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Abstract

A STUDY IN THE FREENESS OF FINITELY GENERATED Anp -MODULES

UPON RESTRICTION TO PRINCIPAL SUBALGEBRAS

Luke Flattery, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: D. Jorgensen

We are interested in quantitative information on the freeness of modules over

a truncated polynomial ring when restricting to subalgebras generated by a linear

form. After investigating the structure of the truncated polynomial ring, subalgebras

generated by a linear form, and corresponding vector spaces, we construct a generic

representation and discuss its connection to a certain affine space. We quantify the

abundance of freeness of modules using a certain variety called the rank variety. For

any possible dimension we construct a module whose rank variety has that dimension.

Finally, we define another variety, called the module variety, and show that the

dimension of this variety is invariant under a change of subalgebra.
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CHAPTER 1

Anp -modules, Decompositions, and Matrix Representations

1.1 Introduction

An open area of study is the understanding of module categories for a particular

ring. A 1961 paper by Heller and Reiner [14] pointed out that in most cases the module

category is wild. This means that it is hopeless to try to classify all indecomposable

modules up to isomorphism. One focus of research has been to classify modules

in terms of invariants, which yield a weaker classification than isomorphism. A

breakthrough in the construction of such invariants to study modules was made

by Quillen [18] [19] [20] in a series of three papers. The method proposed by

Quillen was to associate to modules certain geometric objects, called the support

or cohomological variety. Alperin [1] proposed the study of modules via complexity,

which is a generalization of the dimension of Quillen’s varieties. Kroll [17] gave an

effective method for computing the complexity of modules over a group algebra of an

elementary abelian p-group.

Carlson proposed that another invariant could be used to further the study of

modules over group algebras of an elementary abelian p-group. To this end Carlson

introduced the rank variety in [7]. The rank variety involves restriction of the modules

being studied to subalgebras of the group algebra of the module. The rank variety

proved to be a useful invariant for a number of reasons. For one, the rank variety of

a module characterizes projectivity as a result of Dade’s Lemma [9]. Also, the tensor

product property, that the rank variety of a tensor product is the intersection of the

rank varieties of the two modules, holds [4]. Due to the effectiveness of Carlson’s
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rank variety and support varieties for group algebras, the theory has been applied in

a broader context, such as to p-restricted Lie algebras in [12]. More recently, rank

varieties have been used to study the property of constant Jordan type for modules

[8].

We are motivated to study the abundance of freeness, which we will later

define in Definition 3.1.1. The study of constant rank by Carlson and others [8] [5]

provided motivation for the topics of this thesis. We develop machinery (see Definition

2.2.4) that simultaneously recovers Carlson’s rank variety (Definition 3.2.4) and also

defines a new variety called the module variety (Definition 3.2.5). In the process, we

concretely construct modules whose rank variety is any possible dimension (Corollary

4.2.16), define a canonical representation matrix (Definition 4.2.12), and study the

invariance of the module variety (Theorem 5.1.4). The modules studied in this thesis

are modules over a group algebra of an elementary abelian p-group. These group

algebras are truncated polynomial rings, which we will be calling Anp .

The main object of this thesis is the truncated polynomial ring Anp where each

variable is nilpotent with nilpotency index of fixed prime p (see Definition 1.2.1). The

characteristic of the coefficient field is also p. Next, we discuss principal subalgebras of

the truncated polynomial ring, which are generated by a linear form in Definition 1.2.5.

We exploit the connections between finitely generated modules over the truncated

polynomial ring and their underlying vector spaces over the coefficient field (see Fact

1.2.3).

In Section 1.3, we study the module decomposition of a finitely generated

Anp -module when restricted to the principal subalgebras. We recall the decomposition

theorem for modules over principal ideal domains, and show that the module decom-

position over a principal ideal domain can be modified to work over our principal
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subalgebras in the case of Anp -modules (Corollary 1.3.4). This module decomposition

allows us to comment on the various options for the module structure in general.

Since Anp modules have an underlying vector space, multiplication by a linear

form defines a linear transformation and therefore can be represented by a matrix,

which we call the representation matrix. The goal is to use the representation matrix

to understand the module decomposition. In particular, the Jordan canonical form

of the representation matrix tells us exactly how the module decomposes as stated

in Fact 1.4.7. Armed with a matrix representation we are ready to ask questions

about how decompositions change when varying the subalgebra. With a matrix

representation, we are also able to connect a choice of matrix to a point in affine

space. This is similarly done for a choice of subalgebra.

To further analyze which modules hold certain properties, for example, a specific

module decomposition, we define a generic module. This is in effect a finite set of

generic matrices representing all possible Anp -modules of a fixed dimension. Each

generic matrix corresponds to a generator of Anp . These generic matrices are required

to reflect the commutativity and nilpotency conditions held by the generators of

Anp . To ensure that the generic matrices hold these properties, we define the ideal Q

and corresponding algebraic variety V (Q) in Definition 2.1.7. A point in V (Q) then

corresponds to an Anp -module and vice versa.

Following the construction of the generic matrices, we employ them to study

freeness. In this thesis, freeness upon restriction to principal subalgebras is encoded

in terms of a certain ideal described in Corollary 3.1.8, and its corresponding variety.

The points in the rank variety correspond to subalgebras where the module is not

free.

Next, it is shown that there are modules that are both free upon restriction

to infinitely many subalgebras and not free upon restriction to infinitely many
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subalgebras. To this end, we employ the Zariski topology to quantify their abundance.

This leads to a general statement quantifying freeness based on the module variety

and the rank variety in Theorem 3.2.6. Since the points of the rank variety correspond

to points of the subalgebra where the module is not free, the property of freeness is

more abundant, i.e. the condition of freeness is an open condition.

In Section 4.1 we show by example (see Fact 4.1.1) that the rank variety can

be nonzero and not the whole space. We explore how the rank variety encodes

non-freeness over different subalgebras for fixed modules. We give many examples

(see Example 4.1.3, Example 4.1.4 and Example 4.1.5) exploring the behavior of the

rank variety.

After fixing a special ordered basis of the underlying vector space of Anp in

Definition 4.2.1, we describe the canonical representation matrices in Definition 4.2.12.

We use this description throughout Section 4.2 to show there are modules whose

rank variety achieve any possible dimension. The existence of such modules has been

proposed in [6], but in this thesis we give concrete examples for any rank variety.

In Chapter 5 we study the module variety by looking at the case of a fixed

subalgebra and generic module. This direction does not prove to be as interesting, but

nevertheless we obtain a theorem on the invariance of the dimension of the module

variety for any principal subalgebra as Theorem 5.1.4.

1.2 Defining Anp and k[uλ]

The starting point for this thesis is Anp , a truncated commutative polynomial

ring. We are interested in finitely generated Anp -modules that are restricted to principal

subalgebras, namely subalgebras that are generated by a single homogeneous linear

form of Anp .
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Definition 1.2.1. Let Anp be the commutative ring

Anp = k[Z1, Z2, ..., Zn]/(Zp
1 , Z

p
2 , ..., Z

p
n)

where k is a field, char(k) = p, and p is a prime integer. Define zi to be the coset of

Zi in Anp . The field is assumed to be algebraically closed when necessary.

The ring Anp is a finite dimensional vector space over the coefficient field k. One

such basis of this vector space consists of the monomials

{zk11 z
k2
2 ...z

kn
n |0 ≤ ki ≤ p− 1, 1 ≤ i ≤ n}.

One counts easily the monomials in the basis to find the number of elements in a

k-basis of Anp . We state this in the form of the following fact.

Fact 1.2.2. The dimension of Anp as a k-vector space is pn.

Proof. Notice that the set

{zk11 z
k2
2 ...z

kn
n |0 ≤ ki ≤ p− 1, 1 ≤ i ≤ n}

is both k-linearly independent and spans Anp as a k-vector space. Thus, this set is

a basis for V . The basis has pn elements because there are p choices of ki for all n

choices of i.

Additionally, Anp is a finite dimensional k-algebra. The modules that are the

focus of this thesis are all finitely generated Anp -modules making the following a

critical component of this study. The majority of Anp -modules constructed for use

in examples throughout are defined by an ideal generated by the elements that are

listed in the example. Notationally, an Anp -module M defined by an ideal generated

by z1 and z2 is denoted M = (z1, z2).

Fact 1.2.3. Anp is a finite dimensional k-algebra, and as such, finitely generated Anp -

modules are finite dimensional k-vector spaces. Equivalently, every finitely generated

Anp -module has a finite k-basis.
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To justify this fact we will come up with a k-basis of a finitely generated module.

Given a finitely generated Anp -module M generated by a1, a2, ..., am we find that the

elements aiz
k1
1 z

k2
2 ...z

kn
n , where 0 ≤ kj ≤ p− 1 and 1 ≤ i ≤ m, span M as a k-vector

space. This is a finite spanning set from which a basis can be chosen. In cases where

the elements of the module have a degree, the basis can be ordered in terms of this

degree. However, there are cases where elements of the module do not have a degree.

At this point, we know a basis can always be found and we formalize a canonical

basis order for Anp in Chapter 4. The following example looks into the k-basis of the

underlying vector space of an Anp -module.

Example 1.2.4. Suppose that we use A3
2 as the underlying ring and look at M as

an A3
2-module.

1. If M = A3
2, then the underlying k-vector space has a 9 element basis

{1, z1, z2, z1z2, z
2
1 , z

2
2 , z

2
1z2, z1z

2
2 , z

2
1z

2
2}.

2. If M = (z1), the ideal generated by z1, then the underlying 6-dimensional

k-vector space has basis

{z1, z1z2, z
2
1 , z

2
1z2, z1z

2
2 , z

2
1z

2
2}.

3. If M = (z2), then the underlying k-vector space is again 6-dimensional and has

basis

{z2, z1z2, z
2
2 , z

2
1z2, z1z

2
2 , z

2
1z

2
2}.

4. If M = (z1, z2), then the underlying k-vector space is 8-dimensional and has

basis

{z1, z2, z1z2, z
2
1 , z

2
2 , z

2
1z2, z1z

2
2 , z

2
1z

2
2}.

5. If M = (z1z2), then the underlying k-vector space is 4-dimensional and has

basis

{z1z2, z
2
1z2, z1z

2
2 , z

2
1z

2
2}.
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6. Finally, if M = (z1 + z2), then the underlying k-vector space is 6-dimensional

and has basis

{z1 + z2, z
2
1 + z1z2, z1z2 + z2

2 , z
2
1z2 + z1z

2
2 , z

2
1z2, z

2
1z

2
2}.

In both (2) and (3), we find 6-dimensional k-vector spaces. They are therefore

isomorphic as k-vector spaces. However, they are not isomorphic as Anp -modules since

(z1) and (z2) have different annihilators in Anp .

The structure of finitely generated Anp -modules can be extremely complicated.

We introduce subalgebras to better understand their structure. The subalgebras are

generated by a linear form of Anp . It is worth pointing out that the results of this

thesis depend on the subalgebra being a single homogeneous linear form and it is not

obvious what would happen otherwise.

Definition 1.2.5. Let λ = (λ1, λ2, ..., λn) where λi ∈ k. Additionally, define

uλ =
∑n

i=1 λizi for λi ∈ k

and let k[uλ] denote the principal subalgebra of Anp generated by uλ.

By definition, uλ is a homogeneous linear form, and henceforth we assume that

uλ is nonzero. In other words, a choice of λ that is entirely zero is not permissible.

There is a bijective correspondence between nonzero linear forms in Anp and nonzero

λ ∈ An. A critical behavior of Anp is that any homogeneous linear form to the pth

power is 0.

Fact 1.2.6. For xi ∈ Anp and k > 0,

(x1 + x2 + ...+ xk)
p = xp1 + xp2 + ...+ xpk.

Proof. We proceed by induction on k. The result is obvious for k = 1, so we prove

the result with k = 2 as the base case. By binomial expansion, we find that

(x1 + x2)p =
(
p
0

)
xp1 +

(
p
1

)
xp−1

1 x2 + ...+
(
p
p−1

)
x1x

p−1
2 +

(
p
p

)
xp2.
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All coefficients other than
(
p
0

)
and

(
p
p

)
are a multiple of p. In other words,

(
p
p′

)
= mp

for some positive integer m when 0 < p′ < p. Since the characteristic of k is p, each

of these terms is zero. This means that

(x1 + x2)p =
(
p
0

)
xp1 +

(
p
p

)
xp2 = xp1 + xp2

and thus the k = 2 case holds. Assume the fact is true for k − 1 > 0. Now

(x1 + x2 + ...+ xk)
p = (x1 + x2 + ...+ xk−1)

p + xpk by the k = 2 case. By induction,

(x1 + x2 + ...+ xk−1)p = xp1 + xp2 + ...+ xpk−1 and we find

(x1 + x2 + ...+ xk)
p = xp1 + xp2 + ...+ xpk.

Applying Fact 1.2.6 to uλ we have the following.

Fact 1.2.7. For any λ, upλ = 0.

Proof. We have uλ = λ1z1 + ...+ λnzn for λi ∈ k. Then upλ = λp1z
p
1 + λp2z

p
2 + ...+ λpnz

p
n

by the previous fact. Since zpi = 0 for all i, we conclude upλ = 0.

The next example highlights the structure of the subalgebra k[uλ] of Anp .

Example 1.2.8. Consider the ring A2
3 and a, b ∈ k[uλ].

Let a = a0 + uλa1 + u2
λa2 and b = b0 + uλb1 + u2

λb2 for ai and bi in k.

