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ABSTRACT 

THE EFFECT OF NATURAL DISASTERS ON CONSTRUCTION LABOR 

WAGE FLUCTUATIONS: A SPATIAL DIFFERENCE-IN-DIFFERENCE 

ANALYSIS 

Ferika Farooghi 

The University of Texas at Arlington, 2020 

Supervising Professor: Mohsen Shahandashti 

 

The United States is one of the top five countries in the world prone to 

natural disasters. Natural disasters could have a significant impact on the 

construction industry. In a large-scale disaster, labor cost fluctuation is known to 

be an important driving factor in the construction cost increases. Labor cost 

fluctuation could increase the reconstruction cost by 20 to 50 percent after a large-

scale disaster. In the literature, the effect of a disaster on the construction market 

condition has been calculated through two stages, measurement and quantification. 

Merging two stages, measurement and quantification, in one stage, provides an 

opportunity to decrease the amount of error in the quantification step due to 

measurement error. Merging two stages, measurement and quantification, in one 

stage using an appropriate regression model has not been studied in the literature 

for the construction market indices. This research has two main objectives. The first 

objective of this research is to estimate the spatio-temporal effect of natural 
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disasters on the fluctuation of the labor weekly wages in the residential construction 

sector, using the difference-in-difference technique. This technique is capable of 

eliminating the need for measurement in this analysis and can directly quantify the 

effect of natural disasters on the labor wage fluctuations. This technique has not 

been used in this context before. 

The second objective in this research is to use a spatial multiple imputation 

method to tackle the missing data problem. This spatial imputation method has not 

been used in this context before. In this research, the required construction county-

level data of 67 counties in Florida State has been collected from the Bureau of 

Labor Statistics (BLS) to create the county-level panel data models for Florida State 

from 2014 to 2018. Historical county-level data of those counties impacted by 

weather-related disasters (flood, tornado, and storm) from the Federal Emergency 

Management Agency (FEMA) from 2014 to 2018 were also collected to conduct 

the analysis.  

Three commonly used construction market exogenous variables are used 

within spatial panel data models to explore natural disasters’ effect on labor weekly 

wage fluctuations in the residential construction market. Also, a disaster dummy 

variable is used to capture these fluctuations in the county level dataset. To have 

less biased results and increase the efficiency of our spatial model, four strategies 

were used to tackle the missing data problem. Thus, in this research, multiple spatial  
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panel data models (Spatial Autoregressive Model (SAR), Spatial Autocorrelation 

Model (SAC), Spatial Error Model (SEM), and Spatial Durbin Model (SDM) 

models) have been developed to investigate the effect of natural disasters on labor 

wage fluctuations.  Based on the Breusch–Pagan LM test and Hausman test results, 

the fixed-effect Spatial Durbin Model (SDM) using a multiple imputation method 

is identified to be a more appropriate model in this research. The total effect 

obtained from SDM using the multiple imputation methods indicates that labor 

weekly wage increases by 7.5 percent in counties affected by natural disasters 

compared to those that are not affected. This study helps risk managers, cost 

engineers, city policymakers, construction companies, property owners, and 

insurers to have a better understanding of post-disaster construction cost 

fluctuations aftermath of a natural disaster.    
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1. CHAPTER 1  

INTRODUCTION 

Due to dramatic climate change over the last decade, the most severe and 

catastrophic natural disasters have wreaked havoc globally (Fenner et al., 2017). In 

the United States, the number of billion-dollar weather-related disasters has more 

than doubled between the years of 2010 to 2019 compared to two decades ago 

(2000-2009) (NOAA, 2020). The United States is amongst the top five countries 

affected by these natural disasters the most (Guha-Sapir et al., 2012).  In the United 

States, a staggering 119 billion-dollar weather-related disasters have been declared 

in the last decade alone (NOAA NCEI 2020). The cumulative estimated damage of 

these 119 weather-related disasters exceeded 800 billion dollars (NOAA, 2020).  

Since 1980, 250 weather-related events declared in the United States exceeded 1.75 

trillion dollars in total damages (NOAA, 2020). Anecdotal evidence shows the 

significant effect of natural disasters on increasing construction costs (Olsen and 

porter, 2011b). 

If the demand for products and services surpasses the regional capacity to 

supply them efficiently, post-disaster construction costs will increase (Munich-Re, 

2007). In a massive disaster, labor wage fluctuation is one of the most critical 

factors in the increase of reconstruction costs (Olsen and Porter, 2013). Labor wage 

increases are due to the increase in demand for resources relative to the supply in 
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the regional market after a natural disaster (Dohrmann et al., 2013). Labor cost 

fluctuations could increase the reconstruction cost by up to 50 percent after a large-

scale disaster (Olsen and Porter, 2011a). For example, in some projects, up to 30 

percent of labor prices increased after Hurricane Katrina (Grogan and Angelo, 

2005). In the aftermath of a natural disaster, these construction cost increases do 

not appear all of the sudden. They accumulate gradually for the duration of the 

recovery period (Chang and Miles, 2004). Quantifying the construction cost 

increase due to a natural disaster allows for a more precise anticipation of disaster 

losses and improved planning to the reconstruction process (Brown, 2014; 

Finucane et al., 2014). One of the main concerns of affected cities and communities 

is how to recover from natural disaster fully (Brown, 2014). Measuring construction 

cost fluctuation due to natural disasters has been the subject in much econometric 

research.  

In the previous research studies, the impact of natural disasters on the 

construction cost fluctuation is calculated through two main stages: measurement 

and quantification. For example, Ahmadi and Shahandashti characterized 

construction demand surge using spatial panel data models through two stages 

analysis (measurement and quantification), (Ahmadi and Shahandashti, 2020a). 
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The accuracy of the second stage depends on the correctness of the 

measurement stage. Simply put, using analytical models that can merge both 

measurement and quantification into one stage could greatly reduce the errors.  

The objective of this research is to estimate the spatio-temporal effect of a 

natural disaster(s) on labor wage fluctuations at a county level by merging both 

measurement and quantification stages. This research aims to estimate the spatio-

temporal effect of a natural disaster(s) on labor wage fluctuations using spatial 

paned data models combined with the difference-in-difference technique at a 

county level. Spatio-temporal analyses have many advantages over purely spatial 

or time-series analyses because they can simultaneously investigate possible 

patterns over time and space. These analyses emerge when data are collected both 

across time and space. An observation in a spatio-temporal dataset specifies spatial 

and temporal characteristics that exist at the time t and location x. Spatial panel data 

models can be used to do spatio-temporal analyses to investigate a particular 

phenomenon.  

The spatial panel data models combined with a difference-in-difference 

technique was used to examine the effect of an exogenous shock (natural disaster) 

on a local construction residential labor wage fluctuation. Combining spatial panel 

models with the difference-in-difference technique reduces the error in the 

modeling step by eliminating the need for the measurement step. Hurricanes, 
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tornadoes, and severe storms are viable options for this research. They can affect 

several counties at a time, and they can occur more than once in a specific period 

during the study. If an exogenous shock (natural disaster) affects the construction 

market in one specific county, it could affect the nearby county construction market. 

Thus, we can examine multiple exogenous shocks affecting more than one county 

at a time.  In the spatial panel models, regions may be correlated with their 

neighbors in three different ways (Elhorst, 2014). First, the value of y in the region 

might impact (or be related to) the value of y in the neighboring region, which is 

called the spillover effect. Second, the value of x’s in the region might affect (or be 

related to) the value of y in the neighboring region. Third, the residuals in the region 

might affect (or be related to) the residuals in the neighboring region, which is 

known as spatial heteroskedasticity (Elhorst, 2014). According to the three 

correlations between the neighboring region, different spatial models have been 

used such as Spatial Durbin Model (SDM), Spatial Autoregressive Model (SAR), 

Spatial Error Model (SEM), and Spatial Autocorrelation Model (SAC). All of these 

spatial models are thoroughly discussed in Chapter 3.  

The innovation of this research is to use counties that are not affected by 

natural disasters as a baseline to capture the labor wage fluctuations resulted from 

a natural disaster(s) in many affected counties. This research is defined in a given 

geographical region over a specific time period to implement this innovative 
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method. In this study, the state of Florida is selected as the desired geographical 

region.    

Although the exact path of a weather-related natural disaster is not clear, 

most hurricanes strike the Gulf Coast and Southeastern States (Cutter and Emrich, 

2005). The state of Florida belongs to both regions. The natural disaster affects 

Florida State more than other states in that region (Cutter and Emrich, 2005). In 

this research, Florida has been selected to be investigated between 2014 to 2018. 

Over the last decade, the state of Florida has been struck by 13 hurricanes. Every 

year, hurricane season starts from early June through late November. In October 

2018, Florida was hit by Hurricane Michael with winds in excess of 160 miles-per-

hour. Hurricane Michael was the first category 5 to strike the U.S. since 1992 and 

was the fourth category 5 hurricane ever recorded (NOAA, 2020). In 2016, Florida 

was affected by Hurricane Matthew, boasting wind speeds of 165 mph, and 

Hurricane Hermine with wind speeds topping 81 mph (Armestrong, 2017).  

It is expected that the results of this study will help disaster policymakers 

and risk-mitigation agencies make more effective funding policies and how funds 

will be allocated to eligible counties. It could also help the National Flood Insurance 

Program (NFIP) policyholders make more effective insurance policies, calculate 

affordable insurance premiums and insurance ratings, especially for low-income 

and middle-income households, specifically at the state-local level. Furthermore, it 
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could help cost engineers prepare more accurate bids in the vulnerable post-disaster 

construction markets. 

This research is organized as follows. The next chapters present the 

theoretical framework, investigating the parameters that are affecting construction 

loss and construction cost increase due to natural disaster occurrence. The author 

recognizes these parameters through quantitative and qualitative studies. Chapter 3 

explains the methodology used for analyzing the effect of natural disasters on 

construction residential labor wage fluctuation. Moreover, the recommended 

difference-in-difference technique, combined with conventional spatial panel 

methods, is discussed in this chapter. Chapter 4 presents the standard handling of 

missing data methods. Significant findings and interpretations are presented in 

Chapter 5. In the penultimate chapter, validating the results of the spatial models is 

discussed. Lastly, the final results, the contributions of this research to the state of 

knowledge, and the state of practice are explicitly presented in Chapter 7.  
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2. CHAPTER 2  

BACKGROUND 

Methods of investigating construction cost fluctuations can be classified 

into two groups: Quantitative studies and Qualitative studies. Figure 2-1 illustrates 

the common qualitative and quantitative methods used to investigate cost 

fluctuations due to natural disasters.  

 

Figure 2-1 List of the quantitative and qualitative methods used to measure construction 

cost fluctuations, the aftermath of natural disasters 

Participant observation 

In-depth interviews 

(One-on-one interview) 

 

Case study research 

Focus groups 

(online survey) 
 

Record keeping 

Content analysis 

Cross-case analysis 

Qualitative Research 

Economic loss 

model 

Quantitative Research 

Ground-up loss 

model 

Fine-grained model 
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2.1 Quantitative Studies 

2.1.1 Economic Loss Models  

In this category, regional economic loss models were created to quantify the 

economic consequences of natural disasters. The difference between economic 

inputs after a natural disaster versus normal conditions is considered a total loss in 

these models (Olsen and Porter, 2011b). In quantitative disaster analysis, Input-

output (I/O) models are known as the upper bound on economic loss, and they are 

used for short-horizon estimation (Galbusera and Giannopoulos, 2018). In contrast, 

Computable General Equilibrium (CGE) models are classified as lower bound on 

economic loss and used for long-horizon estimations (Galbusera and Giannopoulos, 

2018).  For example, Hallegatte (2008) used I/O models to estimate economic loss 

after Hurricane Katrina. Using the Regional Economic models could help capital 

planners estimate a total cost due to a natural disaster. Although these models are 

valuable in estimating total economic losses due to disasters, they do not consider 

fine-grained construction cost fluctuations. 

2.1.2 Ground-up Loss Models 

This category focuses on ground-up loss at an individual property level or 

portfolio level following a natural disaster. Ground-up loss is the total amount of 

money covered by insurance (Astoul et al., 2013). The deductibles paid by an 

insurance policy, and reinsurance recoverable is excluded from the ground-up loss 
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(Astoul et al., 2013). Data from insurance companies need to be collected to model 

the ground-up loss. Olsen and Porter (2011b) determined the increased cost at the 

portfolio level using data from estimated replacement cost for property, a damage 

factor, and environmental excitation after Hurricane Andrew. Although these 

models are very advantageous for insurance and reinsurance companies to estimate 

what to charge for insurance, they do not characterize fine-grained construction 

fluctuation following a natural disaster (Ahmadi and Shahandashti, 2018a). 

2.1.3 Fine-grained Models 

The third group focused on the labor and material line item fluctuations in 

a fine-grained analysis after a natural disaster. For example, Mueller and 

Quisumbing (2010) compared nonagricultural labor and agricultural labor 

fluctuations after floods in Bangladesh, and they realized that floods had more 

effect on the nonagricultural sectors. Dohrmann et al. (2013) reported Gross 

Domestic Products (GDP), number of establishments in the construction sector, 

amount of loss of a catastrophe, catastrophe occurrence in the same region, number 

of claims, and government price regulation have a significant effect on the 

reconstruction cost aftermath of a natural disaster. Ahmadi and shahandashti 

(2018a, 2018b, 2020a, 2020b) studied the role of pre-disaster construction market 

conditions in the post-disaster labor wage fluctuation using multiple cross-sectional 

models. They indicated that property damage and preconstruction market 
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conditions have a significant effect on the labor wage fluctuation after a natural 

disaster.  

