A STUDY IN THE FREENESS OF FINITELY GENERATED A_{p}^{n}-MODULES UPON RESTRICTION TO PRINCIPAL SUBALGEBRAS

by
LUKE FLATTERY

Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

May 2023

Abstract
 A STUDY IN THE FREENESS OF FINITELY GENERATED A_{p}^{n}-MODULES UPON RESTRICTION TO PRINCIPAL SUBALGEBRAS

Luke Flattery, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: D. Jorgensen

We are interested in quantitative information on the freeness of modules over a truncated polynomial ring when restricting to subalgebras generated by a linear form. After investigating the structure of the truncated polynomial ring, subalgebras generated by a linear form, and corresponding vector spaces, we construct a generic representation and discuss its connection to a certain affine space. We quantify the abundance of freeness of modules using a certain variety called the rank variety. For any possible dimension we construct a module whose rank variety has that dimension. Finally, we define another variety, called the module variety, and show that the dimension of this variety is invariant under a change of subalgebra.

TABLE OF CONTENTS

Abstract ii
Chapter Page

1. A_{p}^{n}-modules, Decompositions, and Matrix Representations 1
1.1 Introduction 1
1.2 Defining A_{p}^{n} and $\mathbb{k}\left[u_{\lambda}\right]$ 4
1.3 Module Decomposition 11
1.4 Representation Matrix Decompositions 13
2. Constructing a Generic Representation Matrix 23
2.1 Construction and Notation 23
2.2 Generic Matrices after Restriction 28
3. Freeness of A_{p}^{n}-modules restricted to $\mathbb{k}\left[u_{\lambda}\right]$ 33
3.1 Analyzing the Freeness of Modules After Restriction 33
3.2 The Main Theorem on Freeness and the Zariski Topology 39
4. Fixed Module Freeness 45
4.1 Non-trivial Rank Varieties and Existence of Concrete Examples of Theorem 3.2.6 45
4.2 Dimensions of Rank Varieties 49
5. Fixed Subalgebra Freeness 61
5.1 Dimension of Module Varieties 61
References 67

CHAPTER 1

A_{p}^{n}-modules, Decompositions, and Matrix Representations

1.1 Introduction

An open area of study is the understanding of module categories for a particular ring. A 1961 paper by Heller and Reiner [14] pointed out that in most cases the module category is wild. This means that it is hopeless to try to classify all indecomposable modules up to isomorphism. One focus of research has been to classify modules in terms of invariants, which yield a weaker classification than isomorphism. A breakthrough in the construction of such invariants to study modules was made by Quillen [18] [19] [20] in a series of three papers. The method proposed by Quillen was to associate to modules certain geometric objects, called the support or cohomological variety. Alperin [1] proposed the study of modules via complexity, which is a generalization of the dimension of Quillen's varieties. Kroll [17] gave an effective method for computing the complexity of modules over a group algebra of an elementary abelian p-group.

Carlson proposed that another invariant could be used to further the study of modules over group algebras of an elementary abelian p-group. To this end Carlson introduced the rank variety in [7]. The rank variety involves restriction of the modules being studied to subalgebras of the group algebra of the module. The rank variety proved to be a useful invariant for a number of reasons. For one, the rank variety of a module characterizes projectivity as a result of Dade's Lemma [9]. Also, the tensor product property, that the rank variety of a tensor product is the intersection of the rank varieties of the two modules, holds [4]. Due to the effectiveness of Carlson's
rank variety and support varieties for group algebras, the theory has been applied in a broader context, such as to p-restricted Lie algebras in [12]. More recently, rank varieties have been used to study the property of constant Jordan type for modules [8].

We are motivated to study the abundance of freeness, which we will later define in Definition 3.1.1. The study of constant rank by Carlson and others [8] [5] provided motivation for the topics of this thesis. We develop machinery (see Definition 2.2.4) that simultaneously recovers Carlson's rank variety (Definition 3.2.4) and also defines a new variety called the module variety (Definition 3.2.5). In the process, we concretely construct modules whose rank variety is any possible dimension (Corollary 4.2.16), define a canonical representation matrix (Definition 4.2.12), and study the invariance of the module variety (Theorem 5.1.4). The modules studied in this thesis are modules over a group algebra of an elementary abelian p-group. These group algebras are truncated polynomial rings, which we will be calling A_{p}^{n}.

The main object of this thesis is the truncated polynomial ring A_{p}^{n} where each variable is nilpotent with nilpotency index of fixed prime p (see Definition 1.2.1). The characteristic of the coefficient field is also p. Next, we discuss principal subalgebras of the truncated polynomial ring, which are generated by a linear form in Definition 1.2.5. We exploit the connections between finitely generated modules over the truncated polynomial ring and their underlying vector spaces over the coefficient field (see Fact 1.2.3).

In Section 1.3, we study the module decomposition of a finitely generated A_{p}^{n}-module when restricted to the principal subalgebras. We recall the decomposition theorem for modules over principal ideal domains, and show that the module decomposition over a principal ideal domain can be modified to work over our principal
subalgebras in the case of A_{p}^{n}-modules (Corollary 1.3.4). This module decomposition allows us to comment on the various options for the module structure in general.

Since A_{p}^{n} modules have an underlying vector space, multiplication by a linear form defines a linear transformation and therefore can be represented by a matrix, which we call the representation matrix. The goal is to use the representation matrix to understand the module decomposition. In particular, the Jordan canonical form of the representation matrix tells us exactly how the module decomposes as stated in Fact 1.4.7. Armed with a matrix representation we are ready to ask questions about how decompositions change when varying the subalgebra. With a matrix representation, we are also able to connect a choice of matrix to a point in affine space. This is similarly done for a choice of subalgebra.

To further analyze which modules hold certain properties, for example, a specific module decomposition, we define a generic module. This is in effect a finite set of generic matrices representing all possible A_{p}^{n}-modules of a fixed dimension. Each generic matrix corresponds to a generator of A_{p}^{n}. These generic matrices are required to reflect the commutativity and nilpotency conditions held by the generators of A_{p}^{n}. To ensure that the generic matrices hold these properties, we define the ideal Q and corresponding algebraic variety $V(Q)$ in Definition 2.1.7. A point in $V(Q)$ then corresponds to an A_{p}^{n}-module and vice versa.

Following the construction of the generic matrices, we employ them to study freeness. In this thesis, freeness upon restriction to principal subalgebras is encoded in terms of a certain ideal described in Corollary 3.1.8, and its corresponding variety. The points in the rank variety correspond to subalgebras where the module is not free.

Next, it is shown that there are modules that are both free upon restriction to infinitely many subalgebras and not free upon restriction to infinitely many
subalgebras. To this end, we employ the Zariski topology to quantify their abundance. This leads to a general statement quantifying freeness based on the module variety and the rank variety in Theorem 3.2.6. Since the points of the rank variety correspond to points of the subalgebra where the module is not free, the property of freeness is more abundant, i.e. the condition of freeness is an open condition.

In Section 4.1 we show by example (see Fact 4.1.1) that the rank variety can be nonzero and not the whole space. We explore how the rank variety encodes non-freeness over different subalgebras for fixed modules. We give many examples (see Example 4.1.3, Example 4.1.4 and Example 4.1.5) exploring the behavior of the rank variety.

After fixing a special ordered basis of the underlying vector space of A_{p}^{n} in Definition 4.2.1, we describe the canonical representation matrices in Definition 4.2.12. We use this description throughout Section 4.2 to show there are modules whose rank variety achieve any possible dimension. The existence of such modules has been proposed in [6], but in this thesis we give concrete examples for any rank variety.

In Chapter 5 we study the module variety by looking at the case of a fixed subalgebra and generic module. This direction does not prove to be as interesting, but nevertheless we obtain a theorem on the invariance of the dimension of the module variety for any principal subalgebra as Theorem 5.1.4.

1.2 Defining A_{p}^{n} and $\mathbb{k}\left[u_{\lambda}\right]$

The starting point for this thesis is A_{p}^{n}, a truncated commutative polynomial ring. We are interested in finitely generated A_{p}^{n}-modules that are restricted to principal subalgebras, namely subalgebras that are generated by a single homogeneous linear form of A_{p}^{n}.

Definition 1.2.1. Let A_{p}^{n} be the commutative ring

$$
A_{p}^{n}=\mathbb{k}\left[Z_{1}, Z_{2}, \ldots, Z_{n}\right] /\left(Z_{1}^{p}, Z_{2}^{p}, \ldots, Z_{n}^{p}\right)
$$

where \mathbb{k} is a field, $\operatorname{char}(\mathbb{k})=p$, and p is a prime integer. Define z_{i} to be the coset of Z_{i} in A_{p}^{n}. The field is assumed to be algebraically closed when necessary.

The ring A_{p}^{n} is a finite dimensional vector space over the coefficient field \mathbb{k}. One such basis of this vector space consists of the monomials

$$
\left\{z_{1}^{k_{1}} z_{2}^{k_{2}} \ldots z_{n}^{k_{n}} \mid 0 \leq k_{i} \leq p-1,1 \leq i \leq n\right\}
$$

One counts easily the monomials in the basis to find the number of elements in a \mathbb{k}-basis of A_{p}^{n}. We state this in the form of the following fact.

Fact 1.2.2. The dimension of A_{p}^{n} as a \mathbb{k}-vector space is p^{n}.
Proof. Notice that the set

$$
\left\{z_{1}^{k_{1}} z_{2}^{k_{2}} \ldots z_{n}^{k_{n}} \mid 0 \leq k_{i} \leq p-1,1 \leq i \leq n\right\}
$$

is both \mathbb{k}-linearly independent and spans A_{p}^{n} as a \mathbb{k}-vector space. Thus, this set is a basis for V. The basis has p^{n} elements because there are p choices of k_{i} for all n choices of i.

Additionally, A_{p}^{n} is a finite dimensional \mathbb{k}-algebra. The modules that are the focus of this thesis are all finitely generated A_{p}^{n}-modules making the following a critical component of this study. The majority of A_{p}^{n}-modules constructed for use in examples throughout are defined by an ideal generated by the elements that are listed in the example. Notationally, an A_{p}^{n}-module M defined by an ideal generated by z_{1} and z_{2} is denoted $M=\left(z_{1}, z_{2}\right)$.

Fact 1.2.3. A_{p}^{n} is a finite dimensional \mathbb{k}-algebra, and as such, finitely generated A_{p}^{n} modules are finite dimensional \mathbb{k}-vector spaces. Equivalently, every finitely generated A_{p}^{n}-module has a finite \mathbb{k}-basis.

To justify this fact we will come up with a \mathbb{k}-basis of a finitely generated module. Given a finitely generated A_{p}^{n}-module M generated by $a_{1}, a_{2}, \ldots, a_{m}$ we find that the elements $a_{i} z_{1}^{k_{1}} z_{2}^{k_{2}} \ldots z_{n}^{k_{n}}$, where $0 \leq k_{j} \leq p-1$ and $1 \leq i \leq m$, span M as a \mathbb{k}-vector space. This is a finite spanning set from which a basis can be chosen. In cases where the elements of the module have a degree, the basis can be ordered in terms of this degree. However, there are cases where elements of the module do not have a degree. At this point, we know a basis can always be found and we formalize a canonical basis order for A_{p}^{n} in Chapter 4. The following example looks into the \mathbb{k}-basis of the underlying vector space of an A_{p}^{n}-module.

Example 1.2.4. Suppose that we use A_{2}^{3} as the underlying ring and look at M as an A_{2}^{3}-module.

1. If $M=A_{2}^{3}$, then the underlying \mathbb{k}-vector space has a 9 element basis

$$
\left\{1, z_{1}, z_{2}, z_{1} z_{2}, z_{1}^{2}, z_{2}^{2}, z_{1}^{2} z_{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}^{2}\right\}
$$

2. If $M=\left(z_{1}\right)$, the ideal generated by z_{1}, then the underlying 6 -dimensional \mathbb{K}_{k}-vector space has basis

$$
\left\{z_{1}, z_{1} z_{2}, z_{1}^{2}, z_{1}^{2} z_{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}^{2}\right\}
$$

3. If $M=\left(z_{2}\right)$, then the underlying \mathbb{k}-vector space is again 6 -dimensional and has basis

$$
\left\{z_{2}, z_{1} z_{2}, z_{2}^{2}, z_{1}^{2} z_{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}^{2}\right\}
$$

4. If $M=\left(z_{1}, z_{2}\right)$, then the underlying \mathbb{k}-vector space is 8 -dimensional and has basis

$$
\left\{z_{1}, z_{2}, z_{1} z_{2}, z_{1}^{2}, z_{2}^{2}, z_{1}^{2} z_{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}^{2}\right\}
$$

5. If $M=\left(z_{1} z_{2}\right)$, then the underlying \mathbb{k}-vector space is 4 -dimensional and has basis

$$
\left\{z_{1} z_{2}, z_{1}^{2} z_{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}^{2}\right\}
$$

6. Finally, if $M=\left(z_{1}+z_{2}\right)$, then the underlying \mathbb{k}-vector space is 6 -dimensional and has basis

$$
\left\{z_{1}+z_{2}, z_{1}^{2}+z_{1} z_{2}, z_{1} z_{2}+z_{2}^{2}, z_{1}^{2} z_{2}+z_{1} z_{2}^{2}, z_{1}^{2} z_{2}, z_{1}^{2} z_{2}^{2}\right\}
$$

In both (2) and (3), we find 6 -dimensional \mathbb{k}-vector spaces. They are therefore isomorphic as \mathbb{k}-vector spaces. However, they are not isomorphic as A_{p}^{n}-modules since $\left(z_{1}\right)$ and $\left(z_{2}\right)$ have different annihilators in A_{p}^{n}.

The structure of finitely generated A_{p}^{n}-modules can be extremely complicated. We introduce subalgebras to better understand their structure. The subalgebras are generated by a linear form of A_{p}^{n}. It is worth pointing out that the results of this thesis depend on the subalgebra being a single homogeneous linear form and it is not obvious what would happen otherwise.

Definition 1.2.5. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ where $\lambda_{i} \in \mathbb{K}$. Additionally, define

$$
u_{\lambda}=\sum_{i=1}^{n} \lambda_{i} z_{i} \text { for } \lambda_{i} \in \mathbb{k}
$$

and let $\mathbb{k}\left[u_{\lambda}\right]$ denote the principal subalgebra of A_{p}^{n} generated by u_{λ}.
By definition, u_{λ} is a homogeneous linear form, and henceforth we assume that u_{λ} is nonzero. In other words, a choice of λ that is entirely zero is not permissible. There is a bijective correspondence between nonzero linear forms in A_{p}^{n} and nonzero $\lambda \in \mathbb{A}^{n}$. A critical behavior of A_{p}^{n} is that any homogeneous linear form to the $p^{t h}$ power is 0 .

Fact 1.2.6. For $x_{i} \in A_{p}^{n}$ and $k>0$,

$$
\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{p}=x_{1}^{p}+x_{2}^{p}+\ldots+x_{k}^{p} .
$$

Proof. We proceed by induction on k. The result is obvious for $k=1$, so we prove the result with $k=2$ as the base case. By binomial expansion, we find that

$$
\left(x_{1}+x_{2}\right)^{p}=\binom{p}{0} x_{1}^{p}+\binom{p}{1} x_{1}^{p-1} x_{2}+\ldots+\binom{p}{p-1} x_{1} x_{2}^{p-1}+\binom{p}{p} x_{2}^{p} .
$$

All coefficients other than $\binom{p}{0}$ and $\binom{p}{p}$ are a multiple of p. In other words, $\binom{p}{p^{\prime}}=m p$ for some positive integer m when $0<p^{\prime}<p$. Since the characteristic of \mathbb{k} is p, each of these terms is zero. This means that

$$
\left(x_{1}+x_{2}\right)^{p}=\binom{p}{0} x_{1}^{p}+\binom{p}{p} x_{2}^{p}=x_{1}^{p}+x_{2}^{p}
$$

and thus the $k=2$ case holds. Assume the fact is true for $k-1>0$. Now $\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{p}=\left(x_{1}+x_{2}+\ldots+x_{k-1}\right)^{p}+x_{k}^{p}$ by the $k=2$ case. By induction, $\left(x_{1}+x_{2}+\ldots+x_{k-1}\right)^{p}=x_{1}^{p}+x_{2}^{p}+\ldots+x_{k-1}^{p}$ and we find

$$
\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{p}=x_{1}^{p}+x_{2}^{p}+\ldots+x_{k}^{p} .
$$

Applying Fact 1.2.6 to u_{λ} we have the following.
Fact 1.2.7. For any $\lambda, u_{\lambda}^{p}=0$.
Proof. We have $u_{\lambda}=\lambda_{1} z_{1}+\ldots+\lambda_{n} z_{n}$ for $\lambda_{i} \in \mathbb{k}$. Then $u_{\lambda}^{p}=\lambda_{1}^{p} z_{1}^{p}+\lambda_{2}^{p} z_{2}^{p}+\ldots+\lambda_{n}^{p} z_{n}^{p}$ by the previous fact. Since $z_{i}^{p}=0$ for all i, we conclude $u_{\lambda}^{p}=0$.

The next example highlights the structure of the subalgebra $\mathbb{k}\left[u_{\lambda}\right]$ of A_{p}^{n}.
Example 1.2.8. Consider the ring A_{3}^{2} and $a, b \in \mathbb{k}\left[u_{\lambda}\right]$.
Let $a=a_{0}+u_{\lambda} a_{1}+u_{\lambda}^{2} a_{2}$ and $b=b_{0}+u_{\lambda} b_{1}+u_{\lambda}^{2} b_{2}$ for a_{i} and b_{i} in \mathbb{k}.
The addition and multiplication of $\mathbb{k}\left[u_{\lambda}\right]$ are inherited from A_{p}^{n}. For example, when multiplying a and b we obtain the following.

$$
\begin{aligned}
a \cdot b & =a_{0} b_{0}+u_{\lambda} a_{0} b_{1}+u_{\lambda}^{2} a_{0} b_{2}+u_{\lambda} a_{1} b_{0}+u_{\lambda}^{2} a_{1} b_{1}+u_{\lambda}^{2} a_{2} b_{0} \\
& =a_{0} b_{0}+u_{\lambda}\left(a_{0} b_{1}+a_{1} b_{0}\right)+u_{\lambda}^{2}\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)
\end{aligned}
$$

The previous example can be extended to a general case with arbitrary n and p while functioning in a similar manner. The key observation is the simplicity of the structure of $\mathbb{k}\left[u_{\lambda}\right]$. Simply defining the coefficients of each power of u_{λ}^{k} for $0 \leq k \leq p-1$ uniquely defines an element of $\mathbb{k}\left[u_{\lambda}\right]$. As a subalgebra of a finite
dimensional \mathbb{k}-vector space, $\mathbb{k}\left[u_{\lambda}\right]$ is likewise a finite dimensional \mathbb{k}-vector space. The structure of $\mathbb{k}\left[u_{\lambda}\right]$ is explicitly described in the following fact.

Fact 1.2.9. The principal subalgebra $\mathbb{k}\left[u_{\lambda}\right]$ and $\mathbb{k}[x] /\left(x^{p}\right)$ are isomorphic as \mathbb{k}-algebras. Indeed, the natural map $\mathbb{k}[x] \rightarrow \mathbb{k}\left[u_{\lambda}\right]$ where $x \mapsto u_{\lambda}$ is surjective with kernel $\left(x^{p}\right)$. Note that $\mathbb{k}[x] /\left(x^{p}\right)$ is a principal ideal ring since $\mathbb{k}[x]$ is a principal ideal ring. Therefore $\mathbb{k}\left[u_{\lambda}\right]$ is also a principal ideal ring.

A natural \mathbb{k}-basis of $\mathbb{k}[x] /\left(x^{p}\right)$ is

$$
\left\{1, x, x^{2}, x^{3}, \ldots, x^{p-1}\right\}
$$

and similarly a natural \mathbb{k}-basis for $\mathbb{k}\left[u_{\lambda}\right]$ is

$$
\left\{1, u_{\lambda}, u_{\lambda}^{2}, u_{\lambda}^{3}, \ldots, u_{\lambda}^{p-1}\right\}
$$

Next, we give an important fact using u_{λ} as a linear transformation.
Fact 1.2.10. Let M be an A_{p}^{n}-module. Multiplication by a fixed ring element $a \in A_{p}^{n}$ can be regarded as a linear transformation $M \xrightarrow{a} M$ defined by $x \mapsto a x$ on the underlying vector space of an A_{p}^{n}-module M. In particular, multiplication by u_{λ} defines a linear transformation on the underlying \mathbb{k}-vector space of an A_{p}^{n}-module M.

We now explore examples of various u_{λ} acting as a linear transformation on A_{p}^{n}-modules.

Example 1.2.11. We investigate u_{λ} as a linear transformation on M where M is an A_{p}^{n}-module.