The addition and multiplication of k[uλ] are inherited from Anp . For example, when

multiplying a and b we obtain the following.

a · b = a0b0 + uλa0b1 + u2
λa0b2 + uλa1b0 + u2

λa1b1 + u2
λa2b0

= a0b0 + uλ(a0b1 + a1b0) + u2
λ(a0b2 + a1b1 + a2b0)

The previous example can be extended to a general case with arbitrary n

and p while functioning in a similar manner. The key observation is the simplicity

of the structure of k[uλ]. Simply defining the coefficients of each power of ukλ for

0 ≤ k ≤ p − 1 uniquely defines an element of k[uλ]. As a subalgebra of a finite
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dimensional k-vector space, k[uλ] is likewise a finite dimensional k-vector space. The

structure of k[uλ] is explicitly described in the following fact.

Fact 1.2.9. The principal subalgebra k[uλ] and k[x]/(xp) are isomorphic as k-algebras.

Indeed, the natural map k[x] → k[uλ] where x 7→ uλ is surjective with kernel (xp).

Note that k[x]/(xp) is a principal ideal ring since k[x] is a principal ideal ring.

Therefore k[uλ] is also a principal ideal ring.

A natural k-basis of k[x]/(xp) is

{1, x, x2, x3, ..., xp−1}

and similarly a natural k-basis for k[uλ] is

{1, uλ, u2
λ, u

3
λ, ..., u

p−1
λ }.

Next, we give an important fact using uλ as a linear transformation.

Fact 1.2.10. Let M be an Anp -module. Multiplication by a fixed ring element a ∈ Anp

can be regarded as a linear transformation M
a−→ M defined by x 7→ ax on the

underlying vector space of an Anp -module M . In particular, multiplication by uλ

defines a linear transformation on the underlying k-vector space of an Anp -module M .

We now explore examples of various uλ acting as a linear transformation on

Anp -modules.

Example 1.2.11. We investigate uλ as a linear transformation on M where M is an

Anp -module.

1. Let M = A2
3, where M is an A2

3-module. The underlying k-vector space is 9

dimensional with basis

{1, z1, z2, z1z2, z
2
1 , z

2
2 , z

2
1z2, z1z

2
2 , z

2
1z

2
2}.

If uλ = z1, then the image uλM of the linear transformation is a 6 dimensional

k-vector space with basis

{z1, z
2
1 , z1z2, z

2
1z2, z1z

2
2 , z

2
1z

2
2}
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If uλ = z2, then the image uλM of the linear transformation is a 6 dimensional

k-vector space with basis

{z2, z1z2, z
2
2 , z1z

2
2 , z

2
1z2, z

2
1z

2
2}

If uλ = z1 + z2, then the image uλM of the linear transformation is a 6

dimensional k-vector space with basis

{z1 + z2, z
2
1 + z1z2, z1z2 + z1z

2
2 , z

2
1z2 + z1z

2
2 , z

2
1z2, z

2
1z

2
2}.

2. Let M = A3
2, where M is an A3

2-module. Then the underlying k-vector space is

8 dimensional with basis

{1, z1, z2, z3, z1z2, z1z3, z2z3, z1z2z3}.

If uλ = z1, then the image uλM of the linear transformation is a 4 dimensional

k-vector space with basis

{z1, z1z2, z1z3, z1z2z3}

If uλ = z1 + z2, then the image uλM of the linear transformation is a 4

dimensional k-vector space with basis

{z1 + z2, z1z2, z1z3 + z2z3, z1z2z3}

If uλ = z1 + z2 + z3, then the image uλM of the linear transformation is a 4

dimensional k-vector space with basis

{z1 + z2 + z3, z1z2 + z2z3, z1z3 + z2z3, z1z2z3}

How exactly the dimension of Anp ↓ k[uλ] changes as uλ varies will be a topic of

further discussion. The previous facts will be important in the algebraic decomposition

of Anp -modules after restriction. A main objective of this thesis is to understand

finitely generated Anp -modules after restriction to the principal subalgebras k[uλ].

Such a restriction is possible as outlined in the following fact.

Fact 1.2.12. The natural embedding k[uλ] → Anp realizes Anp as a k[uλ]-algebra.

Every Anp -module is a k[uλ]-module via restriction of scalars.
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Such an embedding exists for any λ and thus an Anp -module can be regarded

as a k[uλ] module for any λ. Obviously, k[uλ] is not an integral domain, due to the

nonzero nilpotent elements. Even though k[uλ] is not a principal ideal domain, there

still exists a module decomposition theorem for its finitely generated modules. We

will discuss this next.

1.3 Module Decomposition

In this section, we discuss the decomposition of finitely generated Anp -modules

when restricted to k[uλ]. We begin by looking at the well-known decompositions of

modules over a principal ideal domain, and derive the decompositions of modules

over k[x]/(xp).

Theorem 1.3.1 (Decomposition of Modules over PIDs [15]). Let M be a finitely

generated module over a principal ideal domain R. Then there exist nonnegative

integers h and m, positive integers ti, and irreducible elements pi such that

M ∼= R/Rpt11 ⊕ · · · ⊕R/Rptmm ⊕Rh.

We extend the theorem of module decomposition over a principal ideal domain

to a decomposition theorem over k[x]/(xp). This is possible since k[x] is a principal

ideal domain and there is a natural epimorphism from k[x] → k[x]/(xp), and thus

any finitely generated k[x]/(xp)-module can be viewed as a k[x]-module. We now find

the k[x]/(xp)-module is isomorphic to

k[x]/(pt11 )⊕ · · · ⊕ k[x]/(ptmm )⊕ k[x]h.

In general, identifying the irreducible elements pi in a principal ideal ring is a nontrivial

task. In the case of k[x]/(xp), the only irreducible element is x. The decomposition

of k[x]/(xp) will be relevant to our study of finitely generated Anp -modules after
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restriction to k[uλ] since a map sending x→ uλ induces the isomorphism from Fact

1.2.9

k[x]/(xp) ∼= k[uλ].

Fact 1.3.2. When M is a k[x]/(xp)-module viewed as a k[x]-module, we have xpM =

0.

We can use a series of observations to obtain another decomposition. We find

that xpM = 0 when M is a k[x]/(xp)-module. Since xpk[x] 6= 0 we must have h = 0.

We know xp ∈ (ptii ). Thus (xp) ⊆ (ptii ) and by taking radicals we get (x) ⊆ (pi). Since

(x) is maximal we have equality. Thus x = pi up to a unit for all i. This leads us to

our main theorem for this section stated once in general terms and then again within

the context of k[uλ] in the subsequent corollary.

Theorem 1.3.3 (Decomposition of Modules over k[x]/(xp)). Let M be a finitely

generated module over k[x]/(xp). Then there exist nonnegative integers mi such that

M ∼= (k)m1 ⊕ (k[x]/(x2))m2 ⊕ ...⊕ (k[x]/(xp))mp .

Reformulating this theorem in terms of uλ yields the following corollary.

Corollary 1.3.4. Let M be a finitely generated Anp -module restricted to k[uλ] and

mi be integers ≥ 0. Then

M ∼= (k)m1 ⊕ (k[uλ]/(u
2
λ))

m2 ⊕ ...⊕ (k[uλ]/(u
p−1
λ ))mp−1 ⊕ (k[uλ])

mp

The form of decomposition in Corollary 1.3.4 is used when finding the mod-

ule decomposition of finitely generated Anp -modules after restriction to k[uλ]. The

following example shows this in practice.

Example 1.3.5. Consider M = (z1) as an A2
3-module. We restrict to k[uλ] with

λ = (1, 0) and (0, 1), and then find the module decomposition. The underlying

k-vector space of M has basis B = {z1, z1z2, z
2
1 , z

2
1z2, z1z

2
2 , z

2
1z

2
2}. Applying corollary

1.3.4, we need to find m1,m2, and m3 for each choice of λ. Recall that there are
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three mi variables because p = 3. To determine the mi for each λ, we multiply each

element of the basis needed to generate M as a k[uλ]-module by uλ and observe how

many terms are annihilated.

1. If λ = (1, 0), then uλ = z1. We find that M is generated as a k[uλ]-module

by three elements. Namely, z1, z1z2 and z1z
2
2 . We find that none of the three

elements are annihilated by uλ and all three are annihilated by u2
λ. Thus m1 = 0,

m2 = 3, and m3 = 0.

2. If λ = (0, 1), then uλ = z2. We find M as a k[uλ]-module is generated by z1 and

z2
1 . Neither element is annihilated by uλ or u2

λ so we find that m1 = 0,m2 = 0,

and m3 = 2.

In the previous example we see the need for a more systematic way to determine

the mi in the module decomposition. Now that we have the module decompositions

of finitely generated Anp -modules restricted to k[uλ] we investigate representation

matrices of the same modules.

1.4 Representation Matrix Decompositions

Now that the algebraic decomposition of an Anp -module has been defined, we

can identify the corresponding matrix form of such a decomposition. We start with

the representation matrix of each zi as a linear transformation and expand to the

matrix representation of uλ.

Definition 1.4.1. Consider zi as a multiplication map on the underlying vector

space M of a finitely generated Anp -module. Let [zi]M denote the matrix representing

zi as a linear transformation on M with respect to some fixed basis B of M . We call

[zi]M the representation matrix of zi with respect to B.

It is important to note that the representation matrix [zi]M depends upon the

choice of basis for M . In other words, the representation matrix of [zi]M is determined
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uniquely up to a change of basis. More about the change of basis matrix and the

following fact can be found in [16].

Fact 1.4.2. The representation matrix [zi]M is well-defined up to conjugation by an

invertible matrix. Specifically, if [zi]
′
M is another representation matrix with respect

to a different basis B′, and P is the change of basis matrix, then P [zi]M = [zi]
′
MP .

The following example calculates [zi]M in a specific case.

Example 1.4.3. Let M = (z2
1z2) be an A3

3-module. Suppose we use the ordered

basis {z2
1z2, z

2
1z

2
2} and find [z2]M . We need to multiply the basis elements by z2.

z2
1z2 · z2 = z2

1z
2
2 and z2

1z
2
2 · z2 = 0. Thus

[z2]M =

0 0

1 0

.

If we instead want to determine [z1]M for the same M and basis, we get

[z1]M =

0 0

0 0

.

We can use the representation matrix for zi to construct a representation matrix

for uλ. Our goal is to study finitely generated Anp -modules after restriction to k[uλ]

and having a representation matrix for uλ will be an important tool. Recall that

uλ = λ1z1 + λ2z2 + ...+ λnzn where λi ∈ k.

We can construct the representation matrix for uλ by scaling the representation

matrix for each zi by λi and finding the sum.

Definition 1.4.4. Fix M to be a finitely generated Anp -module. Let [uλ]M = λ1[z1]M+

λ2[z2]M + ...+λn[zn]M . We call this the representation matrix for uλ. By construction,

uλ can be seen as a linear transformation on the underlying vector space of M .

We find that [uλ]M inherits some properties of Anp in the following fact.

14



Fact 1.4.5. For a fixed M , since zpi = 0 we find [zi]
p
M = 0. Furthermore, we know zi

commutes with zj. We find that [zi]M commutes with [zj]M .

We offer an example of finding [uλ]M .

Example 1.4.6. Let M be the A2
3-module (z1z2). We fix B = {z1z2, z

2
1z2, z1z

2
2 , z

2
1z

2
2},

a basis for M . We find [uλ]M by multiplying uλ by each element of B. The results

uλ(z1z2) = λ1z
2
1z2 + λ2z1z

2
2 , uλ(z

2
1z2) = λ2z

2
1z

2
2 , uλ(z1z

2
2) = λ1z

2
1z

2
2 and uλ(z

2
1z

2
2) = 0

vary when uλ varies. Using uλB, we now find [z1]M , [z2]M , and [uλ]M . The represen-

tation matrices are

[z1]M =



0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0


, [z2]M =



0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0


, and [uλ]M =



0 0 0 0

λ1 0 0 0

λ2 0 0 0

0 λ2 λ1 0


.

As mentioned in the definition of [zi]M and [uλ]M , fixing a basis is necessary in

order to have a unique representation matrix. For now we point out that the set of all

representation matrices that result from different choices of basis is a conjugacy class.

Later in the thesis, we further unpack this idea, but presently we want to be able to

pick a representative of the conjugacy class formed by every possible basis that yields

a standard representation matrix. For this reason, we introduce the Jordan canonical

form of representation matrices. It turns out the Jordan canonical form of [uλ]M

reveals the module decomposition of M ↓ k[uλ]. Conversely, if we know the module

decomposition of M ↓ k[uλ], then we know the Jordan canonical form of [uλ]M . Note

that the Jordan canonical form used in this thesis is always lower triangular. This is

out of convenience as natural choices of basis lead to the lower triangular form. For

example, a natural basis for k[x]/(xp) is

{1, x, x2, ..., xp−1}
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leading to the lower triangular form. This decision is purely cosmetic as any [uλ]M in

lower triangular form can be reformulated under a change of basis to become upper

triangular.

Fact 1.4.7. Since [uλ]M is nilpotent, we know the eigenvalues of [uλ]M are identically

0 (see [3, 8.19]) and as such there is a basis for M such that [uλ]M is in Jordan

canonical form. The module decomposition of M corresponds to the representation

matrix [uλ]M in Jordan canonical form. More specifically, each Jordan block will

correspond to a summand of the module decomposition.

Recall that the module decomposition of a finitely generated Anp -module re-

stricted to k[uλ] is determined by mi for 1 ≤ i ≤ p. The dimension and multiplicity

of the k[uλ]/(uiλ)mi terms in the module decomposition determine the Jordan blocks

in Jordan canonical form. The dimension and multiplicity of the ith term in the

decomposition is simply mi. In other words, each mi is the number of Jordan blocks

of size i× i in the Jordan canonical form.

