
DEVELOPMENT AND EVALUATION OF A BRAIN-COMPUTER INTERFACE

FOR HUMAN-ROBOT INTERACTION IN SIMULATION AND HARDWARE

ENVIRONMENTS

by

SHANE WHITAKER

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2020

Copyright © by Shane Whitaker 2020

All Rights Reserved

To my amazing parents, Dennis and Guyette, who have provided everything I ever

needed to get to where I am today. To my beautiful wife, Teresa, for her love and

support.

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Panos Shiakolas for his

invaluable guidance, ideas, and motivation throughout the course of my research. I

would like to thank Dr. Seiichi Nomura, Dr. Kent Lawrence, and Dr. Ioannis Schizas

for their interest in my research and for taking time to serve on my thesis committee.

I would like to thank the members of the Manufacturing Automation and Robotic

Systems (MARS) lab for their insight and feedback on my research. I would like to

thank Shubham Gunjal for his assistance with Webots.

I would like to thank my parents for their interest in my education throughout

my life. Finally, I would like to thank my wife and parents for their encouragement

during this process.

December 4, 2020

iv

ABSTRACT

DEVELOPMENT AND EVALUATION OF A BRAIN-COMPUTER INTERFACE

FOR HUMAN-ROBOT INTERACTION IN SIMULATION AND HARDWARE

ENVIRONMENTS

Shane Whitaker, MS

The University of Texas at Arlington, 2020

Supervising Professor: Panos Shiakolas

The aim of Brain-Computer Interface (BCI) research is to create a communica-

tion system that identifies human intent by processing brain signals with the objective

to develop a control signal for an external device, in this case a robotic arm. In this

research, a framework to acquire, process, evaluate, and map BCI signals to a spe-

cific process is developed and tested in software and hardware. The BCI used is the

Emotiv EPOC+, a non-invasive 14-electrode electroencephalogram (EEG) headset,

which is also equipped with additional sensors to detect facial expressions and head

movement. The development and testing of the interface is primarily performed in

Webots, a robot simulation environment. The simulation environment provides a

platform to analyze the reproducibility of the EEG or other signals, for a particular

action. A pick and place process utilizing mental commands, facial expressions, and

head movement was successfully demonstrated in a Webots simulation and seamlessly

transferred to the proof of concept robotic hardware. The success of the multiple ex-

v

periments validates the developed BCI framework and provides a solid foundation for

further research into Human-Robot Interaction (HRI).

The ultimate goal of researching this BCI is to further enhance the field of HRI,

particularly in assistive robotics. BCI devices could provide the means to help those

who rely on others for seemingly simple and routine daily tasks, such as picking up a

bottle of water or manipulating other objects in their environment.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . xii

Chapter Page

1. Introduction . 1

1.1 Motivation . 2

1.1.1 Future of BCI . 3

1.2 Electroencephalography . 3

1.3 Literature Survey . 4

1.4 Thesis Outline . 7

2. Hardware and Software Tools . 8

2.1 Brain Computer Interface Hardware 8

2.2 Node-RED . 10

2.3 Robot Platform . 10

2.3.1 Inverse Kinematic Analysis of Braccio Robot Arm 11

2.4 LabVIEW and myRIO . 19

2.5 MATLAB . 21

2.6 Webots . 24

2.7 CoppeliaSim . 25

2.8 Chapter 2 Conclusion . 26

3. BCI Interface and Software Architecture 27

vii

3.1 Training the BCI . 27

3.1.1 Emotiv EPOC+ Setup . 27

3.1.2 Training Mental Commands 29

3.1.3 Facial Expression Training . 32

3.2 Software Architecture . 33

3.2.1 Node-RED to LabVIEW and MATLAB 34

3.2.2 LabVIEW to Hardware . 40

3.2.3 MATLAB to Webots . 43

3.3 Chapter 3 Conclusion . 45

4. Results and Discussion . 46

4.1 Test 1: Grab Object with Braccio Robot 46

4.2 Test 2: Simulation for Verification . 50

4.3 Test 3: Robotic Hand . 52

4.4 Test 4: CoppeliaSim Test . 54

4.5 Test 5: Pick and Place . 57

4.5.1 Test 5A: Pick and Place . 62

4.6 Test 6: Integrating a Camera in Simulation 63

4.7 Chapter 4 Conclusion . 64

5. Conclusions and Recommendations for Future Work 65

5.1 Conclusions . 65

5.2 Recommendations for Future Work 66

Appendix

A. Braccio Inverse Kinematics Code . 68

REFERENCES . 74

viii

LIST OF ILLUSTRATIONS

Figure Page

1.1 BCI Framework Flowchart . 2

1.2 CMU Experiment Setup with 128 Electrodes [1] 6

1.3 UMN Experiment Setup with 64 Electrodes [2] 7

2.1 Emotiv’s EPOC+ Headset [3] . 9

2.2 EPOC+ Sensor Locations [4] . 9

2.3 Braccio Robotic Arm . 11

2.4 Braccio Robotic Arm with Coordinate Frames 12

2.5 3R Planar Robot [5] . 16

2.6 myRIO Setup with Arduino Motor Shield Setup 20

2.7 Wheelchair Robot . 22

2.8 Braccio Robot URDF in MATLAB 23

2.9 Wheelchair Robot URDF in MATLAB 23

2.10 Braccio Robotic Arm in Webots . 25

3.1 EPOC+ Head Placement [6] . 28

3.2 Emotiv EPOC+ Contact Quality [6] 29

3.3 Mental Command Training Environment [6] 31

3.5 Brain Space Diagram Examples [6] 31

3.4 EmotivBCI Training Cube [6] . 32

3.6 EmotivBCI Facial Expression Training Environment [6] 33

3.7 Software Architecture Diagram . 34

3.8 Node-RED Emotiv BCI Toolkit Nodes [7] 35

ix

3.9 A Node-RED BCI Flow Instance . 37

3.10 Definition of Nods [8] . 39

3.11 Magnitude of Gyroscope Data Based on Nods 39

3.12 Simulated Signal Test Flow . 40

3.13 LabVIEW Project Explorer . 41

3.14 LabVIEW GUI for Interacting with Braccio Robot 42

3.15 Wheelchair Robot Path Utilizing MATLAB General Inverse Kinematic

Function . 44

4.1 Test 1: BSD for Push Command . 47

4.2 Test 1: Braccio in Home Position . 48

4.3 Test 1: Braccio in Pick Up Position using Push Command 49

4.4 Test 1: Braccio Closing Gripper using Smile Facial Expression 49

4.5 Test 2: Braccio Simulation and Hardware in Home Position 50

4.6 Test 2: Braccio Simulation and Hardware in Pick Up Position 51

4.7 Test 2: Braccio Simulation and Hardware Place Position 51

4.8 Test 2: Braccio Simulation and Hardware Opening Gripper 52

4.9 Test 3: BSD for Robotic Hand fingers 53

4.10 Test 3: Robotic Hand Open . 54

4.11 Test 3: Robotic Hand with Thumb and Index Finger Closed 54

4.12 Test 4: CoppeliaSim Braccio Home Position 55

4.13 Test 4: CoppeliaSim Braccio Pick Up Position 56

4.14 Test 4: CoppeliaSim Braccio Gripper Closed 56

4.15 Test 5: Pick and Place BSD . 58

4.17 Smile Triggered to Close Gripper . 58

4.16 Test 5: Push Command Triggered for Pick Up Position 59

4.18 Test 5: Side to Side Nod for Put Down Position 59

x

4.19 Yes Nod to Open Gripper . 60

4.20 Test 5: Push Command Triggered for Pick Up Position 60

4.21 Test 5: Smile Triggered to Close Gripper 61

4.22 Test 5: Side to Side Nod for Put Down Position 61

4.23 Test 5: Yes Nod to Open Gripper . 62

4.24 Test 6: Wheelchair Robot Simulation (Courtesy of Shubham Gunjal) 63

xi

LIST OF TABLES

Table Page

2.1 Braccio Robot MDH Table . 13

xii

CHAPTER 1

Introduction

The aim of this research is to expand upon the development of Human-Robot

Interaction (HRI) through an Electroencephalography (EEG) Brain-Computer Inter-

face (BCI), particularly for assistive applications. As robots become more integrated

into our lives and widely available in the future, it is important to consider how hu-

mans interact with them to generate a desired behavior. Ease of use is important as

most people are not robot programmers, therefore other methods of interaction are

needed. Which is why the research into these different HRI modalities is critical for

widespread use of robots, and more importantly assistive type robots.

The high-level framework developed for this research is shown in figure 1.1.

This flowchart outlines the process of extracting EEG signals from a user generated

command and converting it into a robotic process. Once the signals are extracted from

the EEG device, they are then processed and the command is identified. The identified

command is passed to the robotic controller, where it is mapped to a particular process

to be performed by the robot. This robotic process can be tested in simulation, and

once satisfactory performance is achieved, then the process can be transferred to the

hardware.

1

Figure 1.1. BCI Framework Flowchart.

1.1 Motivation

Assistive robotics is extremely important to improve quality of life for a number

of people who have lost the ability to control their muscles due to a number of

reasons such as strokes, spinal cord injuries, or muscular dystrophy. While these

people suffering from these disorders lose motor control, a majority of them retain

the ability to produce the motor function related brain activity similar to a healthy

individual [2]. In addition to these neuromuscular disorders, amputees also fall into

this category of people who could greatly benefit from an assistive robot. The number

of people in the United States living with some form of paralysis is approximately

5,400,000 [9], and an estimated 185,000 people undergo an amputation every year [10].