1. Let $M=A_{3}^{2}$, where M is an A_{3}^{2}-module. The underlying \mathbb{k}-vector space is 9 dimensional with basis

$$
\left\{1, z_{1}, z_{2}, z_{1} z_{2}, z_{1}^{2}, z_{2}^{2}, z_{1}^{2} z_{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}^{2}\right\}
$$

If $u_{\lambda}=z_{1}$, then the image $u_{\lambda} M$ of the linear transformation is a 6 dimensional \mathbb{k}_{k}-vector space with basis

$$
\left\{z_{1}, z_{1}^{2}, z_{1} z_{2}, z_{1}^{2} z_{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}^{2}\right\}
$$

If $u_{\lambda}=z_{2}$, then the image $u_{\lambda} M$ of the linear transformation is a 6 dimensional \mathbb{k}_{k}-vector space with basis

$$
\left\{z_{2}, z_{1} z_{2}, z_{2}^{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}, z_{1}^{2} z_{2}^{2}\right\}
$$

If $u_{\lambda}=z_{1}+z_{2}$, then the image $u_{\lambda} M$ of the linear transformation is a 6 dimensional \mathbb{k}-vector space with basis

$$
\left\{z_{1}+z_{2}, z_{1}^{2}+z_{1} z_{2}, z_{1} z_{2}+z_{1} z_{2}^{2}, z_{1}^{2} z_{2}+z_{1} z_{2}^{2}, z_{1}^{2} z_{2}, z_{1}^{2} z_{2}^{2}\right\}
$$

2. Let $M=A_{2}^{3}$, where M is an A_{2}^{3}-module. Then the underlying \mathbb{k}-vector space is 8 dimensional with basis

$$
\left\{1, z_{1}, z_{2}, z_{3}, z_{1} z_{2}, z_{1} z_{3}, z_{2} z_{3}, z_{1} z_{2} z_{3}\right\}
$$

If $u_{\lambda}=z_{1}$, then the image $u_{\lambda} M$ of the linear transformation is a 4 dimensional \mathbb{k}-vector space with basis

$$
\left\{z_{1}, z_{1} z_{2}, z_{1} z_{3}, z_{1} z_{2} z_{3}\right\}
$$

If $u_{\lambda}=z_{1}+z_{2}$, then the image $u_{\lambda} M$ of the linear transformation is a 4 dimensional \mathbb{k}-vector space with basis

$$
\left\{z_{1}+z_{2}, z_{1} z_{2}, z_{1} z_{3}+z_{2} z_{3}, z_{1} z_{2} z_{3}\right\}
$$

If $u_{\lambda}=z_{1}+z_{2}+z_{3}$, then the image $u_{\lambda} M$ of the linear transformation is a 4 dimensional \mathbb{k}-vector space with basis

$$
\left\{z_{1}+z_{2}+z_{3}, z_{1} z_{2}+z_{2} z_{3}, z_{1} z_{3}+z_{2} z_{3}, z_{1} z_{2} z_{3}\right\}
$$

How exactly the dimension of $A_{p}^{n} \downarrow \mathbb{k}\left[u_{\lambda}\right]$ changes as u_{λ} varies will be a topic of further discussion. The previous facts will be important in the algebraic decomposition of A_{p}^{n}-modules after restriction. A main objective of this thesis is to understand finitely generated A_{p}^{n}-modules after restriction to the principal subalgebras $\mathbb{k}\left[u_{\lambda}\right]$. Such a restriction is possible as outlined in the following fact.

Fact 1.2.12. The natural embedding $\mathbb{k}\left[u_{\lambda}\right] \rightarrow A_{p}^{n}$ realizes A_{p}^{n} as a $\mathbb{k}\left[u_{\lambda}\right]$-algebra. Every A_{p}^{n}-module is a $\mathbb{k}\left[u_{\lambda}\right]$-module via restriction of scalars.

Such an embedding exists for any λ and thus an A_{p}^{n}-module can be regarded as a $\mathbb{k}\left[u_{\lambda}\right]$ module for any λ. Obviously, $\mathbb{k}\left[u_{\lambda}\right]$ is not an integral domain, due to the nonzero nilpotent elements. Even though $\mathbb{k}\left[u_{\lambda}\right]$ is not a principal ideal domain, there still exists a module decomposition theorem for its finitely generated modules. We will discuss this next.

1.3 Module Decomposition

In this section, we discuss the decomposition of finitely generated A_{p}^{n}-modules when restricted to $\mathbb{k}\left[u_{\lambda}\right]$. We begin by looking at the well-known decompositions of modules over a principal ideal domain, and derive the decompositions of modules over $k[x] /\left(x^{p}\right)$.
Theorem 1.3.1 (Decomposition of Modules over PIDs [15]). Let M be a finitely generated module over a principal ideal domain R. Then there exist nonnegative integers h and m, positive integers t_{i}, and irreducible elements p_{i} such that

$$
M \cong R / R p_{1}^{t_{1}} \oplus \cdots \oplus R / R p_{m}^{t_{m}} \oplus R^{h}
$$

We extend the theorem of module decomposition over a principal ideal domain to a decomposition theorem over $\mathbb{k}[x] /\left(x^{p}\right)$. This is possible since $\mathbb{k}[x]$ is a principal ideal domain and there is a natural epimorphism from $\mathbb{k}[x] \rightarrow \mathbb{k}[x] /\left(x^{p}\right)$, and thus any finitely generated $\mathbb{k}[x] /\left(x^{p}\right)$-module can be viewed as a $\mathbb{k}[x]$-module. We now find the $k[x] /\left(x^{p}\right)$-module is isomorphic to

$$
\mathbb{k}[x] /\left(p_{1}^{t_{1}}\right) \oplus \cdots \oplus \mathbb{k}[x] /\left(p_{m}^{t_{m}}\right) \oplus \mathbb{k}[x]^{h} .
$$

In general, identifying the irreducible elements p_{i} in a principal ideal ring is a nontrivial task. In the case of $\mathbb{k}[x] /\left(x^{p}\right)$, the only irreducible element is x. The decomposition of $\mathbb{k}[x] /\left(x^{p}\right)$ will be relevant to our study of finitely generated A_{p}^{n}-modules after
restriction to $\mathbb{k}\left[u_{\lambda}\right]$ since a map sending $x \rightarrow u_{\lambda}$ induces the isomorphism from Fact 1.2.9

$$
\mathbb{k}[x] /\left(x^{p}\right) \cong \mathbb{k}\left[u_{\lambda}\right] .
$$

Fact 1.3.2. When M is a $\mathbb{k}[x] /\left(x^{p}\right)$-module viewed as a $\mathbb{k}[x]$-module, we have $x^{p} M=$ 0.

We can use a series of observations to obtain another decomposition. We find that $x^{p} M=0$ when M is a $\mathbb{k}[x] /\left(x^{p}\right)$-module. Since $x^{p} \mathbb{k}[x] \neq 0$ we must have $h=0$. We know $x^{p} \in\left(p_{i}^{t_{i}}\right)$. Thus $\left(x^{p}\right) \subseteq\left(p_{i}^{t_{i}}\right)$ and by taking radicals we get $(x) \subseteq\left(p_{i}\right)$. Since (x) is maximal we have equality. Thus $x=p_{i}$ up to a unit for all i. This leads us to our main theorem for this section stated once in general terms and then again within the context of $\mathbb{k}\left[u_{\lambda}\right]$ in the subsequent corollary.

Theorem 1.3.3 (Decomposition of Modules over $\left.\mathbb{k}[x] /\left(x^{p}\right)\right)$. Let M be a finitely generated module over $\mathbb{k}[x] /\left(x^{p}\right)$. Then there exist nonnegative integers m_{i} such that

$$
M \cong(\mathbb{k})^{m_{1}} \oplus\left(\mathbb{k}[x] /\left(x^{2}\right)\right)^{m_{2}} \oplus \ldots \oplus\left(\mathbb{k}[x] /\left(x^{p}\right)\right)^{m_{p}} .
$$

Reformulating this theorem in terms of u_{λ} yields the following corollary.
Corollary 1.3.4. Let M be a finitely generated A_{p}^{n}-module restricted to $\mathbb{k}\left[u_{\lambda}\right]$ and m_{i} be integers ≥ 0. Then

$$
M \cong(\mathbb{k})^{m_{1}} \oplus\left(\mathbb{k}\left[u_{\lambda}\right] /\left(u_{\lambda}^{2}\right)\right)^{m_{2}} \oplus \ldots \oplus\left(\mathbb{k}\left[u_{\lambda}\right] /\left(u_{\lambda}^{p-1}\right)\right)^{m_{p-1}} \oplus\left(k\left[u_{\lambda}\right]\right)^{m_{p}}
$$

The form of decomposition in Corollary 1.3.4 is used when finding the module decomposition of finitely generated A_{p}^{n}-modules after restriction to $\mathbb{k}\left[u_{\lambda}\right]$. The following example shows this in practice.

Example 1.3.5. Consider $M=\left(z_{1}\right)$ as an A_{3}^{2}-module. We restrict to $k\left[u_{\lambda}\right]$ with $\lambda=(1,0)$ and $(0,1)$, and then find the module decomposition. The underlying \mathbb{k}-vector space of M has basis $B=\left\{z_{1}, z_{1} z_{2}, z_{1}^{2}, z_{1}^{2} z_{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}^{2}\right\}$. Applying corollary 1.3.4, we need to find m_{1}, m_{2}, and m_{3} for each choice of λ. Recall that there are
three m_{i} variables because $p=3$. To determine the m_{i} for each λ, we multiply each element of the basis needed to generate M as a $\mathbb{k}\left[u_{\lambda}\right]$-module by u_{λ} and observe how many terms are annihilated.

1. If $\lambda=(1,0)$, then $u_{\lambda}=z_{1}$. We find that M is generated as a $\mathbb{k}\left[u_{\lambda}\right]$-module by three elements. Namely, $z_{1}, z_{1} z_{2}$ and $z_{1} z_{2}^{2}$. We find that none of the three elements are annihilated by u_{λ} and all three are annihilated by u_{λ}^{2}. Thus $m_{1}=0$, $m_{2}=3$, and $m_{3}=0$.
2. If $\lambda=(0,1)$, then $u_{\lambda}=z_{2}$. We find M as a $\mathbb{k}\left[u_{\lambda}\right]$-module is generated by z_{1} and z_{1}^{2}. Neither element is annihilated by u_{λ} or u_{λ}^{2} so we find that $m_{1}=0, m_{2}=0$, and $m_{3}=2$.

In the previous example we see the need for a more systematic way to determine the m_{i} in the module decomposition. Now that we have the module decompositions of finitely generated A_{p}^{n}-modules restricted to $\mathbb{k}\left[u_{\lambda}\right]$ we investigate representation matrices of the same modules.

1.4 Representation Matrix Decompositions

Now that the algebraic decomposition of an A_{p}^{n}-module has been defined, we can identify the corresponding matrix form of such a decomposition. We start with the representation matrix of each z_{i} as a linear transformation and expand to the matrix representation of u_{λ}.

Definition 1.4.1. Consider z_{i} as a multiplication map on the underlying vector space M of a finitely generated A_{p}^{n}-module. Let $\left[z_{i}\right]_{M}$ denote the matrix representing z_{i} as a linear transformation on M with respect to some fixed basis B of M. We call $\left[z_{i}\right]_{M}$ the representation matrix of z_{i} with respect to B.

It is important to note that the representation matrix $\left[z_{i}\right]_{M}$ depends upon the choice of basis for M. In other words, the representation matrix of $\left[z_{i}\right]_{M}$ is determined
uniquely up to a change of basis. More about the change of basis matrix and the following fact can be found in [16].

Fact 1.4.2. The representation matrix $\left[z_{i}\right]_{M}$ is well-defined up to conjugation by an invertible matrix. Specifically, if $\left[z_{i}\right]_{M}^{\prime}$ is another representation matrix with respect to a different basis B^{\prime}, and P is the change of basis matrix, then $P\left[z_{i}\right]_{M}=\left[z_{i}\right]_{M}^{\prime} P$.

The following example calculates $\left[z_{i}\right]_{M}$ in a specific case.
Example 1.4.3. Let $M=\left(z_{1}^{2} z_{2}\right)$ be an A_{3}^{3}-module. Suppose we use the ordered basis $\left\{z_{1}^{2} z_{2}, z_{1}^{2} z_{2}^{2}\right\}$ and find $\left[z_{2}\right]_{M}$. We need to multiply the basis elements by z_{2}. $z_{1}^{2} z_{2} \cdot z_{2}=z_{1}^{2} z_{2}^{2}$ and $z_{1}^{2} z_{2}^{2} \cdot z_{2}=0$. Thus

$$
\left[z_{2}\right]_{M}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

If we instead want to determine $\left[z_{1}\right]_{M}$ for the same M and basis, we get

$$
\left[z_{1}\right]_{M}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

We can use the representation matrix for z_{i} to construct a representation matrix for u_{λ}. Our goal is to study finitely generated A_{p}^{n}-modules after restriction to $\mathbb{k}\left[u_{\lambda}\right]$ and having a representation matrix for u_{λ} will be an important tool. Recall that

$$
u_{\lambda}=\lambda_{1} z_{1}+\lambda_{2} z_{2}+\ldots+\lambda_{n} z_{n} \text { where } \lambda_{i} \in \mathbb{k}
$$

We can construct the representation matrix for u_{λ} by scaling the representation matrix for each z_{i} by λ_{i} and finding the sum.

Definition 1.4.4. Fix M to be a finitely generated A_{p}^{n}-module. Let $\left[u_{\lambda}\right]_{M}=\lambda_{1}\left[z_{1}\right]_{M}+$ $\lambda_{2}\left[z_{2}\right]_{M}+\ldots+\lambda_{n}\left[z_{n}\right]_{M}$. We call this the representation matrix for u_{λ}. By construction, u_{λ} can be seen as a linear transformation on the underlying vector space of M.

We find that $\left[u_{\lambda}\right]_{M}$ inherits some properties of A_{p}^{n} in the following fact.

Fact 1.4.5. For a fixed M, since $z_{i}^{p}=0$ we find $\left[z_{i}\right]_{M}^{p}=0$. Furthermore, we know z_{i} commutes with z_{j}. We find that $\left[z_{i}\right]_{M}$ commutes with $\left[z_{j}\right]_{M}$.

We offer an example of finding $\left[u_{\lambda}\right]_{M}$.
Example 1.4.6. Let M be the A_{3}^{2}-module $\left(z_{1} z_{2}\right)$. We fix $B=\left\{z_{1} z_{2}, z_{1}^{2} z_{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}^{2}\right\}$, a basis for M. We find $\left[u_{\lambda}\right]_{M}$ by multiplying u_{λ} by each element of B. The results $u_{\lambda}\left(z_{1} z_{2}\right)=\lambda_{1} z_{1}^{2} z_{2}+\lambda_{2} z_{1} z_{2}^{2}, u_{\lambda}\left(z_{1}^{2} z_{2}\right)=\lambda_{2} z_{1}^{2} z_{2}^{2}, u_{\lambda}\left(z_{1} z_{2}^{2}\right)=\lambda_{1} z_{1}^{2} z_{2}^{2}$ and $u_{\lambda}\left(z_{1}^{2} z_{2}^{2}\right)=0$ vary when u_{λ} varies. Using $u_{\lambda} B$, we now find $\left[z_{1}\right]_{M},\left[z_{2}\right]_{M}$, and $\left[u_{\lambda}\right]_{M}$. The representation matrices are
$\left[z_{1}\right]_{M}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right],\left[z_{2}\right]_{M}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$, and $\left[u_{\lambda}\right]_{M}=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ \lambda_{1} & 0 & 0 & 0 \\ \lambda_{2} & 0 & 0 & 0 \\ 0 & \lambda_{2} & \lambda_{1} & 0\end{array}\right]$.
As mentioned in the definition of $\left[z_{i}\right]_{M}$ and $\left[u_{\lambda}\right]_{M}$, fixing a basis is necessary in order to have a unique representation matrix. For now we point out that the set of all representation matrices that result from different choices of basis is a conjugacy class. Later in the thesis, we further unpack this idea, but presently we want to be able to pick a representative of the conjugacy class formed by every possible basis that yields a standard representation matrix. For this reason, we introduce the Jordan canonical form of representation matrices. It turns out the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ reveals the module decomposition of $M \downarrow \mathbb{k}\left[u_{\lambda}\right]$. Conversely, if we know the module decomposition of $M \downarrow \mathbb{k}\left[u_{\lambda}\right]$, then we know the Jordan canonical form of [$\left.u_{\lambda}\right]_{M}$. Note that the Jordan canonical form used in this thesis is always lower triangular. This is out of convenience as natural choices of basis lead to the lower triangular form. For example, a natural basis for $\mathbb{k}[x] /\left(x^{p}\right)$ is

$$
\left\{1, x, x^{2}, \ldots, x^{p-1}\right\}
$$

leading to the lower triangular form. This decision is purely cosmetic as any $\left[u_{\lambda}\right]_{M}$ in lower triangular form can be reformulated under a change of basis to become upper triangular.

Fact 1.4.7. Since $\left[u_{\lambda}\right]_{M}$ is nilpotent, we know the eigenvalues of $\left[u_{\lambda}\right]_{M}$ are identically 0 (see $[3,8.19]$) and as such there is a basis for M such that $\left[u_{\lambda}\right]_{M}$ is in Jordan canonical form. The module decomposition of M corresponds to the representation matrix $\left[u_{\lambda}\right]_{M}$ in Jordan canonical form. More specifically, each Jordan block will correspond to a summand of the module decomposition.

Recall that the module decomposition of a finitely generated A_{p}^{n}-module restricted to $\mathbb{k}\left[u_{\lambda}\right]$ is determined by m_{i} for $1 \leq i \leq p$. The dimension and multiplicity of the $\mathbb{k}\left[u_{\lambda}\right] /\left(u_{\lambda}^{i}\right)^{m_{i}}$ terms in the module decomposition determine the Jordan blocks in Jordan canonical form. The dimension and multiplicity of the $i^{\text {th }}$ term in the decomposition is simply m_{i}. In other words, each m_{i} is the number of Jordan blocks of size $i \times i$ in the Jordan canonical form.

If the module decomposition of $\left[u_{\lambda}\right]_{M}$ is known we have no trouble finding the Jordan canonical form. However, this thesis focuses on cases where the exact module decomposition is not yet calculated. Through the representation matrix we can infer the module decomposition. Theoretically, the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ can always be obtained under a change of basis. In practice, this can be very computationally expensive. Luckily, the following proposition allows for the inference of the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ in a different way.

Proposition 1.4.8. Let $\left[u_{\lambda}\right]_{M}$ be the representation matrix of an A_{p}^{n}-module M restricted to $k\left[u_{\lambda}\right]$. Then the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ has precisely

$$
-2\left(\operatorname{rank}\left(\left[u_{\lambda}\right]_{M}^{j}\right)\right)+\operatorname{rank}\left(\left[u_{\lambda}\right]_{M}^{j-1}\right)+\operatorname{rank}\left(\left[u_{\lambda}\right]_{M}^{j+1}\right)
$$

blocks of size $j \times j$ for $j>0$.

Proof. Let $\left[u_{\lambda}\right]_{M}$ be the representation matrix of a finitely generated A_{p}^{n}-module restricted to $\mathbb{k}\left[u_{\lambda}\right]$. We know that the only eigenvalue of $\left[u_{\lambda}\right]_{M}$ is 0 because $\left[u_{\lambda}\right]_{M}$ is nilpotent. Since the eigenvalues are 0, [16, Lemma 1.3.18] implies that the number of Jordan blocks of size $j \times j$ or larger is

$$
\operatorname{dim} \operatorname{ker}\left(\left[u_{\lambda}\right]_{M}^{j}\right)-\operatorname{dim} \operatorname{ker}\left(\left[u_{\lambda}\right]_{M}^{j-1}\right) .
$$

The number of blocks of size $j \times j$ is then the number of blocks of size $j \times j$ or larger minus the number of blocks of size $(j+1) \times(j+1)$ or larger. Thus the number of blocks of size $j \times j$ in the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ is

$$
\operatorname{dim} \operatorname{ker}\left(\left[u_{\lambda}\right]_{M}^{j}\right)-\operatorname{dim} \operatorname{ker}\left(\left[u_{\lambda}\right]_{M}^{j-1}\right)-\operatorname{dim} \operatorname{ker}\left(\left[u_{\lambda}\right]_{M}^{j+1}\right)+\operatorname{dim} \operatorname{ker}\left(\left[u_{\lambda}\right]_{M}^{j}\right)=
$$

$$
2 \operatorname{dim} \operatorname{ker}\left(\left[u_{\lambda}\right]_{M}^{j}\right)-\operatorname{dim} \operatorname{ker}\left(\left[u_{\lambda}\right]_{M}^{j-1}\right)-\operatorname{dim} \operatorname{ker}\left(\left[u_{\lambda}\right]_{M}^{j+1}\right) .
$$

This is equivalent to

$$
-2\left(\operatorname{rank}\left(\left[u_{\lambda}\right]_{M_{M}}^{j}\right)\right)+\operatorname{rank}\left(\left[u_{\lambda}\right]_{M}{ }_{M}^{j-1}\right)+\operatorname{rank}\left(\left[u_{\lambda}\right]_{M}^{M_{M}^{j+1}}\right),
$$

as desired.
We provide a fact to explain how we calculate the rank of a matrix when the rank is not immediately clear, as is the case for a matrix in Jordan canonical form.