If the module decomposition of [uλ]M is known we have no trouble finding

the Jordan canonical form. However, this thesis focuses on cases where the exact

module decomposition is not yet calculated. Through the representation matrix we

can infer the module decomposition. Theoretically, the Jordan canonical form of

[uλ]M can always be obtained under a change of basis. In practice, this can be very

computationally expensive. Luckily, the following proposition allows for the inference

of the Jordan canonical form of [uλ]M in a different way.

Proposition 1.4.8. Let [uλ]M be the representation matrix of an Anp -module M

restricted to k[uλ]. Then the Jordan canonical form of [uλ]M has precisely

−2(rank([uλ]
j
M))+rank([uλ]

j−1
M )+rank([uλ]

j+1
M )

blocks of size j × j for j > 0.
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Proof. Let [uλ]M be the representation matrix of a finitely generated Anp -module

restricted to k[uλ]. We know that the only eigenvalue of [uλ]M is 0 because [uλ]M is

nilpotent. Since the eigenvalues are 0, [16, Lemma 1.3.18] implies that the number of

Jordan blocks of size j × j or larger is

dim ker([uλ]
j
M)− dim ker([uλ]

j−1
M ).

The number of blocks of size j × j is then the number of blocks of size j × j or larger

minus the number of blocks of size (j + 1)× (j + 1) or larger. Thus the number of

blocks of size j × j in the Jordan canonical form of [uλ]M is

dim ker([uλ]
j
M)− dim ker([uλ]

j−1
M )− dim ker([uλ]

j+1
M )+ dim ker([uλ]

j
M) =

2dim ker([uλ]
j
M)− dim ker([uλ]

j−1
M )− dim ker([uλ]

j+1
M ) .

This is equivalent to

−2(rank([uλ]M
j
M))+rank([uλ]M

j−1
M )+rank([uλ]M

j+1
M ),

as desired.

We provide a fact to explain how we calculate the rank of a matrix when the

rank is not immediately clear, as is the case for a matrix in Jordan canonical form.

Fact 1.4.9. The rank of a matrix is the size of the largest nonzero minor. This fact

comes from the proof of Theorem 1 in [11].

We now continue with an example showing various representation matrices and

their Jordan canonical form. In part of this example, we calculate the rank of a

matrix by finding the largest nonzero ideal generated by minors. After the example,

we will formalize the process of calculating rank. For now, the focus is on how the

Jordan canonical form of [uλ]M is affected by changes in λ.

Example 1.4.10. Throughout this example the underlying field k is Z/pZ and λ is

chosen such that λi = 1 for all i. Let M = (z1) be an A2
3-module and fix the basis
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of M as {z1, z
2
1 , z1z2, z

2
1z2, z1z

2
2 , z

2
1z

2
2}. We first calculate [uλ]M and then the rank of

the powers of [uλ] needed to determine the Jordan canonical form. Since p = 3, the

Jordan canonical form depends on the rank of [uλ]0M , [uλ]M , [uλ]2M and [uλ]3M . We find

that in this case

[uλ]M =



0 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0


and rank[uλ]M = 4 . The rank of [uλ]0M is the size of [uλ]M or 6 in this case. We find

[uλ]
2
M =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

0 1 2 0 0 0


and calculate that rank([uλ]

2
M) = 2. In this case [uλ]

3
M = 0. The Jordan canonical

form then has −2(4) + 6 + 2 = 0 blocks of size 1 × 1, −2(2) + 4 + 0 = 0 blocks of
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size 2× 2, −2(0) + 2 + 0 = 2 blocks of size 3× 3 and no blocks of any larger size. In

summary, the Jordan canonical form of [uλ]M is

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


which corresponds to the module decomposition M ∼= k[uλ]

2.

Next, we letM = A3
2 as anA3

2-module, and fix the basis as {1, z1, z2, z3, z1z2, z1z3, z2z3, z1z2z3}.

We again seek to find [uλ]M , the rank of the powers of [uλ]M , and the Jordan canonical

form. We calculate

[uλ] = 

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 1 0



.

19



with rank[uλ]M = 4 and since p = 2, [uλ]2M = 0. The decomposition has −2(4)+8+0 =

0 blocks of size 1× 1 and −2(0) + 4 + 0 = 4 blocks of size 2× 2. The Jordan canonical

form is then 

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0


which corresponds to a module decomposition of k[uλ]

4.

Finally, we letM = A4
2 as anA4

2-module and fix the basis as {1, z1, z2, z3, z4, z1z2, z1z3,

z1z4, z2z3, z2z4, z3z4, z1z2z3, z1z3z4, z1z2z4, z2z3z4, z1z2z3z4}. We calculate that

[uλ]M=



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0


with [uλ]2M = 0. The rank of [uλ]M is 8 and thus there are −2(10) + 16 + 1 = 0 blocks

of size 1× 1 and −2(0) + 8 + 0 = 8 blocks of size 2× 2. The module decomposition is

M ∼= k[uλ]
8.

Each part of the previous example relied heavily on the calculation of the rank

of the powers of [uλ]. We use the following notation in situations where the rank of a

matrix is calculated.
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Definition 1.4.11. Let Ig(X) be the ideal generated by the g × g minors of a d× d

matrix X where 1 ≤ g ≤ d.

We now employ Ig(X) to determine the number of Jordan blocks. The following

example gives the ideal that determines the rank of the powers of [uλ]M .

Example 1.4.12. LetM = (z1z2) be anA2
3-module with fixed basis {z1z2, z

2
1z2, z1z

2
2 , z

2
1z

2
2}.

To determine the Jordan canonical form of [uλ]M we need to calculate [uλ]M , [uλ]
2
M

and [uλ]
3
M .

[uλ]M =



0 0 0 0

λ1 0 0 0

λ2 0 0 0

0 λ2 λ1 0


, [uλ]

2
M =



0 0 0 0

0 0 0 0

0 0 0 0

2λ1λ2 0 0 0


,

and [uλ]
3
M = 0. Here I3([uλ]M) = 0, I2([uλ]M) = (λ1λ2, λ

2
1, λ

2
2), I1([uλ]M) = (λ1, λ2),

I3([uλ]
2
M) = 0, I2([uλ]

2
M) = 0, and I1([uλ]

2
M) = (2λ1λ2). Now the choice of uλ

determines the Jordan canonical form. Suppose the underlying field is Z/3Z. If

uλ = z2, then [uλ]M has rank 2 and [uλ]
2
M has rank 0. The Jordan canonical form

here is 

0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0


.

If uλ = z1 + z2, then [uλ]M has rank 2 and [uλ]
2
M has rank 1. The Jordan canonical

form is then 

0 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0


.
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There is no uλ here that will yield a matrix of a single 4× 4 block.

By changing the choice of uλ, we can change the Jordan canonical form of

[uλ]M in some cases but not in others. Similarly, changing n and p can change the

Jordan canonical form of [uλ]M in some cases but not in others. In the next chapter

we create generic matrices in order to study the changes that a choice of Anp -module

or λ can make on [uλ]M .
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CHAPTER 2

Constructing a Generic Representation Matrix

2.1 Construction and Notation

For each 1 ≤ i ≤ n, we will construct a d× d generic matrix that will represent

[zi]M , where M is an unspecified d-dimensional module. We begin by discussing

generic matrices in general. The construction of generic matrices is based on a similar

construction found in [5] . To begin, we offer an example of the construction of an

insufficient matrix and highlight why it is insufficient.

Example 2.1.1. Consider the polynomial ring k[xi|1 ≤ i ≤ d2] where the xi’s are

indeterminates and suppose X is a square matrix with entries xi. If we fix d = 2, we

have

X =

x1 x2

x3 x4

.

This matrix is of the right size to represent all linear transformations on a two

dimensional k-vector space. For an Anp -module, we know the entries of [zi]M are in

k. Replacing the xi by an arbitrary choice of elements of k would not be enough to

guarantee that Xp = 0, which is a defining property of Anp -modules. Additionally, if

X represents [zi]M for some i, then we need notation that denotes all of the other

[zj ]M where i 6= j. Our objective is to construct a generic [zi]M in order to later build

a generic [uλ]M . Note that using this X as a representation matrix is not a good way

to represent [uλ]M since this choice of X does not encode the impact of changing the

values of the λi’s in uλ. Creating a single matrix of indeterminates of the right size is

not sufficient to represent all [zi]M , where M is of a fixed dimension.

This leads us to our definition of Xi.
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Definition 2.1.2. For 1 ≤ i ≤ n, let Xi be a d× d matrix of indeterminates from

the polynomial ring k[xi,r,s|1 ≤ i ≤ n, 1 ≤ r, s ≤ d]. Thus the indeterminate xi,r,s is

the entry in row r and column s of the matrix Xi. We display Xi below.

Xi =



xi,1,1 xi,1,2 xi,1,3 · · · xi,1,d−2 xi,1,d−1 xi,1,d

xi,2,1 xi,2,2 xi,2,3 · · · xi,2,d−2 xi,2,d−1 xi,2,d

xi,3,1 xi,3,2 xi,3,3 · · · xi,3,d−2 xi,3,d−1 xi,3,d

· · · · · · · · · · · · · · · · · · · · ·

xi,d−2,1 xi,d−2,2 xi,d−2,3 · · · xi,d−2,d−2 xi,d−2,d−1 xi,d−2,d

xi,d−1,1 xi,d−1,2 xi,d−1,3 · · · xi,d−1,d−2 xi,d−1,d−1 xi,d−1,d

xi,d,1 xi,d,2 xi,d,3 · · · xi,d,d−2 xi,d,d−1 xi,d,d


The Xi have a fixed size of d×d since they will represent a module of dimension

of d. We give an example of constructing Xi where d = 3.

Example 2.1.3. First, we let d = 3 and display X1.

X1 =


x1,1,1 x1,1,2 x1,1,3

x1,2,1 x1,2,2 x1,2,3

x1,3,1 x1,3,2 x1,3,3


We want X1 to represent all possible [z1]M where the underlying vector space of M is

3-dimensional. Notice that X1 has nine entries and therefore corresponds to a point

in A9.

We want to establish the correspondence between a generic matrix and a point

in affine space. To achieve this we introduce the following notation.

Definition 2.1.4. Let α be a point in nd2-dimensional affine space, And
2
. More

specifically, let α be the ordered nd2-tuple (αi,r,s) where 1 ≤ i ≤ n and 1 ≤ r, s ≤ d.

We take the lexicographic order on α with priority on i, r and then s. Keep in mind

we will only introduce a specific α in the context of a fixed basis.
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This definition purposely mirrors the definition of Xi. Hence if we want to specify

n matrices of size d × d, we can replace the indeterminates xi,r,s from the Xi with

αi,r,s. The following example illustrates this substitution of α for the indeterminates.

Example 2.1.5. Let M be an A1
p-module of dimension 2 with representation matrix

[z1]M =

0 0

1 0

.

In other words, [z1]M represents the linear transformation M
z1−→M on the underlying

vector space of M for a fixed basis. This matrix corresponds to the point α = (0, 0, 1, 0)

in A4 as follows. Since d = 2,

X1 =

x1,1,1 x1,1,2

x1,2,1 x1,2,2

.

Choose α such that α1,1,1 = 0, α1,1,2 = 0, α1,2,1 = 1 and α1,2,2 = 0. Now we can replace

the indeterminates ofX1 with the corresponding values of α. The resulting matrix after

replacement is [z1]M . If we instead choose α such that α1,1,1 = 1, α1,1,2 = 0, α1,2,1 = 0

and α1,2,2 = 1, then after replacing the indeterminates of X1 we have the matrix1 0

0 1

.

This matrix is not the representation matrix [z1]M for a finitely generated Anp -module

M , since if it were, then [z1]pM = 0. Therefore we need to restrict α to guarantee the

result is a representation matrix of some Anp -module.

Recall that we defined Ig(X) in Definition 1.4.11. Let Q′ be the homogeneous

ideal I1(Xi) of k[xi,r,s|1 ≤ i ≤ n, 1 ≤ r, s ≤ d], in other words Q′ is the ideal generated

by the entries of Xi. Let V (Q′) be the affine subvariety of And
2

corresponding to

Q′. We introduce Q′ now informally as any ideal and will later use the same idea

to define a specific homogeneous ideal Q that allows us to ensure a chosen α meets
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required conditions such that α corresponds to an Anp -module. The following example

illustrates Q′.

Example 2.1.6. We fix d = 3 and consider Q′ = I1(X).

Q′ = (x1,1,1, x1,1,2, x1,1,3, x1,2,1, x1,2,2, x1,2,3, x1,3,1, x1,3,2, x1,3,3)

We observe that this is indeed a homogeneous ideal. In this case the affine variety of

Q′ has 9 defining equations. They are all of the form

x1,r,s = 0.

Therefore the corresponding variety is an intersection of nine hyperplanes.

We need to construct an ideal Q using the defining equations of a finitely

generated Anp -module. To this end, the generic representation matrix needs to exhibit

commutativity and the property that each Xp
i = 0. Up until this point, the parameter

p has not played a role in this construction of the generic matrix. We will use p in

the ideal Q in the definition that follows.

Definition 2.1.7. Let Q be the homogeneous ideal of k[xi,r,s|1 ≤ i ≤ n, 1 ≤ r, s ≤ d]

generated by the entries of the matrices XiXj − XjXi for i < j and Xp
i , where

1 ≤ i ≤ n for both. The variety in And
2

of Q is denoted V (Q).

We construct Q with XiXj −XjXi to ensure commutativity and with Xp
i to

ensure the Xi are nilpotent. Recall that the zi in Anp commute and are nilpotent.

The following example illustrates the conditions XiXj −XjXi and Xp
i defining Q.

Example 2.1.8. Fix d = 2, n = 2, and p = 2. Then

X1 =

x1,1,1 x1,1,2

x1,2,1 x1,2,2

 and X2 =

x2,1,1 x2,1,2

x2,2,1 x2,2,2

.