In the case of paralysis, an end user may benefit from being able to control a robotic

2

arm to manipulate objects in their environment. For the case of upper limb amputees,

they could benefit from being able to control a prosthetic robotic hand though a BCI.

The numerous control signals that could be generated from a BCI would increase the

level of dexterity for a robotic hand therefore enabling self dependence.

1.1.1 Future of BCI

While this research focuses on the non-invasive EEG BCI, I am inspired by the

future state of BCIs particularly the work being done by the company Neuralink.

The focus of Nerualink’s research is to develop a minorly invasive device capable

of establishing a high bandwidth communication with the brain [11]. While still in

its early stages, once this breakthrough happens, it will make the control of robots

from mental commands effortless. This technology will play a major role in the

advancement of assistive and telerobotics. In assistive robotics it will allow for the

precise control of robotic arms and hands. Telerobotics is the act of controlling a

robot from a distance to perform various tasks. A high bandwidth BCI would allow

a human to essentially transport their senses into a robot and remotely perform a

complex task as if they were there. Telerobotics has several significant applications

including space exploration, disaster relief, and medical procedures. However, until

this type of invasive method is proven to be safe and inexpensive, the non-invasive

EEG is likely to be a favorable alternative.

1.2 Electroencephalography

Electroencephalography (EEG) is an electrophysiological process that records

the electrical activity of the brain [12]. This electrical activity occurs when the billions

of neurons in our brain communicate with each other producing changes in voltage, to

form non-linear patterns called brainwaves. Measuring the brain’s electrical activity

3

through a non-invasive process involves placing EEG electrodes on the scalp. The

EEG signals are amplified and then sent to a computer for data processing. This

method measures the electrical activity in the outer layer of the brain, known as the

cerebral cortex. The cerebral cortex is made up of three types of areas: sensory,

motor and association areas. These areas of the brain are where most information

processing occurs, and they account for a majority of behavior and human cognition.

The human brain is constantly processing and absorbing information even during

sleep, which allows the EEG sensors to detect changes in the brainwaves even in the

absence of visual behavior responses, such as facial expressions or movement. EEG has

the advantage of having a high temporal resolution which allows it to pick up on the

rapid reactions in the brain that can be at the speed of milliseconds. For performing

research on BCIs, EEG headsets are practical due to their portable capability and

are relatively inexpensive compared to other non-invasive methods, such as functional

Magnetic Resonance Imaging (fMRI) or magnetoencephalography (MEG).

1.3 Literature Survey

The research into EEG based BCIs has grown over the past few years as more

EEG devices have become available at a reasonable price. The Emotiv EPOC has

shown to be one of the most used EEG devices in academic research, probably due to

its relatively low cost. There has been a number of studies that used an Emotiv EEG

headset for some form of robotic control [13–20]. Several of these have utilized a legacy

Emotiv Software Development Kit (SDK), which allowed access to the raw EEG

data [13–19]. However, the SDK has been discontinued and is no longer supported.

The raw EEG data is now only accessible through a subscription with Emotiv.

One study attempted to use four mental commands to have a simple mobile

robot move forward, back, left, and right [13]. However, in this case several of the

4

subjects had trouble triggering all of the commands and were only able to get one

with an average success rate over 80%. The study was performed with three groups

of people: age 14-20, age 21-30, and disabled. The disabled group had the highest

success rate for each of the four mental commands, demonstrating higher mental

strength.

Research performed at the University of Dayton (UD) attempted to map four

mental commands to the lift, lower, rotate left, and rotate right movement of a

robotic end effector [19]. A majority of subjects were only able to manage one to two

mental commands with any accuracy, and had difficulty triggering more. Additional

research performed at UD, showed that mental commands can be trained easier when

associated with hand gestures such as holding the index finger and thumb as close

together as possible without touching [14]. When performing this action with the

left and right hands, it possible to achieve high quality training with two mental

commands.

Two of the studies that utilized Emotiv EEG headsets relied on eye winks, facial

expressions, and data from the gyroscope to control a simple robot arm [17, 20]. In

both cases subjects were able complete various tasks with an accuracy of over 80%. In

one of these cases, a LabVIEW Emotiv Toolkit allowed for extraction of several data

streams [17]. This LabVIEW Emotiv Toolkit was investigated early in this research,

however it did not work as well since the SDK was being phased out.

Research at Carnegie Mellon University (CMU) has shown that complicated

2D tracking of a robotic end effector control can be accomplished with a dense EEG

headcap [1]. The EEG headcap used in these experiments had 128-channels to pro-

vide a dense map of the electrical activity. In these experiments, the subject’s goal

was to follow a virtual target that was presented on a screen in the horizontal and

vertical position. The first part of the experiment was to have the subject control a

5

mouse on the screen to track the target. Once this was successfully verified, a 7-axis

JACO robotic arm was introduced to demonstrate that control of the virtual mouse

translated to accurate control of the robot end effector.

Figure 1.2. CMU Experiment Setup with 128 Electrodes [1].

A study performed at the University of Minnesota (UMN) demonstrated that

13 subjects could perform robotic manipulation of different colored foam blocks by

utilizing a 64-channel EEG cap [2]. During these experiments, the foam blocks were

placed in fixed locations for the robot to pick up. To execute motion of the robot,

a virtual cursor was displayed on a computer screen that was visible to the subject.

Each subject was instructed during training to imagine movement of their left hand,

right hand, both hands, or relaxation of both hands to control the left, right, up and

down movement of the cursor and robotic arm, respectively. The subjects were able

to instruct the robot to grab the foam blocks roughly 74% of the time. A setup of

this experiment is shown in figure 1.3.

6

Figure 1.3. UMN Experiment Setup with 64 Electrodes [2].

1.4 Thesis Outline

Chapter 2 provides an overview and discusses the hardware and software tools

used for this research. Additionally, it covers the kinematic analysis of the robot used

during the hardware experiments. Chapter 3 focuses on how the BCI is trained for

mental commands and facial expressions. Also, this chapter introduces the software

architecture and algorithms developed to turn the commands from the EEG headset

into robotic actions. Chapter 4 discusses the experiments performed using the EEG

headset to control the simulated and physical robots. Chapter 5 provides conclusions

and recommendations for future research.

7

CHAPTER 2

Hardware and Software Tools

This chapter introduces the hardware and software tools utilized to develop the

BCI framework. The BCI device is described along with the Node-RED software

application used to extract the EEG data. A description of the Braccio robot and

controller hardware along with the necessary control software is presented. Finally, a

description of the chosen robotic simulators and their functionality is discussed.

2.1 Brain Computer Interface Hardware

The hardware chosen for the BCI was an EPOC+, an EEG research device

made by the company Emotiv [3]. The EPOC+ headset, shown in figure 2.1, has

14 sensors that collect EEG signals, along with two references, and a set of semi-

rigid plastic arms that allows the end user to repeatably place the sensors in the

same location. The EPOC+ follows the 10-20 system, which is an internationally

recognized standard on how to apply electrodes to the scalp [21]. The sensors are

placed at the following locations: AF3, AF4, F3, F4, FC5, FC6, F7, F8, T7, T8, P7,

P8, O1, O2, as shown in figure 2.2. Eight of these sensors (AF3, AF4, F7, F3, F4,

F8, FC5, and FC6) are located around the frontal and prefrontal lobes, which allow

the EPOC+ headset to pick up signals from facial muscles and the eyes, in addition

to the EEG signals [22]. From this data the EPOC+ is also able to detect the

following facial expressions: Smile, Frown, Clench, Surprise, Blink, Right Wink, and

Left Wink. Finally, the headset is also equipped with 9-axis motions sensors including

a gyroscope, accelerometer, and magnetometer. These features make the EPOC+ an

8

ideal device since it provides the capability to generate multiple control signals that

can be mapped to a robotic process. The EPOC+ is wireless and connects to the

computer through Bluetooth, and has a battery life of up to six hours. This EPOC+

headset is also complimented with a free software application called EmotivBCI. This

application is the user interface where the training for mental commands and facial

expressions is performed, and will be discussed in depth in Chapter 3.

Figure 2.1. Emotiv’s EPOC+ Headset [3].

Figure 2.2. EPOC+ Sensor Locations [4].

9

2.2 Node-RED

Node-RED is a browser-based programming tool developed by IBM’s Emerging

Technology Services, that is generally used for wiring the Internet of Things (IoT) and

robotics [7]. Node-RED utilizes flow-based programming which is a way of building

an application by wiring together a network of nodes. Each node has a well-defined

purpose in which it is given data, does something with that data, and then passes

the result. This is similar to a function in other programming languages. Node-RED

uses a graphical interface, similar to LabVIEW, to arrange the network of nodes.

Applications are developed by dragging notes from the palette into a workspace where

the flow can be build by wiring the nodes together. The base installation of Node-

RED includes common programming functions, such as conditional and loop nodes.

Once the application is completed, it is deployed for execution. The palette of nodes

can be extended by installed new nodes created by the community. In order to utilize

the signals from the Emotiv headset, Node-RED was chosen to be used as there is

already an Emotiv BCI Node-RED Toolbox available to create BCI applications. This

toolbox provides seven nodes that allow communication with the Emotiv headset to

extract mental commands, facial expressions, performance metrics, frequency band

powers, and data from the motion sensors.