Fact 1.4.9. The rank of a matrix is the size of the largest nonzero minor. This fact comes from the proof of Theorem 1 in [11].

We now continue with an example showing various representation matrices and their Jordan canonical form. In part of this example, we calculate the rank of a matrix by finding the largest nonzero ideal generated by minors. After the example, we will formalize the process of calculating rank. For now, the focus is on how the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ is affected by changes in λ.

Example 1.4.10. Throughout this example the underlying field \mathbb{k} is $\mathbb{Z} / p \mathbb{Z}$ and λ is chosen such that $\lambda_{i}=1$ for all i. Let $M=\left(z_{1}\right)$ be an A_{3}^{2}-module and fix the basis
of M as $\left\{z_{1}, z_{1}^{2}, z_{1} z_{2}, z_{1}^{2} z_{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}^{2}\right\}$. We first calculate $\left[u_{\lambda}\right]_{M}$ and then the rank of the powers of $\left[u_{\lambda}\right]$ needed to determine the Jordan canonical form. Since $p=3$, the Jordan canonical form depends on the rank of $\left[u_{\lambda}\right]_{M}^{0},\left[u_{\lambda}\right]_{M},\left[u_{\lambda}\right]_{M}^{2}$ and $\left[u_{\lambda}\right]_{M}^{3}$. We find that in this case

$$
\left[u_{\lambda}\right]_{M}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

and $\operatorname{rank}\left[u_{\lambda}\right]_{M}=4$. The rank of $\left[u_{\lambda}\right]_{M}^{0}$ is the size of $\left[u_{\lambda}\right]_{M}$ or 6 in this case. We find

$$
\left[u_{\lambda}\right]_{M}^{2}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0
\end{array}\right]
$$

and calculate that $\operatorname{rank}\left(\left[u_{\lambda}\right]_{M}^{2}\right)=2$. In this case $\left[u_{\lambda}\right]_{M}^{3}=0$. The Jordan canonical form then has $-2(4)+6+2=0$ blocks of size $1 \times 1,-2(2)+4+0=0$ blocks of
size $2 \times 2,-2(0)+2+0=2$ blocks of size 3×3 and no blocks of any larger size. In summary, the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ is

$$
\left[\begin{array}{lll|lll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

which corresponds to the module decomposition $M \cong \mathbb{k}\left[u_{\lambda}\right]^{2}$.

Next, we let $M=A_{2}^{3}$ as an A_{2}^{3}-module, and fix the basis as $\left\{1, z_{1}, z_{2}, z_{3}, z_{1} z_{2}, z_{1} z_{3}, z_{2} z_{3}, z_{1} z_{2} z_{3}\right\}$. We again seek to find $\left[u_{\lambda}\right]_{M}$, the rank of the powers of $\left[u_{\lambda}\right]_{M}$, and the Jordan canonical form. We calculate

$$
\left[u_{\lambda}\right]=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right] .
$$

with $\operatorname{rank}\left[u_{\lambda}\right]_{M}=4$ and since $p=2,\left[u_{\lambda}\right]_{M}^{2}=0$. The decomposition has $-2(4)+8+0=$ 0 blocks of size 1×1 and $-2(0)+4+0=4$ blocks of size 2×2. The Jordan canonical form is then
$\left[\begin{array}{ll|llllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$
which corresponds to a module decomposition of $\mathbb{k}\left[u_{\lambda}\right]^{4}$.
Finally, we let $M=A_{2}^{4}$ as an A_{2}^{4}-module and fix the basis as $\left\{1, z_{1}, z_{2}, z_{3}, z_{4}, z_{1} z_{2}, z_{1} z_{3}\right.$, $\left.z_{1} z_{4}, z_{2} z_{3}, z_{2} z_{4}, z_{3} z_{4}, z_{1} z_{2} z_{3}, z_{1} z_{3} z_{4}, z_{1} z_{2} z_{4}, z_{2} z_{3} z_{4}, z_{1} z_{2} z_{3} z_{4}\right\}$. We calculate that

$$
\left[u_{\lambda}\right] M=\left[\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

with $\left[u_{\lambda}\right]_{M}^{2}=0$. The rank of $\left[u_{\lambda}\right]_{M}$ is 8 and thus there are $-2(10)+16+1=0$ blocks of size 1×1 and $-2(0)+8+0=8$ blocks of size 2×2. The module decomposition is

$$
M \cong \mathbb{k}\left[u_{\lambda}\right]^{8} .
$$

Each part of the previous example relied heavily on the calculation of the rank of the powers of $\left[u_{\lambda}\right]$. We use the following notation in situations where the rank of a matrix is calculated.

Definition 1.4.11. Let $I_{g}(X)$ be the ideal generated by the $g \times g$ minors of a $d \times d$ matrix X where $1 \leq g \leq d$.

We now employ $I_{g}(X)$ to determine the number of Jordan blocks. The following example gives the ideal that determines the rank of the powers of $\left[u_{\lambda}\right]_{M}$.

Example 1.4.12. Let $M=\left(z_{1} z_{2}\right)$ be an A_{3}^{2}-module with fixed basis $\left\{z_{1} z_{2}, z_{1}^{2} z_{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}^{2}\right\}$.
To determine the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ we need to calculate $\left[u_{\lambda}\right]_{M},\left[u_{\lambda}\right]_{M}^{2}$ and $\left[u_{\lambda}\right]_{M}^{3}$.

$$
\left[u_{\lambda}\right]_{M}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\lambda_{1} & 0 & 0 & 0 \\
\lambda_{2} & 0 & 0 & 0 \\
0 & \lambda_{2} & \lambda_{1} & 0
\end{array}\right],\left[u_{\lambda}\right]_{M}^{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
2 \lambda_{1} \lambda_{2} & 0 & 0 & 0
\end{array}\right]
$$

and $\left[u_{\lambda}\right]_{M}^{3}=0$. Here $I_{3}\left(\left[u_{\lambda}\right]_{M}\right)=0, I_{2}\left(\left[u_{\lambda}\right]_{M}\right)=\left(\lambda_{1} \lambda_{2}, \lambda_{1}^{2}, \lambda_{2}^{2}\right), I_{1}\left(\left[u_{\lambda}\right]_{M}\right)=\left(\lambda_{1}, \lambda_{2}\right)$, $I_{3}\left(\left[u_{\lambda}\right]_{M}^{2}\right)=0, I_{2}\left(\left[u_{\lambda}\right]_{M}^{2}\right)=0$, and $I_{1}\left(\left[u_{\lambda}\right]_{M}^{2}\right)=\left(2 \lambda_{1} \lambda_{2}\right)$. Now the choice of u_{λ} determines the Jordan canonical form. Suppose the underlying field is $\mathbb{Z} / 3 \mathbb{Z}$. If $u_{\lambda}=z_{2}$, then $\left[u_{\lambda}\right]_{M}$ has rank 2 and $\left[u_{\lambda}\right]_{M}^{2}$ has rank 0 . The Jordan canonical form here is

$$
\left[\begin{array}{ll|ll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] .
$$

If $u_{\lambda}=z_{1}+z_{2}$, then $\left[u_{\lambda}\right]_{M}$ has rank 2 and $\left[u_{\lambda}\right]_{M}^{2}$ has rank 1. The Jordan canonical form is then

$$
\left[\begin{array}{l|lll}
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] .
$$

There is no u_{λ} here that will yield a matrix of a single 4×4 block.
By changing the choice of u_{λ}, we can change the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ in some cases but not in others. Similarly, changing n and p can change the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ in some cases but not in others. In the next chapter we create generic matrices in order to study the changes that a choice of A_{p}^{n}-module or λ can make on $\left[u_{\lambda}\right]_{M}$.

CHAPTER 2

Constructing a Generic Representation Matrix

2.1 Construction and Notation

For each $1 \leq i \leq n$, we will construct a $d \times d$ generic matrix that will represent $\left[z_{i}\right]_{M}$, where M is an unspecified d-dimensional module. We begin by discussing generic matrices in general. The construction of generic matrices is based on a similar construction found in [5]. To begin, we offer an example of the construction of an insufficient matrix and highlight why it is insufficient.

Example 2.1.1. Consider the polynomial ring $\mathbb{k}\left[x_{i} \mid 1 \leq i \leq d^{2}\right]$ where the x_{i} 's are indeterminates and suppose X is a square matrix with entries x_{i}. If we fix $d=2$, we have

$$
X=\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right]
$$

This matrix is of the right size to represent all linear transformations on a two dimensional \mathbb{k}-vector space. For an A_{p}^{n}-module, we know the entries of $\left[z_{i}\right]_{M}$ are in \mathbb{k}. Replacing the x_{i} by an arbitrary choice of elements of \mathbb{k} would not be enough to guarantee that $X^{p}=0$, which is a defining property of A_{p}^{n}-modules. Additionally, if X represents $\left[z_{i}\right]_{M}$ for some i, then we need notation that denotes all of the other $\left[z_{j}\right]_{M}$ where $i \neq j$. Our objective is to construct a generic $\left[z_{i}\right]_{M}$ in order to later build a generic $\left[u_{\lambda}\right]_{M}$. Note that using this X as a representation matrix is not a good way to represent $\left[u_{\lambda}\right]_{M}$ since this choice of X does not encode the impact of changing the values of the λ_{i} 's in u_{λ}. Creating a single matrix of indeterminates of the right size is not sufficient to represent all $\left[z_{i}\right]_{M}$, where M is of a fixed dimension.

This leads us to our definition of X_{i}.

Definition 2.1.2. For $1 \leq i \leq n$, let X_{i} be a $d \times d$ matrix of indeterminates from the polynomial ring $\mathbb{k}\left[x_{i, r, s} \mid 1 \leq i \leq n, 1 \leq r, s \leq d\right]$. Thus the indeterminate $x_{i, r, s}$ is the entry in row r and column s of the matrix X_{i}. We display X_{i} below.

$$
X_{i}=\left[\begin{array}{ccccccc}
x_{i, 1,1} & x_{i, 1,2} & x_{i, 1,3} & \cdots & x_{i, 1, d-2} & x_{i, 1, d-1} & x_{i, 1, d} \\
x_{i, 2,1} & x_{i, 2,2} & x_{i, 2,3} & \cdots & x_{i, 2, d-2} & x_{i, 2, d-1} & x_{i, 2, d} \\
x_{i, 3,1} & x_{i, 3,2} & x_{i, 3,3} & \cdots & x_{i, 3, d-2} & x_{i, 3, d-1} & x_{i, 3, d} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
x_{i, d-2,1} & x_{i, d-2,2} & x_{i, d-2,3} & \cdots & x_{i, d-2, d-2} & x_{i, d-2, d-1} & x_{i, d-2, d} \\
x_{i, d-1,1} & x_{i, d-1,2} & x_{i, d-1,3} & \cdots & x_{i, d-1, d-2} & x_{i, d-1, d-1} & x_{i, d-1, d} \\
x_{i, d, 1} & x_{i, d, 2} & x_{i, d, 3} & \cdots & x_{i, d, d-2} & x_{i, d, d-1} & x_{i, d, d}
\end{array}\right]
$$

The X_{i} have a fixed size of $d \times d$ since they will represent a module of dimension of d. We give an example of constructing X_{i} where $d=3$.

Example 2.1.3. First, we let $d=3$ and display X_{1}.

$$
X_{1}=\left[\begin{array}{ccc}
x_{1,1,1} & x_{1,1,2} & x_{1,1,3} \\
x_{1,2,1} & x_{1,2,2} & x_{1,2,3} \\
x_{1,3,1} & x_{1,3,2} & x_{1,3,3}
\end{array}\right]
$$

We want X_{1} to represent all possible $\left[z_{1}\right]_{M}$ where the underlying vector space of M is 3-dimensional. Notice that X_{1} has nine entries and therefore corresponds to a point in \mathbb{A}^{9}.

We want to establish the correspondence between a generic matrix and a point in affine space. To achieve this we introduce the following notation.

Definition 2.1.4. Let α be a point in $n d^{2}$-dimensional affine space, $\mathbb{A}^{n d^{2}}$. More specifically, let α be the ordered $n d^{2}$-tuple $\left(\alpha_{i, r, s}\right)$ where $1 \leq i \leq n$ and $1 \leq r, s \leq d$. We take the lexicographic order on α with priority on i, r and then s. Keep in mind we will only introduce a specific α in the context of a fixed basis.

This definition purposely mirrors the definition of X_{i}. Hence if we want to specify n matrices of size $d \times d$, we can replace the indeterminates $x_{i, r, s}$ from the X_{i} with $\alpha_{i, r, s}$. The following example illustrates this substitution of α for the indeterminates. Example 2.1.5. Let M be an A_{p}^{1}-module of dimension 2 with representation matrix

$$
\left[z_{1}\right]_{M}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

In other words, $\left[z_{1}\right]_{M}$ represents the linear transformation $M \xrightarrow{z_{1}} M$ on the underlying vector space of M for a fixed basis. This matrix corresponds to the point $\alpha=(0,0,1,0)$ in \mathbb{A}^{4} as follows. Since $d=2$,

$$
X_{1}=\left[\begin{array}{ll}
x_{1,1,1} & x_{1,1,2} \\
x_{1,2,1} & x_{1,2,2}
\end{array}\right]
$$

Choose α such that $\alpha_{1,1,1}=0, \alpha_{1,1,2}=0, \alpha_{1,2,1}=1$ and $\alpha_{1,2,2}=0$. Now we can replace the indeterminates of X_{1} with the corresponding values of α. The resulting matrix after replacement is $\left[z_{1}\right]_{M}$. If we instead choose α such that $\alpha_{1,1,1}=1, \alpha_{1,1,2}=0, \alpha_{1,2,1}=0$ and $\alpha_{1,2,2}=1$, then after replacing the indeterminates of X_{1} we have the matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

This matrix is not the representation matrix $\left[z_{1}\right]_{M}$ for a finitely generated A_{p}^{n}-module M, since if it were, then $\left[z_{1}\right]_{M}^{p}=0$. Therefore we need to restrict α to guarantee the result is a representation matrix of some A_{p}^{n}-module.

Recall that we defined $I_{g}(X)$ in Definition 1.4.11. Let Q^{\prime} be the homogeneous ideal $I_{1}\left(X_{i}\right)$ of $\mathbb{k}\left[x_{i, r, s} \mid 1 \leq i \leq n, 1 \leq r, s \leq d\right]$, in other words Q^{\prime} is the ideal generated by the entries of X_{i}. Let $V\left(Q^{\prime}\right)$ be the affine subvariety of $\mathbb{A}^{n d^{2}}$ corresponding to Q^{\prime}. We introduce Q^{\prime} now informally as any ideal and will later use the same idea to define a specific homogeneous ideal Q that allows us to ensure a chosen α meets
required conditions such that α corresponds to an A_{p}^{n}-module. The following example illustrates Q^{\prime}.

Example 2.1.6. We fix $d=3$ and consider $Q^{\prime}=I_{1}(X)$.

$$
Q^{\prime}=\left(x_{1,1,1}, x_{1,1,2}, x_{1,1,3}, x_{1,2,1}, x_{1,2,2}, x_{1,2,3}, x_{1,3,1}, x_{1,3,2}, x_{1,3,3}\right)
$$

We observe that this is indeed a homogeneous ideal. In this case the affine variety of Q^{\prime} has 9 defining equations. They are all of the form

$$
x_{1, r, s}=0 .
$$

Therefore the corresponding variety is an intersection of nine hyperplanes.
We need to construct an ideal Q using the defining equations of a finitely generated A_{p}^{n}-module. To this end, the generic representation matrix needs to exhibit commutativity and the property that each $X_{i}^{p}=0$. Up until this point, the parameter p has not played a role in this construction of the generic matrix. We will use p in the ideal Q in the definition that follows.

Definition 2.1.7. Let Q be the homogeneous ideal of $\mathbb{k}\left[x_{i, r, s} \mid 1 \leq i \leq n, 1 \leq r, s \leq d\right]$ generated by the entries of the matrices $X_{i} X_{j}-X_{j} X_{i}$ for $i<j$ and X_{i}^{p}, where $1 \leq i \leq n$ for both. The variety in $\mathbb{A}^{n d^{2}}$ of Q is denoted $V(Q)$.

We construct Q with $X_{i} X_{j}-X_{j} X_{i}$ to ensure commutativity and with X_{i}^{p} to ensure the X_{i} are nilpotent. Recall that the z_{i} in A_{p}^{n} commute and are nilpotent. The following example illustrates the conditions $X_{i} X_{j}-X_{j} X_{i}$ and X_{i}^{p} defining Q.

Example 2.1.8. Fix $d=2, n=2$, and $p=2$. Then

$$
X_{1}=\left[\begin{array}{ll}
x_{1,1,1} & x_{1,1,2} \\
x_{1,2,1} & x_{1,2,2}
\end{array}\right] \text { and } X_{2}=\left[\begin{array}{ll}
x_{2,1,1} & x_{2,1,2} \\
x_{2,2,1} & x_{2,2,2}
\end{array}\right] \text {. }
$$

The X_{i} matrices represent the $\left[z_{i}\right]_{M}$. Recall from Fact 1.4.5 that the $\left[z_{i}\right]_{M}$ are necessarily nilpotent and commute with each other. With only X_{1} and X_{2}, having the entries of $X_{1} X_{2}-X_{2} X_{1}$ in Q is sufficient to guarantee that $\left[z_{1}\right]_{M}$ and $\left[z_{2}\right]_{M}$ commute. The four entries in the matrix $X_{1} X_{2}-X_{2} X_{1}$ are:

$$
\begin{aligned}
& x_{1,1,1} x_{2,1,1}-x_{1,1,2} x_{2,2,1} \\
& \mathrm{x}_{1,1,2} x_{2,1,2}-x_{1,1,2} x_{2,2,2} \\
& \mathrm{x}_{1,2,1} x_{2,1,1}-x_{1,2,2} x_{2,2,1} \\
& \mathrm{x}_{1,2,1} x_{2,1,2}-x_{1,2,2} x_{2,2,2}
\end{aligned}
$$

With these entries included as generators of the ideal Q, the linear transformations represented are guaranteed to have the commutativity desired. The other condition imposed by Q is that $X_{1}^{2}=0$ and $X_{2}^{2}=0$. In this case, X_{1}^{2} and X_{2}^{2} determine a further eight generators of Q, namely,

$$
\begin{gathered}
x_{1,1,1}^{2}-x_{1,1,2} x_{1,2,1} \\
x_{1,1,1} x_{1,2,1}-x_{1,1,2} x_{1,2,2} \\
x_{1,2,1} x_{1,1,1}-x_{1,2,2} x_{1,2,1} \\
x_{1,2,1} x_{1,1,2}-x_{1,2,2}^{2} \\
x_{2,1,1}^{2}-x_{2,1,2} x_{2,2,1} \\
x_{2,1,1} x_{2,2,1}-x_{2,1,2} x_{2,2,2} \\
x_{2,2,1} x_{2,1,1}-x_{2,2,2} x_{2,2,1} \\
x_{2,2,1} x_{2,1,2}-x_{2,2,2}^{2}
\end{gathered}
$$

Using all twelve of these elements of $\mathbb{k}\left[x_{i, r, s} \mid 1 \leq i \leq n, 1 \leq r, s \leq d\right]$, we obtain

$$
Q=I_{1}\left(X_{1} X_{2}-X_{2} X_{1}\right)+I_{1}\left(X_{1}^{2}\right)+I_{1}\left(X_{2}^{2}\right)
$$

We can now guarantee that a chosen α corresponds to a valid A_{p}^{n}-module if $\alpha \in V(Q)$.

Next, we give an example looking at a case of $\alpha \in V(Q)$.
Example 2.1.9. Fix $d=3, p=3$, and $n=2$. Choose α such that $\alpha_{1,3,2}=1, \alpha_{2,2,1}=$ 1 , and $\alpha_{2,3,2}=1$ with all other $\alpha_{i, r, s}=0$. After replacing the indeterminates of X_{1} and X_{2} with the corresponding components of α,

$$
X_{1} \text { becomes }\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \text { and } X_{2} \text { becomes }\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

We want to check if $\alpha \in V(Q)$. We find that $X_{1}^{3}=0$ and $X_{2}^{3}=0$. However, $X_{1} X_{2}-X_{2} X_{1} \neq 0$. If we instead choose α such that either $\alpha_{1,3,2}=1, \alpha_{2,2,1}=0$, and $\alpha_{2,3,2}=1$, or if $\alpha_{1,3,2}=1, \alpha_{2,2,1}=1$, and $\alpha_{2,3,2}=0$, we find that $X_{1} X_{2}-X_{2} X_{1}=0$ and $\alpha \in V(Q)$. This means that for α to be in $V(Q)$ either $\alpha_{1,3,2}=0$ or $\alpha_{2,2,1}=0$.