Besides these three models, researchers have created a variety of models 

(e.g., univariate and multivariate time series models) to forecast construction cost 

variations under normal conditions (Kim, et al., 2020, Abediniangerabi, et al., 2018, 

Abediniangerabi, et al., 2017, Shahandashti and Ashuri, 2016, Shahandashti, 

2014a, Shahandashti, 2014b, Shahandashti and Ashuri, 2013, Ashuri et al., 2012a, 

Ashuri et al., 2012b, Ashuri and Shahandashti, 2012). These models that are 

developed to represent construction cost variations under normal conditions are 

usually used to represent the baseline to determine demand surge (Khodahemmati 

and Shahandashti, 2020). 

2.2 Qualitative Studies 

Qualitative studies use a variety of methods to discover and gain an in-depth 

understanding of construction cost fluctuations after a natural disaster. They 

provide insights into factors that lead to cost increases in the construction sectors. 

These factors can be served as a platform for quantitative studies. These qualitative 

studies are mostly based on interviews, questionnaires, content analysis, and 

reviews of government and media documents. 

In the communities that are vulnerable to natural disasters, the level of 

damage after a disaster is higher (Masozera et al., 2007). The inadequate supply of 
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laborers and materials after a natural disaster leads to higher reconstruction costs 

(Chang-Richards et al., 2017). The negative impact of natural disasters on the 

construction market can be reduced by decreasing the risk and vulnerability of 

construction activities and communities to natural disasters (Masozera et al., 2007). 

Akintoye and MacLeod (1997) denoted the relationship of risk and construction 

uncertainty and its effect on the final cost of the construction projects. Previous 

qualitative studies have highlighted the factors that can be effective in the post-

disaster construction cost increase. For example, Krüger et al. (2015) did the 

content analysis and denoted those cultural aspects that need to be considered in a 

Disaster Risk Reduction intervention. The dominant ideology and religion within a 

disaster-affected area are important for designing an intervention to reduce risk 

(Krüger et al., 2015).  

Familiarity with socio-demographic factors of the disaster-affected area 

such as gender, class, ethnicity, caste, and age makes it easy to work with local 

people outside (Krüger et al., 2015) to control for the risk resulted from the natural 

disaster.  Bendimerad (2003) underlined that poor land management, increased 

population concentrations in hazard areas, environmental mismanagement, lack of 

enforcement of regulation, social destitution, social injustice, unprepared 

populations, unprepared institutions, and inappropriate use of resources increase 

susceptibility and reduced resilience to a natural disaster.  Bendimerad (2003) 

denoted that community/stakeholder participation, public policy actions, safer 



  

12 

 

construction, urban development, and development of a culture of prevention are 

four important lines of action to mitigate disaster risk. Erratic apprenticeship 

schemes, the poor public image of the industry, and an emphasis on a high-tech 

knowledge economy by the government cause skills shortages in the New Zealand 

construction industry.  

Chang-Richards et al. (2017) denoted five challenges faced by the 

construction industry in Christchurch, New Zealand, during its recovery from the 

2010 and 2011 earthquakes. These five construction market challenges are known 

as limited technical capability, limited accommodation for additional workers, the 

time limitation for training skilled workers, limited information about 

reconstruction workloads, and a limited operational capacity within construction 

organizations (Chang-Richards et al., 2017). Bosher et al. (2007) studied the 

disaster risk management in the UK. Their survey and semi-structured interviews 

recognized the poorly integrated approaches in disaster risk management. They 

recommend that hazard awareness be integrated into the professional training of 

experts in the construction industry, and disaster risk management needs to be more 

considered in the construction decision making process. Chang et al. (2010) 

conducted the mixed-method research that was a combination of semi-structured 

interviews and desk reviews of government and media documents. They defined 

that the integration among four resourcing components of the reconstruction is 
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essential after a disaster. These four components are legislation and policy, the 

construction industry, the construction market, and the transportation system.  

2.3 Gaps in Knowledge 

In the literature, the effect of a disaster on the construction market condition 

has been calculated through two stages, measurement and quantification. In the 

measurement step, the fluctuation due to the natural disaster is calculated. Then 

based on that measurement, the impact of a natural disaster on the construction 

market is quantified using an appropriate regression model. Because the 

measurement step is done separately, the possibility of having an error in this step 

will affect the quantification step’s accuracy. Merging two stages, measurement 

and quantification, into one stage will decrease the amount of error in the 

quantification step due to measurement error. Merging two stages, measurement 

and quantification, in one stage using an appropriate regression model has not been 

studied in the literature for the construction market indices. 

2.4 Research Objectives 

This research has two main objectives. The first objective of this research 

is to estimate the spatio-temporal effect of natural disasters on the fluctuation of the 

labor weekly wages in the residential construction sector, using the difference-in-

difference technique that merges measurement and quantification stages in one 

stage. The second objective in this research is to use a spatial multiple imputation 
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method to tackle the missing data problem. This spatial imputation method has not 

been used in this context before.  
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3. CHAPTER 3  

RESEARCH METHODOLOGY 

The research methodology consists of six steps: (1) Creating difference-in-difference 

models to measure the construction labor wage fluctuations resulted from natural disasters; (2) 

collecting all the required data from the Federal Emergency Management Agency (FEMA) and 

Bureau of Labor Statistics (BLS) to create the county-level panel data models for Florida state 

from 2014 to 2018; (3) defining a weight matrix for 67 counties in Florida; (4) conducting the 

spatial autocorrelation Moran’s I test; (5) creating base models and spatial panel models using 

difference-in-difference models. Figure 3-1 illustrates the research methodology steps. 

 

 

 

 

 

  

  

 

 

 

Figure 3-1 Research methodology steps 

 

Difference-In-Difference Technique 

Collecting Data 

Federal Emergency Management Agency (FEMA) 

Bureau of Labor Statistics (BLS) 

Defining the Weight Matrix 

Conducting the Spatial Autocorrelation Moran’s I Test 

Creating Base Models and Spatial 

Panel Models 
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3.1 Difference-In-Difference (DID) Technique in Construction Labor Wage Fluctuation  

The difference-in-difference (DID) technique is used to estimate the effect of a treatment 

by comparing the changes over time between the control group and the treatment group (see Figure 

3-2). This technique can extract the effects of natural disasters from any construction market index. 

In other words, the difference-in-difference technique has been used to compare the outcome of 

groups exposed to natural disasters over specific areas at different times (Wing et al., 2018). 

 In our research, the control group and the treatment group are defined as below:  

1. The control group (counties) before the disaster 

2. The control group (counties) after the disaster 

3. The treatment group (counties) before the disaster  

4. The treatment group (affected counties) after the disaster 

 

Figure 3-2 Concept of difference-in-differences model 
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This technique is capable of eliminating the need for measurement in this analysis. By 

combining the spatial panel models with the difference-in-difference technique the effect of natural 

disasters on the labor wage fluctuations can be directly quantified without the possibility of being 

affected by errors due to the measurement step. 

This research used the difference-in-difference technique to investigate the effect of the 

disaster on the “Average labor weekly wages in the residential construction sector” in the county-

level database in Florida from 2014 to 2018. 

3.2 Data Collection and Data Processing 

3.2.1 Residential Construction Market Indices Data 

Following our research objective, three criteria were considered for selecting the model 

variables (construction market indices): 

1. The variables should be accessible from publicly available data resources. 

2. The variables should influence the residential construction market. 

3. The variables should be in their simple form to meet the criteria of our spatial 

models.  

While the first criterion (publicly available) means the data should be freely available 

through governmental or reliable nongovernmental resources, the second criterion satisfies the 

objective of this research, and it is backed up by the literature. To meet the third criteria, we were 

looking for the base form of each variable in the BLS database for the residential construction 

market. For example, although different forms of the “average weekly wage” variable were 
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provided in the database, such as, “Over the year average weekly wage” or “Location quotient 

average weekly wage’, the “Average weekly wage” has been selected. 

The Bureau of Labor Statistics of the U.S. Department of Labor (BLS) provides 

construction employment/unemployment information, market activities, and working conditions 

in the U.S. (BLS, 2020). The North American Industry Classification System (NAICS) is used by 

BLS to classify business establishments in order to collect, analyze, and publish statistical data 

(BLS, 2020). Figure 3-3 shows sub-sectors, industry groups, and industries of the construction 

sector. In this study, the effect of natural disasters on residential building construction labor wage 

fluctuations has been investigated. 
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Figure 3-3 Construction sectors, sub-sectors, and industry groups 
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3.2.2 Disaster-related Data 

Following our research objective, two criteria were considered for selecting 

the disaster-related variable (dummy for disaster): 

1. The data should be accessible from publicly available data 

resources. 

2. The disasters should have a level of damage greater than a hundred 

thousand dollars. 

First, a list of all major disaster declarations in Florida was obtained from 

the Federal Emergency Management Agency (FEMA). Those disasters with the 

total damages of at least a hundred thousand dollars were selected (see Figure 3-4). 

 

Figure 3-4 Major disaster declaration in Florida from 2014 to 2018 and quarter of the 

disaster occurrence 
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Second, all the counties affected by those selected disasters were specified. 

Figure 3-5 shows an example of a Disaster Declaration for Florida Hurricane 

Hermine in 2016 with affected counties.  

 

Figure 3-5 FEMA disaster declaration zone for Florida Hurricane Hermine in 2016 

 

Finally, data collected from BLS and data obtained from FEMA were 

combined to form the research panel data set. Figure 3-6 summarizes the process 

of obtaining the data for the panel models. The panel data covers Florida with 67 

counties over 5 years from 2014 to 2018. 
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Figure 3-6 Process of data obtained for the panel data analysis from 2014 to 2018 

  

3.3 Weight Matrix 

For creating spatial econometrics models, every single observation in our 

dataset needs to be geocoded. In other words, the weight matrix defines the 

neighbors and describes which observations are spatially close and how much they 

influence each other. The spacial weight matrix in the panel data model is specified 

as W with elements 𝑤𝑖𝑗 , specifying whether county i and j are spatially correlated. 

Each element of i and j (𝑤𝑖𝑗)  is defined as one if i and j are neighbors and zero 

Extract residential building construction census 

of employment and wages data from the main 

dataset 

 

Obtain annual census of employment and wages data from 

Bureau of Labor Statistics (BLS)  

Specify affected counties in Florida from 

Federal Emergency Management Agency 

(FEMA)  

Specify the year of disaster occurrence in Florida 

from Federal Emergency Management Agency 

(FEMA)  

Specify major disaster declaration in Florida State from 

Federal Emergency Management Agency (FEMA)  
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otherwise.  Following standard convention, “self-influence” of county i on itself is 

excluded by assuming that 𝑤𝑖𝑖   = 0 for all i = 1,2, 3,…, n. So, the matrix of W has 

zero diagonal elements (Smith, 2014).  In this research, spatial contiguity weight 

matrix was used with the following convention (see Eq. 3-1):  

 𝑤𝑖𝑗 = {
1 ,         𝑏𝑜𝑢𝑛𝑑𝑟𝑦(𝑖) ∩  𝑏𝑜𝑢𝑛𝑑𝑟𝑦(𝑗) ≠ ∅ 

0 ,         𝑏𝑜𝑢𝑛𝑑𝑟𝑦(𝑖) ∩  𝑏𝑜𝑢𝑛𝑑𝑟𝑦(𝑗) = ∅
                      Equation 3-1                            

This matrix allows the condition that counties, even with a common border 

point, are still considered as neighbors.  

In this research, First, U.S counties shapefile in GIS1 was used to extract the 

Florida shapefile, which includes the counties of Florida and the geographical 

boundaries of each county. Then, the GeoDa2 software was used to create the 

weight matrix from the Florida shapefile (see Figure 3-7). Then, the created weight 

matrix was row standardized by dividing each element by the total for that row. 

Row standardization is recommended because, in a weighted average formula, the 

weights need to sum up to one, so the values for each county based on the values 

of its neighbors can be predicted. 

 

 

1 Geographic Information Systems is a mapping technology that allows the user to create and interact 

with a variety of maps and data sources 

2 GeoDa is a free software program that acts as an introduction to spatial analysis 
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(a)                                                                  (b)             

Figure 3-7 (a) Counties in Florida contiguity binary matrix (Queen) from GeoDa; (b) 

Counties in Florida connectivity histogram from GeoDa 

 

3.4 Spatial Autocorrelation Moran’s I Test 

Moran’s I is a coefficient correlation that measures the spatial 

autocorrelation of the dependent variable in the dataset over the space (Tiefelsdorf, 

2006). This coefficient shows how our dependent variable in a specific county is 

similar to the dependent variable in neighboring county(s). To rephrase it, it is 

expected that the close observations are more likely to be similar than those far 

apart. A weight is associated with each pair (𝑦𝑖, 𝑦𝑗 which), which quantifies this 

neighboring relationship. These weights are set to be 1 for close neighbors, and 0 

otherwise. To obtain the Moran’s I coefficient, the Moran’s I test was conducted in 
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GIS to see whether our dependent variables are spatially correlated. Moran’s I 

formula is (see Eq. 3-2): 

𝐼 =
𝑛

𝑆0
 
∑ ∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 (𝑦𝑖−𝑦̅)(𝑦𝑗−𝑦̅)

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

                                                       Equation 3-2 

Where 𝑤𝑖𝑗 is the weight between observation i and j, and 𝑆0 is the sum of 

all wij ’s (see Eq. 3-3). 

