
Neural Network Architecture Optimization Using Reinforcement Learning

by

RAGHAV VADHERA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2023

Copyright© by RAGHAV VADHERA 2023

All Rights Reserved

To my father Kewal Krishan and my late mother Vishwa

who set the example and instilled a love of learning and hard-work in me and

made me who I am.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervising professor, Dr.

Manfred Huber, for his continuous motivation, encouragement, and invaluable

guidance throughout my doctoral studies. I am grateful to my academic advisors,

Dr. Farhad Kamangar and Dr. David Levine, for teaching me relevant courses

and providing valuable feedback on my research. I also want to thank Dr. John

Carbone for his keen interest in my research and for taking the time to serve on my

dissertation committee.

I would like to extend my appreciation to my company, Raytheon, for pro-

viding financial support during my doctoral studies. I am grateful to Jonathan

Clyburn and Shane Zabel from Raytheon for assisting me in selecting my research

topic and offering valuable feedback promptly. A special thank you goes to Dr.

Abhaya Asthana for his interest in my research and the helpful discussions &

invaluable comments he provided.

I am thankful to all the teachers who have taught me throughout my academic

journey, from my early years in India to my time in the United States. I would like to

extend my gratitude to Dr. John Paul from Harvard for inspiring and encouraging

me to pursue PhD studies.

Above all, I am grateful to my friend, Rashmi Verma, Sr. Audit Manager,

Financial Crimes, an AI enthusiast whose unwavering support and encouragement

made this work possible while working late nights. I also want to thank my wife

Ritu Vadhera, helping me overcome challenges and celebrate achievements.

May 10, 2023

iv

ABSTRACT

Neural Network Architecture Optimization Using Reinforcement Learning

RAGHAV VADHERA, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Manfred Huber

Deep learning has emerged as an increasingly valuable tool, employed across

a myriad of applications. However, the intricacies of deep learning systems, stem-

ming from their sensitivity to specific network architectures, have rendered them

challenging for non-experts to harness, thus highlighting the need for automatic

network architecture optimization. Prior research predominantly optimizes a net-

work for a single problem through architecture search, necessitating extensive

training of various architectures during optimization.

To tackle this issue and unlock the potential for transferability across tasks,

this dissertation presents a novel approach that employs Reinforcement Learning

to develop a network optimization policy based on an abstract problem and archi-

tecture embedding. This approach enables the optimization of networks for novel

problems without the burden of excessive additional training. Leveraging policy

learning and an abstract problem embedding, the method facilitates the transfer

of the policy across problems by capturing essential characteristics of the network

domain and target task that permit the approach to optimize the networks for new

challenges based on characteristics learned from previous problems.

v

Initial evaluations of this method’s capabilities were conducted using a stan-

dard classification problem, demonstrating its effectiveness in optimizing architec-

tures for a specific target problem within a given range of fully connected networks.

Subsequent experiments were performed using a variety of complex problems,

further showcasing the approach’s capabilities. To address these more complex

networks, Siamese networks were employed to establish a coherent embedding

of the network architecture space. In conjunction with a problem-specific feature

vector, which captures the intricacies of the problem, the Reinforcement Learn-

ing agent was able to acquire a transferable policy for deriving high-performing

network architectures across a spectrum of problems.

Experiments performed in this dissertation specifically reveal that the pro-

posed system successfully learns an embedding space and policy that can derive

and optimize network architectures nearing optimality, even for unencountered

problems. Multiple datasets, each possessing unique feature vectors representing

distinct characteristics entities or problems, were utilized to facilitate the optimiza-

tion of one problem at a time. A random initial policy was employed to construct

trajectories in the embedding space during training. To assess the performance and

functionality of various network components, a series of pre-training steps were

undertaken, focusing on distinct components and examining the outcomes prior

to training subsequent components.

Building upon these foundations, the dissertation takes initial steps to exam-

ine the scalability of the method to larger and more intricate network architectures

with the intent of broadening its applicability across a diverse array of problem

domains.

To validate the generalizability of the learned policies, the dissertation exam-

ines their performance on real-world problems, spanning various industries and

vi

domains, including healthcare, finance, sports, human psychology and auto. These

case studies aim to demonstrate the practical utility of the proposed approach in ad-

dressing real-world challenges and uncover potential areas for further refinement

and improvement.

In addition to these empirical investigations, the dissertation discusses the

theoretical underpinnings of the method, examining the convergence properties,

stability, and robustness of the learned policies. These investigations provide valu-

able insights into the factors that influence policy transferability and optimization

performance across diverse problem domains, offering guidance for future research

in the field of deep learning and network architecture optimization.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . xiii

Chapter Page

1. OVERVIEW . 1

1.1 Introduction . 1

1.2 Different Approaches. 4

1.2.1 Genetic Algorithms (GAs) . 6

1.2.2 Particle Swarm Optimization (PSO) 7

1.2.3 Bayesian Optimization . 7

1.2.4 Neural Architecture Search (NAS) 7

1.2.5 Differentiable Architecture Search (DARTS) 8

1.2.6 Transfer Learning and Meta-Learning 8

1.3 Summary and Contributions . 8

1.4 Outline . 10

2. RELATED WORK AND BACKGROUND 11

2.1 Related Work . 11

2.1.1 Early works on Neural Architecture Search using RL 13

2.1.2 Closely Related Methods . 18

2.1.3 Challenges and Future Directions 19

2.2 Background . 20

2.2.1 Network Architecture Optimization (NAO) 21

viii

2.2.2 Neural Networks . 21

2.2.3 Siamese Networks for Robust and Efficient Feature Space

Learning . 23

2.2.4 Ensemble Learning . 27

2.2.5 Reinforcement Learning: An Overview of Techniques and

Applications . 27

2.2.6 Learning a policy (π) . 36

2.2.7 Q-Value (Q-Function) . 39

2.2.8 Embedding Space . 42

2.2.9 Actor-Critic Methods and Policy Gradient 44

2.2.10 Reward and Performance Prediction: 47

2.2.11 Twin Delayed Deep Deterministic Policy Gradient (TD3) . . . 48

2.3 Combining Reinforcement Learning on Embedding Space, Policy

and Neural Networks . 50

2.3.1 Comparison . 53

2.4 Summary . 57

3. Approach . 61

3.1 Architecture . 62

3.2 Key Components of the Architecture 64

3.2.1 Encoder Model . 65

3.2.2 Decoder Model . 66

3.2.3 Sequence-to-sequence Autoencoder 67

3.2.4 Accuracy Model . 68

3.2.5 Siamese network to co-locate embeddings 69

3.2.6 Actor Model . 70

3.2.7 Critic Model . 71

ix

3.3 Other Foundational Elements of the Architecture 72

3.3.1 Actor-Critic Methods and policy gradient 74

3.3.2 The REINFORCE Algorithm 81

3.3.3 Twin Delayed Deep Deterministic Policy (TD3) Gradients . . 84

4. Implementation . 96

4.1 Target Problems and Feature Representation 96

4.2 Implementation of Architecture and other Key Components 97

4.2.1 Initial Setup . 99

4.2.2 Implement and Initialize Encoder-Decoder-Accuracy Net-

work’s . 101

4.2.3 Implement and Initialize Accuracy Network 110

4.2.4 Implement and Initialize Actor Network 111

4.2.5 Implement and Initialize Critic Network 113

4.2.6 Implement And Initialize Reinforcement Learning Agents . . 117

4.2.7 Implement and Initialize replay buffer (RBuffer) 122

4.3 Summary . 122

5. Training and Experiments . 124

5.1 Introduction . 124

5.2 Training DataSet . 126

5.3 Incremental and Supervised Learning for all models 127

5.3.1 Encoder-Decoder Pre-Training 128

5.3.2 Pre-Train Accuracy Network 136

5.3.3 Training Encoder Decoder and Accuracy Network all together 137

5.3.4 Training Data For Actor and Critic models 141

5.3.5 Pre-train Critic models . 144

5.3.6 Pre-train Actor model with Critic Weights Frozen 144

x

5.3.7 Pre-train Critic model with Actor Weights Frozen 146

5.3.8 Training Actor and Critic models together 146

5.4 Explore and carry out action with exploration noise 146

5.4.1 Background . 146

5.4.2 Explore . 147

5.4.3 Update Critic . 150

5.4.4 Update Actor . 152

5.4.5 Update Target Networks . 154

6. Results and Performance . 156

6.1 Introduction . 156

6.2 Identifying mapping for Embedding Space 156

6.3 Random Network generation and Training for Embeddings 156

6.4 Random Network generation and Training for Embeddings 161

6.5 Results from Training Encoder-Decoder-Accuracy models 164

6.6 Pre-training the Actor-Critic Model . 170

6.7 Training Actor-Critic Models Together in TD3-based Actor-Critic

Approach . 172

6.7.1 Critic optimization . 174

6.7.2 Actor optimization . 175

6.7.3 Target Network Updates . 175

6.8 Evaluating The Policy . 176

6.8.1 Analyzing Policy Trajectories 178

6.9 Comparing our Results with Initial Networks: 181

7. Conclusions and Future Work . 186

7.1 The Proposed Approach . 186

7.2 Future Enhancements . 187

xi

REFERENCES . 189

BIOGRAPHICAL STATEMENT . 198

xii

LIST OF ILLUSTRATIONS

Figure Page

2.1 DeepRL Architecture . 12

2.2 Siamese Network Architecture . 25

2.3 Reinforcement Learning With Embedding Space (Part of the figure

borrowed from [1]) . 29

2.4 Overview of Reinforcement Learning Agent 30

2.5 Overview of Policy : 1) The agent starts interacting with the embed-

ding environment. 2) The collected observations are used to update

the current model. 3) The agent updates the policy by learning inside

the model. 37

2.6 Bellman equation (a) for the state-value function, (b) for the action-

value function . 40

2.7 Network Embedding Space (left) and Problem Features (right) form

State Representation for the Reinforcement Learning Component (top) 42

2.8 2-Dimensional Embedding Space with Random Neural Network with

their performance . 44

2.9 Schematic of the Connections between Embedding, Actor, and Critic . 45

2.10 Internal structure and the implementation diagram of the TD3 policy

gradient controller. 49

2.11 State Space (Part of the figure borrowed from [1]) 51

2.12 Neural Architecture Optimization (encoder-decoder-predictor) Luo[1] 53

2.13 Ensemble Learning MDP Workflow) Bose[2] 55

xiii

2.14 State Space with Performance) . 59

3.1 Architecture Overview. Embedding Space is Derived Using a Encoder-

Decoder (left) and Augmented with Problem Features to Form the

Input to an Accuracy Prediction Network (center) which Predicts

Rewards, and an Actor-Critic Network Pair (right) which Learn the

Utility Function and the Network Modification Policy Using Policy

Gradient . 63

3.2 Input Layer . 65

3.3 Encoder-Decoder . 65

3.4 Encoder-Decoder Layered Diagram . 66

3.5 Layered diagram of Sequence-to-sequence Autoencoder 67

3.6 Accuracy Network Layers . 69

3.7 Co-located Legal and Illegal Network’s 70

3.8 State-Action-Reward Sequence for Policy 71

3.9 Generation of Embedding State Trajectories 72

3.10 Actor-Critic Architecture . 76

3.11 Policy - Trajectory . 82

3.12 TD3 in Action . 86

3.13 Step-Wise TD3 Algorithm . 95

4.1 Layered Graph Actor Network . 98

4.2 Initial Encoder-Decoder-Accuracy Model 102

4.3 Input Network Data in Time Series Sequence 103

4.4 Bidirectional LSTM based Encoder Model 105

4.5 Seq-Seq-Encoder-Decoder Architecture 109

4.6 Accuracy Network Layers . 111

4.7 Accuracy Model . 112

xiv

4.8 Layered Graph Actor Network . 113

4.9 Accuracy Model . 114

4.10 Layered Graph Critic Network . 116

4.11 Layered Graph Critic Network . 118

5.1 Problem Selection Attributes . 126

5.2 Problem Selection Attributes . 127

5.3 Master Dataset File (Problem Description) 130

5.4 Encoder-Decoder-Layer-Diagram . 131

5.5 Encoder-Decoder-Layer-Diagram . 132

5.6 Siamese and Accuracy Diagram to show legal and illegal networks . . 136

5.7 Feature Conversion Model Layer Diagram 137

5.8 Encoder-Decoder-Accuracy-Diagram 138

5.9 Encoder-Decoder-Accuracy-Diagram 140

5.10 Input data with embeddings and Feature Vector’s 142

5.11 Exploring reward and accuracy in 360 Degree at various length 142

5.12 Training Data Set To Pre-Train Critic 143

5.13 Actor-Critic-Training Flow . 145

5.14 Scatter Plot After Initial Exploration of Embedding Space 149

5.15 Forward Lookup Tree Search . 150

6.1 Initial Training Data Set With Problem Selection Attributes(Normalized)157

6.2 Initial Training Data Set With Problem Selection Attributes(Normalized)159

6.3 Separate Legal and Illegal Networks . 160

6.4 Separate Legal and Illegal Networks . 164

6.5 Feature Vector Transformation . 166

6.6 Accuracy Predictions for FV1, FV2, FV3, FV4, FV5, FV6 167

6.7 Accuracy Predictions for FV7 . 168

xv

6.8 Combined Encoder-Decoder-Accuracy Training Results 168

6.9 Combined Encoder-Decoder-Accuracy Training Results 170

6.10 Critic Value over Embeddings of legal and illegal Networks 177

6.11 Learned Policy Actions (right) over Embeddings of legal and illegal

Networks . 177

6.12 Policy Trajectories on fully connected Simple Random Starting Net-

works . 180

6.13 Policy Trajectories on complex flexible layers Random Starting Networks-

I . 181

6.14 Policy Trajectories on complex flexible layers Random Starting Networks-

II . 182

6.15 Performance Matrix or Accuracy between Initial Network Vs Net-

work’s discovered by Policy . 184

6.16 Performance Matrix or Accuracy between Complex Initial Network

Vs Network’s discovered by Policy . 185

xvi

CHAPTER 1

OVERVIEW

1.1 Introduction

Deep Neural Networks have emerged as a robust and versatile instrument for

tackling a wide array of problems in recent years. Nonetheless, their performance

is largely contingent upon the specific network architecture and the dataset at hand.

Benefits of automatic neural architecture design has been hinted at recently through

initial experiments indicating its ability to unearth powerful network architectures

that excel in some challenging learning tasks. The last few years have witnessed the

remarkable accomplishments of deep neural networks in various demanding ap-

plications, including speech recognition [3], image recognition [4] [5] and machine

translation [6] [7] [8]. This success has prompted a paradigm shift from feature

design to architecture design, moving from methodologies such as SIFT [9], and

HOG [10], to advanced architectures like AlexNet [5], VGGNet [11], GoogleNet

[12], and ResNet [13]. Despite these advancements, designing architectures still

necessitates considerable expertise and time investment. The potential benefits

of automatic neural architecture design to address some of these difficulties has

been hinted at recently through initial experiments indicating its ability to unearth

powerful network architectures that excel in some challenging learning tasks.

Although Automatic Neural Architecture (ANA) design [14] has been an

area of research for a number of years, certain obstacles persist in the development

of an optimized ANA model. This results in lack of assurances that the devised

architecture will be well-suited for the problem under consideration. Employing

1

an appropriate neural network architecture, in conjunction with a sufficiently large

dataset, allows a deep learning network to learn any mapping from one vector space

to another, rendering deep learning an incredibly potent tool for various machine

learning tasks. Designing an optimal neural network , however, entails crafting the

ideal architecture to yield the best possible outcomes. This ”optimum” is often an

ambiguous concept, as it hinges on striking a balance between model performance

and the computational resources required for training and prediction. Despite this

loose definition of ”optimum,” the initial step in constructing any neural network

involves establishing a starting point and an initial set of hyperparameters.

In general, devising a suitable architecture is heavily influenced by the proper-

ties of the dataset. For sequential models involving multilayer perceptrons (MLP),

for example, one of the primary starting points (hyperparameters) is determining

the number of hidden layers and the nodes required for these layers [15]. With-

out additional data, this decision is exceedingly, underscoring the need for more

sophisticated automatic network architecture design tools to open up use of these

techniques to a wider non-expert audience.

The objective of this research is to develop a more comprehensive framework

that employs Reinforcement Learning, coupled with a flexible architecture mod-

ification action space, to perform network architecture optimization on a wider

task domain through by building on effective architecture and target task embed-

ding. This framework will also facilitate planning via a performance prediction [16]

component to reduce the need for incremental training for architecture evaluation,

ultimately learning a transferable policy for architecture optimization. Prelimi-

nary experiments presented in this paper demonstrate that the framework, when

trained on a set of classification problems, can successfully learn a policy that re-

2

sults in an optimized target architecture for a new problem without necessitating

any significant retraining.

Expanding on this foundation, the research aims to explore the practical im-

plications and applications of the proposed framework. It performs a preliminary

investigation of the scalability of the method to larger and more complex network

architectures, with the eventual goal to expand to convolutional and recurrent

neural networks as well as more general mulitibranched networks.

In order to assess the applicability of the acquired policies, this study inves-

tigates their effectiveness when confronted with real-world data issues spanning

various sectors and fields, such as healthcare, finance, sports, human psychology,

and automotive. These case studies aim to highlight the practical advantages of

the suggested framework for tackling real-world obstacles, as well as pinpointing

areas where further enhancements and developments are needed.

In addition, the research experiments with convergence characteristics, sta-

bility, and resilience of the formulated policies through different training and pre-

training approaches. These examinations yield crucial insights into aspects that

impact policy transferability and optimization success across diverse problem do-

mains, offering direction for future inquiries in the realm of deep learning and

automated neural architecture design.

Overall, this research endeavors to establish a framework that incorporates

Reinforcement Learning and an adaptable architecture modification action space in

order to streamline the optimization of deep neural network structures. Through

extensive testing and assessment, the study showcases the potential of this frame-

work to substantially enhance the automated neural architecture design process,

rendering it more user-friendly and efficient for both novices and seasoned profes-

sionals. By connecting intricate network architectures with real-world applications,

3

this approach lays the groundwork for future progress in deep learning and AI-

driven solutions across many sectors and fields.

1.2 Different Approaches.

The various approaches adopted to address Automatic Neural Architecture

(ANA) modeling in the past have explored many different aspects of the process,

from data collection and pre/post-processing to intricate training schemes and

algorithms. Over the years, ANA modeling has seen numerous approaches aimed

at optimizing neural network architecture design automatically. There has been

a growing focus on developing a systematic method to determine an appropriate

architecture, as opposed to the current trial-and-error approach, which is time-

consuming and produces uncertain results [17]. One complicating factor in this

endeavor has been that optimal network architectures are generally not known for

wide ranges of problems and thus Reinforcement Learning (RL) has often been

used and proven effective in learning a policy to incrementally construct neural

network classifiers for specific problems [17] [1].

In reinforcement learning based methods, the choice of a component of the

architecture is regarded as an action. A sequence of actions from a given initial

network defines a resulting neural network architecture, with its performance im-

provement serving as the reward. Unfortunately, this approach has so far mainly

focused on simple classification problems using a limited action space with small

fully connected networks or been trained individually on a single problem and

has thus in its previous applications not been applicable to a broader range of

problems. Many previous techniques rely on a small, predefined set of architecture

modification actions [17][2], which restricts their applicability to specific architec-

4

ture types. One attempt to address this limitation involves using an architecture

embedding space to allow for a general, continuous action space [1] [18]. However,

target network performance in this embedding space is often highly non-convex,

leading to numerous local extrema. This issue confines optimization in these sys-

tems to single problems, necessitating intensive retraining for each target problem

and extensive evaluation training for each individual architecture optimization.

The work in [2] tried to address the need to retrain on every problem and fo-

cused on generalizing target problems by learning a generic network optimization

policy. The method learns not only a single network but an ensemble of networks,

enabling faster adaptation to problem changes. However, this approach is limited

by its simple action space which operate on ensembles of small fully connected net-

works and is not easily extendable to a wider range of problems and architectures.

The method learns not only a single network but an ensemble of networks, en-

abling faster adaptation to problem changes. Part of the method’s limitation stems

from its use of specific modification actions that add or remove nodes and layers

or disable and enable elements in the ensemble. Similar Reinforcement Learning-

based methods also perform search within discrete architecture space, which is

natural given the inherently discrete choices of neural network architectures, such

as the filter size in CNNs and connection topology in RNN cells. Nonetheless,

direct searching for the best architecture within discrete space is inefficient due

to the exponential growth of the search space as the number of choices increases,

leading to embedding-based approaches [1] [18] which aim to generate a generic,

continuous network architecture, and thus network modification, space. In this

dissertation we expand on this and experiment with mapping architectures into a

continuous vector space (i.e., network embeddings), augmenting it with a target

task embedding, and optimizing within this continuous space through policy gra-

5

dient methods. The rationale for such an embedding-based approach is two-fold.

Firstly, akin to the distributed representation of natural language,[19], [20], a con-

tinuous architecture representation is more compact and efficient in conveying its

topological information. Secondly, optimizing in a continuous space is consider-

ably easier than directly searching within discrete space due to improved smooth-

ness. The proposed architecture’s core is an encoder-decoder model responsible for

mapping and recovering a neural network architecture into a continuous represen-

tation. Multiple models for the autoencoder are developed and tested here, with

the most competent being an LSTM model equipped with an attention mechanism

that facilitates precise recovery. The three components (i.e., encoder, performance

(accuracy) predictor, and decoder) are jointly trained in a multi-task setting, which

benefits the continuous representation: the decoder’s objective of recovering the

architecture further enhances the quality of the architecture embedding, making it

more effective in predicting performance (accuracy).

The following outlines some of the other notable methods adopted in the

field of Automatic Neural Architecture (ANA) modeling , beyond reinforcement

learning-based systems.

1.2.1 Genetic Algorithms (GAs)

Genetic algorithms are inspired by the process of natural selection, utilizing

mutation, crossover, and selection operators to evolve a population of neural archi-

tectures. This approach has been employed to optimize various aspects of network

design, such as layer connections and the number of hidden nodes [21]. However,

it is generally limited by its high computational complexity.

6

1.2.2 Particle Swarm Optimization (PSO)

PSO is a population-based optimization algorithm inspired by the social be-

havior of birds and fish. It has been used to optimize hyperparameters and architec-

ture design in neural networks by iteratively updating candidate solutions. Similar

to Genetic Algorithms, it finds its limitations in the computational complexity of

the approach, despite its ability to be highly parallelized.

1.2.3 Bayesian Optimization

Bayesian optimization is a sequential model-based optimization technique

that leverages Gaussian processes or other surrogate models to approximate the

objective function. This approach is used to optimize hyperparameters and net-

work design by balancing exploration and exploitation in the search space [22].

In many of its applications in this domain, however, it suffers from the need for

significant network re-evaluation for new problems and thus does not generalize

efficiently to new problems.

1.2.4 Neural Architecture Search (NAS)

NAS is a search algorithm that explores the space of possible neural network

architectures using various search strategies, such as reinforcement learning, evo-

lutionary algorithms, and gradient-based methods. The objective is to find the

optimal architecture for a given task with minimal human intervention [23]. In

its broader interpretation, the approach developed in this dissertation falls under

this framework where it attempts to combine the benefits of a continuous action

space on network and task embeddings and the ability or reinforcement learning to

overcome local minima in performance space through the use of a utility function

to permit efficient generalization across networks and tasks.

7

1.2.5 Differentiable Architecture Search (DARTS)

DARTS is a gradient-based approach to neural architecture search, which

formulates the architecture optimization problem as a continuous relaxation of the

search space. By doing so, the architecture can be optimized using gradient descent,

leading to efficient search processes [24]. However, the presence of significant

local maxima in performance space requires expensive local re-training during

optimization, making rapid application to a new problem difficult.

1.2.6 Transfer Learning and Meta-Learning

These approaches focus on leveraging prior knowledge learned from related

tasks or architectures to accelerate the search for an optimal architecture in the target

task. Transfer learning involves reusing pre-trained models or weights, while meta-

learning aims to learn a general optimization policy across tasks [25]. The approach

introduced here aims the capabilities of prior transfer and meta learning approaches

to minimize the need for training on the target problem through additional task

embedding.

These different methodologies present a wide spectrum of concepts to ad-

dress Automatic Neural Architecture modeling. While each method has its own

advantages and limitations, their combined advancements contribute to the on-

going progress in the field of deep learning and automated neural architecture

design.

1.3 Summary and Contributions

Leveraging Reinforcement Learning to learn representations that can adapt

to changing task specifications and building on previous work, the objective of the

8

research in this dissertation is to develop a more comprehensive framework that

can also create policies with larger action spaces in terms of network architecture

modification options and that can generalize across target tasks. This allows for the

representation of a broader learning task domain by embedding it in an architecture

embedding space with a derived performance prediction component to facilitate

planning.

This dissertation presents an architecture that addresses these requirements

by integrating actor-critic reinforcement learning with an encoder-decoder ap-

proach and applying it to various target machine learning problems. This facilitates

the inclusion of structures that can adapt to larger spaces, eventually potentially

including modular network construction as well as use on streaming data [26]

and moving targets [2], where RL-based model learning has demonstrated some

success. Drawing inspiration from previous work on network embeddings [1],

[2], [18], [27] and various approaches to network architecture search [17], [28],

[29], [14], a novel approach is proposed that combines the concepts of a network

embedding space with target problem features (for fully connected networks and

beyond). This approach aims to learn a transferable policy that allows for more

general architecture spaces and reduces the need for extensive retraining for new

problems. Furthermore, it facilitates the transfer of optimization strategies across

problems.

To address the challenges posed by the complex dynamics of network perfor-

mance under architecture transformations in an embedding space, the approach

consolidates and organizes legal network embeddings using Siamese networks.

Additionally, it employs a Reinforcement Learning framework for complex policy

formation that enables the system to more reliably achieve high-performing final

architectures, even in the presence of significant local extrema for task performance.

9

1.4 Outline

The remainder of this dissertation is structured as follows: Chapter 2 provides

a review of the state-of-the-art approaches in network architecture optimization,

with a focus on Reinforcement Learning, in order to establish the background

and context for the related work. Chapter 3 introduces the fundamental concepts

that underpin our proposed architecture, elucidating the roles of Reinforcement

Learning, Siamese Networks, Autoencoder, Network Accuracy, Action (Embed-

ding) Space, Policy, Q-Value (Q-Function), Twin Delayed Deep Deterministic Pol-

icy Gradient (TD3), Actor-Critic Methods, and Policy Gradient with respect to the

Embedding space.

Chapter 4 presents an overview of the proposed architecture and delves

into various implementation-related aspects of key network components, such as

the ’encoder model’, ’decoder model’, ’accuracy model’, ’actor network’, ’critic

network’ and ’reinforcement learning agents’. Chapter 5 emphasizes various

experimentation-related aspects, including the training of the Embedding Space,

pre-training and full training of Actor and Critic components and finally actor-critic

training with reinforcement. In Chapter 6 we share results of various experiments

using our proposed architecture.

Lastly, Chapter 7 concludes the dissertation by summarizing the innovative

deep learning framework that employs Reinforcement Learning to learn a net-

work architecture modification policy. This approach holds the potential to enable

network optimization for diverse problems without necessitating substantial and

expensive retraining, ultimately summarizing the results.

10

CHAPTER 2

RELATED WORK AND BACKGROUND

2.1 Related Work

Neural network architectures have been the driving force behind numerous

breakthroughs in deep learning, leading to significant advancements in computer

vision, natural language processing, and other domains. The design of these archi-

tectures has traditionally been a manual and labor-intensive process, prompting

the development of automated methods that use approaches such as reinforce-

ment learning (RL) for optimizing network architectures. The growing complexity

of neural network architectures in deep learning necessitates efficient optimization

methods to enhance their performance and to make them accessible and usable by

a wider range of users.

Deep learning techniques have facilitated the creation of intricate neural net-

work architectures, achieving state-of-the-art performance across various tasks [30].

However, conventional architecture optimization methods, which largely consist

of trial and error and rely heavily on the expertise and intuition of the expert de-

signer, can be time-consuming and labor-intensive. Reinforcement learning (RL)

has emerged as a promising approach for automating network architecture opti-

mization through intelligent decision-making due to its ability to learn in situations

where the correct solution is not known for a sufficiently large number of training

instances. Numerous past research efforts have investigated the application of

reinforcement learning (RL) for network architecture optimization, examining its

potential benefits and challenges.

11

Moreover, some advances in deep learning illustrate the complex representa-

tion learning capabilities of multi-layered architectures Figure 2.1. Neural networks

assume certain preconditions regarding the type and distribution of training data.

Specifically, the provided training data should be Independent and Identically

Distributed (IID) with a fixed underlying distribution and necessitate complete su-

pervision in the form of ground truth or complete gradients concerning individual

instances in the data. These requirements are often unattainable for many learn-

ing problems, thus limiting the application of neural networks in various problem

domains where such uncertainties might emerge in real-world data.

