
EXTEND THE SENSING BOUNDARY OF MOBILE SYSTEMS: SECURITY AND

NEW APPLICATIONS

by

WENQIANG JIN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2021



Copyright © by Wenqiang Jin 2021

All Rights Reserved



To my family



ACKNOWLEDGEMENTS

First and foremost, I would like to given my sincerest gratitude to my Ph.D. supervi-

sor, Prof. Ming Li. She is an outstanding mentor, a great friend, and the most intellectual

researcher that I have ever known. Her immense knowledge and plentiful experience have

encouraged me through all the time of my academic researches and daily life. It is my

lifelong asset to learn from her.

I would also like to thank my committee members, Prof. Hao Che, Prof. Jia Rao,

and Prof. Mohammad Atiqul Islam, for serving on my supervisory committee and for all

the assistance in different stages of my Ph.D. study.

I could never achieve this without a group of great friends and colleagues. I would

like to express my gratitude to all the fantastic MobiSec group members for providing me

unconditional help, a family-like environment, and for their encouragements and collab-

oration in different research projects. I am so grateful to have Mingyan Xiao, Srinivasan

Murali, Huadi Zhu, Chaowei Wang, and Tianhao Li. We had so many valuable discussions

and all the good memories.

Lastly, but most importantly, I would like to thank my parents, beloved wife, and

parents in law who have always been there when I needed them most. They encouraged me

to study in the United States. Without their unconditional love and supports, I could never

imagine what I have achieved.

April 27, 2021

iv



ABSTRACT

EXTEND THE SENSING BOUNDARY OF MOBILE SYSTEMS: SECURITY AND

NEW APPLICATIONS

Wenqiang Jin

The University of Texas at Arlington, 2021

Supervising Professor: Ming Li

The exploding growth of mobile devices like smartphones and wearables has envi-

sioned various applications, which are developed to collect a wide spectrum of data using

on-board device sensors and process them to serve peoples’ life in all kinds of scenar-

ios. Noticing the sensing capabilities of current mobile device are limited to its on-board

sensors’ default functionalities. We study the mechanism designs that extend the mobile

device’s sensing capabilities to perform new sensing tasks other than its defaults.

In this thesis, we investigate the mobile systems’ security issues and develop new

applications by exploring the device’s sensing capabilities. Our contributions are mainly

threefold. First, we address the challenges of device pairing between wearables by lever-

aging its on-board transceivers. Specifically, we use wearables’ transceivers to harvest

ambient radio frequency (RF) noise from open-air and turn them into the ingredients for

the secret key establishment. Second, we introduce a novel side-channel attack to infer

user’s secret PINs typed on mobile device’s touchscreens by eavesdropping and analyzing

its electromagnetic emanations. In particular, we observe that the finger movements on the

touchscreen leads to time-variant coupling between the human body and the touchscreen.
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Consequently, it results variations of touchscreen’s electromagnetic emanations, which can

be captured by electrical potential sensors and leveraged to reconstruct the finger move-

ment traces on the keypad during its typing process. Third, we develop an acoustic ranging

application that assists pedestrians with vision impairment to across uncontrolled streets.

The application leverages smartphone’s microphones to sense motion status of oncoming

vehicles. Based on the measurement results, it then detects the potential collisions and alert

the pedestrians ahead.

vi



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. HARNESSING THE AMBIENT RADIO FREQUENCY NOISE FOR WEAR-

ABLE DEVICE PAIRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Pairing for Wearable Devices . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 General Device Pairing . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Human Body Sensing Capacity . . . . . . . . . . . . . . . . . . . 12

2.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Background and Analytic Study . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Ambient Radio Frequency Noise . . . . . . . . . . . . . . . . . . . 14

2.4.2 Body-as-A-Conductor . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Feasibility Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Device Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.2 Fingerprint Profiling Module . . . . . . . . . . . . . . . . . . . . . 25

vii



2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.1 Robustness Against Attacks . . . . . . . . . . . . . . . . . . . . . 28

2.7.2 Key Generation Performances . . . . . . . . . . . . . . . . . . . . 30

2.7.3 Impact of Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.4 Comparison with Other Pairing Schemes . . . . . . . . . . . . . . 36

3. PERISCOPE: A TRAINING-FREE KEYSTROKE INFERENCE ATTACK US-

ING HUMAN COUPLED ELECTROMAGNETIC EMANATIONS . . . . . . . 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Adversary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 How Do Touchscreens Work? . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Touchscreen EM Emanations and Measurements . . . . . . . . . . 47

3.4.3 Impact of Finger Coupling . . . . . . . . . . . . . . . . . . . . . . 48

3.4.4 How to Calculate z(t) from Vm(t)? . . . . . . . . . . . . . . . . . 50

3.5 Measurement Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Design Details of Periscope . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7.2 Key Pair Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7.3 PIN Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8.1 Key Pair Recovery Accuracy . . . . . . . . . . . . . . . . . . . . . 64

3.8.2 PIN Recovery Accuracy . . . . . . . . . . . . . . . . . . . . . . . 67

3.8.3 Performance Under Different Settings . . . . . . . . . . . . . . . . 69

3.8.4 Comparison with Other Schemes . . . . . . . . . . . . . . . . . . . 72

viii



3.9 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . 73

3.9.2 Defense Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4. ACOUSSIST: AN ACOUSTIC ASSISTING TOOL FOR PEOPLE WITH VI-

SUAL IMPAIRMENTS TO CROSS UNCONTROLLED STREETS . . . . . . . 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Overview and Background . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.2 Acoussist Signal Design . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Multi-Vehicle Signal Characterization . . . . . . . . . . . . . . . . . . . . 88

4.4 Design Details of Acoussist . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 Measurement of Relative Velocity . . . . . . . . . . . . . . . . . . 91

4.4.2 Measurement of DoA . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.3 Measurement of Vehicle Velocity and V-P Distance . . . . . . . . . 96

4.4.4 Piecing All Components Together . . . . . . . . . . . . . . . . . . 98

4.5 Implementation and In-field Testing . . . . . . . . . . . . . . . . . . . . . 99

4.5.1 Implementation Setup . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.2 Micro Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.3 System Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ix



CHAPTER 1

INTRODUCTION

Recently, we are witnessing a remarkable growth in the number of mobile devices.

According to recent market reports [125], it is forecasted that the yearly shipment of mobile

devices will reach 1.91 billion in the year 2023. The large scale deployment of mobile

devices has driven the emergence of various mobile systems, such as body area networks

(BAN), mobile crowdsensing (MCS), and Internet of Things (IoT). Applications based

on these systems leverage mobile devices’ on-board sensors (e.g., compass, accelerometer,

gyroscope, camera, and GPS) to sense the environmental context of its surroundings. These

sensors can be used anytime and anywhere because of the portable nature of mobile devices

which introduces more flexibility and thus provides various functionalities that facilitate

people’s daily life.

However, the potentials of mobile devices’ sensing capabilities are not well explored.

Most of them only leverage the basis functionalities of their on-board sensors to perform

simple tasks. For example, the speakers are usually used for playing music. Microphones

are simply used to record sound tracks. WiFi transceiver boards are leveraged to meet the

basic needs of data transmissions. However, recent researches [109, 89, 153, 29, 55, 119,

81, 97, 28] show that on-board sensors can be used to obtain a wide range of sensory re-

sults that are out of their default sensing spectrum. For example, Acousticcardiogram [109]

leverages the smartphone’s microphones and speakers to monitor heartbeats. Aim [89] uses

the sensors to produce images of the covered objects. TouchPass [153] authenticates the

mobile users by leveraging their finger’s unique physical characters sensed by accelerome-
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ters. UbiBreathe [3] shows that WiFi transceivers can be leveraged to monitor users’ breath

patterns.

In this thesis, we intend to explore the mobile system’s sensing boundaries to disclose

and address the critical challenges of the system security and to develop new applications.

The reset of the thesis is organized as follows.

In BAN, wearable devices capture user’s rich information regarding their health

conditions and daily activities. To secure communications among wearable devices, we

propose a novel device pairing scheme in Chapter 2. Despite some prior efforts trying

to fill this gap, they either rely on some sophisticated sensors, such as electromyogram

(EMG)[160] or electrocardiogram (ECG)[117] pads that may not universally exist, or non-

trivial design of communication transceivers that cannot be found easily on current com-

mercial devices. We leverage wearables’ RF transceivers to sense the RF noise, which is

then exploited to distribute the secret pairing key. RF noise is ubiquitous presence, high

random and unpredictable, thus serves as an ideal entropy source. We observe that the

received RF noise power measured in the logarithmic scale at different parts of a human

body surface experiences the same variation trend. In contrast, those from different human

bodies or off the body are distinct. Under the touch-to-access policy, we present a protocol

[63] that allows two legitimate devices to agree on a mutual secret key securely.

Besides the security of device paring, we show that mobile users’ private inputs, such

as passwords, PINs, and verification codes, also facing significant security challenges. In

Chapter 3, we present a novel side-channel eavesdropping attack which leverages human-

coupled electromagnetic (EM) emanations from touchscreens to infer victims’ typing in-

puts at a remote distance. In particular, the capacitive touchscreens of mobile devices

consists of a grid of transmitter (TX) and receiver (RX) electrodes, which are mutually

coupled with a capacitance. TX electrodes are driven by an alternating current, which

flows through the coupled capacitance to the RX electrodes. When a finger touches the

2



screen, it extracts some electric charges from the RX electrode grid to the human body

through their mutual coupling capacitance. The alternating driven currents generate time-

variant EM fields and thus emit EM emanations to the open space. Meanwhile, we observe

that the finger movement over the touchscreen leads to time-varying coupling between the

finger and RX electrodes. Consequently, it impacts the screen’s EM emanations that can

be picked up by a remote sensory device. We intend to map between EM measurements

and finger movements to recover the inputs. We build an analytic model that outputs finger

movement trajectories based on given EM readings. As no training is needed, our approach

does not require the collection of a user-specific dataset. We implement the system with

simple electronic components and conduct a suite of experiments to validate this attack’s

impacts.

Chapter 4 further uses smartphones to help pedestrians with vision impairments

across the uncontrolled streets, where no traffic-halting signal devices are present. Pedes-

trians with visual impairments must rely on their other senses to detect oncoming vehicles

and estimate the correct crossing interval to avoid potentially fatal collisions. To over-

come the limitations of human auditory performance, which can be particularly impacted

by weather or background noise, we develop an assisting tool called Acoussist [64], which

uses the smartphone’s microphones to perform acoustic ranging and detect the oncoming

vehicles. The vision-impaired people can use the tool to double-confirm surrounding traffic

conditions before they proceed through a non-signaled crosswalk. To achieve this goal, it is

essential to figure out movement status of each vehicle nearby, characterized by, for exam-

ple, its velocity relative to the pedestrian, direction of arrival (DoA), and its distance to the

pedestrian. Therefore, we propose to install external speakers on opt-in vehicles and have

them emit acoustic chirps at a frequency range imperceptible by human ears, but detectable

by smartphones operating the Acoussist app. By analyzing the received chirp signals, the

app would then communicate to the user when it is safe to cross the roadway. We im-

3



plement a proof-of-concept of Acoussist using commercial off-the-shelf (COTS) portable

speakers and smartphones and prove the effectiveness of our designs.

Finally, we conclude the thesis in Chapter 5.
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CHAPTER 2

HARNESSING THE AMBIENT RADIO FREQUENCY NOISE FOR

WEARABLE DEVICE PAIRING 1

2.1 Introduction

Recently, we are witnessing a remarkable growth in the number of smart wearable

devices. According to recent market reports [56], it is forecasted that the yearly shipment of

wearable devices will reach 279 million in the year 2023. Moreover, the wearable technol-

ogy market is expected to reach a value of $58 billion by 2022, which is almost three times

of that in 2015 ($19 billion) [114]. With the high penetration to people’s daily life, smart

wearable devices (e.g., wrist bands, earbuds, heartbeat meters, and step counter) have been

gradually recognized as a compelling paradigm for e-healthcare and fitness applications.

Sensitive information such as health conditions and physiological data are shared among

wearables or synchronized from wearables to personal hubs [107]. Audio streaming is car-

ried between earbuds and a smartwatch for better living and exercising experience [61, 8].

Securing their wireless communications is of critical importance to the wide deployment of

wearable devices. In particular, newly deployed wearables must be able to securely asso-

ciate and establish cryptographic key pairs with existing devices, also known as pairing, in

a way that protects against man-in-the-middle (MitM) and protocol manipulation attacks.

For devices on the Internet, pairing can be achieved by relying on certificate authorities

to certify the device identities, providing a root of trust when establishing the identity of

a communicating party. Unfortunately, many wearables lack direct Internet accesses. In-

1Used with permission of the publisher, 2021.
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stead, they often use short-range radio technology (e.g., Bluetooth or Zigbee) as their first

hop to connect to other existing wearables or personal hubs that are to pair. Conventional

solutions typically rely on a human to certify the device validity when pairing, for exam-

ple, by visually comparing short strings on a screen, or by typing a number displayed by

one device into the other. These pairing protocols are cumbersome, error-prone, and do

not scale well. More importantly, many wearables do not have a user interface, rendering

password entry or management extremely challenging.