2.3 Robot Platform

A Braccio robot arm from Arduino was the hardware chosen for this research

for proof-of-concept work. The Braccio robot has five Degrees of Freedom (DOF)

for position and orientation, with one additional motor to control the opening and

closing of the gripper. It has a maximum operating distance range of 32 cm, gripper

width of 90 mm, and load capacity of 150 grams. The Braccio comes with a shield

10

that typically interfaces with an Arduino Uno for control, however in this research,

LabVIEW was used as described in section 2.4.

Figure 2.3. Braccio Robotic Arm.

2.3.1 Inverse Kinematic Analysis of Braccio Robot Arm

The Braccio robot only comes with Arduino functions that allow the individ-

ual motors to be moved to a desired angle, but not a desired position in 3D space.

Therefore, the inverse kinematics need to be solved to evaluate the motion for each

actuator based on a desired Cartesian position and orientation. To perform the

inverse kinematic analysis, we will first find the forward kinematic equations by as-

signing coordinate systems (frames) to each joint of the robot using the Modified

Denavit-Hartenbert (MDH) approach. The MDH approach is followed to assigning

joint frames which requires the motion of the joint be along the Z-axis of the joint

frame. The X-axis of the joint frame is assigned or defined as the common perpen-

11

dicular between two consecutive Z-axes. The frame Y-axis is evaluated assuming a

right-hand coordinate frame as Z×X. The assignment of these frames on the Braccio

robot are shown in figure 2.4, where the left view has the base frame and first frame

coincident and the right view has the frames from the second joint to the end effector.

The coordinate frames follow the convention where the X-axis, Y-axis, and Z-axis are

red, green and blue respectively.

Figure 2.4. Braccio Robotic Arm with Coordinate Frames.

Using this convention, the spatial relationship between the successive joint co-

ordinate frames can be established by defining the following four Denavit-Hartenberg

parameters (a, α, d, θ), for successive frames indicated as Current (C) and Next (N) [5]:

1. a: is the distance from zC to zN along xC ,

2. α: is the angle from zC to zN about xC ,

12

3. d : is the distance from xC to xN along zC , and

4. θ: is the angle from xC to xN about zC .

The MDH table describing the kinematic relationships of the Braccio robot’s

coordinate frames is shown in table 2.1. Note the fifth joint that rotates the gripper

is ignored for this application.

Frame Joint MDH Parameters Joint Limits
Current C Next N Frame # Type Variable a α d θ Min Max

0 1 1 R θ 0 0 0 θ1 0° 180°
1 2 2 R θ 0 90° 0 θ2 15° 165°
2 3 3 R θ L1 0 0 θ3 0° 180°
3 4 4 R θ L2 0 0 θ4 0° 180°
4 E 5 − − L3 0 0 − - -

Table 2.1. Braccio Robot MDH Table

The homogeneous transformation matrix is obtained by substituting the values

from each row of the MDH table into equation 2.1. This equation is used to evaluate

the homogeneous transformation relating two consecutive frames using the MDH

parameters. Multiplication of the resulting transformation matrices results in the

transformation matrix relating the end effector to the base frame as shown in equation

2.7.

C
NT =

cosθN −sinθN 0 αC

sinθNcosαC cosθNcosαC −sinαC −sinαCdN

sinθNsinαC cosθNsinαC cosαC cosαCdN

0 0 0 1

(2.1)

13

0
1T =

cosθ1 −sinθ1 0 0

sinθ1 cosθ1 0 0

0 0 1 0

0 0 0 1

(2.2)

1
2T =

cosθ2 −sinθ2 0 0

0 0 −1 0

sinθ2 cosθ2 0 0

0 0 0 1

(2.3)

2
3T =

cosθ3 −sinθ3 0 L1

sinθ3 cosθ3 0 0

0 0 1 0

0 0 0 1

(2.4)

3
4T =

cosθ4 −sinθ4 0 L2

sinθ4 cosθ4 0 0

0 0 1 0

0 0 0 1

(2.5)

4
ET =

1 0 0 L3

0 1 0 0

0 0 1 0

0 0 0 1

(2.6)

The homogeneous transformation relationship for the pose, position and ori-

entation, of the last coordinate frame with respect to the base frame is evaluated

according to equations 2.7 and 2.8.

14

0
ET = 0

1T
1
2T

2
3T

3
4T

4
ET (2.7)

0
ET =

cθ1cθ234 −cθ1sθ234 sθ1 L3cθ1cθ234 + L2cθ1cθ23 + L1cθ1cθ2

r21 r22 −cθ1 L3r21 + L2sθ1cθ23 + L1cθ1cθ2

sθ234 cθ234 0 L3sθ234 + L2sθ23 + L1sθ2

0 0 0 1

(2.8)

Where:

r21 = cθ4sθ1sθ23 − sθ4sθ1sθ23 (2.9)

r22 = −sθ4sθ1sθ23 − cθ4sθ1sθ23 (2.10)

To begin the inverse kinematic analysis, we must have the desired position of

the end effector.

0
ETDesired =

r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

(2.11)

Now, from the geometry of the Braccio robot it can be determined that θ1 can

be calculated by simply using the inverse tangent function as shown in equation 2.12.

In the code for the inverse kinematics solution, the atan2 function will be used to

ensure the correct quadrant is determined.

θ1 = atan2(py, px) (2.12)

With θ1 known through the solution of equation 2.12, the Braccio robot is

transformed into an equivalent 3R planar configuration. The equivalent planar con-

figuration is used to solve for the remaining three joint angles. First, to get the

15

Braccio robot back to the XZ plane the 0
ETDesired can be premultiplied by the inverse

of 0
1T to get a new 1

ET as shown in equation 2.13.

1
ET = 1

0T
0
ETDesired (2.13)

The rotation portion of the 1
ET matrix can now be premultiplied by a rotation

matrix about the X-axis by -90°, and then reassign pz as the new py value in order to

get to the 3R planar configuration, shown in figure 2.5. The forward kinematics for

the 3R planar configuration can be expressed as equation 2.14.

1
ET =

cosθ234 −sinθ234 0 L1cosθ2 + L2cosθ12 + L3cosφ234

sinθ234 cosθ234 0 L1Cosθ2 + L2cosθ12 + L3sinφ234

0 0 1 0

0 0 0 1

(2.14)

Figure 2.5. 3R Planar Robot [5].

16

Since the transform 4
ET is fixed, it will not provide more information towards

solving the inverse kinematics, so we can reduce equation 2.14 by post multiplying

by 4
ET

−1 resulting in equation 2.15. Equation 2.15 can now be set equal to equation

2.16 to begin solving for θ2, θ3, and θ4.

1
4T = 1

ET
4
ET

−1 =

cosθ234 −sinθ234 0 L1Cosθ2 + L2cosθ23

sinθ234 cosθ234 0 L1Cosθ2 + L2cosθ23

0 0 1 0

0 0 0 1

(2.15)

1
4TDesired =

cosφ −sinφ 0 px

sinφ cosφ 0 py

0 0 1 0

0 0 0 1

(2.16)

Now, by setting the corresponding px and py components of equations 2.15 and

2.16 equal to each other, we can square and add to obtain equation 2.19.

px = L1cosθ2 + L2cosθ23 (2.17)

py = L1sinθ2 + L2sinθ23 (2.18)

p2x + p2y = L2
1 + L2

2 + 2L1L2cosθ3 (2.19)

Therefore, we can solve for cosθ3 and sinθ3 by using the atan2 function. Note

a positive sign of equation 2.21 will correspond to an elbow-up configuration, and a

negative sign to the elbow-down configuration.

17

cosθ3 =
p2x + p2y − (L2

1 + L2
2)

2L1L2

(2.20)

sinθ3 = ±
√

1 − cos2θ3 (2.21)

θ3 = atan2(sinθ3, cosθ3) (2.22)

Since θ3 is now known, it can be substituted back into 2.17 and 2.18 to obtain

px = k1cosθ2 − k2sinθ2 (2.23)

py = k1sinθ2 − k2cosθ2 (2.24)

where

k1 = L1 + L2cosθ3 and k2 = L2sinθ3 (2.25)

There are different approaches to solve this type of equation. One approach is

to use the change of variables method, by changing how k1 and k2 are represented.

r = +
√
k21 + k22 (2.26)

γ = atan2(k2, k1) (2.27)

k1 = rcosγ and k2 = rsinγ (2.28)

The change of variable updates equations 2.23 and 2.24 to the following:

px
r

= cosγcosθ2 − sinγsinθ2 = cos(γ + θ2) (2.29)

py
r

= cosγsinθ2 − sinγcosθ2 = sin(γ + θ2) (2.30)

18

As before, the atan2 function can be utilized to find θ2.

θ2 = atan2(
py
r
,
px
r

) − γ = atan2(
py
r
,
px
r

) − atan2(k2, k1) (2.31)

Finally, θ4 can be calculated by equating φ to θ234 from equations 2.15 and 2.16.

φ = atan2(sinφ, cosφ) = θ2 + θ3 + θ4 (2.32)

θ4 = φ− θ2 − θ3 (2.33)

2.4 LabVIEW and myRIO

In order to control the Braccio robot and interface with the BCI, it was decided

to use the software LabVIEW and a myRIO controller, by National Instruments, due

to their ability to easily interface with hardware [23]. The myRIO device is equipped

with three expansion ports (A,B,C), where A and B have an identical set of signals

for digital and analog IO. Only the A and B expansion ports are utilized for this

research. LabVIEW is advantageous in that it is a graphical based programming

application that also provides the capability to design a Graphical User Interface

(GUI) and supports parallel processing.