𝑆0 = ∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1                  Equation 3-3 

3.5 Panel Data Models  

In this section, the econometrics methods that are used to examine the 

impact of a disaster on labor wage fluctuation are discussed. First, the following 

panel data model was used to estimate the construction labor wage fluctuation as a 

result of a natural disaster (see Eq. 3-4)  

we_wag𝑖𝑡 =  𝛽0 +  𝛽1𝑒𝑠𝑡𝑖𝑡 + 𝛽2𝑒𝑚𝑝𝑖𝑡 + 𝛽3𝑐𝑜𝑛𝑖𝑡 + 𝛽4𝑑𝑖𝑠𝑖𝑡 + 𝛼𝑖 +  𝛼𝑡 + 𝑢𝑖𝑡           Equation 3-4 

Where we_wag𝑖𝑡 is the average weekly labor wage in the residential 

construction market sector in county i and year t; 𝑒s𝑐𝑖𝑡 is the average establishment 

count in the residential construction market sector in county i and year t; 𝑒𝑚𝑝𝑖𝑡 the 

is average employment level in the residential construction market sector in county 

i and year t; 𝑐𝑜𝑛𝑖𝑡  is the level of contributions in the residential construction market 

sector in county i and year t; 𝑑𝑖𝑠𝑖𝑡 is the disaster dummy variable for the county i 

and year t; 𝛼𝑖 represents the unobservable time-invariant county fixed-effects such 
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as cultural factors; 𝛼𝑡 is a vector of year dummy variables, that is controlled for an 

unobserved variable which is not different county to county but may vary over time, 

such as government policies; 𝑢𝑖𝑡 is the time-varying idiosyncratic error and it 

represents the unobservable variable which is different from county to county and 

different over the time; 𝛽4 is our coefficient of interest, which represents the effect 

of a natural disaster on weekly labor  wage fluctuations. Smith & McCarty (2009) 

mention that after one year during hurricane season in Florida, about 35 percent of 

damage structures have been repaired. Anecdotal evidence shows that disasters will 

start affecting the construction market during the next year. Given that most of the 

natural disasters in Florida have occurred towards the end of the year, the disaster 

dummy is created so that it takes a value of one when the economic impact is 

currently due to the disaster that occurred one year earlier. For example, if disasters 

occurred in late 2016, the construction market will be affected in 2017, so the 

dummy variable gets one for 2017, and zero otherwise. 

3.5.1 Base Models 

Ordinary Least Squares (OLS) were used to estimate the Equation (2). The 

estimators obtained from the OLS model do not control for the unobserved time-

invariant county effects (𝛼𝑖), so the results are biased and inconsistent. The fixed-

effects model helps to mitigate the bias due to time-invariant factors (𝛼𝑖) that are 

correlated with independent variables. A fixed-effect model can control for 
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unobservable specific characteristics of each county, which is related to a disaster; 

for example, geographical features of each county that may affect natural disaster 

occurrence. Lagrange multiplier test proposed by Breusch and Pagan (1980) was 

used to see whether unobserved time-invariant county fixed-effects (𝛼𝑖) exist. The 

rejection of the null hypothesis shows that the OLS estimators are not appropriate, 

so random-effect or fixed-effect models are more appropriate. 

Although the fixed-effect model can control for heterogeneity across the 

counties, it cannot take spatial dependency into account. In simpler terms, it cannot 

check if disaster occurrence in one county affects weekly wage fluctuation in its 

neighboring county(s). LeSage and Pace (2009) indicated that a change in a specific 

observation not only affects that observation (a direct impact) but also may 

potentially affect all other observations indirectly (an indirect impact). This 

phenomenon is called interactive heterogeneity or multi-county interaction 

(LeSage and Pace, 2009) 

3.5.2 Spatial Panel Models with Difference-in-Difference Technique 

 To take interactive heterogeneity into account, the following spatial panel 

models were used. In the following panel models, a disaster dummy variable is 

added to capture the effect of natural disasters on labor wage fluctuation through 

the difference-in-difference technique (see Eq. 3-5, Eq. 3-6, Eq. 3-7, Eq. 3-8).  

Spatial Durbin Model (SDM) 
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we_wag𝑖𝑡 =  𝛽0 + ρW𝑖𝑗we_wag𝑗𝑡 +  𝛽1𝑒𝑠𝑡𝑖𝑡 + 𝛽2𝑒𝑚𝑝𝑖𝑡 + 𝛽3𝑐𝑜𝑛𝑖𝑡 + 𝛽4𝑑𝑖𝑠𝑖𝑡 + 𝛿1W𝑖𝑗𝑒𝑠𝑡𝑗𝑡 +

𝛿2W𝑖𝑗𝑒𝑚𝑝𝑗𝑡 + 𝛿3W𝑖𝑗𝑐𝑜𝑛𝑗𝑡 + 𝛿4W𝑖𝑗𝑑𝑖𝑠𝑗𝑡+𝛼𝑖 +  𝛼𝑡 + 𝑢𝑖𝑡                         Equation 3-5 

i= 1,…, 67 and   t= 2014, 2015, 2016, 2017, 2018 

Spatial Autoregressive Model (SAR) 

we_wag𝑖𝑡 =  𝛽0 + ρW𝑖𝑗we_wag𝑗𝑡 +  𝛽1𝑒𝑠𝑡𝑖𝑡 + 𝛽2𝑒𝑚𝑝𝑖𝑡 + 𝛽3𝑐𝑜𝑛𝑖𝑡 + 𝛽4𝑑𝑖𝑠𝑖𝑡+𝛼𝑖 +  𝛼𝑡 + 𝑢𝑖𝑡                                              

Equation 3-6                                                                                         

 i= 1,…, 67 and   t= 2014, 2015, 2016, 2017, 2018  

Spatial Error Model (SEM) 

we_wag𝑖𝑡 =  𝛽0 +  𝛽1𝑒𝑠𝑡𝑖𝑡 + 𝛽2𝑒𝑚𝑝𝑖𝑡 + 𝛽3𝑐𝑜𝑛𝑖𝑡 + 𝛽4𝑑𝑖𝑠𝑖𝑡+𝛼𝑖 +  𝛼𝑡 + 𝑢𝑖𝑡        Equation 3-7 

𝑢𝑖𝑡 =  𝜓W𝑗𝑖u𝑖𝑡 + 𝜀𝑖𝑡       i= 1,…, 67 and   t= 2014, 2015, 2016, 2017, 2018 

Spatial Autocorrelation Model (SAC) 

we_wag𝑖𝑡 =  𝛽0 + ρW𝑖𝑗we_wag𝑗𝑡 +  𝛽1𝑒𝑠𝑡𝑖𝑡 + 𝛽2𝑒𝑚𝑝𝑖𝑡 + 𝛽3𝑐𝑜𝑛𝑖𝑡 + 𝛽4𝑑𝑖𝑠𝑖𝑡+𝛼𝑖 +  𝛼𝑡 + 𝑢𝑖𝑡      

𝑢𝑖𝑡 =  𝜓W𝑗𝑖u𝑖𝑡 + 𝜀𝑖𝑡       i= 1,…, 67 and   t= 2014, 2015, 2016, 2017, 2018         Equation 3-8 

Where we_wag𝑖𝑡 is the average weekly labor wage in the residential 

construction market sector in county i and year t; 𝑒s𝑐𝑖𝑡 is the average establishment 

count in the residential construction market sector in county i and year t; 𝑒𝑚𝑝𝑖𝑡 the 

is average employment level in the residential construction market sector in county 

i and year t; 𝑐𝑜𝑛𝑖𝑡  is the level of contributions in the residential construction market 

sector in county i and year t; 𝑑𝑖𝑠𝑖𝑡 is the disaster dummy variable for the county i 

and year t; 𝛼𝑖 represents the unobservable time-invariant county fixed-effects such 
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as cultural factors; 𝛼𝑡 is a vector of year dummy variables, that is controlled for an 

unobserved variable which is not different county to county but may vary over time, 

such as government policies; 𝑢𝑖𝑡 is the time-varying idiosyncratic error; W is the 

67×67 spatial weight matrix that represents the queen contiguity weight matrix of 

67 counties in Florida state. In the Spatial Error Model (SEM) and Spatial 

Autocorrelation Model (SAC), W𝑗𝑖u𝑖𝑡 is a spatial lag of the error terms (u). This 

term is expected to capture the neighborhood effects among the error term. 

Connected counties may be subjected to a similar policy or institutional 

environment, so similar outcomes are expected from them (Elhorst, 2014). In these 

models, 𝛹 is the spatial autocorrelation coefficient, which shows the spatial 

correlation of the error terms among neighboring observations. 

The spatial autocorrelation model is a mix of the Spatial Autoregressive 

Model (SAR) and Spatial Error Model (SEM) (Anselin, 1988; LeSage and Pace, 

2009). 

In the SDM, SAR, and SAC models (see Eq. 3-5, 3-6, 3-8), the levels of the 

county weekly wage are expected to depend on the weekly wage in the neighboring 

counties. This dependency is taking into consideration by the spatial lag vector 

W𝑖𝑗we_wag𝑗𝑡. The weekly wage in county i affects the weekly wage in county j, 

which in turn affects the weekly wage in county k, which then affects the amount 

of weekly wage in county i. Each we_wag𝑗𝑡  depends on the weighted average of 
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other observation i, the dependent variable over the neighboring counties. ρ is the 

spatial dependence parameter that measures the dependence of weekly wages in 

county i on the neighboring counties' weekly wages. There is no dependence if ρ =

0. The high level of positive ρ indicates that if the weekly wage is high in the 

neighborhood of a county, weekly wage in that county is high too.  

In the SDM model (see Eq. 3-5), the establishment count, level of 

employment, level of contribution, and disaster occurrence (independent variables) 

of neighboring regions proxied by W𝑖𝑗𝑒𝑠𝑡𝑗𝑡 ,W𝑖𝑗𝑒𝑚𝑝𝑗𝑡,W𝑖𝑗𝑐𝑜𝑛𝑗𝑡 , and W𝑖𝑗𝑑𝑖𝑠𝑗𝑡 

respectively. This model helps to control for omitted variable bias by including the 

spatial lag of the independent and independent variables. Spatial Durbin Model 

includes both endogenous interaction/neighborhood effects (ρW𝑖𝑗we_wag𝑗𝑡) and 

exogenous interaction/neighborhood effects  

(𝛿1W𝑖𝑗𝑒𝑠𝑡𝑗𝑡 ,  𝛿2W𝑖𝑗𝑒𝑚𝑝𝑗𝑡,  𝛿3W𝑖𝑗𝑐𝑜𝑛𝑗𝑡 ,  𝛿4W𝑖𝑗𝑑𝑖𝑠𝑗𝑡).  

In the standard models, to interpret the effect of one explanatory variable 

on the dependent variable, the partial derivative of the dependent variable with 

respect to the desired explanatory variable must be taken. For example, the partial 

derivative of the dependent variable we_wag𝑖𝑡 with respect to the explanatory 

variable 𝑑𝑖𝑠𝑖𝑡 is expected to be 𝛽4, while the interpretation of the spatial models 

would be different from the base models. This difference arises from considering 

the effect of the feedbacking loop among the neighboring counties (LeSage and 
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Pace, 2009). For example, in the county i, Spatial Durbin Model can capture 

feedback effects from weekly wage fluctuation in neighboring county j that arise 

from a weekly wage change originating in the county i. According to Elhorst 

(2014), to interpret the spatial panel model, partial derivative of the expected values 

of the dependent variable with respect to the explanatory variables 𝜕𝑥𝑛𝑘 was taken 

(see Eq. 3-9). 

[
 
 
 
 
 
𝜕𝐸(𝑦1)

𝜕𝑥1𝑘

𝜕𝐸(𝑦1)

𝜕𝑥2𝑘
⋯

𝜕𝐸(𝑦1)

𝜕𝑥𝑛𝑘

𝜕𝐸(𝑦2)

𝜕𝑥1𝑘

𝜕𝐸(𝑦2)

𝜕𝑥2𝑘
⋯

𝜕𝐸(𝑦2)

𝜕𝑥𝑛𝑘

⋮ ⋮ ⋱ ⋮
𝜕𝐸(𝑦𝑁)

𝜕𝑥1𝑘

𝜕𝐸(𝑦𝑁)

𝜕𝑥2𝑘
⋯

𝜕𝐸(𝑦𝑁)

𝜕𝑥𝑛𝑘 ]
 
 
 
 
 

=  ((𝐼𝑁 − 𝜌𝑊)−1) [

𝛽𝑘 𝑤12𝛿𝑘 ⋯ 𝑤1𝑁𝛿𝑘

𝑤21𝛿𝑘 𝛽𝑘 ⋯ 𝑤2𝑁𝛿𝑘

⋮ ⋮ ⋱ ⋮
𝑤𝑁1𝛿𝑘 𝑤𝑁2𝛿𝑘 ⋯ 𝛽𝑘

]          

Equation 3-9 

Taking partial derivative allows us to measure the direct, indirect, and total 

effects. The diagonal elements represent direct effects, while the off-diagonal 

elements represent the spillover effects.  

In the SAR and SAC models, the direct and indirect spillover effects can be 

obtained as (see Eq. 3-10) 

[
𝜕𝐸(𝑦𝑁)

𝜕𝑥1𝑘
⋯

𝜕𝐸(𝑦𝑁)

𝜕𝑥𝑛𝑘
] = [

𝜕𝐸(𝑦1)

𝜕𝑥1𝑘
.

𝜕𝐸(𝑦1)

𝜕𝑥𝑁𝑘
. . .

𝜕𝐸(𝑦𝑁𝑛)

𝜕𝑥1𝑘
.

𝜕𝐸(𝑦𝑛)

𝜕𝑥1𝑘

] =  (𝐼𝑁 − 𝜌𝑊)−1𝛽𝑘           Equation 3-10 
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In this model, the diagonal elements of the partial derivative matrix (𝐼𝑁 −

𝜌𝑊)−1𝛽𝑘 indicate the direct impact and the off-diagonal elements of (𝐼𝑁 −

𝜌𝑊)−1𝛽𝑘 indicate the indirect impact. 

While, in the Spatial Durbin Model, the ratio between the indirect effects 

and the direct effect may be different for different explanatory variables (Eilers, 

2016), in the SAR and SAC models, this ratio is the same for every explanatory 

variable, which resulted in a considerable limitation (Elhorst, 2014). Elhorst (2014) 

denoted that this limitation makes SAR and SAC models less appropriate in 

empirical research.  