Figure 2.1: DeepRL Architecture

This section explores the application of RL in network architecture optimiza-

tion, discussing the benefits, challenges, and methodologies involved. It also

provides a comprehensive review of research in the field of neural network ar-

chitecture optimization using RL, examining key milestones, methodologies, and

challenges. By integrating RL into the optimization process, we can potentially de-

velop more efficient and robust models, enabling advancements in various fields,

including computer vision, natural language processing, and beyond. In this sec-

12

tion we highlight pertinent literature and emphasize key milestones encompassing

primary methodologies, challenges, and future directions in the field in order to

provide an understanding of the current landscape of neural architecture optimiza-

tion.

2.1.1 Early works on Neural Architecture Search using RL

2.1.1.1 Reinforcement Learning in Neural Architecture Search (NAS)

Neural Architecture Search (NAS) is a widely adopted approach for automat-

ing network architecture optimization, aiming to identify the optimal architecture

for a specific task by exploring an extensive space of possibilities [23]. NAS em-

ploys various search strategies, including random search, evolutionary algorithms,

and Bayesian optimization. In recent years, Reinforcement Learning has emerged

as a promising option in NAS [17] [31] due to its efficient learning abilities in the

absence of labeled data.

Zoph and Le [23] were among the first to propose using reinforcement learn-

ing for NAS. Their work introduced an innovative method for employing RL to

search for optimal neural network architectures. The authors utilized a recurrent

neural network (RNN) controller to generate variable-length strings encoding the

architecture of a neural network, thereby helping to generate architectural con-

figurations for convolutional neural networks (CNNs). The controller was trained

using a policy gradient method to maximize the expected accuracy of the generated

architectures on a validation set. The performance of these generated architectures

served as a reward signal to train the controller using policy gradient methods

[32]. Their approach led to the discovery of novel architectures that outperformed

hand-designed architectures on image classification tasks.

13

Following the success of Zoph and Le [23], several other works have applied

reinforcement learning to NAS, including Baker [17], who employed Q-learning

[33] to search for architectures, and Tan et al [34], who used Proximal Policy Opti-

mization [35] to optimize architectures for mobile devices. While these approaches

were a large step forward and pointed out a promising avenue, they were limited

to single problems and specific architectures and required very large numbers of

experiences on each individual target problem.

In reinforcement learning-based approaches the problem of network archi-

tecture optimization is generally formulated as a Markov Decision Process (MDP),

in which an agent interacts with an environment over a series of discrete time steps

[36]. In the context of Neural Architecture Search (NAS), the agent is responsible

for generating architectural configurations, while the environment corresponds to

the performance of the generated architectures on a given task. The agent’s goal is

to discover an architecture that maximizes its expected cumulative reward, which

is the sum of the rewards obtained over time. One of the main benefits of this

approach is that it only requires the availability of a reward function, which is gen-

erally much easier to design and estimate than a complete performance function

for each network. Moreover, its ability to construct a utility function automati-

cally allows it to address the problem of excessive local extrema in the original

performance space.

Various RL algorithms have been employed for NAS, including policy gradi-

ent methods [32], Q-learning [33], and actor-critic algorithms [37]. Policy gradient

methods directly optimize the parameters of the policy, whereas Q-learning and

actor-critic algorithms aim to learn value functions that estimate the expected cu-

mulative reward. In recent years, advanced RL algorithms, such as Proximal Policy

Optimization [35], have also been applied to NAS, providing improved sample ef-

14

ficiency and stability [34]. Another direction in which advances have occurred is

the development of strategies to reduce the search space and computational cost

associated with training and evaluating candidate architectures.

2.1.1.2 Designing Neural Network Architectures Using Reinforcement Learning

In citebaker2016designing, Baker and colleagues presented a meta-learning

framework for designing neural network architectures using reinforcement learn-

ing. The authors used a two-level hierarchical approach, where the first level

optimized the macro-level architecture, and the second level focused on micro-

level details such as layer types and hyperparameters. In this approach agent is

limited to a finite state and action space and constricted the state-action space using

coarse, discrete bins to accelerate convergence.

2.1.1.3 Advances in Efficient Neural Architecture Search

Pham et al.[38] introduced an efficient approach to neural architecture search

by sharing parameters across different architectures, which significantly reduced

the computational requirements. The method used a single, large model that sub-

sumed multiple sub-networks, allowing the simultaneous evaluation of multiple

architectures. Efficient NAS (ENAS) [38] is an example of such an approach. It

employs a weight-sharing strategy between different architectures, allowing for

faster evaluation and training. By sharing weights, ENAS significantly reduces the

computational requirements without compromising the quality of the discovered

architectures. This has led to state-of-the-art results on benchmark datasets, such

as CIFAR-10 and ImageNet [5], [39]. However, Efficient NAS (ENAS) [38] suffer

from a low-rank restriction as for arbitrary matrices A and B, one always has the

15

inequality: rank(A · B) ≤ min rank(A), rank(B). Due to this limit, it fails to find

architectures that perform well in the normal training setups, where the weights

are no longer restricted.

2.1.1.4 Differentiable Architecture Search (DARTS)

Another area of focus is incorporating domain knowledge into the search

process to guide the exploration of the architecture space. In the Differentiable

Architecture Search (DARTS)[24] framework, the search process is formulated as a

continuous optimization problem, allowing the use of gradient-based optimization

methods. This differentiable approach reduces the search time and computational

resources needed while still identifying high-quality architectures [40].

2.1.1.5 Transfer learning

Transfer learning has also been explored as a means to improve the efficiency

of RL-based NAS methods. For instance, MetaQNN [17] leverages meta-learning

to transfer knowledge from previous tasks, thus reducing the time required to

search for optimal architectures for new tasks. This approach demonstrates the

potential of using prior knowledge to accelerate the search process and improve

the performance of discovered architectures [41].

2.1.1.6 Proxy-Less-NAS

Cai [29] and colleagues proposed a direct neural architecture search on the

target task and as well as hardware to accelerate it that eliminated the need for

proxies, such as training on smaller datasets or model simplification. Instead, the

16

method directly optimized the architecture’s performance on the target task and

hardware, which led to more accurate and efficient architectures.

2.1.1.7 Exploration vs. Exploitation

Balancing exploration and exploitation is crucial in RL-based NAS due to the

large size of the space of neural networks. Exploration involves generating diverse

architectural configurations to discover novel architectures, while exploitation fo-

cuses on refining the current best-performing architectures. Striking the right bal-

ance between exploration and exploitation is essential to ensure the RL algorithm

converges to an optimal architecture [36].

Various techniques have been employed to balance exploration and exploita-

tion in RL-based NAS. For example, Zoph and Le [23] used an ε-greedy exploration

strategy, which involves taking random actions with probability ε and taking the

best-known action otherwise. Alternatively, entropy regularization can be em-

ployed to encourage exploration where not sufficient information is available by

adding the entropy of the policy to the objective function with a regularization

coefficient [42].

In summary, the application of reinforcement learning in neural architecture search

has led to significant advancements in automating the discovery of high-performing

neural network architectures. By employing various RL algorithms and incorpo-

rating strategies like weight-sharing, differentiable search, and transfer learning,

researchers continue to push the boundaries of NAS, enabling advances in various

fields, such as computer vision, natural language processing, and beyond. As the

field of NAS progresses, including through the work presented in this disserta-

17

tion, we expect to witness further developments in RL-based techniques and novel

approaches to improve the efficiency and effectiveness of architecture search.

2.1.2 Closely Related Methods

Many approaches exist for network architecture optimization using Rein-

forcement learning. All these approaches propose an automatic method for the

search of an optimized neural network architecture given a specific task. Luo[1]

allows the exploration of a multidimensional embedding space of possible struc-

tures, including the choice of the number of neurons, the number of hidden layers,

the types of synaptic connections, and the use of transfer functions. Luo[1] has

also introduced a novel strategy which is capable to generate a network topology

with over-fitting being avoided in the majority of the cases at affordable computa-

tional cost. However, the used architecture optimization is a combination of local

gradient ascent and significant heuristic search, limiting optimization to a single

learning task and incurring significant computational expenses.

Alternatively Bose[2] has taken a different approach focusing on ensembles

of simple networks that uses Reinforcement learning to learn a policy to incre-

mentally build neural network classifiers for a broad distribution of problems,

and subsequently applied it to new data to learn a classifier for a specific new

problem. Bose[2] has used state to represent an accuracy of a network, which is

problem-independent and thus allows learned policies to be applied to new prob-

lems. However, Bose[2] uses a very small, pre-defined set of network modification

operations, limiting it to ensembles of simple fully connected binary and one-vs-all

classifiers [43] and making it hard to expand to other network architectures such

as convolutional or recurrent networks.

18

2.1.3 Challenges and Future Directions

One of the main challenges of RL-based NAS is the high computational cost

associated with training and evaluating numerous architectures. This issue has

led to the development of techniques to reduce the computational burden, such as

weight sharing [38] and early stopping [44]. However, further research is needed

to develop more efficient algorithms for RL-based NAS.

Another challenge is leveraging the knowledge gained from one task to op-

timize architectures for other tasks, which is known as transfer learning. Some

work has been done in this area, such as the use of meta-learning for NAS [17] and

the progressive search for architectures [45]. However, more research is needed to

improve the effectiveness of transfer learning in RL-based NAS.

In addition to optimizing the architecture itself, RL could potentially be ap-

plied to other aspects of network optimization, such as network pruning and

quantization. These techniques aim to reduce the model size and computational

complexity without significantly degrading performance [46]. Exploring the inte-

gration of RL with these techniques is a promising direction for future research.

We can summarize the challenges into following three sections:

2.1.3.1 Scalability

A key challenge in neural architecture optimization using RL is scalability, as

the search space grows exponentially with the number of layers and possible layer

configurations.

19

2.1.3.2 Transferability

Another challenge is the transferability of learned architectures across differ-

ent tasks and datasets, which could help alleviate the need for expensive architec-

ture searches for every new problem.

2.1.3.3 Hardware-aware optimization

The increasing importance of efficient deployment on diverse hardware plat-

forms motivates the development of hardware-aware optimization methods, which

directly incorporate hardware constraints into the search process.

2.2 Background

Network Architecture Optimization (NAO) plays a crucial role in improving

the performance of deep learning models by systematically exploring and refining

the architecture space. It focuses on discovering optimal network architectures that

yield the best performance for a given task. NAO techniques involve various search

strategies, such as random search, evolutionary algorithms, Bayesian optimization,

and more recently, Reinforcement Learning.

In this dissertation we present an approach that employs Reinforcement

Learning in a network embedding space to learn a policy capable of producing op-

timized network architectures. In our approach, Siamese Networks are employed

to compress legal networks within the embedding space, allowing the system

to efficiently explore and optimize network architectures. This embedding space

transforms the space of network architectures into a lower-dimensional continuous

space, thereby defining a continuous action space. Reinforcement Learning is later

20

applied to the network embedding space to learn policies capable of generating

optimized network architectures.

Here a value function estimates the expected cumulative reward that an agent

would receive after taking an action in a given state and following a specific policy,

guiding it towards finding optimized network architectures. To enable generaliza-

tion across target problems and facilitate planning, the system also incorporates

a feature vector encoding target problem complexity and a derived performance

prediction component [16].

To better understand our proposed architecture, it is essential to first examine

the roles of the different components, including Siamese Networks, Reinforcement

Learning, Ensemble Learning, Action Space, Policy, and Q-Value as well as the

Advantage value in relation to the embedding space.

2.2.1 Network Architecture Optimization (NAO)

2.2.2 Neural Networks

Artificial neural networks are a powerful modeling technique that can be

used for representation learning on complex high dimensional input data. Recent

advances in multi-layered neural networks or Deep learning mechanisms [1] il-

lustrate the effectiveness of such algorithms at discovering intricate structures in

high dimensional data extending their application domains to many real world

problems.

Deep learning techniques have made major advances in solving complex

supervised learning problems in science, business and government applications,

ranging from image recognition [5], speech recognition and language modeling [3]

[47], predicting the behavior of new drug molecules [48], and modeling biologi-

cal systems as in reconstructing brain circuits [49] and predicting effects of gene

21

mutations [50] [51]. Neural networks are capable of modeling arbitrarily com-

plex functions in high dimensional continuous spaces and have been shown to

generalize well for unseen data far from the training input.

2.2.2.1 Recent Advancements and Challenges

It is widely recognized that neural network models do not inherently favor

discovering the underlying structural information of the data, which could enhance

the expressive power of the learned representations. This open research area

has seen various architectural constraints proposed for the hidden representations

in the form of lateral or recurrent connections among nodes. However, neural

networks trained with traditional backpropagation algorithms and their variants,

which offer some convergence guarantees for standard feed-forward networks,

often fail to converge when constrained by such recurrent connections.

In order to address these challenges and limitations, researchers have been

exploring alternative methods and techniques that can potentially improve the

learning capabilities of neural networks. One such approach is the incorporation of

reinforcement learning (RL) techniques for network architecture optimization. By

integrating RL into the optimization process, it is possible to create more efficient

and robust models that can handle complex tasks and adapt to changing data

distributions.

Another promising direction is the use of Siamese networks for represen-

tation learning. These networks have demonstrated their ability to learn robust

and discriminative representations by considering the similarities and differences

between input pairs or triplets. This can lead to improved generalization and

potentially better performance on various tasks.

22

Additionally, exploring ensemble learning techniques can further enhance

the performance and robustness of neural network models. By combining the pre-

dictions from multiple diverse models, ensemble methods can reduce the impact

of individual model biases and overfitting, resulting in improved overall perfor-

mance.

Finally, the development of more efficient training methods and algorithms

is essential for addressing the challenges associated with large-scale and com-

plex neural network architectures. Novel optimization techniques, regularization

methods, and learning rate schedules can contribute to faster convergence and

better generalization, enabling neural networks to tackle a wider range of problem

domains.

By addressing these challenges and exploring these research directions, the

field of neural networks can continue to advance, yielding more powerful and

versatile models capable of tackling complex tasks and adapting to the uncertainties

present in real-world data.

2.2.3 Siamese Networks for Robust and Efficient Feature Space Learning

Siamese networks have emerged as a powerful deep learning technique for

learning feature representations in tasks that involve comparing and relating differ-

ent data samples, such as image recognition, signature verification, and one-shot

learning [52]. In this section, we provide an introduction to Siamese networks,

focusing on their architecture, learning process, and applications. We also discuss

recent advancements and challenges in Siamese network research, highlighting

potential avenues for future exploration.

Deep learning has revolutionized various domains, such as computer vision,

natural language processing, and speech recognition. One of the key challenges in

23

these domains is learning meaningful feature representations from the limited set

of training data. More and more data is needed at times by Neural networks to per-

form with high accuracy. However, at times we do not have luxury to have enough

data to train Neural networks to perform with high accuracy. To solve these kinds

of tasks siamese networks play a very important role [52]. Also, Siamese networks

have demonstrated remarkable performance in tasks that involve comparing and

relating different data samples.

2.2.3.1 Siamese Network Architecture

A Siamese network consists of two or more identical sub-networks, each hav-

ing the same architecture and sharing weights. These sub-networks, called ”sibling

networks,” process the input data samples independently and produce feature rep-

resentations. The outputs of the sibling networks are then combined and passed

through a comparison function, which measures the similarity or dissimilarity

between the feature representations as shown in Fig 2.2.

2.2.3.2 Learning Process in Siamese Networks

Siamese networks are trained using a process called contrastive learning.

During training, the network is fed with pairs of input samples, along with a

label indicating whether the samples belong to the same class or different classes.

The network learns to generate feature representations that minimize the distance

between samples of the same class and maximize the distance between samples of

different classes.

24

Figure 2.2: Siamese Network Architecture
Ref: https://pyimagesearch.com/2020/11/30/siamese-networks-with-keras-

tensorflow-and-deep-learning/

2.2.3.3 Applications of Siamese Networks

Siamese networks have been successfully applied to various tasks, including:

One-shot learning: One-shot learning aims to recognize new objects based on only

a few examples. Siamese networks have demonstrated impressive performance in

this task, as they can learn to generalize from a small number of samples [53].

Signature verification: Siamese networks have been used to verify signatures by

comparing the feature representations of a reference signature and a test signature.

The network learns to identify genuine and forged signatures with high accuracy

[54].

Image recognition: In image recognition tasks, Siamese networks have been em-

ployed to learn robust feature representations that are invariant to variations in

lighting, pose, and other factors that affect the appearance of images [55].

25

2.2.3.4 Summary

Siamese Neural Networks (SNNs) can be described as a category of neural network

architectures that comprise two or more identical sub-networks. The term ”identi-

cal” refers to the fact that these sub-networks have the same structure, parameters,

and weights. Parameter updates are synchronized across all sub-networks, as they

are employed to identify similarities between inputs by comparing feature vectors.

Siamese networks are known for their ability to yield accurate predictions

using only a few images or a small amount of data. This capacity to learn from

limited data has made Siamese networks increasingly popular in recent years. As

the need for robust and efficient feature learning techniques continues to expand,

Siamese networks present significant potential for advancing deep learning per-

formance across various domains. My research aims to investigate and effectively

utilize Siamese networks that reduce the distance between samples (legal/illegal

networks) belonging to the same class while increasing the distance between sam-

ples of different classes.

Building on the capabilities of Siamese networks, further research can explore

various methods to enhance their performance and adaptability. By developing

more efficient training techniques and addressing challenges related to scalability

and overfitting, Siamese networks can be tailored to suit a wider range of applica-

tions.

Moreover, exploring the integration of Siamese networks with other deep

learning architectures and techniques could uncover new possibilities for improved

representation learning. For instance, investigating the impact of various architec-

tural constraints on hidden representations, such as lateral or recurrent connections

26

among nodes, may reveal novel ways to enhance the expressive power of learned

representations.

Recent advancements in Siamese network research encompass the develop-

ment of triplet loss, which extends the contrastive learning process by incorporat-

ing an additional negative sample, and the introduction of self-supervised learning

methods that leverage Siamese networks for unsupervised feature learning. How-

ever, challenges persist, such as enhancing the scalability of Siamese networks,

addressing overfitting issues, and developing more efficient training methods.

2.2.4 Ensemble Learning

Ensemble learning algorithms are often designed for problems involving

large datasets with concept drift properties. These algorithms typically maintain a

fixed ensemble size or employ evolutionary algorithms to construct ensemble net-

works [56],[57] ,[18]. However, this approach necessitates randomly re-exploring

valid architectures from scratch for each new problem, significantly limiting the

applicability of such algorithms. Additionally, integrating structural information

often requires manual incorporation of context into the training data.

In the context of ensemble learning algorithms, addressing challenges as-

sociated with incorporating structural information, scalability, and optimization

remains paramount. While existing methods have demonstrated some success,

they often require manual intervention and hand-engineered solutions, which can

limit their applicability and effectiveness.

2.2.5 Reinforcement Learning: An Overview of Techniques and Applications

Reinforcement learning (RL) is a subfield of machine learning that focuses on

training intelligent agents to make decisions by interacting with an environment.

27

It has been successfully applied to a wide range of applications, from robotics to

finance. Reinforcement learning (RL) is a machine learning paradigm that allows

agents to learn how to make decisions and take actions by interacting with an

environment. Unlike supervised learning, RL does not rely on labeled data; instead,

agents learn from trial and error, receiving feedback in the form of rewards or

penalties.

2.2.5.1 Fundamentals of Reinforcement Learning

The theory of sequential decision problems includes formulations of both

deterministic and stochastic problems [51]. In such problems an agent interacts

with a discrete time stochastic dynamical system by observing the current system

state and selecting an action at each time step. Sequential decision problems

are popularly represented by the mathematical framework of Markov Decision

Processes (MDP) in stochastic domains [58].

A Markov Decision Process is defined as a tuple 〈 S, A, Ψ, P, R 〉, where S is

a finite set of states, A is a finite set of actions, Ψ ⊆ S × A is the set of admissible

state-action pairs. As = a|(s, a) ∈ Ψ ⊆ A defines the set of actions admissible in

state s, assuming that ∀s ∈ S, As is non-empty. P : Ψ × S 7→ [0, 1] is the transition

probability function with P(s, a, s′) being the probability of transition from state

s to state s′ under action a where s, s′ ∈ S and a ∈ As. R : Ψ 7→ R is the expected

reward function, with R(s, a) being the expected reward for performing action a in

state s.

Addressing an MDP entails learning a policy, π, that maximizes an expected

utility derived from the rewards. Solving such problems requires learning from

sparse delayed feedback in stochastic dynamical environments. Reinforcement

28

learning [59],[36] is a learning paradigm that acquires control policies without the

need for extensive outside supervision. This formulates a framework for reactive

control which learns from interactions with the environment utilizing supervision

provided in the form of simple, scalar rewards and punishments defined by the

learning task (Figure 2.3).

Figure 2.3: Reinforcement Learning With Embedding Space (Part of the figure
borrowed from [1])

Neural networks and reinforcement learning algorithms have been combined

to form a powerful learning tool capable of modeling various uncertainties in ob-

served data. Typically, these algorithms are restricted to the domain of sequential

decision-making. Neural networks are employed to learn complex representations

from continuous, high-dimensional datasets, while reinforcement learning algo-

rithms model sparse feedback and address problems in dynamic environments.

Recent developments in neural networks and reinforcement learning algo-

rithms have opened up new avenues for tackling these challenges. By combining

the strengths of these two learning paradigms, researchers have been able to create

29

Figure 2.4: Overview of Reinforcement Learning Agent

powerful tools that can effectively model uncertainties in observed data and adapt

to dynamic environments.

Bose’s work [2] showcases the potential of reinforcement learning techniques

when applied to problem domains characterized by uncertainty. However, Bose’s

approach relies on predefined state spaces and separates the action space and state

space, resulting in a less integrated solution. Unlike Luo’s [1] approach, which

establishes a direct relationship between action space and state space, Bose’s state

space is a vector of accuracies indicating how well a particular network is currently

performing on a given problem (Figure 2.4). Using MDP, Bose calculates accuracies

for a predefined state space and effectively employs three state spaces to construct

three separate entities. In contrast, Luo’s method [1] employs a single POMDP

for all network modifications, allowing for a more unified approach that directly

relates action space and state space. This approach enables greater flexibility and

adaptability when addressing various machine learning problems.

30

In conclusion, both Bose’s and Luo’s work [1] demonstrate the value of in-

corporating reinforcement learning techniques in the context of ensemble learning

algorithms and neural networks. As research in this area continues to progress, it

is likely that more advanced and integrated solutions will emerge, further pushing

the boundaries of deep learning performance and applicability in a wide range of

problem domains.

The main advantage of Reinforcement learning is that it does not require a

priori datasets and pre-determined labels to train the agent, and can thus be applied

to problems where the solution is not known and can not be easily calculated.

The agent traverses through a Markov Decision Process (MDP) to find the best

sequence of decisions to maximize the reward, thus training itself through trial

and error. It is the learned policy which determines the best sequence of decisions

which maximizes the accumulated reward and overall performance. Hence, the

agent collects a trajectory using its current policy and uses it to update the policy

parameter.

In our proposed architecture, or example, the actor generates actions in a

learning environment. By using the performance feedback from a critic, the agent

then must find the best possible learning path in the embedding space. Therefore

to get the best performance and better future predictions, with the help of RL, we

need to make temporal changes to be able to predict, not what is at the end of this

step but what is reachable at the end of a trajectory of steps in the right direction.

2.2.5.2 Key Techniques in Reinforcement Learning

Value-based Methods: Value-based methods, such as Q-learning and Deep

Q-Networks (DQNs), focus on learning the value of taking an action in a state,

31

represented by a state-action value function (Q-function). These methods aim to

find the optimal policy by maximizing the Q-function. Further, most reinforcement

learning algorithms can be categorized into offline and online learning algorithms.

The Q-learning algorithm [33] is an offline model-free reinforcement learning ap-

proach and is a form of asynchronous Monte-Carlo dynamic programming. Here,

the utility of a state action pair depends on the current observed reward and the util-

ity of the greedy action choice for the next observed state. Given a state transition

tuple 〈 st, at , st+1, rt 〉, the Q-learning update step can be defined as :

Qt+1(st, at) = Qt(st, at) + α(rt + γmax
a

Qt(st+1, a) −Qt(st, at)) (2.1)

Offline Reinforcement learning approaches have the benefit that they can

learn from existing data without the need to explicitly execute the policy to be

learned. On the other hand, online learning algorithms have several advantages

over offline learning and are potentially more robust to errors or omissions in

the training set [60]. Instead of selecting the greedy action for the utility, online

algorithms choose the next state action pair according to the current policy which

allows online learning systems to operate largely without requiring the storage

of previously observed state action utilities. The SARSA algorithm [61], [62] is a

modified connectionist Q-learning algorithm, where the update step for a given

experience tuple 〈 st, at , st+1, rt 〉, s defined as:

Qt+1(st, at) = Qt(st, at) + α(rt + γQt(st+1, a) −Qt(st, at)) (2.2)

Policy-based Methods: Policy-based methods, such as REINFORCE and Proximal

Policy Optimization (PPO), directly optimize the policy without relying on a value

function. These methods use gradient ascent to update the policy parameters in

the direction that maximizes the expected cumulative reward. Additionally, re-
32

inforcement learning algorithms allow parameterized policies by applying Actor

Critic techniques as policy gradient algorithms [37]. Here, a policy function is used

to model the strategy and updated by estimating a gradient which optimize the

utility. Allowing step updates and assuming an uncertain problem domain allow

for robust learning algorithms that are suitable for solving many decision making

problems in the real world. Although rare, reinforcement learning algorithms have

also been applied to problems in other learning domains. For example, in cluster-

ing problems [63] where the clustering problem is formulated as a reinforcement

learning problem utilizing the quality of the cluster as feedback.

The objective of Reinforcement learning is to learn a good decision-making

policy π that maximizes rewards over time. The performance function is what

determines the policy, which is nothing but the argmax over all possible gradient

directions of the performance function.

In reinforcement learning, a policy (π) is a function that maps from states

to actions, determining the best action to take in a given state. When considering

small changes in action (∆a) and a performance function, we can define the policy

as follows:

Given a state ’s’ and an action ’a’, the performance function evaluates the

effectiveness of taking action ’a’ in state ’s’. If the change in action (∆a) is small

enough, we can write the policy (π) in terms of the performance function:

π(s) = argmaxaPer f ormance(s, a + ∆a) (2.3)

This equation states that the policy selects the action ’a’ that maximizes the per-

formance function when considering small changes in action (∆a). The policy

aims to find the best action to take in state ’s’ by considering the performance

33

of slightly perturbed actions around ’a’ and choosing the one that results in the

highest performance.

Actor-Critic Methods: Actor-critic methods combine aspects of both value-based

and policy-based methods. They employ two components: an actor, which repre-

sents the policy, and a critic, which estimates the value function. The critic is used

to guide the learning process of the actor, improving the stability and convergence

of the learning process.

Luo[1] uses predetermined state and action space, where action space causes

move in the state space but not a step in that state space. Whereas in case of Bose[2]

the action can be ‘add me a layer’ which will change the accuracy compared to

Luo[1] where action is to move a step in the state space. Bose[2] is deploying

strict Q-learning therefore by adding an extra layer he can achieve a change in an

accuracy of a network. His performance function is task independent and can be

defined as:

Performance(s,a) = Expected value of increase in accuracy

= E (increase in Accuracy)

Exploration vs. Exploitation: One of the key challenges in reinforcement learning

is balancing exploration and exploitation. Exploration involves taking random

actions to gather information about the environment, while exploitation entails

using the current knowledge to choose the action that maximizes the expected

reward. Striking the right balance is crucial, as too much exploration may lead

to suboptimal performance, while too much exploitation can result in the agent

missing out on potentially better actions.

Challenges: Like many learning algorithms, reinforcement learning is also suscep-

tible to the curse of dimensionality while working on many real world problems that

are usually represented in high dimensional and potentially continuous domains.

34

The reinforcement learning framework defines various methods for addressing

such issues. For problems with continuous spaces, the states are often aggregated

to form an approximate factored representation of the space [64][62] [65]. In such

cases the representations used need to respect the underlying dynamical system.

Apart from discretized state spaces, a latent representation is often learned for the

observed system. Neural networks are most commonly combined with reinforce-

ment learning algorithms to allow decision making and perform value function

approximations in various real world problems with high dimensional input rep-

resentations.

It has been well established that reinforcement learning is a powerful and

versatile machine learning paradigm that has shown great promise in a wide range

of applications. By allowing agents to learn from trial and error while interact-

ing with their environment, RL provides a flexible approach to solving complex

decision-making problems. Future research in reinforcement learning will likely

focus on addressing challenges such as sample efficiency, transfer learning, and

multi-agent scenarios. Moreover, reinforcement learning will continue to integrate

with other machine learning approaches, such as deep learning and unsupervised

learning, to further push the boundaries of artificial intelligence.

As RL algorithms continue to improve and become more accessible, it is

expected that their adoption across various industries will increase, leading to

innovative solutions and transformative breakthroughs in areas such as healthcare,

transportation, and entertainment. Reinforcement learning has the potential to

significantly impact our world, providing intelligent agents capable of tackling

some of the most complex and challenging problems we face today [36].

It is very effectively used in my research as it allows to learn from quantitative

feedback and thus addresses the problem in network architecture optimization that

35

optimal network configurations for the target problems generally are not known.