The Braccio robot is normally controlled with a motor shield that interfaces

with an Arduino Uno board. A Digilent Shield Adapter was used to interface the

motors of the Braccio with part A of the myRIO. A motor adaptor was also needed

as there are only three Pulse Width Modulation (PWM) output signals per expansion

port of the myRIO. The myRIO with the shield setup is shown in figure 2.6.

The Braccio robot uses SR311 and SR431 servo motors for each of the joints

which are controlled using PWM signals. The myRIO Toolkit has a function to

control servos, with the input being frequency and duty cycle. Testing on both types

of servos showed that a frequency of 50 Hz provided the smoothest motion of the

19

Figure 2.6. myRIO Setup with Arduino Motor Shield Setup.

motors, therefore this input was made a constant. The duty cycle also needed to be

calculated for the servo motors to achieve the desired angle. Duty cycle is the ratio of

Pulse Width (PW) to the total period (T) of the waveform, and can be represented

by equation 2.34.

Duty Cycle =
PW

T
(2.34)

The servo datasheet states that the range of signal impulse of 0.5-2.5 ms, which

correlates to a range of 0 − 180°. In order to calculate the correct PW signal for a

desired angle, θ, a linear relationship was assumed, PW = mθ + b. The calculations

for the slope, m, and intercept, b, are shown in equations 2.35 and 2.36, resulting

in equation 2.37. From experimental trials with the Braccio’s servos, a resolution of

approximately 1° is achievable with equation 2.37.

20

m =
2.5 − 0.5

180 − 0
= 0.0111(

ms

deg
) (2.35)

b = 0.5(ms) (2.36)

PW = 0.0111 · θ(deg) + 0.5(ms) (2.37)

2.5 MATLAB

MATLAB was used for numerous software needs throughout the course of this

research, from reading in and analysing data form the EPOC+ headset to imple-

menting the inverse kinematics derived in section 2.3.1. It was also convenient that

MATLAB scripts could be executed from within LabVIEW, therefore allowing for

code reusability between the two applications.

One of the most used tools during this research was the MATLAB Robotic Sys-

tems Toolbox (RST), which provides tools and algorithms for testing manipulators,

humanoid, and mobile robots. The RST uses a rigid body tree robot model which

can be imported from a Unified Robot Description Format (URDF) file. A URDF

is an XML file format that describes all the physical elements of the robot, such as

configuration, inertia, visual, and collision geometry. Many popular industrial and

hobby robots usually have their URDF available online, which is where the Braccio

robot URDF was obtained. However, in the case of custom robots it must be built.

Previous students, for their senior design project, in the Manufacturing Automation

and Robotic Systems (MARS) lab, designed and built a 3D printed robotic arm that

attaches to a wheelchair to support the assistive robotics research. This wheelchair

robot was of interest in our research as it has a greater reach and payload capacity

compared to the Braccio robot, which made it more practical for an actual application

as opposed to a proof-of-concept. The wheelchair robot is shown in figure 2.7.

21

Figure 2.7. Wheelchair Robot.

The wheelchair robot was modeled in SOLIDWORKS. An open source SOLID-

WORKS to URDF converter was download from the Robot Operating System (ROS)

Wiki page. While in SOLIDWORKS, and before exporting to a URDF, a coordinate

system was added to each joint. Then the link associated with each joint was defined

before exporting to a URDF model. The MATLAB environment with the imported

Braccio and wheelchair robot URDF models are shown in figures 2.8 and 2.9 respec-

tively. Having both URDF models in MATLAB was beneficial since it allowed for a

robot agnostic inverse kinematics code to be developed.

22

Figure 2.8. Braccio Robot URDF in MATLAB.

Figure 2.9. Wheelchair Robot URDF in MATLAB.

23

2.6 Webots

During the course of this research there were several times when it would have

been beneficial to perform experiments with the Braccio robot without having to set

it up. A number of robotics simulators were considered for virtual experiments before

selecting Webots, an open source application by Cyberbotics Ltd. Webots allows con-

trollers to be written in many different programming languages, including MATLAB.

This made Webots an obvious choice since a majority of the code that had already

been developed for this research was written in MATLAB. The Webots simulation

environment is equipped with the Open Dynamics Engine (ODE), which is an open

source library for simulating rigid body dynamics. This feature will allow the robot

to manipulate objects in its workspace similar to how it would in a real world situa-

tion. The ODE is also beneficial when designing a robot manipulator to calculate the

torques required to move a desired payload, therefore the appropriate hardware can

be chosen. In addition to the physics modeling, Webots is also equipped with several

sensors including cameras, lidar, radar, receivers, range finders, accelerometers, and

force sensors. The ability to model a camera, and extract information from it, is

important in the assistive robotic application presented here as the robot will be in a

dynamic environment and will need the ability to distinguish and locate objects that

the person controlling the robot will want to manipulate.

In order to test the performance of the programs written for the Braccio robot,

it was necessary to import it into Webots. Webots does not accept URDF files, but

rather PROTO files. A PROTO file of the Braccio robot was not available online,

however there is a “urdf2webots” program written by Cyberbotics freely available on

GitHub [24]. This tool was used to convert the Braccio robot URDF to a PROTO

file, which allowed us to keep the same MDH parameters. This conversion was crucial

24

since the MATLAB code was also using this model. The imported model is shown in

figure 2.10.

Figure 2.10. Braccio Robotic Arm in Webots.

Another motivation for utilizing Webots is that it provides a platform to test

algorithms on additional robotic manipulators without the need to have the physical

hardware. Although the Braccio robot serves as a great proof-of-concept device, it

lacks the reach and payload requirements to be practical for assistive robotic appli-

cations.

2.7 CoppeliaSim

While Webots was the primary simulator used for this research, CoppeliaSim

was also being evaluated in our lab. CoppeliaSim is another open source robotic

simulator that allows for the controllers to be written in MATLAB. A MATLAB

remote Application Programming Interface (API) is used to connect to CoppeliaSim

25

once the simulation has started. CoppeliaSim also uses the same URDF models that

are used in MATLAB’s RST, which makes programming the robot straightforward.

This simulator is also equipped with four physics engines and the capability to model

a number of sensors. This robotic simulator was tested to prove the portability of the

developed BCI framework.

2.8 Chapter 2 Conclusion

This chapter provided a description of the hardware and software tools that

were utilized to develop the framework for the BCI modality. The BCI hardware,

the EPOC+, and the multiple control signals that can be extracted through Node-

RED were discussed. The Braccio robot hardware was introduced, along with the

myRIO and LabVIEW software used to control it. Finally, a review of the robotic

simulation environments used for testing algorithms and integrating virtual sensors

was presented.

26

CHAPTER 3

BCI Interface and Software Architecture

This chapter discusses the procedures for setting up and training the EPOC+

headset. The methods for training mental commands and facial expressions are pre-

sented. Section 3.2 discusses the details of the software architecture that was de-

veloped to integrate the multiple hardware and software components introduced in

Chapter 2. The software architecture describes how the data is collected from the

EPOC+ and translated to robotic actions.

3.1 Training the BCI

This section outlines the process for setting up and training the EPOC+ headset

for mental command and facial expressions, and is based on material from the Emotiv

webpage [6].

3.1.1 Emotiv EPOC+ Setup

Setting up the EPOC+ headset takes approximately 5-10 minutes and consists

of soaking the felt pads in a saline solution before installing them on the headset. The

felt pads must be properly hydrated in order to achieve quality contact. Once these

felt pads are sufficiently hydrated, they can be installed on each of the 14 electrodes.

Once the headset is ready, the next step in the training process is to launch the

EmotivBCI application. In order to train the EPOC+, an account must be created

on the Emotiv website. After this account is created then the user can login to the

EmotivBCI application. Under this account many different profiles can be created.

27

Each of these profiles can be used for testing different methods for training. When

first opening up the EmotivBCI application it will have you select the profile to be

used for the training session. Then, once the EPOC+ is connected via Bluetooth, it

provides instruction on how to fit the headset correctly. This fitting is an important

step as having the electrodes as close to or at the same location on the scalp every

time will produce better training results. An example of the ideal fitting is shown in

figure 3.1. To consistently get the headset into the same position it is recommend to

place AF3 and AF4 sensors three finger widths above the eyebrow, and ensure that

the reference rubber sensors sit on the bone just behind each ear lobe.

Figure 3.1. EPOC+ Head Placement [6].

Once the EPOC+ headset is fitted properly, the EmotivBCI application will

provide feedback on the contact quality as shown in figure 3.2. This screen allows the

user to adjust the problem electrodes as needed to strengthen the contact quality. It

28

is recommend for best results to have at least a 98% contact quality for each training

session. For this research, a contact quality above 98% was achieved when first staring

to train the headset, however the contact quality degraded over long sessions due to

the felt pads drying out.

Figure 3.2. Emotiv EPOC+ Contact Quality [6].

3.1.2 Training Mental Commands

When first opening up the mental training page of the EmotivBCI the user is

presented the screen shown in figure 3.3. The right side of the screen is where the user

can select the desired thought to train. The Neutral command will be common to all

training profiles, while the others can be selected from the drop down. There is a limit

of four mental commands that can be trained for every profile. The Neutral state

29

is the first that should be train. The options of mental commands are: Push, Pull,

Lift, Drop, Left, Right, Rotate Left, Rotate Right, Clockwise, Counter Clockwise,

Rotate Reverse, Rotate Forward, and Disappear. Each of these mental commands

corresponds to the movement of a floating cube displayed during the training period.