Efforts to reduce human involvement from the wearable device pairing process have

brought the emergence of the idea touch-to-access [116, 157, 117, 160, 39, 152]. Two

devices are allowed to be paired if and only if they are attached to the same human body

at the same time. The rationale behind this idea is that if a wearable has direct phys-

ical contact with the human body, it is deemed as a legitimate device validated by the

wearer. Under this policy, some existing schemes utilize dedicated sensors to extract phys-

iological signals from the human body, such as ECG [117], EMG signals [160], and body

movements [39, 152], and translate them to common randomness, forming the basis of a

symmetric key agreement protocol. These approaches are based on the principle that the

physiological signals captured from the same human body have similar features, whereas

those collected from different human bodies are distinct. Apparently, their success relies

on a common, properly calibrated sensing capability across all devices. In contrast, a wide

diversity of sensing capabilities are present in commercial wearables; it is impractical to

assume arbitrary two wearables equip with a common sensor.

In this work, we aim to develop an automatic pairing scheme for wearable devices

without user involvement. Our design follows the touch-to-access policy. Rather than

relying on any dedicated sensors, we propose to utilize the RF transceiver, one of the

basic electronic components of wearables that are capable of data synchronization/trans-

mission. For devices without this capacity, i.e., stand-alone wearables, there is no need

6
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Figure 2.1: Physical basis of our design.

of pairing. Ambient radio frequency (RF) noise is captured from open air and turned into

ingredients for secure pairing. RF noise is mainly a combination of natural electromagnetic

atmospheric noise and manmade radio interference. Typical sources include lightning dis-

charges, FM/AM radio stations, power systems, a wide variety of electronic equipment,

and wireless transmissions. Due to the source diversity and the electromagnetic distur-

bance originating in a large number of discrete distances with unpredictable occurrences in

time and amplitude, RF noise is highly random and unpredictable in temporal, frequential,

and spatial domains. Thus, RF noise could be an ideal entropy source for key generation

during pairing. Additionally, as RF noise is ubiquitously present, such a source is easily

accessible almost everywhere.

Despite these promising features of RF noise, utilizing them for device pairing still

faces a significant challenge. Essentially, under the touch-to-access policy, wearables on

the same human body should be capable of extracting the same secret, even when they

are separately mounted, say one on the wearer’s wrist and the other on the chest. Such

requirement, however, is primarily hindered by the noise dynamics exhibited in the spa-

tial domain. As pointed out by Xi et al. [149], RF signals received at two locations are
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independent when they are more than half of the wavelength apart (6.25 cm@2.4 GHz).

Thus, how to harvest correlated noise readings from open space at two remotely positioned

wearables resides at the heart of our design.

This work is based on a key observation that RF noise, measured in logarithmic

scale, experiences the same variation trend even at different parts of a human body sur-

face (as shown in Figure 2.1). From the perspective of electrostatics, the human body

can be viewed as a low-impedance conductor. Thus, placing an induced human body in

electromagnetic fields will build up a charge distribution over the body surface to reach

an electrostatic equilibrium [106]. As a result, an electrical potential is formed between

an arbitrary part of a human body and the ground. Since radiation waves generate time-

variant electromagnetic fields, the body surface electrostatic equilibrium distribution varies

accordingly, so does the induced on-body potentials. Then, by creating physical contact

between the wearable transceiver and the human body, the former can readily access RF

noise, reflected as instant variant potentials, captured by the latter from open air. Besides,

due to the above-mentioned phenomenon that variations of RF noise readings from the

same body surface are highly synchronous, RF noise can be transformed into a common

entropy source for key generation.

In practice, due to the uneven charge distribution over the skin surface, variation

tendencies of RF noise measures at different parts of the body surface may not be perfectly

the same. Directly applying them for device pairing would result in a high error rate. To

address this issue, our scheme adopts the framework of fuzzy commitment [65, 95, 50]. It

is able to correct at most t mismatched bits during paring, with t a tunable parameter that

balances between security and usability.

To evaluate the proposed paring scheme, we build a prototype based on a CC2500

transceiver [59] and Arduino board [57]. Extensive experiments show that our scheme has

an equal error rate (EER) as low as 1.4%. Its key generation rate reaches 138 bits/sec, which

8



beats so-far existing pairing schemes. Tests also show that our scheme is robust against

various attacks such as imitation attacks, MitM attacks, and synthesis attacks. Besides,

our scheme can be efficiently executed within 0.97 s. Its incurred energy consumption

is also negligible, as low as 0.27 J for the entire pairing procedure. We summarize the

contributions of this paper as follows.

• While most of the previous studies focus on avoiding RF noise to improve the perfor-

mance of wireless communication systems, we propose a novel and practical wearable

device pairing scheme by harnessing ubiquitously present RF noise.

• We show analytically and experimentally that the log-scale RF noise measures at differ-

ent parts of body surface experience the same variation tendency, which serves as the

basis for our pairing scheme.

• We develop a prototype and perform extensive experiments to evaluate the security and

usability of our scheme. It outperforms the state-of-art solutions in terms of key genera-

tion rate, time consumption, and energy cost.

2.2 Related work

2.2.1 Pairing for Wearable Devices

To secure wireless communications among wearable devices, quite a few novel meth-

ods have been proposed to facilitate automatic device pairing without any trusted authority.

The idea of touch-to-access is de facto the pairing rule followed by existing works. Two

wearables are allowed to be paired if and only if they are attached to the same human body.

Body movements have been explored as an entropy source for key extraction. Since

human movements are unique across individuals, readings from the same human body are

considered to share significant similarity, while that on different bodies are not. Thus, prior

works [152, 39] turn readings from inertial sensors into common cryptographic keys. Along
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this line of research, some othere existing works utilize ECG or EMG signals [117, 160]

for key establishment. These solutions require a common dedicated sensor across all de-

vices (e.g., an accelerometer or ECG monitor), which largely hinders their wide adoption.

Treating human body as a transmission medium, Roeschlin et al. [116] proposed to utilize

this covert channel for key pairing. Nonetheless, it requires a non-trivial design of com-

munication transceivers. A recent study TouchAuth [157] treats human body as an antenna

that captures radiation from electrical cabling. It converts the corresponding potentials

measured at two devices within close proximity into their common secrets. The scheme

fails if two devices are reasonably distantly located even on the same body. Besides, cable

radiations are mostly unavailable outdoors.

2.2.2 General Device Pairing

Pairing has also been studied for general IoT devices. Existing schemes mainly fall

into two categories, channel reciprocity based and context-based paring.

Channel reciprocity based paring. Channel reciprocity states that a pair of wireless

transceivers observe the same channel characteristics, which are then utilized by transceivers

for key pairing. Zeng et al. [164] turned RSS readings into secret bits. Realizing that RSS-

based pairing bears low bit generation rate, recent works use CSI [77, 148] and Channel

impulse response (CIR) [93, 87, 139] as alternative entropy sources. Due to the involvement

of phase information (in addition to signal amplitudes in RSS readings), CSI/CIR measure-

ments can be converted to secret keys at a much higher speed. More importantly, the diverse

information also renders spoofing attack more difficult to launch. Meanwhile, these works

impose strict requirement over channel coherence–channel reciprocity exists only within

channel coherent time, which is typically at a level of 10 ms for 2.4 GHz wireless signals.

Existing schemes are implemented using the probing mechanism in IEEE 802.11. Alice

10



broadcasts a Probe frame, upon receiving which Bob replies with an ACK. Only under the

ideal case that ACK is replied immediately, i.e., the frame interval is deemed within co-

herence time. In practice, it is not rare that Probe or ACK is corrupted by other ongoing

transmissions, especially in crowded 2.4 GHz ISM band. Consequently, the condition for

channel reciprocity does not hold.

Context-based paring. This series of approaches are based on the assumption that

co-present devices observe common contextual information that can be transformed into

shared secrets. For example, Markus et al. [95] proposed to have devices compute a finger-

print of their ambient context using sensor modalities like ambient noise and luminosity.

A similar idea is adopted in [121, 67]. Like many existing pairing schemes for wearables,

[95, 121] assume the existence of commonly available sensors. To overcome this restric-

tion, Han et al. [50] proposed a pairing scheme using heterogeneous sensor types. Their

idea is that devices co-located within a physical boundary can observe more events in com-

mon over time, as opposed to devices outside. Nonetheless, sensors still need to capture

certain contextual information, such as light, sound, movement, which are not accessible

for many wearables. More importantly, these schemes are vulnerable to stealthy attackers

that coexist with legitimate devices, say in the same room. As a result, the secret can be

easily interpreted by attackers.

Another line of research also employs wireless channel characteristics for pairing.

Rather than channel reciprocity, these approaches rely on the observation that received

wireless signals are unique for co-presence devices. For example, Miettinen et al. [92] used

the RSS to generate symmetric keys for two devices of close proximity. CSI measurements

are also exploited [83, 149]. Nonetheless, these schemes only work when inter-device

distance is within a certain threshold. Given a radio wave of frequency 2.4 GHz, two pairing

devices should be located within 6.25 cm, as their received signals quickly de-correlate

11



beyond the half-wavelength limit. Such a restriction is easily violated in a wearable system,

for example, two devices worn on user’s two wrists.

2.2.3 Human Body Sensing Capacity

The idea of leveraging conductive human body for sensing has been explored in var-

ious context. Pioneered by Zimmerman [170], IBC is investigated for information trans-

mission among on-body devices by treating human body as a transmission medium. The

research [52, 159, 73] also falls into this category, but with different focuses, such as prop-

agation channel modeling and channel capacity quantification. Different from IBC, some

existing works investigate the feasibility of using body electric potentials induced by power

line radiation for gesture recognition [27], clock synchronization [156], object classifica-

tion [158], and touch/motion sensing [26]. However, none of them is about device pairing.

2.3 System Overview

2.3.1 Problem Definition

We consider two wearables, Alice and Bob, who intend to establish a secure channel

over a publicly accessible wireless media without any pre-shared secret. We focus on the

problem of pairing between them. First of all, pairing must be established only between

intended peers, i.e., wearables owned/admitted by the same user, which is referred to as

secure association. Second, a secure symmetric key pair needs to be established between

Alice and Bob that facilitates their secure communications in a later stage. Our discussion

pertains to wearables attached to the body surface. The pairing for implantable devices is

not covered in this work.

Our design follows the de facto paring policy for wearables, “touch-to-access” [116,

157, 117, 160, 39, 152]: A new wearable device is admitted to the system if and only if
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it has significant physical contact with the wearer’s body. An important facet of touch-to-

access is forward security. The authenticity to the system vanishes once the device loses

physical contact with the wearer.

2.3.2 Threat Model

The goal of an adversary is to deceive the system as a legitimate device that is at-

tached to the wearer’s body. An adversary is assumed to be present during a pairing session.

It is powerful in a sense to control the channel via, for example, eavesdropping and replay-

ing signals through public wireless channels. It is also possible to forge MAC addresses to

falsely claim as a valid device. In particular, we mainly consider the following three kinds

of attacks that are severe to our scenarios.

Imitation attack. The adversary exploits physical co-presence with the wearer and

tries to obtain similar RF measurements and thus extract the same secret keys as legitimate

on-body devices. Depending on where the attacking device is placed, we further classify

it into two types. It is called type-I attack if placed in free space, say on a desk, a floor, a

stand, etc. It is called type-II attack, if attached to another wearer.

Synthesis attack. More advanced than simply generating random bit sequence, the

adversary is able to observe and model the radio environment around the wearer in advance.

Then it fabricates synthetic signals and tries to extract from them the same secret keys as

legitimate devices.

MitM attack. The adversary tries to actively participate in pairing phases of two

wearables. Its goal is to either get paired with a learned key or mess the pairing procedure

by tampering the exchanged messages but still make one/both of them believe the pairing

protocol has completed successfully. The adversary can relay and alter messages on the

wireless channel.
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We assume that the adversary cannot compromise the end devices; otherwise, it ren-

ders the secure pairing impossible. Besides, the scenarios that it seeks to jam the wireless

channels or by any other means of destroying communications such as Denial-of-Service

(DoS) attacks are out of the scope of this work.

2.4 Background and Analytic Study

2.4.1 Ambient Radio Frequency Noise

Ambient RF noise is mainly a combination of natural electromagnetic atmospheric

noise and manmade radio frequency interference. Typical sources include lightning dis-

charges, FM/AM radio stations, automobile ignition systems, power systems, and a wide

variety of electronic equipment such as computers, personal devices and microwave ovens.

Due to the source diversity and the electromagnetic disturbance originating in a large num-

ber of discrete distances with unpredictable occurrences in time and amplitude, RF noise

is highly random in temporal, frequnencial, and spatial domains, which is desirable as an

entropy source. We did some prior study to show the distribution of RF noise in these three

domains. Figure 2.2 plots the received noise by two CC2500 transceivers [59] over 2.4

GHz. The data are collected over the same time duration at two different locations sep-

arated by 10 cm. Since existing wearables, with their radio interfaces such as Bluetooth,

ZigBee, or WiFi, operate over the 2.4 GHz ISM frequency band, we thus pertain our dis-

cussion to this band in this study. As a note, our idea can be easily extended to RF noise in

other frequencies.