Utilizing the network embedding space, RL operates here by executing actions

in embedding space to modify the network architecture and observing resulting

reward in the form of changes in actual or predicted network performance. Based

on this, a value function is estimated and a policy is learned that optimizes the

obtained rewards.

In Summary Reinforcement Learning can be defined as:

1. Agent takes actions and learns from quantitative feedback

2. It does not require datasets and pre-determined labels to train agents

3. Agent/Environment interaction modeled as a Markov Decision Process

4. Learned policy determines best sequence of decision that maximizes the re-

ward and overall performance.

2.2.6 Learning a policy (π)

Learning a general policy for a wide range of problems and then constructing

a network for a specific problem may not be the most optimized approach. Instead,

there is a need to learn a policy that dictates the appropriate action to take in each

state to maximize a particular function. This function represents the mean or

expected discounted sum of the sequence of rewards, leading to an optimized

network for various problems. Bellman’s equation can be used to formalize this

concept, and it can be solved iteratively through policy iteration. This results in

the unique fixed point of the equation, which corresponds to the optimal policy.

Bellman’s equation effectively decomposes the value function into two parts:

the immediate reward and the discounted future values [66] Figure 2.6. This

simplifies the computation of the value function, allowing the optimal solution to

36

be found by breaking complex problems down into simpler, recursive sub-problems

and solving them optimally.

Figure 2.5: Overview of Policy : 1) The agent starts interacting with the embedding
environment. 2) The collected observations are used to update the current model.
3) The agent updates the policy by learning inside the model.

Another constraint we face to get to optimal policy is that we don’t have

complete visibility of the state space, which makes us hard to use MDP, as Markov

Decision Process (MDP) assumes that the complete state of the world is visible to

the agent. This is clearly highly unrealistic as there is no way to find out what is

input and output space for a specific problem will be. To resolve this constraint,

POMDPs model effectively uses the information available to the agent by specifying

a function from the hidden state to the observables.

By employing POMDPs, the objective becomes more straightforward: to find

a mapping from observations (rather than states) to actions. For instance, in a

classification problem, a policy (f) can be represented as f(x), where f(x) = y. Here, x

is a state (s), and y is the output decision of the policy. In real-world problems, the

input may not be a known state (x); instead, it can be substituted by an observation

37

X ≡ O (Observations). Alternatively, the state may be inferred or embedded in

some way.

The primary goal is to learn a strategy (a policy) for network optimization

within a derived architecture embedding space. This policy will specify which ac-

tion to take in each state to maximize a particular function and obtain an optimized

network for various problems. The focus is not on finding the best network for

all problems; rather, the aim is to encode a policy that helps determine the best

network for a given problem. The proposed architecture attempts to estimate the

Q-value for any state comprising an embedding point and problem-specific accu-

racy metrics (Figure 2.7). Conceptually, the policy is the gradient of the Q-function

with respect to the embedding space, which provides the direction of movement

and thus how to modify the network. In the experiments, the policy and value

function take the form of a deep network actor-critic architecture. The approach

presented here utilizes an actor-critic reinforcement learning method [37] [67] to

perform policy and value function learning in a continuous embedding space aug-

mented with a continuous action space. Additionally, problem-specific parameters

(feature vectors) are incorporated into the network, such as network accuracy for

a given problem.

The actor-critic reinforcement learning approach allows for more efficient

learning and optimization in the continuous embedding space. By incorporat-

ing problem-specific parameters like network accuracy, the proposed architecture

is better equipped to adapt to various problem domains. This combination of

the continuous action space, deep network actor-critic architecture, and problem-

specific feature vectors provides a powerful solution to address the challenges of

learning a policy for network optimization.

38

In summary (Fig.2.5), learning a policy in reinforcement learning involves

several crucial components:

1. Utilizing Bellman’s equation to simplify the computation of the value function

by breaking down complex problems into simpler, recursive sub-problems.

2. Employing POMDPs to model the relationship between hidden states and

observable states, enabling the agent to make informed decisions based

on available information.

3. Leveraging a deep network actor-critic architecture to learn the policy and value

function in a continuous embedding space augmented with a continuous

action space.

4. Incorporating problem-specific feature vectors into the network to facilitate

adaptation and optimization for various problem domains.

By integrating these elements, the proposed architecture can effectively learn a

policy that maximizes the chosen function, resulting in an optimized network for

a wide range of problems. This approach holds significant potential for improving

the performance and adaptability of deep learning models, ultimately pushing the

boundaries of what can be achieved with reinforcement learning-based network

optimization.

2.2.7 Q-Value (Q-Function)

In Reinforcement learning, the Q-Value (Eq. 2.1) estimates performance as the

expected utility of the learning agent in state s when performing action a, and

39

otherwise following policy(π). This value function not only considers immediate

reward feedback, r(s, a), but also takes into account future payoffs.

Qπ(s, a) =
∑

s′
Pa

ss′(r(s, a) + γ
∑

a′
π(a′|s′).Qπ(s′, a′) (2.4)

Vπ(s) =
∑

a

π(a|s).
∑

s′
Pa

ss′(r(s, a) + γ.Vπ(s′)) (2.5)

Figure 2.6: Bellman equation (a) for the state-value function, (b) for the action-value
function

The Bellman equation [66] for the State-value function provides the basis for per-

formance estimation and policy learning and tells us how to find the value of a

state (Fig. 2.6) following a policy (Eq. 2.5). Note, Q-Learning is a very effective way

to evaluate the performance of an action in a particular state but Luo[1] is not us-

ing Q-Learning and is directly evaluating his performance function (Eq.2.1) under

supervised learning. His Network Architecture Optimization (NAO) is truly an

episodic task where Q value and reward are identical Q(s) = r(s). It is a single step

problem, where Luo[1] is using supervised training to train it’s architecture until

they find its full reward, which tells us how high its performance is? In contrast

40

this is not true in case of Bose[2] as data is a complete network and there is no next

step, unlike Luo[1] where, we sample the neural network space in the local neigh-

borhood where we expect the solution to be. Therefore, for Luo[1] Q-function

effectively is discounted sum of the rewards as same step in different problems

leads to different improvements.

In our application the performance function must be somewhat problem

independent, making a general utility function such as the Q-Function. The Q-

Function (Eq. 2.2) is the total discounted sum of future rewards, thus taking into

account not only immediate payoffs but also future effects of actions. Also reward

represents increase in performance achieved by a network modification action

and the Q-value tries to predict expected improvements achievable by policy π.

The state is provided by concatenating the embedding vector (representing the

current network architecture) and a problem specific feature vector (capturing

problem complexity related information), while possible actions are continuous

displacement vectors in the embedding space. Fig.2.7 shows the connection of the

embedding space and the value function.

To utilize this in our application where we want to learn to optimize network

architectures in an embedding space, we need to decide two important factors:

1. How to define the reward and action space used by RL?

2. What are the problem specific parameters that we can give as an additional

input to allow generalization across learning problems ?

Since we don’t have a fixed performance value at every point in the state space, we

will use Reinforcement learning to train and calculate a Q-Value for all local mod-

ifications. This way we train a policy on the network space and after n iterations

41

we may end up at the goal, and along the way we will learn values for the entire

state space.

Figure 2.7: Network Embedding Space (left) and Problem Features (right) form
State Representation for the Reinforcement Learning Component (top)

2.2.8 Embedding Space

Network architecture optimization has to deal with the problem that it needs to be

able to represent the space of all applicable networks, and if using Reinforcement

learning, an action space of network modifications that permits it to change any

network into another network architecture. Moreover, it is well established that

for different problems, different networks are optimal, implying that any network

modification policy will have to have access to some problem specific features and

characteristics.

42

To efficiently represent the set of networks for use by a deep learning system,

much like Luo[1] we map a network description language into an embedding space

using an encoder-decoder component. In addition, we will need the second prob-

lem specific input to train the policy on to facilitate the potential for transfer across

problems. Here we embed the network and the merge the embedding vector with

problem specific parameters to form the state representation for our policy learning

components. Use of the lower-dimensional latent embedding for networks here

also defines the policy’s continuous action space as displacement vectors in the em-

bedding space. The network embedding vector, augmented with a feature vector

encoding the problem for which the network architecture is to be optimized, form

the state for the RL problem while displacements in the embedding space provide

the RL learner’s action space.

One problem with such a derived embedding space is that it can fracture the

space of legal network embeddings into disconnected regions. While this does not

affect local optimization using gradient ascent as in [1], it makes learning RL policies

for optimization more difficult as they need to cross regions of the embedding space

which do not decode to valid network architectures. To address this and condense

the space of legal networks, a Siamese Neural Network (SNN)[52] is used here in

the encoder structure to organize the embedding space into coherent legal network

regions.

In essence the embedding space (E) characterizes the space of all available

networks modification functions where network modification actions correspond

to moves in the embedding space that increase the utility of the resulting network

for the given problem calculate gradients of this space in Reinforcement learn-

ing context.(Figure 2.7) shows an overview how the embedding space together

43

with problem-specific parameters forms the underlying representation for the Q-

function of the Reinforcement learning framework.

Figure 2.8: 2-Dimensional Embedding Space with Random Neural Network with
their performance

My approach is partially inspired by Luo[1], where the two-dimensional

embedding space is learned by taking bunch of networks randomly and figuring

out performance for each of them (Figure 2.8).

2.2.9 Actor-Critic Methods and Policy Gradient

Utilizing an embedding space in this approach allows for a continuous action space,

which is then optimized using actor-critic and policy gradient methods [68] [69]. In

this context, the Q-value is learned by parameterizing the Q-function with a neural

network in the augmented embedding space. The ’critic network’ estimates the

value function, including action-value (Eq.2.4), while the ’actor network’ updates

the policy distribution using policy gradients based on the direction suggested by

the ’critic network’. Both the critic and actor functions are parameterized with

neural networks in the embedding space, as shown in Figure 2.9.

44

Figure 2.9: Schematic of the Connections between Embedding, Actor, and Critic

Policy gradients optimize the actor in the embedding space by updating the prob-

ability distribution of actions, ensuring that actions with higher expected utility

(i.e., Q-value) have a higher probability for a given observed state. The proposed

architecture employs a continuous (finite) action (embedding) and a stochastic

(non-deterministic) policy. The goal is to learn a policy (π) that maximizes the

cumulative future reward from any given time (t) until the terminal time (T). If

r(t+1) represents the reward received by performing action a(t) at state S(t), then:

r(t + 1) = R(s(t), a(t)) (2.6)

To learn a policy, the reward must capture the incremental improvement achieved

when modifying the network architecture. In supervised classification problems,

the most direct way to capture reward is by measuring the expected improvement

in network accuracy after a modification compared to before the modification.

Since continuous evaluation during improvement is not feasible, the architecture

includes a performance prediction component that predicts network performance

using data from previously trained problems. To limit the need for task-specific

training, the input to this network contains problem-specific features, alongside

45

the network embedding, to facilitate generalization across tasks.

Further, In order to effectively learn a policy, it is crucial to efficiently utilize the

performance prediction component within the architecture. This component not

only reduces the need for continuous evaluation during improvement but also al-

lows for better adaptability across different tasks.

By incorporating problem-specific features into the input of the performance pre-

diction component, the architecture is better equipped to generalize across various

tasks. This helps in streamlining the learning process and enables the network to

adapt to different problem domains without the need for extensive task-specific

training.

The combination of continuous action space, actor-critic methods, and policy gra-

dients allows the proposed architecture to optimize the policy and navigate the

embedding space effectively. This ultimately results in improved network perfor-

mance and the ability to tackle diverse problem domains with greater efficiency.

In summary, the proposed architecture aims to optimize network perfor-

mance by learning a policy that maximizes cumulative future rewards. The use

of an embedding space with a continuous action space, actor-critic methods, and

policy gradients enables the architecture to adapt to various tasks effectively. The

performance prediction component, combined with problem-specific features, fur-

ther enhances the architecture’s ability to generalize across tasks and improve the

overall efficiency of the learning process.

46

2.2.10 Reward and Performance Prediction:

In order to learn an effective network optimization policy, the reward must

represent the incremental improvement achieved through network modification.

In the context of supervised classification, this can be directly measured as the ex-

pected accuracy gain of the target network after modification. To minimize the need

for re-training target networks and enable planning, the architecture incorporates a

performance prediction [16] component that estimates network performance based

on previously trained problems. To reduce task-specific training requirements, the

input to this network not only includes the network embedding but also features

problem-specific elements, promoting generalization across various tasks.

In this approach, the performance prediction component plays a crucial role in

efficiently determining the success of network modifications. By leveraging infor-

mation from previously trained problems, it can estimate the impact of changes on

the target network’s accuracy without requiring extensive re-training. This allows

for a more streamlined optimization process, saving valuable time and resources.

Additionally, incorporating problem-specific features within the input helps the

architecture generalize across a wide range of tasks. This enables the network opti-

mization policy to be more adaptable and versatile, making it applicable to various

domains and problem types.

In summary, the combination of performance prediction and problem-specific fea-

ture integration enhances the architecture’s ability to learn an effective network

optimization policy. This approach facilitates efficient and adaptable network

47

modifications, ultimately leading to better performance in supervised classifica-

tion tasks.

2.2.11 Twin Delayed Deep Deterministic Policy Gradient (TD3)

The twin-delayed deep deterministic policy gradient (TD3) algorithm [67] is

a model-free, online, off-policy reinforcement learning method. A TD3 agent is an

actor-critic reinforcement learning agent that searches for an optimal policy that

maximizes the expected cumulative long-term reward. It is an extension of the

DDPG (Deep Deterministic Policy Gradient) algorithm [70], where DDPG agents

can overestimate value functions to produce sub-optimal policies. To reduce value

function overestimation, the TD3 algorithm includes the following modifications

of the DDPG algorithm.

• Agent can learn two Q-value functions and uses the minimum value function

estimate during policy updates.

• Agent can updates the policy and targets less frequently than the Q functions.

• Agent can add noise to the target action when updating the policy, which

makes the policy less likely to exploit actions with high Q-value estimates.

One can use a TD3 agent to implement one of the following training algorithms,

depending on the number of critics one specify.

• Train the (TD3) agent with two Q-value functions. This algorithm implements

all three of the preceding modifications.

• Train the agent (Delayed DDPG) with a single Q-value function. This algo-

rithm trains a DDPG agent with target policy smoothing and delayed policy

and target updates.

TD3 agents can be trained in environments with the observation space (contin-

uous or discrete) and action spaces (continuous). They use deterministic policy

48

Figure 2.10: Internal structure and the implementation diagram of the TD3 policy
gradient controller.

Ref: https://www.mdpi.com/1996-1073/14/20/6695

actor π(S) and one or more Q-value function critics Q(S,A). During training, a TD3

agent updates the actor and critic properties at each time step during learning and

stores past experiences using a circular experience replay buffer. The agent further

updates the actor and critic using a mini-batch of experiences randomly sampled

from the buffer and perturbs the action chosen by the policy using a stochastic

noise model at each training step.

A range of deterministic and probabilistic actor-critic and policy gradient algo-

rithms have been proposed and implemented as show in the figure 2.10. Since

deterministic policy methods have a tendency to produce target values with high

variance when updating the critic therefore we need a strategy for smoothing the

target policy to address this high variance caused by over-fitting to spikes in the

value estimate. Our architecture takes advantage of the TD3 method [71] and

handles this issue by focusing on reducing overestimation bias using a pair of

49

critic networks along with delayed actor updates while managing action noise

regularization.

2.3 Combining Reinforcement Learning on Embedding Space, Policy and Neural

Networks

Many existing methods, whether based on Reinforcement Learning (RL) or Evo-

lutionary Algorithms (EA) [23], conduct architecture searches in a discrete space,

which is highly inefficient. To address this issue, Luo [1] proposed using an au-

toencoder structure to learn a network architecture embedding space, facilitating

automatic neural architecture design through continuous optimization. Luo[1]

effectively employed an encoder to embed neural network architectures into a con-

tinuous space, followed by a predictor that takes the continuous representation of

a network as input to predict its accuracy.

The performance predictor and encoder enable Luo [1] to perform gradient-

based optimization in the continuous space to find an optimized embedding for

a new architecture. This can be easily decoded from a continuous representation

of a network back to its architecture, potentially improving accuracy. The net-

work embedding is essentially a mapping from the observation (O) to a state (S),

transforming the problem into a deterministic one as each observation (Neural

Network) maps to a specific state, even though the actual state is unknown until

the embedding is learned.

Luo’s [1] has effectively used the concept of POMDP to model its embed-

ding space, which makes this problem deterministic as every observation (Neural

Network) is mapped to a particular state, but that state is not known till we learn

50

its embedding. The embedding (e) in this case is this mapping of observations to

states: O ≡ S.

Figure 2.11: State Space (Part of the figure borrowed from [1])

Therefore, for x(network); embedding is nothing but a mapping x→ s and policy

is simply a gradient accent policy: π(s)→ a (gradient direction); where it takes a

state and maps it into an action (gradient direction). Figure 2.11 shows that Luo[1]

has limited his action space into a two-dimensional direction and a neural network

architecture(x) is embedded to state (s) with the help of encoder and new state

s′ is accomplished after gradient ascent is performed by the using performance

prediction function. This state s′ is later decoded to an optimal neural network

architecture(x′)

Luo[1]’s embedding space leads to a continuous action repertoire for their trajectory-

based optimization. However, the trajectories that yield improved networks are

derived based on optimized local accuracy estimates, requiring significant amounts

of additional training data for the specific problem to be generated during network

51

optimization. This results in a slow network optimization process and no general-

ization to other problems.

In contrast, Bose’s[2] approach uses discrete and pre-determined network mod-

ification actions resulting from a Reinforcement Learning-derived policy, which

is applicable to new problems without the need for large amounts of additional

network training. This approach adapts well to data drift, streaming data, and new

problems.

He has not established any direct relation between action space and state

space directly as in his case the state space is a vector of accuracies, indicating

how well a particular network is currently doing on a given problem. Bose[2] is

using MDP therefore the accuracies are calculated for predefined state space. He

has effectively used three state spaces to build three entities rather than one MDP

for all modifications. Whereas Luo[1] is using one MDP (POMDP) for all network

modifications and all actions exist within the embedding space.

However, it is possible that multiple X (Networks) map to same S (State→ embed-

ding). To find the best performing architecture for one single problem, Luo[1] runs

bunch of networks on two high performing GPU for week to train approximately

1000 Networks to evaluate their performance as shown in Figure 2.12. Sadly, in

case of data drift, this process will be obsolete, which means that all these old,

trained Networks will not be valid. He trains his architecture for one problem at a

time which is good for a fixed set of problems but will not give good results for a

new problem. Another major challenge with Luo[1] architecture is that it did not

address incrementally extending input space, as we all know that Neural Networks

are notoriously bad at incrementally extending the input space because they will

overfit to the data they get.

52

Performance functions in Luo’s[1] approach are highly nonlinear, making it difficult

to calculate gradient descent on the entire function. Additionally, the method only

considers top-performing networks, which may cause the best-performing network

to be missed if none of the initial networks were close to the best performance. One

solution to this problem is to apply an effective exploration technique to the policy.

In summary, Luo’sLuo[1] architecture provides a larger action space, enabling

it to easily handle various problems, while Bose’s[2] architecture has a more effec-

tive performance function. Each approach has its own strengths and weaknesses,

and a combination of the two methods could potentially yield a more robust and

efficient solution for network optimization.

Figure 2.12: Neural Architecture Optimization (encoder-decoder-predictor) Luo[1]

2.3.1 Comparison

Performance function is horrendously nonlinear in case of Luo[1] and em-

bedding space is huge, which makes it impossible to calculate gradient decent on

the whole function. Also he ignores all bad points and only considers good points

53

which are nothing but top performing networks, making performance function to

learn about best performing networks in some neighborhood in the embedding

space. This helps him to formulate their policy which is nothing but the gradient.

It is evident that this policy is executed for certain number of predetermined steps

to give him whole bunch of new Networks and their performance can be evaluated.

This process is repeated by ignoring old networks which are not performing to help

learn a new performance function and thereby build a more precise gradient. Only

if this newly generated policy is reasonable enough then there is a high chance of

generating better performing network.

If initially he generates broad enough networks, then there is a strong possibility

that there will be some networks which are close to some good performing network

resulting into one region of the embedding space where Luo[1] will get the best

performing Network. Repeated training helps Luo[1] to get a better performance

function. But on the flip side, there is a chance to miss the best performing net-

work, if none of the initial networks were close to the best performance. Further,

if the embedding space is nonlinear then his architecture might never lead to the

best performing network. One way to solve this problem is to apply an effective

exploration technique to this policy. Also, we need to keep track of entire network

design which includes layers, weights, number of nodes and all hyper parameters

etc., unlike Luo[1], which uses dynamic approach to adjust learning rate.

In contrast Ensemble network Bose[2] adapts well with data drift as well as with

streaming data and to new problems. At a given point of time the streaming

window only shows one part (subset) of the object but over the time it might show

other parts of the object. Hence, we will only get performance of the subset of

54

the original input of the problem. In his approach he first uses Reinforcement

Learning to learn a policy to incrementally build neural network classifiers for a

broad distribution of problems and subsequently applies it to new data to learn a

classifier for a given specific problem. As we see in the Figure 2.13, with the help

of mixtures of experts in its stand-by pool he can clearly build a good network for

a given input data. If the network in hand no longer works due to data drift and if

the input data does not match with the previous input data (due to Drift) then the

system can select a network from its pool that may work for this data. This way if

the data drifts then it just need to grab appropriate network from the back up and it

don’t have to build it again from scratch. This is a huge win with respect to Luo[1],

as in his case it is all or nothing as his design has no provision for data drifts. Luo[1]

must throw away all those networks as they become invalid for change in input

data.

Figure 2.13: Ensemble Learning MDP Workflow) Bose[2]

55

The key point to note with Bose[2] design is that every network is trained for

slightly different dataset and hence for a different purpose. This is bit problematic,

as it means that it is order specific not order invariant. Bose[2] has deployed three

MDP’s that handle three different scenarios. First MDP helps to decide if it needs to

build a new network from the scratch, or should he pick a new network or pick an

existing network that is currently not in use or drop a network from its ensemble.

He can only pick a network with highest performance from a pool of pre-selected

networks. The performances are evaluated based upon the streaming data to see

how they are doing. Dropped networks are saved in the pool of unused networks

and only worst performing networks are dropped Figure 2.13. Second MDP also

known as Network Creation MDP - is used to modify the network by adding a

layer or a add a unit to the deepest layer. Output layer is always kept fixed as it

is directly associated with the problem. Third MDP is Type Selection MDP, which

is used to decide between a One vs Rest or an All vs All network resulting in

multi-class classifier or one against all classifiers.

Note all three policies take binary decision as it must do Q-learning therefore

the action space have to stay discrete. The advantage we have with Luo[1] is that

the action space (embedding) is not discrete which can help to embed all possible

modification to that network into continuous embedding space to allows to build

gradient over the time. The benefit of embedding is that it takes a very high dimen-

sional discrete space and represents it with an approximation into a lower (two)

dimensional continuous space. This is a huge win as one of the biggest advantages

of the continuous space is that it has gradient potential which is not possible in

discrete space.

56

The action space in case of Bose[2] is independent of the state space therefore

Reinforcement learning does not require differential elements there and action

space is not large because he is only building fully connected networks. Whereas

action space in the case of Luo[1] is very large and high dimensional and if there

is a need to build different types of layers for different parts of the Network, then

this space of the modifications becomes big and unmanaged. As far as action space

is concerned, clearly, Luo’s[1] architecture wins as it gives a large action space so

that it can easily deal with all kind of problems. On the other hand, performance

function works much better in Bose’s[2] architecture.

2.4 Summary

For all neural network architectures, we need a very high dimensional action

space. The way we can potentially address this is by heaving an embedding space

where one can descend/ascend the Q-function. This embedding will be nothing

but RL space and will encode all networks so that we don’t have to worry about

adding a layer or dropping a layer or node etc. All directions in this embedding

space are nothing but modifications of the given Network. Since we need to

map high dimensional space to lower dimensional space and theoretically lower

dimensional space can represent all given Network’s. In some practical scenarios

it is possible that we get into a situation where more than one Network (X1 and X2)

map to same Embedding (s) leading to a potential error which is not avoidable.

X1→ S← X1

We also know that every problem is unique and to avoid any conflict in the em-

bedding space mapping, we will need the second problem specific input (Feature

Vector’s) as part of our embedding space to train it on. This strategy will help

57

us get different embeddings for different problems, otherwise we will try to learn

the universal network that does not exist. It is a cleaner solution, that we embed

the network and merge it with problem specific parameters to do predictive func-

tion. This will make action space on modified networks stay uniform across all

problems. Since embedding space characterizes the space of all available network

modification functions and actions are used to calculate gradients of this space in

RL context. Proper autoencoder training can also help us to further avoid this

conflict.

Another challenge we need to deal with is, to evaluate, if we can use embedding

space like Luo[1] to build a bigger network space while able to maintain following

two important features:

1. System should not build a pure monolithic network so that if the input data

changes, we can recover fast.

2. Learn a Policy that has a fixed policy of modification at least for the early

stages to find the neighborhood of network architectures and only at the very

end network is evaluated purely based upon its performance.

After some research we found that one of the possible solution to the problem

above is that we can have generic embedding to map the network (X) to a state (S)

with its performance (accuracies). The Figure 2.14, represents the state space of the

problem. It contains both things; the Network and attributes of each Network in

the ensemble.

It is evident that Bose[2] has effectively used Ensemble Network Architecture to

use accuracy as a state space, whereas Luo[1] uses performance of network in its

embedding space. It will be interesting to see if we can get the expected final value

derived by the potential improvement over the time. Since the expected value of

58

Figure 2.14: State Space with Performance)

the accuracy is achieved after gradient descent is completed. This can safely be

called an ‘Expected Accuracy’ of an Optimized network. The new state Ŝ of the

proposed architecture should contain the network information along with perfor-

mance function. The biggest win we get from our proposed architecture is that

accuracy is independent of the problem action(embedding) space.

My new State Ŝ will get me the expected value of the accuracy achieved after

the gradient descent is completed of the optimized network. Therefore, when we

apply different problems on the same network, we may get different performances

unlike Bose[2] where he get the same ensemble no matter what problem is feed

into his Architecture. The Proposed Architecture can use embedding space as a

continuous action space and not as a discrete action space which will get different

performances for different problems in the embedded states.

In summary, the goal of my research is to investigate if we can combine the concepts

of a network embedding space from Luo[1] with general problem representation

and Reinforcement Learning framework used by Bose[2] to construct a network

optimization architecture that can utilize the increased action space to address more

complex networks and still learn complete optimization policies using Reinforce-

ment Learning, that might be applicable to new problems. Taking inspiration from

59

a range of previous work done on network embeddings, network architecture op-

timization (NAO) and also carefully evaluating work done by Luo[1], Ensembles

Bose[2], Zhou[18] Granitto[27] and various approaches to network architecture

search by Baker[17], Bowen[16], Brock[28], Cai[29] and Kapanova[14]. We decided

to focus on an architecture that utilizes embedding and Reinforcement Learning

concepts to provide the promise to extend to various network types as well as

to transfer across problems without the need for extensive re-training for each

problem, thus potentially opening up ways to address streaming and drifting data

in a more complex form as in Bose[2]. Figure 3.1 shows the complete network

architecture, including embedding, performance prediction, and policy learning

networks.

60

CHAPTER 3

Approach

This dissertation proposes a novel approach for automatic network opti-

mization that utilizes Reinforcement Learning (RL) on top of a learned network

embedding space. The embedding space is obtained using an encoder-decoder

network and it provides a compressed representation of all network architectures

for the problem task. Additionally, it provides a corresponding fixed-dimensional,

continuous network modification action space represented as direction vectors

within the embedding space. Based on this embedding, the approach utilizes TD3

actor-critic networks to learn a network architecture modification policy. To reduce

the need for target network retraining and facilitate planning, the RL approach

uses an accuracy prediction network to generate reward predictions. The accuracy

prediction network uses the network embedding and the target problem feature

vector to predict the achievable classification accuracy for the target problem, as

well as whether the embedding corresponds to a legal decoded network.

To further organize the embedding space, a Siamese Neural Network (SNN)

[52] is employed to co-locate embeddings of valid network architectures. A loss

term is added to the SNN to represent the precision of target problem accuracy

prediction. To allow generalization across both the RL components and the accu-

racy prediction network, an additional feature vector is introduced that abstractly

encodes the complexity of the target problem.

The main advantage of this approach over previous techniques is that it

combines the ability to learn over a flexible network embedding space with the

61

potential to transfer the learned policy across new target tasks. Moreover, it also

improves upon previous work by incorporating an accuracy prediction network

that reduces the need for target network retraining and facilitates planning. The

use of a Siamese Neural Network to co-locate valid network embeddings in the

embedding space here adds an extra level of organization, making it easier to

navigate and manipulate the space. This organization is further enhanced through

the inclusion of the loss term in the SNN also ensures that the embeddings are

accurate and relevant to the problem task.

Generalization across target tasks is in part facilitated here through a task

embedding driven by a feature vector that abstractly encodes the complexity of

the target problem. This feature vector allows for transfer and ensures that the RL

components and the accuracy prediction network can be utilized across a variety

of scenarios.

