with 

the experiment of 472 MPa, an 8.3% reduction in static strength is obtained. Although the 

percent error is outside the desired five percent, it is taken as a respectable value because of 

several factors found in the experimental tests and the result of mesh dependency.  

3.3.2 Compression 

For compression verification, force-displacement data from the simulation was used, 

taking the stress just before a load drop-off as the static strength. An iteration process was 

performed reducing the fiber compression fracture toughness to reach the five percent threshold 

as fiber failure is the reason for specimen failure. Through this process, the fiber compression 

fracture toughness was reduced from 20.0 to 8.0 N/mm and the resulting static strength from the 

compression analysis was obtained to be -361 MPa. Comparing with the static strength found in 

the physical experiment, -350 MPa, the FEA had a 3.1% difference in static strength. The static 
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strength value in compression was used in both the compression-compression and compression-

tension analysis, just as it was used in the experimental work. In the traction-displacement curve 

of Figure 3.8 the initial displacement is non-zero because of thermal effects applied before 

compression.  

 

Figure 3.8 Traction-displacement curve for compression static test 

3.4 Fatigue Analysis 

3.4.1 Tension-Tension 

The analysis of the tension-tension specimen is centered on delamination size and shape 

rather than fiber failure that is observed in the compression-compression results. For the tested 

specimen, fatigue analysis was performed to the experimental runout of one million cycles with 

an applied load of 90% the ultimate stress. From the experimental images found in the AMCSC 

report the interfaces at the top and bottom of the specimen between the outer 45°/0°, 0°/-45°, and 

-45°/90° were compared with the results found in the simulation result. The inner plies of the 
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experimental specimen were not chosen for comparison because of lack of damage observed in 

the provided images.  

 

Figure 3.9 OHT-T interface-level damage comparison of 45°/0° interfaces 

 In the outermost interfaces of the layup, the greatest amount delamination can be 

observed, both in the experimental and the FEA result. In both experimental images, 

delamination is found on the top and bottom of the hole bounded by a 45-degree matrix cracks 

highlighted in orange and 0-degree cracks highlighted in green. The same matrix cracks, 

depicted in red, that bound delamination, depicted in blue, were found in the computation, 

creating the same delamination shape. However, the delamination size found in the FEA result 

was found to be smaller than what was found in the experimental results. In the computational 

result, two main 45-degree cracks limit the delamination expansion to only along the highlighted 

cracks where delamination originated, the additional long 45-degree cracks create regions where 
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delamination should be observed in the dark-blue highlighted areas. Another key area for 

delamination is found at the bottom right of the hole of the experimental images, expanding 

upwards connecting to the upper delamination damage region. This area is found in the FEA 

result; however, it does not extend completely to the upper delamination. 

 

Figure 3.10 OHT-T interface-level damage comparison of 0°/-45° interfaces 

 The second set of interfaces discussed will be the 0°/-45° interfaces. In contrast to the 

previous interfaces, delamination was overpredicted in the computational analysis, expanding 

outside the diameter of the whole at the top and bottom. A much higher crack density of negative 

45-degree cracks is found at the top and bottom of the hole which leads to the delamination in 

the FEA result that is not found in the experimental images. The 0-degree crack bound, 

emphasized by a green arrow, found in the experiment is also found in the FEA result. In the 

interface between ply 2 and 3, negative 45-degree cracks are noted in orange that bind the 
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delamination which are also found in the computational result. However, it is expected that 

because of poor image quality found in the experimental images, the delamination in the 

interface between ply 2 and 3 extends from the noted cracks to the hole of the specimen. 

 

Figure 3.11 OHT-T interface-level damage comparison of -45°/-90° interfaces 

 The last interfaces that will be discussed in the OHT-T specimen will be the -45°/-90° 

interfaces. Out of the three, this was determined to be the most accurate in depicting 

delamination damage size and shape. In the experimental images, negative 45-degree cracks 

bound the delamination at the bottom-left and top-right of the hole, shown in orange. At the 

bottom-left of the hole, the interface of ply 22 and 21 is bounded by a negative 45-degree crack 

further from the hole than the crack found in the interface of ply 3 and 4, both cracks are found 

in the simulation. In the FEA result, a much higher crack density of 90-degree cracks is found on 



56 

 

the top and bottom of the hole, however, the experimental result only shows a few 90-degree 

cracks highlighted in green. 