The Xi matrices represent the [zi]M . Recall from Fact 1.4.5 that the [zi]M are

necessarily nilpotent and commute with each other. With only X1 and X2, having the

entries of X1X2−X2X1 in Q is sufficient to guarantee that [z1]M and [z2]M commute.

The four entries in the matrix X1X2 −X2X1 are:
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x1,1,1x2,1,1 − x1,1,2x2,2,1

x1,1,2x2,1,2 − x1,1,2x2,2,2

x1,2,1x2,1,1 − x1,2,2x2,2,1

x1,2,1x2,1,2 − x1,2,2x2,2,2.

With these entries included as generators of the ideal Q, the linear transformations

represented are guaranteed to have the commutativity desired. The other condition

imposed by Q is that X2
1 = 0 and X2

2 = 0. In this case, X2
1 and X2

2 determine a

further eight generators of Q, namely,

x2
1,1,1 − x1,1,2x1,2,1

x1,1,1x1,2,1 − x1,1,2x1,2,2

x1,2,1x1,1,1 − x1,2,2x1,2,1

x1,2,1x1,1,2 − x2
1,2,2

x2
2,1,1 − x2,1,2x2,2,1

x2,1,1x2,2,1 − x2,1,2x2,2,2

x2,2,1x2,1,1 − x2,2,2x2,2,1

x2,2,1x2,1,2 − x2
2,2,2.

Using all twelve of these elements of k[xi,r,s|1 ≤ i ≤ n, 1 ≤ r, s ≤ d], we obtain

Q = I1(X1X2 −X2X1) + I1(X2
1 ) + I1(X2

2 ).

We can now guarantee that a chosen α corresponds to a valid Anp -module if

α ∈ V (Q).

Next, we give an example looking at a case of α ∈ V (Q).

Example 2.1.9. Fix d = 3, p = 3, and n = 2. Choose α such that α1,3,2 = 1, α2,2,1 =

1, and α2,3,2 = 1 with all other αi,r,s = 0. After replacing the indeterminates of X1

and X2 with the corresponding components of α,
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X1 becomes


0 0 0

0 0 0

0 1 0

 and X2 becomes


0 0 0

1 0 0

0 1 0

.

We want to check if α ∈ V (Q). We find that X3
1 = 0 and X3

2 = 0. However,

X1X2 −X2X1 6= 0. If we instead choose α such that either α1,3,2 = 1, α2,2,1 = 0, and

α2,3,2 = 1, or if α1,3,2 = 1, α2,2,1 = 1, and α2,3,2 = 0, we find that X1X2 −X2X1 = 0

and α ∈ V (Q). This means that for α to be in V (Q) either α1,3,2 = 0 or α2,2,1 = 0.

In the next section we will improve the generic matrix to represent [uλ]M .

2.2 Generic Matrices after Restriction

In this section, we discuss how the generic representation matrix for [zi]M can

be used to construct a generic representation matrix for [uλ]M . We can both add

the Xi together and scale the Xi by an element of k. We intentionally defined α so

that when every αi,r,s is specified for all i, r, and s, the number of components in

α is enough to substitute all indeterminates in X1, X2, ..., Xn. We offer an example

augmenting a sum of Xi with a specific λ.

Example 2.2.1. Let d = 2, n = 2, fix λ, and suppose the Anp -module M has

representation matrix

[uλ]M =

 0 0

λ1 + λ2 0

.

The matrix [uλ]M can be obtained from X1 +X2 by substituting in

α = (0, 0, λ1, 0, 0, 0, λ2, 0)

for the indeterminates xi,r,s. However, this is not a desirable choice of α because we

want to be able to choose an α corresponding to an Anp -module and then account

separately for alternative choices of λ. To achieve this, suppose we consider λ1X1 +
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λ2X2 instead of X1 +X2. Now we can substitute αi,r,s for the indeterminates xi,r,s

where

α = (0, 0, 1, 0, 0, 0, 1, 0)

and have the result equal [uλ]M .

We can now define the generic representation matrix Uλ for uλ.

Definition 2.2.2. For a chosen λ, we define the d× d matrix

Uλ = λ1X1 + λ2X2 + ...+ λnXn.

We display Uλ below.

Uλ =



λ1x1,1,1 + λ2x2,1,1 + ...+ λnxn,1,1 · · · λ1x1,1,d + ...+ λnxn,1,d

λ1x1,2,1 + λ2x2,2,1 + ...+ λnxn,2,1 · · · λ1x1,2,d + ...+ λnxn,2,d

· · · · · · · · ·

λ1x1,d,1 + λ2x2,d,1 + ...+ λnxn,d,1 · · · λ1x1,d,d + ...+ λnxn,d,d


We can do something similar for a fixed module and generic uλ.

Definition 2.2.3. Let α ∈ V (Q) and let Λi be indeterminates where 1 ≤ i ≤ n. We

define the d× d matrix

UΛ(α) = Λ1X1(α) + Λ2X2(α) + ...+ ΛnXn(α)

where Xi(α) is Xi after substitution by the corresponding entries of α. We display

UΛ(α) below.

UΛ(α) =



Λ1α1,1,1 + Λ2α2,1,1 + ...+ Λnαn,1,1 · · · Λ1α1,1,d + ...+ Λnαn,1,d

Λ1α1,2,1 + Λ2α2,2,1 + ...+ Λnαn,2,1 · · · Λ1α1,2,d + ...+ Λnαn,2,d

· · · · · · · · ·

Λ1α1,d,1 + Λ2α2,d,1 + ...+ Λnαn,d,1 · · · Λ1α1,d,d + ...+ Λnαn,d,d


We have a final definition for the case of a generic module and a generic

subalgebra.
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Definition 2.2.4. Fix d, n, and p. Let Λi for 1 ≤ i ≤ n be indeterminates. We

define the d× d matrix

UΛ = Λ1X1 + Λ2X2 + ...+ ΛnXn.

Below we display UΛ.

UΛ =



Λ1x1,1,1 + Λ2x2,1,1 + ...+ Λnxn,1,1 · · · Λ1x1,1,d + ...+ Λnxn,1,d

Λ1x1,2,1 + Λ2x2,2,1 + ...+ Λnxn,2,1 · · · Λ1x1,2,d + ...+ Λnxn,2,d

· · · · · · · · ·

Λ1x1,d,1 + Λ2x2,d,1 + ...+ Λnxn,d,1 · · · Λ1x1,d,d + ...+ Λnxn,d,d


The relationship between the indeterminate Λ and λ ∈ An is the same as that

of xi,r,s to αi,r,s. We construct UΛ using Λ and xi,r,s, and UΛ is the set of all possible

[uλ]M . Using λ and α, we can replace indeterminates with specific values and either

select a single [uλ]M from the set of all possible [uλ]M or replace only a few of the

indeterminates in Uλ and get a subset of all possible [uλ]M .

Definition 2.2.5. If the entries of a generic matrix Xi, for 1 ≤ i ≤ n, are replaced

by a specific choice of α ∈ V (Q), then each Xi represents a linear transformation

V → V with respect to some fixed basis of a d-dimensional vector space V. Since

α ∈ V (Q), this gives the vector space V the structure of an Anp -module, which we call

Mα. In other words, Mα is the Anp -module corresponding to this choice of α. Now

[zi]Mα = Xi(α) and consequently, [uλ]Mα = Uλ(α).

The following examples unpack the notation of the prior definitions. The first

shows how a choice of α refers to a matrix and finds ideals of that matrix. Next, we

highlight that the process of substituting an α into an Xi and then taking an ideal of

minors commutes with first finding the ideal of minors of Xi and then substituting in

α.

Example 2.2.6. Fix d = 2 and n = 2. Let α ∈ V (Q) where
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α = (α1,1,1, α1,1,2, α1,2,1, α1,2,2, α2,1,1, α2,1,2, α2,2,1, α2,2,2).

Here UΛ = Λ1X1 + Λ2X2 and we have

UΛ(α) =

Λ1α1,1,1 + Λ2α2,1,1 Λ1α1,1,2 + Λ2α2,1,2

Λ1α1,2,1 + Λ2α2,2,1 Λ1α1,2,2 + Λ2α2,2,2

.

The ideals I1(UΛ(α)) and I2(UΛ(α)) can be calculated here. The reason for why we are

interested in such ideals will be discussed later, throughout Chapter 3. I1(UΛ(α)) =

(Λ1α1,1,1 + Λ2α2,1,1,Λ1α1,1,2 + Λ2α2,1,2,Λ1α1,2,1 + Λ2α2,2,1,Λ1α1,2,2 + Λ2α2,2,2).

I2(UΛ(α)) =

(Λ2
1α1,1,1α1,2,2 + Λ1Λ2α1,2,2α2,1,1 + Λ1Λ2α1,1,1α2,2,2 + Λ2

2α2,1,1α2,2,2

-Λ2
1α1,1,2α1,2,1 − Λ1Λ2α1,2,1α2,1,2 − Λ1Λ2α1,1,2α2,2,1 − Λ2

2α2,1,2α2,2,1).

Now if we specify α = (0, 0, 1, 0, 0, 0, 1, 0), then

I1(UΛ(α)) = (Λ1 + Λ2) and I2(UΛ(α)) = (0).

No part of this example depended upon the choice of p.

The second example examines the process of choosing an α that lies in V (Q).

Recall that choosing α ∈ V (Q) guarantees that UΛ(α) leads to an Anp -module.

Example 2.2.7. Fix n = 2, p = 2, and d = 2. Suppose we want to find UΛ(α) where

α = (0, 0, 1, 0, 0, 0, 1, 0) ∈ A8. Thus

X1X2 −X2X1 =

 0 0

0 0

−
 0 0

0 0

= 0, X2
1 = 0, and X2

2 = 0.

This confirms that this choice of α is indeed in V (Q). Hence, we obtain

UΛ(α) =

 0 0

λ1 + λ2 0

.

Before discussing further concepts in algebraic geometry it is worth highlighting

the dimension of, and relationship between, the objects that are being studied. The

entries of UΛ involve the variables xi,r,s and Λi. Thus UΛ corresponds to the affine

space And
2 × An. For a fixed α, UΛ(α) corresponds to the affine space An. Instead of
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fixing an α, if we instead fix λ, then Uλ corresponds to the affine space And
2
. This

correspondence is illustrated by the diagrams below.

And
2 × An

And
2

An

UΛ

Uλ UΛ(α)

Recall that UΛ is equal to a specific [uλ]M after substituting both the nd2 indetermi-

nates xi,r,s and the n indeterminates Λi. A point in And
2×An can be used to substitute

the nd2 + n indeterminates. Additionally, we can consider the underlying polynomial

ring from which the generic matrices draw indeterminates. More specifically, UΛ

corresponds to

k[xi,r,s,Λi|1 ≤ i ≤ n, 1 ≤ r, s ≤ d],

a polynomial ring in nd2 + n variables. Similarly, Uλ corresponds to the polynomial

ring in nd2 variables,

k[xi,r,s|1 ≤ i ≤ n, 1 ≤ r, s ≤ d].

We also find UΛ(α) corresponds to the polynomial ring in n variables,

k[Λi|1 ≤ i ≤ n].

The chart below illustrates the polynomial ring corresponding to the generic matrices.

k[xi,r,s,Λi]

k[xi,r,s] k[Λi]

The UΛ, Uλ, UΛ(α), and Uλ(α) notation will be used extensively for the rest of the

thesis as tools to analyze freeness. In Chapter 3, we define freeness.
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CHAPTER 3

Freeness of Anp -modules restricted to k[uλ]

3.1 Analyzing the Freeness of Modules After Restriction

From this point in the thesis we focus on the freeness of Anp -modules after

restriction to k[uλ]. For this reason we are interested in [uλ]M and the generic

representation matrices rather than an individual [zi]M . To be clear, freeness will

be studied only for Anp -modules after restriction to k[uλ]. We show in Proposition

3.1.7 that if a module is free as an Anp -module, then it is free at every restriction,

and therefore is not interesting. We know from Chapter 1 that after restriction to

k[uλ], an Anp -module decomposes as a direct sum of cyclic submodules. This is the

key idea behind the following definition. When we described module decompositions

in Section 1.3, the mi for 1 ≤ i ≤ p entirely determined the decomposition. The

following definition states that freeness is equivalent to mi = 0 for all i 6= p in the

decomposition.

Definition 3.1.1. For an Anp -module M , M ↓ k[uλ] is free if the decomposition is a

direct sum of copies of k[uλ]. The corresponding representation matrix will have a

Jordan canonical form of only blocks of size p× p. Throughout the thesis we refer to

a free decomposition after restriction to k[uλ] simply as freeness.

In the following example we take an Anp -module and investigate the freeness of

the module after restriction k[uλ] as λ varies.

Example 3.1.2. Consider the 3-dimensional A3
3-module Mα defined by α ∈ V (Q) ⊆

A27, where

α = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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This choice of α yields

UΛ(α) =


0 0 0

Λ1 + Λ2 0 0

0 Λ1 + Λ2 0

.

Now we can choose various λ and observe freeness. Suppose λ = (1, 0, 0). Then

Uλ(α) =


0 0 0

1 0 0

0 1 0

.

This matrix is already in Jordan canonical form so we know

Mα ↓ k[uλ] ∼= k[uλ]

showing Mα is free after restriction to k[uλ]. We get the same decomposition and

Jordan canonical form if λ = (0, 1, 0). However if we instead use λ = (0, 0, 1) then

Uλ(α) =


0 0 0

0 0 0

0 0 0


and we find that

Mα ↓ k[uλ] ∼= k⊕ k⊕ k.

Hence, this choice of λ demonstrates that the restricted module need not be free.

The following example unpacks the relationship between freeness and the module

decomposition for a specific module.

Example 3.1.3. We will approach the concept of freeness after restriction from two

different perspectives. First, suppose we have
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[uλ]M =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0


.