In the next section we will improve the generic matrix to represent $\left[u_{\lambda}\right]_{M}$.

2.2 Generic Matrices after Restriction

In this section, we discuss how the generic representation matrix for $\left[z_{i}\right]_{M}$ can be used to construct a generic representation matrix for $\left[u_{\lambda}\right]_{M}$. We can both add the X_{i} together and scale the X_{i} by an element of \mathbb{k}. We intentionally defined α so that when every $\alpha_{i, r, s}$ is specified for all i, r, and s, the number of components in α is enough to substitute all indeterminates in $X_{1}, X_{2}, \ldots, X_{n}$. We offer an example augmenting a sum of X_{i} with a specific λ.

Example 2.2.1. Let $d=2, n=2$, fix λ, and suppose the A_{p}^{n}-module M has representation matrix

$$
\left[u_{\lambda}\right]_{M}=\left[\begin{array}{cc}
0 & 0 \\
\lambda_{1}+\lambda_{2} & 0
\end{array}\right]
$$

The matrix $\left[u_{\lambda}\right]_{M}$ can be obtained from $X_{1}+X_{2}$ by substituting in

$$
\alpha=\left(0,0, \lambda_{1}, 0,0,0, \lambda_{2}, 0\right)
$$

for the indeterminates $x_{i, r, s}$. However, this is not a desirable choice of α because we want to be able to choose an α corresponding to an A_{p}^{n}-module and then account separately for alternative choices of λ. To achieve this, suppose we consider $\lambda_{1} X_{1}+$
$\lambda_{2} X_{2}$ instead of $X_{1}+X_{2}$. Now we can substitute $\alpha_{i, r, s}$ for the indeterminates $x_{i, r, s}$ where

$$
\alpha=(0,0,1,0,0,0,1,0)
$$

and have the result equal $\left[u_{\lambda}\right]_{M}$.
We can now define the generic representation matrix U_{λ} for u_{λ}.
Definition 2.2.2. For a chosen λ, we define the $d \times d$ matrix

$$
U_{\lambda}=\lambda_{1} X_{1}+\lambda_{2} X_{2}+\ldots+\lambda_{n} X_{n}
$$

We display U_{λ} below.

$$
U_{\lambda}=\left[\begin{array}{ccc}
\lambda_{1} x_{1,1,1}+\lambda_{2} x_{2,1,1}+\ldots+\lambda_{n} x_{n, 1,1} & \cdots & \lambda_{1} x_{1,1, d}+\ldots+\lambda_{n} x_{n, 1, d} \\
\lambda_{1} x_{1,2,1}+\lambda_{2} x_{2,2,1}+\ldots+\lambda_{n} x_{n, 2,1} & \cdots & \lambda_{1} x_{1,2, d}+\ldots+\lambda_{n} x_{n, 2, d} \\
\ldots & \ldots & \ldots \\
\lambda_{1} x_{1, d, 1}+\lambda_{2} x_{2, d, 1}+\ldots+\lambda_{n} x_{n, d, 1} & \cdots & \lambda_{1} x_{1, d, d}+\ldots+\lambda_{n} x_{n, d, d}
\end{array}\right]
$$

We can do something similar for a fixed module and generic u_{λ}.
Definition 2.2.3. Let $\alpha \in V(Q)$ and let Λ_{i} be indeterminates where $1 \leq i \leq n$. We define the $d \times d$ matrix

$$
U_{\Lambda}(\alpha)=\Lambda_{1} X_{1}(\alpha)+\Lambda_{2} X_{2}(\alpha)+\ldots+\Lambda_{n} X_{n}(\alpha)
$$

where $X_{i}(\alpha)$ is X_{i} after substitution by the corresponding entries of α. We display $U_{\Lambda}(\alpha)$ below.

$$
U_{\Lambda}(\alpha)=\left[\begin{array}{ccc}
\Lambda_{1} \alpha_{1,1,1}+\Lambda_{2} \alpha_{2,1,1}+\ldots+\Lambda_{n} \alpha_{n, 1,1} & \cdots & \Lambda_{1} \alpha_{1,1, d}+\ldots+\Lambda_{n} \alpha_{n, 1, d} \\
\Lambda_{1} \alpha_{1,2,1}+\Lambda_{2} \alpha_{2,2,1}+\ldots+\Lambda_{n} \alpha_{n, 2,1} & \cdots & \Lambda_{1} \alpha_{1,2, d}+\ldots+\Lambda_{n} \alpha_{n, 2, d} \\
\ldots & \cdots & \ldots \\
\Lambda_{1} \alpha_{1, d, 1}+\Lambda_{2} \alpha_{2, d, 1}+\ldots+\Lambda_{n} \alpha_{n, d, 1} & \cdots & \Lambda_{1} \alpha_{1, d, d}+\ldots+\Lambda_{n} \alpha_{n, d, d}
\end{array}\right]
$$

We have a final definition for the case of a generic module and a generic subalgebra.

Definition 2.2.4. Fix d, n, and p. Let Λ_{i} for $1 \leq i \leq n$ be indeterminates. We define the $d \times d$ matrix

$$
U_{\Lambda}=\Lambda_{1} X_{1}+\Lambda_{2} X_{2}+\ldots+\Lambda_{n} X_{n}
$$

Below we display U_{Λ}.

$$
U_{\Lambda}=\left[\begin{array}{ccc}
\Lambda_{1} x_{1,1,1}+\Lambda_{2} x_{2,1,1}+\ldots+\Lambda_{n} x_{n, 1,1} & \cdots & \Lambda_{1} x_{1,1, d}+\ldots+\Lambda_{n} x_{n, 1, d} \\
\Lambda_{1} x_{1,2,1}+\Lambda_{2} x_{2,2,1}+\ldots+\Lambda_{n} x_{n, 2,1} & \cdots & \Lambda_{1} x_{1,2, d}+\ldots+\Lambda_{n} x_{n, 2, d} \\
\ldots & \cdots & \ldots \\
\Lambda_{1} x_{1, d, 1}+\Lambda_{2} x_{2, d, 1}+\ldots+\Lambda_{n} x_{n, d, 1} & \cdots & \Lambda_{1} x_{1, d, d}+\ldots+\Lambda_{n} x_{n, d, d}
\end{array}\right]
$$

The relationship between the indeterminate Λ and $\lambda \in \mathbb{A}^{n}$ is the same as that of $x_{i, r, s}$ to $\alpha_{i, r, s}$. We construct U_{Λ} using Λ and $x_{i, r, s}$, and U_{Λ} is the set of all possible $\left[u_{\lambda}\right]_{M}$. Using λ and α, we can replace indeterminates with specific values and either select a single $\left[u_{\lambda}\right]_{M}$ from the set of all possible $\left[u_{\lambda}\right]_{M}$ or replace only a few of the indeterminates in U_{λ} and get a subset of all possible $\left[u_{\lambda}\right]_{M}$.

Definition 2.2.5. If the entries of a generic matrix X_{i}, for $1 \leq i \leq n$, are replaced by a specific choice of $\alpha \in V(Q)$, then each X_{i} represents a linear transformation $\mathbb{V} \rightarrow \mathbb{V}$ with respect to some fixed basis of a d-dimensional vector space \mathbb{V}. Since $\alpha \in V(Q)$, this gives the vector space \mathbb{V} the structure of an A_{p}^{n}-module, which we call M_{α}. In other words, M_{α} is the A_{p}^{n}-module corresponding to this choice of α. Now $\left[z_{i}\right]_{M_{\alpha}}=X_{i}(\alpha)$ and consequently, $\left[u_{\lambda}\right]_{M_{\alpha}}=U_{\lambda}(\alpha)$.

The following examples unpack the notation of the prior definitions. The first shows how a choice of α refers to a matrix and finds ideals of that matrix. Next, we highlight that the process of substituting an α into an X_{i} and then taking an ideal of minors commutes with first finding the ideal of minors of X_{i} and then substituting in α.

Example 2.2.6. Fix $d=2$ and $n=2$. Let $\alpha \in V(Q)$ where

$$
\alpha=\left(\alpha_{1,1,1}, \alpha_{1,1,2}, \alpha_{1,2,1}, \alpha_{1,2,2}, \alpha_{2,1,1}, \alpha_{2,1,2}, \alpha_{2,2,1}, \alpha_{2,2,2}\right)
$$

Here $U_{\Lambda}=\Lambda_{1} X_{1}+\Lambda_{2} X_{2}$ and we have

$$
U_{\Lambda}(\alpha)=\left[\begin{array}{cc}
\Lambda_{1} \alpha_{1,1,1}+\Lambda_{2} \alpha_{2,1,1} & \Lambda_{1} \alpha_{1,1,2}+\Lambda_{2} \alpha_{2,1,2} \\
\Lambda_{1} \alpha_{1,2,1}+\Lambda_{2} \alpha_{2,2,1} & \Lambda_{1} \alpha_{1,2,2}+\Lambda_{2} \alpha_{2,2,2}
\end{array}\right] .
$$

The ideals $I_{1}\left(U_{\Lambda}(\alpha)\right)$ and $I_{2}\left(U_{\Lambda}(\alpha)\right)$ can be calculated here. The reason for why we are interested in such ideals will be discussed later, throughout Chapter 3. $I_{1}\left(U_{\Lambda}(\alpha)\right)=$

$$
\begin{aligned}
& \quad\left(\Lambda_{1} \alpha_{1,1,1}+\Lambda_{2} \alpha_{2,1,1}, \Lambda_{1} \alpha_{1,1,2}+\Lambda_{2} \alpha_{2,1,2}, \Lambda_{1} \alpha_{1,2,1}+\Lambda_{2} \alpha_{2,2,1}, \Lambda_{1} \alpha_{1,2,2}+\Lambda_{2} \alpha_{2,2,2}\right) \\
& I_{2}\left(U_{\Lambda}(\alpha)\right)= \\
& \left(\Lambda_{1}^{2} \alpha_{1,1,1} \alpha_{1,2,2}+\Lambda_{1} \Lambda_{2} \alpha_{1,2,2} \alpha_{2,1,1}+\Lambda_{1} \Lambda_{2} \alpha_{1,1,1} \alpha_{2,2,2}+\Lambda_{2}^{2} \alpha_{2,1,1} \alpha_{2,2,2}\right. \\
& \left.-\Lambda_{1}^{2} \alpha_{1,1,2} \alpha_{1,2,1}-\Lambda_{1} \Lambda_{2} \alpha_{1,2,1} \alpha_{2,1,2}-\Lambda_{1} \Lambda_{2} \alpha_{1,1,2} \alpha_{2,2,1}-\Lambda_{2}^{2} \alpha_{2,1,2} \alpha_{2,2,1}\right)
\end{aligned}
$$

Now if we specify $\alpha=(0,0,1,0,0,0,1,0)$, then

$$
I_{1}\left(U_{\Lambda}(\alpha)\right)=\left(\Lambda_{1}+\Lambda_{2}\right) \text { and } I_{2}\left(U_{\Lambda}(\alpha)\right)=(0)
$$

No part of this example depended upon the choice of p.
The second example examines the process of choosing an α that lies in $V(Q)$. Recall that choosing $\alpha \in V(Q)$ guarantees that $U_{\Lambda}(\alpha)$ leads to an A_{p}^{n}-module.

Example 2.2.7. Fix $n=2, p=2$, and $d=2$. Suppose we want to find $U_{\Lambda}(\alpha)$ where $\alpha=(0,0,1,0,0,0,1,0) \in \mathbb{A}^{8}$. Thus

$$
X_{1} X_{2}-X_{2} X_{1}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]-\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]=0, X_{1}^{2}=0, \text { and } X_{2}^{2}=0
$$

This confirms that this choice of α is indeed in $V(Q)$. Hence, we obtain

$$
U_{\Lambda}(\alpha)=\left[\begin{array}{cc}
0 & 0 \\
\lambda_{1}+\lambda_{2} & 0
\end{array}\right]
$$

Before discussing further concepts in algebraic geometry it is worth highlighting the dimension of, and relationship between, the objects that are being studied. The entries of U_{Λ} involve the variables $x_{i, r, s}$ and Λ_{i}. Thus U_{Λ} corresponds to the affine space $\mathbb{A}^{n d^{2}} \times \mathbb{A}^{n}$. For a fixed $\alpha, U_{\Lambda}(\alpha)$ corresponds to the affine space \mathbb{A}^{n}. Instead of
fixing an α, if we instead fix λ, then U_{λ} corresponds to the affine space $\mathbb{A}^{n d^{2}}$. This correspondence is illustrated by the diagrams below.

Recall that U_{Λ} is equal to a specific $\left[u_{\lambda}\right]_{M}$ after substituting both the $n d^{2}$ indeterminates $x_{i, r, s}$ and the n indeterminates Λ_{i}. A point in $\mathbb{A}^{n d^{2}} \times \mathbb{A}^{n}$ can be used to substitute the $n d^{2}+n$ indeterminates. Additionally, we can consider the underlying polynomial ring from which the generic matrices draw indeterminates. More specifically, U_{Λ} corresponds to

$$
\mathbb{k}\left[x_{i, r, s}, \Lambda_{i} \mid 1 \leq i \leq n, 1 \leq r, s \leq d\right],
$$

a polynomial ring in $n d^{2}+n$ variables. Similarly, U_{λ} corresponds to the polynomial ring in $n d^{2}$ variables,

$$
\mathbb{k}\left[x_{i, r, s} \mid 1 \leq i \leq n, 1 \leq r, s \leq d\right] .
$$

We also find $U_{\Lambda}(\alpha)$ corresponds to the polynomial ring in n variables,

$$
\mathbb{k}\left[\Lambda_{i} \mid 1 \leq i \leq n\right] .
$$

The chart below illustrates the polynomial ring corresponding to the generic matrices.

The $U_{\Lambda}, U_{\lambda}, U_{\Lambda}(\alpha)$, and $U_{\lambda}(\alpha)$ notation will be used extensively for the rest of the thesis as tools to analyze freeness. In Chapter 3, we define freeness.

CHAPTER 3

Freeness of A_{p}^{n}-modules restricted to $\mathbb{k}\left[u_{\lambda}\right]$

3.1 Analyzing the Freeness of Modules After Restriction

From this point in the thesis we focus on the freeness of A_{p}^{n}-modules after restriction to $\mathbb{k}\left[u_{\lambda}\right]$. For this reason we are interested in $\left[u_{\lambda}\right]_{M}$ and the generic representation matrices rather than an individual $\left[z_{i}\right]_{M}$. To be clear, freeness will be studied only for A_{p}^{n}-modules after restriction to $\mathbb{k}\left[u_{\lambda}\right]$. We show in Proposition 3.1.7 that if a module is free as an A_{p}^{n}-module, then it is free at every restriction, and therefore is not interesting. We know from Chapter 1 that after restriction to $\mathbb{k}\left[u_{\lambda}\right]$, an A_{p}^{n}-module decomposes as a direct sum of cyclic submodules. This is the key idea behind the following definition. When we described module decompositions in Section 1.3, the m_{i} for $1 \leq i \leq p$ entirely determined the decomposition. The following definition states that freeness is equivalent to $m_{i}=0$ for all $i \neq p$ in the decomposition.

Definition 3.1.1. For an A_{p}^{n}-module $M, M \downarrow \mathbb{\mathbb { k }}\left[u_{\lambda}\right]$ is free if the decomposition is a direct sum of copies of $\mathbb{k}\left[u_{\lambda}\right]$. The corresponding representation matrix will have a Jordan canonical form of only blocks of size $p \times p$. Throughout the thesis we refer to a free decomposition after restriction to $\mathbb{k}\left[u_{\lambda}\right]$ simply as freeness.

In the following example we take an A_{p}^{n}-module and investigate the freeness of the module after restriction $\mathbb{k}\left[u_{\lambda}\right]$ as λ varies.

Example 3.1.2. Consider the 3 -dimensional A_{3}^{3}-module M_{α} defined by $\alpha \in V(Q) \subseteq$ \mathbb{A}^{27}, where

$$
\alpha=(0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0) .
$$

This choice of α yields

$$
U_{\Lambda}(\alpha)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\Lambda_{1}+\Lambda_{2} & 0 & 0 \\
0 & \Lambda_{1}+\Lambda_{2} & 0
\end{array}\right]
$$

Now we can choose various λ and observe freeness. Suppose $\lambda=(1,0,0)$. Then

$$
U_{\lambda}(\alpha)=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

This matrix is already in Jordan canonical form so we know

$$
M_{\alpha} \downarrow \mathbb{k}\left[u_{\lambda}\right] \cong \mathbb{k}\left[u_{\lambda}\right]
$$

showing M_{α} is free after restriction to $\mathbb{k}\left[u_{\lambda}\right]$. We get the same decomposition and Jordan canonical form if $\lambda=(0,1,0)$. However if we instead use $\lambda=(0,0,1)$ then

$$
U_{\lambda}(\alpha)=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and we find that

$$
M_{\alpha} \downarrow \mathbb{k}\left[u_{\lambda}\right] \cong \mathbb{k} \oplus \mathbb{k} \oplus \mathbb{k} .
$$

Hence, this choice of λ demonstrates that the restricted module need not be free.
The following example unpacks the relationship between freeness and the module decomposition for a specific module.

Example 3.1.3. We will approach the concept of freeness after restriction from two different perspectives. First, suppose we have

$$
\left[u_{\lambda}\right]_{M}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] .
$$

We purposely do not specify p, n, or u_{λ} for the moment. We will observe freeness for various values of p. Since p is necessarily prime, we consider the cases of $p=2,3$, or 5. If $p=5$, then from Propostion 1.4.8 and the fact that $\left[u_{\lambda}\right]_{M}^{2}=0$ we find

$$
M \cong\left[\mathbb{k}\left[u_{\lambda}\right] /\left(u_{\lambda}^{2}\right)\right]^{3}
$$

Thus when $p=5, M \downarrow k\left[u_{\lambda}\right]$ is not free. If $p=3$, we again have $\left[u_{\lambda}\right]_{M}^{2}=0$ and find

$$
M \downarrow k\left[u_{\lambda}\right] \cong\left[\mathbb{k}\left[u_{\lambda}\right] /\left(u_{\lambda}^{2}\right)\right]^{3} .
$$

Hence $M \downarrow k\left[u_{\lambda}\right]$ is not free. If $p=2$, then

$$
M \downarrow k\left[u_{\lambda}\right] \cong \mathbb{k}\left[u_{\lambda}\right]^{3}
$$

so $M \downarrow \mathbb{k}\left[u_{\lambda}\right]$ is free.
For the second perspective on freeness in this example, let M be an A_{p}^{n}-module where

$$
M \downarrow k\left[u_{\lambda}\right] \cong \mathbb{k}\left[u_{\lambda}\right]^{2}
$$

We want to consider possibilities for $\left[u_{\lambda}\right]_{M}$ and n, p, and d. We know that the matrix must consist of two $p \times p$ blocks, and this decomposition necessitates having $d=2 p$.

If $p=2$ then $d=4$ and so on. When $p=3$ then $d=6$ and the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ is

$$
\left[\begin{array}{lll|lll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] .
$$

Generalizing some of the findings from the previous example, we have the following result.

Proposition 3.1.4. In order to have a free decomposition after restriction to $\mathbb{k}\left[u_{\lambda}\right]$, the underlying \mathbb{k}-vector space of an A_{p}^{n}-module must have dimension a multiple of p.

For this reason, going forward, we consider only modules that have dimension a multiple of p.

Proof. Let M be an A_{p}^{n}-module restricted to $\mathbb{k}\left[u_{\lambda}\right]$ of dimension d. We know from Corollary 1.3.4 that

$$
M \cong(\mathbb{k})^{m_{1}} \oplus\left(\mathbb{k}\left[u_{\lambda}\right] /\left(u_{\lambda}^{2}\right)\right)^{m_{2}} \oplus \ldots \oplus\left(\mathbb{k}\left[u_{\lambda}\right] /\left(u_{\lambda}^{p-1}\right)\right)^{m_{p-1}} \oplus\left(k\left[u_{\lambda}\right]\right)^{m_{p}}
$$

In order for $M \downarrow \mathbb{k}\left[u_{\lambda}\right]$ to be free, we need

$$
M \downarrow k\left[u_{\lambda}\right] \cong\left(k\left[u_{\lambda}\right]\right)^{m_{p}}
$$

In other words, $m_{i}=0$ for all $i \neq p$ and $m_{p} \neq 0$. Therefore $d=\operatorname{dim}(M)=m_{p} p$. In other words, for $M \downarrow \mathbb{k}\left[u_{\lambda}\right]$ to be free, then $d=\nu p$ for some positive integer $\nu=m_{p}$.