Put together, this dissertation proposes an innovative approach for auto-

matic network optimization that utilizes a learned embedding space, a Siamese

Neural Network for organization, and an accuracy prediction network for reward

prediction. The approach provides an effective solution for optimizing network

architectures and can be utilized across a variety of problem tasks.

3.1 Architecture

As indicated before, to address the network optimization, the approach we

would like to take is to use reinforcement learning on top of a network embedding

space to utilize it as a continuous space and to form a structure that provides the

promise to eventually be able to generalize across problems and thus to be able to

learn a policy that can improve network architectures for novel problems without

62

the need for excessive re-training. To achieve this, we propose the integrated

architecture shown in Figure 3.1.

Figure 3.1: Architecture Overview. Embedding Space is Derived Using a Encoder-
Decoder (left) and Augmented with Problem Features to Form the Input to an
Accuracy Prediction Network (center) which Predicts Rewards, and an Actor-
Critic Network Pair (right) which Learn the Utility Function and the Network
Modification Policy Using Policy Gradient

This architecture takes the ’network architecture description’ and the ’prob-

lem description’ as input. The former represents the network characteristics, such

as number of layers and nodes, and the latter represents features reflecting the com-

plexity of the target problem, such as dimensionality, data size, feature correlations,

or accuracy achieved by baseline architectures.

The ’encoder’ model transforms the network description into an embedding

space which, with the problem description, serves as input to the ’accuracy’ pre-

63

diction, ’actor’ and ’critic’ networks. The ’decoder’ model is used to translate the

embedding back to a corresponding network architecture for use on the target task.

To improve the organization of the embedding space, a Siamese network [52] is

also used, encapsulating the encoder-decoder and action prediction networks as

indicated as a dashed box in the Figure 3.1.

3.2 Key Components of the Architecture

The architecture was evolved over the time, component by component and

layer by layer. The key network building blocks of the architecture are:

1. Encoder

2. Decoder

3. Accuracy

4. Predictor

5. Actor

6. Critic

The network architecture description encodes the number of layers, number

of nodes in each layer and connectivity of the network architecture for the target

problem. The second input in the form of a problem description vector, also known

as a task feature vector contains relevant aspects of the target task and is aimed

at allowing transfer to new target tasks for both the actor policy and the accuracy

predictions, thus minimizing the need for re-training when applied to a never

before seen target task. For initial training, the approach also saves the accuracy of

a range of randomly generated target task networks, network status (legal/illegal),

and network properties as truth values.

64

We split the input into network state properties and problem description

(Feature Vector) as shown in Figure 3.2.

Figure 3.2: Input Layer

3.2.1 Encoder Model

The ’network architecture description’ here is converted by the ’encoder

model’ into the continuous embedding space. It takes the Network description

such as number of layers and number of nodes in each layer and maps it into 2-D

plane as shown in Figure 3.3

Figure 3.3: Encoder-Decoder

65

3.2.2 Decoder Model

The decoder model takes the encoded Network properties from the 2-D em-

bedding space and decodes it back to the original Network properties such as,

number of layers and number of nodes in each layer, etc, with great accuracy. Fig-

ure 3.3 shows the basic concept of the enoder-decoder architecture. The left side

output in the overall architecture in Figure 3.1 shows the ’decoder model’ aimed at

allowing to re-create the network from the embedding space.

Figure 3.4: Encoder-Decoder Layered Diagram

The ’encoder model’ and ’decoder model’ are trained here as an autoencoder

to form the embedding space and then fine tuned by the addition of the ’accuracy

prediction’ network using a data set of previously trained networks for various

learning problems. Initial experiments were done on simple fully connected net-

works where the standard autoencoder layered diagram is shown in Fig.3.4.

66

3.2.3 Sequence-to-sequence Autoencoder

After the success with constrained simple fully connected networks, there

was a need to generalize the network architecture to more general fully connected

networks and eventually beyond fully connected networks across a wider set of net-

work types such as convolutional networks. This can be achieved by introducing a

modular network component input in terms of the characterization of the network,

instead of just passing the number of layers and number of nodes in each layer.

This will require to change our input vocabulary, to be able to input more complex

networks. For an initial version of this we plan to utilize a sequence of characters

in pairs with start and stop condition as an input to the encoder which will allow it

to eventually characterize different types of networks such as RNN,CNN and other

networks. The paired sequence allow us to present more complex networks with

arbitrary layers and nodes and utilizes a sequence-to-sequence recurrent encoder-

decoder architecture [72].

Figure 3.5: Layered diagram of Sequence-to-sequence Autoencoder

67

The model architecture consists of an encoder-decoder structure, wherein

Long Short-Term Memory (LSTM) [73] layers are employed for both encoding and

decoding operations. The purpose of this model is to learn to predict the subse-

quent values in a time series, given an input sequence of integer values, which is

nothing but representing in its simplest form the number of nodes and connectivity

in each layer.

For example: A 5 layered network with (23,20,12,11,6) nodes in each layers

can be represented for the encoder-decoder architecture shown in Figure 3.5 as:

[[0.0, 1.0], [23.0, 0], [20.0, 0], [12.0, 0], [11.0, 0], [6.0, 0], [0.0, -1.0]]

Here [00,1.0] represents the start of the network description and [0.0.-1.0]

represents the end of the sequence.

3.2.4 Accuracy Model

As accuracy prediction is problem specific, the accuracy model’s input is com-

prised of the concatenation of the network architecture embedding and a ’problem

description’ (feature vector) together with encoded network as a network state and

predicts a network performance measure of the network for the target problem as

well as whether the embedding state corresponds to a legal architecture. It serves

to help organize the embedding space and to generate simulated rewards in order

to minimize the amount of network training that has to happen when optimizing

a network architecture. The example layered architecture used in the experiments

presented later is shown in Figure (6.8).

During the first phase of training, the Encoder-Decoder and Accuracy models

are trained together. We use a custom loss function that adds MSE loss to the

weighted square activation of an accuracy layer. We also use custom accuracy

68

Figure 3.6: Accuracy Network Layers

matrix for decoder by calculating MSE of true and predicted values. This combined

Encoder-Decoder-Accuracy model is trained in our initial experiments from a set of

38235 networks for approximately 10,000 epochs, for both legal and illegal networks

using ‘0.0’ as an accuracy for illegal networks. This initial training helped to

learn about the embedding space. During the Second and final phase of training,

Encoder-Decoder and Accuracy models are trained with auto-encoder sequence-

to-sequence model for time series data using the Keras deep learning library to

train the encoder and decoder along with accuracy network with more complex

neural networks architecture.

3.2.5 Siamese network to co-locate embeddings

To avoid discontinuous regions of legal network embeddings and thus to

better organize the embedding space, this autoencoder is augmented with loss

terms from the ’accuracy prediction’ network and arranged in a Siamese network to

co-locate embeddings that decode into legal network descriptions. The effect of this

69

is an embedding space that is easier to traverse by the actor. An example illustrating

the resulting compact layout of the learned embedding space is shown in Figure 6.3

where blue regions correspond to legally decodable network architectures while

red regions decode to illegal descriptions.

Figure 3.7: Co-located Legal and Illegal Network’s

3.2.6 Actor Model

As in the case of the accuracy prediction, the joint embedded state and target

task representation also feeds to the ’actor model’ to learn the network architecture

optimization policy. The right side output of the architecture diagram in Figure 3.1

shows the ’actor network’ which gives us an effective policy to optimize a network.

The Actor model is used ultimately for the forward propagation operation through

the network to compute the policy (π), which helps us to select the next step (action

‘a’) in the embedding space and then generates the new corresponding network

with the help of the decoder.

70

3.2.7 Critic Model

The critic model evaluates actions taken by the actor based on the given

policy and learns the utility function to output ’State’ and ’Advantage’ values. Here

actions taken by the actor are in the context of the augmented embedding state.

The critic learns the utility function to output state values, V(s), and Advantage

values as:

V(s) = Eπ

∑
t

γtrt

 , A(s, a) = Q(s, a) − V(s) (3.1)

Internally, this critic maintains 2 separate value function estimates for both utility

functions as well as a common target network that achieves an action update delay

and function smoothing. For the actor critic component, the reward function is

derived as the actual (for online learning) or predicted (for planning) improvement

of the performance prediction of the ’accuracy’ model, leading, to policy trajec-

tories. For the actor critic component, we can interpret the network embedding

augmented with the problem-specific features as the state and derive a reward

function as the predicted improvement of the performance prediction provided

by the ’accuracy model’, leading, during execution of a policy trajectory to the

state-action-reward sequence shown in Figure 3.8.

Figure 3.8: State-Action-Reward Sequence for Policy

To train the actor and critic components, the system generates new embedding

space trajectories in each iteration as shown in Figure 3.9, which serve as training

71

data together with the reward extracted from the accuracy network’s performance

predictions. As the policy changes over time and the learner is largely on-policy, it is

essential that old trajectories are discounted and new ones generated continuously.

The outcome of the RL policy is an action vector ~a. We start training initially

by picking a couple of hundred steps in trajectories. There are two main benefits

of this training known as ’Forward’ & ’Backward use’. ’Forward use’ helps us

compute the policy, which tells us what action we should take and as a result of

the action what network is produced, where as ’Backward use’ helps to learn the

embedding space, which is done when we have enough data from trajectories.

Figure 3.9: Generation of Embedding State Trajectories

This architecture addresses the optimization problem independent of choices

that we need to make for the action in-order to be able to optimize the network

architecture for a given problem.

3.3 Other Foundational Elements of the Architecture

Essential architectural components serve as the fundamental building blocks

that contribute to the overall functionality, stability, and performance of a system.

They also form the basis of any successful system, and understanding their roles

72

and interdependencies is critical for designing and implementing efficient, secure,

and adaptable solutions that can effectively address our research needs and tech-

nological advancements. These crucial elements encompass ’Actor-Critic Methods

and policy gradient’, ’REINFORCE algorithm’, ’Q Actor Critic as well as Twin

Delayed Deep Deterministic Policy (TD3) Gradients’, each with its unique set of el-

ements that collaborate to achieve our research goals. Also, by carefully designing

and integrating these components, with our architecture, we can create a scalable,

modular, and maintainable system that is capable of meeting specific performance

and reliability requirements for Network Architecture Optimization. Furthermore,

essential architectural components play a critical role in facilitating communication

and data exchange between different subsystems, ensuring seamless interoperabil-

ity and efficient resource utilization.

With the help of the Architecture and its essential components an approach

is presented that uses Reinforcement Learning on a network embedding space to

learn a policy that can yield an optimized network architecture. The embedding

space here converts the space of network architectures into a lower-dimensional

continuous space and defines a continuous action space for the RL agent. To

permit generalization across target problems and to facilitate planning, the system

also utilizes a feature vector encoding target problem complexity, and a derived

performance prediction component.

In summary, a well-designed system architecture relies on the careful selec-

tion and arrangement of essential components, which together form the backbone

of any robust and high-performing system.

73

3.3.1 Actor-Critic Methods and policy gradient

The Q value, as well as V(s) and A(s, a), can be learned by parameterizing

the corresponding value function with a neural network in the embedding space

(Figure 2.7 and 2.9). This helps the Actor-Critic [68], to perform their functions as:

• Critic estimates the value function as action-value (the Q value) and state-

value (the V value).

•Actor updates the policy distribution in the direction suggested by the Critic

(such as with policy gradients).

Both Critic and Actor functions are parameterized with neural networks. To

understand this better we need to understand how policy gradients are driven

derived and how RL implements them. The two most popular classes of RL

algorithms are Q-Learning and Policy gradient. Where Q learning is a type of

value iteration method that aims at approximating the Q-function, while policy

gradients is a proven method to directly optimize in the action space. The policy

gradient method is also the “actor” part of Actor-Critic methods. In essence,

the policy gradient method updates the probability distribution of actions so that

actions with higher expected utility reward have a higher probability value for an

observed state assuming we have a continuous (finite) action space and a stochastic

(non-deterministic) policy for our experiments.

The objective function for policy gradients is defined as:

J(θ) = E[
T−1∑
t=0

rt+1] (3.2)

In other words, the objective is to learn a policy that maximizes the cumulative

future reward to be received starting from any given time t until the terminal time

74

T. Note that rt+1 is the reward received by performing action at at state st ; rt+1 =

R(st, at) where R is the reward function.

Since accumulated reward needs to be maximized, therefore the policy is

optimized by performing taking the gradient ascent with the partial derivative of

the objective with respect to the policy parameters θ where the policy function is

parameterized by a neural network.

θ← θ +
∂
∂θ

J(θ) (3.3)

Since we want to optimize long term future (predicted) rewards, which has a

degree of uncertainty, expectation, also known as the expected value or the mean,

is computed by the summation of the product of every x value and its probability.

E[f(x)] =
∑

x

P(x)f(x) (3.4)

Here P(x) represents the probability of the occurrence of random variable x, and

f(x)is a function denoting the value of x. Hence, the policy gradient can be defined

as:

∆θJ(θ) =

T−1∑
t=0

∆θlogπθ(at | st)Gt (3.5)

The detailed Architecture with specific Actor and Critic Network is shown

below:

We have considered two classic variants of actor critic methods, namely ’Q

Actor Critic’ (Equation 3.6) and ’Advantage Actor Critic’ Equation 3.6); as:

∆θJ(θ) = E[∆θlogπθ(s, a)Qw(s, a)] (3.6)

∆θJ(θ) = E[∆θlogπθ(s, a)Aw(s, a)] (3.7)

75

Figure 3.10: Actor-Critic Architecture

3.3.1.1 Q Actor Critic

The Q Actor-Critic algorithm is a type of reinforcement learning method

that combines the benefits of both value-based (critic) and policy-based (actor)

approaches.

To derive the Actor Critic architecture we revisit the policy gradient once

again as :

∆θJ(θ) = Eτ[
T−1∑
t=0

∆θlogπθ(at | st)Gt] (3.8)

We can then decompose the expectation into:

∆θJ(θ) = Es0,a0,....,st,at[
T−1∑
t=0

∆θlogπθ(at | st)Ert+1,st+1,....,rT ,sT [Gt] (3.9)

The second expectation term is the Q value

Ert+1,st+1,....,rT ,sT [Gt] = Q(st, at) (3.10)

Using Equation 3.10 in Equation 3.11 we can rewrite the update equation as:

∆θJ(θ) = Es0,a0,....,st,at[
T−1∑
t=0

∆θlogπθ(at | st)]Qw(st, at) (3.11)

76

This leads us to the Actor Critic Methods, where:

1. “Critic” estimates the value function. This could be the action-value (the Q

value) or state-value (the V value).

2. “Actor” updates the policy distribution in the direction suggested by the

Critic (such as with policy gradients).

Both the Critic and Actor functions are parameterized with neural networks.

In the derivation above, the Critic neural network parameterizes the ’Q value’.

Therefore, it is called ’Q Actor Critic’. As illustrated, we can now update both the

Critic network and the Value network at each update step.

Here is a high-level algorithm for the Q Actor-Critic method:

1. Initialize the actor network with parameters θ and the critic network with

parameters Ψ.

2. Initialize the target networks for the actor and critic with the same parameters

θ′ = θ and Ψ′ = Ψ.

3. Initialize the replay buffer D to store experience tuples (s, a, r, s’, done).

4. Set the number of episodes and steps for each episode.

5. For each episode:

a. Reset the environment and initialize the initial state s.

b. For each step within the episode:

i. Use the actor network with parameters θ to select an action

a based on the current state s (with exploration, e.g., using an

epsilon-greedy strategy).

ii. Execute the action a in the environment and observe the next

state s’, reward r, and done signal (whether the episode is

terminated).

iii. Store the experience tuple (s, a, r, s’, done) in the replay buffer D.

77

iv. Sample a minibatch of experiences from the replay buffer D.

v. Compute the target Q-value using the target critic network

with parameters Ψ′ and the target actor network with parameters

θ′ : y = r + γ ∗Q′(s′, π′(s′;θ′); Ψ′) ∗ (1 − done)

vi. Update the critic network by minimizing the loss between the

predicted Q-values and target Q-values: L(Ψ) = (Q(s, a; Ψ) − y) ˆ 2

vii. Compute the gradients for the actor network using the chain

rule and the critic network’s gradients:

∇ θJ(θ) = E[∇ aQ(s, a; Ψ)|a = π(s;θ)] ∗ ∇ θπ(s;θ)

viii. Update the actor network parameters θ using the computed

gradients.

ix. Update the target networks for the actor and critic using

a soft update strategy:

θ′ = τ ∗ θ + (1 − τ) ∗ θ′, Ψ′ = τ ∗Ψ + (1 − τ) ∗Ψ′

x. Update the state s = s’.

c. If the episode is done, break the loop and start a new episode.

Note that the algorithm above is a high-level description of the Q Actor-Critic

method. There are many variations and improvements to the basic algorithm, such

as using different exploration strategies, learning rate schedules, and network

architectures.

3.3.1.2 Advantage Actor Critic

Advantage Actor-Critic (A2C) is a reinforcement learning algorithm that com-

bines the strengths of both policy-based (actor) and value-based (critic) methods.

78

The key idea behind A2C is to use an estimate of the state-value function, V(s),

to compute the advantage function, A(s, a), which represents how much better an

action ’a’ is in a given state ’s’ compared to the average action. By learning to

optimize the advantage function, A2C balances the exploration and exploitation

trade-off, leading to more efficient learning.

Much like ’Q Actor Critic’ let us derive the equation for ’Advantage Actor

Critic’. Using, the V function as the baseline function, we can subtract the V value

term from the Q value. This value indicates how much better it is to take a specific

action compared to the average, general action at the given state. This value is

called ’Advantage value’ (A):

A(st, at) = Qw(st, at) − Vv(st) (3.12)

Using the Bellman optimality equation which shows the relationship between the

Q and the V as:

Q(st, at) = E[rt+1 + γV(st+1)] (3.13)

Replacing the Q value from Equation 3.13 in Equation 3.12 we get:

A(st, at) = rt+1 + γV(st+1) − Vv(st) (3.14)

Now, substituting the A value into Equation (12) we get our Advantage Actor

Critic (A2C) equation:

∆θJ(θ) ∼
T−1∑
t=0

∆θlogπθ(at | st)(rt+1 + γV(st+1) − Vv(st)) (3.15)

Hence:

∆θJ(θ) =

T−1∑
t=0

∆θlogπθ(at | st)A(st, at) (3.16)

The following is a high-level explanation of the Advantage Actor-Critic algo-

rithm:
79

1. Initialize the actor network with parameters θ, which represents the policy

π(s; θ), and the critic network with parameters Ψ, which represents the

value function V(s; Ψ).

2. Set the number of episodes and steps for each episode.

3. For each episode:

a. Reset the environment and initialize the initial state ’s’.

b. For each step within the episode:

i. Use the actor network with parameters θ to select an action ’a’

based on the current state ’s’.

ii. Execute the action ’a’ in the environment and observe the next

state s’, reward ’r’, and done signal (whether the episode is

terminated).

iii. Use the critic network with parameters Ψ to compute the value

of the current state V(s; Ψ) and the value of the next state V(s’; Ψ).

iv. Compute the advantage function, A(s, a) = r +γ∗V(s′; Ψ)−V(s; Ψ),

where γ is the discount factor.

v. Update the critic network by minimizing the mean squared error

between the computed target value and the predicted value of the

current state: L(Ψ) = (r + γ ∗ ∗V(s′; Ψ) − V(s; Ψ)) ˆ 2

vi. Update the actor network by maximizing the objective function,

which is the product of the advantage function and the log

probability of the action: J(θ) = log(π(a|s;θ)) ∗ A(s, a)

vii. Update the state s = s’.

c. If the episode is done, break the loop and start a new episode.

80

The Advantage Actor-Critic algorithm aims to improve the stability and con-

vergence of the learning process by using the advantage function to guide the

policy updates. This helps the agent to focus on actions that are significantly better

than the average action, leading to more efficient exploration and exploitation of

the environment.

A2C can be implemented using various function approximators, such as deep

neural networks, to represent the actor and critic networks. It can also be extended

to work with continuous action spaces using methods like the Deep Deterministic

Policy Gradient (DDPG) or Proximal Policy Optimization (PPO).

We will be implementing Advantage Actor Critic (A2C) as discussed in Figure

2.10. Further on each learning step, we will update both the Actor parameter (with

policy gradients and advantage value), and the Critic parameter (with minimizing

the mean squared error with the Bellman update equation).

3.3.2 The REINFORCE Algorithm

‘REINFORCE’ in RL, is defined as a Monte-Carlo variant of policy gradients

[69]. It is a model-free, policy-based reinforcement learning algorithm. It directly

learns an optimal policy without the need for a value function estimator. The

algorithm optimizes the policy by computing the gradient of the expected cumula-

tive reward and updating the policy parameters using gradient ascent. By taking

random samples, the agent collects a trajectory τ of one episode using its current

policy and uses it to update the policy parameter as one full trajectory must be com-

pleted to construct a sample embedding space. As per the REINFORCE algorithm,

policy parameters are updated through Monte Carlo updates (i.e., taking random

samples). This introduces inherent high variability in log probabilities (log of the

81

policy distribution) and cumulative reward values because each trajectory, during

training can deviate from each other at great degrees.

Consequently, the high variability in log probabilities and cumulative reward

values will lead to noisy gradients and cause unstable learning and/or the policy

distribution skewing to a non-optimal direction.

Therefore, REINFORCE is updated in an off-policy way as shown below

(Figure 3.11):

1. Step by step perform a trajectory roll-out using the current policy as shown

in Figure 3.8

2. Store log probabilities (of policy) and reward values at each step

3. Calculate discounted cumulative future reward at each step

4. Compute policy gradient and update policy parameter

5. Repeat 1–4

Figure 3.11: Policy - Trajectory

82

Here is a high-level explanation of the REINFORCE algorithm:

1. Initialize the policy network with parameters θ, which represents the

policy π(a|s;θ).

2. Set the number of episodes and steps for each episode.

3. For each episode:

a. Reset the environment and initialize the initial state s.

b. Generate an episode trajectory by sampling actions from the policy

network and executing them in the environment: (s1, a1, r1,

(s2, a2, r2), ..., (sT, aT, rT), where T is the episode length.

c. For each step t in the episode:

i. Compute the return Gt from step t onwards:

Gt = rt + γ ∗ rt+1 + γ ˆ 2 ∗ rt+2 + ... + γ ˆ (T-t) ∗ rT,

where γ is the discount factor.

ii. Compute the gradient of the policy network with respect to the

parameters θ: ∇θ log(π(at|st;θ))

iii. Update the policy network parameters using the computed

gradient and return Gt: θ=θ + α∗ Gt ∗ ∇θ log(π(at |st;θ)),

where α is the learning rate.

4. Repeat steps 3 and 4 until the policy converges or a stopping criterion is met.

The REINFORCE algorithm learns the optimal policy by directly optimizing

the expected cumulative reward. It does not require a value function estimator or a

separate critic network, making it a simple and intuitive approach to reinforcement

learning. However, the algorithm can suffer from high variance in the gradient

estimates, which can lead to slow convergence and instability during training.

83

Besides high variance of gradients, another problem with policy gradients can

occur if trajectories have a cumulative reward of 0, as in that case both “good” and

“bad” actions will not be learned. As we know that, the essence of policy gradient

is to increase the probabilities for “good” actions and decrease probabilities of

“bad” actions in the policy distribution. Overall, these issues can cause instability

and slow convergence of vanilla policy gradient methods. Several techniques

can be employed to improve the stability and convergence of the REINFORCE

algorithm, such as using baseline functions, which are subtracted from the returns

to reduce variance, or combining the REINFORCE algorithm with a value-based

approach, such as in the Advantage Actor-Critic (A2C) method or create smaller

gradients, and thus smaller and more stable updates, thereby intuitively, making

the cumulative reward smaller.

3.3.3 Twin Delayed Deep Deterministic Policy (TD3) Gradients

Twin Delayed Deep Deterministic Policy Gradients (TD3) is an advanced

model-free, off-policy reinforcement learning algorithm designed for continuous

control tasks. TD3 builds upon the Deep Deterministic Policy Gradient (DDPG)

algorithm, introducing several key improvements that address challenges associ-

ated with overestimation bias and noise sensitivity in the value function estimation.

The algorithm employs three main enhancements: twin Q-networks, delayed pol-

icy updates, and target policy smoothing.

In TD3, two separate Q-networks, also known as twin Q-networks, are uti-

lized to estimate the action-value function. The minimum of the predicted Q-values

from both networks is used to compute the target value, mitigating the overesti-

mation bias issue that can arise from using a single Q-network. This modification

84

results in a more stable and accurate value function estimation, leading to improved

performance and faster convergence.

The second improvement, delayed policy updates, involves updating the

policy network less frequently than the Q-networks. This technique reduces the

variance of the policy updates, allowing the Q-networks to provide more accurate

value estimates before the policy network is updated.

Finally, target policy smoothing adds noise to the target action before com-

puting the target Q-value. This approach encourages the algorithm to explore a

wider range of actions, making it more robust to noise in the policy network and

less susceptible to overfitting.

It is well established that deterministic policy methods have a tendency to

produce target values with high variance when updating the critic. We need a

strategy for smoothing the target policy as this is caused by overfitting to spikes

in the value estimate. TD3 [67] addresses this issue by focusing on reducing the

overestimation bias by taking care of 3 important features:

1. Use of pair of critic networks

2. Delayed updates of the actor

3. Action noise regularization

TD3 is still one of the most used algorithms and can provide excellent results

in continuous problem space such as robotics and autonomous driving. But it has

its own drawbacks and much like many RL algorithms, training it can be unstable

and heavily reliant on finding the correct hyper parameters for the given task. This

is caused by the algorithm continuously over-estimating the Q values of the critic

(value) network. Over the time these estimation errors build up and can lead to the

agent falling into a local optima or experience catastrophic forgetting. Fujimoto [67]

85

has very effectively explained TD3 algorithm and provided detailed information

on its key improvements over the Deep Deterministic Policy Gradient (DDPG)

algorithm. The authors also explains the concepts of twin Q-networks, delayed

policy updates, and target policy smoothing, and demonstrate the algorithm’s

effectiveness through various experiments and comparisons with other algorithms

(Figure 3.12 shows an overview of TD3’s main features).

Figure 3.12: TD3 in Action

3.3.3.1 Use of a pair of critic networks

In the Twin Delayed Deep Deterministic Policy Gradients (TD3) algorithm, a

pair of critic networks, also known as twin Q-networks, is used to address the issue

of overestimation bias in value function estimation. Overestimation bias can lead

to suboptimal policies and slow convergence, as the algorithm might overvalue

certain actions, resulting in an inaccurate representation of the true action-value

function.

86

The twin Q-networks in TD3 are two separate neural networks that indepen-

dently approximate the action-value function Q(s, a). When updating the target

value, TD3 computes the Q-values for the next state s’ and action a’ using both

Q-networks and takes the minimum of the two estimates. This minimum value is

then used to compute the target value for updating the Q-networks.

The rationale behind using the minimum of the two Q-values is that it mit-

igates the overestimation bias that can arise from using a single Q-network. By

taking the minimum estimate, TD3 ensures that it avoids overly optimistic Q-value

predictions, which can result from random errors or function approximation errors

in the neural networks.

This technique of using twin Q-networks leads to a more stable and accurate

value function estimation, which in turn improves the overall performance of the

TD3 algorithm and results in faster convergence. The use of twin Q-networks is

one of the key differences between TD3 and its predecessor, the Deep Deterministic

Policy Gradient (DDPG) algorithm, which uses a single critic network. As shown

in Figure 2.10 we need to use two critic networks estimating the current Q value

using a separate target value function, thus reducing the bias.

3.3.3.2 Delayed updates of the actor

Delayed updates of the actor network are used to improve the stability of the

learning process and address the issue of noisy value function estimates, which

can lead to poor policy updates. In TD3, the policy network (actor) is updated

less frequently than the Q-networks (critics). Typically, the actor is updated after a

certain number of critic updates (e.g., updating the actor every two critic updates).

87

This delay in actor updates allows the critic networks to provide more accurate

value estimates before the policy is updated.

The rationale behind delayed updates is that the critic networks, which es-

timate the action-value function, are susceptible to noise and errors, especially in

the early stages of learning. If the actor network is updated too frequently based

on these noisy value estimates, it can lead to suboptimal policy updates, causing

the learning process to become unstable and potentially diverge.

By delaying the updates of the actor network, the TD3 algorithm allows the

critic networks to learn more accurate value estimates before updating the policy.

This reduces the impact of noisy value function estimates on the learning process,

leading to improved stability, convergence, and overall performance of the TD3

algorithm.

Delayed updates of the actor network are one of the key improvements

introduced in the TD3 algorithm, along with the use of twin Q-networks and

target policy smoothing, which collectively address the challenges faced by the

Deep Deterministic Policy Gradient (DDPG) algorithm, its predecessor.

To get enhanced stability during agent’s training we should use Target net-

works to help us with delayed updates of the actor. However, in the case of actor

critic methods there are some issues to this technique caused by the interaction

between the policy (actor) and critic (value) networks. The training of the agent di-

verges when a poor policy is overestimated. The agent’s policy will then continue

to get worse as it is updating on states with a lot of error as shown in Figure 2.10.