When Train is selected, the cube will be displayed for a period of 8 seconds while

the headset records the EEG data. During this time, the user should concentrate

on a specific thought, without allowing the mind to drift. Immediately following the

training, the user will be provided feedback on the quality of training as shown in

figure 3.4. If the score of the training is above 75 (on a scale from 0-100), then it is

considered a high quality training, otherwise the application will ask if the user wants

to accept or reject the training. Once the training is accepted, then it will update

the number next to the mental command on this screen to indicated the number of

times it has been trained.

For best results, Emotiv recommends alternating between Neutral and the men-

tal commands when training [6]. The easiest method seems to be starting with train-

ing one thought and master it before training additional mental commands. The

quality of the training, shown on the left side of figure 3.3, is represented by a semi-

circle know as the Brain Space Diagram (BSD). In the BSD, the colored dots represent

each mental command already trained. It is ideal for the dots to be spaced as far

apart as possible in this BSD, as this indicates that each of the thoughts are distinct

and can be easier to triggered independently. A BSD with all the dots closer to the

centered Neutral dot can lead to false positives. An example of a good and bad BSD

is shown in figure 3.5. This interface also has a Live Mode which will display the cube

and allow the user to practice by attempting to triggering each mental command and

observing if the cube responds as expected.

30

Figure 3.3. Mental Command Training Environment [6].

Figure 3.5. Brain Space Diagram Examples [6].

31

Figure 3.4. EmotivBCI Training Cube [6].

3.1.3 Facial Expression Training

Training a facial expression is quite similar to the mental command interface.

In this case, an avatar is presented on the screen, as shown in figure 3.6, that the user

will try to mimic during the training period. As before, it is best to start training the

Neutral expression to establish a baseline. From there each of the facial expressions

Smile, Frown, Clench, and Surprise can be trained. The duration of the training of

facial expression is also 8 seconds. A Live Mode allows the user perform the facial

expressions and if the avatar mimics the expression then it is trained well.

32

Figure 3.6. EmotivBCI Facial Expression Training Environment [6].

3.2 Software Architecture

In order to control the Braccio robot with the Emotiv headset, it was required

that several different software applications communicated with each other as there is

no direct interface from the Emotiv software application to LabVIEW or MATLAB.

The Emotiv headset has a toolkit that is available in Node-RED, used to extract

the signals from the headset, and output them to text files. These text files could

be read by LabVIEW and MATLAB. From MATLAB and LabVIEW the robotic

process is executed in the Webots simulation and on the hardware, using the data

from the Emotiv headset. This software architecture and data flow for the hardware

and software tools is shown schematically in figure 3.7.

33

Figure 3.7. Software Architecture Diagram.

3.2.1 Node-RED to LabVIEW and MATLAB

Once the Emotiv headset is connected, the first software application that needs

to be running is the Emotiv Cortex application. The Emotiv Cortex application

connects to the device and allows communication to begin with Node-RED. Then,

the nodes from the EmotivBCI Toolkit, shown in figure 3.8, will begin to extract

information from the headset. The nodes from this toolkit have the following functions

[7]:

34

Figure 3.8. Node-RED Emotiv BCI Toolkit Nodes [7].

1. The Emotiv node is an initialization that allows to connection with the Emotiv

headset and needs to be placed at the beginning of every Emotiv node sequence.

The output of the Emotiv node is an authorization token.

2. The Profile Name node allows the selection of different Training Profiles that are

created in the EmotivBCI and associated with the user’s EmotivID. This option

lets the user pick the profile that has been trained for a specific application.

3. The Mental Commands node is where a specific thought is chosen to trigger

another action in the flow. The selected Mental Command must be one that

has been trained in the profile in the EmotivBCI application, otherwise an error

will occur. The output of this node is an integer from 0-100 that correlates to

the intensity of the signal from the headset at a frequency of 8 Hz. This node

also contains a Sensitivity setting, an integer from 0-10. Lower values will make

the command harder to trigger, but result in fewer false positives. On the

35

contrary, a higher Sensitivity setting will make the Mental Command easier to

trigger, but result in more false positives, an undesirable scenario.

4. The Facial Expressions node is similar to the Mental Command node where only

a pre-trained Facial Expression can be selected, and the output is an integer

from 0-100 representing the intensity of the expression at a frequency of 16 Hz.

However, in this node there is a threshold setting that ranges from 0-1000. The

Threshold is analogous to the Sensitivity setting where a lower value results in

fewer false positives, and vice versa.

5. The Performance Metrics node allows the user to monitor excitement, interest,

engagement, stress, focus, and relaxation. This node does not require input

from a Profile node as there is no action to trigger. The output is an integer

from 0-100 at a frequency of 0.1 Hz.

6. The Frequency Band node output is the Frequency Band Power at a frequency

of 8 Hz and allows for the selection of a band to be monitored. The Frequency

Band options are Alpha, Beta, Theta, and Delta. This node does not require a

Profile to be selected.

7. The Motion Sensor node provides access to the data streaming from the X, Y,

Z axes of the Gyroscope, Accelerometer, and Magnetometer. This node does

not require a Profile to be selected.

The Node-RED flow that was set up to send control signals to LabVIEW and

MATLAB is shown in figure 3.9. This flow utilizes mental commands, facial expres-

sions, and gyroscope data. The sensitivity setting for the mental commands was set to

5 for each node to limit the possibility of false positives. The threshold setting for the

facial expressions was set to 500 for the same reason. Following these Emotiv nodes

is a Switch node that reads the intensity from each command, and if that intensity is

greater than 50, it will allow for the execution of the following Function node. The

36

Function node returns a message output of integers ranging from 0-8 depending on

the command that is triggered. The output of the Function node feeds into the input

of the pythonshell node, which is made available once the Python toolkit is installed

in Node-RED. The pythonshell node allows execution of a Python script with the

input to that node being the argument for the script and the output of the script is

sent to the output of the node. This Python script creates a 9×1 vector of zeros, then

uses the input integer to assign the corresponding row to a value of 1 to indicate the

command is triggered. This method ensures that only one command can be trigger at

a time. The Python script then writes that vector to two text files, one for MATLAB

and one for LabVIEW. These files are read into MATLAB and LabVIEW every half

second, and the values correspond to a process that could be executed by the Webots

simulation and the physical Braccio robot.

Figure 3.9. A Node-RED BCI Flow Instance.

37

The gyroscope data was written directly to two separate text files by a File

node. This data was streaming from the Emotiv headset at 64 Hz, and each new

value was written on a new line in the corresponding text files. In order to turn this

data into a control signal, a function was developed in MATLAB to read in the file,

analyze the data, and output a binary value based on specific head movement. The

type of head movements that seemed to be the most practical to use for generating a

control command were Yes, No, and Side to Side nods. The definition of these nods is

shown in figure 3.10. Generating this logic from the gyroscope data can be challenging

since a person is almost always moving their head, and may subconsciously nod their

head without the intention to control the robot.

In order to address this issue the MATLAB function had four inputs, the fre-

quency of the data stream in Hz, and the desired number of nods for an action to

be executed for Yes, No, and Side to Side nods. The function only analyzes the last

five seconds of data to ensure only recent intended nods trigger a command. From

experimental trials of performing the various nods with the Emotiv headset, it was

observed that Side to Side, Yes, and No nods correspond to a spike in amplitude of

the gyroscope X, Y, and Z axes respectively. During testing, 1-2 of each nod were

performed within a 15 second time frame, with an approximate 1-2 second pause in

between. The data from this test was plotted as shown in figure 3.11. This graph

was used to determine the amplitude that would identify a firm nod.

Once the amplitude was determined, the output of the function could be gen-

erated. The output of this function is a 3 × 1 vector, which corresponds to the No,

Yes, and Side to Side nods. If any of these nods have been executed in the last five

seconds, then the corresponding vector value will be set to 1. This logic was then

used to generate a robot process. This function could also be called from LabVIEW

38

using the MATLAB script node, therefore this logic did have to be redeveloped in

LabVIEW.

Figure 3.10. Definition of Nods [8].

Figure 3.11. Magnitude of Gyroscope Data Based on Nods.

39

When developing this interface to the hardware and simulation, it was con-

venient to create a Node-RED flow that allowed for testing of the MATLAB and

LabVIEW codes. This flow, shown in figure 3.12, involved Injection nodes, once their

button was pressed they would send an equivalent corresponding integer as an action,

similar to that from the Emotiv headset. This flow provided adequate algorithmic

validation before using the headset for live tests.

Figure 3.12. Simulated Signal Test Flow.

3.2.2 LabVIEW to Hardware

The first step in setting up LabVIEW to run on the myRIO, was to create a

project. LabVIEW projects contain multiple LabVIEW programs, or Virtual In-

struments (VI), and supplemental files such as documentation and related links.

LabVIEW has a Project Explorer that allows the user to browser all the VIs and

40

documents contained in the project and add VIs to run on the computer or myRIO.

The project for this research is shown in figure 3.13.

Figure 3.13. LabVIEW Project Explorer.

In order to have LabVIEW to control the robot from the myRIO, it was neces-

sary to have two different VIs running, one on a laptop and the other on the myRIO.