In terms of $\left[u_{\lambda}\right]_{M}, M \downarrow \mathbb{k}\left[u_{\lambda}\right]$ is free if the Jordan canonical form consists entirely of $p \times p$ blocks. Note that having the dimension be a multiple of p does not mean
that an A_{p}^{n}-module restricted to $\mathbb{k}\left[u_{\lambda}\right]$ has a free decomposition. This is simply a requirement for freeness to potentially occur. Recall that for the rest of the thesis we assume that d is a multiple of p.

Definition 3.1.5. Let ν be the unique integer where $d=p \nu$.
When $M \downarrow k\left[u_{\lambda}\right]$ is free then the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ consists entirely of ν blocks of size $p \times p$. The newly defined ν is immediately useful in the following proposition.
Proposition 3.1.6. Fix $d=\nu p$. Then $\left[u_{\lambda}\right]_{M}$ is free if and only if $\operatorname{rank}\left(\left[u_{\lambda}\right]_{M}^{p-1}\right)=\nu$.
Proof. From Proposition 1.4.8 we know that the number of $j \times j$ blocks in the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ is

$$
-2 \operatorname{rank}\left(\left[u_{\lambda}\right]_{M}^{j}\right)+\operatorname{rank}\left(\left[u_{\lambda}\right]_{M}^{j-1}\right)+\operatorname{rank}\left(\left[u_{\lambda}\right]_{M}^{j+1}\right) .
$$

We also know that $\left[u_{\lambda}\right]^{p}=0$ and thus $\left[u_{\lambda}\right]^{p+1}=0$. Applying Proposition 1.4.8 where $j=p-1$, we find the number of $p \times p$ blocks in the Jordan canonical form of $\left[u_{\lambda}\right]_{M}$ is

$$
\operatorname{rank}\left(\left[u_{\lambda}\right]_{M}^{p-1}\right)
$$

This means that $\operatorname{rank}\left(\left[u_{\lambda}\right]_{M}^{p-1}\right)$ entirely determines the number of $p \times p$ blocks in the Jordan canonical form. Knowing that freeness requires ν blocks of size $p \times p$ and that $\operatorname{rank}\left(\left[u_{\lambda}\right]_{M}^{p-1}\right)$ is the number of $p \times p$ blocks, we conclude $M \downarrow \mathbb{k}\left[u_{\lambda}\right]$ is free if and only if $\operatorname{rank}\left(\left[u_{\lambda}\right]_{M}^{p-1}\right)=\nu$.

This gives us a powerful tool for calculating whether or not $\left[u_{\lambda}\right]_{M}$ exhibits freeness. At this point we can make a statement on the freeness of A_{p}^{n} as a module over itself.

Proposition 3.1.7. Let $M=A_{p}^{n}$ be the free A_{p}^{n}-module of rank one. Then for any $\lambda, M \downarrow \mathbb{k}\left[u_{\lambda}\right]$ is free.

Proof. Let B be an ordered basis for M and fix i and j where $i \neq j$ and $1 \leq i, j \leq n$. Let $\phi: M \rightarrow M$ be the algebra homomorphism defined by $\phi\left(z_{i}\right)=z_{j}, \phi\left(z_{j}\right)=z_{i}$, and $\phi\left(z_{k}\right)=z_{k}$ for all $k \neq i, j$. We call $B^{\prime}=\phi(B)$ a reordering of B. Note that if $B=\left(b_{1}, b_{2}, \ldots, b_{p^{n}}\right)$, then $\phi(B)$ is the ordered p^{n}-tuple $\left(\phi\left(b_{1}\right), \phi\left(b_{2}\right), \ldots, \phi\left(b_{p^{n}}\right)\right)$. Under this reordered basis, we determine that $\left[z_{i}\right]_{M}$ (using basis B) is the same matrix as $\left[z_{j}\right]_{M}^{\prime}$ (using basis B^{\prime}). Referencing Fact 1.4.2, $\left[z_{j}\right]_{M}$ (using basis B) is conjugate to $\left[z_{j}\right]_{M}^{\prime}$ (using basis B^{\prime}). Thus $\left[z_{i}\right]_{M}$ is conjugate to $\left[z_{j}\right]_{M}$. Next, we show $\left[z_{i}\right]_{M}$ is conjugate to $\left[u_{\lambda}\right]_{M}$ for any λ where $\lambda_{i} \neq 0$. Note that u_{λ} is required to have a nonzero λ_{k} for some k, so a choice of such an i is possible. Let $\psi: M \rightarrow M$ be the algebra homomorphism defined by $\psi\left(z_{i}\right)=u_{\lambda}$ and $\psi\left(z_{k}\right)=z_{k}$ for all $k \neq i$. Let $\psi(B)=B^{\prime}$ be the ordered p^{n}-tuple $\left(\psi\left(b_{1}\right), \psi\left(b_{2}\right), \ldots, \psi\left(b_{p^{n}}\right)\right)$. Then $\left[z_{i}\right]_{M}$ (using basis B) is the same matrix as $\left[u_{\lambda}\right]_{M}^{\prime}$ (using basis B^{\prime}). Fact 1.4.2 shows that $\left[u_{\lambda}\right]_{M}^{\prime}$ is conjugate to $\left[u_{\lambda}\right]_{M}$. Thus $\left[z_{i}\right]_{M}$ is conjugate to $\left[u_{\lambda}\right]_{M}$ when $\lambda_{i} \neq 0$. Due to conjugacy, we know that the Jordan canonical form of $\left[z_{i}\right]_{M}$ is the same as the Jordan canonical form of both $\left[z_{j}\right]_{M}$ and $\left[u_{\lambda}\right]_{M}$. Recall that the dimension of A_{p}^{n} is p^{n}. In the basis of monomials for M, one can easily check that for any i there are precisely p^{n-1} terms in the basis for M containing z_{i}. Consequently, we find that the rank of $\left[z_{i}\right]_{M}$ is always $\nu=p^{n} / p=p^{n-1}$. Thus $M=A_{p}^{n}$ is free as a $\mathbb{k}\left[z_{i}\right]$-module and therefore also as a $\mathbb{k}\left[u_{\lambda}\right]$-module for any λ.

Corollary 3.1.8. For any α and $\lambda, I_{\nu}\left(U_{\lambda}(\alpha)^{p-1}\right)$ is nonzero if and only if $M_{\alpha} \downarrow \mathbb{k}\left[u_{\lambda}\right]$ is free.

Since $U_{\lambda}(\alpha)^{p-1}$ is a matrix with entries in \mathbb{k} we find that $I_{\nu}\left(U_{\lambda}(\alpha)^{p-1}\right)$ is an ideal of a field. We recognize that an ideal of a field must either be 0 or the entire field. In the previous proposition and corollary we utilized the ideal $I_{\nu}\left(U_{\lambda}(\alpha)^{p-1}\right)$ and pointed out how this ideal determines freeness. For this reason, we refer to this
as the ideal determining freeness. Later, we also consider ideals $I_{\nu}\left(U_{\Lambda}(\alpha)^{p-1}\right)$ and $I_{\nu}\left(U_{\lambda}^{p-1}\right)$ of the polynomial rings $\mathbb{k}\left[\Lambda_{i} \mid 1 \leq i \leq n\right]$ and $\mathbb{k}\left[x_{i, r, s} \mid 1 \leq i \leq n, 1 \leq r, s \leq d\right]$, respectively, and discuss how they determine freeness.

3.2 The Main Theorem on Freeness and the Zariski Topology

In the category of A_{p}^{n}-modules where the underlying field is infinite, for example when the field is algebraically closed, the number of non-isomorphic modules that are free, as well as the number of non-isomorphic modules that are not free is vast and certainly infinite in both cases. Therefore we need another means of discerning when there are more modules satisfying freeness than not. To this end we employ the Zariski topology.

Fact 3.2.1. The category of A_{p}^{n}-modules has infinite representation type when \mathbb{k} is an algebraically closed field and $n \geq 2$.

We offer this fact with an explanation rather than a formal proof as this fact is a combination of previous results in representation theory. Suppose we take a minimal free resolution of \mathfrak{k}. We know that the ranks of the free modules in the resolution increase and that the ranks strictly increase after a certain point from part 2 in Theorem 7.3 of [2]. Each of the syzygy modules in the resolution is then a module with more and more generators. In fact, there is no bound to the growth of the number of generators. It is well-known that A_{p}^{n} is self-injective. The syzygies of an indecomposable module over self-injective algebras are indecomposable. For these reasons, the fact is true.

Consequently we will proceed by measuring the abundance of modules using the Zariski Topology.

Definition 3.2.2 (pg. 676, [10]). In affine k-space, \mathbb{A}^{k}, we define the Zariski closed sets to be those of the form

$$
V(S)=\left\{x \in \mathbb{A}^{k} \mid f(x)=0, \forall f \in S\right\}
$$

where S is a set of polynomials in k variables over \mathbb{k}. The complement of a Zariski closed set is a Zariski open set. Additionally, $V(S)=V((S))$ where (S) is the ideal generated by the elements of S.

When the Zariski open set is nonempty (or nonzero in the homogeneous case) we regard it as a large set. When the Zariski closed set is not the whole space we regard it as a small set. We will use the Zariski Topology to declare a subset of $\mathbb{A}^{n d^{2}}$ or \mathbb{A}^{n} as Zariski open or closed. Recall that points in $\mathbb{A}^{n d^{2}}$ and \mathbb{A}^{n} are denoted by α or λ, respectively. The following example shows how to determine if a set is Zariski open.

Example 3.2.3. We want to determine if a set $A \subset \mathbb{A}^{4}$ is Zariski open or closed where

$$
A=\left\{\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \in \mathbb{A}^{4} \mid \alpha_{1}=\alpha_{4}\right\} .
$$

We find that A is a Zariski closed set in \mathbb{A}^{4} by Definition 3.2.2 because $A=V\left(x_{1}-x_{4}\right)$.
Before getting to the main theorem of this chapter we introduce a helpful notation from Carlson [6].

Definition 3.2.4. Let M be an A_{p}^{n}-module. We define $W(M)$ to be

$$
W(M)=\left\{\lambda \in \mathbb{A}^{n} \mid M \downarrow \mathbb{k}\left[u_{\lambda}\right] \text { is not free }\right\} .
$$

We call $W(M)$ the rank variety of M.
In what follows we are interested in finding $W\left(M_{\alpha}\right)$ for $\alpha \in V(Q)$. We define a similar notion in the case of a fixed $\lambda \in \mathbb{A}^{n}$ instead of a fixed $\alpha \in V(Q)$.

Definition 3.2.5. For a fixed $\lambda \in \mathbb{A}^{n}$, the module variety $Y(\lambda)$ of λ is

$$
Y(\lambda)=\left\{\alpha \in V(Q) \mid M_{\alpha} \downarrow \mathbb{k}\left[u_{\lambda}\right] \text { is not free }\right\} .
$$

We now introduce a theorem directing the rest of the thesis.

Theorem 3.2.6. The following subsets of \mathbb{A}^{n} and $V(Q) \subseteq \mathbb{A}^{n d^{2}}$ are Zariski closed sets:

1) For a fixed $\alpha \in V(Q), W\left(M_{\alpha}\right)$.
2) For a fixed $\lambda \neq 0$ in $\mathbb{A}^{n}, Y(\lambda)$.

Proof. For the first case, let $\alpha \in V(Q)$. We know from Corollary 3.1.8 that M_{α} is not free after substituting λ_{i} for the Λ_{i} in $U_{\Lambda}\left(M_{\alpha}\right)$ if and only if $I_{\nu}\left(\left[U_{\lambda}(\alpha)\right]^{p-1}\right)=0$. The expressions that define $I_{\nu}\left(\left[U_{\Lambda}(\alpha)\right]^{p-1}\right)$ are polynomials in n variables over \mathbb{k} with indeterminates that are precisely the Λ_{i}. Therefore, the set of all choices of λ that do not result in freeness after substitution is a Zariski closed subset of \mathbb{A}^{n}. In other words, $W\left(M_{\alpha}\right)$ is Zariski closed.

In the second case we fix λ. Again, we know from Corollary 3.1.8 that U_{λ} represents an A_{p}^{n}-module that is not free after substituting $\alpha_{i, r, s}$ for the $x_{i, r, s}$ if and only if $I_{\nu}\left(\left[U_{\lambda}(\alpha)\right]^{p-1}\right)=0$. The expressions that define $I_{\nu}\left(\left[U_{\lambda}\right]^{p-1}\right)$ are polynomials in $n d^{2}$ variables over \mathbb{k} with indeterminates precisely the $x_{i, r, s}$. Therefore, the set of α that do not result in freeness after substitution is a Zariski closed subset of $V(Q)$. In sum, $Y(\lambda)$ is Zariski closed.

Theorem 3.2.6 quantifies the abundance of freeness as is our goal in this chapter. We offer an example applying Theorem 3.2.6 that shows the relevant ideals in great detail.

Example 3.2.7. Fix $d=3, n=2$, and $p=3$. We investigate the ideal defining freeness $I_{\nu}\left(U_{\Lambda}^{p-1}\right) \subset \mathbb{k}\left[x_{i, r, s}, \Lambda_{i}\right]$, the rank variety $W\left(M_{\alpha}\right)$, and the module variety $Y(\lambda)$. To generate the ideal defining freeness, we first find

$$
U_{\Lambda}=\left[\begin{array}{lll}
x_{1,1,1} \Lambda_{1}+x_{2,1,1} \Lambda_{2} & x_{1,1,2} \Lambda_{1}+x_{2,1,2} \Lambda_{2} & x_{1,1,3} \Lambda_{1}+x_{2,1,3} \Lambda_{2} \\
x_{1,2,1} \Lambda_{1}+x_{2,2,1} \Lambda_{2} & x_{1,2,2} \Lambda_{1}+x_{2,2,2} \Lambda_{2} & x_{1,2,3} \Lambda_{1}+x_{2,2,3} \Lambda_{2} \\
x_{1,3,1} \Lambda_{1}+x_{2,3,1} \Lambda_{2} & x_{1,3,2} \Lambda_{1}+x_{2,3,2} \Lambda_{2} & x_{1,3,3} \Lambda_{1}+x_{2,3,3} \Lambda_{2}
\end{array}\right]
$$

Here $p-1=2$ and $\nu=1$ so the ideal defining freeness is $I_{1}\left(U_{\Lambda}^{2}\right) \neq 0$.
More specifically,

$$
\begin{gathered}
I_{1}\left(U_{\Lambda}^{2}\right)=\left(\left(x_{1,1,1} \Lambda_{1}+x_{2,1,1} \Lambda_{2}\right)^{2}+\left(x_{1,1,2} \Lambda_{1}+x_{2,1,2} \Lambda_{2}\right)\left(x_{1,2,1} \Lambda_{1}+x_{2,2,1} \Lambda_{2}\right)+\left(x_{1,1,3} \Lambda_{1}+\right.\right. \\
\left.x_{2,1,3} \Lambda_{2}\right)\left(x_{1,3,1} \Lambda_{1}+x_{2,3,1} \Lambda_{2}\right), \\
\left(x_{1,1,1} \Lambda_{1}+x_{2,1,1} \Lambda_{2}\right)\left(x_{1,1,2} \Lambda_{1}+x_{2,1,2} \Lambda_{2}\right)+\left(x_{1,1,2} \Lambda_{1}+x_{2,1,2} \Lambda_{2}\right)\left(x_{1,2,2} \Lambda_{1}+x_{2,2,2} \Lambda_{2}\right)+ \\
\left(x_{1,1,3} \Lambda_{1}+x_{2,1,3} \Lambda_{2}\right)\left(x_{1,3,2} \Lambda_{1}+x_{2,3,2} \Lambda_{2}\right), \\
\left(x_{1,1,1} \Lambda_{1}+x_{2,1,1} \Lambda_{2}\right)\left(x_{1,1,2} \Lambda_{1}+x_{2,1,2} \Lambda_{2}\right)+\left(x_{1,1,2} \Lambda_{1}+x_{2,1,2} \Lambda_{2}\right)\left(x_{1,2,2} \Lambda_{1}+x_{2,2,2} \Lambda_{2}\right)+ \\
\left(x_{1,1,3} \Lambda_{1}+x_{2,1,3} \Lambda_{2}\right)\left(x_{1,3,3} \Lambda_{1}+x_{2,3,3} \Lambda_{2}\right), \\
\left(x_{1,2,1} \Lambda_{1}+x_{2,2,1} \Lambda_{2}\right)\left(x_{1,1,1} \Lambda_{1}+x_{2,1,1} \Lambda_{2}\right)+\left(x_{1,2,2} \Lambda_{1}+x_{2,2,2} \Lambda_{2}\right)\left(x_{1,2,1} \Lambda_{1}+x_{2,2,1} \Lambda_{2}\right)+ \\
\quad\left(x_{1,2,3} \Lambda_{1}+x_{2,2,3} \Lambda_{2}\right)\left(x_{1,3,1} \Lambda_{1}+x_{2,3,1} \Lambda_{2}\right), \\
\left(x_{1,2,3} \Lambda_{1}+x_{2,2,3} \Lambda_{2}\right)\left(x_{1,3,2} \Lambda_{1}+x_{2,3,2} \Lambda_{2}\right), \\
\left(x_{1,2,1} \Lambda_{1}+x_{2,2,1} \Lambda_{2}\right)\left(x_{1,1,2} \Lambda_{1}+x_{2,1,2} \Lambda_{2}\right)+\left(x_{1,2,2} \Lambda_{1}+x_{2,2,2} \Lambda_{2}\right)\left(x_{1,2,2} \Lambda_{1}+x_{2,2,2} \Lambda_{2}\right)+ \\
\left(x_{1,2,3} \Lambda_{1}+x_{2,2,3} \Lambda_{2}\right)\left(x_{1,3,3} \Lambda_{1}+x_{2,3,3} \Lambda_{2}\right), \\
\left(x_{1,2,1} \Lambda_{1}+x_{2,2,1} \Lambda_{2}\right)\left(x_{1,1,2} \Lambda_{1}+x_{2,1,2} \Lambda_{2}\right)+\left(x_{1,2,2} \Lambda_{1}+x_{2,2,2} \Lambda_{2}\right)\left(x_{1,2,2} \Lambda_{1}+x_{2,2,2} \Lambda_{2}\right)+ \\
\left(x_{1,3,1} \Lambda_{1}+x_{2,3,1} \Lambda_{2}\right)\left(x_{1,1,1} \Lambda_{1}+x_{2,1,1} \Lambda_{2}\right)+\left(x_{1,3,2} \Lambda_{1}+x_{2,3,2} \Lambda_{2}\right)\left(x_{1,2,1} \Lambda_{1}+x_{2,2,1} \Lambda_{2}\right)+ \\
\left(x_{1,3,3} \Lambda_{1}+x_{2,3,3} \Lambda_{2}\right)\left(x_{1,3,1} \Lambda_{1}+x_{2,3,1} \Lambda_{2}\right), \\
\left(x_{1,3,1} \Lambda_{1}+x_{2,3,1} \Lambda_{2}\right)\left(x_{1,1,2} \Lambda_{1}+x_{2,1,2} \Lambda_{2}\right)+\left(x_{1,3,2} \Lambda_{1}+x_{2,3,2} \Lambda_{2}\right)\left(x_{1,2,2} \Lambda_{1}+x_{2,2,2} \Lambda_{2}\right)+ \\
\left(x_{1,3,3} \Lambda_{1}+x_{2,3,3} \Lambda_{2}\right)\left(x_{1,3,2} \Lambda_{1}+x_{2,3,2} \Lambda_{2}\right),
\end{gathered}
$$

We know from Theorem 3.2.6 that $W\left(M_{\alpha}\right)$ is a Zariski closed set and we proceed by finding a choice of α that lies in the closed set. Choose a specific element of $V(Q)$, say

$$
\alpha=(0,1,2,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0)
$$

that satisfies the 27 equations defining $V(Q)$. We find that

$$
I_{1}\left(U_{\Lambda}\left(M_{\alpha}\right)^{2}\right)=\left(\Lambda_{1} \Lambda_{2}, \Lambda_{1}, 2 \Lambda_{1} \Lambda_{2}\right)
$$

We find from $I_{1}\left(U_{\Lambda}\left(M_{\alpha}\right)^{2}\right)$ that freeness occurs only if λ_{1} is zero but λ_{2} can be arbitrary.