In order to fix this issue, we simply need to carry out updates of the policy

network less frequently than the value network. This allows the value network

to become more stable and reduce errors before it is used to update the policy

network. In practice, the policy network is updated after a fixed period of time

88

steps, while the value network continues to update after each time step. These less

frequent policy updates will have value estimate with lower variance and therefore

should result in a better policy. Based upon the assessment above, we only update

it every 2-time steps instead of after each time step, resulting in more stable and

efficient training.

3.3.3.3 Action noise regularization

In TD3, action noise regularization, also known as target policy smoothing, is

employed to address the issue of noise sensitivity in the value function estimation

and to encourage exploration during the learning process. This technique makes

the algorithm more robust against noise in the policy network and less prone to

overfitting. Therefore, when updating the target value for the Q-networks, noise

is added to the target action, which is obtained from the target actor network. This

noise is typically Gaussian noise with a clipped range to ensure that the perturbed

action remains within the valid action bounds. The target Q-value is then computed

using the smoothed target action rather than the original target action.

Please note, ideally there would be no variance between target values, with

similar actions receiving similar values. By deploying a regularization strategy,

we can reduce this variance by adding a small amount of random noise to the

target and averaging over several mini batches. This added range of noise is later

clipped in order to keep the target value close to the original action. By adding

this additional noise to the value estimate, policies tend to be more stable as the

target value is returning a higher value for actions that are more robust to noise

and interference. Clipped noise is added to the selected action when calculating

the targets to get higher values for actions that are more robust.

89

The rationale behind action noise regularization is that it helps the algorithm

to explore a wider range of actions during learning, which can prevent overfitting

to a narrow set of actions and lead to a more robust and generalizable policy.

Additionally, by adding noise to the target action, the TD3 algorithm addresses the

issue of value function overestimation that can arise due to the sensitivity of the

critic network to small perturbations in the action space.

Target policy smoothing is one of the key improvements introduced in the

TD3 algorithm, along with the use of twin Q-networks and delayed actor up-

dates. These enhancements collectively address the challenges faced by the Deep

Deterministic Policy Gradient (DDPG) algorithm and contribute to the improved

stability, convergence, and performance of the TD3 algorithm in continuous control

tasks.

3.3.3.4 The TD3 algorithm

As discussed, the main enhancements in TD3 are twin Q-networks, delayed

policy updates, and target policy smoothing as discussed above. TD3 employs

two separate Q-networks, or critic networks, to estimate the action-value function.

The minimum of the predicted Q-values from both networks is used to compute

the target value. This technique mitigates overestimation bias, leading to a more

stable and accurate value function estimation. In TD3, the policy network, or actor

network, is updated less frequently than the Q-networks. This approach reduces

the variance of policy updates, allowing the Q-networks to provide more accurate

value estimates before the policy network is updated. TD3 adds noise to the target

action before computing the target Q-value. This encourages the algorithm to

90

explore a wider range of actions, making it more robust to noise in the policy

network and less susceptible to overfitting.

While DDPG can achieve great performance sometimes, it is frequently brittle

with respect to hyperparameters and other kinds of tuning. A common failure

mode for DDPG is that the learned Q-function begins to dramatically overestimate

Q-values, which then leads to the policy breaking, because it exploits the errors

in the Q-function. Twin Delayed DDPG (TD3) is an algorithm that addresses this

issue by introducing three critical tricks:

Trick One: Clipped Double-Q Learning. TD3 learns two Q-functions instead

of one (hence “twin”), and uses the smaller of the two Q-values to

form the targets in the Bellman error loss functions.

Trick Two: “Delayed” Policy Updates. TD3 updates the policy (and target

networks) less frequently than the Q-function. The paper

recommends one policy update for every two Q-function updates.

Trick Three: Target Policy Smoothing. TD3 adds noise to the target action,

to make it harder for the policy to exploit Q-function errors by

smoothing out Q along changes in action.

Together, these three tricks result in substantially improved performance over

baseline DDPG.

TD3 concurrently learns two Q-functions, Qφ1 and Qφ2 , by mean square Bell-

man error minimization, in almost the same way that DDPG learns its single

Q-function. To show exactly how TD3 does this and how it differs from normal

DDPG, we’ll work from the innermost part of the loss function outwards. For tar-

get policy smoothing, actions used to form the Q-learning target are based on the

target policy, µθtarg , but with clipped noise added on each dimension of the action.

After adding the clipped noise, the target action is then clipped to lie in the valid

91

action range (all valid actions, a, satisfy aLow ≤ a ≤ aHigh).

The target actions are thus:

a′(s′) = clip
(
µθtarg(s′) + clip(ε,−c, c), aLow, aHigh

)
, ε ∼ N(0, σ)

Target policy smoothing essentially serves as a regularizer for the algorithm.

It addresses a particular failure mode that can happen in DDPG: if the Q-function

approximator develops an incorrect sharp peak for some actions, the policy will

quickly exploit that peak and then have brittle or incorrect behavior. This can be

averted by smoothing out the Q-function over similar actions, which target policy

smoothing is designed to do.

Next: clipped double-Q learning. Both Q-functions use a single target, cal-

culated using whichever of the two Q-functions gives a smaller target value:

y(r, s′, d) = r + γ(1 − d) mini=1,2 Qφi,targ(s′, a′(s′)),

and then both are learned by regressing to this target: Using the smaller

Q-value for the target, and regressing towards that, helps fend off overestimation

in the Q-function.

Lastly the policy is learned just by maximizing Qφ1 : maxθ E
s∼D

[
Qφ1(s, µθ(s))

]
,

which is pretty much unchanged from DDPG. However, in TD3, the policy is

updated less frequently than the Q-functions are. This helps damp the volatility

that normally arises in DDPG because of how a policy update changes the target.

92

Exploration vs. Exploitation: TD3 trains a deterministic policy in an off-policy

way. Because the policy is deterministic, if the agent were to explore on-policy,

in the beginning it would probably not try a wide enough variety of actions to

find useful learning signals. To make TD3 policies explore better, we add noise to

their actions at training time, typically uncorrelated mean-zero Gaussian noise. To

facilitate getting higher-quality training data, you may reduce the scale of the noise

over the course of training. (We do not do this in our implementation, and keep

noise scale fixed throughout.)

At test time, to see how well the policy exploits what it has learned, we do

not add noise to the actions. Also my TD3 implementation uses a trick to improve

exploration at the start of training. For a fixed number of steps at the beginning (set

with the start steps keyword argument), the agent takes actions which are sam-

pled from a uniform random distribution over valid actions. After that, it returns

to normal TD3 exploration.

The TD3 algorithm can be implemented in following steps (Figure 3.13):

1. Initialize actor and critic networks, as well as their corresponding target

networks.

2. Collect experience from the environment by executing actions according to

the current policy.

3. Store the experience (state, action, reward, next state, done) in a replay buffer.

4. Sample a batch of experiences from the replay buffer.

5. Update the twin Q-networks using the minimum Q-value from both target

networks and the target policy with added noise.

93

6. Update the actor network using the policy gradient, but with delayed up-

dates, which means updating the actor network less frequently than the critic

networks.

7. Update the target networks using a soft update strategy, which involves

slowly blending the target networks with the main networks.

8. Repeat steps 2 through 7 until the desired performance is achieved or a

stopping criterion is met.

In summary, TD3 is an off-policy algorithm and can only be used for envi-

ronments with continuous action spaces. The Spinning Up implementation of TD3

does not support parallelization. TD3 offers improved stability, convergence, and

performance in continuous control tasks compared to its predecessor, DDPG, by

incorporating twin Q-networks, delayed policy updates, and target policy smooth-

ing.

94

Figure 3.13: Step-Wise TD3 Algorithm

95

CHAPTER 4

Implementation

4.1 Target Problems and Feature Representation

Much like the NOA architecture by Luo [1], the initial training here was

focused on fully connected networks up to a certain size, along with some perfor-

mance data (network accuracy) and network status (legal/illegal) to help construct

a simpler modification space. This resulted in defining the network space as fully

connected networks with a tanh activation function and softmax outputs. Clas-

sification problems from the UCI data set [74] were used with a default reward

function as an improvement in performance (network accuracy) due to the change

in the network in embedding space.

Each dataset represents separate entities or problems and will help us to run

trajectories to optimize one problem at a time. For our training we have used

a random initial policy to build trajectories in embedding space. To study the

performance and operation of the different network components, we chose here to

go through a sequence of pre-training steps which focus on different components

and then studied the results before training the next component.

We selected the following features of a set of 9 training problems from the

UCI repository [74] and they were saved them in embedding space along with

network accuracy and network status.

1. NoOfAttributes : Number of attributes in a problem set.

2. NoOfClasses : Number of possible resulting classes in a problem set.

3. DataSetSize : size of dataset.

96

4. AttributeType : Integer, Real

5. EntropyLabel : Average level of ”information”

6. AvgEntrophyFeatures : Average Entrophy of Features

7. AvgCorelationBetFeatures : Average Correlation Between Features

8. 2 6 8 TrainingAccuracy : Network Training Accuracy with 2 layers with layer

1 has 6 nodes and layer 2 has 8 nodes

9. 2 6 8 TestAccuracy : Network Test Accuracy with 2 layers with layer 1 has 6

nodes and layer 2 has 8 nodes

10. 1 5 0 TrainingAccuracy : Network Training Accuracy with 1 layer with layer

1 has 5 nodes

11. 1 5 0 TestAccuracy : Network Test Accuracy with 1 layers with layer 1 has 5

nodes

12. 2 6 20 TrainingAccuracy : Network Training Accuracy with 2 layers with layer

1 has 6 nodes and layer 2 has 20 nodes

13. 2 6 20 TestAccuracy : Network Test Accuracy with 2 layers with layer 1 has 6

nodes and layer 2 has 20 nodes

Figure 5.2 shows normalized Feature Vectors.

4.2 Implementation of Architecture and other Key Components

The implementation and initialization of architecture components are critical

aspects of any research project, as they lay the foundation for the overall system’s

structure and functionality. The process begins with a well-defined architectural

design (Figure 3.1) that outlines the components, their relationships, and their

interactions. In the implementation phase, we translate the architectural design

into executable code by creating the necessary classes, interfaces, and methods for

97

Figure 4.1: Layered Graph Actor Network

each component. To ensure maintainability and scalability, it is essential to follow

best practices in software engineering, such as modularity, separation of concerns,

and encapsulation. This approach allowed easier debugging, training, testing, and

future enhancements.

Once the components have been implemented, the initialization phase com-

mences. During this stage, the various components are instantiated, configured,

and connected according to the design specifications. This process may involve

setting initial values, establishing communication channels between components,

and registering dependencies or services.

It is crucial to pay careful attention to component initialization, as errors or

misconfigurations can lead to unexpected behavior, performance issues, or system

failures. To mitigate these risks, we employed thorough testing strategies, such

as unit testing, integration testing, and end-to-end testing, to ensure that each

98

component functions as intended and interacts correctly with other components in

the system.

In summary, the successful implementation and initialization of architecture

components are vital to building robust, maintainable, and scalable software sys-

tems. By adhering to best practices in software engineering and rigorously training

and testing each component, we created a solid foundation for this research project,

ensuring proof of concept, long-term success and adaptability to evolving require-

ments.

The high-level flow as explained above is a continuous cycle, where the

outcomes of each step inform the next, allowing for constant improvement and

adaptation to changing circumstances. Initialization and implementation steps are

shown as:

⇒ Initialise networks

⇒ Initialise replay buffer

⇒ Select and carry out action with exploration noise

⇒ Store transitions

⇒ Update critic

⇒ Update actor

⇒ Update target networks

⇒ Repeat until sentient

4.2.1 Initial Setup

This is a fairly standard set up for all Encoder, Decoder, Accuracy, Actor

and Critic networks. The dimensions of the network input and output layers

for actor and critic must match the dimension of the corresponding environment

observation and action channels, respectively. Networks for single-output Q-value

99

function critics (such as the ones used in TD3 agents) must take both observations

and actions as inputs.

For actor networks, the dimensions of the input layers must match the dimen-

sions of the environment observation channels and the dimension of the output

layer must have a single output layer with an output size matching the dimension

of the action space defined in the environment action specification. Networks used

in this case have deterministic actors with a continuous action space (such as the

ones in DDPG and TD3 agents) . Since the output of an actor network must rep-

resent the probability of executing each possible action, sigmoid as an activation

function is added as a final output layer. When computing the action, the actor

then randomly samples the distribution to return an action.

Determining the number, type, and size of layers for deep neural network can

be difficult and is application dependent. However, the most critical component

in deciding the characteristics of the function approximator is whether it is able to

approximate the optimal policy or discounted value function for the application,

that is, whether it has layers that can correctly learn the features of observation,

action, and reward signals.

In General following tips are recommended when constructing the network.

1. For continuous action spaces, bound actions with a tanh Layer followed by a

Scaling Layer to scale the action to desired values, if necessary.

2. Deep dense networks with relu Layer layers can be fairly good at approxi-

mating many different functions. Therefore, they are often a good first choice.

3. Start with the smallest possible network that can approximate the optimal

policy or value function.

4. If strong non-linearities or systems with algebraic constraints are observed

then, adding more layers is often better than increasing the number of out-

100

puts per layer. In general, the ability of the approximator to represent more

complex (compositional) functions grows only polynomially in the size of

the layers, but grows exponentially with the number of layers. In other

words, more layers allow approximating more complex and nonlinear com-

positional functions, although this generally requires more data and longer

training times. Given a total number of neurons and comparable approxima-

tion tasks, networks with fewer layers can require exponentially more units

to successfully approximate the same class of functions, and might fail to

learn and generalize correctly.

5. For on-policy agents; the ones that learn only from experience collected while

following the current policy parallel training works better if networks are

large (for example, a network with two hidden layers with 32 nodes each,

which has a few hundred parameters). On-policy parallel updates assume

each worker updates a different part of the network, such as when they

explore different areas of the observation space. If the network is small, the

worker updates can correlate with each other and make training unstable.

4.2.2 Implement and Initialize Encoder-Decoder-Accuracy Network’s

Our initial Encoder and Decoder models are designed with 4 dense layers

each, where the Encoder takes network properties such as number of layer, nodes in

each layer etc. and uses tanh activation function to output a unique embedding in

our embedding space. The Decoder model takes an output of the Encoder model as

its input and outputs network properties using a sigmoid activation function. We

trained Encoder-Decoder together. Planning for the Accuracy model was simply

through trial and error and we settled with 9 dense layers and two output layers

using sigmoid activation function to output accuracy and status(legal/illegal) of

101

Figure 4.2: Initial Encoder-Decoder-Accuracy Model

the network as shown in Figure 3.4. Input layer for the Accuracy model takes the

state vector, which as output from the first Concatenation layer consist of network

properties and its 6 transformed Feature Vectors. We run network properties and

Feature vectors in parallel through sets of dense layers to yield the best results

(Figure 4.2).

Once we achieved our research goals with the very limited set of networks

we further generalized our network architecture beyond the simplified set of fully

connected networks. The goal is to optimize across a wider set of network types

to ultimately facilitate architectures such as convolutional, recurrent networks etc.

This can be achieved by introducing the modular network component input in

terms of the characterization of the network, instead of just passing number of

102

layers and number of nodes in each layer. This required to change the input

vocabulary, to be able to input different kinds of complex networks.

4.2.2.1 Sequence-to-Sequence (seq2seq) model for autoencoder

Encoder and decoder for ore complex fully connected networks were im-

plemented and trained using a sequence-to-sequence (seq2seq) model to predict

the architecture of a neural network given its time series data. Figure 4.3 shows

a layout of the input structure for networks with a maximum of 5 layers. The

model employs a bidirectional LSTM encoder-decoder architecture with attention

mechanisms and can be straightforwardly extended to more complex network

architectures by changing the description language. The code covers data pre-

processing, model creation, and training. The code is designed for training an

autoencoder-based neural network model to predict neural network architectures

using time series data.

Figure 4.3: Input Network Data in Time Series Sequence

103

There are three main functions defined in the code:

a. decodePredict(): This function decodes the predicted output sequence from

the decoder model using the encoder model’s output (embeddings) as input. The

decoding process stops when the termination character is found or the length of

the decoded sequence exceeds the maximum length.

b. normalize(): This function normalizes the given Data Frame’s specified features

based on the given max and min values for each feature.

c. deNormalizeRound(): This function denormalizes and rounds the given Data

Frame’s specified normalized features based on the given max and min values for

each feature.

Data preprocessing: The code reads time series data and ground truth values from

CSV files. Data normalization is performed on the time series data and ground

truth values to transform them into a suitable range.

4.2.2.2 Model Creation

The model is built using a combination of encoder and decoder networks.

a. Bidirectional LSTM-based Encoder Model: The Bidirectional LSTM-

based Encoder Model is a part of the autoencoder network used in the code. It

is a combination of a forward LSTM and a backword LSTM, which can fit the

data from both forward direction and backward direction, and concatenate the

prediction. Standard LSTM can only fit the time-related data from one direction.

BiLSTM added a reverse directional LSTM so that BiLSTM can capture the patterns

that may be ignored by LSTM. The structure of BiLSTM is shown in Figure 4.4.

The top Li represents the forward LSTM while the bottom L′i represents the reverse

104

Figure 4.4: Bidirectional LSTM based Encoder Model

directional LSTM, and s and s’ is the time series information delivering in LSTM

cells.

It is implemented to be responsible for encoding the input time series data

into a lower-dimensional representation, which can be later decoded by the decoder

network to predict the neural network architecture. The model consists of an input

layer followed by three bidirectional LSTM layers, two dense layers, and an output

layer (the embeddings). The input to the encoder is a time series with shape

(timesteps, number of features). The output of the encoder is an embedding.

Here’s a detailed explanation of the BiLSTM Based Encoder Model:

Input Layer: The input layer takes time series data with the shape (timesteps,

n features). timesteps and n features are derived from the preprocessed data.

Bidirectional LSTM Layers: The encoder network consists of three Bidirectional

LSTM layers. These layers can capture both forward and backward dependencies in

the input sequence. The first Bidirectional LSTM layer has 80 units and is followed

by two additional Bidirectional LSTM layers with 30 and 20 units, respectively. The

105

first two layers return sequences, while the last layer returns only the final hidden

state.

LSTM (Long Short-Term Memory) is a type of recurrent neural network

(RNN) architecture that can learn long-term dependencies in sequence data through

the use of gating units. Bidirectional LSTMs process the input sequence in both for-

ward and backward directions, making them more effective at capturing complex

patterns.

Dense Layers: After the Bidirectional LSTM layers, the encoder has two Dense

layers with 30 and 2 units, respectively. These layers have ReLU (Rectified Linear

Unit) and Tanh activation functions, respectively. Dense layers, also known as fully

connected layers, are used to combine the features learned by the previous layers

and create a lower-dimensional representation (embedding) of the input sequence.

The final Dense layer with 2 units is the output of the encoder, which serves as the

input to the decoder network.

The Encoder Model takes the input sequence (Figure 4.3), processes it through

the Bidirectional LSTM layers, and summarizes the information in something called

the internal state or context vector (in case of LSTM these are called the hidden state

and cell state vectors). We discard the outputs of the encoder and only preserve the

internal states. This context vector aims to encapsulate the information for all input

elements in order to help the decoder make accurate predictions and generate an

embedding that represents the input sequence in a lower-dimensional space.

This embedding is then used as input to the Decoder Model to predict the

neural network architecture.

The hidden states hi are computed using the formula:

ht = f (W(hh)ht−1 + W(hx)xt) (4.1)

106

The LSTM reads the data, one item after the other. Thus if the input is a

sequence of length ‘t’, we say that LSTM reads it in ‘t’ time steps.

1. Xi = Input sequence at time step i.

2. hi and ci = LSTM maintains two states (‘h’ for hidden state and ‘c’ for cell state)

at each time step. Combined together these are internal

state of the LSTM at time step i.

3. Yi = Output sequence at time step i. Yi is actually a probability distribution over

the entire data sequence which is generated by using a softmax activation.

Thus each Yi is a vector of size “sequence size” representing a probability

distribution.

b. Decoder hidden model: This model takes the embeddings from the encoder as

input and produces hidden states for the decoder LSTM. It has two dense layers and

is compiled with the specified optimizer, loss function, and metric. The decoder

predicts the neural network architecture very close to the one which was send to

the embedding model with 98.9% accuracy.

c. Decoder sequence model: This model generates the output sequence from the

decoder. It has an LSTM layer followed by two dense layers and an output layer.

The model is compiled with the specified optimizer, loss function, and metric.

Here the decoder is an LSTM whose initial states are initialized to the final states

of the Encoder LSTM, i.e. the context vector of the encoder’s final cell is input to

the first cell of the decoder network. Using these initial states, the decoder starts

generating the output sequence, and these outputs are also taken into consideration

for future outputs. A stack of several LSTM units where each predicts an output yt

at a time step t.

107

Each recurrent unit accepts a hidden state from the previous iteration and produces

and output as well as its own hidden state.

Any hidden state hi is computed using the formula:

ht = f (W(hh)ht−1) (4.2)

The output yt at time step t is computed using the formula:

yt = so f tmax(W(s)ht) (4.3)

d. Decoder depth model: This model predicts the depth (number of layers) of

the neural network architecture. It has two dense layers and an output layer. The

model is compiled with the specified optimizer, loss function, and metric.

We calculate the outputs using the hidden state at the current time step

together with the respective weight W(S). Softmax is used to create a probability

vector which will help us determine the final output.

We will add two tokens in the output sequence as follows (also shown in

Figure. 4.3):

“START Indicator” = [0,1]

”END Of Seq Indicator” = [0.0, -1.0]

The most important point is that the initial states (h0, c0) of the decoder are set

to the final states of the encoder. This intuitively means that the decoder is trained

to start generating the output sequence depending on the information encoded by

the encoder.

Finally, the loss is calculated on the predicted outputs from each time step

and the errors are backpropagated through time in order to update the parameters

of the network. Training the network over a longer periods with a sufficiently large

amount of data results in pretty good predictions.

108

Figure 4.5: Seq-Seq-Encoder-Decoder Architecture

In Summary, as shown in Figure 4.5:

• During inference, we generate one item of the sequence (word) at a time.

• The initial states of the decoder are set to the final states of the encoder.

• The initial input to the decoder is always the START token.

• At each time step, we preserve the states of the decoder and set them as initial

states for the next time step.

• At each time step, the predicted output is fed as input in the next time step.

•We break the loop when the decoder predicts the END token.

e. Main model: The main model combines the encoder, decoder hidden model,

decoder seq model, and decoder depth model. It has two outputs: one for the

depth prediction and one for the output sequence. The model is compiled with the

specified optimizer, loss function, and metric.

Model training: The main model is trained on the preprocessed data using the

specified batch size, and a checkpoint callback is used to save the best model

during training. Adam optimizer with a learning rate of 0.001 is used. Mean

Squared Error loss function is also effectively used during training.

109

The training data is split into training and validation sets with a 90/10 ratio.

The model is trained using a batch size of 500 over 10000 epochs with both legal

and illegal data sets and a ’Model Checkpoint’ callback is used to save the best

model based on validation accuracy.

The model employs bidirectional LSTM layers in the encoder and standard

LSTM layers in the decoder, with attention mechanisms to improve the model’s

ability to capture long-range dependencies in the input data. The trained model

can be used to encode the network in the embedding space and later predict

(decode) the architecture of a neural network, which can potentially help in future

RL training and Policy generation tasks.

The Encoder-Decoder model is pre-trained first to get best performance and

then we freeze their weights to train it with the Accuracy model and finally train

them all together to yield the best performance of the combined network.

4.2.3 Implement and Initialize Accuracy Network

The accuracy model that takes an 8-dimensional input, splits it into two parts,

applies several dense layers with a leaky ReLU activation function to each part,

and then combines them into an output with a sigmoid activation function. The

output is then split into two parts again, one for accuracy and one for legality of

the given network. The accuracy model is compiled with a custom loss function

and several metrics.

Since we are using a Siamese Network to co-locate legal networks therefore

in the end we concatenate the output of the two encoder models, calculates the

Euclidean distance between the embeddings using a lambda layer, and concate-

nates the results with the final predictions from the two decoder models. The final

Encoder-Decoder-Accuracy model is compiled together with a custom loss func-

110

tions and several metrics. The model is then trained on a training set and validated

on a validation set using an optimizer and callbacks to save the best weights.

The layer diagram for the Accuracy network is shown in Figure 6.8

Figure 4.6: Accuracy Network Layers

4.2.4 Implement and Initialize Actor Network

After a few experiments, the Actor Network was commissioned with four

dense layers and one lambda function layer. It uses sigmoid as an activation

function to also output distance of the directional vector. The Input layer takes the

state vector, an output from the first Concatenation layer. This is a standard setup

for the Actor network where we have also used a Lambda function to normalize

our two-dimension vector and the third dense layer returns the length of that vector

(Figure 4.7).

The Actor directly maps embedding states which includes network architec-

ture embeddings and the Feature Vector embedding of the target problem asso-

111

Figure 4.7: Accuracy Model

ciated with the network to continuous actions (Figure 4.7). The network modifi-

cation action is chosen as the output from this network. If the Actor is in train-

ing(exploration) mode then some random normal noise is added to this action,

otherwise, i.e. if the model is in test mode, the action output represents the pure

deterministic output. The target value for critic loss is calculated by predicting

the action for the next states using the actor target network and then using these

actions to get the next state’s value in the embedding space using the critic target

network.

To make sure that the action returned by the Actor Model is within the

boundary of +/−1, the action is clipped to make sure no illegal action is passed

back to the training environment. This helps to keeps the target value close to

112

the original action. Also, as per TD3 (Figure 2.10), the Actor network is deployed

in pairs as actor main and actor target. Delayed update of the actor network is

provisioned, thereby only updating it every second time steps instead of after each

time step, resulting in more stable and efficient training. No gradient decent is

allowed on target actor network as soft update is used.

The layered graph for the Actor Network is shown in Figure 4.8.

Figure 4.8: Layered Graph Actor Network

4.2.5 Implement and Initialize Critic Network

This actor target network plays a very critical role in the loss function of the

critic, along with critic target and critic main networks. The Critic Network is

formulated with nine (9) dense layers to give two outputs using a tanh activation

function. The Critic Network takes the state vector and the output of the actor

network (Figure 4.9) as its input. The Critic Network does forward propagation

operation and outputs Value-On-Policy (V) from input state and Action-On-Policy

(A) from state and action.

113

Figure 4.9: Accuracy Model

Note, critic network has almost twice dense layers as compared to Actor net-

work. Inspired by TD3 (Figure 2.10), Critic network is deployed in two pair. This

was inspired by the technique seen in Deep Reinforcement Learning with Double

Q-learning [75] which involved estimating the current Q value using a separate

target value function, thus reducing the bias. It uses clipped double Q learning

where it takes the smallest value of the two critic networks. This method favours

underestimation of Q values. This underestimation bias isn’t a problem as the low

values will not be propagated through the algorithm, unlike overestimate values.

This provides a more stable approximation, thus improving the stability of the

114

entire algorithm.

The critic-pair networks run in parallel to each other and results in two

separate outputs. They are initialized as separate main and target networks, also

referred to as: critic main and critic main2, critic target and critic target2. The

critic target network is effectively used to create targets for training using our critic

loss and to find the next state value by using the smallest value of the two critic-pair

networks when forming the targets.

In value-based reinforcement learning methods such as deep Q-learning,

function approximation errors are known to lead to overestimated value estimates

and suboptimal policies. This problem persists in an actor-critic setting therefore a

mechanism is needed to minimize its effects on both the actor and the critic. Con-

nection can be drawn between target networks and overestimation bias, therefore

it is suggested that delayed policy updates reduce per-update error leading to im-

proved performance. Hence delayed update of the actor network is provisioned,

only updating it every 2 time-steps instead of after each time step, resulting in more

stable and efficient training.

Predicted (critic) values are the output of the main critic network which takes

states and actions from the buffer sample as an input. Critic value is the value of

the current state with respect to original state and the actions the agent actually

took during the course of the episode.

The layered graph for the Critic network is shown in Figure 4.10.

When creating the deep neural networks and configuring actor or critic, the

following approach is considered as a starting point.

Start with the smallest possible network and a high learning rate (0.01). Train

this initial network to see if the agent converges quickly to a poor policy or acts in

115

Figure 4.10: Layered Graph Critic Network

a random manner. If either of these issues occur, rescale the network by adding

more layers or more outputs on each layer. The goal is to find a network structure

that is just big enough, and does not learn too fast, and shows signs of learning (an

improving trajectory of the reward graph) after an initial training period.

Once a good network architecture is settled on, a low initial learning rate

(0.001) can allow to see if the agent is on the right track, and confirm that the

network architecture is satisfactory for the problem. A low learning rate makes

tuning parameters easier, especially for difficult problems.

One has to be patient with the TD3 agents, since they might not learn any-

thing for some time during the early episodes, and they typically show a dip in

cumulative reward early in the training process. Eventually, they can show signs

of learning after the first few thousand episodes. Therefore for these agents, pro-

moting exploration of the agent is critical. For agents with both actor and critic

116

networks, set the initial learning rates of both actor and critic to the same value

such as Adam(0.001). However, for some problems, setting the critic learning rate

to a higher value than that of the actor can improve learning results.