Since the focus of this research is to investigate the impact of natural 

disasters on the labor weekly wage, the direct effect, indirect effect, and total effect 

of a natural disaster on the labor weekly wage were measured. Direct effect, indirect 

effect, and total effect were defined as below: 

The direct effect is the effect of the natural disaster occurrence in county i 

on the county i’s labor weekly wage fluctuation.  

The indirect effect is the weekly wage fluctuation that stems from the 

disaster occurrence in the neighboring counties.  

The total effect is the weekly wage fluctuation that stems from the disaster 

occurrence in all counties. 
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4. CHAPTER 4  

HANDLING OF MISSING DATA 

In this research, the data set suffers from missing values. Among 335 collected 

observations, 48 observations were missing from different counties over different years. In this 

chapter, different methods were discussed to handle missing data. One of the common problems 

in data analysis is handling the missing data. Missing data is defined as data value that is not 

available for a variable of interest in the dataset (Kang, H., 2013). If there are any missing 

observation(s), a common way to handle that is to delete the observation from the data set. 

However, rather than removing valuable data that can impact results, missing data can be imputed 

using other information from the dataset. Figure 4-1 shows, four methods were used to handle the 

missing data: Removing observations with missing values, mean imputation, imputation using 

average nearest neighbors, and imputation using multiple imputation methods. Each method has 

pros and cons, which will be discussed in Chapter 5.  

 

Figure84-1 Handling of Missing Data Methods 

 

This research began with obtaining data on the annual census of employment and wages 

from the Bureau of Labor Statistics (BLS). Data in 67 counties in Florida over the period of 2014 

to 2018 was obtained from BLS.  
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4.1 Removing Counties with Missing Observations from Analysis  

The first strategy to use incomplete datasets is to discard entire rows containing missing 

values. This strategy results in losing data, which may be valuable despite it being incomplete. In 

the panel data modeling, losing those counties with missing data may affect contiguity 

relationships, and the spatial panel results dramatically. In this method, the treatment group and 

the control group with no missing observations need to set up. For example, all the counties with 

missing data from the control group and treatment group were removed. Table 4-1 shows an 

example of removing the observations with a missing value(s) from the dataset. In this example, 

observations A, C, and E have missing value(s) that were removed from the dataset. 

 Table 4-1  (a) Specifying the observations with missing values; (b) Removing the observations with 

missing values from the dataset 

 2014 2015 2016 2017 2018 

A Missing 3 4 6 8 

B 9 6 7 3 4 

C 5 1 Missing Missing 3 

D 8 5 9 1 3 

E Missing Missing Missing Missing Missing 

F 2 3 5 2 8 

(a) 

 2014 2015 2016 2017 2018 

B 9 6 7 3 4 

D 8 5 9 1 3 

F 2 3 5 2 8 

(b) 

4.2 Imputation Using Mean  Value 

In the dataset, two patterns for missing data were observed. In the first pattern, there were 

missing values in some years. Moreover, there was at least one non-missing value over the five 

County ID 
Year 

County ID 
Year 
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years. In the second pattern, all the observations over five years were missing in some counties. In 

the first case, the mean of non-missing values in the specific county over the years was calculated. 

Then the missing values were imputed by the calculated means. In the second case, where all 

values were missing for all years, the mean of non-missing values in all counties over the specific 

year was calculated. Afterward, the missing values for that specific year were imputed by the 

calculated mean.  To follow with a consistent structure, in this research, the first cases were 

addressed first. Then the second cases were addressed thereafter. To clarify the imputation stages 

in this method, an example is explained through Table 4-2, Table 4-3, and Table 4-4. 

Table 4-2 illustrates the row mean calculation.  In this step, the mean in each county over 

the non-missing year was calculated.  

Table 4-2 Calculating the mean in each county over the non-missing year (row mean) 

 2014 2015 2016 2017 2018 Row mean 

A Missing 3 4 6 8 5.25 

B 9 6 7 3 4 5.8 

C 5 1 Missing Missing 3 3 

D 8 5 9 1 3 5.2 

E Missing Missing Missing Missing Missing  

F 2 3 5 2 8 4 

Column average       

 

Table 4-3 shows how the missing values in the counties with at least one non-missing value 

over a period of five years were imputed by calculated row means.   

 

 

 

County ID 
Year 
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Table 4-3 Imputing the missing values in the counties with at least one non-missing value over a period 

of five years 

 2014 2015 2016 2017 2018 Row mean 

A 5.25 3 4 6 8 5.25 

B 9 6 7 3 4 5.8 

C 5 1 3 3 3 3 

D 8 5 9 1 3 5.2 

E Missing Missing Missing Missing Missing  

F 2 3 5 2 8 4 

Column mean       

 

Table 4-4 shows how the mean in the specific year for all non-missing values (column 

mean) was calculated, and the missing values in the counties with five missing values over a period 

of five years were imputed by that calculated mean. 

County ID 
Year 
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Table 4-4 Calculating the mean in the specific year for all non-missing values (column 

mean) and impute the missing values in the counties with five missing values over a 

period of five years 

 

 

4.3 Imputation Using Average Nearest Neighbors 

Another imputation method proposed by this research was an Average 

Nearest Neighbors algorithm based on the cluster analysis.  Based on the Moran’s 

I test, the spatial autocorrelation of the dependent variable in the dataset over the 

space was observed. As a queen method was used to conduct the Moran’s I test, the 

same method is used to determine the neighboring counties. County i and j are 

neighbors if county i is adjacent to zone j. Non-missing values of the adjacent 

neighbors were used to calculate missing values in a specific county with missing 

data. Figure 4-2 shows an example of missing data calculation. If county i (specified 

by the blue dot) has missing data, non-missing values of the adjacent neighbors 

(specified with the red dots) were used to impute the missing value in county i. 

 2014 2015 2016 2017 2018 Row mean 

A 5.25 3 4 6 8 5.25 

B 9 6 7 3 4 5.8 

C 5 1 3 3 3 3 

D 8 5 9 1 3 5.2 

E 5.85 3.6 5.6 3 5.2  

F 2 3 5 2 8 4 

Column mean 5.85 3.6 5.6 3 5.2  

County ID 
Year 
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Figure94-2 Florida county map, blue dot specifies county i, red dots specify the adjacent 

counties of the county i 

 

4.4 Imputation Using Multiple Imputation Method 

In thе Multiplе Imputation mеthod, instеad of filling in a singlе missing 

valuе, thе distribution of thе obsеrvеd data is usеd to еstimatе multiplе valuеs that 

rеflеct thе uncеrtainty around thе truе missing valuе. Thеsе valuеs arе thеn usеd in 

thе analysis, such as thе OLS modеl, and spatial modеls. Thе multiplе imputation 

mеthod has thrее main phasеs: Imputation Phasе, Analysis Phasе, and Pooling 

Phasе. In thе imputation phasе, thе missing valuеs arе fillеd with еstimatеd valuеs 

to crеatе thе complеtе data sеt. This procеss is rеpеatеd m timеs to crеatе m 
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complеtеd datasеts. In othеr words, m copiеs of thе data sеt arе crеatеd with 

diffеrеnt imputеd valuеs. Thе mеans and covariancе of thе non-missing data arе 

usеd to еstimatе thе missing valuеs. Thеn, to prеdict thе incomplеtе valuеs from 

thе complеtе valuеs, rеgrеssion еquations arе usеd and thе rеgrеssion paramеtеrs 

arе updatеd aftеr еvеry itеration to gеnеratе diffеrеnt imputеd valuеs. Aftеr еach 

itеration, onе datasеt is storеd until all missing valuеs arе imputеd in thе datasеt. In 

thе analysis phasе, thosе m complеtеd datasеts arе usеd to analyzе using statistical 

mеthods. In thе pooling phasе, thе paramеtеr еstimatеs obtainеd from thе analysis 

phasе arе combinеd to prеsеnt thе rеsult.   

In the pooling phase, all imputed datasets are used to obtain the final 

parameter estimates by taking the average over the parameter estimates from 

imputed datasets. Equation 4-1, Equation 4-2, and Equation 4-3 show how the 

standard errors are obtained by combining the within and between imputation 

variance.   

𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛 = 
∑ 𝑆𝐸2𝑖𝑀

𝑖=1

𝑀
                       Equation 4-1 

𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 
∑ (𝛽𝑖−𝛽̅)2𝑖𝑀

𝑖=1

𝑀−1
                                                        Equation 4-2  

𝑉𝑎𝑟𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛 + 𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 
𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑀
                                        Equation 4-3 

Where 𝛽 is the parameter estimate, Var is variance, SE is standard error, M 

is the number of imputed datasets. 
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5. CHAPTER 5  

RESULTS AND INTERPRETATIONS 

First, the presence of spatial autocorrelation among our dependent variables is tested. 

Described in basic terms, this test measures how one dependent variable in the dataset is similar 

to others surrounding it. If the variables are spatially correlated with each other, it means that they 

are not independent, and the spatial relationship of the data in statistical models must be 

considered. In the second part of this chapter, the results of base models (non-spatial models) and 

spatial panel models are presented and discussed in two separate categories. The data used in this 

research had missing values. Having statistical models with the missing values can drastically 

impact the model’s quality. The dataset used in this study is suffered due to missing 14% of its 

values. In this research, four different methods are used to handle missing values, including the 

mean imputation method, removing observations with a missing value(s) from the dataset, average 

nearest neighbors’ method, and multiple imputation method. Among all four methods used in this 

study, the multiple imputation method is specifically designed for handling missing data in spatial 

panel data models. One of the main contributions in this study is the use of the multiple imputation 

method that is specifically designed for spatial panel datasets with missing values. The results 

obtained from these methods are compared in the final part of this chapter.  

5.1 Moran’s I Test Results 

Moran’s I test has been conducted to test for spatial autocorrelation among our dependent 

variable (construction labor weekly wage). Figure 6 illustrates one sample of GIS report for our 

dependent variable in 2017. Moran’s I test is conducted for the years 2014 to 2018 separately, and 

the results showed the clustering pattern in all years (see Table 5-1).  
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Table 5-1 spatial autocorrelation Moran's I test on the dependent variable from 2014-2018 

Dependent Variable Moran’s I Index Z-score P-value Clustered/Dispersed/Random 

Average weekly wage year 2014 0.376 4.839 0.000 Clustered 

Average weekly wage year 2015 0.462 5.923 0.000 Clustered 

Average weekly wage year 2016 0.403 5.232 0.000 Clustered 

Average weekly wage year 2017 0.297 3.862 0.000 Clustered 

Average weekly wage year 2018 0.430 5.485 0.000 Clustered 

 

Florax and Nijkamp (2003) indicated that the interpretation of Moran’s I is parallel to a 

correlation coefficient. A positive value shows a positive spatial autocorrelation. These positive 

values, from 2014 to 2018, show the occurrence of similar values of a variable being found over 

contiguous or adjacent spaces. For example, in 2017, the Moran’s I statistic on the labor weekly 

wage, shows a positive value of 3.862 with a p-value of 0.000 (see Figure 5-1). As expected, this 

result indicates that the null hypothesis of no spatial dependence is rejected. Furthermore, the test 

statistic indicates that positive spatial autocorrelation exists. Spatial models should be adopted 

instead of the non-spatial OLS estimations to obtain unbiased and consistent estimators. 

 

Figure 5-1 Sample of spatial autocorrelation report from GIS for dependent variable in 2017 across the 

state of Florida 
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5.2 Results of Panel Data Models 

In this section, the results of panel data models are presented in two main categories. In the 

first category, the results of the base models are presented. In the second category, the results of 

spatial panel models are presented. Each category is divided into four subcategories. In each 

subcategory, the result of one of the methods for handling missing data is presented. Figure 5-2 

shows the layout of the presentation of the results. 

 

 

5.2.1 Results of Base Models  

The results of the OLS model and the fixed-effect model are given in the first column and 

the second column of Table 6, Table 7, and Table 8, respectively. The missing data in the data set 

were handled using three common techniques, mean imputation, removing counties with missing 

data, and average nearest neighbors. While the result of the regression from imputed data is 

tabulated in Table 6, the result of regression from removing counties with missing data is shown 

Results of Panel Data models 

Results of Base Models Results of Spatial Panel Models 

Mean Imputed Data 

Removing Missing Data 

Average Nearest Neighbors 

Handling Missing Data Methods 

 Mean Imputed Data 

Removing Missing Data 

Average Nearest Neighbors 

Multiple Imputed Data 

Handling Missing Data Methods 

 

OLS/ OLS Fixed-effect SAR/ SEM/ SAC/ SDM 

Figure 5-2 Layout of results  
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in Table 7, and the result of regression from average nearest neighbors methods are tabulated in 

Table 8. 