Now suppose instead of fixing an α, we instead fix $u_{\lambda}=z_{1}+2 z_{2}$. With this fixed λ and generic $\alpha, I_{1}\left(U_{\lambda}^{2}\right)=$

$$
\begin{gathered}
\left(\left(x_{1,1,1}+2 x_{2,1,1}\right)^{2}+\left(x_{1,1,2}+2 x_{2,1,2}\right)\left(x_{1,2,1}+2 x_{2,2,1}\right)+\left(x_{1,1,3}+2 x_{2,1,3}\right)\left(x_{1,3,1}+2 x_{2,3,1}\right),\right. \\
\left(x_{1,1,1}+2 x_{2,1,1}\right)\left(x_{1,1,2}+2 x_{2,1,2}\right)+\left(x_{1,1,2}+2 x_{2,1,2}\right)\left(x_{1,2,2}+2 x_{2,2,2}\right)+\left(x_{1,1,3}+\right. \\
\left.2 x_{2,1,3}\right)\left(x_{1,3,2}+2 x_{2,3,2}\right) \\
\left(x_{1,1,1}+2 x_{2,1,1}\right)\left(x_{1,1,2}+2 x_{2,1,2}\right)+\left(x_{1,1,2}+2 x_{2,1,2}\right)\left(x_{1,2,2}+2 x_{2,2,2}\right)+\left(x_{1,1,3}+\right. \\
\left.2 x_{2,1,3}\right)\left(x_{1,3,3}+2 x_{2,3,3}\right), \\
\left(x_{1,2,1}+2 x_{2,2,1}\right)\left(x_{1,1,1}+2 x_{2,1,1}\right)+\left(x_{1,2,2}+2 x_{2,2,2}\right)\left(x_{1,2,1}+2 x_{2,2,1}\right)+\left(x_{1,2,3}+\right. \\
\left.2 x_{2,2,3}\right)\left(x_{1,3,1}+2 x_{2,3,1}\right), \\
\left.2 x_{2,2,3}\right)\left(x_{1,3,2}+2 x_{2,3,2}\right), \\
\left(x_{1,2,1}+2 x_{2,2,1}\right)\left(x_{1,1,2}+2 x_{2,1,2}\right)+\left(x_{1,2,2}+2 x_{2,2,2}\right)\left(x_{1,2,2}+2 x_{2,2,2}\right)+\left(x_{1,2,3}+\right. \\
\left.2 x_{2,2,3}\right)\left(x_{1,3,3}+2 x_{2,3,3}\right), \\
\left(x_{1,2,1}+2 x_{2,2,1}\right)\left(x_{1,1,2}+2 x_{2,1,2}\right)+\left(x_{1,2,2}+2 x_{2,2,2}\right)\left(x_{1,2,2}+2 x_{2,2,2}\right)+\left(x_{1,2,3}+\right. \\
\left.2 x_{2,3,3}\right)\left(x_{1,3,1}+2 x_{2,3,1}\right), \\
\left(x_{1,3,1}+2 x_{2,3,1}\right)\left(x_{1,1,1}+2 x_{2,1,1}\right)+\left(x_{1,3,2}+2 x_{2,3,2}\right)\left(x_{1,2,1}+2 x_{2,2,1}\right)+\left(x_{1,3,3}+\right. \\
\left(x_{1,3,1}+2 x_{2,3,1}\right)\left(x_{1,1,2}+2 x_{2,1,2}\right)+\left(x_{1,3,2}+2 x_{2,3,2}\right)\left(x_{1,2,2}+2 x_{2,2,2}\right)+\left(x_{1,3,3}+\right. \\
\left.2 x_{2,3,3}\right)\left(x_{1,3,2}+2 x_{2,3,2}\right),
\end{gathered}
$$

Recall that if $I_{1}\left(U_{\lambda}(\alpha)^{2}\right)=0$ then the corresponding module is not free. Theorem 3.2.6 also proves that the α that yield freeness when substituted into $U_{\lambda}(\alpha)$ form a closed set.

We end the chapter with a corollary to Theorem 3.2.6.
Corollary 3.2.8. An A_{p}^{n}-module M is free as an A_{p}^{n}-module if and only if the restriction of M to $\mathbb{k}\left[u_{\lambda}\right]$ is a free $\mathbb{k}\left[u_{\lambda}\right]$-module for every λ. In other words, $W\left(M_{\alpha}\right)=$

0 when $M_{\alpha}=A_{p}^{n}$ as an A_{p}^{n}-module. Furthermore, when M_{α} is isomorphic to $\bigoplus_{i} \mathbb{k}$, then $W\left(M_{\alpha}\right)=\mathbb{A}^{n}$.

By Proposition 3.1.7, A_{p}^{n} (viewed as an A_{p}^{n}-module) is free over $\mathbb{k}\left[u_{\lambda}\right]$ for any λ, therefore any free A_{p}^{n}-module is also free over $\mathbb{k}\left[u_{\lambda}\right]$ for any λ. If $M_{\alpha} \downarrow \mathbb{k}\left[u_{\lambda}\right]$ is isomorphic to a direct sum of a finite number of copies of \mathbb{k} as an A_{p}^{n}-module, then we know α is identically 0 and thus $M_{\alpha} \downarrow \mathbb{k}\left[u_{\lambda}\right]$ is not free for any λ. In the next chapter we will fix an α and study the freeness of $U_{\Lambda}(\alpha)$.

CHAPTER 4

Fixed Module Freeness

4.1 Non-trivial Rank Varieties and Existence of Concrete Examples of Theorem

 3.2.6Theorem 3.2.6 shows that the $W\left(M_{\alpha}\right)$ and $Y(\lambda)$ corresponding to non-freeness are Zariski closed sets of their respective affine spaces. The question remains whether these sets are nonzero and not the entire affine space. If the sets from this theorem are indeed only zero, then there is not much to discuss or analyze. To show the sets are nonzero, we need to be able to produce specific examples to show they contain more than just zero. Recall from Section 3.1 that the dimension of the modules considered is a multiple of p.

Fact 4.1.1. For a fixed α with M_{α} having dimension that is a multiple of p, it is possible that $W\left(M_{\alpha}\right)$ is zero. One could choose M_{α} to be A_{p}^{n} as shown in Proposition 3.1.7. Corollary 3.2 .8 states that $W\left(M_{\alpha}\right)=\mathbb{A}^{n}$ when α is zero. For a fixed $\lambda, Y(\lambda)$ is nonzero since a choice of α such that $M_{\alpha} \cong \bigoplus \mathbb{k} \oplus A_{p}^{n}$ results in non-freeness. Additionally, $Y(\lambda)$ cannot be $\mathbb{A}^{n d^{2}}$ due to Proposition 3.1.7.

One easy example of an α that never corresponds to a free module after restriction is an α where $U_{\lambda}(\alpha)$ is already in Jordan canonical form and the Jordan blocks are not all maximally sized. This idea appears in the next example.

Example 4.1.2. Suppose $d=4, p=2$ and $n=1$. Then if

$$
\alpha=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0),
$$

$$
U_{\Lambda}(\alpha)=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \Lambda_{1} & 0
\end{array}\right]
$$

Regardless of the choice of $\lambda, U_{\lambda}(\alpha)$ does not have a Jordan canonical form of two blocks of size 2×2.

Even though $W\left(M_{\alpha}\right)$ is zero for some α, using α where $W\left(M_{\alpha}\right) \neq 0$, we can still explore some interesting questions. What if we want the dimension of $W\left(M_{\alpha}\right)$ to be a certain value? We know the dimension of $W\left(M_{\alpha}\right)$ is between 0 and n. We look for an α where the λ 's resulting in non-freeness after restriction form a line in \mathbb{A}^{2}, for example.

Example 4.1.3. Consider the case of $n=2, d=2$, and $p=2$. Here, we choose $\lambda \in \mathbb{A}^{2}$. Can we find an α where the λ resulting in non-freeness is the Λ_{1}-axis? Recall that the set of modules that are free after restriction is a Zariski open set in the set of all A_{p}^{n}-modules where $\lambda \notin W\left(M_{\alpha}\right)$. The generic representation matrix under consideration is

$$
U_{\Lambda}=\left[\begin{array}{ll}
x_{1,1,1} \Lambda_{1}+x_{2,1,1} \Lambda_{2} & x_{1,1,2} \Lambda_{1}+x_{2,1,2} \Lambda_{2} \tag{4.1}\\
x_{1,2,1} \Lambda_{1}+x_{2,2,1} \Lambda_{2} & x_{1,2,2} \Lambda_{1}+x_{2,2,2} \Lambda_{2}
\end{array}\right]
$$

We need to consider a specific choice of α for the desired λ 's to correspond to non-freeness. Suppose $\alpha=(0,0,1,0,0,0,1,0)$ yielding

$$
U_{\Lambda}(\alpha)=\left[\begin{array}{cc}
0 & 0 \\
\Lambda_{1}+\Lambda_{2} & 0
\end{array}\right]
$$

We find the ideal defining freeness here, $I_{1}\left(U_{\Lambda}(\alpha)\right)$, to be $\left(\Lambda_{1}+\Lambda_{2}\right)$. Our $U_{\Lambda}(\alpha)$ corresponds to a non-free module after restriction if $\lambda_{1}+\lambda_{2}=0$. In \mathbb{A}^{2}, this corresponds to the line $\Lambda_{2}=-\Lambda_{1}$.

As another attempt, suppose $\alpha=(0,0,1,0,0,0,0,0)$. In this case we have

$$
U_{\Lambda}(\alpha)=\left[\begin{array}{cc}
0 & 0 \\
\Lambda_{1} & 0
\end{array}\right]
$$

Now the ideal defining freeness is generated by only Λ_{1} meaning the module is not free on the Λ_{2}-axis or when $\lambda_{1}=0$. We could easily switch α to $(0,0,0,0,0,0,1,0)$ to instead have the Λ_{1}-axis be where non-freeness occurs. For two dimensions, we found choices of α where a choice of λ on the line $\Lambda_{2}=-\Lambda_{1}$, the Λ_{2}-axis, or the Λ_{1}-axis result in a non-free $M_{\alpha} \downarrow \mathbb{\mathbb { k }}\left[u_{\lambda}\right]$.

The next example is similar to the last with $d=3$.
Example 4.1.4. Let $n=2$ and $p=d=3$. Thus we have

$$
U_{\Lambda}=\left[\begin{array}{ccc}
x_{1,1,1} \Lambda_{1}+x_{2,1,1} \Lambda_{2} & x_{1,1,2} \Lambda_{1}+x_{2,1,2} \Lambda_{2} & x_{1,1,3} \Lambda_{1}+x_{2,1,3} \Lambda_{2} \\
x_{1,2,1} \Lambda_{1}+x_{2,2,1} \Lambda_{2} & x_{1,2,2} \Lambda_{1}+x_{2,2,2} \Lambda_{2} & x_{1,2,3} \Lambda_{1}+x_{2,2,3} \Lambda_{2} \\
x_{1,3,1} \Lambda_{1}+x_{2,3,1} \Lambda_{2} & x_{1,3,2} \Lambda_{1}+x_{2,3,2} \Lambda_{2} & x_{1,3,3} \Lambda_{1}+x_{2,3,3} \Lambda_{2}
\end{array}\right]
$$

Can we find α such that $U_{\Lambda}(\alpha)$ will correspond to a non-free module after restriction for a choice of $\left(\lambda_{1}, \lambda_{2}\right)$ on the Λ_{1}-axis in \mathbb{A}^{2} ? Inspired by Example 4.1.3, let $\alpha=$ $(0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)$, and thus

$$
U_{\Lambda}(\alpha)=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
\Lambda_{1} & 0 & 0
\end{array}\right]
$$

This time since $p=3$, the ideal determining freeness is $I_{1}\left(U_{\Lambda}(\alpha)^{2}\right)$. However, for this choice of α we find $U_{\Lambda}(\alpha)^{2}=0$. Thus, we need to choose a different α. Instead, if we use $\alpha=(0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0)$ we have

$$
U_{\Lambda}(\alpha)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\Lambda_{1} & 0 & 0 \\
0 & \Lambda_{1} & 0
\end{array}\right]
$$

so the ideal defining freeness is $I_{1}\left(U_{\Lambda}(\alpha)^{2}\right)=\left(\Lambda_{1}\right)$. This ideal will only be 0 after substitution if $\lambda_{1}=0$. This means $U_{\Lambda}(\alpha)$ corresponds to a non-free module after restriction if we choose $\left(\lambda_{1}, \lambda_{2}\right)$ on the Λ_{1}-axis in \mathbb{A}^{2}, that is, $\lambda_{1} \neq 0$ and $\lambda_{2}=0$.

In the previous example found the α that result in non-freeness for any λ on a single axis. What if instead, we are looking for freeness on a two dimensional plane in \mathbb{A}^{3} ? We offer an example where $n=3$ and we find an α where freeness occurs for λ on a plane of \mathbb{A}^{3}.

Example 4.1.5. Suppose $n=3, d=3$, and $p=3$. We want a point α in \mathbb{A}^{18} such that $U_{\Lambda}(\alpha)$ corresponds to non-freeness after substitution by λ only when λ is on the $\Lambda_{1} \Lambda_{2}$-plane of \mathbb{A}^{3}. Since freeness is directly connected to Jordan canonical form it makes sense to choose α such that $U_{\lambda}(\alpha)$ is a matrix in Jordan canonical form. Suppose we choose α such that

$$
U_{\Lambda}(\alpha)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\Lambda_{1} \alpha_{1,2,1}+\Lambda_{2} \alpha_{2,2,1}+\Lambda_{3} \alpha_{3,2,1} & 0 & 0 \\
0 & \Lambda_{1} \alpha_{1,3,2}+\Lambda_{2} \alpha_{2,3,2}+\Lambda_{3} \alpha_{3,3,2} & 0
\end{array}\right]
$$

The ideal we want to consider in order to determine freeness is

$$
\begin{aligned}
& I_{1}\left(U_{\Lambda}(\alpha)^{2}\right)=\left(\Lambda_{1}^{2} \alpha_{1,2,1} \alpha_{1,3,2}+\Lambda_{1} \Lambda_{2} \alpha_{2,2,1} \alpha_{1,3,2}+\Lambda_{1} \Lambda_{3} \alpha_{3,2,1} \alpha_{1,3,2}+\Lambda_{1} \Lambda_{2} \alpha_{1,2,1} \alpha_{2,3,2}+\right. \\
& \left.\Lambda_{2}^{2} \alpha_{2,2,1} \alpha_{2,3,2}+\Lambda_{2} \Lambda_{3} \alpha_{3,2,1} \alpha_{2,3,2}+\Lambda_{1} \Lambda_{3} \alpha_{1,2,1} \alpha_{3,3,2}+\Lambda_{2} \Lambda_{3} \alpha_{2,2,1} \alpha_{3,3,2}+\Lambda_{3}^{2} \alpha_{3,2,1} \alpha_{3,3,2}\right)
\end{aligned}
$$

Knowing the ideal determining freeness, we can give more specific values for $\alpha_{i, r, s}$ and easily check freeness. If $\alpha=(0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0)$ then

$$
I_{1}\left(U_{\Lambda}^{2}\right)=\left(\Lambda_{1}^{2}+\Lambda_{1} \Lambda_{2}+\Lambda_{2}^{2}\right)
$$

Here $I_{1}\left(U_{\Lambda}^{2}\right)$ corresponds to freeness in a nontrivial way but not on the $\Lambda_{1} \Lambda_{2}$-plane as desired. If instead

$$
\alpha=(0,1,0,0,0,1,0)
$$

then $I_{1}\left(U_{\Lambda}^{2}\right)$ is simply $\left(\Lambda_{3}^{2}\right)$. With this $\alpha,\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ corresponds to a non-free module after restriction if and only if $\lambda_{3}=0$. In other words, the module is not free on the $\Lambda_{1} \Lambda_{2}$-plane.

In \mathbb{A}^{2} and \mathbb{A}^{3} we were able to find modules where the choice of λ made $U_{\lambda}(\alpha)$ non-free if λ was on a line or on a plane, respectively. For such cases, being able to find a module that is free on the Λ_{1}-axis in \mathbb{A}^{2} is really not a different problem than finding a module that is non-free on the Λ_{2}-axis in \mathbb{A}^{2}. This leads us to the main guiding question for this chapter. Can we find a specific α such that the corresponding module is not free after restriction on a j-dimensional linear subspace for any $0 \leq j \leq n$? The following section begins to address the answer to this question.

4.2 Dimensions of Rank Varieties

In this section we construct and use a certain ordered basis of A_{p}^{n} with respect to which the representation matrices are easier to understand. Throughout this section this is the only ordered basis of A_{p}^{n} we use. The notation for this ordered basis involves the following: consider the ordered k-tuple $B=\left(b_{1}, b_{2}, \ldots, b_{k}\right), b_{i} \in A_{p}^{n}$. For $x \in A_{p}^{n}$ we write $B x$ for the k-tuple $\left(b_{1} x, b_{2} x, \ldots, b_{k} x\right)$. For two tuples $B=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ and $B^{\prime}=\left(b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{k^{\prime}}^{\prime}\right)$, we write $B \sqcup B^{\prime}$ to mean $\left(b_{1}, b_{2}, \ldots, b_{k}, b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{k^{\prime}}^{\prime}\right)$. The aforementioned ordered basis is defined recursively as follows.

Definition 4.2.1. Define B_{k} to be an ordered basis of A_{p}^{k} where

$$
\begin{gathered}
B_{1}=\left(1, z_{1}, z_{1}^{2}, \ldots, z_{1}^{p-1}\right) \\
B_{2}=B_{1} \sqcup z_{2} B_{1} \sqcup z_{2}^{2} B_{1} \sqcup \ldots \sqcup z_{2}^{p-1} B_{1} \\
\ldots \\
B_{k}=B_{k-1} \sqcup z_{k} B_{k-1} \sqcup z_{k}^{2} B_{k-1} \sqcup \ldots \sqcup z_{k}^{p-1} B_{k-1} .
\end{gathered}
$$

We emphasize that B_{k} is an ordered tuple.
Note that B_{k} is a basis of monomials for A_{p}^{k}. We know the module decomposition of A_{p}^{n} as an A_{p}^{n}-module after restriction to any $\mathbb{k}\left[u_{\lambda}\right]$ from Proposition 3.1.7. We have
not yet shown the form of the representation matrix of $A_{p}^{n} \downarrow \mathbb{k}\left[u_{\lambda}\right]$ using the ordered basis. The next example finds B_{k} for the case where $n=3$ and $p=3$.

Example 4.2.2. Suppose we want to write the basis B_{3} for the underlying \mathbb{k}-vector space of A_{3}^{3}. Displayed below are B_{1}, B_{2}, and B_{3}.

$$
\begin{gathered}
B_{1}=\left(1, z_{1}, z_{1}^{2}\right) \\
B_{2}=\left(1, z_{1}, z_{1}^{2}, z_{2}, z_{1} z_{2}, z_{1}^{2} z_{2}, z_{2}^{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}^{2}\right) \\
B_{3}=\left(1, z_{1}, z_{1}^{2}, z_{2}, z_{1} z_{2}, z_{1}^{2} z_{2}, z_{2}^{2}, z_{1} z_{2}^{2}, z_{1}^{2} z_{2}^{2},\right. \\
z_{3}, z_{1} z_{3}, z_{1}^{2} z_{3}, z_{2} z_{3}, z_{1} z_{2} z_{3}, z_{1}^{2} z_{2} z_{3}, z_{2}^{2} z_{3}, z_{1} z_{2}^{2} z_{3}, z_{1}^{2} z_{2}^{2} z_{3}, \\
\left.z_{3}^{2}, z_{1} z_{3}^{2}, z_{1}^{2} z_{3}^{2}, z_{2} z_{3}^{2}, z_{1} z_{2} z_{3}^{2}, z_{1}^{2} z_{2} z_{3}^{2}, z_{2}^{2} z_{3}^{2}, z_{1} z_{2}^{2} z_{3}^{2}, z_{1}^{2} z_{2}^{2} z_{3}^{2}\right)
\end{gathered}
$$

In this case B_{1} has 3 elements, B_{2} has 9 and B_{3} has 27 .
The number of elements in each B_{k} is p^{k} as expected, since the \mathbb{k}-vector space dimension of A_{p}^{k} is p^{k}.

Fact 4.2.3. $A_{p}^{n} /\left(z_{1}, \ldots, z_{i}\right)$ has \mathbb{k}-vector space dimension p^{n-i} for $1 \leq i \leq n$. The dimension of $A_{p}^{n} /\left(z_{1}, \ldots, z_{n}\right)$ is $p^{0}=1$.

This fact is true because B_{n-i} can be used as a basis for $A_{p}^{n} /\left(z_{1}, \ldots, z_{i}\right)$. Note that due to the construction of B_{k}, B_{1} has p elements, B_{2} has p^{2} elements and so on. This is because B_{1} is constructed to have p elements, namely the constant term and the powers of z_{1} up to $p-1$. Each subsequent B_{k} will multiply the terms of B_{k-1} by the $k^{t h}$ variable and the powers of the $k^{t h}$ variable up to $p-1$. It is important that we have not only the dimension of $A_{p}^{n} /\left(z_{k}, z_{k+1}, \ldots, z_{n}\right)$, but also a defined basis of $A_{p}^{n} /\left(z_{k}, z_{k+1}, \ldots, z_{n}\right)$ for any n, p, and k. We offer a definition to formalize A_{p}^{n}-modules of the form $A_{p}^{n} /\left(z_{k}, z_{k+1}, \ldots, z_{n}\right)$.