We purposely do not specify p, n, or uλ for the moment. We will observe freeness for

various values of p. Since p is necessarily prime, we consider the cases of p = 2, 3, or

5. If p = 5, then from Propostion 1.4.8 and the fact that [uλ]
2
M = 0 we find

M ∼= [k[uλ]/(u
2
λ)]

3 .

Thus when p = 5, M ↓ k[uλ] is not free. If p = 3, we again have [uλ]
2
M = 0 and find

M ↓ k[uλ] ∼= [k[uλ]/(u
2
λ)]

3.

Hence M ↓ k[uλ] is not free. If p = 2, then

M ↓ k[uλ] ∼= k[uλ]
3

so M ↓ k[uλ] is free.

For the second perspective on freeness in this example, let M be an Anp -module

where

M ↓ k[uλ] ∼= k[uλ]
2.

We want to consider possibilities for [uλ]M and n, p, and d. We know that the matrix

must consist of two p× p blocks, and this decomposition necessitates having d = 2p.
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If p = 2 then d = 4 and so on. When p = 3 then d = 6 and the Jordan canonical

form of [uλ]M is 

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


.

Generalizing some of the findings from the previous example, we have the

following result.

Proposition 3.1.4. In order to have a free decomposition after restriction to k[uλ],

the underlying k-vector space of an Anp -module must have dimension a multiple of p.

For this reason, going forward, we consider only modules that have dimension

a multiple of p.

Proof. Let M be an Anp -module restricted to k[uλ] of dimension d. We know from

Corollary 1.3.4 that

M ∼= (k)m1 ⊕ (k[uλ]/(u
2
λ))

m2 ⊕ ...⊕ (k[uλ]/(u
p−1
λ ))mp−1 ⊕ (k[uλ])

mp

In order for M ↓ k[uλ] to be free, we need

M ↓ k[uλ] ∼= (k[uλ])
mp .

In other words, mi = 0 for all i 6= p and mp 6= 0. Therefore d = dim(M) = mpp.

In other words, for M ↓ k[uλ] to be free, then d = νp for some positive integer

ν = mp.

In terms of [uλ]M , M ↓ k[uλ] is free if the Jordan canonical form consists entirely

of p× p blocks. Note that having the dimension be a multiple of p does not mean
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that an Anp -module restricted to k[uλ] has a free decomposition. This is simply a

requirement for freeness to potentially occur. Recall that for the rest of the thesis we

assume that d is a multiple of p.

Definition 3.1.5. Let ν be the unique integer where d = pν.

When M ↓ k[uλ] is free then the Jordan canonical form of [uλ]M consists entirely

of ν blocks of size p× p. The newly defined ν is immediately useful in the following

proposition.

Proposition 3.1.6. Fix d = νp. Then [uλ]M is free if and only if rank([uλ]p−1
M ) = ν.

Proof. From Proposition 1.4.8 we know that the number of j× j blocks in the Jordan

canonical form of [uλ]M is

−2 rank([uλ]
j
M)+rank([uλ]

j−1
M )+rank([uλ]

j+1
M ).

We also know that [uλ]p = 0 and thus [uλ]p+1 = 0. Applying Proposition 1.4.8 where

j = p− 1, we find the number of p× p blocks in the Jordan canonical form of [uλ]M is

rank([uλ]
p−1
M ).

This means that rank([uλ]p−1
M ) entirely determines the number of p× p blocks in the

Jordan canonical form. Knowing that freeness requires ν blocks of size p× p and that

rank([uλ]p−1
M ) is the number of p× p blocks, we conclude M ↓ k[uλ] is free if and only

if rank([uλ]
p−1
M ) = ν.

This gives us a powerful tool for calculating whether or not [uλ]M exhibits

freeness. At this point we can make a statement on the freeness of Anp as a module

over itself.

Proposition 3.1.7. Let M = Anp be the free Anp -module of rank one. Then for any

λ, M ↓ k[uλ] is free.
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Proof. Let B be an ordered basis for M and fix i and j where i 6= j and 1 ≤ i, j ≤ n.

Let φ : M → M be the algebra homomorphism defined by φ(zi) = zj, φ(zj) = zi,

and φ(zk) = zk for all k 6= i, j. We call B′ = φ(B) a reordering of B. Note that if

B = (b1, b2, ..., bpn), then φ(B) is the ordered pn-tuple (φ(b1), φ(b2), ..., φ(bpn)). Under

this reordered basis, we determine that [zi]M (using basis B) is the same matrix as

[zj]
′
M (using basis B′). Referencing Fact 1.4.2, [zj]M (using basis B) is conjugate

to [zj]
′
M (using basis B′). Thus [zi]M is conjugate to [zj]M . Next, we show [zi]M is

conjugate to [uλ]M for any λ where λi 6= 0. Note that uλ is required to have a nonzero

λk for some k, so a choice of such an i is possible. Let ψ : M → M be the algebra

homomorphism defined by ψ(zi) = uλ and ψ(zk) = zk for all k 6= i. Let ψ(B) = B′ be

the ordered pn-tuple (ψ(b1), ψ(b2), ..., ψ(bpn)). Then [zi]M (using basis B) is the same

matrix as [uλ]
′
M (using basis B′). Fact 1.4.2 shows that [uλ]

′
M is conjugate to [uλ]M .

Thus [zi]M is conjugate to [uλ]M when λi 6= 0. Due to conjugacy, we know that the

Jordan canonical form of [zi]M is the same as the Jordan canonical form of both [zj ]M

and [uλ]M . Recall that the dimension of Anp is pn. In the basis of monomials for M ,

one can easily check that for any i there are precisely pn−1 terms in the basis for M

containing zi. Consequently, we find that the rank of [zi]M is always ν = pn/p = pn−1.

Thus M = Anp is free as a k[zi]-module and therefore also as a k[uλ]-module for any

λ.

Corollary 3.1.8. For any α and λ, Iν(Uλ(α)p−1) is nonzero if and only if Mα ↓ k[uλ]

is free.

Since Uλ(α)p−1 is a matrix with entries in k we find that Iν(Uλ(α)p−1) is an

ideal of a field. We recognize that an ideal of a field must either be 0 or the entire

field. In the previous proposition and corollary we utilized the ideal Iν(Uλ(α)p−1)

and pointed out how this ideal determines freeness. For this reason, we refer to this
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as the ideal determining freeness. Later, we also consider ideals Iν(UΛ(α)p−1) and

Iν(U
p−1
λ ) of the polynomial rings k[Λi|1 ≤ i ≤ n] and k[xi,r,s|1 ≤ i ≤ n, 1 ≤ r, s ≤ d],

respectively, and discuss how they determine freeness.

3.2 The Main Theorem on Freeness and the Zariski Topology

In the category of Anp -modules where the underlying field is infinite, for example

when the field is algebraically closed, the number of non-isomorphic modules that

are free, as well as the number of non-isomorphic modules that are not free is vast

and certainly infinite in both cases. Therefore we need another means of discerning

when there are more modules satisfying freeness than not. To this end we employ the

Zariski topology.

Fact 3.2.1. The category of Anp -modules has infinite representation type when k is

an algebraically closed field and n ≥ 2.

We offer this fact with an explanation rather than a formal proof as this fact

is a combination of previous results in representation theory. Suppose we take a

minimal free resolution of k. We know that the ranks of the free modules in the

resolution increase and that the ranks strictly increase after a certain point from

part 2 in Theorem 7.3 of [2]. Each of the syzygy modules in the resolution is then a

module with more and more generators. In fact, there is no bound to the growth of

the number of generators. It is well-known that Anp is self-injective. The syzygies of

an indecomposable module over self-injective algebras are indecomposable. For these

reasons, the fact is true.

Consequently we will proceed by measuring the abundance of modules using

the Zariski Topology.
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Definition 3.2.2 (pg. 676, [10]). In affine k-space, Ak, we define the Zariski closed

sets to be those of the form

V (S) = {x ∈ Ak|f(x) = 0,∀f ∈ S}

where S is a set of polynomials in k variables over k. The complement of a Zariski

closed set is a Zariski open set. Additionally, V (S) = V ((S)) where (S) is the ideal

generated by the elements of S.

When the Zariski open set is nonempty (or nonzero in the homogeneous case)

we regard it as a large set. When the Zariski closed set is not the whole space we

regard it as a small set. We will use the Zariski Topology to declare a subset of And
2

or An as Zariski open or closed. Recall that points in And
2

and An are denoted by α

or λ, respectively. The following example shows how to determine if a set is Zariski

open.

Example 3.2.3. We want to determine if a set A ⊂ A4 is Zariski open or closed

where

A = {α = (α1, α2, α3, α4) ∈ A4|α1 = α4}.

We find that A is a Zariski closed set in A4 by Definition 3.2.2 because A = V (x1−x4).

Before getting to the main theorem of this chapter we introduce a helpful

notation from Carlson [6].

Definition 3.2.4. Let M be an Anp -module. We define W (M) to be

W (M) = {λ ∈ An|M ↓ k[uλ] is not free }.

We call W (M) the rank variety of M .

In what follows we are interested in finding W (Mα) for α ∈ V (Q). We define a

similar notion in the case of a fixed λ ∈ An instead of a fixed α ∈ V (Q).

Definition 3.2.5. For a fixed λ ∈ An, the module variety Y (λ) of λ is

Y (λ) = {α ∈ V (Q)|Mα ↓ k[uλ] is not free}.

We now introduce a theorem directing the rest of the thesis.
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Theorem 3.2.6. The following subsets of An and V (Q) ⊆ And
2

are Zariski closed

sets:

1) For a fixed α ∈ V (Q),W (Mα).

2) For a fixed λ 6= 0 in An, Y (λ).

Proof. For the first case, let α ∈ V (Q). We know from Corollary 3.1.8 that Mα is

not free after substituting λi for the Λi in UΛ(Mα) if and only if Iν([Uλ(α)]p−1) = 0.

The expressions that define Iν([UΛ(α)]p−1) are polynomials in n variables over k with

indeterminates that are precisely the Λi. Therefore, the set of all choices of λ that

do not result in freeness after substitution is a Zariski closed subset of An. In other

words, W (Mα) is Zariski closed.

In the second case we fix λ. Again, we know from Corollary 3.1.8 that Uλ

represents an Anp -module that is not free after substituting αi,r,s for the xi,r,s if and

only if Iν([Uλ(α)]p−1) = 0. The expressions that define Iν([Uλ]p−1) are polynomials in

nd2 variables over k with indeterminates precisely the xi,r,s. Therefore, the set of α

that do not result in freeness after substitution is a Zariski closed subset of V (Q). In

sum, Y (λ) is Zariski closed.

Theorem 3.2.6 quantifies the abundance of freeness as is our goal in this chapter.

We offer an example applying Theorem 3.2.6 that shows the relevant ideals in great

detail.

Example 3.2.7. Fix d = 3, n = 2, and p = 3. We investigate the ideal defining

freeness Iν(U
p−1
Λ ) ⊂ k[xi,r,s,Λi], the rank variety W (Mα), and the module variety

Y (λ). To generate the ideal defining freeness, we first find

UΛ =


x1,1,1Λ1 + x2,1,1Λ2 x1,1,2Λ1 + x2,1,2Λ2 x1,1,3Λ1 + x2,1,3Λ2

x1,2,1Λ1 + x2,2,1Λ2 x1,2,2Λ1 + x2,2,2Λ2 x1,2,3Λ1 + x2,2,3Λ2

x1,3,1Λ1 + x2,3,1Λ2 x1,3,2Λ1 + x2,3,2Λ2 x1,3,3Λ1 + x2,3,3Λ2

 .
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Here p− 1 = 2 and ν = 1 so the ideal defining freeness is I1(U2
Λ) 6= 0.

More specifically,

I1(U2
Λ) = ((x1,1,1Λ1 + x2,1,1Λ2)2 + (x1,1,2Λ1 + x2,1,2Λ2)(x1,2,1Λ1 + x2,2,1Λ2) + (x1,1,3Λ1 +

x2,1,3Λ2)(x1,3,1Λ1 + x2,3,1Λ2),

(x1,1,1Λ1 + x2,1,1Λ2)(x1,1,2Λ1 + x2,1,2Λ2) + (x1,1,2Λ1 + x2,1,2Λ2)(x1,2,2Λ1 + x2,2,2Λ2) +

(x1,1,3Λ1 + x2,1,3Λ2)(x1,3,2Λ1 + x2,3,2Λ2),

(x1,1,1Λ1 + x2,1,1Λ2)(x1,1,2Λ1 + x2,1,2Λ2) + (x1,1,2Λ1 + x2,1,2Λ2)(x1,2,2Λ1 + x2,2,2Λ2) +

(x1,1,3Λ1 + x2,1,3Λ2)(x1,3,3Λ1 + x2,3,3Λ2),

(x1,2,1Λ1 + x2,2,1Λ2)(x1,1,1Λ1 + x2,1,1Λ2) + (x1,2,2Λ1 + x2,2,2Λ2)(x1,2,1Λ1 + x2,2,1Λ2) +

(x1,2,3Λ1 + x2,2,3Λ2)(x1,3,1Λ1 + x2,3,1Λ2),

(x1,2,1Λ1 + x2,2,1Λ2)(x1,1,2Λ1 + x2,1,2Λ2) + (x1,2,2Λ1 + x2,2,2Λ2)(x1,2,2Λ1 + x2,2,2Λ2) +

(x1,2,3Λ1 + x2,2,3Λ2)(x1,3,2Λ1 + x2,3,2Λ2),

(x1,2,1Λ1 + x2,2,1Λ2)(x1,1,2Λ1 + x2,1,2Λ2) + (x1,2,2Λ1 + x2,2,2Λ2)(x1,2,2Λ1 + x2,2,2Λ2) +

(x1,2,3Λ1 + x2,2,3Λ2)(x1,3,3Λ1 + x2,3,3Λ2),

(x1,3,1Λ1 + x2,3,1Λ2)(x1,1,1Λ1 + x2,1,1Λ2) + (x1,3,2Λ1 + x2,3,2Λ2)(x1,2,1Λ1 + x2,2,1Λ2) +

(x1,3,3Λ1 + x2,3,3Λ2)(x1,3,1Λ1 + x2,3,1Λ2),

(x1,3,1Λ1 + x2,3,1Λ2)(x1,1,2Λ1 + x2,1,2Λ2) + (x1,3,2Λ1 + x2,3,2Λ2)(x1,2,2Λ1 + x2,2,2Λ2) +

(x1,3,3Λ1 + x2,3,3Λ2)(x1,3,2Λ1 + x2,3,2Λ2),

(x1,3,1Λ1 + x2,3,1Λ2)(x1,1,2Λ1 + x2,1,2Λ2) + (x1,3,2Λ1 + x2,3,2Λ2)(x1,2,2Λ1 + x2,2,2Λ2) +

(x1,3,3Λ1 + x2,3,3Λ2)2)

We know from Theorem 3.2.6 that W (Mα) is a Zariski closed set and we proceed

by finding a choice of α that lies in the closed set. Choose a specific element of V (Q),

say

α = (0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

that satisfies the 27 equations defining V (Q). We find that

I1(UΛ(Mα)2) = (Λ1Λ2,Λ1, 2Λ1Λ2).
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We find from I1(UΛ(Mα)2) that freeness occurs only if λ1 is zero but λ2 can be

arbitrary.