2.4.2 Body-as-A-Conductor

As suggested by [113, 157], a human body can be treated as a conductor with low

impedance (a few kΩ). Placing the induced human body in the electromagnetic fields will
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(a) Location 1 (b) Location 2

Figure 2.2: RF radio noise heat map over the 2.4 GHz ISM band. RF noise is highly
dynamic and randomly distributed over time, frequency, and space.

build up a charge distribution over the body surface to reach an electrostatic equilibrium

[106]. From the perspective of electrostatics, a radio source creates electromagnetic waves

at its propagation direction. Such electromagnetic waves from multiple radio sources over-

lap with each other that generate time-variant electromagnetic fields. In accordance, the

electrostatic equilibrium distribution on the body-conductor surface will also vary. Then,

by creating a physical contact (e.g., using an electrode or electrical conductor) between

body skin and the wearable transceiver, the latter can access RF noise harvested by the

wearer from the open air, as shown in Figure 2.3. Here, the transceiver is a common com-

ponent of commercial off-the-shelf (COTS) wearables with data transmission capacity.

Antenna

Wearable transceiver 

Body skin surface

Electrode/Electric
conductor  

Electric chargeRF source1 

RF source 2
RF source 3

Figure 2.3: Illustration of how a wearable’s transceiver accesses RF noise harvested by
human body from open air.
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Our design relies on a key observation that the received RF noise power measured in

a logarithmic scale at different parts of a human body surface at the same frequency band

and time instance experiences the same variation trend. We summarize the observation as

the following theorem.

Denote by Ra(f, t) and Rb(f, t) the measured RF noise power (in dBm) at two arbi-

trary positions on a wearer’s skin, we have ∂Ra(f,t)
∂t

= ∂Rb(f,t)
∂t

. We provide a proof sketch

as follows. According to prior results on bio-electricity characterization [6, 44, 69], the

human body can be deemed as a monopole cylinder conductor illuminated by waves from

multiple radio sources. As mentioned above, the induced human body in electromagnetic

fields builds up a charge distribution over the body surface. Assume that the axial current

induced by the electric field is dominant. As shown in Figure 2.1, we denote V0(f, t) the

voltage drop from the human head to the foot base of the body conductor. V0(f, t) is a

complex value and variant with respect to f and t. Let V (f, t) be the voltage at an arbi-

trary position of the human body. It can be expressed as V (f, t) = αV0(f, t), where α is

complex-valued coefficient with |α| ∈ [0, 1]. As indicated by [113, 68], the skin impedance

Z at a given body position is positively correlated with its relative distance to the ground.

Apparently, the closer the position to the foot base, the smaller |α| is. Moreover, Z is not

only dependent on body height, but also the human biometric features, including weight,

shape, body mass density, etc.

To obtain received RF noise power, most RF transceivers measure the average of the

apparent power of RF signals in logarithmic scale [146, 80], which is expressed as

R(f, t) = 10 lg(|V
2(f, t)

2Z
|/1 mW ) (2.1)

=10 lg |(|α|
2|V0(f, t)|2e2j(θα+θ0(f,t)))

2|Z|ejθZ
| = 10 lg

|α|2|V0(f, t)|2

2|Z|
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with its unit as dBm. In practice, the average of the apparent power is calculated based

on the in-phase and quadrature (I/Q) components of received discrete samples. Here, we

express the apparent power in its analog form for analysis simplicity. θα, θ0(f, t), and θz

stand for the corresponding phases of the α, V0(f, t), and Z, respectively. Let Ra(f, t) and

Za be the received RF noise and impedance at position a on body skin. Then, the partial

derivative of Ra(f, t) with respect to t is

∂Ra(f, t)

∂t
=

∂

∂t
(10 lg

|αa|2|V0(f, t)|2

2|Za|
)

=10

|αa|2
2|Za|

∂|V0(f,t)|2
∂t

|αa|2|V0(f,t)|2
2|Za| ln 10

=
10

ln 10

1

|V0(f, t)|2
∂|V0(f, t)|2

∂t
(2.2)

where αa is the fractional coefficient to V0(f, t). Similarly, we have

∂Rb(f, t)

∂t
=

10

ln 10

1

|V0(f, t)|2
∂|V0(f, t)|2

∂t
=
∂Ra(f, t)

∂t

which ends the proof.

Theorem 2.4.2 states that the first order derivative of Ra(f, t) and Rb(f, t) over t

are the same. Essentially, the first derivative reflects the direction the function is going,

increasing or decreasing. It can be interpreted as an instantaneous rate of change. Ra(f, t)

andRb(f, t) are not necessarily exactly the same in their different amplitudes. Hence, rather

than comparing the exact shape of received RF noise, we look into their variations. Besides,

the equality in Theorem 2.4.2 exists only when noise power is measured in its logarithmic

form, as otherwise ∂Ra(f,t)
∂t

= |αa|2|V0(f,t)|
|Z|

∂|V0(f,t)|2
∂t

6= ∂Rb(f,t)
∂t

= |αb|2|V0(f,t)|
|Z|

∂|V0(f,t)|2
∂t

.

It is worth mentioning some prior works on establishing intra-body communication

(IBC) between wearable devices [134, 52, 159]. The body serves as a transmission medium

to host peer-to-peer communications. As these works focus on how to achieve high-speed

low-energy data transmission, their goal and basis are quite different from ours. Given that
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IBC can provide covert inter-body channels, Roeschlin et al. [116] proposed to utilize these

channels for key pairing between wearables. However, there are at least two restrictions.

First, they need to design their own transceivers for IBC. Second, covert channels only exist

for low-frequent electromagnetic signals. Signals above 100 MHz can be easily radiated

to the environment, rendering the whole procedure vulnerable to eavesdropping attacks.

Unfortunately, most wearables operate over 2.4 GHz nowadays.

2.5 Feasibility Study

The objective of this section is to investigate the feasibility of leveraging ambient RF

noise for wearable device paring via extensive measurement studies. Essentially, we need

to validate two substrates. First, on-body and thus legitimate devices should be capable of

extracting from RF noise common features. Second, it is infeasible for an adversary to do

so.

2.5.1 Measurement Setup

Our experiments are conducted using Arduino nano boards and CC2500 radio chips

[59]. Several watch-like wearables have been built as shown in Figure 2.4. CC2500 is an

RF transceiver that operates over the 2.4 GHz ISM band and designed for very low-power

wireless applications. Its role here is to collect and sample RF noise captured by the human

body. A conductive wire is wound back of CC2500 to create physical contact between the

CC2500’s antenna and the wearer’s skin. In this way, RF noise, which is first captured by

the human body from the open air, is then conducted to the wearable transceiver through

the wire, as demonstrated in Figure 2.3. Each CC2500 is associated with an Arduino nano

that plays as a micro-controller to store and process the received noise. Arduino nano is

powered by a lithiumion polymer battery. The system samples the noise at a rate of 7000
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Arduino 
nano board
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Figure 2.4: System setup.

samples/sec. Samples are timestamped using the system clock. A classical flooding time

synchronization protocol (FTSP) [90] is implemented for clock synchronization between

devices. We build a prototype for the measurement study instead of using COTS wearables.

As they seal their transceiver chips inside of the out-shell case, it is challenging to create

direct contact between a wearer’s skin and transceiver chips, more specifically, antennas.

Although our prototype does not involve any dedicated sensors, such as accelerom-

eter [152, 39], ECG, and EMG sensors [117, 160], we do need a minor modification on

hardware. As mentioned above, a conductive wire or an electrode is needed to connect

between the body skin and the wearable antenna.

2.5.2 Measurement Results

Devices on the same body. This part verifies the theoretical result of Theorem 2.4.2

that wearables attached to different parts of the body surface sense the same RF noise vari-

ation tendency. Three prototypes are used; two of them are held in the wearer’s right and

left hand palm, respectively, while the third one is attached to the right elbow (shown in

Figure 2.5(a)). To examine noise variation tendencies, the raw signal is first fed into a

Gaussian filter to remove low-frequency noise caused by, for example, loose skin contact

or imperfect measurements. As our design does not rely on signal amplitudes, normaliza-
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(a) Experiment setup
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(b) Received RF noise after filtering and normal-
ization

Figure 2.5: RF noise measures at different parts on body surface.

tion is further applied. Figure 2.5(b) depicts the received RF noise over a frequency band

of 2400.0–2400.4 MHz. We observe that the three signals are synchronous across most

samples, even when the right palm is about 125 cm away from the left palm. Such a phe-

nomenon validates the basis of our pairing scheme: Wearables can observe almost identical

RF noise variations when attached to the same body surface, regardless of their inter-device

distance.

One on-body device and one off-body device. This part further shows that mea-

sures at an adversary, a device has no physical contact with the wearer, are distinct from

the ones obtained at legitimate on-body devices. In the experiment, one device is placed

on a table, while the other is held in the wearer’s right palm (shown in Figure 2.6(b)). To

evaluate the correlation between two measures, we examine their Pearson correlation coef-

ficients [99]. Figure 2.6(d) plots the Pearson correlation coefficients by tuning the distance

between two devices. As a comparison, the value is around 0.75 when both devices are

on the same body (shown in Figure 2.6(a)). Besides, the correlation drops quickly as the

distance grows. Therefore, the off-body adversary cannot extract meaningful information

for key forgery even within close proximity to the wearer.
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(e) Devices on different bodies.

Figure 2.6: Pearson correlation coefficients of RF noise received at wearables under various
placement settings.

Devices on different bodies. We now demonstrate that an adversary, a device at-

tached to an outlier, is incapable of extracting the same secret as a legitimate device. The

setting is shown in Figure 2.6(c). Like above, we first examine the Pearson correlation

coefficient of RF noise received at the two devices. Figure 2.6(e) shows that their correla-

tion is relatively low throughout all inter-device distances. Specifically, when two wearers

stand as close as 1 cm, the corresponding coefficient is merely 0.47, even lower than the

value when the adversary is placed on the table. This is because the unique biometrics of

different human bodies introduce another dimension of diversity to RF noise measures.

Figure 2.6 indicates that the adversary cannot generate the same pairing key as the

legitimate device due to a lack of common entropy source. In contrast, some prior pair-

ing schemes [149, 87, 77, 83, 139, 93, 164], which rely on propagation characteristics of

wireless signals in free space, only work if the adversary is at least half the wavelength
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(6.25 cm@2.4 GHz) away from the legitimate device, as otherwise wireless signals highly

correlate. Apparently, our approach is free from such a restriction.

RF noise properties in time and frequency domains. Figure 2.7 shows the normal-

ized RF noise in both time and frequency domains. Four devices are used, two on wearer’s

left and right palms, one on a table, and the last one on a second wearer’s left palm. We

observe in Figure 2.7(a) that measures from devices on wearer’s left and right palms match

well in the time domain. Besides, they are well separated from measures from the other

two devices. We further show in Figure 2.7(b) RF noise measures across different spectrum

bands around 2.4 GHz. A similar relation between these four measures is obtained. Inter-

estingly, a surge is observed from all four measures at the frequency band between 2416

MHz and 2440 MHz, which is exactly the operating frequency of IEEE 802.11 WiFi router

in the test room.

The properties of RF noise discussed above are essential for our pairing scheme.

Since devices on the same wearer share RF noise measures of high similarity, common

secret keys can be extracted. The details of key generation and device pairing will be dis-

cussed in Section 2.6. Besides, readings from an adversary, either placed off-body (denoted

as type-I imitation attack) or worn by another wearer (denoted as type-II imitation attack),

are distinct from the ones measured at the legitimate device even they are in close vicinity.

Thus, it is extremely challenging for an adversary to extract a valid pairing key. More-

over, the above properties are consistent across time and frequency domains. It provides an

ample choice of time slots and frequency bands from which pairing keys can be extracted.
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(a) RF noise in temporal domain
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Figure 2.7: RF noise properties in time and frequency domains.

2.6 Device Pairing

2.6.1 Overview

As a key component, Alice and Bob seek to produce common secret keys from their

RF noise readings. A naive approach is reciprocal quantization [148, 87]. Setting two

adaptive thresholds q+ and q−, sample readings above q+ are mapped to 1’s and those

smaller than q− are mapped to 0’s. However, this approach imposes stringent requirement

over device synchronization. If two devices are misaligned even by a single bit, the mis-

match will be accumulated and result in high error rate eventually. Instead, we propose to

utilize the noise variation tendency for key generation. By dividing samples into blocks,

we examine the variation of samples in each block so as to tolerate the misalignment over

a couple of individual samples. Besides, our scheme adopts the framework of fuzzy com-

mitment [65, 95, 50] for key establishment. It is able to transform a secret value s into a

commitment/opening value pair (σ, λ), such that σ does not reveal any information about

the secret s. Another pair (σ, λ′) will reveal s if the Hamming distance Ham(λ, λ′) ≤ t.