The VI running on the laptop had the GUI which allowed the user to select the inter-

action modality they wish to use to control the robot from the Robot Control Options

pull down menu shown in figure 3.14. These modalities include using commands from

the Emotiv headset, individual motor control, inverse kinematics, or loading a mo-

tion program of predefined joint angles. The Home option is the starting position for

41

the robot. The square LEDs illuminate when a mental command, facial expression,

or nod is triggered from the headset. The block diagram of this VI can be used to

map an output from the Emotiv headset to the desired action of the robot. This VI

was the baseline for interfacing with the Braccio robot using the EPOC+ headset,

however a few variations of the VI were created to test the performance of specific

use cases.

Figure 3.14. LabVIEW GUI for Interacting with Braccio Robot.

This VI running on the laptop is responsible for a majority of the logic, which

includes reading in the output data file from the Emotiv headset and converting

the desired joint angles to the correct PWM signal found by equation 2.37. The VI

running on the myRIO was responsible for sending the PWM signal to the motors. In

42

order to send the PWM signal from the VI running on the laptop, it was necessary to

create Network Published Shared Variables (NPSV). The NPSV are configured from

the Project Explorer and allow data to easily be passed between devices on the same

network. The combination of these VIs allowed for acceptable control of the Braccio

robot.

3.2.3 MATLAB to Webots

As discussed in Chapter 2, the controller for the Webots simulation environ-

ment was developed in MATLAB. There were two variations of this controller. The

first controller was specifically for pre-programmed routines, where each action of the

robot was initiated by output from the EPOC+ headset. The controller does this

by monitoring the text file written by Node-RED and executing the pre-programmed

routine once a command from the headset is received. The second controller im-

plements a more dynamic approach that can generate a motion plan to pick up an

object based on its location in the robot workspace. Even though the inverse kine-

matic solution, derived in Chapter 2, was sufficient for the Braccio robot, there was

a desire to investigate a generic inverse kinematics function to be used with multiple

robotic manipulators, such as the wheelchair robot. In order to make this function

robot agnostic, an input was the path to the URDF file. The information in the

URDF provides the end effector frame, relative to which an offset can be defined

to represent the desired Tool Center Point (TCP). The second input to the inverse

kinematics function is the position of the object. A simulated camera in the Webots

environment identifies the object and returns its coordinates. In order to pick up an

object effectively an approach point was defined. This approach point was defined

as a set distance from the object, on a line from the robot base to the object. The

motion plan to pick up the object is broken up into two parts; a freespace motion

43

from the robot home position to the approach point, and a linear trajectory from to

approach point to the object. The inverse kinematics for the approach point is solved

using a function from MATLAB RST, and then the obtained joint values are inter-

polated to generate the freespace motion. From the approach point to the object, a

linear constraint is implemented that keeps the end effector in the same orientation

as it moves in to grab the object. An example of this motion is shown in figure 3.15,

where the yellow coordinate system represents the position of the object.

Figure 3.15. Wheelchair Robot Path Utilizing MATLAB General Inverse Kinematic
Function.

44

The third input to the inverse kinematic function defines a file path to the

motion file that will be used by Webots. In Webots, robotic manipulators are generally

controlled with motion files that are executed during the simulation. The motion files

contain a series of poses which include the joint positions and the time at which each

pose will be executed. These motion files are generally predefined, however in order

to implement the inverse kinematics code to pick up objects observed by the camera,

this file would need to be dynamically generated . A MATLAB function program was

developed to generate the motion file dynamically based on the object information

from the camera. The input to the function is the filename for the motion file, the

desired duration for the motion, and the array of joint positions for the motion. The

function then writes the motion file in the exact format that Webots needs to execute

the robot trajectory in the simulation. This function only needs to be modified when

a new robot configuration that has different number of joints is introduced.

3.3 Chapter 3 Conclusion

This chapter described the how to set up the EPOC+ in a repeatable manner

that will produce the best training results. The EmotivBCI application was intro-

duced, and the procedures for training mental commands and facial expressions were

described. This chapter also provided an in depth description of the software ar-

chitecture that was developed to extract the intended commands from the EPOC+

headset and map them to robotic actions using Node-RED, LabVIEW, MATLAB,

and Webots.

45

CHAPTER 4

Results and Discussion

In order to verify that the EPOC+ headset could be an effective modality of

HRI several tests were performed on robot hardware and in simulation. The proce-

dure for testing the BCI was to start simple and increase the complexity by gradually

introducing additional commands after a successful test. For each test, the mental

commands, facial expressions, and nods were mapped to a robotic action. This chap-

ter will discuss the several tests that were performed on hardware and in simulation.

For the hardware tests, the Braccio robot was set up on a wooden board that pro-

vided a solid base and a workspace for testing the robot processes. In addition to the

physical setup, a Webots simulation was defined. The software architecture allowed

the simultaneous execution of both of these processes.

4.1 Test 1: Grab Object with Braccio Robot

The first experiment performed with the Braccio robot used two commands

from the EPOC+ headset, a mental command and a facial expression. The setup for

this experiment was simple, with the Braccio robot starting in the Home position;

the first command moved the end effector to a predefined (pre-taught) position where

an object (a paper towel roll in this case) was located. Once in position, the second

command was used to close the gripper on this object. For this routine, a Push mental

command was used to trigger the Braccio robot to move to the predefined position,

and a Smile expression to close the gripper.

46

In order to accomplish this routine, the Push mental command was trained

immediately before performing this test. The contact quality was 100% for this

training. After trying to associate a couple different thoughts with pushing the cube

and not producing a quality Brain Space Diagram (BSD), I settled on a thought

that became easier to trigger. My thought for training this mental command was

visualizing my hands on the cube and imagining pushing it away from me. It took

four successful training sessions with this mental command before I could comfortably

trigger it during the Live Mode and produced the BSD shown in figure 4.1. Then

the training focused on the Smile facial expression. The Smile facial expression had

repeatably been the easiest facial expression to trigger. Once both were trained, the

next step was to evaluate on the hardware.

Figure 4.1. Test 1: BSD for Push Command.

The setup for this experiment, with the Braccio robot in the Home position, is

shown in figure 4.2. For this experiment, I was able to successfully trigger the Push

47

and Smile commands to move the robot into place, and close the gripper to grasp

the object. The results of this process are sequentially shown in figures 4.2, 4.3, and

4.4.

Figure 4.2. Test 1: Braccio in Home Position.

48

Figure 4.3. Test 1: Braccio in Pick Up Position using Push Command.

Figure 4.4. Test 1: Braccio Closing Gripper using Smile Facial Expression.

49

4.2 Test 2: Simulation for Verification

After successfully importing the Braccio robot into Webots it was necessary to

evaluate that the simulated robot would behave the same as it did on the hardware.

For this test, a pick and place routine for a water bottle was programmed utilizing

the inverse kinematics solution developed in Chapter 2. The Simulated Signal Test

Flow from Node-RED, shown in figure 3.12, was used. The pick and place routine

was configured to execute with the following simulated commands:

1. Push: Move to water bottle

2. Smile: Close gripper

3. Pull : Move to place location

4. Frown: Open gripper

The Webots simulation and physical robot both executed the pick and place rou-

tine when the proper commands were sent from Node-RED. This process is shown

sequentially in figures 4.5 to 4.8.

Figure 4.5. Test 2: Braccio Simulation and Hardware in Home Position.

50

Figure 4.6. Test 2: Braccio Simulation and Hardware in Pick Up Position.

Figure 4.7. Test 2: Braccio Simulation and Hardware Place Position.

51

Figure 4.8. Test 2: Braccio Simulation and Hardware Opening Gripper.

4.3 Test 3: Robotic Hand

The third experiment was performed in a Webots simulation with the InMoov

robotic hand, for which a hardware prototype is available in the MARS lab [25]. The

goal of this experiment was to train a thought associated with physically holding the

thumb and index finger as close as possible to each other without touching. This

method has proven to be an effective way to consistently trigger a mental command

[14]. In this case, the trained mental command is mapped to the simulated robotic

hand closing its thumb and index finger to mimic the position of my fingers. For this

training session, the thought of holding the thumb and index finger close together

was trained to a Pull mental command. With this method of training it only took

four Neural and three Pull command training sessions to create a sufficient BSD as

shown in figure 4.9. This experiment required only two commands:

1. Pull : Close thumb and index finger

2. Smile: Return to open hand

52

Figure 4.9. Test 3: BSD for Robotic Hand fingers.

This test was executed successfully on the first attempt. Figure 4.10 shows

the robotic hand in the starting open state. Once the Pull command is triggered,

the thumb and index finger close as shown in figure 4.11. Then, the Smile facial

expression was executed to return the thumb and index finger to their respective

open positions.

53

Figure 4.10. Test 3: Robotic Hand Open.

Figure 4.11. Test 3: Robotic Hand with Thumb and Index Finger Closed.

4.4 Test 4: CoppeliaSim Test

Even though Webots was the primary simulator used for this research, there

was interest to also demonstrate the ease of portability and code reusability of the

developed MATLAB controller to read signals from the EPOC+ to control a simulated

54

robot in CoppeliaSim, another robotic simulator. In order to accomplish this, a

CoppeliaSim simulation environment was created with the Braccio robot. The same

training profile from Test 3 was used. Since this test was only a verification that the

same MATLAB controller could be used across platforms, only two commands were

chosen:

1. Pull : Move to pick up position

2. Smile: Close gripper.

This test was successfully performed by triggering the two commands from the EPOC+

headset. The starting position of the Braccio robot is shown in figure 4.12. The robot

moving to the pick up position and closing the gripper are shown in figures 4.13 and

4.14 respectively.