Depending on the learning algorithm, an agent maintains one or more pa-

rameterized function approximators for training the policy. Approximators can be

used in two ways.

1) Critics — For a given observation and action, a critic returns the predicted

discounted value of the cumulative long-term reward.

2) Actor — For a given observation, an actor returns as output the action that

(often) maximizes the predicted discounted cumulative long-term reward.

Agents that use both an actor and a critic are referred to as actor-critic agents.

In these agents, during training, the actor learns the best action to take using

feedback from the critic (instead of using the reward directly). At the same time,

the critic learns the value function from the rewards so that it can properly critique

the actor. In general, these agents can handle both discrete and continuous action

spaces.

4.2.6 Implement And Initialize Reinforcement Learning Agents

The goal of reinforcement learning is to train an agent to complete a task

within an uncertain environment. At each time interval, the agent receives obser-

vations and a reward from the environment and sends an action to the environ-

ment. The reward is a measure of how successful the previous action (taken from

the previous state) was with respect to completing the task goal.

The agent contains two components: a policy and a learning algorithm. Dur-

ing the policy learning it maps the current environment observation to a probability

distribution of the actions to be taken. The policy is implemented within an agent,

117

by a function approximator with tunable parameters and a specific approximation

model, such as a deep neural network.

The learning algorithm continuously updates the policy parameters based

on the actions, observations, and rewards. The goal of the learning algorithm is to

find an optimal policy that maximizes the expected cumulative long-term reward

received during the task.

Figure 4.11: Layered Graph Critic Network

For the problems to train, a TD3 agent was used which is a type of Reinforce-

ment Learning Agent. The TD3 agents is trained in environments with continuous

118

observations and actions and uses two value function critic, each estimating a V

and an A function, and deterministic policy actor π(S)

The Agent class is initialized to setup the training environment for explo-

ration for the max/min actions as the noise will be added to the output of our deep

NN for some exploration. It will create default actor and critics based on the obser-

vation and action specifications from the environment. For training, batch size is

initialized to 300. Optimizer Adam is initialized to (0.001) for all networks. Gamma

(γ) is needed as a discount factor for updating target for the terminal new state

which is nothing but just the reward for every other state computed as reward

+ discount factor times the value of the resulting state. Note there is no need to

do any gradient descent on both actor and critic target networks. Only soft net-

work updates are done on these target networks to slowly move them towards the

function learned by the main networks.

To create an agent, the following steps are performed:

1. Create observation specifications for training environment.

2. Agent learns two pairs of state value (V) and advantage (A) value functions

and uses the minimum value function estimate during policy updates.

3. Agent updates the policy and targets less frequently than the value functions.

4. When updating the policy, agent adds noise to the target action, which makes

the policy less likely to exploit actions with high value estimates.

5. Train the agent with two pairs of value functions.

119

4.2.6.1 Agent Learning Algorithm

Agents use the following training algorithm, in which it updates actor and

critic models at each time step. To configure the training algorithm, K = 2 is used

as number of critics where k is the critic index.

1. Initialize each critic Vk(S;φk),Ak(S,A;φk) with random parameter values

φk, and

initialize each target critic with the same random parameter values:

φtk = φk

2. Initialize the actor π(S θ) with random parameter values θt, and initialize

the target actor with the same parameter values: θt = θ

3. For each training time step:

a. For the current observation S, select action a = π(S θ) + N, where N

is stochastic noise from the noise model.

b. Execute action a . Observe the reward R and next observation S’.

c. Store the experience (S,A,R,S’) in the experience buffer.

d. Sample a random mini-batch of M experiences (Si,Ai,Ri,S′i) from the

experience buffer.

e. If (S′i) is a terminal state, set the value function target yi to Ri. Otherwise,

set it to

yi = Ri + γ ∗min(Vtk(S′i , clip(πt(S′i ;θt) + ε);φtk)) (4.4)

The value function target is the sum of the experience reward Ri

and the minimum discounted future reward from the critics.

To specify the discount factor use γ.

To compute the cumulative reward, the agent first computes

a next action by passing the next observation S′i from the sampled
120

experience to the target actor. Then, the agent adds noise ε to the

computed action using the target policy smoothing, and

clips the action based on the upper and lower noise limits. The agent

finds the cumulative rewards by passing the next action to the target

critics.

f. At every time training step, update the parameters of each critic by

minimizing the loss Lk across all sampled experiences.

Lk =
1

2M

M∑
i=1

(yi − Vk(Si,Ai, φk))2 (4.5)

g. Every D1 steps, update the actor parameters using the following

sampled policy gradient to maximize the expected discounted reward.

To set D1 use 2 as we only update every 2 time-steps instead of after

each time step.

∆θJ ≈
1

2M

M∑
i=1

GaiGπi (4.6)

Here, Gai is the gradient of the minimum critic advantage value output

with respect to the action computed by the actor network, and Gπi is

the gradient of the actor output with respect to the actor parameters.

Both gradients are evaluated for observation Si.

h. Every D2 steps, update the target actor and critics depending on the

target update method. To specify D2, use 2 as we only update

every 2 time-steps instead of after each time step.

For simplicity, the actor and critic updates in this algorithm show a gradient

update using basic stochastic gradient descent. The actual gradient update method

depends on the optimizer specified as Adam which is initialized to (0.001)

121

One can extract a policy object from an agent to generate deterministic or

stochastic actions from the policy, given an input observation which is the network

architecture embedding and the embedded Feature Vector, i.e the current state

of the environment. Working with policy objects can be useful for application

deployment or custom training purposes.

4.2.7 Implement and Initialize replay buffer (RBuffer)

A standard replay buffer is implemented and used to store the states, actions,

rewards, new states & terminal flags.

The replay buffer is effectively used to store experiences. The main three

parameters for our RBuffer are:

•maxsize - max size of memory to bound it

• statedim - input shape from our environment

• naction - number of action dimensions (3) for the continuous action space.

Here the dimensions represent the sine and cosine of the direction and the

step size of the displacement in the embedding space.

• observation space - observation specifications for your environment

• action specifications - action specifications for the environment

• action memory - memory size by number of actions

• reward memory - memory size by number of rewards

• accuracy memory - memory size by number of accuracy

4.3 Summary

The implementation of the architecture and its key components of our ar-

chitecture is a complex and iterative process that requires careful consideration

122

and experimentation to achieve optimal results. Successful implementation of all

models involves choosing appropriate architectures, optimizers, loss functions,

and metrics, as well as incorporating techniques such as regularization and feature

engineering. Ultimately, the goal is to create models that can learn from data and

generalize well to new, unseen data, enabling them to be applied effectively in a

wide range of applications.

123

CHAPTER 5

Training and Experiments

5.1 Introduction

Training and experiments of various components of the proposed Architec-

ture are the cornerstone of building and evaluating the models component and

collective performance. Training of these models involves feeding data into an

algorithm. The data used for training is typically split into training and validation

sets, with the training set used to update the model’s parameters and the validation

set used to evaluate its performance.

Most of my experiments involved running different iterations of training

on different model components, sometimes jointly, with different combinations of

hyperparameters, such as learning rate and regularization strength, to determine

the best performing model/models for a given task. These experiments help to

identify the optimal configuration of the model, allowing for greater accuracy

and better generalization to new data. In conducting training experiments, it is

important to use appropriate statistical techniques for model evaluation, to ensure

that the results are robust and not overly influenced by chance and overfit in any

way. Additionally, techniques such as early stopping and model checkpointing can

be used to prevent overfitting and improve training efficiency.

Data preprocessing and feature engineering are also important aspects of our

iterative training and experimentation, as they can have a significant impact on the

performance of the model. Preprocessing involves transforming raw data into a

format that can be fed into the model, such as scaling or normalization. Feature

124

engineering involved selecting or creating features (Figure 5.2 that are relevant to

the task at hand, which can help to improve the model’s accuracy.

Much like Luo[1],the initial training here was focused on fully connected net-

works up to a certain size, along with some performance data (network accuracy)

to help construct a simpler modification space. Later, to cater more complex and

variable layer Network’s we updated our encoder-decoder model to ingest time

series data. This resulted in defining the network space as complex networks with

more variable numbers of layers with an tanh activation function and softmax

outputs (Figure 4.3).

Classification problems from the UCI data set [74] were used with a default

reward function in the form of the improvement in performance (network accuracy)

due to the change in the network in embedding space. Each dataset will represent

separate entities or problems and will help us to run trajectories to optimize one

problem at a time. For our training we have used a random initial policy to build

trajectories in embedding space. To study the performance and operation of the

different network components, we chose here to go through a sequence of pre-

training steps which focus on different components and then studied the results

before training the next component.

Training and experimentation in this research required a great deal of com-

putational resources, making it important to leverage good computing platforms

and other distributed computing systems to accelerate the training process. Ad-

ditionally, the use of GPUs or TPUs can greatly speed up training and allow for

larger models to be used.

125

5.2 Training DataSet

Without high-quality training data, even the most efficient machine learning

algorithms will fail to perform. For effective training of Encoder-Decoder,Accuracy,Actor

and Critic models, quality, accurate, complete, and relevant data is needed. Af-

ter careful search and consideration, it was decided to get some training datasets

from the UCI Machine Learning Repository [74]. The UCI repository is a collection

of databases, domain theories, and data generators that are used by the machine

learning community for the empirical analysis of machine learning algorithms.

Figure 5.1: Problem Selection Attributes

Comment:

This table is close to unreadable on my

computer
Dataset selection was primarily focused on dataset and attribute characteris-

tics (Figure 5.1). Also, to uniquely represent each problem in an embedding space,

a set of 13 problem-specific attributes that relate to the complexity of the learning

problem and yet easy to compute were designed and computed to represent each

problem in the training dataset. Apart from ’Number of Classes’, ’Data Set Size’,

’Attribute Type’, we also computed Entropy on dataset labels, average Entropy and

average Entropy between data set features. To give a good spread and variation;

126

training and test accuracy was also computed on three baseline Neural Networks

with different numbers of layers and nodes in each layers (Figure 5.2).

Figure 5.2: Problem Selection Attributes

5.3 Incremental and Supervised Learning for all models

Incremental learning refers to the process of learning continuously over time

by updating and improving a model as we connect one module to other modules

in the Architecture. This type of learning is particularly useful in this situation

where multiple components are developed simultaneously and it s important to be

able to test some first as failure to learn for one will cause others to not learn and

thus as the cost of retraining a model from scratch is expensive and may not lead

to desired results. Incremental and step-by-step learning was used to make sure

127

Accuracy, Autoencoder, Actor and Critic models get fine tuned and work together

to generate a policy of our interest.

Supervised learning was initially used to train Encoder-Decoder and Accu-

racy models using labeled data, where the model tries to learn the relationship

between the input features and the output values, so that it can predict the output

for new, unseen data. Critic and Actor were also initially pre-trained using super-

vised learningbut not for the final function as that is not known, but instead for

stand-in functions with the goal of start actor-critic training from a state where actor

and critic are consistent. Both incremental and supervised learning was applied to

various models and by combining these two approaches, we were able to develop

models that not only learned from labeled data but also continuously improved

their performance as they were integrated with other models, resulting in more ac-

curate and reliable predictions. This is particularly beneficial in this dynamic and

complex RL environment where the data is acquired following a learned policy

and thus the data distribution is constantly changing.

5.3.1 Encoder-Decoder Pre-Training

Pre-training is a technique used in deep learning to initialize a neural network

with a set of weights that have been trained on a large dataset. This can speed up

the learning process when the model is fine-tuned on a smaller dataset for a specific

task. A pre-training approach was used to train the encoder-decoder architecture

for which it is possible to collect a priori data by training a range of randomly

selected neural networks on the training problems. Using this, the encoder learns to

compress the input data into a lower-dimensional representation, and the decoder

learns to reconstruct the original input from the compressed representation.

128

With the help of supervised learning, the encoder-decoder model was pre-

trained on a UCI dataset with labeled data and network accuracy. For the first

experiments, the encoder-decoder with simple fully connect networks. Once these

experiments were completed successfully, a new experiment extended the network

space to more variable sized networks and the encoder was trained to encode time

series network data with only limited constrains on length of layers and nodes. In

both cases, the encoder mapped the network architectures into a lower-dimensional

representation, and the decoder was trained to generate a target sentence from the

encoded representation. This pre-trained model was retrained and fine-tuned by

combining it with the accuracy network for a more predictable mapping in the

2-Dimensional embedding space.

We found that pre-training the encoder-decoder model using supervised

learning resulted in a good initialization of the model weights, which improves its

performance when fine-tuned later. Most importantly, however, it allows to verify

network sizes prior to training the actor-critic component, and thus to narrow

down potential failure sites in case complete training does not achieve the desired

performance.

To validate the encoding space, the encoder-decoder network was first trained

to obtain the desired accuracy from the decoder network. For this, we first gener-

ated an encoder-decoder training set by generating a set of random fully connected

networks and training these networks on the chosen UCI classification data sets

(Figure 5.1) to obtain their accuracies as target values for the accuracy network

during fine-tuning.

During Phase-I training, (50x9) random fully connected legal and (50x9) ille-

gal networks along with their accuracies are generated for the data sets shown in

Figure 5.3 as we were only interested in the ability of the model to learn a policy

129

Figure 5.3: Master Dataset File (Problem Description)

for these specific problems, a One-Hot Encoding (label encoding) F1, F2, F3, F4,

F5, F6, F7, F8, F9, F10 was used as a target problem feature vector. While this

vector will not allow the system to learn a transferable policy, it allows to train a

policy that can solve these specific problems. Later this One-Hot Encoding will

be replaced during Phase-II training by a set of 13 problem attributes as discussed

earlier (Figure 5.2) to evaluate transfer to novel problems. In Phase-III training a

more comprehensive set of deeper (up to 5 hidden layers) fully connected legal and

illegal networks was generated and represented as time series as shown in Figures

4.3 with the start of the sequence encoded as [0.0,1.0] and the end of the sequence

represented by [0.0,-1.0]. An example for a 5 hidden layer network with 23, 20, 12,

11, and 6 hidden units in the layers, respectively, is shown below:

”[0.0, 1.0], [23.0, 0], [20.0, 0], [12.0, 0], [11.0, 0], [6.0, 0], [0.0, -1.0]”

130

Finally all these randomly generated legal networks for all problems with

their accuracies are saved along with illegal networks (accuracy 0) into a training

file. Using this training file the encoder-decoder networks are pre-trained using

reconstruction loss (MSE) multiplied by legal value to see if the networks were

able to form an effective embedding space for the fully connected legal network

architectures. Multiplying the loss by the legal status prevents the network from

spending effort on trying to reconstruct illegal network presentations, and trading

this off against the quality of reconstruction of legal network configurations. The

layered diagram for the encoder-decoder network evolved from one for simple

fully connected networks (Figure 5.4) to the one for more complex variable length

networks using sequence-sequence time series input data (Figure 5.5).

Figure 5.4: Encoder-Decoder-Layer-Diagram

A decoder loss function was implemented to calculate the difference between

the true and predicted values for two sets of variables introduced through the use

131

Figure 5.5: Encoder-Decoder-Layer-Diagram

of Siamese networks (and thus the presentation of a pair of network architectures

in our encoder-decoder network model.

Below is a step-by-step explanation of our normalization and decoder loss

function for the Phase III training:

1. Create a constant matrix multiply with a shape of (1,3) and values [5, 24, 24,

24, 24, 24] which indicates that we allow max 5 layered network with max

nodes 24 in each layer.

2. Multiply the true values y true[:,2:5] and y true[:,7:10] by matrix multiply to

obtain denormalized y true and denormalized1 y true, respectively.

This operation ”denormalizes” the true values to their original scale.

3. Multiply the predicted values y pred[:,2:5] and y pred[:,7:10] by matrix multiply

to obtain denormalized y pred and denormalized1 y pred, respectively.

This operation ”denormalizes” the predicted values to their original scale.

4. Compute loss1 by taking the element-wise difference between denormalized

y true and denormalized y pred, squaring the result, and multiplying it by

y true[:,1:2]. Then, calculate the mean of the squared weighted differences

along the last axis.

132

5. Compute loss2 by taking the element-wise difference between denormalized1

y true and denormalized1 y pred, squaring the result, and multiplying it

by y true[:,6:7]. Then, calculate the mean of the squared weighted

differences along the last axis.

Compute the final loss by adding loss1 and loss2.

The decoder loss function returns the final loss value, which is used to evalu-

ate the performance of the model. The encoder-decoder model will try to minimize

this loss during the training process, improving its predictions on the denormalized

variables.

We also calculate the decoder accuracy legal matrix for the decoder model to

check the performance of the decoder network for all legal decoded networks.

The decoder accuracy legal matrix function calculates the average accuracy

of a model’s reconstruction for two sets of variables. It takes into account only

”legal” cases, as indicated by specific columns of the true values.

Below is a step-by-step explanation :

1. Create a constant matrix multiply with a shape of (1,6) and values [5, 24, 24,

24, 24, 24].

2. Denormalize the true and predicted values for the first set of variables y true[:,2:5]

and y pred[:,2:5] by multiplying them with matrix multiply, and

round the results to obtain denorm y true and denorm y pred.

3. Compute the element-wise difference between denorm y true and denorm y pred,

and round the result.

4. Calculate the mean of the differences result along the last axis.

5. Check if the mean differences are equal to 0 , which indicates a correct

prediction. Cast the result to float .

133

6. Multiply the cast result by the mean of y true[:,1:2] along the last axis

to consider only the ”legal” cases. Multiply the result by 2 to obtain

decoder accuracy legal.

7. Repeat steps 2 to 6 for the second set of variables y true[:,7:10] and y pred[:,7:10],

considering y true[:,6:7] for the ”legal” cases, and obtain decoder accuracy legal1.

8. Calculate the returnValue as the average of decoder accuracy legal and

decoder accuracy legal1.

The function returns the returnValue, which represents the average accuracy

of the model’s predictions for the two sets of variables, considering only the ”legal”

cases. The higher the returnValue, the better the model’s performance.

The training losses, as well as a manual investigation and testing of the

embedding space and the accuracy prediction function indicated that the system

was able to learn an efficient embedding that was able to reconstruct validation

networks with an accuracy above 98.9% and that could predict accuracy with a

squared error below 10−5.

5.3.1.1 Siamese Networks

As explained in Chapter 2 that Siamese Networks are a type of neural network

architecture specifically designed to learn similarity measures between pairs of

inputs. Specially in our case they are particularly useful as there is limited labeled

data, as they leverage the information contained within the relationships between

the input pairs. We have introduced Siamese Networks in Phase-II to co-locate

similar legal networks so that we can learn about a policy while training Actor-

Critic networks. Siamese Networks were trained along with encoder-decoder and

accuracy networks as explained in the following steps:

134

1. Prepare training data: generate a dataset of legal/illegal networks in pairs,

where each network can be represented as a graph or a set of features.

For each pair of legal networks, we also have a binary label (1) indicating

whether the pair is similar or not.

2. Siamese Network architecture: as explained in Figure 2.2 -Chapter 2, it

consists of two identical subnetworks,

often called ”sister networks,” that share the same weights. Each sister

network processes one of the elements n the input pairs, and their outputs

are combined

to produce a similarity score. During design of the Siamese Networks

architecture for our sister networks we included encoder, decoder and

accuracy networks while considering the nature of our legal network data.

3. Contrastive(distance) loss function: encourages the model to learn

representations that bring similar pairs closer together and push dissimilar

pairs further apart. This model is trained using our paired training

dataset which includes legal networks 1 and legal networks 2 as an arrays

containing the feature representations of our legal networks, where the ith

element in both arrays forms a pair.

Note, the labels array should contain the binary labels (legal(1), illegal(0))

corresponding to each pair.

4. After successful training: Siamese Networks can compare new pairs of legal

networks and determine their similarity. The model will co-locate similar

legal networks by assigning them similar feature representations in the

learned embedding space. To do this, we used the sister network submodel

to obtain the embeddings for any new legal networks and calculate the

135

distance between the embeddings.

By comparing the distances for different pairs of legal networks, we can

identify which legal networks are closer together in the learned embedding space.

This enabled us to group similar legal networks and analyze their relationships

more effectively as shown in Figure. 5.6

One can also use other distance metrics, such as the cosine similarity, de-

pending on the characteristics of the legal network data and the desired properties

of the similarity measure. Furthermore, one may consider using more advanced

graph neural network architectures for the sister networks if the legal networks are

represented as graphs.

Figure 5.6: Siamese and Accuracy Diagram to show legal and illegal networks

5.3.2 Pre-Train Accuracy Network

To have more effective Accuracy training we add Gaussian Noise and trans-

form all 13 Feature Vectors to a dense set of length 6 Feature Vector effectively

learning an embedding of the target problem feature vector. This is done here as

we know that deep learning neural networks are likely to quickly overfit a train-

ing dataset with few examples, and thus lose the ability too generalize to new

136

problems. Therefore we add a dropout layer as dropout has the effect of making

the training process noisy, forcing nodes within a layer to probabilistically take

on more or less responsibility for the inputs. The Feature Conversion model is

designed to transform Feature Vectors from size 13 to 6 before we introduce them

to the Accuracy Network. The feature vector embedding architecture is shown in

Figure 6.5.

Figure 5.7: Feature Conversion Model Layer Diagram

Next we freeze the weights of encoder-decoder model and train them together

with the accuracy network. A custom loss function for the accuracy network was

designed which uses binary cross entropy to calculate legal prediction loss and

MSE to computer accuracy loss, reaching a MSE of 0.00257641.

5.3.3 Training Encoder Decoder and Accuracy Network all together

Once we have the encoder-decoder and accuracy network pre-trained indi-

vidually, we now train them together for 5000 episodes. We must clip the optimizer

for good results as: optimizer = Adam(clipnorm=1.0) . Before we got to the final

137

training we came up with a custom loss function for this joint model which is

shown in Figure 5.8.

Figure 5.8: Encoder-Decoder-Accuracy-Diagram

5.3.3.1 Custom Loss Function

The Custom loss function utilized is consists of decoder loss, accuracy loss,

legal loss and distance loss. By trial and error we came up with their weighting to

add up for Custom loss function as shown below:

weightA = accuracy loss weight(ratio) = 1.0

weightL = legal loss weight(ratio) = 1.2

weightD = decoder loss weight(ratio) = 1.08

weightDist = distance loss weight(ratio) = 0.325

138

This custom loss function combines four different loss components to evaluate

the performance of a neural network model.

The loss components are:

1. Decoder loss (decoder loss): This measures the squared difference between the

true and predicted values for two sets of variables (denorm y true,

denorm1 y true) after multiplying them by a certain weight (y true[:,1:2],

y true[:,6:7]). The differences are averaged, and the decoder loss is obtained

by summing up the two averaged differences.

2. Accuracy loss (acc loss): This calculates the squared difference between the true

and predicted values for two different variables (y true[:,0:1], y true[:,5:6]).

3. Legal loss (legal loss): This computes the binary cross-entropy between the true

and predicted values for two different binary variables (y true[:,1:2], y true[:,6:7]).

Binary cross-entropy is a common loss function used for binary

classification problems.

4. Distance loss (distance loss): This calculates a weighted combination of the

true values of two variables (y true[:,1:2], y true[:,6:7]) and a predicted

variable (y pred[:,10:11]). The weights are derived from the true values,

and their combination is multiplied by the predicted variable.

The custom loss function combines these four loss components using dif-

ferent weights (weightA, weightL, weightD, and weightDist) to calculate the final loss

value. During the training process, the model tries to minimize this custom loss,

improving its predictions across various aspects.

custom loss = weightD∗(decoder loss) + weightA∗(accuracy loss) +

weightL∗legal loss + weightDist∗distance loss

139

Figure 5.9: Encoder-Decoder-Accuracy-Diagram

The distance loss was introduced by the Siamese network to help embed

all legal networks in proximity so that an efficient trajectory exists between legal

networks and thus optimization strategies do not have to cross large areas of illegal

networks in the embedding space.

To evaluate performance we calculated 9 metrics to make sure we get a well

trained encoder-decoder-accuracy model to help us obtain an effective policy when

we perform Reinforcement training with Actor and Critic Models. The layered

diagram of the Accuracy Network is shown in Figure 5.9.

After training this combined encoder-decoder-accuracy model for 5000 episodes

we obtained following metrics values to evaluate our training and gage model per-

formance :

1. training loss(0.0208641),

2. validation loss(0.13546667),

3. decoder accuracy legal (0.9905621409416199),

4. validation decoder accuracy legal(1.0110701322555542),

5. decoder loss(0.007852517999708652),

140

6. validation decoder loss(0.0025045871734),

7. custom loss(0.0209068),

8. validation custom loss(0.10064433515071869),

9. mean sqe pred(5.9493566368473694e-05),

10. validation mean sqe pred(4.512822124524973e-05),

11. binaryCrossEntrphy(0.010269965045154095),

12. validation binaryCrossEntrphy(0.11059717833995819),

13. legal Network Pred(0.9971275925636292),

14. validation legal Network Pred (0.9778597950935364)

5.3.4 Training Data For Actor and Critic models

Once we have a high performing autoencoder and accuracy model we need

to train Actor and Critic Networks to evaluate whether Reinforcement learning can

actually produce a policy that will optimize the network architecture for the UCI

dataset used.

We generate training data for pre-training Actor and Critic networks by uti-

lizing a given dataset. This input data set consist of embeddings for both legal and

illegal networks along with values for all 13 feature vectors as shown in Figure

5.10. Note, with the help of Siamese Networks we have co-located all legal and

illegal networks and tanh Activation sets the boundary of my embeddings in two

Dimensional space (grid), which is X (+1,-1) and Y (+1,-1).

We also define the list of action directions starting from 0 to 360 degrees at

intervals of 10 degrees apart. We evenly explore the embedding space by covering

the distance from 0 to 1.0 in all 360 directions to generate the training data as shown

as Figure 5.11:

141

listAngles = [0, 10,20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160,

170, 180,190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290,300,310,

320,330, 340, 350, 360]

listDistance = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]

Figure 5.10: Input data with embeddings and Feature Vector’s

Figure 5.11: Exploring reward and accuracy in 360 Degree at various length

142

After we read the input data (Figure 5.10) we generate 10 additional vectors

with noise for each row to avoid overfitting. Then we compute the next state, accu-

racy, legality and reward for each action in the action space using the getNextSteps()

function. Finally, we calculate total reward, average reward (Reward V), and Ad-

vantage Reward (Reward A) which is nothing but subtracting average reward from

reward at each step in the neighborhood as shown in the Figure 5.11Ṫhis results in

data items as shown in Figure 5.12.

Figure 5.12: Training Data Set To Pre-Train Critic

The getNextSteps() function is implemented to help compute the next state,

accuracy, legality, and reward for each action in the given action space using an

input data set and an accuracy model. The function takes a input dataset containing

information about the current state, and uses accuracy model to predict accuracy

and legality for the next states. Further, with the help of change in accuracy it

computes the reward at the next state based on the current and next state legality

and accuracy.

To avoid the model to be too shallow, we scale reward by 2.5.

In case our next state is illegal while the current state is legal we punish by

assigning -1 to the reward. Similarly, if our next state is illegal while the current state

is also illegal we assigning 0 to the reward. Such as: illegal state to illegal state:

143

Reward = 0. The goal here is to prevent the policy to move towards illegal networks

as we have not trained accuracy predictions for those areas, which could therefore

be misleading.

Once we have generated training data we will pre-train our Critic Network

so that it adapts for future training with the Actor Network.

5.3.5 Pre-train Critic models

To effectively train actor and critic using RL we first attempt to create consis-

tent actor and critic networks through a sequence of pre-training steps. We first

pre-train our critic network for a uniform policy and a discount factor of γ = 0, i.e.

to reflect the reward function.

This basically initializes the critic network with the average reward values

and serves the purpose to assess whether the network is sufficiently complex to

represent this function over the embedding space. During training we use the

mean squared error (MSE) loss between the true and predicted values. We run

two training sessions for critic pre-training as we will later need two distinct critic

networks in the TD3 approach.

Once our critic network is trained we predict critic values for the given

embeddings and found that the plot of critic A against embeddings is very similar

to the embeddings plotted against Rewards. This proves that critic was pre-trained

successfully.

5.3.6 Pre-train Actor model with Critic Weights Frozen

Through a series of experiments and iterative refinements, it has been deter-

mined that pre-training the actor network in conjunction with the critic network

improves their mutual compatibility. This step-by-step process currently involves

144

pre-training the actor network with the pre-trained critic while maintaining the

fixed weights of the previously trained critic. The discount factor γ is kept at 0, and

τ(tau) is set to 0.00005. τ represents the discount factor, with a high τ rendering all

actions equiprobable, while a low τ biases the probability towards a greedy policy.

Over the course of training, τ can be annealed, facilitating greater exploration at

the beginning of training and increased exploitation towards the end.