Definition 4.2.4. For an integer $1 \leq i \leq n$, let γ_{i} be the ideal $\left(z_{i}, z_{i+1}, \ldots, z_{n}\right)$ in A_{p}^{n}. We take γ_{0} to be the zero ideal.

We are now ready to restate the main objective for this section. For any γ_{i}, can we find a specific α such that the representation matrix of M_{α} after restriction to
$\mathbb{k}\left[u_{\lambda}\right]$ is not free if and only if $\lambda_{j}=0$ for $j>i$? The previous section explores some specific examples of this, but here we solve the problem in the general case. We do this using the module structure of A_{p}^{n} / γ_{i}. Any such module can be seen as a point α in $\mathbb{A}^{n d^{2}}$. We give a name to a choice of α that corresponds to modules of this form.

Definition 4.2.5. Let α_{i} be the α in $V(Q)$ corresponding to A_{p}^{n} / γ_{i}, and recall that $V(Q) \subset \mathbb{A}^{(i-1) p^{2(i-1)}}$. Note that if $i \neq j$, then α_{i} and α_{j} belong to different dimensional affine spaces. We only introduce specific α_{i} in the context of the fixed ordered basis B_{k}.

One objective of this section is to provide the representation matrix of A_{p}^{n} / γ_{i} for any permissible choice of n, p, or i. After finding a general form for these representation matrices, we comment on their freeness after restriction. The following fact highlights why A_{p}^{n} / γ_{i} is useful.

Fact 4.2.6. For $1 \leq i \leq n$ we have that $A_{p}^{n} / \gamma_{i} \cong A_{p}^{i-1}$ as rings.
To see this, consider the natural surjection from A_{p}^{n} onto A_{p}^{i-1} where $z_{j} \mapsto z_{j}$ for $1 \leq j \leq i-1$ and $z_{j} \mapsto 0$ otherwise. Clearly the kernel of this map is γ_{i}. We can use B_{i-1} as a basis for A_{p}^{n} / γ_{i}. We offer an example in the case of A_{2}^{2}.

Example 4.2.7. Let $n=2$ and $p=2$. Then $M=A_{2}^{2} / \gamma_{2}$ has ordered basis $\left(1, z_{1}\right)$ and representation matrices

$$
\left[z_{1}\right]_{M}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \text { and }\left[z_{2}\right]_{M}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Here $M \downarrow \mathbb{k}\left[u_{\lambda}\right]$ will be free if and only if $\lambda_{1} \neq 0$. We find that $W(M)=V\left(\Lambda_{1}\right)$ in \mathbb{A}^{2}, which has dimension one.

As another example, we find representation matrices over rings with multiple possible choices of γ_{i}.

Example 4.2.8. Let $n=3$ and $p=2$. We explore the $\left[z_{1}\right]_{M},\left[z_{2}\right]_{M}$, and $\left[z_{3}\right]_{M}$ representation matrices and rank varieties for γ_{3} and γ_{2}.

1. The case of $M=A_{2}^{3} / \gamma_{3}$ has ordered basis $B_{2}=\left(1, z_{1}, z_{2}, z_{1} z_{2}\right)$. We find

$$
\left[z_{1}\right]_{M}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],\left[z_{2}\right]_{M}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right], \text { and }\left[z_{3}\right]_{M}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We find that $W(M)=V\left(\Lambda_{1}, \Lambda_{2}\right)$ in \mathbb{A}^{3}, which has dimension one.
2. The case of $M=A_{2}^{3} / \gamma_{2}$ has ordered basis $B_{1}=\left(1, z_{1}\right)$.

$$
\left[z_{1}\right]_{M}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[z_{2}\right]_{M}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text {, and }\left[z_{3}\right]_{M}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

We find that $W(M)=V\left(\Lambda_{1}\right)$ in \mathbb{A}^{3}, which has dimension two.
Next, we let $n=2, p=3$, and again find the $\left[z_{k}\right]_{M}$ matrices for $k=1$ and $k=2$. We use the module $M=A_{3}^{2} / \gamma_{2}$. Here we have ordered basis $B_{1}=\left(1, z_{1}, z_{1}^{2}\right)$,

$$
\left[z_{1}\right]_{M}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \text { and }\left[z_{2}\right]_{M}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We find that $W(M)=V\left(\Lambda_{1}\right)$ in \mathbb{A}^{2}, which has dimension one.
The matrices are changing in a predictable way as n and p increase. We see the matrices are taking a block matrix form with an increase of n increasing the number of blocks and an increase of p increasing the size of the blocks. Notice how the matrices of the same size take a similar form. The fact given below is a key ingredient in finding the representation matrix of A_{p}^{n} / γ_{i} for any permissible n, p, or i.

Fact 4.2.9. We find $U_{\Lambda}\left(\alpha_{1}\right)=[0]$, the 1×1 zero matrix, since $A_{p}^{n} / \gamma_{1} \cong \mathbb{k}$.
The representation matrix for $M=A_{p}^{n} / \gamma_{2}$ is

$$
\left[z_{1}\right]_{M}=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 0 \\
1 & 0 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 1 & 0
\end{array}\right] .
$$

The representation matrix for z_{i} where $i \neq 1$ is the $p \times p$ zero matrix. Note that $\left[u_{\lambda}\right]_{M}$ is a $p \times p$ matrix when $M=A_{p}^{n} / \gamma_{2}$.

At this point this fact is only shown through examples. Theorem 4.2.13 will prove this fact in general. We offer yet another example that will involve grouping the representation matrices according to dimension.

Example 4.2.10. For this example, all matrices shown are $U_{\Lambda}\left(\alpha_{i}\right)$ matrices. In practice, one can first find the $\left[z_{i}\right]_{M}$ if it is not yet clear what the $U_{\Lambda}\left(\alpha_{i}\right)$ matrix is. We observe the changing of $U_{\Lambda}\left(\alpha_{i}\right)$ for $2 \leq n \leq 4$ and $p=2$ for different choices of γ_{i} where $2 \leq i \leq n$. As before, $M=A_{p}^{n} / \gamma_{i}$. The $U_{\Lambda}\left(\alpha_{i}\right)$ matrices shown are grouped by dimension this time to highlight an emerging pattern.

1. There are three matrices where $d=2$. Namely,

$$
\begin{gathered}
\text { when } i=2 \text { and } n=2\left[\begin{array}{cc}
0 & 0 \\
\Lambda_{1} & 0
\end{array}\right], \\
\text { when } i=2 \text { and } n=3\left[\begin{array}{cc}
0 & 0 \\
\Lambda_{1} & 0
\end{array}\right], \\
\text { and finally when } i=2 \text { and } n=4\left[\begin{array}{cc}
0 & 0 \\
\Lambda_{1} & 0
\end{array}\right] .
\end{gathered}
$$

2. There are two matrices where $d=4$. Namely,

$$
\begin{aligned}
& \text { when } i=3 \text { and } n=3\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\Lambda_{1} & 0 & 0 & 0 \\
\Lambda_{2} & 0 & 0 & 0 \\
0 & \Lambda_{2} & \Lambda_{1} & 0
\end{array}\right] \\
& \text { when } i=3 \text { and } n=4\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\Lambda_{1} & 0 & 0 & 0 \\
\Lambda_{2} & 0 & 0 & 0 \\
0 & \Lambda_{2} & \Lambda_{1} & 0
\end{array}\right]
\end{aligned}
$$

3. There is one matrix where $d=8$. This comes from $i=4$ and $n=4$

$$
\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\Lambda_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\Lambda_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \Lambda_{2} & \Lambda_{1} & 0 & 0 & 0 & 0 & 0 \\
\Lambda_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \Lambda_{3} & 0 & 0 & \Lambda_{1} & 0 & 0 & 0 \\
0 & 0 & \Lambda_{3} & 0 & \Lambda_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \Lambda_{3} & 0 & \Lambda_{2} & \Lambda_{1} & 0
\end{array}\right] .
$$

Below, we examine the rank variety of the $2 \times 2,4 \times 4$, and 8×8 matrices.

1. When $i=2$ and $n=2, W(M)=V\left(\Lambda_{1}\right)$ which has dimension 1 .
2. When $i=2$ and $n=3, W(M)=V\left(\Lambda_{1}\right)$ which has dimension 2 .
3. When $i=2$ and $n=4, W(M)=V\left(\Lambda_{1}\right)$ which has dimension 3 .
4. When $i=3$ and $n=3, W(M)=V\left(\Lambda_{1}, \Lambda_{2}\right)$ which has dimension 1 .
5. When $i=3$ and $n=4, W(M)=V\left(\Lambda_{1}, \Lambda_{2}\right)$ which has dimension 2 .
6. When $i=4$ and $n=4, W(M)=V\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$ which has dimension 1 .

Notice that in the cases where $i=n$, the variety is generated by a different number of Λ_{i}, but the dimension of the variety remained the same. Next, we conduct a similar
exploration of $U_{\Lambda}\left(\alpha_{i}\right)$ using the same M where n is fixed at 2 but $p=2,3$, or 5 and the $i=2$ in γ_{i}. The dimension of these matrices is a multiple of p just like when p was fixed.

1. When $p=2$ we have $\left[\begin{array}{cc}0 & 0 \\ \Lambda_{1} & 0\end{array}\right]$.
2. When $p=3$ we have $\left[\begin{array}{ccc}0 & 0 & 0 \\ \Lambda_{1} & 0 & 0 \\ 0 & \Lambda_{1} & 0\end{array}\right]$.
3. When $p=5$ we have $\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ \Lambda_{1} & 0 & 0 & 0 & 0 \\ 0 & \Lambda_{1} & 0 & 0 & 0 \\ 0 & 0 & \Lambda_{1} & 0 & 0 \\ 0 & 0 & 0 & \Lambda_{1} & 0\end{array}\right]$.

For $n=2$ as p increases the size of the matrix increases, but the matrix keeps the same form. We find for any of the three choices of $p, W(M)=V\left(\Lambda_{1}\right)$. The dimension of $V\left(\Lambda_{1}\right)$ is 1 when $p=2,3$, or 5 .

We offer a proposition on the structure of A_{p}^{n} / γ_{i}-modules.
Proposition 4.2.11. For fixed n and p,

$$
U_{\Lambda}\left(\alpha_{2}\right)=\left[\begin{array}{ccccccc}
0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
\Lambda_{1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & \Lambda_{1} & 0 & \ldots & 0 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & \Lambda_{1} & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & \Lambda_{1} & 0
\end{array}\right]
$$

This is a matrix with Λ_{1} on the lower sub-diagonal and zeroes elsewhere. The matrix is of size $p \times p$.

Proof. Fix n and p. Let $M=A_{p}^{n} / \gamma_{2}$. We find the matrix size of $U_{\Lambda}\left(\alpha_{2}\right)$ to be $p \times p$ since $U_{\Lambda}\left(\alpha_{2}\right) \cong A_{p}^{1}$ according to Fact 4.2.6. We know from Definition 2.2.3 that

$$
U_{\Lambda}\left(\alpha_{2}\right)=\Lambda_{1} X_{1}\left(\alpha_{2}\right)+\Lambda_{2} X_{2}\left(\alpha_{2}\right)+\ldots+\Lambda_{n} X_{n}\left(\alpha_{2}\right)
$$

For $k>2$ we know that $X_{k}=0$ since $z_{k} \in \gamma_{2}$. Thus $U_{\Lambda}\left(\alpha_{2}\right)=\Lambda_{1} X_{1}\left(\alpha_{2}\right)$. Using ordered basis B_{1} we can calculate $U_{\Lambda}\left(\alpha_{2}\right)$. We conclude that $U_{\Lambda}\left(\alpha_{2}\right)$ has the desired form as stated in the proposition because $\Lambda_{1} B_{1}=\left\{\Lambda_{1} z_{1}, \Lambda_{1} z_{1}^{2}, \ldots, \Lambda_{1} z_{1}^{p-1}\right\}$.

Next, we define a notation for important representation matrices.
Definition 4.2.12. Let \mathcal{B}_{n} be the generic representation matrix $U_{\Lambda}\left(\alpha_{0}\right)$ using the ordered basis from 4.2.1. In other words, \mathcal{B}_{n} is the canonical representation matrix of A_{p}^{n} restricted to the generic u_{Λ}.

The n in \mathcal{B}_{n} is the same as the n of the corresponding A_{p}^{n}-module. We now give a theorem showing the form of \mathcal{B}_{n}.

Theorem 4.2.13. For a fixed p and using ordered basis B_{k}, we recursively construct all \mathcal{B}_{k} as follows for any $1 \leq k \leq n$. We have shown \mathcal{B}_{1} in 4.2.11.

$$
\mathcal{B}_{k}=\left[\begin{array}{ccccccc}
\mathcal{B}_{k-1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
\Lambda_{k} I & \mathcal{B}_{k-1} & 0 & \ldots & 0 & 0 & 0 \\
0 & \Lambda_{k} I & \mathcal{B}_{k-1} & \ldots & 0 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & \mathcal{B}_{k-1} & 0 & 0 \\
0 & 0 & 0 & \ldots & \Lambda_{k} I & \mathcal{B}_{k-1} & 0 \\
0 & 0 & 0 & \ldots & 0 & \Lambda_{k} I & \mathcal{B}_{k-1}
\end{array}\right]
$$

Here $\Lambda_{i} I$ is the identity matrix with each entry multiplied by Λ_{i}. For any k, \mathcal{B}_{k} is size $p^{k} \times p^{k}$.

Proof. We know \mathcal{B}_{1} from Proposition 4.2 .11 since $A_{p}^{1} \cong A_{p}^{n} / \gamma_{2}$ as \mathbb{k}-algebras. Furthermore, the dimension of A_{p}^{1} is p and the size of \mathcal{B}_{1} is clearly $p \times p$. We proceed by induction, assuming that \mathcal{B}_{k-1} has the representation matrix described in the theorem. By definition, \mathcal{B}_{k} is the generic representation matrix $U_{\Lambda}\left(\alpha_{0}\right)$ where $\alpha_{0} \in \mathbb{A}^{k d^{2}}$ is the point corresponding to A_{p}^{k}. We find that $A_{p}^{k-1} \cong A_{p}^{k} / \gamma_{k}$. From Definition 2.2.4, we find $U_{\Lambda}\left(\alpha_{0}\right)=\Lambda_{1} X_{1}\left(\alpha_{0}\right)+\Lambda_{2} X_{2}\left(\alpha_{0}\right)+\ldots+\Lambda_{k-1} X_{k-1}\left(\alpha_{0}\right)+\Lambda_{k} X_{k}\left(\alpha_{0}\right)$. We use B_{k} as the ordered basis and show $U_{\Lambda}\left(\alpha_{0}\right)$ below. To better understand $U_{\Lambda}\left(\alpha_{0}\right)$, recall $B_{k}=B_{k-1} \sqcup z_{k} B_{k-1} \sqcup z_{k}^{2} B_{k-1} \sqcup \ldots \sqcup z_{k}^{p-1} B_{k-1}$. The p groups listed that compose B_{k} each yield a \mathcal{B}_{k-1} block in $U_{\Lambda}\left(\alpha_{0}\right)$. More specifically, using B_{k-1} as the ordered basis for A_{p}^{k-1} we find $\Lambda_{1} X_{1}\left(\alpha_{0}\right)+\Lambda_{2} X_{2}\left(\alpha_{0}\right)+\ldots+\Lambda_{k-1} X_{k-1}\left(\alpha_{0}\right)$ is the matrix

$$
\left[\begin{array}{ccccccc}
\mathcal{B}_{k-1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & \mathcal{B}_{k-1} & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & \mathcal{B}_{k-1} & \ldots & 0 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & \mathcal{B}_{k-1} & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & \mathcal{B}_{k-1} & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & \mathcal{B}_{k-1}
\end{array}\right] .
$$

To obtain $U_{\Lambda}\left(\alpha_{0}\right)$, we first need $\Lambda_{k} X_{k}\left(\alpha_{0}\right)$. We find $\Lambda_{k} X_{k}\left(\alpha_{0}\right)$ by multiplying B_{k} by z_{k}, which yields

$$
z_{k} B_{k}=z_{k} B_{k-1} \sqcup z_{k}^{2} B_{k-1} \sqcup \ldots \sqcup z_{k}^{p-1} B_{k-1}
$$

and

$$
\Lambda_{k} X_{k}\left(\alpha_{0}\right)=\left[\begin{array}{ccccccc}
0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
\Lambda_{k} I & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & \Lambda_{k} I & 0 & \ldots & 0 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & \Lambda_{k} I & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & \Lambda_{k} I & 0
\end{array}\right] .
$$

Thus $U_{\Lambda}\left(\alpha_{0}\right)$ is the desired matrix

$$
\mathcal{B}_{k}=\left[\begin{array}{ccccccc}
\mathcal{B}_{k-1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
\Lambda_{k} I & \mathcal{B}_{k-1} & 0 & \ldots & 0 & 0 & 0 \\
0 & \Lambda_{k} I & \mathcal{B}_{k-1} & \ldots & 0 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & \mathcal{B}_{k-1} & 0 & 0 \\
0 & 0 & 0 & \ldots & \Lambda_{k} I & \mathcal{B}_{k-1} & 0 \\
0 & 0 & 0 & \ldots & 0 & \Lambda_{k} I & \mathcal{B}_{k-1}
\end{array}\right] .
$$

Since the size of each \mathcal{B}_{k-1} block in $U_{\Lambda}\left(\alpha_{0}\right)$ is assumed to be of size $p^{k-1} \times p^{k-1}$, we find that $U_{\Lambda}\left(\alpha_{0}\right)$ is of size $p^{k} \times p^{k}$.

We make a similar statement about A_{p}^{n} / γ_{i} because of Fact 4.2.6.
Corollary 4.2.14. Fix p and n and use the ordered basis B_{k}. For any i where $1 \leq i<n-1$ and $M_{\alpha}=A_{p}^{n} / \gamma_{i}$,

$$
U_{\Lambda}\left(\alpha_{i}\right)=\left[\begin{array}{ccccccc}
U_{\Lambda}\left(\alpha_{i+1}\right) & 0 & 0 & \ldots & 0 & 0 & 0 \\
\Lambda_{i+1} I & U_{\Lambda}\left(\alpha_{i+1}\right) & 0 & \ldots & 0 & 0 & 0 \\
0 & \Lambda_{i+1} I & U_{\Lambda}\left(\alpha_{i+1}\right) & \ldots & 0 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & U_{\Lambda}\left(\alpha_{i+1}\right) & 0 & 0 \\
0 & 0 & 0 & \ldots & \Lambda_{i+1} I & U_{\Lambda}\left(\alpha_{i+1}\right) & 0 \\
0 & 0 & 0 & \ldots & 0 & \Lambda_{i+1} I & U_{\Lambda}\left(\alpha_{i+1}\right)
\end{array}\right]
$$

where $\Lambda_{i+1} I$ is the identity matrix with every entry multiplied by Λ_{i+1}.
As a result of this corollary, we are now able to draw our final conclusions for the chapter and answer our guiding question.

Theorem 4.2.15. For any n and p we find $W\left(A_{p}^{n} / \gamma_{i}\right)=V\left(\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{i-1}\right)$ which has dimension $n-i+1$.

Proof. We know the $U_{\Lambda}\left(\alpha_{i}\right)$ representation matrix of A_{p}^{n} / γ_{i} due to Corollary 4.2.14. Using the known representation matrix we can determine the rank variety. The rank variety for any $1 \leq i \leq n-1$ is best understood recursively. In the trivial case of $i=1$, we find $W\left(A_{p}^{n} / \gamma_{1}\right)=V(0)$, which is indeed of dimension n. When $i=2$, we use $U_{\Lambda}\left(\alpha_{2}\right)$, which is shown in Proposition 4.2.11, to conclude $W\left(A_{p}^{n} / \gamma_{2}\right)=$ $V\left(\Lambda_{1}\right)$, which has dimension $n-1$. We continue by using induction on i, assuming that $W\left(A_{p}^{n} / \gamma_{k-1}\right)=V\left(\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{k-2}\right)$ and that $V\left(\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{k-2}\right)$ is of dimension $n-k+2$. Applying Corollary 4.2.14, in order for $U_{\Lambda}\left(\alpha_{k}\right)$ not to be of maximal rank we must have that $\Lambda_{k-1}=0$. Thus if $\Lambda_{k-1}=0$, then $U_{\Lambda}\left(\alpha_{k}\right)$ has maximal rank if and only if $\Lambda_{j} \neq 0$ for some $1 \leq j \leq k-2$. We conclude that $W\left(A_{p}^{n} / \gamma_{k}\right)=V\left(\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{k-1}\right)$. The dimension of $V\left(\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{k-1}\right)$ is $n-k+1$. Thus $W\left(A_{p}^{n} / \gamma_{i}\right)=V\left(\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{i-1}\right)$ which has dimension $n-i+1$.