It is computationally infeasible to find λ′ with Ham(λ, λ′) > t that decommits σ. Due to

the employment of Reed-Solomon (RS) codes [145], two devices are able to agree on a

common key, if the opening values generated from their received RF noise differ in t bits
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at most. The value of t depends on the parameterization of the RS code and is tunable to

strike a balance between security and usability. Its discussion is provided in Section 2.7.3.

Initialization phase 
Broadcast  Msg: 

Alice Bob

 RQST_TO_PAIR 

  RSP_TO_PAIR 

Msg:

Msg:

Key agreement phaseGenerate
secure key and
witness value  Fingerprint profiling  &

Send tendency profiles & commitment

Key confirmation phase

Key confirmation messages for 

Decommit 
using received 
Alice's profiles 

Figure 2.8: Pairing protocol.

As shown in Figure 2.8, the pairing protocol consists of three phases, initialization,

key agreement, and key confirmation.

Initialization phase. Alice broadcasts her identifier IDA to its vicinity. If a new

wearable Bob wishes to pair with Alice, he sends a “RQST_TO_PAIR” message with his

identifier IDB. Alice confirms this request by replying with “RSP_TO_PAIR” and the

specification of noise measurement duration T and frequency channel CH .

Key agreement phase. Denote by Ra and Rb the noise measurements collected by

Alice and Bob, respectively. Alice generates a secret key KAB ∈ {0, 1}k and a witness

wa ∈ {0, 1}k using her pseudo-random number generator (PNG). She then turns them

into a commitment/opening pair (σ, λ) ← comit(KAB, wa). The opening value λ is

calculated as the codeword for KAB using Reed-Solomon (RS) encoding, λ = RS(KAB).

The commitment σ is then calculated as the difference of wa and λ, σ = wa 	 λ, where

	 denotes a subtraction in a finite field (analogous to an XOR operation). Then, Alice
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applies the proposed fingerprint profiling mechanism (discussed in Section 2.6.2) to derive

her selected fingerprint profile, denoted by P . Alice releases σ and P to Bob. Neither

KAB nor wa can be revealed from the transmitted message by any adversary. Unlike some

prior works on device pairings [157, 117], which assume the existence of some secure (but

unauthenticated) channel (e.g., TLS) to exchange messages, our protocol does not need

such an assumption and is thus more practical for implementation.

Upon receiving the message, Bob produces another witness wb based on P and his

received RF noiseRb via the fingerprint profiling mechanism. If Bob is a legitimate device,

then wb ' wa. Bob’s opening value is calculated as λ′ = wb 	 σ. If Ham(λ, λ′) ≤ t, KAB

is retrieved by decoding λ′ as KAB = RSD(λ′) using the RS decoding function RSD(). It

means wa and wb can differ in t bits at most, the maximum number of mismatch bits the

RS coding can correct.

Key confirmation phase. The aim of this phase is for peers to determine if their

established keys are identical. We employ the classic challenging-and-replying protocol

[51, 50]. Two devices use their established keys to encode a nonce and send both the nonce

and its ciphertext to each other. The key is confirmed if its decoded ciphertext is the same

with the nonce.

2.6.2 Fingerprint Profiling Module

This module enables Alice to select her fingerprint profile P that hides the infor-

mation of witness wa and Bob to recover witness wb from P . A success design ensures

wb ' wa if Bob is a legitimate device. This module consists of components at both Alice

and Bob. Our idea is inspired by [149] but different in several ways. For example, the

scheme [149] employs instant channel state information (CSI) amplitude as device’s fin-

gerprint features. Singular value decomposition is applied to avoid RF noise interference
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Figure 2.9: Fingerprint profiling.

for feature extraction. Instead, RF noise is treated as ingredients for key generation in this

work. Besides, the noise variation, rather than its amplitude, is considered. As a result, the

corresponding feature extraction algorithm will be different.

For Alice, she first segments RF noise samples Ra into a sequence of blocks. Denote

by n the size of each block; it stands for the number of successive samples contained

in a block. Then, the samples in a block is further divided into two groups G0 and G1

by a threshold which is set to 0.5 in this work. Particularly, samples with normalized

amplitude above 0.5 belong to G1; the rest belong to G0. Figure 2.9(a) illustrates the

formulation of blocks and groups. Alice applies the PNG to produce a pseudo-random

number wa ∈ {0, 1}k, called witness under the framework of fuzzy commitment. Then, the

corresponding group is selected in each block sequentially. In the example shown in Figure

2.9(a), given wa = 1010, it indicates that G1 is selected at the first and third blocks, while

G0 is selected at the second and fourth blocks, all marked in green.

As discussed in Section 2.4 and 3.5, the variation tendency of RF noise at two legiti-

mate devices shares high similarity. Therefore, by applying the regression analysis over the

samples from the same group given the same underlying model, Alice and Bob are able to

derive the same set of parameters that characterize the model. For computation efficiency,

in this work we apply the linear regression model, which is fitted using the least squares

approach [20]. Once Alice derives a linear function to fit samples in each of her selected
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groups, she then gathers their slopes and sample statistics as her selected fingerprint profile,

denoted by P .

The operations executed at Bob are similar to Alice. Blocks and groups are con-

structed based on his Rb. The same linear regression model is applied to derive linear

functions and thus their slopes for both G0 and G1 in each block. Upon receiving P from

Alice, for each element Bob decides which group,G0 orG1, in a block produces the closest

slope by applying the t-test similarity comparisons [54]. If it is G0, then a bit 0 is recorded,

and 1 otherwise. This step can be viewed as the reverse of operations executed at Alice.

Eventually, witness wb is obtained at Bob. In the given example, wb is equal to 1010 if Bob

is a legitimate device.

If Alice intends to deliver a k-bit key KAB, she constructs at least k blocks. The

block size n influences the performance of key generation. A small n results in high bit

error rate, while a large n reduces the key generation rate.

2.7 Evaluation

The experiments are conducted using our prototype devices described in Section 3.5.

As human subjects are involved, the entire research has been approved by IRB. Since the

prototype is built on a commercial transceiver that follows the FCC regulations, it poses

a minimal risk to human health. During the data collection, the transceiver only passively

measures the RF noise without injecting any current flow through the body. Subjects are

fully informed before voluntarily participating in the experiments. Their discomfort an-

ticipated in the research is not greater than those ordinarily encountered in daily life. All

collected data are de-identified and properly stored locally from potential leakage.

The goal is to evaluate both the security and usability of the proposed mechanism.

A wide spectrum of impact factors are thoroughly examined, such as system parameters,
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wireless environments, wearer motion status, and device types. Comprehensive perfor-

mance comparison is also made with existing works. A total of 6 volunteers, 4 males

and 2 females between 25 to 28 years old, are recruited for data collection. Before each

experiment, detailed instructions regarding experimental procedures are provided.

2.7.1 Robustness Against Attacks

Imitation attack. In type-I imitation attacks, the adversary aims to derive a valid

pairing key from its RF noise measurement for being at the vicinity of the wearer. Since

RF noise is highly diverse in the spatial domain, its electromagnetic features are distinct

even at two geographic locations with close proximity, as illustrated in our feasibility study.

Thus, it is impossible for the adversary to extract an accurate witness to decode the session

key KAB. In the experiment, we test the adversary’s success rate by varying its distance

to the wearer. Figure 2.10(a) shows that the maximum success rate of type-I imitation

attack is upper-bounded by 5.8% which is achieved at the closest distance to the wearer of

1 cm. The success rate further drops to 0.2% when the distance becomes 125 cm. This

phenomenon is consistent with the result of Figure 2.6(d).
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Figure 2.10: Success rate of imitation attacks.

In type-II imitation attacks, the adversary is attached to another wearer’s body. The

experiment is carried following the same setting in Section 2.5.2 for our feasibility study.
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As shown in Figure 2.10(b), type-II attacker’s success rate, 4.3% the maximum, is even

lower than type-I attacker. This is because body biometric characteristics introduce an

additional layer of uniqueness to the RF noise measures. Therefore, the adversary, attached

to an outlier, is also unlikely to extract the same witness as a legitimate device to derive the

valid session key.

Some existing schemes [92, 83, 149] that rely on wireless signals for device pairing

typically assume the adversary no less than half of the signal wavelength away from the

legitimate device; otherwise, their received signals will be highly correlated and thus fail

the scheme. To be specific, the adversary gains a success rate of 93% at a distance of 5 cm

[149], while this value is only 4.2% of our scheme.

Synthesis attack. In this attack, the adversary first models the statistic distribution

of RF noise by collecting samples from the radio environment surrounding the wearer for

a period of time. Then it fabricates synthetic measurements from the distribution to launch

pairing attempts.

In the experiment, Gaussian process is adopted. For each noise sample R(f, t), t ∈

T, f ∈ CH , the synthetic value is randomly chosen following N (µ, δ). It estimates from

collected RF noise measurements to get µ and δ. We generate 10,000 forgery noise sam-

ples to attack 120 pairing processes. As shown in Table 2.1, the attacker’s success rate is

relatively low, 3.2% the maximum. Besides, it gains no advantage for a longer observation

period. Since RF noise is highly dynamic, demonstrating memoryless property in the time

domain, historical statistics are of little help to predict its future values. Thus, it is unlikely

for this type of adversary to extract useful information from historical data analysis. It

is noteworthy that some existing approaches use cable radiations [157] and human move-

ments [39, 152] as common entropy for pairing. As these signals exhibit certain patterns,

they are vulnerable to synthesis attacks. For example, cable radiations follow a sinuous

waveform at the frequency of 50Hz/60Hz. Such a pattern is easily predictable.
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Table 2.1: Success rate of synthesis attacks.

Observation duration 10 min 15 min 20 min 30 min
Success rate (%) 2.9 1.8 3.2 2.1

MitM attack. In order to place between Alice and Bob, the adversary must either

run the protocol with each of them or interfere, for example, replace or modify at least one

of the key agreement messages, in an ongoing pairing session between Alice and Bob. As

discussed above, the adversary cannot successfully complete the protocol alone with either

Alice or Bob. Besides, any modification of the key messages will also cause Alice and Bob

to disagree on the key. For example, if the adversary replaces Alice’s commitment σ with

its own commitment σ′, then Bob derives a different opening value λ′ = wb	σ′ 6= wb	σ.

The decoded symmetric key K ′AB = RSD(λ′) is different from KAB generated by Alice. It

results in a failure during the key confirmation phase. Now the only remaining option for

the adversary is to initiate two sessions simultaneously with both Alice and Bob, and then

rely on them for key establishment. To succeed, the adversary must correctly guess KAB

generated by Alice. The probability is 1/2128 given k = 128, which is negligible.

2.7.2 Key Generation Performances

Source entropy. Entropy characterizes the uncertainty associated with an informa-

tion source. It is more difficult for an adversary to predict and deduce secrets from high-

entropy sources. We examine the spectral entropy of RF noise in the experiment. It is

calculated by applying the Shannon entropy concept over the power distribution of a given

signal. This metric has been widely employed to quantify signal randomness and irregular-

ities in the domain of speech recognition.

Figure 2.11 shows the spectral entropy of RF noise at different time instances. We

observe its value is above 0.9 mostly with its average around 0.94. Hence, RF noise demon-

strates satisfactory randomness to defend against brute force attacks and guessing attacks
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Figure 2.11: Spectral entropy.

on device pairing. For comparison, Figure 2.11 further shows the spectral entropy of elec-

trical cable radiation. Its randomness has been recently explored for paring and wearable

device on-body/off-body detection (e.g., [75]). We find that the electrical cable radiation

exhibits a much lower spectral entropy around 0.85. As mentioned above, this is because

cable radiations mainly follow a sinuous waveform at the frequency of 50Hz/60Hz. Thus,

it bears much less uncertainty than RF noise.

Table 2.2: Bit generation rate (bits/sec)

TDS KEEP ASBG Telepathy Proposed
96 28 13 12 138

Bit generation rate. Bit generation rate is defined as the number of bits of the

key over the time for the entire pairing process. Table 2.2 compares this metric between

our scheme and other four schemes, including TDS [149], KEEP [148], ASBG [62], and

Telepathy [93]. Specifically, TDS and KEEP leverage the common CSI measurements at

two closely located devices for key pairing. ASBG and Telepathy rely on the reciprocity

of radio wave propagation for transmission peers to extract common secret keys. For the

sake of fairness, we copy the performance of these four schemes from their own papers.

We notice that our scheme has the highest rate of 138 bits/sec. KEEP, ASBG and Telepa-

thy have relatively low rates among the five. This is because they employ the reciprocal

quantization mechanism when converting radio samples into bits. As the mechanism drops

a large amount of samples to resolve the quantization ambiguity, it slows down the bit
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generation process. Although the rate has been improved significantly by TDS, it suffers

from a time-consuming information reconciliation process, which is used to reconcile bit

mismatch caused by imperfect clock synchronization. Since our scheme utilizes RF noise

variation tendency for common secret extraction, imperfect clock synchronization imposes

a rather limited impact on key agreement. Take Figure 2.9 as an illustration. Even if clocks

at pairing devices are asynchronous by one-sample time duration, it is unlikely to change

the slope and the corresponding bit derived from the entire samples in one block. Thus, the

tedious information reconciliation process can be avoided.