This evaluation serves to determine if the actor network’s complexity is ad-

equate to capture the intricacies of a policy within the embedding space. It is

important to note that we blend the weights for the critic network prior to initiat-

ing actor training. This entails obtaining critic main1 and critic target1, as well as

critic main2 and critic target2 weights from two independently trained critics, as

depicted in Figure 5.13.

Figure 5.13: Actor-Critic-Training Flow

145

5.3.7 Pre-train Critic model with Actor Weights Frozen

After training the actor with the pre-trained critic, we proceed to train the critic

network again while keeping the actor’s weights fixed. We utilize the pre-trained

policy (Actor) to generate embedding trajectories, employing a final discount factor

of γ = 0.9 and τ (tau) = 0.00005. This ensures that our pre-trained critic is consis-

tent with the policy before commencing the comprehensive Actor-Critic (TD3 RL)

training for both the critic and the policy. Figure 5.13 illustrates the step-by-step

Actor-Critic training flow and its dependencies.

5.3.8 Training Actor and Critic models together

Following the completion of the pre-training process for network models us-

ing active learning and a pre-trained acquisition function to optimize performance,

both the actor and critic are trained concurrently for several iterations. This joint

training allows them to synchronize and fine-tune their exploration and training

capabilities for the final policy. The trajectory data is generated on-the-fly based

on the current policy at the respective training stages, as produced by the actor

network.

It is crucial to note that a well-trained, high-performing actor network enables

the construction of a policy that can effectively identify an optimal network for the

original classification problem.

5.4 Explore and carry out action with exploration noise

5.4.1 Background

For this training, we employ the TD3 algorithm [71] along with a large replay

buffer to store the states, actions, rewards, and new states generated by executing

146

trajectories in accordance with the actor’s current policy. In our continuous embed-

ding action space, we explore and execute actions with exploration noise for target

policy smoothing. To regularize action noise, a small amount of random noise is

added to the target, averaging over multiple mini-batches. As a result, policies

tend to be more stable since the target value returns higher values for actions that

are more robust to noise and interference.

When calculating the targets, clipped noise is added to the selected action to

obtain higher values for more robust actions. These transitions are saved and used

to update the critic, followed by the actor and target networks. We continue this

process until stable results are achieved.

5.4.2 Explore

Exploration in discrete action spaces is typically achieved through proba-

bilistic selection of random actions, such as Boltzmann exploration. However, in

continuous embedding action spaces, exploration is performed by adding noise

directly to the action itself. Since the critic-pair network has twice the number of

layers as the actor network, these critic-pair layers operate in parallel, resulting in

two separate outputs, as illustrated in Figure 4.10.

The learning function (train) drives exploration, encompassing the majority

of the functionality. It is essential to ensure that the memory is filled to at least

the batch size, as learning should not occur for less than the batch size. Explo-

ration commences by allowing the agent to select an action with added exploration

noise, a standard step in the Markov Decision Process (MDP) for the embedding

environment.

Gradient tape is utilized for gradient calculations, as it facilitates the addition

of operations to the computational graph for gradient computations. Consequently,

147

when the action act() function is called on the agent network, those operations used

for gradient calculations are not stored anywhere and are effectively detached from

the graph. This is where the update rule is applied, as it is the only element within

this context manager used for gradient calculation.

To obtain optimized results, the actor-critic network was trained for 5,000

episodes with a maximum of 300 steps per episode. For each step, the step size is

calculated by adding alpha (0.005) to the 2D embedding space as follows:

next state = current state + alpha ∗ action (5.1)

The next accuracy value is calculate by passing this next state value to the

Accuracy Model. The reward is then computed as the difference between the

accuracy of the next state and the current state, ultimately determining the utility

value of this one-step exploration.

Crucial exploration results, including state, next state, action, reward, and

next accuracy, are stored in the first replay buffer (RBuffer) for future training.

Scatter plot of trajectories (Fig. 5.14) revealed that certain parts of the trajec-

tories did not connect to their intended goals. This also suggests that during the

exploration of the embedding space, the training data points did not traverse those

areas. One possible explanation (based on observation) is that during Phase I of the

initial training, we took a fixed number of steps in the embedding space, resulting

in our trajectories not fully exploring all embedding points towards the goal. This

implies that the final reward is not being adequately propagated. The challenge

faced here is the finite horizon; we do not want to run our trajectories indefinitely,

and reinforcement learning may not be highly effective if we cannot access the full

148

Figure 5.14: Scatter Plot After Initial Exploration of Embedding Space

reward and properly propagate the value function. However, the Forward Lookup

Tree Search did assist in eliminating gaps while exploring the embedding space.

5.4.2.1 Forward Lookup Tree Search

To minimize fluctuations in results while exploring the embedding space,

additional exploration was necessary. A forward lookup strategy was employed

by constructing a tree with a depth of 3 and 5. The algorithm’s flow for the forward

lookup tree is illustrated in Figure 5.15:

The high level flow for forward lookup tree search is shown as:

1. Traverse the tree depth-first, and at each node along the way, compute

the reward, next accuracy, and next State using the Accuracy

Model, similar to a one-step exploration.

2. Calculate the utility value of current node.

3. Select the node with max utility among all leaf nodes.

149

Figure 5.15: Forward Lookup Tree Search

4. Repeat step 1,2,3 by traversing this tree of depth 3 with 5 leaves at each

node

Exploring the node with the highest utility is also known as ’multistep for-

ward tree exploration’. Key results obtained here, such as state, next state, action,

reward, and next accuracy, are stored in the second replay buffer (RBuffer) for fu-

ture training. It should be noted that networks from both replay buffers (one-step

and multistep) are utilized equally (50% each) for future training steps to update

the networks.

5.4.3 Update Critic

This step is a critical part of the algorithm, encompassing most of the addi-

tional features of TD3. The first task is to sample a mini-batch of stored transitions

150

from the replay buffer, i.e., random samples with a batch size of 300. The key stored

transactions include states, next states,rewards,actions,accuracy & depth.

Next, select an action for each state retrieved from the mini-batch and apply

target policy smoothing. this involves choosing an action for the target actor

network. Noise is added to this action and clipped to ensure that the noisy action

does not deviate significantly from the original action value.

Once the target actions are computed, the target values for the critic are

determined. This is where the double critic networks (critic-pair) come into play.

V and A values for each target critic are calculated, and the smallest of the two

(critic target and critic target2) is chosen for the target value.

The critic value for the new states is computed through the target critic

evaluation of the next states and target actions, squeezed along the first dimension.

This process performs a forward pass to obtain the value of the successor state for

the best action.

Note that the predicted (critic) values are the output of the main critic network,

which takes states and actions from the buffer sample. The critic value represents

the value of the action in a given state, with respect to the original state and actions

the agent actually took during the course of the episode.

The target value for the terminal new state is simply the reward for every

other state. According to the Bellman equation, the target critic network’s value is

the reward plus the discounted value of the resulting state. If there is no successor

state, the target value is the reward itself.

In addition, the target value for critic loss is calculated by predicting the action

for the next states using the actor’s target network. Then, using these actions, one

can obtain the next state’s values using the critic’s target network. These derived

target actions are essentially the target actor’s indication of what steps one should

151

take for the new states. To avoid looping issues, the actor target is used instead of

the actor main.

Finally, the loss for the two current critic networks is calculated. The loss

function is computed using three networks: actor target, critic target, and critic

main. Critic loss is determined as the mean squared error (MSE) of target values

and predicted values. The Boltzmann error is the difference (MSE) between the

value of the action in the current state and the sum of the reward and the gamma

times the maximum of all possible action values in the successor state. This is

essentially the MSE of each current critic and the target values calculated earlier.

If the rewards are very small, the values are boosted by a boosting factor (2.5),

which was used earlier to amplify the rewards.

Thus, the critic’s optimization is carried out by updating the critic and min-

imizing the loss. This is done by applying the gradients to the same critic main

trainable variables, i.e., all the weights of the three layers in the main critic network.

The gradient tape is utilized to load up operations to the computational graph for

gradient calculations.

It is important to note that the gradient involves all the weights of all three

networks, but weights are applied only to the main critic networks. Gradients are

applied to the same critic main trainable variables, using all the weights of the three

layers in the main critic network.

5.4.4 Update Actor

Compared to the critic, updating the actor is much simpler. It is essential

to ensure that the actor is updated less frequently than the critic, which means

updating the actor every second time step. The actions from the actor are selected

based on its current set of weights, not based on the weights it had at the time the

152

data was stored in the agent’s memory (RBuffer).

new policy actions = actor main(states)

The actor’s loss function calculates the mean of the negative Q values from

the critic network, with the actor determining which action to take given the mini-

batch of states. The actor loss is represented as negative (’-’) because gradient ascent

is being used here. As explained in policy gradient methods, gradient descent is

not used because it would minimize the total score over time. To maximize the

total score over time, gradient ascent is required, which is simply the negative of

gradient descent.

The actor network is optimized using backpropagation, as the actor loss

involves both the actor main and critic main networks. Actor loss is calculated

as the negative of critic main values, with inputs being the main actor’s predicted

actions.

Thus, the actor is updated using a combination of the deterministic policy

gradient and delayed updates. The actor is updated as follows:

Delayed policy updates: The actor is updated less frequently than the critic net-

works, typically after every second update of critic updates. This delay helps to

reduce the overestimation bias and stabilize the training process.

Target policy smoothing: Which adds noise to the target actions before passing

them to the target critic networks. This technique encourages the actor to explore

a wider range of actions and helps to mitigate the overestimation bias.

Deterministic policy gradient: The actor’s loss function is calculated using the

deterministic policy gradient, which is the mean of the negative advantage values

from one of the critic networks. The actor chooses the action to take, given the

mini-batch of states, and the gradient ascent is used to maximize the expected

return.

153

Backpropagation: The actor network is optimized using backpropagation, as the

actor loss involves both the actor main and one of the critic main networks. Actor

loss is calculated as the negative of the critic main values with inputs being the

main actor’s predicted actions.

Soft target updates: After updating the actor network, the target actor network is

updated using a soft update strategy. This strategy involves slowly blending the

weights of the main actor network with the weights of the target actor network,

ensuring a smoother and more stable learning process.

With the help of TD3 algorithm the actor’s update process is tremendously

improved by using two critic networks, delayed policy updates, target policy

smoothing, and soft target updates. These enhancements help to reduce over-

estimation bias and improve the stability and performance of the reinforcement

learning agent.

5.4.5 Update Target Networks

Target networks are time-delayed copies of their original networks, and they

slowly track the original networks. To avoid looping issues, the actor target is used

and actor main is kept stable and a copy of the initial weights of both actor main,

critic main network is done is transferred to actor target & critic target network.

In the end, frozen target networks are updated using a soft update alongside

the actor update. Actor target and critic target networks are slowly moved using

tau(τ) towards the trained actor main and critic main network via “soft updates”.

Updating the target networks is a crucial aspect of the learning process. The

target networks are essential in reducing the overestimation bias and stabilizing the

training. We maintain two sets of networks, a main network (actor and two critics)

and a target network (target actor and two target critics). The target networks

154

are updated using a soft update strategy, which involves a slow blending of the

weights of the main networks with those of the target networks.

The soft update strategy is implemented as follows:

Polyak (τ) averaging: A hyperparameter called the Polyak factor (denoted as ’τ’)

is introduced, which is typically set to a small value (e.g., 0.005). The τ factor

determines the rate at which the target networks are updated.

Updating the target critic networks: The weights of both target critic networks are

updated by blending the weights of the main critic networks with the correspond-

ing target critic networks.

The update is performed using the following equation:

target critic weights = (1 - τ) ∗ target critic weights + τ ∗ main critic weights

This equation is applied to both target critic networks.

Updating the target actor network: Similarly, the target actor network is updated

by blending the weights of the main actor network with the target actor network

using the same τ factor:

target actor weights = (1 - τ) ∗ target actor weights + τ ∗ main actor weights

By using the soft update strategy, the target networks are gradually updated

to reflect the main networks’ learning without drastically changing their outputs.

This approach helps to maintain stability in the learning process and reduce the

overestimation bias, leading to improved performance in TD3-based reinforcement

learning.

The RL steps are repeated until the policy converged.

155

CHAPTER 6

Results and Performance

6.1 Introduction

In this chapter, we will discuss the results and performance of my experiments

as discussed in Chapter 5.

6.2 Identifying mapping for Embedding Space

We begin by considering how to represent our networks and approximate

connectivity in the embedding space. Our criteria for useful embedding space is

that every state in an embedding space region is reachable from every other state

by means of a single control RL generated policy. Much like NOA architecture by

Luo[1], the initial training here was focused on fully connected networks up to a

certain size, along with some performance data (network accuracy) and network

status (legal/illegal) to help construct a simpler modification space. This resulted

in defining the network space as fully connected networks of limited size as well

as classification problems (Figure. 6.1) from the UCI data set [74]. This permits the

input network specification to be supplied in terms of layers and unit numbers per

layer and provides an easy means of generating initial training data by training

300 random networks [60], each on, one of the 12 target problems.

6.3 Random Network generation and Training for Embeddings

For effective training of all models, quality, accurate, complete, and relevant

data is needed to start early on in the training process. Dataset selection was pri-

156

Figure 6.1: Initial Training Data Set With Problem Selection Attributes(Normalized)

marily focused on dataset and attribute characteristics. Also to uniquely represent

each problem in an embedding space, a set of 13 problem attributes were also

selected and computed to represent each problem in the training dataset. Apart

from ’No of Classes’, ’Data Set Size’, ’Attribute Type’, we also computed Entropy

on dataset labels, average Entropy and average Entropy between data set features.

To give a good spread and variation, training and test accuracy were computed on

three Neural Networks ([2,6,8], [1,5,0] and [2,6,20]) with different number of layers

and nodes in each layers (Figure 6.1).

Classification problems from the UCI data set [7] were used with a default

reward function as an improvement in performance (network accuracy) due to

the change in the network in embedding space. Each dataset represents separate

entities or problems and will help us to run trajectories to optimize one problem at

a time. For our training we have used a random initial policy to build trajectories

in embedding space. To study the performance and operation of the different

157

network components, we chose here to go through a sequence of pre-training steps

which focus on different components and then studied the results before training

the next component. Later to allow more complex networks we used time series

network data without any constrains on the length of layers and nodes so that we

can map these networks into a lower-dimensional representation. Legal and illegal

networks represented by time series data set are shown in Figures 4.3 with start of

sequence [0.0,1.0] and end of sequence [0.0,-1.0].

For example: ”[0.0, 1.0], [23.0, 0], [20.0, 0], [12.0, 0], [11.0, 0], [6.0, 0], [0.0,

-1.0]” shows a network with 5 layers and each layer heaving [23,20,12,11,6] nodes.

All these synthetically generated legal networks for all problems with their

accuracies are saved along with illegal networks (accuracy 0) into a training file.

Using this training file the encoder-decoder networks are pre-trained using recon-

struction loss (MSE) multiplied by legal value and we found that networks were

able to form an effective embedding space for our legal network architectures. The

layered diagram for encoder-decoder network evolved for simple fully connected

network (Figure 3.4) to more complex variable length networks using sequence-

sequence time series input data (Figure 4.5).

Since the network architecture input formulation allows for illegal inputs, an

addition 300 illegal network descriptions were generated and assigned accuracy

values of 0 to allow the system to learn the demarcations of the embedding space.

For this initial proof of concept, target problems are trained independently, yielding

problem-specific policies.

Siamese Network architecture as explained in Figure 2.2 (Chapter 2), is trained

consist of two identical subnetworks of our time series data, often called ”sister net-

works,” that share the same weights. Each sister network processes one of the input

pairs, and their outputs are combined to produce a similarity score. We also trained

158

encoder, decoder and accuracy networks with siamese network, while consider-

ing the nature of our legal network data. The distance loss function encourages

the model to learn the representations that bring similar pairs closer together and

push dissimilar pairs further apart. This model is trained using our paired training

dataset (Figure 6.2) which includes legal networks 1 and legal networks 2 as an

arrays containing the feature representations of our legal networks, where the ith

element in both arrays forms a pair.

Figure 6.2: Initial Training Data Set With Problem Selection Attributes(Normalized)

Note, the labels array should contain the binary labels (legal(1), illegal(0))

corresponding to each pair.

159

After successful training, Siamese Network can compare new pairs of legal

networks and determine their similarity. The model will co-locate similar legal net-

works by assigning them similar feature representations in the learned embedding

space. To do this, we used the sister network submodel to obtain the embeddings

for any new legal networks and calculate the distance between the embeddings.

By comparing the distances for different pairs of legal networks, now we can

identify which legal networks are closer together in the learned embedding space.

This enabled us to group similar legal networks and analyze their relationships

more effectively as shown in Figure 6.3

Figure 6.3: Separate Legal and Illegal Networks

The high level flow that interleaves planning and execution is shown as:

a) Initialise networks,

b) Initialise replay buffer,

c) Select and carry out action with exploration noise,

d) Store transitions,

e) Update critic,

f) Update actor,

160

g) Update target networks

h) Repeat until sentient.

6.4 Random Network generation and Training for Embeddings

The basic idea behind this technique is to randomly generate neural networks

and train them on a given dataset to obtain embeddings. The trained embeddings

can then be used for various downstream tasks, such as classification, clustering,

or visualization.

Our random network generation and training process involves the following

steps:

1. Randomly generate a neural network architecture: In this step, a neural

network architecture is generated randomly using a set of pre-defined

hyperparameters, such as the number of layers, the number of neurons

per layer, the activation functions, and the learning rate using a

sequence-to-sequence (seq2seq) model as shown in Figure 4.3.

2. Train the network on the given dataset: The randomly generated network is

trained on a given dataset using a supervised learning approach.

The input data is fed into the network, and the network learns to

predict the corresponding output labels. The loss function used for

training is a measure of the difference between the predicted labels and the

true labels.

3. Train Encoder and Decoder models: Encoder and decoder were implemented

and trained using a sequence-to-sequence (seq2seq) model to predict the

architecture of a neural network given its time series data. Figure 4.3

161

shows a layout of input structure for network of max layers = 5 for our

experiments. The model employs a bidirectional LSTM encoder-decoder

architecture with attention mechanisms.

4. Bidirectional LSTM-based Encoder: The Bidirectional LSTM-based Encoder

Model is a part of the autoencoder network used in the code. It is a

combination of forward LSTM and backword LSTM, which can fit the data

from both forward direction and backward direction, and concatenate the

prediction. It is implemented to be responsible for encoding the input

time series data into a lower-dimensional representation, which can be

later decoded by the decoder network to predict the neural network

architecture. The model consists of an input layer followed by three

bidirectional LSTM layers, two dense layers, and an output layer (the

embeddings). The input to the encoder is a time series with shape (timesteps,

number of features). The output of the encoder is an embedding. The

encoder model is compiled, and its summary is printed.

5. LSTM-based Decoder Model: Decoder Model takes the embeddings from

the encoder as input and produces hidden states for the decoder LSTM.

It has two dense layers and is compiled with the specified optimizer,

loss function, and metric. The decoder predicts the neural network

architecture very close to the one which was send to the embedding

model with 98.9% accuracy. We also implemented ’Decoder Depth model’

to predicts the depth (number of layers) of the neural network

architecture. It has two dense layers and an output layer.

162

The model is compiled with the specified optimizer, loss function, and

metric.

6. Obtain the embeddings: Once the embedding network is trained, the final layer

of the network, which produces the output with the help of ’tanh’ activation.

The activations of the remaining layers are then used as embeddings for the

input data. These embeddings are typically lower-dimensional than the

original input data, making them easier to visualize and analyze.

7. Evaluate the embeddings: To validate the encoding space, encoder-decoder

network are pre-trained using reconstruction loss (MSE) multiplied

by legal value to see if the networks were able to form an effective

embedding space for the legal and illegal network architectures.

The trained embeddings are evaluated on by plotting a scatter plot within

2-Dimensional space with length between +1 to -1 in both x and y directions.

To validate the spatial consistency of the encoding space, the locations of

legal and illegal network descriptions were evaluated and compared to the legal

predictions. Figure 6.4 shows the results where blue points indicate valid networks

while red dots indicate embedding points that do not correspond to legal network

configurations. The shaded region indicates the area for which the system predicts

legal networks.

One of the main advantages of random network generation and training for

embeddings is that it allows for the discovery of novel neural network architectures

that may be better suited for a particular dataset than pre-defined architectures.

This technique also enables the creation of embeddings that are tailored to the

specific needs of a given task, such as fine-grained classification or outlier detection.

163

Figure 6.4: Separate Legal and Illegal Networks

However, one of the limitations of this technique is that it can be compu-

tationally expensive and time-consuming to train multiple neural networks on a

given dataset. To address this, we automated the process of generating neural

network architectures.

In summary, random network generation and training for embeddings will

enable us the discovery of novel neural network architectures and allows for the

creation of embeddings tailored to our future actor-critic training.

6.5 Results from Training Encoder-Decoder-Accuracy models

As explained above the encoder processes the input sequence and generates

a fixed-length representation, often called a context vector or hidden state. The

decoder then takes this representation and generates an output sequence based on

it. Whereas, Accuracy Network measures how well the model’s predictions match

the actual target values. In the context of an Encoder-Decoder model, accuracy

can be understood as the proportion of correct predictions (words or tokens) in the

output sequence compared to the actual target sequence.

164

When training Encoder-Decoder models, several factors can influence their

accuracy:

1. Model architecture: The choice of the underlying architecture, such as re-

current neural networks (RNNs), long short-term memory (LSTM) networks, or

transformer-based models, can impact the model’s performance. Generally, LSTMs

and transformers have shown better results in sequence-to-sequence problems

compared to vanilla RNNs due to their ability to capture long-range dependencies.

2. Attention mechanism: Incorporating an attention mechanism into the Encoder-

Decoder model has been shown to significantly improve performance. The atten-

tion mechanism allows the decoder to focus on different parts of the input sequence

when generating the output, providing a more context-aware prediction.

3. Training data: The quality and size of the training data are crucial factors that

impact the model’s performance. A larger and more diverse dataset helps the

model generalize better to unseen data. It is also important to preprocess and clean

the data, as well as handle class imbalance if it exists.

4. Hyperparameters: The choice of hyperparameters, such as the learning rate,

batch size, and the number of layers and hidden units, can have a significant impact

on the model’s performance. It is common to use techniques like grid search or

random search to find the optimal hyperparameters.

5. Regularization and optimization techniques: Techniques such as dropout,

gradient clipping, and weight decay can be used to prevent overfitting and improve

the model’s generalization to unseen data. Additionally, advanced optimization

algorithms like Adam, RMSprop, or Adagrad can help speed up training and

potentially lead to better performance.

The results from training an Encoder-Decoder model can be analyzed by

examining the loss curves for training and validation sets, as well as the accuracy

165

on these sets over time. Ideally, the loss should decrease, and the accuracy should

increase during training. Monitoring these metrics helps identify potential issues

such as overfitting, underfitting, or convergence problems.

In addition to accuracy, custom loss and decoder accuracy legal, decoder loss

,binaryCrossEntrphy, legal Network Pred, custom loss, mean sqe pred, acc loss,

legal loss, distance loss metrics are used. These metrics provide more nuanced in-

sights into the model’s performance and can helped us identify areas for improve-

ment. The decoder accuracy legal matrix for decoder model specially helped us

to check on performance of decoder network for all legal decoded networks. To

have more effective Accuracy training we added Gaussian Noise and transform

all 13 Feature Vectors to a dense set of 6 Feature Vector. A dropout layer is also

added as dropout has the effect of making the training process noisy, forcing nodes

within a layer to probabilistically take on more or less responsibility for the inputs.

This Feature Conversion model is designed to transform Feature Vectors before we

introduce them to the Accuracy Network Figure 6.5

Figure 6.5: Feature Vector Transformation

During the training process, the model’s weights and parameters are adjusted

to minimize the error between its predictions and the actual labels. Once the

166

Encoder-Decoder-Accuracy models are jointly trained, it is tested on a separate

dataset (the test set) to evaluate its performance for its accuracy. It is important

to ensure that the model generalizes well to new data and is not overfitting the

training data. Figure 6.6 shows the learned accuracy predictions for legal and

illegal Networks using a specific training problem (FV1, FV2, FV3, FV4, FV5, FV6),

corresponding to the embedding space.

Figure 6.6: Accuracy Predictions for FV1, FV2, FV3, FV4, FV5, FV6

To evaluate the accuracy prediction, Figure 6.7 shows the learned predictions

for a specific training problem (FV 7). By closely examining, we find that deep dark

areas of the accuracy prediction show the highest accuracy networks.

167

Figure 6.7: Accuracy Predictions for FV7

In summary, planning for the Accuracy model was simply through trial and

error and we settled with 9 dense layers and two output layers using sigmoid

activation function to output accuracy and status(legal/illegal) of the network.

Input layer for Accuracy model takes the state vector, which as an output from first

Concatenation layer consist of network properties and its 6 transformed Feature

Vectors. We run network properties and Feature Vectors in parallel through set

of dense layers to yield best results. Figure 6.8 show the layered diagram of the

accuracy network and it’s layer dependencies.

Figure 6.8: Combined Encoder-Decoder-Accuracy Training Results

168

The Encoder-Decoder model is pre-trained first to get best performance and

then we freeze its weights and train them with the accuracy network. Finally we

train them all together to yield the best performance of the combined network.

A custom loss function for accuracy network was designed which uses binary

cross entropy to calculate legal prediction loss and MSE to computer accuracy

loss(0.00208641). Custom loss function consists of decoder loss, accuracy loss,

legal loss and distance loss. By trial and error we came up with their ratio to add

up for component loss functions as shown below:

custom loss = weightD∗(decoder loss) +

weightA∗(accuracy loss) +

weightL∗legal loss + weightDist∗distance loss

Where:

legal loss = binary crossentropy(True Legal, (Predicted Legal))

acc loss =MSE(True Accuracy - Predicted Accuracy)) + legal loss

Here legal loss is the MSE of the network reconstruction, accuracy loss is

the MSE of the accuracy prediction, legal loss is binary cross-entropy of legal net-

work prediction, and distance loss is the distance error of the Siamese network.

Weights were determined experimentally and the learned components were eval-

uated for consistency of the embedding space, accuracy of network architecture

reconstruction, and precision of the accuracy and legal network predictions.

After training this combined model we obtained the following results, as

shown in Figure 6.9. The training losses, as well as a manual investigation and

testing of the embedding space and the accuracy prediction function shows that

the system is able to organize the embedding space coherently and can relatively

169

accurately demarcate the area of legal network embeddings with a legal prediction

accuracy of 99% on validation data.

Figure 6.9: Combined Encoder-Decoder-Accuracy Training Results

The accuracy prediction here achieved a Mean Square Error of 4.5 ∗10−5, on

validation data across all training problems, indicating its ability to learn to predict

accuracy across a range of problems. Note that the system is only trained on a small

region of the embedding space for illegal networks and thus accuracy predictions

in illegal areas are hard to interpret.

6.6 Pre-training the Actor-Critic Model

To achieve more consistent results and facilitate further exploration of the

embedding space, we employed a forward lookup strategy. This involved con-

structing a tree with a depth of 3 and 5 leaves at each node. To effectively train the

actor and critic components for the reinforcement learning (RL) policy, a two-step

pre-training process was implemented.

170

First, we pre-train the critic network using a uniform policy and a discount

factor γ = 0. This step initializes the critic network with reward values, enabling us

to evaluate whether the network’s complexity is adequate to represent the function

over the embedding space.

Following this, we pre-trained the actor network for the reward function

while keeping the previously trained critic weights frozen. This process aims to

assess if the actor network’s complexity is sufficient to capture the nuances of a

policy on the embedding space.

Once the actor network is pre-trained, we proceed to pre-train the critic

network again. However, this time, we use the pre-trained policy to generate

embedding trajectories and apply our final discount factor of γ = 0.9. This step

ensures that the pre-trained critic is consistent with the policy before initiating the

Twin Delayed Deep Deterministic (TD3) reinforcement learning training for both

the critic and the policy components.

By employing this pre-training strategy, we can effectively mitigate fluctua-

tions in results while exploring the embedding space, ensuring a more robust and

accurate actor-critic model for reinforcement learning tasks.

To avoid fluctuations in results while exploring the embedding space, further

exploration was needed. Forward lookup strategy was was used by building a

tree of depth 3 with 5 leaves at each node. To effectively train actor and critic for

RL policy we first pre-train our critic network for a uniform policy and a discount

factor of γ = 0. This basically initializes the critic network with the reward values

and serves the purpose to be able to assess whether the network is sufficiently

complex to represent this function over the embedding space. Then we pre-train

our actor network for the reward while previously trained critic Weights are frozen.

171

This again serves to assess whether the complexity of the actor network is sufficient

to reflect the complexities of a policy on the embedding space.

Once the actor is trained, we again pre-train the critic, but this time using the

pre-trained policy to generate embedding trajectories and using our final discount

factor of γ = 0.9. This is to ensure that our pre-trained critic is consistent with the

policy before we start TD3 RL training of both the critic and the policy.

6.7 Training Actor-Critic Models Together in TD3-based Actor-Critic Approach

Actor and critic networks were trained in multiple stages as indicated before

to evaluate whether Reinforcement learning [63] can produce a policy that will

optimize the network architecture for the UCI datasets used. The networks were

trained on 9 UCI target problems with alternate individual pre-training of critic and

actor serving the goal of evaluating the sufficiency of the used network structures

and of stabilizing the initial value function estimate and consistent policy in order

to avoid excessive random trajectory generation.