We offer a final corollary to answer the guiding question of this chapter.

Corollary 4.2.16. For any positive integer, there is a choice of n, p and i such that the rank variety of A_{p}^{n} / γ_{i} is that integer. Additionally we can calculate the representation matrix of this module.

With these conclusions drawn our investigation in the case of a fixed module and generic λ is concluded.

CHAPTER 5

Fixed Subalgebra Freeness

5.1 Dimension of Module Varieties

In the previous chapter we explored the freeness from Theorem 3.2.6 with a fixed module. In this chapter we instead focus on freeness with a fixed subalgebra. In other words, we are looking at module variety rather than rank variety. Ultimately, this chapter will address how various choices of subalgebra interact with the ideal defining the freeness of a generic module.

We are going to fix a subalgebra and consider which α lead to freeness. The key to determining freeness is the ideal $I_{\nu}\left(U_{\lambda}^{p-1}\right)$. We offer the following definition so that we can investigate the dimension of the underlying ring.

Definition 5.1.1. Let S_{λ} be the ring

$$
\mathbb{k}\left[x_{i, r, s} \mid 1 \leq i \leq n, 1 \leq r, s \leq d\right] /\left(Q+I_{\nu}\left(U_{\lambda}^{p-1}\right)\right)
$$

This definition uses the language from Chapter 2 defining a generic A_{p}^{n}-module. In total there are $n d^{2}$ of the $x_{i, r, s}$. We are interested in how the Krull dimension of $S_{\lambda}, \operatorname{dim}\left(S_{\lambda}\right)$, relates to the Krull dimension of $S_{\lambda}^{\prime}, \operatorname{dim}\left(S_{\lambda^{\prime}}\right)$, for $\lambda, \lambda^{\prime} \in \mathbb{A}^{n}$. In other words, does the Krull dimension of the module variety change when we change λ ? Before approaching S_{λ} as a whole, we investigate the dimension of $V(Q)$. When Q was introduced in Definition 2.1.7, we gave an example for $d=2$, but the following example goes into further depth.

Example 5.1.2. Suppose we observe the Krull dimension of $V(Q)$ in various cases. After finding Q, we can calculate the Krull dimension of $\mathbb{k}\left[x_{i, r, s} \mid 1 \leq i \leq n, 1 \leq r, s \leq\right.$ $d] / Q$.

If $p=2, n=2$, and $d=2$, we know from Example 2.1.8 that Q can be defined by 12 equations. For this n, p, and d, the Krull dimension of the ring $\mathbb{k}\left[x_{i, r, s} \mid 1 \leq i \leq n, 1 \leq\right.$ $r, s \leq d]$ is 8 . Furthermore, the Krull dimension of $\mathbb{k}\left[x_{i, r, s} \mid 1 \leq i \leq n, 1 \leq r, s \leq d\right] / Q$ is 3. This Krull dimension can be computed in Macaulay2 [13]. On the other hand, if $p=2, n=3$, and $d=2$, there are now 24 defining equations for Q. The height of Q here is 4 . Continuing to increase n, if $p=2, n=4$, and $d=2$, there are now 40 defining equations and $\operatorname{dim}(V(Q))=5$. As p increases we quickly find that this calculation is incredibly computationally expensive, but we are at least able to see the effect of increasing n.

In general, we know how many equations define Q, but cannot always compute the Krull dimension of the underlying ring. To better understand S_{λ}, we need to understand the ideal $I_{\nu}\left(U_{\lambda}^{p-1}\right)$. The following example looks at this for some simple cases.

Example 5.1.3. Suppose $p=2, n=2$, and $d=2$, and we want to observe the Krull dimension of the underlying ring of $I_{1}\left(U_{\lambda}\right)$. We know $U_{\lambda}=\lambda_{1} X_{1}+\lambda_{2} X_{2}$ is the matrix

$$
\left[\begin{array}{ll}
\lambda_{1} x_{1,1,1}+\lambda_{2} x_{2,1,1} & \lambda_{1} x_{1,1,2}+\lambda_{2} x_{2,1,2} \\
\lambda_{1} x_{1,2,1}+\lambda_{2} x_{2,2,1} & \lambda_{1} x_{1,2,2}+\lambda_{2} x_{2,2,2}
\end{array}\right] .
$$

Thus our ideal defining freeness is

$$
I_{1}\left(U_{\Lambda}\right)=\left(\lambda_{1} x_{1,1,1}+\lambda_{2} x_{2,1,1}, \lambda_{1} x_{1,1,2}+\lambda_{2} x_{2,1,2}, \lambda_{1} x_{1,2,1}+\lambda_{2} x_{2,2,1}, \lambda_{1} x_{1,2,2}+\lambda_{2} x_{2,2,2}\right)
$$

For a given choice of λ, we are looking for the conditions that make $I_{1}\left(U_{\Lambda}\right)=0$

1. If $u_{\lambda}=x_{1}$, then $I_{1}\left(U_{\Lambda}\right)=\left(x_{1,1,1}, x_{1,1,2}, x_{1,2,1}, x_{1,2,2}\right)$ requiring $X_{1}=0$ for $I_{1}\left(U_{\Lambda}\right)$ to be 0 .
2. If $u_{\lambda}=x_{2}$, then $I_{1}\left(U_{\Lambda}\right)=\left(x_{2,1,1}, x_{2,1,2}, x_{2,2,1}, x_{2,2,2}\right)$ requiring $X_{2}=0$ for $I_{1}\left(U_{\Lambda}\right)$ to be 0 .
3. If $u_{\lambda}=x_{1}+x_{2}$, then $I_{1}\left(U_{\Lambda}\right)=\left(x_{1,1,1}+x_{2,1,1}, x_{1,1,2}+x_{2,1,2}, x_{1,2,1}+x_{2,2,1}, x_{1,2,2}+\right.$ $x_{2,2,2}$) requiring $x_{1, j, k}-x_{2, j, k}=0$ where $j, k \in\{1,2\}$ for $I_{1}\left(U_{\Lambda}\right)$ to be 0.

In the test cases from the preceding example, the Krull dimension of S_{λ} did not change for any of the choices of λ.

Theorem 5.1.4. For any $\lambda, \lambda^{\prime}$ in $\mathbb{A}^{n}, S_{\lambda} \cong S_{\lambda^{\prime}}$. Additionally, $Y(\lambda) \cong Y\left(\lambda^{\prime}\right)$.
Proof. Choose a nonzero λ in \mathbb{A}^{n}. Then λ_{i} is nonzero for some $1 \leq i \leq n$. We want to show that $S_{e_{i}}$ is isomorphic to S_{λ} as k-algebras where e_{i} is the n-tuple that is entirely zero except for a 1 in the $i^{\text {th }}$ component. Define $\phi: P \rightarrow P$ by $\phi\left(x_{i, r, s}\right)=\lambda_{1} x_{1, r, s}+\ldots+\lambda_{n} x_{n, r, s}$ and $\phi\left(x_{j, r, s}\right)=x_{j, r, s}$ for $j \neq i$ and all $1 \leq r, s \leq d$. By construction, ϕ is a homomorphism that preserves powers and minors of a matrix. This definition can be described in the shorthand notation utilizing matrices, $\phi\left(X_{i}\right)=\lambda_{1} X_{1}+\ldots+\lambda_{n} X_{n}$ and $\phi\left(X_{j}\right)=X_{j}$ for $i \neq j$. This clearly extends to an automorphism of P. In order to prove the theorem, we need to show that $\phi(Q)=Q$ and $\phi\left(I_{\nu}\left(U_{e_{i}}^{p-1}\right)\right)=I_{\nu}\left(U_{\lambda}^{p-1}\right)$.

First, we show $\phi(Q)=Q$. For any $j_{1}, j_{2} \neq i$, we find

$$
\phi\left(X_{j_{1}} X_{j_{2}}-X_{j_{2}} X_{j_{1}}\right)=X_{j_{1}} X_{j_{2}}-X_{j_{2}} X_{j_{1}} \in \phi(Q) \text { and } \phi\left(X_{j_{1}}\right)^{p}=X_{j_{1}}^{p} \in \phi(Q)
$$

The only remaining terms of Q that we need to check involve X_{i}. We observe for any $j \neq i$ that

$$
\begin{gathered}
\phi\left(X_{i} X_{j}-X_{j} X_{i}\right)=\left(\lambda_{1} X_{1}+\ldots+\lambda_{i} X_{i}+\ldots+\lambda_{n} X_{n}\right) X_{j}-X_{j}\left(\lambda_{1} X_{1}+\ldots+\lambda_{i} X_{i}+\ldots+\lambda_{n} X_{n}\right)= \\
\lambda_{1} X_{1} X_{j}+\ldots+\lambda_{i} X_{i} X_{j}+\ldots+\lambda_{n} X_{n} X_{j}-\lambda_{1} X_{j} X_{1}-\ldots-\lambda_{i} X_{j} X_{i}-\ldots-\lambda_{n} X_{j} X_{n}= \\
\lambda_{1}\left(X_{1} X_{j}-X_{j} X_{1}\right)+\ldots+\lambda_{i}\left(X_{i} X_{j}-X_{j} X_{i}\right)+\ldots+\lambda_{n}\left(X_{n} X_{j}-X_{j} X_{n}\right) \in \phi(Q) .
\end{gathered}
$$

Since $\lambda_{j_{1}}\left(X_{j_{1}} X_{j_{2}}-X_{j_{2}} X_{j_{1}}\right) \in \phi(Q)$ for $j_{1}, j_{2} \neq i$ we conclude that $\lambda_{i}\left(X_{i} X_{j}-X_{j} X_{i}\right)$ must be in $\phi(Q)$. Since λ_{i} is nonzero, we have $X_{i} X_{j}-X_{j} X_{i} \in \phi(Q)$. Now we consider $\phi\left(X_{i}^{p}\right)$. Here, we first observe that

$$
\begin{gathered}
\phi\left(X_{i}^{p}\right)=\phi\left(X_{i}\right)^{p}=\left(\lambda_{1} X_{1}+\ldots+\lambda_{i} X_{i}+\ldots+\lambda_{n} X_{n}\right)^{p}= \\
\lambda_{1}^{p} X_{1}^{p}+\ldots+\lambda_{i}^{p} X_{i}^{p}+\ldots+\lambda_{n}^{p} X_{n}^{p} \in \phi(Q) .
\end{gathered}
$$

This depends on Fact 1.2.6, where we showed that in the context of characteristic p the power of a sum is equivalent to the sum of the powers. We already found that $X_{j}^{p} \in \phi(Q)$ for $i \neq j$. Therefore, we conclude that $\lambda_{i}^{p} X_{i}^{p} \in \phi(Q)$ and since λ_{i} is nonzero, $X_{i}^{p} \in \phi(Q)$.
Now we have shown that $Q \subset \phi(Q)$. It is clear that $\phi(Q) \subset Q$ and therefore $\phi(Q)=Q$.

Next, we show that $\phi\left(I_{\nu}\left(U_{e_{i}}\right)\right)=I_{\nu}\left(U_{\lambda}\right)$. In fact,

$$
\phi\left(U_{e_{i}}\right)=\phi\left(X_{i}\right)=\lambda_{1} X_{1}+\ldots+\lambda_{n} X_{n}=U_{\lambda} .
$$

Since this is true, we know that

$$
\phi\left(I_{\nu}\left(U_{e_{i}}^{p-1}\right)\right)=I_{\nu}\left(U_{\lambda}^{p-1}\right) .
$$

Since both $\phi(Q)=Q$ and $\phi\left(I_{\nu}\left(U_{e_{i}}^{p-1}\right)\right)=I_{\nu}\left(U_{\lambda}^{p-1}\right)$ then

$$
\phi\left(Q+I_{\nu}\left(U_{e_{i}}^{p-1}\right)\right)=Q+I_{\nu}\left(U_{\lambda}^{p-1}\right)
$$

This is sufficient to conclude that $S_{e_{1}} \cong S_{\lambda}$. In order to prove the more general statement, we now need to show that $S_{e_{i}} \cong S_{e_{j}}$ for $i \neq j$. To this, end we define $\psi: P \rightarrow P$ by $\psi\left(X_{i}\right)=X_{j}, \psi\left(X_{j}\right)=X_{i}$ and $\psi\left(X_{k_{1}}\right)=X_{k_{1}}$ for $i, j \neq k_{1}$. Similar to what we did with ϕ, we are going to show that $\psi(Q)=Q$ and $\psi\left(I_{\nu}\left(U_{e_{i}}^{p-1}\right)=I_{\nu}\left(U_{e_{j}}^{p-1}\right)\right.$. To show $\psi(Q)=Q$, we let k_{1} and k_{2} be positive integers other than i or j. We know $\psi\left(X_{k_{1}} X_{k_{2}}-X_{k_{2}} X_{k_{1}}\right)=X_{k_{1}} X_{k_{2}}-X_{k_{2}} X_{k_{1}} \in \psi(Q)$ and that $\psi\left(X_{k_{1}}^{p}\right)=X_{k_{1}}^{p} \in \psi(Q)$. Additionally,

$$
\psi\left(X_{k_{1}} X_{i}-X_{i} X_{k_{1}}\right)=X_{j} X_{k_{1}}-X_{k_{1}} X_{j} \in \psi(Q)
$$

For the same reason, $X_{i} X_{k_{1}}-X_{k_{1}} X_{i} \in \psi(Q)$. This leaves the case of

$$
\psi\left(X_{j} X_{i}-X_{i} X_{j}\right)=X_{j} X_{i}-X_{i} X_{j} \in \psi(Q)
$$

which shows that X_{i} and X_{j} have their commutativity condition from Q encoded in $\psi(Q)$. We also find

$$
\psi\left(X_{i}^{p}\right)=X_{j}^{p} \in \psi(Q) \text { and } \psi\left(X_{j}^{p}\right)=X_{i}^{p} \in \psi(Q)
$$

In summary, $Q \subset \psi(Q)$. The other direction is easily verifiable and thus $\psi(Q)=Q$. Now we show $\psi\left(I_{\nu}\left(U_{e_{i}}^{p-1}\right)=I_{\nu}\left(U_{e_{j}}^{p-1}\right)\right.$. This is a direct result of the equation

$$
\psi\left(U_{e_{i}}\right)=\psi\left(X_{i}\right)=\lambda_{j} X_{j}=U_{e_{j}} .
$$

This equation implies that $\psi\left(U_{e_{i}}^{p-1}\right)=I_{\nu}\left(U_{e_{j}}^{p-1}\right)$. Similarly, we show that $\psi\left(U_{e_{j}}^{p-1}\right)=$ $I_{\nu}\left(U_{e_{i}}^{p-1}\right)$. Combining this with $\psi(Q)=Q$ we conclude that $S_{e_{i}} \cong S_{e_{j}}$.

Finally, let λ and λ^{\prime} be two nonzero elements of \mathbb{A}^{n}. Then λ_{i} is nonzero for some i and λ_{j}^{\prime} is nonzero for some j. $S_{e_{i}} \cong S_{\lambda}$ and $S_{e_{j}} \cong S_{\lambda^{\prime}}$. But we know $S_{e_{i}} \cong S_{e_{j}}$ so $S_{\lambda} \cong S_{\lambda^{\prime}}$. Since $S_{\lambda} \cong S_{\lambda^{\prime}}$ we can conclude $Y(\lambda) \cong Y\left(\lambda^{\prime}\right)$.

The following example applies the idea of this proof to the $n=2$ and $p=2$ setting and shows the ideal of freeness.

Example 5.1.5. Suppose that ϕ is a homomorphism from $\mathbb{k}\left[X_{1}, X_{2}\right] \rightarrow \mathbb{k}\left[X_{1}, X_{2}\right]$ where $\phi\left(X_{1}\right)=\lambda_{1} X_{1}+\lambda_{2} X_{2}$ and $\phi\left(X_{2}\right)=X_{2}$ with λ_{1}, and $\lambda_{2} \in \mathbb{k}$. Here, Q is generated by $X_{1} X_{2}-X_{2} X_{1}, X_{1}^{2}$, and X_{2}^{2}. The twelve elements of Q were shown for this n, p, and d in Example 2.1.8. We want to compare those twelve generators to the elements that generate $\phi(Q)$, where

$$
\phi(Q)=\left(\left(\lambda_{1} X_{1}+\lambda_{2} X_{2}\right) X_{2}+X_{2}\left(\lambda_{1} X_{1}+\lambda_{2} X_{2}\right),\left(\lambda_{1} X_{1}+\lambda_{2} X_{2}\right)^{2}, X_{2}^{2}\right)
$$

The generators of Q and $\phi(Q)$ compared are as follows.

1. For the commutativity requirement we have $X_{1} X_{2}-X_{2} X_{1}$ for Q and $\left(\lambda_{1} X_{1}+\right.$ $\left.\lambda_{2} X_{2}\right) X_{2}-X_{2}\left(\lambda_{1} X_{1}+\lambda_{2} X_{2}\right)$ for $\phi(Q)$
2. The generators of X_{1}^{2} in Q become $\left(\lambda_{1} X_{1}+\lambda_{2} X_{2}\right)^{2}$ in $\phi(Q)$.
3. The generators of the X_{2}^{2} component will remain identical in both P and $\phi(Q)$.

Although these matrices are different we know the ideals generated by their minors have the same height.

We generalize the example in the following corollary.
Corollary 5.1.6. The Krull dimension of S_{λ} is invariant under the choice of λ. In other words, the dimension of the module variety of λ is invariant under a change of λ. In other words, this means $\operatorname{dim}(Y(\lambda))=\operatorname{dim}\left(Y\left(\lambda^{\prime}\right)\right)$ for all nonzero $\lambda, \lambda^{\prime} \in \mathbb{k}^{n}$.

The isomorphism from $S_{\lambda} \rightarrow S_{\lambda^{\prime}}$ is a stronger result and so this corollary follows. This completes our study of freeness for a fixed subalgebra and our study of freeness in general.

References

[1] J. Alperin, Periodicity in Groups, Illinois Journal of Mathematics, 21 (1977), 776-783.
[2] L. Avramov, V. Gasharov, I. Peeva, Complete Intersection Dimension, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 86 (1997), 67-114.
[3] S. Axler, Linear Algebra Done Right, Springer, 3rd ed., (2010).
[4] D. Benson, K. Erdmann, M. Holloway, Rank Varieties for a Class of FiniteDimensional Local Algebras, Journal of Pure and Applied Algebra, 211 (2007), 497-510.
[5] P. Bergh, K. Erdmann, D. Jorgensen, Modules of Constant Jordan Type Over Quantum Complete Intersections, Documenta Mathematica, 25 (2020), 1541-1570.
[6] J. Carlson, The Varieties and the Cohomology Ring of a Module, Journal of Algebra, 1457 (1983), 104-143.
[7] J. Carlson, The Variety of a Module, Orders and their Applications, (Oberwolfach, 1984), 88-95, Lecture Notes in Math., 1142, Springer, Berlin, 1985.
[8] J. Carlson, E. Friedlander, J. Pevtsova, Modules of Constant Jordan Type, Journal fur die Reine und Angewandte Mathematik, 614 (2008), 191-234.
[9] E. Dade, Endo-Permutation Modules over p-Groups II, Annals of Mathematics, 108 (1978), 317-346.
[10] D. Dummit, R. Foote, Abstract Algebra, Wiley, 3rd ed., (2004).
[11] J. Edmonds, Systems of Distinct Representatives and Linear Algebra, Journal of Research of the National Bureau of Standards, 71 (1966), 241-245.
[12] E. Friedlander, B. Parshall, Support Varieties for Restricted Lie Algebras, Inventiones Mathematicae, 86 (1986), 553-562.
[13] D. Grayson, M. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/
[14] A. Heller, I. Reiner, Indecomposable Representations, Illinois Journal of Math, 5(2) (1961), 314-323.
[15] T. Hungerford, Algebra, Springer, 3rd ed., (2003).
[16] C. Johnson, R. Horn, Matrix Analysis, Cambridge University Press, 2nd ed., (2013).
[17] O. Kroll, Complexity and Elementary Abelian p-Groups, Journal of Algebra, 88 (1984), 155-172.
[18] D. Quillen, The Spectrum of an Equivariant Cohomology Ring, Annals of Mathematics, 94 (1970), 549-602.
[19] D. Quillen, A Cohomological Criterion for p-Nilpotence, Journal of Pure and Applied Algebra, 1 (1971), 361-372.
[20] D. Quillen, B. Venkov, Cohomology of Finite Groups and Elementary Abelian Subgroups, Topology, 11 (1972), 317-318.