5.2.1.1 Results of Base Models from the Mean Imputed Data 

While fixed-effects estimator accounts for the unobserved county heterogeneity (𝛼𝑖), OLS 

estimator does not control for that (𝛼𝑖). The results from the OLS model indicated that the average 

labor weekly wage in those counties that are affected by disaster is 10 percent higher than those 

counties next year which are not affected by the disaster (see Table 5-2). However, as the results 

from the Moran’s I statistic and model diagnostic tests in Table 5-1 show, estimates using the OLS 

method suffer from a major problem. There is evidence of a positive spatial autocorrelation, that 

the OLS result simply ignores this spatial variation and produces biased estimates. Also, the LM 

test statistic suggests that the fixed-effect model is an appropriate alternative. Downward bias is 

found in the OLS estimates, suggesting an underestimation of the disaster impact on the labor 

weekly wage increase. The fixed-effect result shows that the average labor weekly wage in those 

counties that are affected by a disaster is 11 percent higher next year than those counties that are 

not affected by the disaster. Table 5-2 indicates that the results from both the OLS and fixed-effect 

models are significant at a 99 percent level of confidence.  
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Table 5-2 Estimated results from pooled OLS and fixed-effect model (mean imputed data) 

Variables 
OLS OLSfe 

lnwe_wag lnwe_wag 

Establishment Count 
0.000 

(0.000) 

-0.001 

(0.001) 

Employment Level 
0.000 

(0.000) 

0.000 

(0.000) 

Level of Contribution 
0.000*** 

(0.000) 

0.000 

(0.000) 

Disaster 
0.106*** 

(0.036) 

0.113*** 

(0.037) 

Constant 
6.157*** 

(0.050) 

6.358*** 

(0.145) 

Breusch and Pagan Lagrange 

multiplier test (P-value) 
N/A 0.0000 

Year Dummies Yes Yes 

Observations 335 335 

R-squared -- 0.251 

Number of poly_id 67 67 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

5.2.1.2 Results of Base Models from Removing Missing Data 

The results from the OLS model indicated that the average labor weekly wage in those 

counties that are affected by a disaster is 6.2 percent higher in the next year than those counties, 

which are not affected by the disaster (see Table 5-3). The fixed-effect result shows that the 

average labor weekly wage in those counties that are affected by disaster is 6.4 percent higher in 

the next year than those counties that are not affected by the disaster. Table 5-3 indicates that both 

results from OLS and fixed-effect models are significant at a 95 percent level of confidence.  
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Table 5-3 Estimated results from pooled OLS and fixed-effect model (removing missing data) 

Variables 
OLS OLSfe 

lnwe_wag lnwe_wag 

Establishment Count 
0.000 

(0.000) 

-0.000 

(0.001) 

Employment Level 
0.000 

(0.000) 

0.000 

(0.000) 

Level of Contribution 
0.000 

(0.000) 

-0.000 

(0.000) 

Disaster 
0.062** 

(0.026) 

0.064** 

(0.026) 

Constant 
6.371*** 

(0.048) 

6.562*** 

(0.139) 

Breusch and Pagan Lagrange 

Multiplier Test (P-value) 
N/A 0.0000 

Year Dummies Yes Yes 

Observations 230 230 

R-squared -- 0.375 

Number of poly_id 46 46 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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5.2.1.3 Results of Base Models from the Average Nearest Neighbors 

 

The results from the OLS model indicated that the average labor weekly wage in those 

counties that are affected by disaster is 6.8 percent higher in the next year than those counties, 

which are not affected by the disaster (see Table 5-4). The fixed-effect result shows that the 

average labor weekly wage in those counties that are affected by disaster is 7 percent higher in the 

next year than those counties that are not affected by the disaster. Table 5-4 indicates that both 

results from OLS and fixed-effect models are significant at a 95 percent level of confidence.  

 Table 5-4 Estimated results from pooled OLS and fixed-effect model (average nearest neighbors) 

Variables 
OLS 

lnwe_wag 

OLSfe 

lnwe_wag 

Establishment Count 
0.001 

(0.000) 

0.000 

(0.001) 

Employment Level 
0.000 

(0.000) 

0.000 

(0.000) 

Level of Contribution 
0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.068 

(0.042) 

0.070 

(0.043) 

Constant 6.233*** 

(0.044) 

6.313*** 

(0.168) 

Breusch and Pagan Lagrange 

Multiplier Test (P-value) 
N/A 0.0000 

Year Dummies Yes Yes 

Observations 335 335 

R-squared -- 0.150 

Number of poly_id 67 67 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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5.2.2 Results of Spatial Models  

As mentioned above, the fixed-effect model accounts for both individual and temporal 

heterogeneity but not for the interactive heterogeneity or the spatial dependence among 

neighboring counties. Thus, we estimated our model using spatial panel data models (SAR, SEM, 

SAC, and SDM). As we mentioned before, Spatial Durbin Model (SDM) is taking both 

endogenous and exogenous interactions (neighborhood effects) into account.  

5.2.2.1 Results of Spatial Panel Models from the Mean Imputed Data 

The results from the SDM model indicated that the coefficient on the natural disaster is 

statistically significant and positive.  This result indicates that the disaster occurrence in county i 

is associated with an increase in the labor weekly wage of this county one year after the disaster 

occurrence. The disaster occurrence in neighboring counties is also negatively associated with the 

labor weekly wage in county i. However, this coefficient is not statistically significant, meaning 

that the labor weekly wage in a particular county is not affected by the disaster occurrence in the 

neighboring counties (see Table 5-5).  
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Table 5-5 Estimated results from spatial panel models imputed (mean imputed data) 

Variables SARfe SEMfe SACfe 
SDMfe 

Main Wx 

Establishment Count 
-0.000 

(0.000) 

-0.000 

(0.001) 

-0.001 

(0.001) 

-0.001 

(0.001) 

-0.003* 

(0.002) 

Employment Level 
0.000* 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Level of Contribution 
0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.096*** 

(0.026) 

0.114*** 

(0.036) 

0.063*** 

(0.021) 

0.122** 

(0.056) 

-0.003 

(0.067) 

W𝑖𝑗lnwe_wag 
0.257*** 

(.095) 

N/A 0.592*** 

(0.147) 

0.220*** 

(0.079) 

N/A 

Ψ 
N/A 0.261*** 

(0.077) 

-0.487** 

(0.198) 

N/A N/A 

Hausman Test (chi2) N/A N/A N/A 0.027 N/A 

Observations 268 268 268 268 268 

R-squared 0.247 0.313 0.179 0.010 0.010 

Number of poly_id 67 67 67 67 67 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

As highlighted above, in order to accurately quantify the impact of the natural disaster on 

the wage fluctuation, we rely on the own partial derivatives and the cross partial derivatives.  

The direct, indirect, and total impacts of the natural disaster on the labor weekly wage in 

all four different spatial panel models that we used are illustrated in Table 5-6. Aforementioned 

above, the direct impact is the average impact of the natural disaster occurrence in county i on the 

weekly wage fluctuation in that county. The indirect impact is the weekly wage fluctuation that 

stems from the disaster occurrence in the neighboring counties. The total impact is the sum of 

direct and indirect impacts. The weekly wage impacts of natural disasters go through connected 

counties and then return to the initial counties. By way of illustration, the natural disaster 

occurrence in county i are expected to impact the labor weekly wage in county j, which impacts 

the outcome in county k, which eventually impacts the labor weekly wage fluctuation in county i. 
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We also find that natural disaster occurrence is associated with an indirect or spillover effect. This 

spillover effect indicates that the disaster occurrence in one county negatively impacts the labor 

weekly wage in neighboring counties. It should be noted that the coefficient of the indirect impact 

of natural disasters on the weekly wage is not statistically significant.  

Overall, the results from Table 5-6 suggest that the disaster occurrence in a particular 

county has a significant positive impact on the labor weekly wage in that county itself. 
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Table 5-6 Direct, Indirect, and Total Impacts from spatial panel data models (mean imputed data) 

Variables SAR fe SAC fe SDM fe 

Main Direct Indirect Total Main Direct Indirect Total Main Wx Direct Indirect Total 

Establishment 

Count 
-0.000 

(0.000) 

-0.000 

(0.000) 

-0.000 

(0.000) 

-0.001 

(0.001) 

-0.001 

(0.001) 

-0.001 

(0.001) 

-0.001 

(0.007) 

-0.002 

(0.008) 

-0.001 

(0.001) 

-0.003* 

(0.002) 

-0.001 

(0.001) 

-0.004* 

(0.002) 

-0.005* 

(0.002) 

Employment Level 
0.000* 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.001) 

0.000 

(0.001) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.001* 

(0.000) 

0.001* 

(0.000) 

Level of 

Contribution 
0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.096*** 

(0.026) 

0.099*** 

(0.027) 

0.035* 

(0.021) 

0.133*** 

(0.044) 

0.063*** 

(0.021) 

0.072*** 

(0.022) 

0.108 

(0.148) 

0.181 

(0.155) 

0.122** 

(0.056) 

-0.003 

(0.067) 

0.123** 

(0.053) 

0.026 

(0.069) 

0.149*** 

(0.049) 

Observations 268 268 268 268 268 268 268 268 268 268 268 268 268 

Number of poly_id 67 67 67 67 67 67 67 67 67 67 67 67 67 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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5.2.2.2 Results of Spatial Panel Models from the Removing of Missing Data 

The results from the SDM model indicated that the coefficient on the natural disaster is 

positively associated with the labor weekly wage in county i, indicating that the disaster occurrence 

in county i is associated with an increase in the labor weekly wage of this county the year after the 

disaster occurrence. Table 5-7 indicates that the disaster occurrence in neighboring counties are 

also positively associated with the labor weekly wage in county i. However, both coefficients are 

not statistically significant, meaning that the labor weekly wage in a particular county is not 

affected by the disaster occurrence in the neighboring counties and the county i.  

Table 5-7 Estimated results from spatial panel models imputed (removing missing data) 

Variables SARfe SEMfe SACfe 
SDMfe 

Main Wx 

Establishment Count 
-0.001 

(0.001) 

-0.001 

(0.001) 

-0.001** 

(0.000) 

-0.001* 

(0.001) 

-0.001 

(0.001) 

Employment Level 
0.000** 

(0.000) 

0.000** 

(0.000) 

0.000*** 

(0.000) 

0.000** 

(0.000) 

0.000* 

(0.000) 

Level of Contribution 
-0.000* 

(0.000) 

-0.000 

(0.000) 

-0.000 

(0.000) 

-0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.067** 

(0.027) 

0.061*** 

(0.019) 

0.042*** 

(0.013) 

0.008 

(0.057) 

0.079 

(0.062) 

W𝑖𝑗lnwe_wag -0.130** 

(0.058) 

N/A 0.345* 

(0.196) 

-0.168* 

(0.089) 

N/A 

Ψ N/A -0.162* 

(0.091) 

-0.504*** 

(0.181) 

N/A N/A 

Hausman Test (chi2) 1.000 N/A N/A 0.675 N/A 

Observations 184 184 184 184 184 

R-squared 0.193 0.212 0.266 0.251 0.251 

Number of poly_id 46 46 46 46 46 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

As highlighted above, in order to accurately quantify the impact of the natural disaster on 

the wage fluctuation, we rely on the own partial derivatives and the cross partial derivatives. The 
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direct, indirect, and total impacts of the natural disaster on the labor weekly wage in all four 

different spatial panel models that we used and are illustrated in Table 5-8. 
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Table 5-8 Direct, Indirect, and Total Impacts from spatial panel data models (removing missing data) 

Variables 

SAR fe SAC fe SDM fe 

Main Direct Indirect Total Main Direct Indirect Total Main Wx Direct Indirect Total 

Establishment Count 
-0.001 

(0.001) 

-0.001 

(0.001) 

0.000 

(0.000) 

-0.001 

(0.000) 

-0.001** 

(0.000) 

-0.001* 

(0.001) 

-0.001 

(0.002) 

-0.002 

(0.002) 

-0.001* 

(0.001) 

-0.001 

(0.001) 

-0.001 

(0.001) 

-0.001 

(0.001) 

-0.002* 

(0.001) 

Employment Level 
0.000** 

(0.000) 

0.000* 

(0.000) 

-0.000 

(0.000) 

0.000* 

(0.000) 

0.000*** 

(0.000) 

0.000** 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000** 

(0.000) 

0.000* 

(0.000) 

0.000** 

(0.000) 

0.000* 

(0.000) 

0.000** 

(0.000) 

Level of Contribution 
-0.000* 

(0.000) 

-0.000* 

(0.000) 

0.000 

(0.000) 

-0.000* 

(0.000) 

-0.000 

(0.000) 

-0.000 

(0.000) 

-0.000 

(0.000) 

-0.000 

(0.000) 

-0.000 

(0.000) 

0.000 

(0.000) 

-0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.067** 

(0.027) 

0.068*

* 

(0.027) 

-0.008* 

(0.004) 

0.060** 

(0.024) 

0.042*** 

(0.013) 

0.045*** 

(0.015) 

0.028 

(0.042) 

0.073 

(0.051) 

0.008 

(0.057) 

0.079 

(0.062) 

0.004 

(0.060) 

0.068 

(0.063) 

0.072*** 

(0.019) 

Observations 184 184 184 184 184 184 184 184 184 184 184 184 184 

Number of poly_id 46 46 46 46 46 46 46 46 46 46 46 46 46 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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5.2.2.3 Results of Spatial Panel Models from the Average Nearest Neighbors 

The results from the SDM model indicated that the coefficient on the natural disaster is 

positively associated with the labor weekly wage in county i, indicating that the disaster occurrence 

in county i is associated with an increase in the labor weekly wage of this county the year after the 

disaster occurrence. The disaster occurrence in neighboring counties are also positively associated 

with the labor weekly wage in county i. Table 5-9 indicates that both coefficients are not 

statistically significant, meaning that the labor weekly wage in a particular county is not affected 

by the disaster occurrence in the neighboring counties and the county i.  