Once critic and actor have been pre-trained, they are trained together using

the TD3 actor-critic approach [71] for a few iterations to fine-tune and synchronize

them. This allows for better exploration and training for our final policy. Here

trajectory data is constructed on-line using the perturbed current policy and used

to augment a temporally decaying replay buffer. This buffer stores the states,

actions, rewards, and new states, and random sampling on the buffer is used to

obtain sufficient training examples to allow the networks to converge.

Rewards are predicted by passing next state to the accuracy model and com-

puting the reward as the difference to the accuracy of the current state. This

eliminates the need for further target problem training. The two critic networks

172

are here trained using a loss obtained from the Bellman equation that provides

separate losses for V(s) and A(s, a) and the target critic network is updated by up-

dating its weights in the direction of the better of the two critics (i.e. the one with

the larger value). The actor is trained using policy gradient by propagating the

gradient of the negative Advantage value as a loss back through the critic network.

We explore and perform actions with exploration noise for target policy

smoothing in our continuous embedding action space. To regularize action noise,

we add a small amount of random noise to the target averaging over several mini-

batches. This stabilizes policies by returning higher values for actions that are more

robust to noise and interference. Clipped noise is later added to the selected action

when calculating targets to obtain higher values for more robust actions. These

transitions are saved and used to update the critic, followed by the actor and target

networks. At each stage of training, the actor network helps to build a policy that

can find an optimal network for the original classification problem. This process is

repeated until stable results are obtained.

The next accuracy value is calculated by passing this next state value to the

Accuracy Model and finally computing the reward as the difference between the

accuracy of the next state and the current state. This generates the utility value of

one-step exploration Equation 6.1. Key exploration results such as state, next state,

action, reward, and next accuracy are saved into the first replay buffer (RBuffer)

for future training. This is a crucial part of the algorithm where most of the TD3

additional features are implemented.

Next, we sample a mini-batch of stored transitions from the replay buffer, i.e.,

random samples [60] for a batch size of 300 . We select an action for each of the states

pulled from our mini-batch and apply target policy smoothing. Noise is added to

this action and clipped to ensure that the noisy action isn’t too far away from the

173

original action value. Once target actions are computed then target Q values for

the critic are computed. This is where the double critic networks (critic-pair) come

into play. Q values for each target critic is computed and then the smallest of the

two (critic target and critic target2) is chosen for target Q value.

Critic value for new states is computed by target critic evaluation of the next

states and target actions, squeezed along the first dimension. It does the forward

pass to get the value of the successor state for the best action. Whereas, predicted

(critic) values are the output of the main critic network which takes states and

actions from the buffer sample. This critic value is the value of the current state’s

with respect to original state and actions the agent actually took during the course

of this episode. Which represents value of the action in a given state. The target

value for the terminal new state is nothing but just the reward for every other state.

According to the Bellman equation, the value of the target critic network is the

reward plus the discounted value of the resulting state. If there is no successor

state, the target value is the reward itself.

6.7.1 Critic optimization

Critic optimization is carried out by minimizing the loss, updating the critic

by applying the gradients on the same critic main trainable variables. The gradient

tape is used to load operations to the computational graph for gradient calculations.

The actor network is updated less frequently than the critic network. Note, gradient

involves all the weights of all three networks but weights are applied to only main

critic networks only. Apply gradients on same critic main trainable variables by

using all the weights of the three layers in the main critic network.

174

6.7.2 Actor optimization

The actor’s loss function computes the mean of the negative advantage values

from the critic network with the actor selecting what action to take given the mini-

batch of states. The actor loss is negative as we are doing gradient ascent. Actor

network optimization is performed using backpropagation, as actor loss involves

the actor main and critic main networks. Actor loss is calculated as the negative

of critic main values with inputs as the main actor predicted actions.

The actor is much simpler to update when compared to the critic. We make

sure that actor is updated fewer times than critic. Therefore, actor is updated every

2nd time step. The actions from the actor are selected based upon its current set of

weights. Not based upon the weights it had at the time it is stored in an agent’s

memory (RBuffer). The actor’s loss function simply gets the mean of the -Q values

from our critic network with our actor choosing what action to take given the mini

batch of states.

The actor loss is shown as negative (’-’) as we are doing gradient ascent here.

As explained in policy gradient methods, gradient decent is not used because it

will minimize the total score over the time and to maximize the total score it is

required to use gradient ascent which is just negative of gradient decent. Actor

network is optimized by using backpropagation as actor loss involves actor main

& critic main. Actor loss is calculated as negative of critic main values with inputs

as the main actor predicted actions.

6.7.3 Target Network Updates

Target networks are time-delayed copies of their original networks, and they

slowly track the learned networks. To avoid looping issues, actor target is used

and actor main is kept stable. Hard copies of the initial weights of both actor main

175

and critic main networks are made to actor target and critic target networks, as

target networks significantly improve stability in learning.

In the end, frozen target networks are updated using a soft update alongside

the actor update. And actor target and critic target network are slowly moved

using tau(τ) towards the trained actor main and critic main network via “soft

updates”.

Finally, the actor-critic network was trained for 5000 episodes with a new

step being generated and 300 samples trained per episode. Actions generated

by the actor are here displacement vectors in the 2 dimensional embedding space

represented as the sine and cosine of the direction and a length between 0 and 1, and

are multiplied by a scaling factor of δ = 0.005 to result in steps in the embedding

space as:

next state = state + δ ∗ length ∗

 cos(dir)

sin(dir)

 (6.1)

6.8 Evaluating The Policy

Figure 6.10 shows the learned actor values while the Figure 6.11 shows the

vector field representing the policy actions for the part of the embedding space

networks. Investigating the critic values in the context of the corresponding accu-

racy values shown in Figure 6.7, reveals that the system successfully learned the

utility function, which corresponds to the discounted sum of remaining network

accuracy improvements from the given embedding space.

Examining the policy reveals a strategy that converts random starting net-

works to a small number of final networks which correspond closely to local max-

ima in the accuracy space. Once the training is finished, we evaluate the learned

policy to see if it is able to transform the random start network into a high accuracy

176

Figure 6.10: Critic Value over Embeddings of legal and illegal Networks

Figure 6.11: Learned Policy Actions (right) over Embeddings of legal and illegal
Networks

final network for UCI classification problem from the test set and thus if it is able

to generalize network architecture optimization across target problems.

177

6.8.1 Analyzing Policy Trajectories

Analyzing policy trajectories is an essential aspect of reinforcement learning,

as it provides insights into how well the learned policy performs in transforming

an initial state into a desired final state. By studying policy trajectories, researchers

can understand the underlying strategies and patterns that the agent employs

during its exploration and exploitation process. This information can be crucial for

improving the learning algorithm, identifying potential issues, and optimizing the

agent’s performance.

During our experiments of the TD3-based actor-critic approach for network

optimization, policy trajectories represent the transformation of random starting

networks into high-performing networks through a series of actions. Analyzing

these trajectories can help identify the strategies used by the agent and reveal areas

of improvement in the learning process.

Here are a few key aspects to consider when analyzing policy trajectories:

Convergence: Examine the convergence of the trajectories towards optimal or near-

optimal solutions. Rapid convergence to high-performing networks is an indicator

of an effective policy. If convergence is slow or unstable, it may suggest the need

for adjustments in the learning algorithm or exploration strategy.

Consistency: Observe the consistency of the trajectories in reaching high-performing

networks across different initial conditions. A robust policy should perform well

irrespective of the starting network. Inconsistency in the trajectories might suggest

that the policy is sensitive to initial conditions, which can be addressed by refining

the learning process.

Exploration vs. Exploitation: Analyzing policy trajectories can provide insights

into the balance between exploration (searching for new promising regions in the

solution space) and exploitation (refining solutions in the current region). Ideally,

178

the agent should strike a balance between these two aspects to maximize its perfor-

mance. If the policy is too exploratory, it may fail to adequately exploit promising

solutions, whereas if it is too exploitative, it may get stuck in local optima.

Strategy patterns: By visualizing and studying the policy trajectories, researchers

can identify patterns in the agent’s strategy. For instance, they can observe if the

agent tends to focus on specific parts of the embedding space or if it follows certain

types of actions more frequently. Understanding these patterns can guide further

improvements in the learning algorithm or exploration strategy.

Comparing with baselines: Comparing policy trajectories with those of baseline

methods or human-designed architectures can provide valuable insights into the

effectiveness of the learning algorithm. If the learned policy performs comparably

or better than these baselines, it can be considered a successful approach.

By analyzing policy trajectories in the context of the TD3-based actor-critic

approach for network optimization, researchers can gain a deeper understanding

of the agent’s learning process and identify areas for improvement. This, in turn,

can lead to the development of more efficient and effective policies for network

optimization and other machine learning tasks.

Our results show that the policy successfully transforms simple fully con-

nected random networks into high-performing networks, matching or surpassing

the performance of the best networks in the initial training set for system pre-

training. Figure 6.12 shows 8 policy trajectories generated by the policy from

random start networks for one of the test problems. These trajectories show that

the policy manages to transform random networks into high performing networks

that match or exceed the performance of the best of the 300 initial random networks

even for problems that were never seen during training.

179

Figure 6.12: Policy Trajectories on fully connected Simple Random Starting Net-
works

Figures 6.13 and 6.14 shows 12 policy trajectories generated from random

more complex flexible length networks for all 9 training and 3 test problems. These

trajectories also confirm that the policy manages to transform random networks

into high performing networks that match or exceed the performance of the best

of the 300 initial random networks even for problems that were never seen during

training.

Note, the policy here at times can not follow a straight line but has to tra-

verse accuracy ”valleys”, effectively leaving local maxima in favor of better, more

globally optimal networks. This demonstrates that the architecture can effectively

180

Figure 6.13: Policy Trajectories on complex flexible layers Random Starting
Networks-I

labelfig:65-

learn an embedding space, a performance predictor, a critic network, and an actor

for the presented network optimization problem.

6.9 Comparing our Results with Initial Networks:

The performance or accuracy comparison, between the best of the initial,

randomly generated networks and the networks discovered by the policy provides

a means to assess the effectiveness of the reinforcement learning approach, such as

the TD3-based actor-critic algorithm, in optimizing network architectures.

To evaluate the success of the learned policy, we compared the performance of

the networks discovered by the policy with the performance of the initial networks.

181

Figure 6.14: Policy Trajectories on complex flexible layers Random Starting
Networks-II

The goal is to demonstrate that the policy can transform networks into optimized

networks with higher or equivalent accuracies.

This comparison can be performed in several ways:

Overall accuracy improvement: Calculate the average accuracy improvement

across all initial networks and the networks discovered by the policy. If the av-

erage accuracy of the discovered networks is significantly higher than the initial

networks, it indicates that the policy is effective in optimizing network architec-

tures.

Individual accuracy improvement: Compare the accuracy of each initial network

with the corresponding optimized network discovered by the policy. This analysis

can help identify specific cases where the policy performs exceptionally well or

182

struggles to improve the initial network’s performance. By examining these cases,

we can gain insights into potential strengths and weaknesses of the policy.

Best-case comparison: Evaluate the best-performing networks discovered by the

policy and compare them with the best-performing networks in the initial set. If

the discovered networks can match or surpass the performance of the best initial

networks, it demonstrates the policy’s ability to find competitive network architec-

tures.

Distribution of accuracy: Analyze the distribution of accuracy scores for both

the initial networks and the networks discovered by the policy. A shift towards

higher accuracy scores in the discovered networks indicates a successful policy.

Additionally, we can examine the spread of the accuracy scores to identify any

potential issues, such as overfitting or underfitting, in the discovered networks.

Robustness and generalization: Assess the robustness and generalization capabil-

ities of the networks discovered by the policy. A successful policy should produce

networks that perform well across a variety of tasks, datasets, and conditions. By

comparing the performance of the initial networks and the discovered networks

in various settings, we can evaluate the policy’s ability to generate robust and

generalizable architectures.

By expanding on the performance metric or accuracy comparison between

the initial networks and the networks discovered by the policy, we can better un-

derstand the effectiveness of their reinforcement learning approach, such as the

TD3-based actor-critic algorithm, in optimizing network architectures. This anal-

ysis can guide further improvements in the learning algorithm and help develop

more efficient and effective machine learning solutions.

Figure 6.15 further validates our results by comparing the accuracy achieved

by the learned policy on the 8 training and 3 test problems during 10 policy execu-

183

Figure 6.15: Performance Matrix or Accuracy between Initial Network Vs Net-
work’s discovered by Policy

tions from random start networks. Figure 6.16 validates our results by comparing

the accuracy achieved by the learned policy on the 9 training and 3 test problems

during 10 policy executions from random start networks.

Here the right-most column displays the ratio of the accuracy achieved by

the network optimized by the learned policy and the best among the 300 initial

random networks and shows that the networks found by the learned optimization

policy achieve better or equivalent accuracies even for the never before seen test

problems.

By analyzing the performance metrics or accuracy between the initial net-

work and networks discovered by the policy, as shown in Figure 6.15, we can

further validate the efficacy of the TD3-based actor-critic approach in network op-

timization problems. The extreme right column of the figure demonstrates that the

networks discovered at the end of the trajectories not only have better or equivalent

184

Figure 6.16: Performance Matrix or Accuracy between Complex Initial Network
Vs Network’s discovered by Policy

accuracies than the originally trained best networks but also showcase the potential

to outperform them.

Figure 6.16, also further validate for more complex flexible layered Network

in network optimization problems. Again the extreme right column of the figure

demonstrates that the networks discovered at the end of the trajectories are better

or equivalent in term of accuracies than the originally trained best networks and

also show the potential to outperform them.

185

CHAPTER 7

Conclusions and Future Work

This dissertation introduces a novel and efficient method for optimizing deep

learning network architectures by employing Reinforcement Learning, abstract

problem embeddings, and transferable policies. Through initial experimentation

and evaluation, this research demonstrates the potential of this approach to signif-

icantly enhance the optimization process for deep learning systems, making them

more accessible and efficient for both non-experts and experts. By bridging the gap

between intricate network architectures and practical applications, this innovative

approach sets the stage for advancements in deep learning and AI-driven solutions

across a wide range of industries and domains.

7.1 The Proposed Approach

The proposed approach in this dissertation optimizes network architectures

in a learned network embedding space, constructed using an autoencoder and

Siamese network. Leveraging this embedding space and a performance predictor,

an actor-critic RL component is trained, which uses the embedding vector as a

network representation, as well as problem-specific features, to learn a policy for

network architecture modification over the continuous action space of embedding

space moves. Initial experiments using classification datasets from the UCI reposi-

tory demonstrate that the proposed system successfully learns an embedding space

and a policy that derives near-optimal network architectures, even for unseen test

problems, illustrating that the TD3-based actor-critic approach is a potent method

186

for optimizing network architectures across various machine learning tasks. By

iteratively training and fine-tuning the actor and critic networks, the system effec-

tively learns an embedding space, a performance predictor, and the optimal policy

for network optimization. The results show that the learned policy can transform

random starting networks into high-performing networks that match or surpass

the performance of the best networks in the initial training set. It also shows that

this ability generalizes beyond the target problems in the training set and extends

to novel problems that the system has not yet seen without requiring any addi-

tional training. This highlights the potential of this approach to deliver significant

improvements in accuracy and performance across a range of classification and

optimization problems.

7.2 Future Enhancements

Building upon the promising results of the TD3-based actor-critic approach

for optimizing network architectures, there are several potential avenues for further

exploration and development.

Hyperparameter Optimization: The current framework can be extended to incor-

porate hyperparameter optimization, enabling the discovery of optimal combina-

tions of network architectures and hyperparameters. This would provide a more

comprehensive solution for designing efficient deep learning systems.

Multi-task Learning: The transferable policy learned using this approach can be

applied to multi-task learning scenarios where multiple related tasks are solved

simultaneously. By learning a shared policy for modifying network architectures,

the approach could potentially enable the discovery of networks that perform well

on multiple tasks.

187

Scalability and Parallelization: To tackle larger and more complex deep learning

problems, the current approach can be scaled up and parallelized. By distributing

the training process across multiple computational nodes, it can effectively handle

more extensive network architectures and larger datasets, potentially leading to

improved performance and accuracy.

Exploration Strategies: The exploration strategy employed in the current approach

can be further refined to balance the trade-off between exploration and exploita-

tion more effectively. More sophisticated exploration strategies, such as intrinsic

motivation or curiosity-driven methods, can be incorporated to guide the learning

process towards more promising areas of the search space.

Combining Different RL Algorithms: The current approach relies on the TD3

algorithm for training the actor-critic networks. Investigating the combination of

different reinforcement learning algorithms, such as PPO, SAC, or DDPG, could

provide valuable insights into the most effective methods for network optimization.

188

REFERENCES

[1] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture optimiza-

tion,” Advances in neural information processing systems, vol. 31, 2018.

[2] S. Bose and M. Huber, “Incremental learning of neural network classifiers

using reinforcement learning,” in 2016 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), 2016, pp. 002 097–002 103.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for

acoustic modeling in speech recognition: The shared views of four research

groups,” IEEE Signal processing magazine, vol. 29, no. 6, pp. 82–97, 2012.

[4] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-

plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.

2278–2324, 1998.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger,

Eds., vol. 25. Curran Associates, Inc., 2012, pp. 1097–1105. [On-

line]. Available: https://proceedings.neurips.cc/paper files/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with

neural networks,” Advances in neural information processing systems, vol. 27,

2014.

189

[7] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” CoRR, vol. abs/1409.0473, 2014.

[8] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,

Y. Cao, Q. Gao, K. Macherey, et al., “Google’s neural machine translation

system: Bridging the gap between human and machine translation,” arXiv

preprint arXiv:1609.08144, 2016.

[9] D. G. Lowe, “Object recognition from local scale-invariant features,” in Pro-

ceedings of the seventh IEEE international conference on computer vision, vol. 2.

Ieee, 1999, pp. 1150–1157.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-

tion,” in 2005 IEEE computer society conference on computer vision and pattern

recognition (CVPR’05), vol. 1. Ieee, 2005, pp. 886–893.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016.

[14] K. Kapanova, I. Dimov, and J. Sellier, “A genetic approach to automatic neural

network architecture optimization,” Neural Computing and Applications, vol. 29,

no. 5, pp. 1481–1492, 2018.

[15] M. Gaurav. (2019) How to find the optimum number of

hidden layers and nodes in a neural network model?

190

[Online]. Available: https://datagraphi.com/blog/post/2019/12/17/

how-to-find-the-optimum-number-of-hidden-layers-and-nodes-in-a-neural-network-model

[16] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neural architecture

search using performance prediction,” arXiv preprint arXiv:1705.10823, 2017.

[17] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network archi-

tectures using reinforcement learning,” arXiv preprint arXiv:1611.02167, 2016.

[18] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: many could

be better than all,” Artificial intelligence, vol. 137, no. 1-2, pp. 239–263, 2002.

[19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

representations of words and phrases and their compositionality,” in Advances

in Neural Information Processing Systems, C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K. Weinberger, Eds., vol. 26. Curran Associates, Inc.,

2013. [Online]. Available: https://proceedings.neurips.cc/paper files/paper/

2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

[20] Q. Le and T. Mikolov, “Distributed representations of sentences and

documents,” in Proceedings of the 31st International Conference on Machine

Learning, ser. Proceedings of Machine Learning Research, E. P. Xing and

T. Jebara, Eds., vol. 32, no. 2. Bejing, China: PMLR, 22–24 Jun 2014, pp.

1188–1196. [Online]. Available: https://proceedings.mlr.press/v32/le14.html

[21] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through aug-

menting topologies,” Evolutionary computation, vol. 10, no. 2, pp. 99–127, 2002.

[22] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of

machine learning algorithms,” Advances in neural information processing systems,

vol. 25, 2012.

[23] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learn-

ing,” arXiv preprint arXiv:1611.01578, 2016.

191

[24] X. Jin, J. Wang, J. Slocum, M.-H. Yang, S. Dai, S. Yan, and J. Feng, “Rc-

darts: Resource constrained differentiable architecture search,” arXiv preprint

arXiv:1912.12814, 2019.

[25] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast

adaptation of deep networks,” in International conference on machine learning.

PMLR, 2017, pp. 1126–1135.

[26] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for large-

scale classification,” in Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, 2001, pp. 377–382.

[27] P. M. Granitto, P. F. Verdes, and H. A. Ceccatto, “Neural network ensembles:

evaluation of aggregation algorithms,” Artificial Intelligence, vol. 163, no. 2, pp.

139–162, 2005.

[28] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Smash: one-shot model

architecture search through hypernetworks,” arXiv preprint arXiv:1708.05344,

2017.

[29] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Reinforcement learning for ar-

chitecture search by network transformation,” arXiv preprint arXiv:1707.04873,

vol. 4, p. 3, 2017.

[30] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[31] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey,”

J. Mach. Learn. Res., vol. 20, pp. 55:1–55:21, 2018.

[32] R. J. Williams, “Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning,” Reinforcement learning, pp. 5–32, 1992.

[33] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, pp. 279–292,

1992.

192

[34] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional

neural networks,” in International conference on machine learning. PMLR, 2019,

pp. 6105–6114.

[35] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[36] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 2018.

[37] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural infor-

mation processing systems, vol. 12, 1999.

[38] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural architecture

search via parameters sharing,” in International conference on machine learning.

PMLR, 2018, pp. 4095–4104.

[39] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Ima-

genet classification using binary convolutional neural networks,” in Computer

Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, Oc-

tober 11–14, 2016, Proceedings, Part IV. Springer, 2016, pp. 525–542.

[40] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,”

arXiv preprint arXiv:1806.09055, 2018.

[41] W. J. Yun, J. Park, and J. Kim, “Quantum multi-agent meta reinforcement

learning,” arXiv preprint arXiv:2208.11510, 2022.

[42] R. J. WILLIAMS and J. PENG, “Function optimization using connectionist

reinforcement learning algorithms,” Connection Science, vol. 3, no. 3, pp.

241–268, 1991. [Online]. Available: https://doi.org/10.1080/09540099108946587

[43] R. Rifkin and A. Klautau, “In defense of one-vs-all classification,” The Journal

of Machine Learning Research, vol. 5, pp. 101–141, 2004.

193

[44] L. Li and A. Talwalkar, “Random search and reproducibility for

neural architecture search,” in Proceedings of The 35th Uncertainty in Artificial

Intelligence Conference, ser. Proceedings of Machine Learning Research, R. P.

Adams and V. Gogate, Eds., vol. 115. PMLR, 22–25 Jul 2020, pp. 367–377.

[Online]. Available: https://proceedings.mlr.press/v115/li20c.html

[45] . T. Q. Chen X. Xie, L. Wu J., “Progressive differentiable architecture search:

Bridging the depth gap between search and evaluation,” Proceedings of ICCV,

2020. [Online]. Available: https://openaccess.thecvf.com/content ICCV 2019/

papers/Chen Progressive Differentiable Architecture Search Bridging the

Depth Gap Between Search ICCV 2019 paper.pdf

[46] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep

neural network with pruning, trained quantization and huffman coding,”

arXiv: Computer Vision and Pattern Recognition, 2015.

[47] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. H. Černocký, “Strategies for

training large scale neural network language models,” 2011 IEEE Workshop on

Automatic Speech Recognition & Understanding, pp. 196–201, 2011.

[48] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep neural nets as

a method for quantitative structure-activity relationships,” Journal of chemical

information and modeling, vol. 55 2, pp. 263–74, 2015.

[49] M. Helmstaedter, K. Briggman, S. Turaga, V. Jain, H. Seung, and W. Denk,

“Connectomic reconstruction of the inner plexiform layer in the mouse retina,”

Nature, vol. 500, no. 7461, pp. 168–174, 2013.

[50] H. Y. Xiong, B. Alipanahi, L. J. Lee, H. Bretschneider, D. Merico,

R. K. C. Yuen, Y. Hua, S. Gueroussov, H. S. Najafabadi, T. R. Hughes,

Q. Morris, Y. Barash, A. R. Krainer, N. Jojic, S. W. Scherer, B. J.

Blencowe, and B. J. Frey, “Rna splicing. the human splicing code reveals

194

new insights into the genetic determinants of disease,” Science (New York,

N.Y.), vol. 347, no. 6218, p. 1254806, January 2015. [Online]. Available:

https://europepmc.org/articles/PMC4362528

[51] A. G. Barto, R. S. Sutton, and C. Watkins, “Sequential decision problems and

neural networks,” Advances in neural information processing systems, vol. 2, 1989.

[52] S. Benhur, “A friendly introduction to siamese networks,” Data

Science and Machine Learning, 2022. [Online]. Available: https://builtin.com/

machine-learning/siamese-network

[53] G. R. Koch, “Siamese neural networks for one-shot image recognition,” 2015.

[54] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Learning features for

offline handwritten signature verification using deep convolutional neural

networks,” Pattern Recognition, vol. 70, pp. 163–176, oct 2017. [Online].

Available: https://doi.org/10.1016%2Fj.patcog.2017.05.012

[55] S. Zagoruyko and N. Komodakis, “Learning to compare image patches via

convolutional neural networks,” 2015.

[56] N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for large-scale

classification,” 07 2001, pp. 377–382.

[57] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of

on-line learning and an application to boosting,” Journal of Computer and

System Sciences, vol. 55, no. 1, pp. 119–139, 1997. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S002200009791504X

[58] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman, “Efficient solution algo-

rithms for factored mdps,” Journal of Artificial Intelligence Research, vol. 19, pp.

399–468, 2003.

[59] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A

survey,” Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

195

[60] R. S. Sutton, S. D. Whitehead, et al., “Online learning with random representa-

tions,” in Proceedings of the Tenth International Conference on Machine Learning,

2014, pp. 314–321.

[61] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist systems.

University of Cambridge, Department of Engineering Cambridge, UK, 1994,

vol. 37.

[62] R. S. Sutton, “Generalization in reinforcement learning: Successful examples

using sparse coarse coding,” Advances in neural information processing systems,

vol. 8, 1995.

[63] A. Likas, “A reinforcement learning approach to online clustering,” Neural

computation, vol. 11, no. 8, pp. 1915–1932, 1999.

[64] W. T. B. Uther and M. M. Veloso, “Tree based discretization for continuous

state space reinforcement learning,” in AAAI/IAAI, 1998.

[65] B. Ravindran and A. Barto, “Smdp homomorphisms: An algebraic approach

to abstraction in semi-markov decision processes,” 05 2003.

[66] J. TORRES. (2020) The bellman equation, v-function and q-

function explained. [Online]. Available: https://towardsdatascience.com/

the-bellman-equation-59258a0d3fa7

[67] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation

error in actor-critic methods,” in Proceedings of the 35th International Conference

on Machine Learning, ser. Proceedings of Machine Learning Research, J. Dy

and A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 1587–1596. [Online].

Available: https://proceedings.mlr.press/v80/fujimoto18a.html

[68] C. Yoon. (2019) Deep deterministic policy gradients ex-

plained. [Online]. Available: https://towardsdatascience.com/

understanding-actor-critic-methods-931b97b6df3f

196

[69] ——. (2018) Deriving policy gradients and implementing re-

inforce. [Online]. Available: https://medium.com/@thechrisyoon/

deriving-policy-gradients-and-implementing-reinforce-f887949bd63

[70] ——. (2019) Deep deterministic policy gradients ex-

plained. [Online]. Available: https://towardsdatascience.com/

deep-deterministic-policy-gradients-explained-2d94655a9b7b

[71] D. Byrne. (2019) Td3: Learning to run with ai. [Online]. Available:

https://towardsdatascience.com/td3-learning-to-run-with-ai-40dfc512f93

[72] F. Chollet. (2017) A ten-minute introduction to sequence-

sequence learning in keras. [Online]. Available: https://blog.keras.io/

a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html

[73] A. Graves, Long Short-Term Memory. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012, pp. 37–45. [Online]. Available: https://doi.org/10.1007/

978-3-642-24797-2 4

[74] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].

Available: http://archive.ics.uci.edu/ml

[75] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with

double q-learning,” in Proceedings of the AAAI conference on artificial intelligence,

vol. 30, no. 1, 2016.

197

BIOGRAPHICAL STATEMENT

Raghav Vadhera a.k.a. Bhanu Vadhera was born in Kanpur, India, in 1969.

He received his B.S. and M.S degree from DEI University, Agra, INDIA, in 1988,

his M.Tech. in Computer Science degree from IIT Delhi, in 1993, his ALM Degree

in Technology Management from Harvard University in 2011 and Ph.D. degrees

from The University of Texas at Arlington in 2023 , respectively. From 1990 to 1994,

he was associated with the department of Computer Science and Engineering at

IIT Delhi, as Senior Scientific Officer. In 1996, he joined BankBoston and later MIT

Lincoln Labs as Research Scientist then as a Principle Engineer at Raytheon for the

AI and ML related projects.

His current research interest are in the area of Reinforcement Learning,

Machine Learning and in Explainable AI. His complete profile can be found on

Linkedin @ https://www.linkedin.com/in/bvadhera

198