2.7.3 Impact of Settings

Impact of key parameters. We first examine the impact of block size n on the

performances of bit error rate, bit generation rate, and pairing accuracy. Specifically, bit

error rate is defined as the number of mismatched bits over the number of all bits generated.

False rejection rate (FRR) and false acceptance rate (FAR) are employed to characterize the

pairing accuracy. FRR is the probability that a legitimate device is treated as an adversary.

It is the ratio between the number of times that a legitimate device is wrongly classified and

the total attempts. FAR is the probability that an adversary is treated as a legitimate device.

In the experiment, two legitimate wearables are attached to a wearer while an adversarial

device locates 20 cm away from the wearer.

Figure 2.12(a) shows the cumulative distribution function (CDF) of the bit error rate

for generating 128-bit pairing keys. We observe that a larger n associates with a lower error

rate. This is because a larger group size can better tolerate tendency mismatches caused by

measurement errors. On the other hand, as shown in Figure 2.12(b), a larger n brings down

the bit generation rate. This is because it takes a longer time for collecting enough samples

for key generation. We further observe in Figure 2.12(c) that a larger n leads to a lower
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FRR but a higher FAR. This is because a smaller-size block contains fewer samples. The

derived fingerprint profile P becomes sensitive to measurement errors. Thus, legitimate

devices become easier to be wrongly rejected. Meanwhile, it renders adversaries even less

likely to pair. On the contrary, a larger block size better tolerates measurement errors with

a lower FRR. Since it indicates a loose detection rule, FAR increases accordingly. We

observe that the EER, the point at which FRR and FAR are equal, is 1.4% when n = 50.

Figure 2.12 provides insights for selecting proper n that strikes a balance among the metrics

of bit error rate, bit generation rate, and pairing accuracy.
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Figure 2.12: Impact of block size n.

We then investigate the selection of parameter t for the fuzzy commitment. Recall

that t is the maximum Hamming distance between two opening values λ and λ′ that recover

the same key KAB. Figure 2.13(a) depicts the pairing success rate with respect to t. It is

observed that the success rate increases as t grows. It meets our expectation as a larger

t tolerates a larger amount of bit mismatches in opening values. It also accounts for why

FAR increases as t grows shown in Figure 2.13(b); an adversary becomes easier to get

paired. On the other hand, a larger t effectively brings down FRR. EER is equal to 1.6%,

when t = 10. Combining the results of Figure 2.13, we find t = 10 as a suitable setting for

implementation, as it produces 96.8% pairing success rate and a low EER of 1.6%.
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Figure 2.13: Impact of fuzzy commitment parameter t.

Impact of wearers. Figure 2.14(a) shows the pairing accuracy across six different

wearers. While each individual exhibits slightly different FAR/FRR, the overall perfor-

mance is relatively consistent, with the average FAR and FRR both under 2.0%.
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Figure 2.14: Impact of usage settings.

Impact of environments. We further test the scheme at six different types of loca-

tions, including hallway, apartment, lab, classroom, campus quad, and parking lot. Figure

2.14(b) shows that the pairing accuracy performance is promising both indoors and out-

doors. Since RF noise is ubiquitously accessible, our scheme does not impose any restric-

tions on its usage environment. In contrast, [157] relies on electrical cable radiation and

thus is inapplicable in outdoors due to the unavailability of its signal sources.

Impact of motion status. Since a human body performs various types of mo-

tions due to daily activities, it is important to show that the proposed scheme is motion-

insensitive. In the experiments, volunteers are asked to perform four types of motions,
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including sitting, typing, turning directions, and walking. The corresponding pairing accu-

racy is depicted in Figure 2.14(c). We find that the best performance is achieved at the sit-

ting status with averaged FAR=2.8% and FRR=3.1%, while moving actions slightly bring

up the error rate. Still, the pairing accuracy is practically acceptable. Some prior works

on wearable device pairing extract common secrets from body movements [39, 152]. The

source entropy comes from the randomness of body movements. Their schemes do not

work when users are in a relatively static status, say sleeping and sitting.

Impact of device placements. In this set of experiments, we evaluate the impact of

device placements on the body surface. Several locations are examined, including user’s

palm, elbow, front head, wrist, and keen. Table 2.3 shows that the FRR is relatively stable

for all locations, with the maximum value equal to 2.6%. It meets our expectations. The

RF noise measures at different parts of a wearer’s skin experience the same variation ten-

dency. Therefore, the pairing performance, reflected by FRR here, is consistent. This is

a desirable property. In practice, various wearables are attached to various parts of body

skin to collect diverse biosignals. For instance, ECG monitors are sometimes attached to

the chest. Then the above-mentioned prior designs [39, 152] that relay on body movements

for key extraction do not work in this case as no significant movement is observable in the

chest area.

Table 2.3: Impact of device placements.
Placement R. elbow F. head. L. wrist L. keen

FRR 2.1% 1.6% 1.8% 2.6%
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2.7.4 Comparison with Other Pairing Schemes

In addition to the bit generation rate in Section 2.7.2, we present the performance

comparison with prior works on bit error rate and key entropy. For the sake of fairness, we

directly utilize the experimental results from these works.
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Figure 2.15: Comparison with other pairing schemes.

Figure 2.15(a) compares the bit error rate with two other schemes, ProxiMate [92]

and TDS [149]. As mentioned previously, TDS leverages common CSI measurements

at devices in close proximity to establish their symmetric keys, whereas ProxiMate utilizes

FM radio and TV signals. The bit error rate is examined by tuning the inter-device distance.

ProxiMate and TDS experience a surge in error after the distance surpasses certain thresh-

olds. This is because the common secrets can only be extracted at two antennas within

half wavelength. On the other hand, our pairing scheme is independent of the inter-device

distance as long as they have physical contact to the same wearer.

Figure 2.15(b) compares the entropy of generated keys. Entropy reflects the ran-

domness of keys from the perspective of uncertainty. Recall that Figure 2.11 shows the

entropy of raw signals. We find that Aono [7] has the lowest entropy among the six, as it

directly turns raw measurements into secret bits and raw signals are correlated in the tem-

poral domain. To address this issue, KEEP, ASBG and Telepathy employ the reciprocal

quantization mechanism; a certain amount of correlated signals are discarded during quan-

tization. As shown, it effectively improves the entropy. The proposed scheme and TDS
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have the highest entropy, approximate to 1, since their keys are produced by PRN gener-

ators. As a note, our scheme extracts from RF noise the witness values instead of the key

itself.
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CHAPTER 3

PERISCOPE: A TRAINING-FREE KEYSTROKE INFERENCE

ATTACK USING HUMAN COUPLED ELECTROMAGNETIC

EMANATIONS 1

3.1 Introduction

Mobile devices, such as smartphones and tablets, have penetrated into everyday life.

They are commonly used to enter sensitive inputs with virtual keyboards, including bank

card number, security code, and digit PIN. Prior research has shown that these secrets

entered at keyboards can be inferred from onboard motion sensor readings [17, 105, 96,

155, 88, 82], acoustic signals at microphones [123, 167, 78, 86, 14, 41], video recordings

[144, 143, 22, 111, 12, 11, 122, 154], and radio signals captured by surrounding wireless

infrastructures [74, 4, 165, 37, 76]. To access these side channels, most existing works

have to impose strong assumptions over attacker’s capabilities or attacking scenarios. For

example, motion sensor based attacks require the pre-installation of certain malware to vic-

tim’s device to access sensor readings. Video based attacks rely on the line-of-sight (LoS)

view of the typing process or object of interest that reflects typing motions. Radio signal

based attacks analyze reflected signals to characterize environment disturbance caused by

finger movements to learn which key is pressed. It cannot tolerate any background con-

text changes, as otherwise, the subtle signal fluctuations introduced by finger movements

1Wenqiang Jin, Srinivasan Murali, Huadi Zhu, and Ming Li, "Periscope: A Training-Free Keystroke Infer-
ence Attack Using Human Coupled Electromagnetic Emanations." Submitted to ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2021.
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are easily buried under large-scale signal variations caused by environment dynamics. All

the above restrictions render many existing keystroke inference attacks impractical in real-

world scenarios.

In this work, we present an attack that leverages electromagnetic (EM) emanations

leaked from device’s touchscreens to snoop keystrokes. While the EM emanations have

been explored for keystroke inference attacks [136, 138, 33], previous efforts have been

focused on physical keyboards. When a key is pressed, the keyboard sends a packet of

information known as a scan code to the computer. The scan code is bound to a physical

button on the keyboard. The information leakage threat exists because part of the internal

circuit acts as an antenna and radiates unintentional encoded information in EM waves. The

attacker can easily reproduce each keystroke by relating it to its unique EM wave pattern.

For virtual keyboards on mobile devices, their working principle is quite different. The

way to recognize a keystroke does not rely on the scan code, but rather the current changes

in the electrode grid. (Details will be covered in Section 3.4.1.) Thus, the fingerprinting

EM leakage from a specific physical button no longer exists.

For the first time, our attack analyzes touchscreen’s EM emanations under the human

coupling effect. As suggested by [113, 157], a human body can be treated as a conductor

with low impedance (a few kΩ). When a user’s finger approaches the screen, it generates

a radiative coupling with the touchscreen’s circuit. A portion of electric charges are ex-

tracted from the electrode grid to the finger through the coupling capacitance. As the finger

moves over a screen to enter inputs, it changes the coupling capacitance. Consequently, it

influences the touchscreen’s EM emanations, which can be detected by a remotely located

eavesdropper. Our attack is built on this phenomenon to map EM emanation fluctuations

with finger movements for performing keystrokes. Compared with state-of-the-art infer-

ence attacks, our scheme is more practical to execute from the following aspects. First, it

eavesdrops keystrokes in a non-invasive way. Hence, it avoids the requirement to infect
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the victim device in advance of the attack. Second, as EM emanations can easily penetrate

through obstacles, no LoS view is needed to launch the attack. Third, since our attack relies

on direct EM radiations from touchscreens rather than reflected signals, it is robust against

environment dynamics. We name our proposed attack as Periscope as it can observe and

disclose victim’s keystrokes covertly without a LoS view.

Despite these promising features, harnessing EM emanations for keystroke inference

still faces a significant challenge, that is, to establish a relationship between observed EM

emanations and a specific key press. A straightforward solution is to build a learning model

that maps between these two. Under this framework, the attacker first needs collect labeled

dataset of a reasonable size and train the model properly. During the attack phase, unknown

EM emanations are fed into the trained model as inputs, with the output as which key was

most likely pressed. In fact, this approach is adopted in most existing acoustic and radio

signal based inference attacks [74, 4, 165, 37, 76, 123, 167, 78, 86, 14, 41]. However,

training significantly hinders the deployment of these attacks. As users’ typing behaviors

are distinct, user-dependent inference models are preferred to capture this uniqueness. It

requires either access to the victim’s device for some time or possession of her labeled

dataset.

To avoid the training hurdle, we aim to develop an analytic model that characterizes

the relation between EM emanations and keystrokes. To facilitate the analysis, we divide

the continuous EM readings of entering the entire PIN into several segments, each asso-

ciated with one key pair. By looking into the equivalent circuits of the touchscreen with

finger coupling, we first derive the closed-from expression between realtime EM readings

and instant finger-screen distances. Nonetheless, the latter may not directly reflect specific

keystrokes. To fill the gap, we further estimate the finger movement speed and direction

of entering one key pair. With these parameters, time-dependent finger-screen distances

are equivalently transformed to a 3D finger movement trajectory, which are further cast
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to two 2D planes. The projected trajectories reveal finger movement lengths for entering

one key pair in both horizontal and vertical directions on the screen. After such projec-

tion and transformation, we establish an explicit relation between EM readings and finger

movements. This knowledge requires no prior labeled dataset from a specific user and is

completely training free. Meanwhile, we notice that different key pairs may share an iden-

tical finger movement trace. To alleviate the inference ambiguity, we propose to explore

the inter-dependency between consecutive key pairs to narrow down possible keystrokes.

We model the entire PIN entering process as a Hidden Markov Model (HMM), with the

recovered finger movement traces as observations, whereas the exact key pairs as hidden

states. Finally, HMM outputs a list of PINs ranked based on their probability of being the

target PIN.

To evaluate the proposed Periscope, we build a prototype with an Arduino board [57]

and a conductive wire, with the total cost around $10. Extensive experiments show that our

Periscope achieves a recovery rate over 6-digit PINs of 56.2% at a distance of 90 cm. Tests

also show that Periscope is robust against environment dynamics and transparent to at-

tacker displacement. Besides, it stays effective for a diverse set of devices and environment

context. We summarize the contributions of this paper as follows.