Table 5-9 Estimated Results from Spatial Panel Models Imputed (average nearest neighbors) 

Variables SARfe SEMfe SACfe 
SDMfe 

Main Wx 

Establishment Count 
0.001 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

0.000 

(0.001) 

-0.002 

(0.002) 

Employment Level 
0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Level of Contribution 
0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.061* 

(0.034) 

0.065* 

(0.037) 

0.075* 

(0.043) 

0.074 

(0.064) 

0.003 

(0.076) 

W𝑖𝑗lnwe_wag 0.096 

(0.073) 
N/A 

-0.311 

(0.343) 

0.085 

(0.087) 
N/A 

Ψ 
N/A 

0.099 

(0.086) 

0.364 

(0.282) 
N/A N/A 

Hausman Test (chi2) N/A N/A N/A 0.000 N/A 

Observations 268 268 268 268 268 

R-squared 0.480 0.469 0.425 0.236 0.236 

Number of poly_id 67 67 67 67 67 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

As highlighted above, in order to accurately quantify the impact of the natural disaster on 

the wage fluctuation, we rely on the own partial derivatives and the cross partial derivatives. The 
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direct, indirect, and total impacts of the natural disaster on the labor weekly wage in all four 

different spatial panel models that we used are illustrated in Table 5-10. 
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Table 5-10 Direct, Indirect, and Total Impacts from spatial panel data models (average nearest neighbors) 

VARIABLES SARfe SACfe SDMfe 

Main Direct Indirect Total Main Direct Indirect Total Main Wx Direct Indirect Total 

Establishment Count 
0.001 

(0.001) 

0.001 

(0.001) 

0.000 

(0.000) 

0.001 

(0.001) 

0.001 

(0.001) 

0.001 

(0.001) 

-0.000 

(0.000) 

0.001 

(0.001) 

0.000 

(0.001) 

-0.002 

(0.002) 

0.000 

(0.001) 

-0.002 

(0.002) 

-0.002 

(0.002) 

Employment Level 
0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Level of Contribution 
0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

-0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.061* 

(0.034) 

0.062* 

(0.034) 

0.006 

(0.006) 

0.068* 

(0.037) 

0.075* 

(0.043) 

0.079* 

(0.045) 

-0.021 

(0.026) 

0.058* 

(0.034) 

0.074 

(0.064) 

0.003 

(0.076) 

0.074 

(0.062) 

0.007 

(0.078) 

0.081* 

(0.048) 

Observations 268 268 268 268 268 268 268 268 268 268 268 268 268 

R-squared 0.480 0.480 0.480 0.480 0.425 0.425 0.425 0.425 0.236 0.236 0.236 0.236 0.236 

Number of poly_id 67 67 67 67 67 67 67 67 67 67 67 67 67 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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5.2.2.4 Results of Spatial Panel Models from the Multiple Imputed Data 

Table 5-11 summarizes the results of three types of fixed-effect Spatial 

Durbin Models. In the individual fixed-effect SDM, the total effect of natural 

disasters on labor weekly wage is significant. In this model, the total effect of a 

natural disaster occurrence in the affected counties increases the labor weekly wage 

by 7.5 percent. This result is more consistent with the results obtained from Table 

13 for SAC, SEM, and SAR models. In all four models, the total effect of natural 

disasters on labor weekly wage is significant, and the magnitude of the effect in all 

four models is similar.  
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Table 5-11 Direct, Indirect, and Total Impacts from spatial panel data models (multiple imputed data) 

VARIABLES SDMfe (time fixed-effect) SDMfe (individual fixed-effect) SDMfe (both time and individual fixed- 

effect) 

 Main Wx Direct Indirect Total Main Wx Direct Indirect Total Main Wx Direct Indirect Total 

Establishment 

Count 

0.000* 

(0.000) 

-0.000 

(0.000) 

0.000* 

(0.000) 

-0.001 

(0.001) 

-0.002 

(0.001) 

0.001 

(0.000) 

0.000 

(0.002) 

0.001 

(0.000) 

0.000 

(0.002) 

0.002 

(0.002) 

0.001* 

(0.000) 

0.000 

(0.002) 

0.001* 

(0.000) 

0.000 

(0.002) 

0.001 

(0.002) 

Employment 

Level 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Level of 

Contribution 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.068 

(0.123) 

0.002 

(0.149) 

0.069 

(0.114) 

0.020 

(0.165) 

0.089 

(0.108) 

0.055 

(0.101) 

0.013 

(0.115) 

0.056 

(0.098) 

0.019 

(0.118) 

0.075* 

(0.046) 

0.057 

(0.100) 

0.004 

(0.121) 

0.057 

(0.099) 

0.004 

(0.124) 

0.061 

(0.062) 

Observations 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 

Number of poly_id 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1  
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5.4 Summary of the Results 

The results from the non-spatial empirical analysis from the first three 

imputation methods that have been used (mean imputed data, removing missing 

data, and average nearest neighbors) show that the OLS model can be biased and 

inconsistent since this estimator does not control for unobserved heterogeneity or 

omitted variable bias. The Breusch and Pagan (1980) test has been used to 

determine whether the unobserved time-invariant property fixed effects (𝛼𝑖) exist. 

The corresponding P-value is 0.000 for this test, as illustrated in the sixth row in 

Table 6, Table 7, and Table 8. As expected, the test rejects the null hypothesis 

showing that unobserved time-invariant property fixed effects (𝛼𝑖) exist. Which is 

to say, in our data sets, there are unobserved variables that change from county to 

county but are constant over time. These unobserved time-invariant country-

specific characteristics (𝛼𝑖) could be managerial and administrative differences, 

geological differences, local laws and regulations, and cultural parameters such as 

the types of business communication interaction at the local level. So, the fixed-

effect OLS result is more appropriate in comparison with OLS results. In this 

research, the coefficient of interest is the coefficient of a natural disaster dummy 

variable. This coefficient indicates the effect of natural disasters on construction 

labor weekly wage fluctuation in the residential construction market. Other 
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exogenous variables are added to the model based on the literature to control for 

other possible effective parameters.    

Table 5-12 summarizes the estimated results from fixed-effect models 

obtained from handling missing data methods. The results from removing the 

missing data method and average nearest neighbors method are almost consistent, 

while the result obtained from the mean imputed method is higher. The fixed-effects 

OLS result from average nearest neighbors indicates that the average labor weekly 

wage in counties affected by the natural disasters is 7 percent higher than the 

counties that are not affected. While the fixed-effects OLS result from removing 

missing data indicates that the average labor weekly wage in counties affected by 

the natural disasters is 6.4 percent higher than the counties that are not affected. 

Table 5-12 shows that the estimated results from pooled OLS fixed-effect models 

obtained from removing missing data and mean imputation method are significant 

at a 95 percent level of confidence and 99 percent level of confidence, respectively. 

Table 5-12 Estimated results from pooled OLS fixed-effect model (removing missing 

data) 

Handling Missing Data Methods Disaster Dummy Variable Estimator 

(OLS Fixed-effect)  

Mean imputed data 0.113*** 

(0.037) 

Removing missing data 
0.064** 

(0.026) 

Average nearest neighbors 0.070 

(0.043) 
Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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The fixed-effects model accounts for heterogeneity across counties and 

temporal heterogeneity over time but not for the interactive heterogeneity or the 

spatial dependence among neighboring counties. Thus, we also estimated our 

parameters by using spatial panel data models. The results are obtained from the 

spatial SAR, SEM, SAC, and SDM models. The results from the Hausman test 

show fixed-effect SAR, fixed-effect SEM, and fixed-effect SAC models are not 

appropriate in comparison to random-effect models. Thus, fixed-effect models 

from SAR, SEM, SAC models need to be rejected. Table 5-13 summarizes the 

results from our preferred model, which is the Spatial Durbin Fixed-Effect Model 

obtained from the handling of missing data methods.  

The Spatial Durbin Model allows for the construction labor weekly wage in 

a county to be dependent on the construction labor weekly wage of the neighboring 

counties, accounted for by the spatial lag vector 𝑊𝑖𝑗  𝑙𝑛𝑊𝑊𝑖𝑗  (natural log of the 

labor average weekly wage) and the natural disaster occurrence in neighboring 

counties 𝑊𝑖𝑗  𝑑𝑖𝑠𝑖𝑗.  

The results from all imputation methods for the Spatial Durbin Model 

indicate the natural disasters have a significantly positive impact on the 

construction labor weekly wage. The fixed-effects SDM result from mean imputed 

data indicates that the average labor weekly wage in counties affected by the natural 

disasters is 12.2 percent higher than the counties that are not affected by natural 
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disasters. The fixed-effects SDM result from removing missing data method 

indicates that the average labor weekly wage in counties affected by the natural 

disasters is 0.8 percent higher than the counties that are not affected by natural 

disasters. The next two fixed-effects SDM results from average nearest neighbors 

method and multiple imputed data indicate that the average labor weekly wage in 

counties affected by the natural disasters is 7.4 percent and 5.5 percent higher than 

the counties that are not affected by natural disasters, respectively. The results from 

the last two methods are more consistent with each other and with the other results 

obtained from other spatial models.  

Based on the results presented in Table 5-13, just the coefficient on the 

natural disasters in the fixed-effect SDM from mean imputed data is statistically 

significant at 95 percent level of confidence, indicating that the occurrence of the 

natural disasters in county i is associated with an increase in the construction labor 

weekly wage of this county. 
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Table 5-12 Summary of the estimated results from the spatial panel data models from 

different handling missing data methods for the coefficient of interest in the Spatial 

Durbin Model 

Panel Data Models Main Disaster 

Coefficient 

Effect Disaster Coefficient 

Spatial Durbin Model (SDM) Fixed-

effect from Mean Imputed Data 
 

0.122** 

(0.056) 

Direct effect 
0.123** 

(0.053) 

Indirect effect 
0.026 

(0.069) 

Total effect 
0.149*** 

(0.049) 

Spatial Durbin Model (SDM) Fixed-

effect 

from Removing Missing Data 

 

0.008 

(0.057) 

Direct effect 
0.004 

(0.060) 

Indirect effect 
0.068 

(0.063) 

Total effect 
0.072*** 

(0.019) 

Spatial Durbin Model (SDM) Fixed-

effect from Average Nearest 

Neighbors 

 

0.074 

(0.064) 

Direct effect 
0.074 

(0.062) 

Indirect effect 
0.007 

(0.078) 

Total effect 
0.081* 

(0.048) 

Spatial Durbin Model (SDM) Fixed-

effect 

From Multiple Imputed Data 

 

0.055 

(0.101) 

Direct effect 
0.056 

(0.098) 

Indirect effect 
0.019 

(0.118) 

Total effect 
0.075* 

(0.046) 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

In order to accurately quantify the impact of the natural disasters on the 

wage fluctuation, we rely on the own partial derivatives and the cross partial 

derivatives. The direct, indirect, and total impacts of the natural disasters on the 
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labor weekly wage are illustrated in Table 5-13. As highlighted above, the direct 

impact is the average impact of the natural disaster occurrence in county i on the 

labor weekly wage in the county. The total impact is the average labor weekly wage 

fluctuation in county i resulted from natural disaster occurrence across all counties. 

The indirect impact is the construction labor weekly wage fluctuation that stems 

from the natural disaster occurrence in the neighboring counties. The total effects 

of the natural disasters on labor weekly wages obtained from all imputation 

methods are significant. The result in the mean imputed data and removing missing 

data methods are significant at a 99 percent level of confidence. In comparison, the 

results from the average nearest neighbors method and multiple imputation 

methods are significant at a 90 percent level of confidence. The magnitude of the 

results in removing missing data method, the average nearest neighbors method, 

and multiple imputation method are almost the same. In contrast, the magnitude of 

the result from mean imputed data is almost doubled. The average nearest 

neighbors method and multiple imputation method are compatible with the spatial 

nature of the data. Both are specifically designed to impute the spatial missing data. 

Especially the spatial multiple imputation method, which is used in this research, is 

one the main contribution of this study in the state of knowledge. Using spatial 

imputation methods resulted in preserving the spatial properties of the data. Thus, 

in this study, the interpretation focus should shift to the Spatial Durbin Model 
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Fixed-effect (SDM) from multiple imputed data and average nearest neighbors 

methods.  

The total impact of natural disasters on labor weekly wage is 8.1 percent 

obtained from the average nearest neighbor imputation method. While the total 

impact of natural disasters on labor weekly wage is 7.5 percent obtained from the 

multiple imputation method. It is not clear which of these two (total results) best 

describes the data. Both models produce spillover effects that are almost consistent 

with each other, both in terms of magnitude and significance. The total effect 

obtained from multiple imputation method indicates that labor weekly wage 

increase by 7.5 percent in counties affected by a natural disaster compared to those 

that are not affected. This increased labor wage stems from natural disaster 

occurrences across all counties. Overall, the results suggest that the natural disaster 

occurrence in a particular county has a significant positive impact on the 

construction labor weekly wage not only in that county itself, but also in 

neighboring counties. 
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6. CHAPTER 6  

VALIDATION 

In this chapter, the performance of the spatial models used in this study was 

tested in two other states (Louisiana and Texas). In the first validation case of this 

chapter, the Spatial Durbin Models were used to examine the impact of a disaster 

on labor wage fluctuation in the State of Louisiana, and the results obtained from 

those models were discussed. In the second validation case of this chapter, the same 

models from the previous part were used to examine the impact of a disaster on 

labor wage fluctuation in the State of Texas, and the results obtained from those 

models were discussed. 

6.1 First Validation Case (Louisiana State) 

This part began with obtaining data on the annual census of employment 

and wages data from the Bureau of Labor Statistics (BLS). Data from 64 parishes 

in Louisiana were obtained from BLS over the time period from 2014 to 2018. 

Then, the year of disaster occurrence in Louisiana were obtained from the Federal 

Emergency Management Agency. Finally, the Spatial Durbin Models were used to 

examine the impact of a disaster on labor wage fluctuation. Table 6-1 summarized 

the results of three types of fixed-effect Spatial Durbin Models considering the 

time-lagged dependent variable. In individual fixed-effect SDM and both time and 

individual fixed-effect SDM, the total effect of natural disaster on labor weekly 



  

67 

 

wage is significant. In the individual fixed-effect SDM, the total effect of natural 

disaster occurrence in the affected parishes increases the labor weekly wage by 7.7 

percent. In both time and individual fixed-effect SDM, the total effect of natural 

disaster occurrence in the affected parishes increases the labor weekly wage by 11.9 

percent. To compare the results obtained from the training model (in Florida State), 

the results obtained from the first testing model (Louisiana State) are similar in 

terms of significances and magnitude. Unlike the training model, in both time and 

individual fixed effect SDM model, considering the time-lagged dependent variable, 

the total effect of natural disaster on labor weekly wage is significant in the first 

testing case. 