Now suppose instead of fixing an α, we instead fix uλ = z1 + 2z2. With this

fixed λ and generic α, I1(U2
λ) =

((x1,1,1 + 2x2,1,1)2 + (x1,1,2 + 2x2,1,2)(x1,2,1 + 2x2,2,1) + (x1,1,3 + 2x2,1,3)(x1,3,1 + 2x2,3,1),

(x1,1,1 + 2x2,1,1)(x1,1,2 + 2x2,1,2) + (x1,1,2 + 2x2,1,2)(x1,2,2 + 2x2,2,2) + (x1,1,3 +

2x2,1,3)(x1,3,2 + 2x2,3,2),

(x1,1,1 + 2x2,1,1)(x1,1,2 + 2x2,1,2) + (x1,1,2 + 2x2,1,2)(x1,2,2 + 2x2,2,2) + (x1,1,3 +

2x2,1,3)(x1,3,3 + 2x2,3,3),

(x1,2,1 + 2x2,2,1)(x1,1,1 + 2x2,1,1) + (x1,2,2 + 2x2,2,2)(x1,2,1 + 2x2,2,1) + (x1,2,3 +

2x2,2,3)(x1,3,1 + 2x2,3,1),

(x1,2,1 + 2x2,2,1)(x1,1,2 + 2x2,1,2) + (x1,2,2 + 2x2,2,2)(x1,2,2 + 2x2,2,2) + (x1,2,3 +

2x2,2,3)(x1,3,2 + 2x2,3,2),

(x1,2,1 + 2x2,2,1)(x1,1,2 + 2x2,1,2) + (x1,2,2 + 2x2,2,2)(x1,2,2 + 2x2,2,2) + (x1,2,3 +

2x2,2,3)(x1,3,3 + 2x2,3,3),

(x1,3,1 + 2x2,3,1)(x1,1,1 + 2x2,1,1) + (x1,3,2 + 2x2,3,2)(x1,2,1 + 2x2,2,1) + (x1,3,3 +

2x2,3,3)(x1,3,1 + 2x2,3,1),

(x1,3,1 + 2x2,3,1)(x1,1,2 + 2x2,1,2) + (x1,3,2 + 2x2,3,2)(x1,2,2 + 2x2,2,2) + (x1,3,3 +

2x2,3,3)(x1,3,2 + 2x2,3,2),

(x1,3,1 + 2x2,3,1)(x1,1,2 + 2x2,1,2) + (x1,3,2 + 2x2,3,2)(x1,2,2 + 2x2,2,2) + (x1,3,3 + 2x2,3,3)2)).

Recall that if I1(Uλ(α)2) = 0 then the corresponding module is not free. Theorem

3.2.6 also proves that the α that yield freeness when substituted into Uλ(α) form a

closed set.

We end the chapter with a corollary to Theorem 3.2.6.

Corollary 3.2.8. An Anp -module M is free as an Anp -module if and only if the

restriction of M to k[uλ] is a free k[uλ]-module for every λ. In other words, W (Mα) =
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0 when Mα = Anp as an Anp -module. Furthermore, when Mα is isomorphic to
⊕

i k,

then W (Mα) = An.

By Proposition 3.1.7, Anp (viewed as an Anp -module) is free over k[uλ] for any

λ, therefore any free Anp -module is also free over k[uλ] for any λ. If Mα ↓ k[uλ] is

isomorphic to a direct sum of a finite number of copies of k as an Anp -module, then we

know α is identically 0 and thus Mα ↓ k[uλ] is not free for any λ. In the next chapter

we will fix an α and study the freeness of UΛ(α).
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CHAPTER 4

Fixed Module Freeness

4.1 Non-trivial Rank Varieties and Existence of Concrete Examples of Theorem

3.2.6

Theorem 3.2.6 shows that the W (Mα) and Y (λ) corresponding to non-freeness

are Zariski closed sets of their respective affine spaces. The question remains whether

these sets are nonzero and not the entire affine space. If the sets from this theorem

are indeed only zero, then there is not much to discuss or analyze. To show the sets

are nonzero, we need to be able to produce specific examples to show they contain

more than just zero. Recall from Section 3.1 that the dimension of the modules

considered is a multiple of p.

Fact 4.1.1. For a fixed α with Mα having dimension that is a multiple of p, it is

possible that W (Mα) is zero. One could choose Mα to be Anp as shown in Proposition

3.1.7. Corollary 3.2.8 states that W (Mα) = An when α is zero. For a fixed λ, Y (λ)

is nonzero since a choice of α such that Mα
∼=
⊕

k ⊕ Anp results in non-freeness.

Additionally, Y (λ) cannot be And
2

due to Proposition 3.1.7.

One easy example of an α that never corresponds to a free module after

restriction is an α where Uλ(α) is already in Jordan canonical form and the Jordan

blocks are not all maximally sized. This idea appears in the next example.

Example 4.1.2. Suppose d = 4, p = 2 and n = 1. Then if

α = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0),

45



UΛ(α) =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 Λ1 0


.

Regardless of the choice of λ, Uλ(α) does not have a Jordan canonical form of two

blocks of size 2× 2.

Even though W (Mα) is zero for some α, using α where W (Mα) 6= 0, we can

still explore some interesting questions. What if we want the dimension of W (Mα) to

be a certain value? We know the dimension of W (Mα) is between 0 and n. We look

for an α where the λ’s resulting in non-freeness after restriction form a line in A2, for

example.

Example 4.1.3. Consider the case of n = 2, d = 2, and p = 2. Here, we choose

λ ∈ A2. Can we find an α where the λ resulting in non-freeness is the Λ1-axis? Recall

that the set of modules that are free after restriction is a Zariski open set in the

set of all Anp -modules where λ /∈ W (Mα). The generic representation matrix under

consideration is

UΛ =

x1,1,1Λ1 + x2,1,1Λ2 x1,1,2Λ1 + x2,1,2Λ2

x1,2,1Λ1 + x2,2,1Λ2 x1,2,2Λ1 + x2,2,2Λ2

 . (4.1)

We need to consider a specific choice of α for the desired λ’s to correspond to

non-freeness. Suppose α = (0, 0, 1, 0, 0, 0, 1, 0) yielding

UΛ(α) =

 0 0

Λ1 + Λ2 0

.

We find the ideal defining freeness here, I1(UΛ(α)), to be (Λ1 + Λ2). Our UΛ(α)

corresponds to a non-free module after restriction if λ1 + λ2 = 0. In A2, this

corresponds to the line Λ2 = −Λ1.

As another attempt, suppose α = (0, 0, 1, 0, 0, 0, 0, 0). In this case we have
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UΛ(α) =

 0 0

Λ1 0

.

Now the ideal defining freeness is generated by only Λ1 meaning the module is not

free on the Λ2-axis or when λ1 = 0. We could easily switch α to (0, 0, 0, 0, 0, 0, 1, 0) to

instead have the Λ1-axis be where non-freeness occurs. For two dimensions, we found

choices of α where a choice of λ on the line Λ2 = −Λ1, the Λ2-axis, or the Λ1-axis

result in a non-free Mα ↓ k[uλ].

The next example is similar to the last with d = 3.

Example 4.1.4. Let n = 2 and p = d = 3. Thus we have

UΛ =


x1,1,1Λ1 + x2,1,1Λ2 x1,1,2Λ1 + x2,1,2Λ2 x1,1,3Λ1 + x2,1,3Λ2

x1,2,1Λ1 + x2,2,1Λ2 x1,2,2Λ1 + x2,2,2Λ2 x1,2,3Λ1 + x2,2,3Λ2

x1,3,1Λ1 + x2,3,1Λ2 x1,3,2Λ1 + x2,3,2Λ2 x1,3,3Λ1 + x2,3,3Λ2

.

Can we find α such that UΛ(α) will correspond to a non-free module after restriction

for a choice of (λ1, λ2) on the Λ1-axis in A2? Inspired by Example 4.1.3, let α =

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), and thus

UΛ(α) =


0 0 0

0 0 0

Λ1 0 0

.

This time since p = 3, the ideal determining freeness is I1(UΛ(α)2). However, for this

choice of α we find UΛ(α)2 = 0. Thus, we need to choose a different α. Instead, if we

use α = (0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) we have

UΛ(α) =


0 0 0

Λ1 0 0

0 Λ1 0


so the ideal defining freeness is I1(UΛ(α)2) = (Λ1). This ideal will only be 0 after

substitution if λ1 = 0. This means UΛ(α) corresponds to a non-free module after

restriction if we choose (λ1, λ2) on the Λ1-axis in A2, that is, λ1 6= 0 and λ2 = 0.
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In the previous example found the α that result in non-freeness for any λ on a

single axis. What if instead, we are looking for freeness on a two dimensional plane

in A3? We offer an example where n = 3 and we find an α where freeness occurs for

λ on a plane of A3.

Example 4.1.5. Suppose n = 3, d = 3, and p = 3. We want a point α in A18 such

that UΛ(α) corresponds to non-freeness after substitution by λ only when λ is on

the Λ1Λ2-plane of A3. Since freeness is directly connected to Jordan canonical form

it makes sense to choose α such that Uλ(α) is a matrix in Jordan canonical form.

Suppose we choose α such that

UΛ(α) =


0 0 0

Λ1α1,2,1 + Λ2α2,2,1 + Λ3α3,2,1 0 0

0 Λ1α1,3,2 + Λ2α2,3,2 + Λ3α3,3,2 0

.

The ideal we want to consider in order to determine freeness is

I1(UΛ(α)2) = (Λ2
1α1,2,1α1,3,2 + Λ1Λ2α2,2,1α1,3,2 + Λ1Λ3α3,2,1α1,3,2 + Λ1Λ2α1,2,1α2,3,2 +

Λ2
2α2,2,1α2,3,2 + Λ2Λ3α3,2,1α2,3,2 + Λ1Λ3α1,2,1α3,3,2 + Λ2Λ3α2,2,1α3,3,2 + Λ2

3α3,2,1α3,3,2).

Knowing the ideal determining freeness, we can give more specific values for αi,r,s and

easily check freeness. If α = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

then

I1(U2
Λ) = (Λ2

1 + Λ1Λ2 + Λ2
2).

Here I1(U2
Λ) corresponds to freeness in a nontrivial way but not on the Λ1Λ2-plane as

desired. If instead

α = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0)

then I1(U2
Λ) is simply (Λ2

3). With this α, (λ1, λ2, λ3) corresponds to a non-free module

after restriction if and only if λ3 = 0. In other words, the module is not free on the

Λ1Λ2-plane.
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In A2 and A3 we were able to find modules where the choice of λ made Uλ(α)

non-free if λ was on a line or on a plane, respectively. For such cases, being able to find

a module that is free on the Λ1-axis in A2 is really not a different problem than finding

a module that is non-free on the Λ2-axis in A2. This leads us to the main guiding

question for this chapter. Can we find a specific α such that the corresponding module

is not free after restriction on a j-dimensional linear subspace for any 0 ≤ j ≤ n?

The following section begins to address the answer to this question.

4.2 Dimensions of Rank Varieties

In this section we construct and use a certain ordered basis of Anp with respect to

which the representation matrices are easier to understand. Throughout this section

this is the only ordered basis of Anp we use. The notation for this ordered basis involves

the following: consider the ordered k-tuple B = (b1, b2, ..., bk), bi ∈ Anp . For x ∈ Anp

we write Bx for the k-tuple (b1x, b2x, ..., bkx). For two tuples B = (b1, b2, ..., bk)

and B′ = (b′1, b
′
2, ..., b

′
k′), we write B t B′ to mean (b1, b2, ..., bk, b

′
1, b
′
2, ..., b

′
k′). The

aforementioned ordered basis is defined recursively as follows.

Definition 4.2.1. Define Bk to be an ordered basis of Akp where

B1 = (1, z1, z
2
1 , ..., z

p−1
1 )

B2 = B1 t z2B1 t z2
2B1 t ... t zp−1

2 B1

...

Bk = Bk−1 t zkBk−1 t z2
kBk−1 t ... t zp−1

k Bk−1.

We emphasize that Bk is an ordered tuple.