Figure 4.12. Test 4: CoppeliaSim Braccio Home Position.

55

Figure 4.13. Test 4: CoppeliaSim Braccio Pick Up Position.

Figure 4.14. Test 4: CoppeliaSim Braccio Gripper Closed.

56

4.5 Test 5: Pick and Place

The pick and place process was important to demonstrate for this BCI modal-

ity of HRI, as it would probably be one of the most used processes in an assistive

application. This test was performed with the Braccio hardware robot and in a We-

bots simulation. For this experiment, a water bottle was placed in a fixed location

where the Braccio would reach, and pick it, then lift up it and move it to a predefined

location and release. In order to perform this process, a combination of mental com-

mands, facial expressions, and nods were used. The command for each robot action

is:

1. Push: Move to water bottle

2. Smile: Close gripper

3. Side to Side Nod : Move to place location

4. Yes Nod : Open gripper

The technique for training the Push command is the same as in Test 1, where I imag-

ined physically pushing the cube away from me. However, for this this test additional

training was performed to ensure reliable triggering of the mental command. The 19

Neutral and 11 Push training sessions resulted in a high quality BSD, as shown in

figure 4.15. The contact quality was 100% for this test.

This test was successfully performed simultaneously on the hardware and in

simulation. The LabVIEW GUI and Webots simulation were both executing on the

screen during this pick and place routine. The GUI and results of the simulation are

shown in figures 4.16 through 4.19. In the LabVIEW GUI, the LED being illuminated

corresponds to the triggered signal from the EPOC+. However, the Smile LED does

not dim after triggered since the text file is only written when a new mental command

or facial expression is triggered. The nod LEDs will dim if the user is not performing

57

Figure 4.15. Test 5: Pick and Place BSD.

the nod, since the function only looks at the last five seconds of data. The execution

of this process on the physical Braccio robot is shown in figures 4.20 though 4.23.

Figure 4.17. Smile Triggered to Close Gripper.

58

Figure 4.16. Test 5: Push Command Triggered for Pick Up Position.

Figure 4.18. Test 5: Side to Side Nod for Put Down Position.

59

Figure 4.19. Yes Nod to Open Gripper.

Figure 4.20. Test 5: Push Command Triggered for Pick Up Position.

60

Figure 4.21. Test 5: Smile Triggered to Close Gripper.

Figure 4.22. Test 5: Side to Side Nod for Put Down Position.

61

Figure 4.23. Test 5: Yes Nod to Open Gripper.

4.5.1 Test 5A: Pick and Place

The pick and place routine was repeated with a different mapping of the EPOC+

outputs to robot actions. The test was intended to demonstrate that this mapping

procedure is easily configurable, and it can be changed based on a user’s preference.

The same training profile and BSD from the first pick and place routine were used.

This test was successfully executed in the Webots simulation and on the hardware.

The commands for each robot action are:

1. Push: Move to water bottle

2. Yes Nod : Close gripper

3. Side to Side Nod : Move to place location

4. Smile: Open gripper

62

4.6 Test 6: Integrating a Camera in Simulation

While the pick and place routine on the Braccio was successful, this fixed routine

relies on the object to be in exactly the same location every time. The purpose of Test

6 was to demonstrate that an object could be detected and picked up independent of

its location as long as it is within the robot workspace. In order to perform this test,

a Webots environment was created with the wheelchair robot since it has a larger

workspace. A camera was added so that if could detect the position of an object,

a can in this case. The camera estimated the X, Y, and Z coordinates of the can

center of mass in its own frame. Then the position of the can relative to the robot

base was calculated using the transformation between the camera and base of the

wheelchair robot. From that information, the inverse kinematics are calculated, and

the robot moves into position to pick up the can. This simulation test was performed

several times with the can placed at a different starting location, and each time the

robot moved to the new position of the can. The success of this test shows that the

EPOC+, in combination with a camera, could be used to grab objects in a dynamic

setting. The robot could then bring the can to the human mouth, or any other desired

location. A setup of the Webots simulation is shown in figure 4.24.

Figure 4.24. Test 6: Wheelchair Robot Simulation (Courtesy of Shubham Gunjal).

63

4.7 Chapter 4 Conclusion

The successful execution of several tests proves the EPOC+ can be an effective

device for controlling a robot. However, there were a few challenges with getting this

setup to work. While training one mental command was successful, it was difficult

to train two mental commands and achieve a quality BSD. This could be improved

by training the headset on a regular basis, and practicing meditation to enhance

concentration [3]. The facial expressions easier to train and most repeatable were the

Smile and the Surprise. The Left Wink, Right Wink, and Blink expressions did seem

quite easy to trigger without any training needed, however were not used due to the

possibility of unintended false positives. The nods were quite easy to trigger, and

while only Yes, No and Side to Side nods were used, there are many other types of

head movements that can be detected. The felt pads that came into contact with the

scalp did tend to dry out after about an hour of use and needed to be rehydrated.

Emotiv has made a new EPOC X that address this issue allowing for rehydration

while the headset is sill on the user.

One of the other main challenges was reading commands into LabVIEW and

MATLAB. While the developed method worked most of the time, there were occasions

where it seemed to be trying to read the text file while Python had it open to write

the state vector. This led to two issues. The first is that LabVIEW would try to

read the file then interpret it as all commands being active at the same time. The

second issues with MATLAB led to the vector not being read, and instead showed

as an empty variable. In order to alleviate this problem, a delay function was used

in both LabVIEW and MATLAB to slow the rate at which they attempted to read

the text file. This helped with this issue, however a more robust solution should be

developed.

64

CHAPTER 5

Conclusions and Recommendations for Future Work

5.1 Conclusions

The objective of this research was to develop and demonstrate an HRI frame-

work for controlling a robotic manipulator though a BCI modality for an assistive

application. In order to accomplish this, an Emotiv EPOC+ EEG headset and a

Braccio hobby robot were used for evaluation. The EPOC+ headset allowed for

the collection of several different control signals that were used to execute a desired

robotic action. These control signals included mental commands, facial expressions,

and nods. The mental commands and facial expressions required training, while the

nods were detected from the gyroscope data. Performing the evaluation of this BCI

was accomplished using physical and simulated robotic manipulators. In order to

perform this evaluation, it was necessary to develop a software architecture that ex-

tracted the command signals from the EPOC+ headset and translated them into

LabVIEW and MATLAB to control the physical and simulated robot. The Braccio

robot was used as the proof-of-concept hardware for simple manipulation tasks to

confirm that the BCI is a sufficient modality to control the robot. A pick and place

routine was successfully executed on the physical Braccio robot and in a Webots

simulation, using a combination of mental commands, facial expressions and nods.

While this demonstrated the ability to perform a hard coded pick and place operation

for an object from a known location, this capability was expanded to dynamic path

planning in simulation by introducing a camera. The simulated camera allowed the

detection of an object position relative to the robot, which is used to solve the inverse

65

kinematics to pick it up. This capability was shown for the wheelchair robot in a

Webots simulation.

The successful tests performed during this research proved that an EEG headset

can be an effective modality for controlling an assistive robot. While multiple mental

commands can be difficult to train when not done on a consistent basis, it is likely that

the end user of an assistive robot would be able to train daily and therefore repeatedly

trigger these commands. The improved performance due to repeated training was

shown in [13], where a group of disable people had a high average success rate of

triggering mental commands than the other two groups of individuals.

The facial expressions and nods proved to be relatively easy to trigger, and

proved to be a reliable method for controlling a robot. The framework developed

during this research for the BCI modality provides a foundation for further enhance-

ment of HRI. With further refinement, this BCI modality would allow the end user

to efficiently control a robot to manipulate their environment and reduce dependence

on others.

5.2 Recommendations for Future Work

Future work should include the integration of a 3D camera into the hardware

pick and place routine. This would help verify that the code used for the camera

in the Webots simulation could transfer to hardware and allow the robot to identify

an object and its location for manipulation. In addition, it would be beneficial to

put new motors on the inexpensive wheelchair robot so that the full HRI modality

through a BCI can be tested in a situation similar to how it would be used in the real

application.

Another important aspect of this research will be to evaluate how trainable the

EPOC+ headset is for a variety of individuals. This could be accomplished by having

66

several individuals train mental commands and facial expressions on the headset, then

evaluate if they can perform the pick and place routine as a base test in simulation

before moving to the hardware. The training could be accompanied with reading the

raw data from each sensor, which can be accessed with a paid subscription to the

EmotivPRO application. Raw EEG data would allow further analysis, and identify

which sensors and regions of the brain contribute most to effective training for a user.

Applying signal processing and machine learning techniques to analyze the raw EEG

data could allow for additional commands to be discovered.

Based on experience from this research, it would be beneficial to utilize a Python

API to communicate with the EPOC+ headset. This Python API was only released

in the past few months, after extensive research has been completed, and the reason

why it was not investigated for this research. The Python API has the capability to

develop a more robust method of communicating with MATLAB and LabVIEW, as

opposed to writing text files. There is a MATLAB Engine API that can communicate

with Python, which would make a majority of the software developed during this

research easily reusable.

When deploying this framework to a real assistive application it is necessary to

develop a verification step that would allow the end user to confirm the desire robot

action before executing on the hardware. The verification could be a simulation of

the robot presented on a screen, where the robot is executing the actions interpreted

from the BCI output. If these simulated actions match the intent of the user, then

the user can approve for the robot to execute the process. Otherwise, the user could

reject the presented actions and attempt to re-issue the commands.