• We investigate a novel side-channel attack to eavesdrop user’s digit inputs on mobile

devices by analyzing human-coupled EM emanations from touchscreens. While EM

emanation based inference attacks have been studied on physical keyboards before,

they are inapplicable to virtual keyboards due to their distinctive working principles.

• By analyzing touchscreen circuits under the human coupling effect, a closed-form

expression is derived to characterize the relation between EM readings and finger

movements. With the analytic model, keystrokes can be easily recovered from EM

readings without training hurdles.
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• We develop a prototype and demonstrate the severity of the threat. It outperforms

state-of-the-art inference attacks in terms of setup practicability with much fewer

deployment restrictions. More importantly, the total cost of the prototype is as low

as $10.

3.2 Related work

Existing keystroke inference attacks that explore side-channel information can be

broadly classified into the following categories.

Motion sensor based attacks. Efforts have been made on inferring user’s keystrokes

from data generated by on-board motion sensors. Early works [17] and [105] utilize mo-

bile device’s accelerometer readings to infer victim’s passwords. By further involving gy-

roscope, [96] and [155] are able to increase the attack success rate. In this line of research,

some recent works [88, 82] show that the similar idea can be applied to wearables to snoop

victim’s inputs. However, these attacks cannot succeed unless the victim device is pre-

installed with certain malware to acquire motion sensor data, limiting their applicability.

Acoustic signal based attacks. Some keypads such as ATM inputs and door key-

pads provide an audio feedback to the user for each button pressed. Such audio feedback

is observable from a fair distance. Prior works [14, 41] quantify the delays between feed-

back pulses to reconstruct the keystrokes. This type of attack is susceptible to acoustic

background noise. Besides, not all keypads emit audio feedback. Another line of research

infers user inputs by employing acoustic ranging techniques. They utilize microphones to

locate finger taps and thus the corresponding buttons on a screen [123, 167, 78]. It is not

easy to derive an analytic model that characterizes finger movement trajectory with respect

to audio sound. Researchers [168, 9, 137] have to resort to machine learning techniques
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and train classifiers to reconstruct the keystrokes so far. Tedious data sample collection and

offline training process are unavoidable.

Video based attacks. Empowered by advanced computer vision techniques, video

based attacks have been investigated for a while. Its idea is to use cameras to record the

typing process or an object that reflects typing motion and then identify inputs by an-

alyzing the recorded video. Prior works have demonstrated the feasibility of launching

inference attacks by recording hand movement [122, 154], eye movement [144, 143, 22],

tablet backside motion [126], reflections from nearby objects (e.g., glasses and plastic bot-

tle) [111, 12, 11]. In these attacks, cameras should have a LoS view for object of interest;

otherwise, keystroke activities cannot be detected. Besides, this type of attack does not

work under poor lighting conditions.

Radio signal based attacks. Emerging research efforts have been made on eaves-

dropping keystrokes from radio signals due to the wide deployment of wireless infrastruc-

tures (e.g., WiFi and cellular towers). In particular, prior works [74, 4, 165, 37] reveal

victim’s keystrokes via the WiFi channel state information (CSI). Ling et al. [76] recov-

ered the typed PIN on an ATM by analyzing the reflected cellular signals. As they rely on

wireless infrastructures to launch the attack, the signal strength is relatively strong. Hence,

the attacking distance is up to several meters. On the other hand, as radio signals are

highly susceptible to environmental dynamics, these attacks cannot tolerate any changes

in the environment other than the victim’s hand or finger movement. Periscope utilizes

EM radiations from device’s touchscreen to recover keystrokes. Hence, no extra wireless

infrastructure is needed. Because the effective sensing distance of touchscreen’s EM radi-

ations is around 1 meter, its attacking distance is constrained within this range too. Like

acoustic signal based attacks, due to the complexity of formulating the relationship be-

tween observed wireless disturbances and specific key presses, radio signal based attacks

also require a training phase to be effective. Recently, Fang et al. [37] proposed a training-
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free keystroke inference attack by leveraging structures of dictionary words. They built a

prototype with USRP, with a total cost around several thousand dollars.

EM emanation based attacks. EM radiations unintentionally leak from electronic

devices. It has been investigated as a side channel to infer victim’s keystrokes on physical

keyboards [136, 138, 33]. Notably, each key is associated with a unique scan code. Once

it is pressed, the PC recognizes the key by reading the imported information through the

data cable. The attack is based on the observation that the encoded keystroke information

is radiated to the open air the form of EM emanations as it is transmitted over the cable.

The working principle of soft keyboards is different. A keystroke is recognized by locating

the touched position on a screen surface from current changes. Therefore, the existing

eavesdropping method toward physical keyboards is inapplicable here. For the first time,

Periscope examines the EM radiation changes caused by human coupling effects when a

finger performs keystrokes. We then build a mapping relation between EM emanations and

finger movement trajectory which serves as the foundation of our attack.

3.3 Adversary Model

Attack scenario. The attack scenario is considered as that an adversary seeks to

infer a victim’s secret PIN by eavesdropping her keystrokes on a mobile device. The victim

places her device on a table and types on a soft numeric keyboard on the screen, as shown

in Figure 3.1. Such scenarios are prevalent in daily life, such as in a library or a cafe

where users unlock their smartphones by entering digit PINs. The attacker is in physical

proximity to the victim. It is well concealed, e.g., placed underneath a table or in a bush

nearby [91]. We focus on soft numeric keyboards with a classic layout, though the attack

can target other layouts just as easily.
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Figure 3.1: Eavesdrop EM emanations using an attack device.

What an attacker cannot do. Unlike many prior keystroke inference attacks, the

attacker does not necessarily have a LoS view of victim’s keyboard or any other object of

interest, such as hand movement, eye movement, and tablet backside motion. We do not

assume the existence of any covert channel that reveals victim’s onboard sensor readings

to the attacker either. Also, there is no ideal environment, static or quiet, to launch attacks.

The victim can make free body movements during the typing process; other people may

walk by or talk in the background. Besides, it is unlikely for an attacker to collect a large

amount of data samples from a specific victim to train an individual keystroke inference

model properly before the attack. The above settings render most of the existing keystroke

inference attacks infeasible.

What an attacker can do. The attack is able to figure out which mobile device a vic-

tim is using and thus its numeric keyboard layout. In practice, the attacker can investigate

the MAC address of the victim’s WiFi traffics to obtain the device manufacturer informa-

tion by looking up prefixes of MAC addresses [31]. Besides, the victim’s DNS responses

contain its device name [102, 53, 169]. Most mobile devices can be fingerprinted with the

information above. Prior work [91] provides technique details on setting up a free WiFi ac-
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cess point to access the victim’s MAC address and DNS responses for device fingerprinting

unnoticeably.

3.4 Preliminaries

3.4.1 How Do Touchscreens Work?

The majority of current mobile devices, such as smartphones and tablets, are equipped

with touchscreens. While there are various sensing touch technologies, mutual capacitive

sensing has been the most prominent due to its high sensitivity, energy efficiency, and low

manufacturing cost [108]. We thus pertain our discussion to this type of touch-sensing

devices in this paper.

Finger

Body capacitance
~100 pF

Body resistance
~1.5k Ohm Device case

Electrode
grid

Glass screen
Coupling capacitance

Figure 3.2: The composition of a mutual capacitive touchscreen.

As shown in Figure 3.2, a capacitive touchscreen consists of a grid of transmitter

(TX) and receiver (RX) electrodes, which are mutually coupled with a capacitance of C0.

TX electrodes are driven by an alternating voltage signal VTX(t), which creates an alternat-

ing current flow from TX to RX electrodes. When a finger touches the screen, it extracts

some electric charges from the electrode grid to the human body through a coupling capac-

itance Cf . The touchscreen controller monitors the changes in the current that flows into

RX electrodes and reports the change as a touch event to the system OS. Meanwhile, it
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locates the current change in the electrode grid as the touched position on the screen. The

input is then recognized accordingly.

3.4.2 Touchscreen EM Emanations and Measurements

The alternating currents between touchscreen’s TX and RX electrodes generate time-

variant EM fields that continuously emit EM radiations to the open space. Periscope intends

to map the radiation to user’s typing inputs.

Filter

EPSTouchscreen

Impluse response funciton:

Figure 3.3: The circuit for touchscreen’s EM emanation measurement.

Figure 3.3 depicts an equivalent circuit of using an electric potential sensor (EPS)

to measure touchscreen’s EM emanations. An EPS typically consists of a capacitor Cm, a

resistance Rm, a voltage amplifier, and a low-pass filter. By placing the eavesdropper, i.e.,

EPS, within the EM field of victim’s touchscreen, these two will be remotely coupled via a

small capacitance Cr. Denote by Vs(t) the time-variant voltage that drives EM emanations

from the touchscreen. The captured EM emanation at EPS, measured in electric potential

changes Vm(t), is expressed as

Vm(t) = Vs(t) ·
1/( 1

Rm
+ j2πfCm)

1
j2πfCr

+ 1/( 1
Rm

+ j2πfCm)
· h(t). (3.1)
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Here h(t) denotes the joint impulse response of the amplifier and the low-pass filter. f

stands for the frequency of the driving voltage VTX(t). Among the parameters in (3.1),

Cm, Rm, and h(t) are fixed values. Cr depends on the attacker-victim distance. It can be

treated as a fixed value too under a specific eavesdropping event. Now Vm(t) is determined

by Vs(t). As demonstrated next, Vs(t) is impacted by finger movement. Hence, we establish

a connection between EM readings and finger movement. To validate this claim, we show

in Figure 3.4 the spectrogram of EM readings Vm(t) when a user enters a 6-digit PIN. There

are 6 bars with intense magnitude, each representing the tap of one key. We also notice that

the majority frequency components are scattered at the lower end of the spectrum band,

below 60 Hz. It indicates that EM emanations can be easily captured by cheap EPS with a

fair sampling rate.
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Figure 3.4: Spectrogram of EM emanation measurement Vm(t).

3.4.3 Impact of Finger Coupling

The driving voltage of touchscreen EM emanation Vs(t) is influenced by finger cou-

pling that is modeled next.

Figure 3.5(a) is an equivalent circuit for a mutual capacitive touchscreen when no

touching. RTX (RRX) represents the resistor at the TX (RX) electrode. Recall that C0 is

the TX-RX coupling capacitance. The equivalent circuit is transformed to Figure 3.5(b)
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(a)

Impedance:

(b)

A

(c)

Figure 3.5: Illustration of finger coupling effect. (a) Equivalent circuit without finger
touches. (b) Equivalent circuit with finger touches. (c) Screen-finger coupling.

when touching. As a finger moves close to the screen, they become remotely coupled

via capacitance Cf . As shown in Figure 3.5(c), the finger extracts some electric charges

through coupling to the human body (characterized in CB and RB). We call the above

phenomenon as finger/human coupling effect. When a finger is coupled to the screen, Vs(t)

is expressed as

Vs(t) = VTX(t) · RTX

RTX + 1/j4πfC0 + Z(t)
(3.2)

where Z(t) denotes the equivalent time-variant impedance of the right-half circuit of Figure

3.5(b)

Z(t) = 1/(
1

1/j2πfCf (t) + 1/j2πfCB + 1/RB

+
1

1/j4πfC0 +RRX

). (3.3)
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Let z(t) be the instant finger-screen distance. According to [19], Cf (t) can be expressed as

Cf (t) =
ε0εrA

z(t)
, (3.4)

where ε0 and εr are dielectric permeability coefficients. A is the overlap area between

the fingertip and the screen. As ε0, εr and A are fixed values in one keystroke, Cf (t)

is negatively correlated with z(t). Together with (3.2) and (3.3), we have the following

relation z ↓, Cf ↑, Z ↓, Vs ↑. In short, the touchscreen emits stronger EM emanations when

the finger moves closer to it and vice versa. According to (3.1), Vm has a positive correlation

with Vs. We thus have z ↓, Cf ↑, Z ↓, Vs ↑, Vm ↑. This relationship chain indicates that

the finger coupling effect reveals a side channel to monitor finger movements: remote EM

emanation measurements Vm(t) reflect finger’s realtime distance to the screen z(t) when

performing keystrokes.

We summarize all symbols and their definitions involved in this paper in Table 3.1.

3.4.4 How to Calculate z(t) from Vm(t)?

While the above analysis exhibits a negative correlation between z(t) and Vm(t), we

seek to further quantify this relationship, i.e., how to calculate z(t) from Vm(t) exactly?

Essentially, our goal is to derive a closed-form expression of z(t) as a function of Vm(t)

via (3.1)-(3.4). Nonetheless, this task is nontrivial. Some parameters in (3.1)-(3.4), such

as Rm, Cm, Cr, and h(t), are not readily available. For example, Cr is determined by the

placement of the victim device and EPS. To resolve this issue, our trick here is to utilize

multiple measurements that can cancel out the unknown parameters during the calculation.
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Table 3.1: Summary of symbols and definitions.