It should be denoted that the dataset size in both training and first testing 

case is similar, which can affect the similarity of the results in terms of significances 

and magnitude.   
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Table 6-1 Direct, Indirect, and Total Impacts from spatial panel data models with Time-lagged Dependent Variable (multiple imputed data, Louisiana State) 

VARIABLES SDM (time fixed effect) SDM (individual fixed effect) SDM (both time and individual fixed effect) 

Main Wx Direct Indirect Total Main Wx Direct Indirect Total Main Wx Direct Indirect Total 

Establishment Count 
-0.001 

(0.001) 

-0.000 

(0.002) 

-0.001 

(0.001) 

0.000 

(0.002) 

-0.001 

(0.003) 

0.000 

(0.003) 

0.003 

(0.005) 

0.000 

(0.003) 

0.003 

(0.005) 

0.003 

(0.005) 

0.000 

(0.003) 

0.001 

(0.005) 

0.000 

(0.003) 

0.001 

(0.005) 

0.001 

(0.005) 

Employment Level 
0.000 

(0.001) 

-0.001 

(0.002) 

0.000 

(0.001) 

-0.001 

(0.002) 

-0.001 

(0.002) 

0.001 

(0.001) 

0.000 

(0.003) 

0.001 

(0.001) 

0.000 

(0.003) 

0.000 

(0.003) 

0.001 

(0.001) 

0.000 

(0.003) 

0.001 

(0.001) 

0.000 

(0.003) 

0.001 

(0.003) 

Level of Contribution 
0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.068 

(0.068) 

0.021 

(0.100) 

0.068 

(0.066) 

0.030 

(0.103) 

0.099 

(0.083) 

0.080 

(0.061) 

-0.009 

(0.066) 

0.080 

(0.059) 

-0.003 

(0.065) 

0.077** 

(0.032) 

0.084 

(0.060) 

0.031 

(0.088) 

0.084 

(0.058) 

0.035 

(0.086) 

0.119* 

(0.067) 

Observations 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 

Number of poly_id 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1  
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Table 6-2 summarizes the results of three types of fixed-effect Spatial 

Durbin Models considering space-time lagged dependent variables. In the 

individual fixed-effect SDM, the total effect of natural disasters on labor weekly 

wage is significant. In this model, the total effect of natural disaster occurrence in 

the affected parishes increases the labor weekly wage by 7.9 percent. The SDM 

considering both time and individual fixed effect did not converge in this stage. 

To compare to the results obtained from the training model (Florida State), 

the total effect of natural disasters on labor weekly wage in the first testing case is 

significant in the individual fixed-effect SDM considering space-time lagged 

dependent variable.  
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Table 6-2 Direct, Indirect, and Total Impacts from spatial panel data models includes Space-time Lagged Dependent Variable (multiple imputed data, Louisiana 

State)  

VARIABLES SDM (time fixed effect) SDM (individual fixed effect) SDM (both time and individual fixed effect) 

Main Wx Direct Indirect Total Main Wx Direct Indirect Total Main Wx Direct Indirect Total 

Establishment Count 
-0.002 

(0.001) 

-0.002 

(0.003) 

-0.002 

(0.001) 

-0.002 

(0.003) 

-0.004 

(0.003) 

0.000 

(0.003) 

0.002 

(0.005) 

0.000 

(0.003) 

0.002 

(0.005) 

0.002 

(0.006) 

The model did not converge 

Employment Level 
0.002 

(0.001) 

0.004 

(0.002) 

0.002 

(0.001) 

0.004 

(0.002) 

0.005 

(0.002) 

0.000 

(0.001) 

0.000 

(0.003) 

0.001 

(0.001) 

0.000 

(0.003) 

0.001 

(0.003) 

Level of 

Contribution 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.108 

(0.079) 

-0.085 

(0.115) 

0.108 

(0.087) 

-0.080 

(0.116) 

0.028 

(0.090) 

0.081 

(0.061) 

-0.010 

(0.066) 

0.080 

(0.059) 

-0.002 

(0.065) 

0.079** 

(0.033) 

Observations 320 320 320 320 320 320 320 320 320 320 

Number of poly_id 64 64 64 64 64 64 64 64 64 64 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1  
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Table 6-3 summarizes the results of three types of fixed-effect Spatial 

Durbin Models considering both time-lagged and space-time lagged dependent 

variables. In the individual fixed-effect SDM, the total effect of natural disasters on 

labor weekly wage is significant. In this model, the total effect of natural disaster 

occurrence in the affected parishes increases the labor weekly wage by 8.1 percent. 

Both SDM considering time fixed effect and both time and individual fixed effect 

did not converge in this stage. 

The results obtained from Table 6-3, have similarities with the results of the 

training model. The total effect of natural disasters on labor weekly wage in the 

first testing case is significant in the individual fixed-effect SDM considering both 

time-lagged and space-time lagged dependent variable. 
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Table 6-3 Direct, Indirect, and Total Impacts from spatial panel data models includes Both Time-lagged and Space-time Lagged Dependent Variable (multiple 

imputed data, Louisiana State) 

VARIABLES SDM (time fixed effect) SDM (individual fixed effect) SDM (both time and individual fixed effect) 

Main Wx Direct Indirect Total Main Wx Direct Indirect Total Main Wx Direct Indirect Total 

Establishment Count 

 

The Model Did Not Converge 

0.000 

(0.003) 

0.002  

(0.005) 

0.000 

(0.003) 

0.002 

(0.005) 

0.002 

(0.006) 

 

The Model Did Not Converge 

Employment Level 
0.001 

(0.001) 

0.000 

(0.003) 

0.001 

(0.001) 

0.000 

(0.003) 

0.001 

(0.003) 

Level of Contribution 
0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.081 

(0.061) 

-0.007 

(0.066) 

0.084 

(0.060) 

-0.004 

(0.065) 

0.081** 

(0.033) 

Observations 335 335 335 335 335 

Number of poly_id 67 67 67 67 67 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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6.1.1 Results from The First Validation Case (Louisiana State) 

Table 6-4 summarizes the total effects of three types of fixed-effect Spatial 

Durbin Models considering time-lagged, space-time lagged, and both time-lagged 

and space-time lagged dependent variables. Table 6-4 showed that in both time-

lagged dependent variable individual fixed-effect SDM and Space-time lagged 

dependent variable individual fixed-effect SDM, the total effect of natural disaster 

occurrence in the affected parishes increases the labor weekly wage by 7.7 percent 

and 7.9 percent, respectively. Also, the results from both time-lagged and space-

time lagged dependent variable individual fixed-effect SDM showed that the total 

effect of natural disaster occurrence in the affected parishes increases the labor 

weekly wage by 8.1 percent. All three results were almost consistent with the results 

obtained in the State of Florida. The results indicated that the impact of weather-

related natural disasters on labor wage fluctuation in the residential market was 

almost the same in both Florida and Louisiana.   
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Table 6-4 Summary of the total effects from multiple imputed data Spatial Durbin Model 

in Louisiana State 

Spatial Durbin Models (SDM)  Type of Fixed-effect Effect Disaster 

Coefficient 

Spatial Durbin Model (SDM) Fixed-effect 

from Multiple Imputed Data 
Time-lagged Dependent Variable 

Time fixed effect Total effect 0.099 
(0.083) 

Individual fixed effect Total effect 0.077** 

(0.032) 

Both time and 

individual fixed effect 
Total effect 0.119* 

(0.067) 

Spatial Durbin Model (SDM) Fixed-effect 

from Multiple Imputed Data 

Space-time Lagged Dependent Variable 

Time fixed effect Total effect 0.028 

(0.090) 

Individual fixed effect Total effect 0.079** 

(0.033) 

Both time and 

individual fixed effect 
Total effect N/A 

Spatial Durbin Model (SDM) Fixed-effect 

from Multiple Imputed Data 

Both Time-lagged and Space-time Lagged Dependent 

Variable 

Time fixed effect Total effect N/A 

Individual fixed effect Total effect 0.081** 

(0.033) 

Both time and 

individual fixed effect 
Total effect N/A 
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6.2 Second Validation Case (Texas State) 

This section began with obtaining data on the annual census of employment 

and wages data from the Bureau of Labor Statistics (BLS). Data from 254 counties 

in Texas were obtained from BLS over the time period from 2014 to 2018. Then, 

the year of disaster occurrence in Texas State had been obtained from the Federal 

Emergency Management Agency. Finally, the Spatial Durbin Models were used to 

examine the impact of a disaster on labor wage fluctuation. Table 6-5 summarizes 

the results of three types of fixed-effect Spatial Durbin Models considering the 

time-lagged dependent variable. 

In all three types of fixed-effect (time fixed-effect SDM, individual fixed-

effect SDM, and both time and individual fixed-effect SDM), the main effect and 

direct effect of the natural disaster on labor weekly wage are significant. In the time 

fixed effect SDM, the main effect of natural disaster occurrence in the affected 

counties increases the labor weekly wage by 7.2 percent. In the Individual fixed-

effect SDM, the main effect and direct effect of natural disaster occurrence in the 

affected counties increases the labor weekly wage by 7.3 percent and 7.4 percent, 

respectively. In both time and individual fixed-effect SDM, the main effect and 

direct effect of natural disaster occurrence in the affected counties increases the 

labor weekly wage by 7.4 percent. 
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Table 6-5 Direct, Indirect, and Total Impacts from spatial panel data models with Time-lagged Dependent Variable (multiple imputed data, Texas State) 

VARIABLES SDM (time fixed effect) SDM (individual fixed effect) SDM (both time and individual fixed effect) 

Main Wx Direct Indirect Total Main Wx Direct Indirect Total Main Wx Direct Indirect Total 

Lnwe_wag 0.504*** 

0.046 
N/A N/A N/A N/A 

-0.004 

0.047 
N/A N/A N/A N/A 

-0.004 

0.047 
N/A N/A N/A N/A 

Establishment 

Count 

0.003*** 

(0.001) 

0.000 

(0.001) 

0.003*** 

(0.001) 

0.000 

(0.002) 

0.003* 

(0.002) 

0.004*** 

(0.001) 

0.001 

(0.002) 

0.004*** 

(0.001) 

0.001 

(0.002) 

0.005** 

(0.002) 

0.004*** 

(0.001) 

0.000 

(0.002) 

0.004*** 

(0.001) 

0.000 

(0.002) 

0.004** 

(0.002) 

Employment Level 
0.000*** 

(0.001) 

-0.001 

(0.002) 

0.000*** 

(0.001) 

-0.001 

(0.002) 

-0.001 

(0.002) 

-0.001*** 

(0.000) 

0.000 

(0.000) 

-0.001*** 

(0.000) 

0.000 

(0.000) 

-0.001* 

(0.000) 

-0.001*** 

(0.000) 

0.000 

(0.000) 

-0.001*** 

(0.000) 

0.000 

(0.000) 

-0.001* 

(0.000) 

Level of 

Contribution 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.072** 

(0.037) 

-0.028 

(0.047) 

0.072** 

(0.037) 

-0.023 

(0.048) 

0.050 

(0.039) 

0.073* 

(0.039) 

-0.036 

(0.048) 

0.074* 

(0.039) 

-0.033 

(0.048) 

0.040 

(0.038) 

0.074* 

(0.039) 

-0.023 

(0.052) 

0.074* 

(0.038) 

-0.021 

(0.052) 

0.054 

(0.040) 

Observations 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 

Number of poly_id 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1  
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Table 6-6 summarizes the results of three types of fixed-effect Spatial 

Durbin Models considering the space-time lagged dependent variable. In all three 

types of fixed-effect (time fixed-effect SDM, individual fixed-effect SDM, and both 

time and individual fixed-effect SDM), the main effect and direct effect of natural 

disaster on labor weekly wage is significant. In the time fixed effect SDM, the main 

effect and direct effect of natural disaster occurrence in the affected counties 

increase the labor weekly wage by 7.7 percent. In the Individual fixed-effect SDM, 

the main effect and direct effect of natural disaster occurrence in the affected 

counties increase the labor weekly wage by 7.3 percent. In both time and individual 

fixed-effect SDM, the main effect and direct effect of natural disaster occurrence in 

the affected counties increase the labor weekly wage by 7.4 percent. 
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Table 6-6 Direct, Indirect, and Total Impacts from spatial panel data models includes Space-time Lagged Dependent Variable (multiple imputed data, Texas 

State) 

VARIABLES SDM (time fixed effect) SDM (individual fixed effect) SDM (both time and individual fixed effect) 

Main Wx Direct Indirect Total Main Wx Direct Indirect Total Main Wx Direct Indirect Total 

WLnwe_wag 0.123 

0.103 
N/A N/A N/A N/A 

-0.011 

0.114 
N/A N/A N/A N/A 

-0.013 

0.117 
N/A N/A N/A N/A 

Establishment Count 
0.004*** 

(0.001) 

-0.001 

(0.001) 

0.004*** 

(0.001) 

-0.001 

(0.002) 

0.003* 

(0.002) 

0.004*** 

(0.001) 

0.001 

(0.002) 

0.004*** 

(0.001) 

0.001 

(0.002) 

0.005** 

(0.002) 

0.004*** 

(0.001) 

0.000 

(0.002) 

0.004*** 

(0.001) 

0.000 

(0.002) 

0.004** 

(0.002) 

Employment Level 
-0.001*** 

(0.000) 

-0.000 

(0.000) 

-0.001*** 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

-0.001*** 

(0.000) 

0.000 

(0.000) 

-0.001*** 

(0.000) 

0.000 

(0.000) 

-0.001* 

(0.000) 

-0.001*** 

(0.000) 

0.000 

(0.000) 

-0.001*** 

(0.000) 

0.000 

(0.000) 

-0.001* 

(0.000) 

Level of 

Contribution 

0.000** 

(0.000) 

0.000 

(0.000) 

0.000** 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.077** 

(0.036) 

-0.046 

(0.048) 

0.077** 

(0.036) 

-0.040 

(0.049) 

0.037 

(0.039) 

0.073* 

(0.039) 