67

APPENDIX A

Braccio Inverse Kinematics Code

68

The material in the appendix describes how the inverse kinematics analysis was

implemented into the LabVIEW controller. The LabVIEW GUI. shown in figure A.1,

is where the user inputs the desired position and orientation of the end effector. The

information is provided to an inverse kinematics Virtual Instrument (VI) as shown in

figures A.2 and A.3. The inverse kinematics VI uses a MATLAB script to turn the

inputs into a desired transformation matrix. The inverse kinematics VI then calls the

Braccio IK R2 MATLAB function to solve for the joint angles.

Figure A.1. LabVIEW GUI.

69

Figure A.2. LabVIEW GUI Block Diagram for Inverse Kinematics.

Figure A.3. LabVIEW VI for Inverse Kinematics.

70

The following two MATLAB functions are the implementation of the inverse

kinematics solution for the Braccio robot derived in section 2.3.1.

1 function angles = Braccio IK R2(T0H)

2 x = T0H(1,4);

3 y = T0H(2,4);

4 z = T0H(3,4);

5 a = [0 0 0 1];

6 theta1 = (180/pi)*atan2(y,x);

7 t1 = theta1;

8 %Establish Matrix so it can be turned back to XZ

9 T0 1 = [cosd(t1) −sind(t1) 0 0

10 sind(t1) cosd(t1) 0 0

11 0 0 1 0

12 a];

13 %Turn robot back to XZ Plane

14 Planar = inv(T0 1)*T0H;

15 x = Planar(1,4);

16 OldRot = Planar(1:3,1:3);

17 Rotation = Rot(1,−90);

18 NewRot = Rotation*OldRot;

19

20 xyz = [x z 0]'; % Planar X and Z are new X and Y

21 NPlanar = [NewRot xyz;a];

22

23 ThreeAngles = ThreeR IK Braccio(NPlanar);

24

25 t1 = [t1;t1];

26 angles = [t1 ThreeAngles];

27 end

71

1 function Output = ThreeR IK Braccio(T0 H)

2

3 L1 = 5;

4 L2 = 5;

5 L3 = 5.75;

6 a = [0 0 0 1];

7

8 T3 H = [1 0 0 L3

9 0 1 0 0

10 0 0 1 0

11 a];

12

13 T0 3 = T0 H*invT(T3 H);

14

15 x = T0 3(1,4);

16 y = T0 3(2,4);

17

18 c2 = (xˆ2 + yˆ2 − L1ˆ2 − L2ˆ2)/(2*L1*L2);

19

20 if (c2 > 1)

21 disp('The desired location is outside the workspace.')

22 elseif (c2 < −1)

23 disp('The desired location is outside the workspace.')

24 else

25

26 s2p = sqrt(1−c2ˆ2);

27 s2n = −sqrt(1−c2ˆ2);

28

29 theta2p = (180/pi)*atan2(s2p,c2);

30 theta2n = (180/pi)*atan2(s2n,c2);

72

31

32 k1 = L1 + L2*c2;

33 k2 = L2*s2p;

34 % rp = sqrt(k1ˆ2+k2ˆ2);

35 gam = (180/pi)*atan2(k2,k1);

36 theta 1p = (180/pi)*atan2(y,x) − gam;

37

38 k2 = L2*s2n;

39 % rn = sqrt(k1ˆ2+k2ˆ2);

40 gam = (180/pi)*atan2(k2,k1);

41 theta 1n = (180/pi)*atan2(y,x) − gam;

42

43 c123 = T0 H(1,1);

44 s123 = T0 H(2,1);

45 phi = (180/pi)*atan2(s123,c123);

46 theta3p = phi − theta 1p − theta2p;

47

48 theta3n = phi − theta 1n − theta2n;

49

50 Sol 1 = [theta 1p theta2p theta3p];

51 Sol 2 = [theta 1n theta2n theta3n];

52

53 Output = [Sol 1

54 Sol 2];

55 end

73

REFERENCES

[1] B. J. Edelman, J. Meng, D. Suma, C. Zurn, E. Nagarajan, B. S. Baxter, C. C.

Cline, and B. He, “Noninvasive neuroimaging enhances continuous neural track-

ing for robotic device control,” Science Robotics, vol. 4, no. 31, p. eaaw6844, jun

2019.

[2] J. Meng, S. Zhang, A. Bekyo, J. Olsoe, B. Baxter, and B. He, “Noninvasive

electroencephalogram based control of a robotic arm for reach and grasp tasks,”

Scientific Reports, vol. 6, no. 1, dec 2016.

[3] EPOC+ User Manual, Emotiv, 2018. [Online]. Available:

https://emotiv.gitbook.io/epoc-user-manual/

[4] A. Al-Qahtani, A. Nasir, M. Z. Shakir, and K. A. Qaraqe, “Cognitive impair-

ments in human brain due to wireless signals and systems: An experimental

study using EEG signal analysis,” in 2013 IEEE 15th International Conference

on e-Health Networking, Applications and Services (Healthcom 2013). IEEE,

oct 2013.

[5] J. Craig, Introduction to Robotics: Mechanics and Control. Pearson, 2018.

[Online]. Available: https://books.google.com/books?id=JblZuwAACAAJ

[6] EmotivBCI, Emotiv, 2018. [Online]. Available:

https://emotiv.gitbook.io/emotivbci/

[7] EmotivBCI Toolbox, Emotiv. [Online]. Available:

https://emotiv.gitbook.io/emotivbci-node-red-toolbox/

[8] E. N. Arcoverde Neto, R. M. Duarte, R. M. Barreto, J. P. Magalhães, C. C.

Bastos, T. I. Ren, and G. D. Cavalcanti, “Enhanced real-time head pose estima-

74

tion system for mobile device,” Integrated Computer-Aided Engineering, vol. 21,

no. 3, pp. 281–293, Apr 2014.

[9] “Paralysis statistics - reeve foundation,” https://www.christopherreeve.org/living-

with-paralysis/stats-about-paralysis, (Accessed on 11/23/2020).

[10] K. Ziegler-Graham, E. J. MacKenzie, P. L. Ephraim, T. G. Travison, and

R. Brookmeyer, “Estimating the prevalence of limb loss in the united states:

2005 to 2050,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 3,

pp. 422–429, mar 2008.

[11] E. Musk, “An integrated brain-machine interface platform with thousands of

channels,” Journal of Medical Internet Research, vol. 21, no. 10, p. e16194, oct

2019.

[12] “The introductory guide to eeg (electroencephalography) - emotiv,”

https://www.emotiv.com/eeg-guide/, (Accessed on 11/23/2020).

[13] P. Chowdhury, S. S. K. Shakim, M. R. Karim, and M. K. Rhaman, “Cognitive

efficiency in robot control by emotiv EPOC,” in 2014 International Conference

on Informatics, Electronics & Vision (ICIEV). IEEE, may 2014.

[14] D. Prince, M. Edmonds, A. Sutter, M. Cusumano, W. Lu, and V. Asari, “Brain

machine interface using emotiv EPOC to control robai cyton robotic arm,” in

2015 National Aerospace and Electronics Conference (NAECON). IEEE, jun

2015.

[15] S. Grude, M. Freeland, Chenguang Yang, and Hongbin Ma, “Controlling mobile

spykee robot using emotiv neuro headset,” in Proceedings of the 32nd Chinese

Control Conference, 2013, pp. 5927–5932.

[16] W. A. Jang, S. M. Lee, and D. H. Lee, “Development BCI for individuals with

severely disability using EMOTIV EEG headset and robot,” in 2014 International

Winter Workshop on Brain-Computer Interface (BCI). IEEE, feb 2014.

75

[17] S. Aguiar, W. Yanez, and D. Benitez, “Low complexity approach for controlling

a robotic arm using the emotiv EPOC headset,” in 2016 IEEE International

Autumn Meeting on Power, Electronics and Computing (ROPEC). IEEE, nov

2016.

[18] A. Kline and J. Desai, “SIMULINKsup®/sup based robotic hand con-

trol using emotiv™ EEG headset,” in 2014 40th Annual Northeast

Bioengineering Conference (NEBEC). IEEE, apr 2014.

[19] W. Ouyang, K. Cashion, and V. K. Asari, “Electroencephelograph based brain

machine interface for controlling a robotic arm,” in 2013 IEEE Applied Imagery

Pattern Recognition Workshop (AIPR). IEEE, oct 2013.

[20] I. N. Zamora, D. S. Benitez, and M. S. Navarro, “On the use of the EMO-

TIV cortex API to control a robotic arm using raw EEG signals acquired

from the EMOTIV insight NeuroHeadset,” in 2019 IEEE CHILEAN Conference

on Electrical, Electronics Engineering, Information and Communication

Technologies (CHILECON). IEEE, nov 2019.

[21] 10/20 System Positioning, Trans Cranial Technologies Idt., 2012.

[22] A. Cassidy, “Facial expression detections,” Aug 2019. [Online]. Available:

https://www.emotiv.com/knowledge-base/facial-expression-detections/

[23] NI myRIO-1900 User Guide and Specifications, National Instruments, June

2018. [Online]. Available: https://www.ni.com/pdf/manuals/376047c.pdf

[24] “cyberbotics/urdf2webots: Utility to convert urdf files to webots proto nodes,”

https://github.com/cyberbotics/urdf2webots, (Accessed on 11/24/2020).

[25] “Hand and forarm – inmoov,” http://inmoov.fr/hand-and-forarm/, (Accessed

on 11/27/2020).

76