Symbol Definition
C0 TX-RX coupling capacitance
Cf Finger-screen coupling capacitance
Cr Screen-EPS coupling capacitance
Cm Capacitance of EPS
CB Body capacitance
Rm Resistance of EPS
RB Body resistance
RTX Resistance of TX electrodes
RRX Resistance of RX electrodes
VTX(t) Driving voltage of TX electrodes
Vs(t) Driving voltage of EM emanations
Vm(t) EM measurement
Z(t) Equivalent impedance in Figure 3.5(b)
z(t) Finger-screen distance.
zmin Minimal finger-screen distance
ε0, εr Dielectric permeability coefficients
h(t) Impulse response function of EPS

As a note, EPS measures Vm(t) in its amplitude, denoted as |Vm(t)|. Let |Vm(t)|∗ be

the maximum value of |Vm(t)|. It is obtained the moment that a finger touches the screen.

|Vs(t)| and |Vs(t)|∗ are defined similarly. We have

|Vm(t)|
|Vm(t)|∗

1©
=
|Vs(t)|
|Vs(t)|∗

2©
=
|RTX + 1/j4πfC0 + Z(t)|∗

|RTX + 1/j4πfC0 + Z(t)|
(3.5)

where 1© and 2© are due to (3.1) and (3.2), respectively. As suggested by [43, 72], Cf and

C0 are generally very small, around 2 pF (2×10−12 F). Thus, their equivalent impedance is

much larger than the body resistance RB (around 1.5 kΩ [135]), the body capacitance CB
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(around 100 pF), as well as the resistance of electrodes RTX and RRX (around 160Ω [72]).

Then, (3.5) is rewritten as2

|Vm(t)|
|Vm(t)|∗

' |1/j4πfC0 + Z(t)|∗

|1/j4πfC0 + Z(t)|
, (3.6)

Similarly, Z(t) is approximated as

Z(t) ' 1/(
1

1/j2πfCf (t)
+

1

1/j4πfC0

) = 1/(j2πfCf (t) + j4πfC0). (3.7)

Let the maximum finger coupling capacitance be C∗f . In practice, manufacturers tend

to set the TX-RX coupling capacitance C0 approximate to C∗f , called impedance matching,

so that the touchscreen circuit tend to generate large current changes in the electrode grid.

It helps to improve accuracy of touch event detection [43, 58, 72]. We thus have C∗f ' C0,

by which C∗f is achieved under the minimum finger-screen distance zmin. From (3.4), we

have Cf (t)

C∗
f

= zmin

z(t)
which leads to

Cf (t) = C∗f
zmin

z(t)
' C0

zmin

z(t)
. (3.8)

Combining (3.6) - (3.8), we have

|Vm(t)|
|Vm(t)|∗

'|1/j4πfC0 + Z(t)|∗

|1/j4πfC0 + Z(t)|
=

zmin

z(t)
+ 2

zmin

z(t)
+ 4
· 5

3
. (3.9)

and thus

z(t) = 1/(
2

1− |Vm(t)|
|Vm(t)|∗

3
5

− 4)× zmin. (3.10)

2Given two complex values a + jb and c + jd, if b >> a then |a + jb + c + jd| ' |jb + c + jd| since√
(a+ c)2 + (b+ d)2 '

√
(c)2 + (b+ d)2.
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zmin is essentially the thickness of touchscreen’s covering glass. It can be determined once

the device manufacture information is figured out. For example, zmin is equal to 0.55 mm

for iPhone 11 [70, 66]. |Vm(t)|∗ is the maximum measurement the EPS captured. Hence, it

can be treated as a known value.

So far, we are able to express z(t) into a function of Vm(t). Given an instant EM em-

anation measurement, the corresponding finger-screen distance can be obtained following

(3.10). More importantly, no training phase is needed. Unlike many wireless signal based

inference attacks, our analytic model is transparent from underlying signal propagation

channel conditions, as they have been incorporated into |Vm(t)| and |Vm(t)|∗. Their impact

is canceled with each other during the calculation. Still, the attacker cannot infer victim’s

typing inputs from z(t) directly, unless it has the full knowledge of the finger movement

trajectory. We present how to derive the latter from z(t) in Section 3.6.

3.5 Measurement Study

The objective of this section is to validate the analytic result of Section 3.4 and in-

vestigate the feasibility of leveraging human-coupled EM emanations to launch keystroke

inference attacks.

Arduino nano
MCU

Analog input pin Conductive wire as
an antenna

Figure 3.6: Prototype of Periscope.
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We build our prototype using an Arduino nano board [57] as a microcontroller unit

(MCU) and a conductive wire as an antenna. These two are connected via Arduino’s ana-

log input pin shown in Figure 3.6. The antenna senses the electric potential changes caused

by touchscreen EM emanations. The system samples received signals with an analog-to-

digital (A/D) converter at a rate of 4000 samples/sec. Recall that the frequency of touch-

screen EM emanations is bounded within 60 Hz according to the spectrogram analysis in

Section 3.4.2. Therefore, the prototype’s sampling rate is more than enough to capture sig-

nal variances in EM emanations. The entire prototype costs less than $10, which renders

the attack easily accessible and widely deployable.

To validate the analytic model for z(t) derived in Section 3.4.4, Figure 3.7 compares

it with the ground truth measurement. It is observed that the former generally complies with

the latter. Meanwhile, the approximation operations involved in the derivation process do

introduce some marginal discrepancies between these two. We plan to investigate its impact

on the attack performance in experimental evaluations.

2.05 2.1 2.15 2.2 2.25 2.3 2.35
0

2

4

6
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10
Analytic result

Measurement result

Figure 3.7: Estimation of z(t) from |Vm(t)|

Figure 3.8 shows EM measurements when entering a 6-digit PIN. EM emanation

variations reflect finger interactions with the screen. It also provides a zoom-in look of EM

amplitude associated with the 5-th key tapping. We find that the signal experiences a sharp

increase when the finger moves towards the screen. It then decays quickly the moment
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a physical contact takes place. This is because the finger draws some electric charges

from the screen. With reduced electric charges, the EM radiation from the screen drops

accordingly. Later on, as the finger leaves the screen for the next key, the EM amplitude

keeps decreasing until the finger is de-coupled from the screen. This observation coincides

with the analytic result derived previously.

Figure 3.8: EM emanation measurements for entering a 6-digit PIN.

Figure 3.9 shows EM measurements by entering three different key pairs “42”, “46”,

and “43”. It is observed that their EM readings are distinct to each other. For example,

“42” is associated with the shortest time duration between two consecutive EM amplitude

peaks, as a finger moves in the shortest path to enter this key pair among the three. We

further evaluate the similarity of EM emanations among ten key pairs originated from “4”

in Figure 3.10. Normalized DTW distance is employed. A small value represents a high

similarity between two pairs, while a larger one means they are barely correlated. We find

that except for the diagonal, i.e., a key pair and itself, DTW distances between EM readings

from any two different pairs are relatively large.

Based on the above observation, we propose to recognize individual key pairs from

their EM measurements first and then the whole PIN.
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Figure 3.11: 3D finger movement trace and decomposition.

3.6 Design Rationale

Our design first separates the received continuous EM emanations into multiple seg-

ments, each representing signals from one key pair. Recall that we are able to map an

instant EM reading to the associated finger-screen distance. Then we apply some transfor-

mations to convert time-dependent finger-screen distance to finger movement traces, which

finally recover key pairs and thus the PIN.

Decomposition of 3D finger movement trace. As shown in Figure 3.11, the finger

movement for entering one key pair can be characterized by a 3D trace. By treating the

first keystroke as the origin point, we set up a 3D coordinate system, where the x-y plane is

where the screen resides and z-axis is vertical to the screen. For any 3D finger movement
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trace, denoted as z(x, y), let its projection on the x-z plane and y-z plane be z(x) and

z(y), respectively. If we know the intersection between z(x) (z(y)) and x-direction (y-

direction) of the keyboard, the key pair is recovered. For this purpose, we further divide the

x-direction, denoted as Lx, of the keyboard into 3 units; each represents one key. Similarly,

the y-direction, denoted as Ly, is divided into 4 units. Under this setting, key pair “16”, for

example, can be represented as Lx = 2 units, Ly = 1 unit. Our task now becomes how to

determine Lx and Ly of a specific key pair from its EM emanation readings.

Relation between Lx (Ly) and EM readings. Denote by θ the angle between 3D

trace z(x, y) and z(x), its projection on the x − z plane. Let x(t) (y(t)) be the finger’s

instant position at time t cast on the x-axis (y-axis). Then we have

x(t) = vpt cos θ, y(t) = vpt sin θ, (3.11)

where vp is the finger movement speed3. Besides, the time-series finger-screen distance

z(t) of one key pair can be approximated with a high dimensional polynomial

z(t) = ant
n + an−1t

n−1 + · · ·+ ait
i + · · ·+ a0. (3.12)

The n + 1 coefficients a0, · · · , an can be determined by solving a linear equation system

with n + 1 samples: (t1, z(t1)), · · · , (tn+1, z(tn+1)), where z(t) can be calculated from

Vm(t) following (3.10). Combining (3.11) and (3.12), z(x) is expressed as

z(x) =
an

(vp cos θ)n
xn +

an−1

(vp cos θ)n−1
xn−1 + · · ·+ a0. (3.13)

3Soft keyboards are generally small in size. For most users, the entry of a PIN can be performed smoothly
within 4 seconds. Thus, it is practical to assume a constant finger movement speed for each user. Speeds
from different users are not necessarily the same though.
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Figure 3.12: Coordinate systems for finger movement traces from arbitrary key pairs.

Similarly, z(y) can be expressed as

z(y) =
an

(vp sin θ)n
yn +

an−1

(vp sin θ)n−1
yn−1 + · · ·+ a0. (3.14)

With z(x) (z(y)), by examining its intersection with the x-axis (y-axis), we can easily

obtain Lx (Ly). To be specific, solve x by setting z(x) = 0. Lx is the unit that x falls into.

Ly is obtained similarly. The above calculation relies on the knowledge of vp and θ. We

will discuss in Section 3.7.2 how to derive these two critical parameters.

To sum up, for each key pair, the attacker collects at least n+ 1 samples of EM read-

ings. Their corresponding finger-screen distances are calculated following (3.10). Then

a polynomial of n-degree that characterizes time-series finger-screen distance z(t) is con-

structed. With the knowledge of victim’s finger movement speed vp and direction θ, z(t)

is converted to z(x) and z(y). Their intersections with x-axis and y-axis are Lx and Ly,

respectively.

Discussions. Note that a given pair of Lx and Ly may not uniquely identify a specific

key pair, but a set of key pair candidates. For example when Lx = 2 units and Ly = 1 units,

satisfying key pairs include "61", "16", "34", "43", "67", "76", "49", and "94". To alleviate

the inference ambiguity, we propose to model transitions between key pairs into a HMM to

eliminate impossible combinations of key pairs. Details will be elaborated in Section 3.7.3.
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Figure 3.13: The system design of Periscope.

In the above analysis, we use the key pair “16” to illustrate how to model a finger

movement trace shown in Figure 3.11. A coordinate system, with “1” as the origin point, is

set up. In fact, our method is applicable to arbitrary key pairs. Figure 3.12 demonstrates the

cases of two other key pairs “59” and “92”. Their origin points become “5” and “9”, sepa-

rately. In either case, we ensure the trajectory exists in the first quadrant of the coordinate

system and thus θ ∈ [0, π/2] to facilitate our analysis.

3.7 Design Details of Periscope

The system overview of Periscope is given in Figure 3.13. It consists of three main

components: preprocessing, key pair recovery, and PIN recovery.

3.7.1 Preprocessing

The goal is to extract clean signal segments for individual key pairs from continuous

raw EM emanation readings.

Envelope extraction. As shown in Figure 3.14, raw EM emanation readings are

mixed with oscillating signals, which add small-scale variations to the envelope. Essen-
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tially, the envelop signal is caused by finger coupling effect and thus contains useful in-

formation regarding finger movements. The oscillating signals, on the other hand, are

produced by touchscreen’s alternating driving voltage and useless for the attack. To extract

the envelope, the extrema sampling based algorithm is employed [161, 1]. Specially, a slid-

ing time window ∆t is applied over the raw reading. The local maximal value within this

window, maxVm(t′) (t′ ∈ [t, t+ ∆t]), is deemed as the filtered output for ∆t.

Waveform segmentation. The purpose of this step is to segment the signal for each

key pair out of a continuous waveform. We first identify critical time instances associated

with finger release/touch events. For finger touch, it appears at EM reading peaks. We thus

apply the classic peak detection algorithm [16] over the envelope signal to identify such

events. Once the finger leaves the screen, the discharging coupling capacitance causes a

sudden drop in EM readings as shown in Figure 3.14. Hence, the finger release event is

identified by locating the maximum derivative along the EM signal envelope between two

consecutive peaks. Upon identifying the above critical events, the EM signal of one key

pair is the waveform segment between the finger release (of the first key) and the next finger

touch (of the second key).
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3.7.2 Key Pair Recovery

Section 3.6 presents how to recover a key pair, recognized via Lx, Ly, from EM

readings. As discussed, the attacker should be aware of the victim’s finger movement speed

vp and direction θ. In the following, we focus on the estimation of these two parameters.