Note that Bk is a basis of monomials for Akp. We know the module decomposition

of Anp as an Anp -module after restriction to any k[uλ] from Proposition 3.1.7. We have
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not yet shown the form of the representation matrix of Anp ↓ k[uλ] using the ordered

basis. The next example finds Bk for the case where n = 3 and p = 3.

Example 4.2.2. Suppose we want to write the basis B3 for the underlying k-vector

space of A3
3. Displayed below are B1, B2, and B3.

B1 = (1, z1, z
2
1)

B2 = (1, z1, z
2
1 , z2, z1z2, z

2
1z2, z

2
2 , z1z

2
2 , z

2
1z

2
2)

B3 = (1, z1, z
2
1 , z2, z1z2, z

2
1z2, z

2
2 , z1z

2
2 , z

2
1z

2
2 ,

z3, z1z3, z
2
1z3, z2z3, z1z2z3, z

2
1z2z3, z

2
2z3, z1z

2
2z3, z

2
1z

2
2z3,

z2
3 , z1z

2
3 , z

2
1z

2
3 , z2z

2
3 , z1z2z

2
3 , z

2
1z2z

2
3 , z

2
2z

2
3 , z1z

2
2z

2
3 , z

2
1z

2
2z

2
3)

In this case B1 has 3 elements, B2 has 9 and B3 has 27.

The number of elements in each Bk is pk as expected, since the k-vector space

dimension of Akp is pk.

Fact 4.2.3. Anp/(z1, ..., zi) has k-vector space dimension pn−i for 1 ≤ i ≤ n. The

dimension of Anp/(z1, ..., zn) is p0 = 1.

This fact is true because Bn−i can be used as a basis for Anp/(z1, ..., zi). Note

that due to the construction of Bk, B1 has p elements, B2 has p2 elements and so on.

This is because B1 is constructed to have p elements, namely the constant term and

the powers of z1 up to p− 1. Each subsequent Bk will multiply the terms of Bk−1 by

the kth variable and the powers of the kth variable up to p− 1. It is important that

we have not only the dimension of Anp/(zk, zk+1, ..., zn), but also a defined basis of

Anp/(zk, zk+1, ..., zn) for any n, p, and k. We offer a definition to formalize Anp -modules

of the form Anp/(zk, zk+1, ..., zn).

Definition 4.2.4. For an integer 1 ≤ i ≤ n, let γi be the ideal (zi, zi+1, ..., zn) in Anp .

We take γ0 to be the zero ideal.

We are now ready to restate the main objective for this section. For any γi, can

we find a specific α such that the representation matrix of Mα after restriction to
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k[uλ] is not free if and only if λj = 0 for j > i? The previous section explores some

specific examples of this, but here we solve the problem in the general case. We do

this using the module structure of Anp/γi. Any such module can be seen as a point α

in And
2
. We give a name to a choice of α that corresponds to modules of this form.

Definition 4.2.5. Let αi be the α in V (Q) corresponding to Anp/γi, and recall that

V (Q) ⊂ A(i−1)p2(i−1)
. Note that if i 6= j, then αi and αj belong to different dimensional

affine spaces. We only introduce specific αi in the context of the fixed ordered basis

Bk.

One objective of this section is to provide the representation matrix of Anp/γi for

any permissible choice of n, p, or i. After finding a general form for these representation

matrices, we comment on their freeness after restriction. The following fact highlights

why Anp/γi is useful.

Fact 4.2.6. For 1 ≤ i ≤ n we have that Anp/γi
∼= Ai−1

p as rings.

To see this, consider the natural surjection from Anp onto Ai−1
p where zj 7→ zj

for 1 ≤ j ≤ i− 1 and zj 7→ 0 otherwise. Clearly the kernel of this map is γi. We can

use Bi−1 as a basis for Anp/γi. We offer an example in the case of A2
2.

Example 4.2.7. Let n = 2 and p = 2. Then M = A2
2/γ2 has ordered basis (1, z1)

and representation matrices

[z1]M =

0 0

1 0

 and [z2]M =

0 0

0 0

.

Here M ↓ k[uλ] will be free if and only if λ1 6= 0. We find that W (M) = V (Λ1) in A2,

which has dimension one.

As another example, we find representation matrices over rings with multiple

possible choices of γi.

Example 4.2.8. Let n = 3 and p = 2. We explore the [z1]M , [z2]M , and [z3]M

representation matrices and rank varieties for γ3 and γ2.
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1. The case of M = A3
2/γ3 has ordered basis B2 = (1, z1, z2, z1z2). We find

[z1]M =



0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0


, [z2]M =



0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0


, and [z3]M =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


.

We find that W (M) = V (Λ1,Λ2) in A3, which has dimension one.

2. The case of M = A3
2/γ2 has ordered basis B1 = (1, z1).

[z1]M =

0 0

1 0

, [z2]M =

0 0

0 0

, and [z3]M =

0 0

0 0

.

We find that W (M) = V (Λ1) in A3, which has dimension two.

Next, we let n = 2, p = 3, and again find the [zk]M matrices for k = 1 and k = 2. We

use the module M = A2
3/γ2. Here we have ordered basis B1 = (1, z1, z

2
1),

[z1]M =


0 0 0

1 0 0

0 1 0

, and [z2]M =


0 0 0

0 0 0

0 0 0

.

We find that W (M) = V (Λ1) in A2, which has dimension one.

The matrices are changing in a predictable way as n and p increase. We see

the matrices are taking a block matrix form with an increase of n increasing the

number of blocks and an increase of p increasing the size of the blocks. Notice how

the matrices of the same size take a similar form. The fact given below is a key

ingredient in finding the representation matrix of Anp/γi for any permissible n, p, or i.

Fact 4.2.9. We find UΛ(α1) = [0], the 1× 1 zero matrix, since Anp/γ1
∼= k.

The representation matrix for M = Anp/γ2 is
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[z1]M =



0 0 ... 0 0

1 0 ... 0 0

... ... ... ... ...

0 0 ... 0 0

0 0 ... 1 0


.

The representation matrix for zi where i 6= 1 is the p × p zero matrix. Note that

[uλ]M is a p× p matrix when M = Anp/γ2.

At this point this fact is only shown through examples. Theorem 4.2.13 will

prove this fact in general. We offer yet another example that will involve grouping

the representation matrices according to dimension.

Example 4.2.10. For this example, all matrices shown are UΛ(αi) matrices. In

practice, one can first find the [zi]M if it is not yet clear what the UΛ(αi) matrix is.

We observe the changing of UΛ(αi) for 2 ≤ n ≤ 4 and p = 2 for different choices of γi

where 2 ≤ i ≤ n. As before, M = Anp/γi. The UΛ(αi) matrices shown are grouped by

dimension this time to highlight an emerging pattern.

1. There are three matrices where d = 2. Namely,

when i = 2 and n = 2

 0 0

Λ1 0

,

when i = 2 and n = 3

 0 0

Λ1 0

,

and finally when i = 2 and n = 4

 0 0

Λ1 0

.

2. There are two matrices where d = 4. Namely,
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when i = 3 and n = 3



0 0 0 0

Λ1 0 0 0

Λ2 0 0 0

0 Λ2 Λ1 0


,

when i = 3 and n = 4



0 0 0 0

Λ1 0 0 0

Λ2 0 0 0

0 Λ2 Λ1 0


.

3. There is one matrix where d = 8. This comes from i = 4 and n = 4

0 0 0 0 0 0 0 0

Λ1 0 0 0 0 0 0 0

Λ2 0 0 0 0 0 0 0

0 Λ2 Λ1 0 0 0 0 0

Λ3 0 0 0 0 0 0 0

0 Λ3 0 0 Λ1 0 0 0

0 0 Λ3 0 Λ2 0 0 0

0 0 0 Λ3 0 Λ2 Λ1 0



.

Below, we examine the rank variety of the 2× 2, 4× 4, and 8× 8 matrices.

1. When i = 2 and n = 2, W (M) = V (Λ1) which has dimension 1.

2. When i = 2 and n = 3, W (M) = V (Λ1) which has dimension 2.

3. When i = 2 and n = 4, W (M) = V (Λ1) which has dimension 3.

4. When i = 3 and n = 3, W (M) = V (Λ1,Λ2) which has dimension 1.

5. When i = 3 and n = 4, W (M) = V (Λ1,Λ2) which has dimension 2.

6. When i = 4 and n = 4, W (M) = V (Λ1,Λ2,Λ3) which has dimension 1.

Notice that in the cases where i = n, the variety is generated by a different number of

Λi, but the dimension of the variety remained the same. Next, we conduct a similar
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exploration of UΛ(αi) using the same M where n is fixed at 2 but p = 2, 3, or 5 and

the i = 2 in γi. The dimension of these matrices is a multiple of p just like when p

was fixed.

1. When p = 2 we have

 0 0

Λ1 0

.

2. When p = 3 we have


0 0 0

Λ1 0 0

0 Λ1 0

.

3. When p = 5 we have



0 0 0 0 0

Λ1 0 0 0 0

0 Λ1 0 0 0

0 0 Λ1 0 0

0 0 0 Λ1 0


.

For n = 2 as p increases the size of the matrix increases, but the matrix keeps the

same form. We find for any of the three choices of p, W (M) = V (Λ1). The dimension

of V (Λ1) is 1 when p = 2, 3, or 5.

We offer a proposition on the structure of Anp/γi-modules.

Proposition 4.2.11. For fixed n and p,

UΛ(α2) =



0 0 0 ... 0 0 0

Λ1 0 0 ... 0 0 0

0 Λ1 0 ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... 0 0 0

0 0 0 ... Λ1 0 0

0 0 0 ... 0 Λ1 0



.

55



This is a matrix with Λ1 on the lower sub-diagonal and zeroes elsewhere. The matrix

is of size p× p.

Proof. Fix n and p. Let M = Anp/γ2. We find the matrix size of UΛ(α2) to be p× p

since UΛ(α2) ∼= A1
p according to Fact 4.2.6. We know from Definition 2.2.3 that

UΛ(α2) = Λ1X1(α2) + Λ2X2(α2) + ...+ ΛnXn(α2).

For k > 2 we know that Xk = 0 since zk ∈ γ2. Thus UΛ(α2) = Λ1X1(α2). Using

ordered basis B1 we can calculate UΛ(α2). We conclude that UΛ(α2) has the desired

form as stated in the proposition because Λ1B1 = {Λ1z1,Λ1z
2
1 , ...,Λ1z

p−1
1 }.

Next, we define a notation for important representation matrices.

Definition 4.2.12. Let Bn be the generic representation matrix UΛ(α0) using the

ordered basis from 4.2.1. In other words, Bn is the canonical representation matrix of

Anp restricted to the generic uΛ.

The n in Bn is the same as the n of the corresponding Anp -module. We now

give a theorem showing the form of Bn.

Theorem 4.2.13. For a fixed p and using ordered basis Bk, we recursively construct

all Bk as follows for any 1 ≤ k ≤ n. We have shown B1 in 4.2.11.

Bk =



Bk−1 0 0 ... 0 0 0

ΛkI Bk−1 0 ... 0 0 0

0 ΛkI Bk−1 ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... Bk−1 0 0

0 0 0 ... ΛkI Bk−1 0

0 0 0 ... 0 ΛkI Bk−1


Here ΛiI is the identity matrix with each entry multiplied by Λi. For any k, Bk is

size pk × pk.
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Proof. We know B1 from Proposition 4.2.11 since A1
p
∼= Anp/γ2 as k-algebras. Fur-

thermore, the dimension of A1
p is p and the size of B1 is clearly p× p. We proceed by

induction, assuming that Bk−1 has the representation matrix described in the theorem.

By definition, Bk is the generic representation matrix UΛ(α0) where α0 ∈ Akd
2

is the

point corresponding to Akp. We find that Ak−1
p
∼= Akp/γk. From Definition 2.2.4, we

find UΛ(α0) = Λ1X1(α0) + Λ2X2(α0) + ... + Λk−1Xk−1(α0) + ΛkXk(α0). We use Bk

as the ordered basis and show UΛ(α0) below. To better understand UΛ(α0), recall

Bk = Bk−1 t zkBk−1 t z2
kBk−1 t ... t zp−1

k Bk−1. The p groups listed that compose Bk

each yield a Bk−1 block in UΛ(α0). More specifically, using Bk−1 as the ordered basis

for Ak−1
p we find Λ1X1(α0) + Λ2X2(α0) + ...+ Λk−1Xk−1(α0) is the matrix

Bk−1 0 0 ... 0 0 0

0 Bk−1 0 ... 0 0 0

0 0 Bk−1 ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... Bk−1 0 0

0 0 0 ... 0 Bk−1 0

0 0 0 ... 0 0 Bk−1



.

To obtain UΛ(α0), we first need ΛkXk(α0). We find ΛkXk(α0) by multiplying Bk by

zk, which yields

zkBk = zkBk−1 t z2
kBk−1 t ... t zp−1

k Bk−1

and
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ΛkXk(α0) =



0 0 0 ... 0 0 0

ΛkI 0 0 ... 0 0 0

0 ΛkI 0 ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... 0 0 0

0 0 0 ... ΛkI 0 0

0 0 0 ... 0 ΛkI 0



.

Thus UΛ(α0) is the desired matrix

Bk =



Bk−1 0 0 ... 0 0 0

ΛkI Bk−1 0 ... 0 0 0

0 ΛkI Bk−1 ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... Bk−1 0 0

0 0 0 ... ΛkI Bk−1 0

0 0 0 ... 0 ΛkI Bk−1



.

Since the size of each Bk−1 block in UΛ(α0) is assumed to be of size pk−1 × pk−1, we

find that UΛ(α0) is of size pk × pk.

We make a similar statement about Anp/γi because of Fact 4.2.6.