-0.036 

(0.049) 

0.073* 

(0.039) 

-0.033 

(0.049) 

0.041 

(0.038) 

0.074* 

(0.039) 

-0.023 

(0.052) 

0.074* 

(0.039) 

-0.020 

(0.052) 

0.054 

(0.040) 

Observations 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 

Number of poly_id 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1  
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Table 6-7 summarizes the results of three types of fixed-effect Spatial 

Durbin Models considering both time-lagged dependent variable and space-time 

lagged dependent variable. In all three types of fixed-effect (time fixed-effect SDM, 

individual fixed-effect SDM, and both time and individual fixed-effect SDM), the 

main effect and direct effect of natural disaster on labor weekly wage are 

significant. In the time fixed effect SDM, the main effect and direct effect of natural 

disaster occurrence in the affected counties increase the labor weekly wage by 7.3 

percent and 7.4 percent, respectively. In the individual fixed-effect SDM, the main 

effect and direct effect of natural disaster occurrence in the affected counties 

increases the labor weekly wage by 7.3 percent and 7.5 percent, respectively. In 

both time and individual fixed-effect SDM, the main effect and direct effect of 

natural disaster occurrence in the affected counties increase the labor weekly wage 

by 7.4 percent and 7.6 percent, respectively. 
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Table 6-7 Direct, Indirect, and Total Impacts from spatial panel data models include Both Time-lagged and Space-time Lagged Dependent Variable (multiple 

imputed data, Texas State) 

VARIABLES SDM (time fixed effect) SDM (individual fixed effect) SDM (both time and individual fixed effect) 

Main Wx Direct Indirect Total Main Wx Direct Indirect Total Main Wx Direct Indirect Total 

Lnwe_wag 0.504*** 

0.046 
N/A N/A N/A N/A 

-0.004 

0.046 
N/A N/A N/A N/A 

-0.005 

0.047 
N/A N/A N/A N/A 

WLnwe_wag 0.117 

0.112 
N/A N/A N/A N/A 

-0.012 

0.108 
N/A N/A N/A N/A 

-0.014 

0.111 
N/A N/A N/A N/A 

Establishment Count 
0.003*** 

(0.001) 

-0.001 

(0.002) 

0.003*** 

(0.001) 

0.000 

(0.002) 

0.003 

(0.002) 

0.004*** 

(0.001) 

0.001 

(0.002) 

0.004*** 

(0.001) 

0.001 

(0.002) 

0.005** 

(0.002) 

0.004*** 

(0.001) 

0.000 

(0.002) 

0.004*** 

(0.001) 

0.000 

(0.002) 

0.004** 

(0.002) 

Employment Level 
0.000*** 

(0.000) 

0.000 

(0.000) 

0.000*** 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

-0.001*** 

(0.000) 

0.000 

(0.000) 

-0.001*** 

(0.000) 

0.000 

(0.000) 

-0.001* 

(0.000) 

-0.001*** 

(0.000) 

0.000 

(0.000) 

-0.001*** 

(0.000) 

0.000 

(0.000) 

-0.001* 

(0.000) 

Level of 

Contribution 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000* 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

Disaster 
0.073* 

(0.037) 

-0.028 

(0.048) 

0.074** 

(0.037) 

-0.026 

(0.049) 

0.049 

(0.040) 

0.073* 

(0.039) 

-0.036 

(0.048) 

0.075* 

(0.039) 

-0.035 

(0.048) 

0.039 

(0.037) 

0.074* 

(0.039) 

-0.023 

(0.052) 

0.076* 

(0.039) 

-0.023 

(0.051) 

0.052 

(0.040) 

Observations 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 1016 

Number of poly_id 254 254 254 254 254 254 254 254 254 254 254 254 254 254 254 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1  
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 6.2.1 Results from The Second Validation Case (Texas State) 

Table 6-8 summarizes the total effects of three types of fixed-effect Spatial 

Durbin Models considering time-lagged, space-time lagged, and both time-lagged 

and space-time lagged dependent variables. Although the results showed that none 

of the total effect disaster coefficients is significant, the main effect of disaster 

coefficients in all cases is significant with a magnitude consistent with both Florida 

and Louisiana’s results. For example, in both time-lagged dependent variable 

individual fixed-effect SDM and space-time lagged dependent variable individual 

fixed-effect SDM, the main effect of natural disaster occurrence in the affected 

parishes increases the labor weekly wage by 7.3 percent. 
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Table 6-8 Summary of the Total effects from multiple imputed data Spatial Durbin 

Models in Texas State 

Spatial Durbin Models (SDM)  Type of Fixed-effect Effect Disaster 

Coefficient 

Spatial Durbin Model (SDM) Fixed-effect 

from Multiple Imputed Data 
Time-lagged Dependent Variable 

Time fixed effect Total effect 0.050 
(0.039) 

Individual fixed effect Total effect 0.040 

(0.038) 

Both time and 

individual fixed effect 
Total effect 0.054 

(0.040) 

Spatial Durbin Model (SDM) Fixed-effect 

from Multiple Imputed Data 

Space-time Lagged Dependent Variable 

Time fixed effect Total effect 0.037 

(0.039) 

Individual fixed effect Total effect 0.041 
(0.038) 

Both time and 

individual fixed effect 
Total effect 0.054 

(0.040) 

Spatial Durbin Model (SDM) Fixed-effect 

from Multiple Imputed Data 

Both Time-lagged and Space-time 

Lagged Dependent Variable 

Time fixed effect Total effect 0.049 

(0.040) 

Individual fixed effect Total effect 0.039 
(0.037) 

Both time and 

individual fixed effect 
Total effect 0.052 

(0.040) 

 

Table 6-9 Summary of the Main effects from multiple imputed data Spatial Durbin 

Models in Texas State 

Spatial Durbin Models (SDM)  Type of Fixed-effect Effect Disaster 

Coefficient 

Spatial Durbin Model (SDM) Fixed-effect 

from Multiple Imputed Data 
Time-lagged Dependent Variable 

Time fixed effect Main effect 0.072** 

(0.037) 

Individual fixed effect Main effect 0.073* 
(0.039) 

Both time and 

individual fixed effect 
Main effect 0.074* 

(0.039) 

Spatial Durbin Model (SDM) Fixed-effect 

from Multiple Imputed Data 

Space-time Lagged Dependent Variable 

Time fixed effect Main effect 0.077** 
(0.036) 

Individual fixed effect Main effect 0.073* 

(0.039) 

Both time and 

individual fixed effect 
Main effect 0.074* 

(0.039) 

Spatial Durbin Model (SDM) Fixed-effect 

from Multiple Imputed Data 

Both Time-lagged and Space-time 

Lagged Dependent Variable 

Time fixed effect Main effect 0.073* 

(0.037) 

Individual fixed effect Main effect 0.073* 

(0.039) 

Both time and 

individual fixed effect 
Main effect 0.074* 

(0.039) 

 



83 

 

7. CHAPTER 7  

CONCLUSION 

The regional economic impact is common feature of natural hazards. 

Estimating the economic impact of natural hazards in the construction market, is 

one of the main concerns of many groups involved in the recovery and 

reconstruction process. The main purpose of this study is to help the groups 

involved in the reconstruction process to have a better understanding of the 

construction economic impact of natural hazards.  

In this research, all of the data were obtained from the Bureau of Labor 

Statistics (BLS) and the Federal Emergency Management Agency (FEMA). The 

collected dataset suffered from missing values. Four strategies (mean imputation 

method, removing observations with a missing value(s) from the dataset, average 

nearest neighbors method, and multiple imputation method) were used to tackle the 

missing data problem and eliminate biased results and increase the efficiency of our 

spatial model. Moreover, the results of Maran’s I test confirmed the need for using 

the spatial panel model rather than non-spatial models. Thus, in this research, 

multiple spatial panel data models (SAR, SAC, SEM, and SDM models) have been 

developed to investigate the effect of natural disasters on labor wage fluctuations.  

Based on the Breusch–Pagan LM test and Hausman test results, the fixed-effect 

Spatial Durbin Model (SDM) using a multiple imputation method is identified as a 
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more appropriate model in this research. The total effect from SDM indicated that 

the coefficient on the natural disaster is statistically significant and positive, 

indicating that the natural disaster occurrence in a particular county has a 

significantly positive impact on the construction labor weekly wage not only in that 

county itself but also in neighboring counties. The total effect obtained from SDM 

using the multiple imputation method indicates that labor weekly wage increases 

by 7.5 percent in counties affected by natural disaster compared to those that are 

not affected. 

7.1 Contribution to The State of Knowledge 

This research has three main contributions to the state of knowledge.  The 

first contribution of this study is to investigate the effect of the natural disaster on 

the construction cost fluctuation using a fixed-effect Spatial Durbin model 

combined with difference-in-difference technique at the spatial level. This 

technique is capable of eliminating the need for measurement in this analysis and 

can directly quantify the effect of natural disasters on the labor wage fluctuations. 

Using the difference-in-difference technique combined with fixed-effect 

Spatial Durbin model in this research provides an opportunity to have a better 

interpretation of the impact of natural disasters on construction labor wage 

fluctuations. Also, using logarithmic transformation within dependent variables in 

our dataset, allows us to have better-predicted outcomes from the spatial regression 
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models. In this research, for the first time, by taking the logarithmic transformation 

of the dependent variable (labor weekly wage) the direct impact of natural disasters 

on construction labor wage fluctuation is calculated. This amount is estimated to be 

approximately 7.5 percent higher in counties that are affected by natural disasters 

compared with those counties that are not affected in the gulf coast region.  

It is expected that this methodology provides interest groups with more 

appropriate spatial panel models that can result in more accurate and consistent 

results. When dealing with spatial data, it is crucial to consider the spatial nature of 

the dataset in the measurement phase. This study takes the spatial nature of the 

dataset in both measurement and quantification phase. The second main 

contribution to the state of knowledge in this research is to use a spatial multiple 

imputation method to tackle the missing data problem. This spatial imputation 

method has not been used in this context before. In other words, using this method 

maintains the spatial relationship among the counties in the study. In this research, 

for the first time, even counties with missing values were included in the analysis. 

In this study, for the first time, the results of different handling missing data 

methods were compared with each other to find a more appropriate method with 

consistent results. The proposed handling missing data method is Spatial Multiple 

Imputation Method, which can be used to tackle missing data problem that exists 
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in the construction sector. Tackling missing data problem using Spatial Multiple 

Imputation Method is the third main contribution of this study.  

7.2 Contribution to The State of Practice 

Devastating natural disasters can have a severe effect on the construction 

market condition and the reconstruction process. Risk managers, cost engineers, 

city policymakers, construction companies, property owners, and insurers must be 

aware of this volatility in the construction market condition in the aftermath of a 

natural disaster. Volatility in the construction market can lead to negative effects 

on financial performance. By measuring unexpected costs resulted from this 

volatility, financial performance can be improved by conscious planning and 

effective insurance decisions. Quantifying the construction costs fluctuations due 

to natural disasters could be helpful in two main categories (see Figure 7-1). 

 

 

 

 

 

Insurance Policies 

Quantifying the Construction Costs Fluctuations 

Funding Policies Project Cost Estimating  

Figure 7-1 Two main categories affected by construction cost fluctuations. 
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Insurance policies:  

Quantifying the construction cost fluctuations due to natural disasters could 

help to make more effective insurance policies, calculate affordable insurance 

premiums and insurance ratings, especially for low-income and middle-income 

households to recover from natural disasters. 

Funding Policies: 

After a natural disaster, many organizations and programs such as Housing 

and Urban Development (HUD), the U.S. Army Corps of Engineers, Community 

Development Block Grant (CDBG) Program, and HOME Disaster Recovery 

Program allocate disaster recovery grants to rebuild the affected regions. Each 

organization and program has its own method to allocate the grant to the eligible 

regions. For example, the General Land Office (GLO) is the responsible entity for 

determining the Method of Distribution (MOD) of funds in accordance with 

requirements provided by HUD. This method is used to specify the grant size limits 

and how funds will be allocated to the eligible counties.  

Quantifying the construction cost fluctuations due to natural disasters could 

be helpful in making more effective formula allocations in funding distribution 

based on the needs of each state and each county due to the damages caused by 

natural disasters. Moreover, it could help establish funding policies and how funds 

will be allocated to eligible counties. For example, the region with a greater demand 
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surge due to a natural disaster can receive a greater share of resource allocation to 

compensate for the lack of resources caused by natural disasters.  

Project Cost Estimating  

Cost engineers must be aware of the costs involved in any project in order 

to calculate the accurate project cost and offer a realistic bid. Labor cost is one of 

the main elements of a comprehensive project cost estimating. Familiarity with 

potential labor cost fluctuation due to natural disasters is one of the components of 

the feasibility study to make sure that the project goals will be achieved on time 

and under budget. This research can help cost engineers to quantify labor cost 

fluctuations due to natural disasters. Quantifying labor cost fluctuation provides 

accurate information to the cost engineers and project developers to reduce the 

possibility of project failure due to financial disruptions and unexpected costs.  

7.3 Future Works 

Many different improvements, tests, and models are left for the future. 

Below are some ideas that can be considered in the future.  

1. There are limited imputation methods specifically designed for the 

spatial panel dataset with missing values. In this research, among all 

four imputation methods that we used, the Multiple Imputation 

Method is designed for tackling missing values in a spatial dataset. 

Because imputation methods can have a significant effect on the 
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results, it could be interesting to use other spatial imputation 

methods in the future and compare the results with the findings of 

this study.  

2. In this research, the effect of weather-related natural disasters on the 

construction labor wage fluctuation was studied. Because the nature 

of different natural disaster damages are different, it could be useful 

to study the effect of other natural disasters such as earthquakes and 

wildfires on the labor wage fluctuation in the future.   

3. Other states or countries can be the subject of this study in the future. 

Also, more datasets could be used to refine the models and improve 

the results. 
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