 

3.4.2 Compression-Compression 

For the fatigue analysis, the highest loading condition for compression-compression tests 

was chosen of 80% of the static strength. Therefore, a uniform stress of -280 MPa was applied to 

the loading tab at the end of the specimen. Failure during the mechanical testing found in the 

report was determined to be at 8,673 cycles. Due to BSAM using cycle jump methodology, the 

closest cycle step, 8,635, was used to compare damage. Two plies were used for validating fiber 

damage in the specimen, ply 6 and ply 24 of the AMCSC report. Due to the images in the report 

taken at the ply level and not the interface, delamination size and shape were unable to be 

verified, instead normalized residual stiffness was captured using the force-displacement data 

throughout the analysis and compared with the experimental results in Figure 3.12. The FEA 

analysis follows closely to the experiment residual stiffness curve up to just before failure, in 

which a steep drop from the experiment data is observed. 



57 

 

 

Figure 3.12 Normalized residual stiffness curve 

 

Figure 3.13 OHC-C ply-level damage comparison 
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The visual damage comparison between the experimental and FEA results can be found 

in Figure 3.13. In the OHC-C result, blue regions are CDM damage representing fiber failure. 

First observing the inner zero-degree ply, ply 6, fiber failure is seen at the top and bottom 

of the hole expanding in the ninety-degree direction, for both experiment and FEA results. The 

result obtained from the FEA analysis shows proper fiber damage size. One difference found 

between the experiment and FEA result is the fiber damage location, in the experimental result 

the damage is found to be off-center of the circle compared to the fiber failure centered on the 

hole in the FEA result. 

In ply 24, the outermost forty-five-degree ply, fiber damage can be seen in the 

experiment result expanding from the top-left and bottom-right along the fiber direction. This 

same result can be observed in the FEA result. At the top of the hole, the fiber damage is guided 

by a matrix crack which can also be observed in the experimental result. Fiber damage in the 

analytical result is seen to be both the appropriate size and location. 

3.4.3 Compression-Tension 

The last analysis performed in the current work was compression-tension. The 

compression-tension analysis uses the static results found in the compression tests, as what is 

performed in the NIAR experiments. The highest loading conditions were chosen for the 

analysis, therefor 60% of the compression strength is applied as a uniform stress on the loading 

tab, -210 MPa. Failure in the experiment occurred at 37,365 cycles and the analytic step 

corresponding to 37,463 was examined. Several plies will be compared with the experimental 

images, showing the different damage types found in compression-compression and tension-
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tension specimens all in the compression-tension analysis. The first set of interfaces that will be 

examined are the outer 45/0-degree interfaces in Figure 3.14. 

 

Figure 3.14 OHC-T interface-level damage comparison of 45°/0° interfaces 

 The delamination found in the outer 45/0-degree interfaces are bound by 45-degree 

cracks extending from the bottom right and top left of the hole, which is predicted in the FEA 

analysis and are shown in orange. The computation predicts 0-degree cracks originating at the 

bottom and top of the hole but are unable to be seen in the experimental results because of the 

delamination. The delamination around the hole in the interface between plies 1 and 2 resemble 

closely in size and shape of that found in the FEA result. 
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Figure 3.15 OHC-T interface-level damage comparison of 0°/-45° interfaces 

 Only one of the 0/-45-degree interfaces were able to be compared, in Figure 3.15 because 

of quality of the experiment image found in the other interface. The highlight of this interface 

and the simulated result is the -45-degree crack extending at the bottom-left of the hole. In the 

experimental result delamination is mostly constricted from expanding to the right side of this 

crack, however, the simulation shows delamination in this region. Other cracks that are found in 

the FEA result are unable to be verified in the experiment’s image because of the delamination 

observed. Delamination found at the top of the hole matches significantly with the experimental 

result but delamination size at the bottom of the hole is slightly smaller and a slightly different 

shape. 

The interfaces between -45/90-degree plies were found to have little damage, both in the 

FEA result and experiment. However, compared with the previous interfaces, cracks from both 

plies can be seen. The crack lengths found in the FEA result were determined to be shorter than 

those found in the experimental result, but the location and effect on delamination is observed to 

be the same. Two -45-degree cracks are found at the top and bottom of the hole, pointed to in 

orange, while two 90-degree cracks, pointed to in green, are found almost centered at the top and 
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bottom of the hole. Delamination size is very small and most noticeably found in the interface 

between plies 22 and 21, which is predicted in the FEA result. 