Corollary 4.2.14. Fix p and n and use the ordered basis Bk. For any i where

1 ≤ i < n− 1 and Mα = Anp/γi,
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UΛ(αi) =



UΛ(αi+1) 0 0 ... 0 0 0

Λi+1I UΛ(αi+1) 0 ... 0 0 0

0 Λi+1I UΛ(αi+1) ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... UΛ(αi+1) 0 0

0 0 0 ... Λi+1I UΛ(αi+1) 0

0 0 0 ... 0 Λi+1I UΛ(αi+1)


where Λi+1I is the identity matrix with every entry multiplied by Λi+1.

As a result of this corollary, we are now able to draw our final conclusions for

the chapter and answer our guiding question.

Theorem 4.2.15. For any n and p we find W (Anp/γi) = V (Λ1,Λ2, ...,Λi−1) which

has dimension n− i+ 1.

Proof. We know the UΛ(αi) representation matrix of Anp/γi due to Corollary 4.2.14.

Using the known representation matrix we can determine the rank variety. The

rank variety for any 1 ≤ i ≤ n − 1 is best understood recursively. In the trivial

case of i = 1, we find W (Anp/γ1) = V (0), which is indeed of dimension n. When

i = 2, we use UΛ(α2), which is shown in Proposition 4.2.11, to conclude W (Anp/γ2) =

V (Λ1), which has dimension n− 1. We continue by using induction on i, assuming

that W (Anp/γk−1) = V (Λ1,Λ2, ...,Λk−2) and that V (Λ1,Λ2, ...,Λk−2) is of dimension

n−k+2. Applying Corollary 4.2.14, in order for UΛ(αk) not to be of maximal rank we

must have that Λk−1 = 0. Thus if Λk−1 = 0, then UΛ(αk) has maximal rank if and only

if Λj 6= 0 for some 1 ≤ j ≤ k − 2. We conclude that W (Anp/γk) = V (Λ1,Λ2, ...,Λk−1).

The dimension of V (Λ1,Λ2, ...,Λk−1) is n−k+1. Thus W (Anp/γi) = V (Λ1,Λ2, ...,Λi−1)

which has dimension n− i+ 1.

We offer a final corollary to answer the guiding question of this chapter.
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Corollary 4.2.16. For any positive integer, there is a choice of n, p and i such

that the rank variety of Anp/γi is that integer. Additionally we can calculate the

representation matrix of this module.

With these conclusions drawn our investigation in the case of a fixed module

and generic λ is concluded.
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CHAPTER 5

Fixed Subalgebra Freeness

5.1 Dimension of Module Varieties

In the previous chapter we explored the freeness from Theorem 3.2.6 with a

fixed module. In this chapter we instead focus on freeness with a fixed subalgebra. In

other words, we are looking at module variety rather than rank variety. Ultimately,

this chapter will address how various choices of subalgebra interact with the ideal

defining the freeness of a generic module.

We are going to fix a subalgebra and consider which α lead to freeness. The

key to determining freeness is the ideal Iν(U
p−1
λ ). We offer the following definition so

that we can investigate the dimension of the underlying ring.

Definition 5.1.1. Let Sλ be the ring

k[xi,r,s | 1 ≤ i ≤ n, 1 ≤ r, s ≤ d]/(Q+ Iν(U
p−1
λ )).

This definition uses the language from Chapter 2 defining a generic Anp -module.

In total there are nd2 of the xi,r,s. We are interested in how the Krull dimension of

Sλ, dim(Sλ), relates to the Krull dimension of S ′λ, dim(Sλ′), for λ, λ′ ∈ An. In other

words, does the Krull dimension of the module variety change when we change λ?

Before approaching Sλ as a whole, we investigate the dimension of V (Q). When Q

was introduced in Definition 2.1.7, we gave an example for d = 2, but the following

example goes into further depth.

Example 5.1.2. Suppose we observe the Krull dimension of V (Q) in various cases.

After finding Q, we can calculate the Krull dimension of k[xi,r,s | 1 ≤ i ≤ n, 1 ≤ r, s ≤

d]/Q.
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If p = 2, n = 2, and d = 2, we know from Example 2.1.8 that Q can be defined by 12

equations. For this n, p, and d, the Krull dimension of the ring k[xi,r,s | 1 ≤ i ≤ n, 1 ≤

r, s ≤ d] is 8. Furthermore, the Krull dimension of k[xi,r,s | 1 ≤ i ≤ n, 1 ≤ r, s ≤ d]/Q

is 3. This Krull dimension can be computed in Macaulay2 [13]. On the other hand,

if p = 2, n = 3, and d = 2, there are now 24 defining equations for Q. The height

of Q here is 4. Continuing to increase n, if p = 2, n = 4, and d = 2, there are now

40 defining equations and dim(V (Q)) = 5. As p increases we quickly find that this

calculation is incredibly computationally expensive, but we are at least able to see

the effect of increasing n.

In general, we know how many equations define Q, but cannot always compute

the Krull dimension of the underlying ring. To better understand Sλ, we need to

understand the ideal Iν(U
p−1
λ ). The following example looks at this for some simple

cases.

Example 5.1.3. Suppose p = 2, n = 2, and d = 2, and we want to observe the Krull

dimension of the underlying ring of I1(Uλ). We know Uλ = λ1X1 +λ2X2 is the matrixλ1x1,1,1 + λ2x2,1,1 λ1x1,1,2 + λ2x2,1,2

λ1x1,2,1 + λ2x2,2,1 λ1x1,2,2 + λ2x2,2,2

.

Thus our ideal defining freeness is

I1(UΛ) = (λ1x1,1,1 + λ2x2,1,1, λ1x1,1,2 + λ2x2,1,2, λ1x1,2,1 + λ2x2,2,1, λ1x1,2,2 + λ2x2,2,2).

For a given choice of λ, we are looking for the conditions that make I1(UΛ) = 0

1. If uλ = x1, then I1(UΛ) = (x1,1,1, x1,1,2, x1,2,1, x1,2,2) requiring X1 = 0 for I1(UΛ)

to be 0.

2. If uλ = x2, then I1(UΛ) = (x2,1,1, x2,1,2, x2,2,1, x2,2,2) requiring X2 = 0 for I1(UΛ)

to be 0.

3. If uλ = x1 + x2, then I1(UΛ) = (x1,1,1 + x2,1,1, x1,1,2 + x2,1,2, x1,2,1 + x2,2,1, x1,2,2 +

x2,2,2) requiring x1,j,k − x2,j,k = 0 where j, k ∈ {1, 2} for I1(UΛ) to be 0.
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In the test cases from the preceding example, the Krull dimension of Sλ did

not change for any of the choices of λ.

Theorem 5.1.4. For any λ, λ′ in An, Sλ ∼= Sλ′. Additionally, Y (λ) ∼= Y (λ′).

Proof. Choose a nonzero λ in An. Then λi is nonzero for some 1 ≤ i ≤ n. We

want to show that Sei is isomorphic to Sλ as k-algebras where ei is the n-tuple

that is entirely zero except for a 1 in the ith component. Define φ : P → P by

φ(xi,r,s) = λ1x1,r,s + ... + λnxn,r,s and φ(xj,r,s) = xj,r,s for j 6= i and all 1 ≤ r, s ≤ d.

By construction, φ is a homomorphism that preserves powers and minors of a

matrix. This definition can be described in the shorthand notation utilizing matrices,

φ(Xi) = λ1X1 + ... + λnXn and φ(Xj) = Xj for i 6= j. This clearly extends to an

automorphism of P . In order to prove the theorem, we need to show that φ(Q) = Q

and φ(Iν(U
p−1
ei

)) = Iν(U
p−1
λ ).

First, we show φ(Q) = Q. For any j1, j2 6= i, we find

φ(Xj1Xj2 −Xj2Xj1) = Xj1Xj2 −Xj2Xj1 ∈ φ(Q) and φ(Xj1)
p = Xp

j1
∈ φ(Q).

The only remaining terms of Q that we need to check involve Xi. We observe for any

j 6= i that

φ(XiXj−XjXi) = (λ1X1+...+λiXi+...+λnXn)Xj−Xj(λ1X1+...+λiXi+...+λnXn) =

λ1X1Xj + ...+ λiXiXj + ...+ λnXnXj − λ1XjX1 − ...− λiXjXi − ...− λnXjXn =

λ1(X1Xj −XjX1) + ...+ λi(XiXj −XjXi) + ...+ λn(XnXj −XjXn) ∈ φ(Q).

Since λj1(Xj1Xj2 −Xj2Xj1) ∈ φ(Q) for j1, j2 6= i we conclude that λi(XiXj −XjXi)

must be in φ(Q). Since λi is nonzero, we have XiXj−XjXi ∈ φ(Q). Now we consider

φ(Xp
i ). Here, we first observe that

φ(Xp
i ) = φ(Xi)

p = (λ1X1 + ...+ λiXi + ...+ λnXn)p =

λp1X
p
1 + ...+ λpiX

p
i + ...+ λpnX

p
n ∈ φ(Q).
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This depends on Fact 1.2.6, where we showed that in the context of characteristic

p the power of a sum is equivalent to the sum of the powers. We already found

that Xp
j ∈ φ(Q) for i 6= j. Therefore, we conclude that λpiX

p
i ∈ φ(Q) and since λi is

nonzero, Xp
i ∈ φ(Q).

Now we have shown that Q ⊂ φ(Q). It is clear that φ(Q) ⊂ Q and therefore φ(Q) = Q.

Next, we show that φ(Iν(Uei)) = Iν(Uλ). In fact,

φ(Uei) = φ(Xi) = λ1X1 + ...+ λnXn = Uλ.

Since this is true, we know that

φ(Iν(U
p−1
ei

)) = Iν(U
p−1
λ ).

Since both φ(Q) = Q and φ(Iν(U
p−1
ei

)) = Iν(U
p−1
λ ) then

φ(Q+ Iν(U
p−1
ei

)) = Q+ Iν(U
p−1
λ ).

This is sufficient to conclude that Se1
∼= Sλ. In order to prove the more general

statement, we now need to show that Sei
∼= Sej for i 6= j. To this, end we define

ψ : P → P by ψ(Xi) = Xj, ψ(Xj) = Xi and ψ(Xk1) = Xk1 for i, j 6= k1. Similar to

what we did with φ, we are going to show that ψ(Q) = Q and ψ(Iν(U
p−1
ei

) = Iν(U
p−1
ej

).

To show ψ(Q) = Q, we let k1 and k2 be positive integers other than i or j. We know

ψ(Xk1Xk2 − Xk2Xk1) = Xk1Xk2 − Xk2Xk1 ∈ ψ(Q) and that ψ(Xp
k1

) = Xp
k1
∈ ψ(Q).

Additionally,

ψ(Xk1Xi −XiXk1) = XjXk1 −Xk1Xj ∈ ψ(Q).

For the same reason, XiXk1 −Xk1Xi ∈ ψ(Q). This leaves the case of

ψ(XjXi −XiXj) = XjXi −XiXj ∈ ψ(Q)
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which shows that Xi and Xj have their commutativity condition from Q encoded in

ψ(Q). We also find

ψ(Xp
i ) = Xp

j ∈ ψ(Q) and ψ(Xp
j ) = Xp

i ∈ ψ(Q).

In summary, Q ⊂ ψ(Q). The other direction is easily verifiable and thus ψ(Q) = Q.

Now we show ψ(Iν(U
p−1
ei

) = Iν(U
p−1
ej

). This is a direct result of the equation

ψ(Uei) = ψ(Xi) = λjXj = Uej .

This equation implies that ψ(Up−1
ei

) = Iν(U
p−1
ej

). Similarly, we show that ψ(Up−1
ej

) =

Iν(U
p−1
ei

). Combining this with ψ(Q) = Q we conclude that Sei
∼= Sej .

Finally, let λ and λ′ be two nonzero elements of An. Then λi is nonzero for some i

and λ′j is nonzero for some j. Sei
∼= Sλ and Sej

∼= Sλ′ . But we know Sei
∼= Sej so

Sλ ∼= Sλ′ . Since Sλ ∼= Sλ′ we can conclude Y (λ) ∼= Y (λ′).

The following example applies the idea of this proof to the n = 2 and p = 2

setting and shows the ideal of freeness.

Example 5.1.5. Suppose that φ is a homomorphism from k[X1, X2] → k[X1, X2]

where φ(X1) = λ1X1 + λ2X2 and φ(X2) = X2 with λ1, and λ2 ∈ k. Here, Q is

generated by X1X2 −X2X1, X
2
1 , and X2

2 . The twelve elements of Q were shown for

this n, p, and d in Example 2.1.8. We want to compare those twelve generators to

the elements that generate φ(Q), where

φ(Q) = ((λ1X1 + λ2X2)X2 +X2(λ1X1 + λ2X2), (λ1X1 + λ2X2)2, X2
2 ).

The generators of Q and φ(Q) compared are as follows.

1. For the commutativity requirement we have X1X2 −X2X1 for Q and (λ1X1 +

λ2X2)X2 −X2(λ1X1 + λ2X2) for φ(Q)

2. The generators of X2
1 in Q become (λ1X1 + λ2X2)2 in φ(Q).

3. The generators of the X2
2 component will remain identical in both P and φ(Q).
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Although these matrices are different we know the ideals generated by their minors

have the same height.

We generalize the example in the following corollary.

Corollary 5.1.6. The Krull dimension of Sλ is invariant under the choice of λ. In

other words, the dimension of the module variety of λ is invariant under a change of

λ. In other words, this means dim(Y (λ)) =dim(Y (λ′)) for all nonzero λ, λ′ ∈ kn.

The isomorphism from Sλ → Sλ′ is a stronger result and so this corollary follows.

This completes our study of freeness for a fixed subalgebra and our study of freeness

in general.
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