 

Figure 3.16 OHC-T interface-level damage comparison of -45°/90° interfaces 

 Fiber failure was only found in the 0-degree plies, much like the compression-

compression analysis previously. The experimental images are taken at the ply level and 

delamination will not be able to be observed and no matrix cracks are seen. The fiber failure is 

predicted at the top and bottom of the hole at the center, shown in blue in the FEA result much 

like the compression-compression results. The length of the fiber damage is much shorter than 

the experimental results.  
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Figure 3.17 OHC-T ply-level damage comparison of 0° plies 

 The last set of interfaces that will be discussed are two inner interfaces, shown in Figure 

3.18, where minimal damage is found including no delamination. Only short matrix cracks can be 

viewed in the FEA analysis, correlating well with the experimental results. 
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Figure 3.18 OHC-T interface-level damage comparison of inner interfaces 

3.5 Paris Law Parametric Study 

Throughout the OHT-T analysis an increase in delamination and matrix crack size was 

desired to reach closer results to the experimental images. As delamination growth and crack 

propagation is governed by the Paris Law, coefficients of mode I were raised based off NIAR’s 

experimental results showing greater variance from the average trend line of testing the specimen 

in a DCB model setup. Mode II propagation data followed closely to the average trend line and 

the coefficients were left unchanged. 

Interface (Orien.) Experimental Result FEA Result

Ply 14/13 (-45°/90°)

Ply 17/16 (90°/45°)
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Figure 3.19 Mode I crack growth from experimental results of IM7/5320-1 

 The solid black line found in Figure 3.19 was found to be the best fit line for propagation 

rates for all three loading aptitudes and was chosen as the basis for mode I coefficients in the 

analysis for the current work. However, to increase the crack growth the upper bound 

propagation rate, highlighted in red, in the experimental results was extracted. Comparison of the 

coefficients can be found in the following table. 

Table 5 Mode I coefficient comparison 

 C1 M1 

Original 0.039 11.38 

Updated 0.285 9.79 
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Figure 3.20 Paris Law parametric study results 

 Comparing the results of changing the mode I Paris Law coefficients found in Figure 3.20, 

no drastic changes can be observed between the original and modified results. The only 

differences found in the modified results are emphasized in green, which mostly are larger 

matrix crack lengths. The modified Paris Law had minimal impact on delamination size and 

from this parametric study it was determined that modifying mode I coefficients would have 

minimal effect on analytic results. 
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4 Conclusions 

Static and fatigue analysis was performed using the FEA software BSAM on advanced 

out-of-autoclave composites to compare delamination, matrix cracking, and fiber failure 

accumulation with experimental data. RXFEM methodology was used for modeling 

damage. CZM and strength tracking methodologies were used for crack propagation 

throughout the fatigue analysis. The Local-R ratio was monitored throughout the analysis to 

obtain accurate load ratios and for algorithm updating. Fiber failure was modeled using 

CDM techniques. Three cases, tension-tension, compression-compression, and compression-

tension were examined for an open-hole IM7/5320-1 quasi-isotropic laminate.  

The damage accumulation in each case was compared with the experimental results 

studied by NIAR in the Advanced Material Characterization and Structural Certification 

report. From this study, key similarities and some differences are found with the 

experimental specimens and the computational analysis. The tension-tension results showed 

overall results close to experimental data for delamination and matrix cracking of outer ply 

interfaces. Fiber failure was the only damage mode clearly identifiable in experiment in the 

compression-compression case.  It was also predicted in the 0-degree and 45-degree plies in 

the same location and size as observed in the experiment. Lastly, the compression-tension 

analysis contained all three damage modes.  Delamination shape was consistent in both 

cases but smaller in size than in the FEA. Similarly, the fiber failure mode was found in 0-

degree plies but to also smaller extent than in the experiment. 
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6 Appendix 

 

Figure 6.1 Matrix cracking and delamination comparison of the [30°/60°/90°/−60°/−30°]2𝑠 OHT specimen after 

200k cycles for RXFEM/CZM Methodology Verificaiton 

 

 

Figure 6.2 Matrix cracking and delamination comparison of the [0°/45°/90°/−45°]2𝑠  OHT specimen after 300k 

cycles for RXFEM/CZM Methodology Verificaiton 

 



78 

 

 

Figure 6.3 Matrix cracking and delamination comparison of the [60°/0°/−60°]3𝑠 OHT specimen after 200k cycles 

for RXFEM/CZM Methodology Verificaiton 
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Figure 6.4 Inner ply fatigue damage of IM7/5320-1 and IM7/977-3 at 50k cycles 
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Figure 6.5 Outer ply fatigue damage of IM7/5320-1 and IM7/977-3 at 50k cycles 
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