Estimation of θ. Let Θ be the set of possible directions of finger movement for

entering a key pair. To estimate θ, our idea is compare among all the possible candidates in

Θ and figure out the one that produces the highest estimation confidence level.

As discussed in Section 3.6, we take the first key of a key pair as the origin and set

up a 3D coordinate system. Following the steps, the coordinate of the second key (x, y) is

derived by solving z(x) = 0 and z(y) = 0. Lx and Ly are obtained accordingly. Let o be

the geometry center of the key identified by Lx and Ly. A user typically taps the center of

a key to enter an input. If θ is the correct direction, the derived (x, y) should be close to

a key’s center. Otherwise, (x, y) is tend to deviate from the center, as illustrated in Figure

3.15. We then define the confidence level under θ as

l = 1− |(x, y)− o|∑
θ∈Θ |(x, y)− o|

. (3.15)

l is a value between [0, 1]. It tends to be 1 if (x, y) is close to a key center. Finally, finger

movement direction is deemed as the one that produces the maximum confidence level

among all the candidates, θ = arg maxθ∈Θ l.

Estimation of vp. As examined in prior works [38, 5], finger movement speed for

typing is deemed consistent for each individual. We propose to estimate it by eliciting

victims to enter some digits in their devices and estimating the speed from the collected

samples. Specifically, the attacker can set up free WiFi. Once a victim is connected, the

access point requires user approval by displaying a dialog box and asking the victim to en-

ter designated numbers as a confirmation message [4]. An alternative approach is to set up
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a Text Captchas that asks the victim to input the chosen numbers [74]. Following the same

key pair segmentation approach, we first separate victim entered number sequence into a

series of key pairs. Then the time duration for entering one key pair is known. Since the ex-

act key pair is known, so is the inter-key distance. The finger movement speed is estimated

by dividing the distance by the time duration. We set vp as the median value of measured

speeds of all key pairs in one number sequence. To improve the estimation accuracy, the

attacker can have the victim enter more than one sequence. According to our experiment

result, three such digit sequences are sufficient to deliver satisfactory estimation. As a note,

the limited number of samples should not be deemed as a user-specific training dataset.

3.7.3 PIN Recovery

So far, the attacker is able to infer Lx and Ly of a given EM waveform segment. As

discussed, a pair of Lx and Ly can be mapped to multiple key pairs. We propose to lever-

age the interdependence of consecutive key pairs to resolve the inference ambiguity. For

example, given Lx = 2 units and Ly = 1 units for the first waveform segment, satisfying

key pairs include "61", "16", "34", "43", "67", "76", "49", and "94". Given Lx = 2 units

and Ly = 2 units for the second waveform segment, satisfying key pairs include "19", "91",

"37", and "73". Considering interdependence, the existing candidates for the first key pair

"16", "34", "76", and "94" can be eliminated immediately, as none of them ends with "1",

"9", "3", or "7", the first digit of the second key pair. Hence, viable candidates for the first

key pair are narrowed down to "61", "43", "67", and "49", by 50%. As more key pairs are

considered, this side information can be propagated back-and-forth to further reduce the

ambiguity. We propose to model such interdependence between consecutive key pairs for

PIN recovery using HMM.
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Figure 3.16: The state and transitions of HMM.

We model the keystroke process as HMM characterized by λ = (N,M,A,B, π).

In the HMM, N is the number of hidden states. We treat key pairs as hidden states. As

there are 100 possible key pairs, i.e., from “00” to “99”, we have N = 100. The parameter

M represents the number of possible observations for hidden states, i.e., Lx and Ly. As

there are three and four possible values of Lx and Ly, respectively, we have M = 3 ×

4 − 1 = 11. A, with the size of N × N , stands for the transition probability matrix,

with each element denoting the transition probability from one hidden state to another.

The observation probability matrix B, of the size N × M , gives the possibility that a

given observation can be observed in a hidden state. The initial state distribution vector π

represents the belief about which state the HMM is in when our scheme is called for the

first time.

To build the HMM, we need to determine parameters A, B, and π. The transition

probability matrix A can be predefined by the natural continuity of the typing process.

For example, if we assume equal probability of typing any keys, the hidden state “61”

has a chance of 0.1 to transfer to each hidden state “1x”, while the chance to other states

is 0. B is obtained by evaluating the probability of a given key pair that generates certain

observations. It actually reflects the accuracy of our proposed key recovery scheme. Due to

random errors occurred in EM measurements, our scheme may generate false observations

other than the ground truth at a certain probability. We propose to run our scheme offline

ahead of the attack to derive B. In our design, we employ a uniform distribution for the

initial state distribution π.
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Given the observation sequence of key pairs O = O1O2 · · ·OS , the PIN recovery

problem is to find optimal hidden sequence Q = Q1Q2 · · ·QS] to maximize P (Q|O, λ).

This problem can be solved by the Viterbi algorithm [110], a commonly adopted approach

for HMM. In addition to finding the most likely PIN, we also calculate the probability of all

possible PINs generated by the HMM. The attacker can thus sort them according to their

probabilities and form a list of candidates to infer the target PIN with multiple trials.

3.8 Experimental Evaluations

The experiments are conducted using our prototype described in Section 3.5. It is

built on a commercialized Arduino board that follows the FCC regulations and passively

collects EM emanations. Hence, no risk is posed to human health. The collected data are

anonymized and properly stored locally from potential leakage. The entire research has

been approved by IRB.

The goal is to evaluate the performance of our proposed attack Periscope under dif-

ferent settings. A wide spectrum of impact factors are examined, such as system param-

eters, attack distances, environmental contexts, etc. A comprehensive comparison is also

made with existing schemes. A total of 20 volunteers, 12 males and 8 females between

22 to 28 years old, are recruited for the experiments. Before each experiment, detailed in-

structions regarding experimental procedures are provided. We design an App that mimics

the UI that allows users to unlock the screen via digit PINs. During the experiment, each

volunteer is asked to enter 60 randomly generated PINs into smartphones.

3.8.1 Key Pair Recovery Accuracy

As the basis of our attack, we first examine the accuracy of key pair recovery. Figure

3.17 shows the success rate over all the 100 possible key pairs from “00” to “99”. Each
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Figure 3.17: Key pair recovery accuracy.
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Figure 3.18: Impact of the order of poly-
nomials.

row represents the first key, whereas each column represents the second key. It is observed

that key pairs with longer inter-key distances tend to have better recovery accuracy. For

example, the recovery rate of “01” is 94%; it becomes 89.5% for “08”. Besides, we find

that the success rate is not perfectly symmetric with respect to key pairs. In other words, the

success rates of “ab” and “ba” are not exactly the same. This is because users may exhibit

different typing behaviors when entering the same pair of keys but with reverse orders.

Impact of degree of polynomials. To establish the relation between EM readings

and Lx (Ly), we employ an n-degree polynomial to characterize the time-dependent finger-

screen distance z(t). Figure 3.18 shows key pair recovery accuracy with respect to the

degree n. The success rate experiences a slight increase by adopting a higher degree poly-

nomial. For example, the success rate is 89.6% when n = 6 and then raised to 91.2%

when n = 12. It indicates that a polynomial with a higher degree can nicely tract the finger

movement trace. Once n surpasses 17, such benefit becomes negligible. At the same time,

a polynomial of higher degree incurs larger computation overhead in solving z(x) = 0 and

z(y) = 0. To strike a balance between accuracy and efficiency, we set n = 17 by default.

Estimation of θ. The estimation of finger movement direction θ is critical to key pair

recovery. Figure 3.19(a) shows the confusion matrix of θ estimation. A Google Pixel phone

is adopted in the experiment. The rows represent all possible finger movement directions

65



0 26 44 62 71 90

0

26

44

62

71

90

94.4%

95.7%

93.2%

91.4%

94.3%

90.6%8.5%

0.2% 0.1%

0.6%0.1% 0.1%

0.3% 3.3%0.6%

0.1%

0.1%

0.2%

1.1%

0.5%0.3%0.2% 5.6%

0.2% 0.1% 0.1%0.1%

4.2%

3.8%

0.8%0.3% 0.2%

0.2%

0.1%

7.1%

1.3%

(a)

0 26 44 62 71 90
75

80

85

90

95

100

S
u
c
c
e
ss

 r
a
te

 (
%

)

(b)

Figure 3.19: Recovery accuracy of θ. (a) Confusion matrix. (b) Recovery success rate of
key pairs with different θ’s.

as the ground truth, whereas columns represent estimated results. As discussed in Section

3.6, θ ∈ [0, π/2]. The figure easily tells whether our scheme causes any confusion between

classes. The average recognition accuracy is 93.3%. We observe that most of the errors

come from adjacent directions. For example, when the ground truth is 71◦, the chance it

recognized as 62◦ is 8.5%, which is the highest among all the cases. We also notice in

Figure 3.19(b) that 62◦ and 71◦ are associated with relatively lower success rate, at 91.4%

and 90.6% respectively, compared with other directions. This is because they are separated

by a small margin of 9◦.

No. of Seq. V 1 V 2 V 3

1 5.12 4.43 3.24

2 2.72 3.0 2.16

3 1.96 2.46 1.74

4 1.49 2.27 1.25

5 1.39 1.97 0.82

Table 3.2: Estimation error of vp (cm/s).
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Figure 3.20: Key pair recovery
performance.

Estimation of vp. It is difficult to measure user’s finger movement speed directly. To

approximate the ground truth, we divide the distance between two touch points for entering

66



a key pair by its time duration. The distance can be readily computed from coordinates of

the two touches, accessible from smartphone API. Table 3.2 exhibits the estimation error

over vp from three randomly selected volunteers. We find that the error decreases as the

user is asked to enter more digit sequences in advance of the attack. Take volunteer 1 as

an example, the estimation error is 5.12 cm/s with one digit sequence and drops to 1.39

cm/s under five digit sequences. It meets our expectation; the estimation becomes more

robust to variations introduced by an individual sample. We further evaluate in Figure 3.20

the impact of number of digit sequences to key pair recovery. The recovery success rate

quickly increases to 85% under three digit sequences. Beyond that, the growth becomes

incremental. To trade between practicality and accuracy, we suggest having victims enter

three digit sequences in advance of the attack.

3.8.2 PIN Recovery Accuracy

We now examine the recovery performance over an entire PIN that consists of mul-

tiple key pairs.

Table 3.3: PIN recovery success rate with top-10 candidates.

PIN length 3-digit 4-digit 6-digit 8-digit
Success rate 71.7% 61.7% 43.3% 35%

Impact of PIN length. In this experiment, volunteers are asked to input PINs with

lengths varying from 3 to 8 digits. Table 3.3 shows the recovery success rate with top-

10 candidates. As a note, our scheme can produce a list of candidate PINs. If the list of

K candidate PINs contain the target PIN entered by the victim, then the correct PIN is

deemed among the top-K candidates. This metric reflects the recovery accuracy and has

been widely adopted in prior works. We find that the highest success rate 71.7% is achieved
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for 3-digit PINs. It decreases as PIN length grows, since successive correct inferences of

all key pairs are needed to recover the entire PIN. We find the success rate is 43.3% with

6-digit PINs, the mostly commonly PIN length adopted by mobile devices nowadays. Our

attack does pose a real threat to these devices.
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Figure 3.21: PIN recovery success rate with top-K candidates.

Impact of the number of candidates. We further study how many candidates

are needed to succeed in inferring the target PIN. In the experiments, we sort candidates

generated by the HMM model according to their probability of being the target PIN in a

descending order and select the top-K candidates to evaluate the recovery accuracy. In

Figure 3.21, we give the PIN inference success rate under top-K candidates, where K

ranges from 1 to 100. The result is encouraging. It is shown that, given top-1 candidate, the

recovery accuracy is 18.3% for 6-digit PINs. That is, our attack can correctly hit a victim’s

6-digit PIN at a probability of 18.3% in one shot. The rate can be significantly improved

if given top-10 candidates or top-20 candidates, which corresponds to 43.3% and 51.7%,

respectively. As shown in the figure, if given top-40 candidates, the success rate reaches

almost 70% for 6-digit PINs. As a comparison, WindTalker [74], a well-cited radio signal

based inference attack, delivers a similar performance with more than 60 candidates, not

to mention that WindTalker needs a training stage while Periscope is completely training

free.
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3.8.3 Performance Under Different Settings

Impact of victim-attacker distances. In practice, a victim device may be placed at

different distances away from the attacker. It is thus necessary to examine the impact of

this factor to the attack accuracy. In the experiments, we set the distance from 20 cm to 100

cm. All are carried out with 6-digit PINs. As shown in Figure 3.22, the recovery success

rate exhibits negative correlation with the distance. This is because a longer distance leads

to weaker EM emanation receptions at the attacker. As a result, it becomes challenging

to precisely recover finger movement traces from the EM readings. Still, the attacker can

successfully disclose a target PIN at a probability of 20% even 90 cm away from the victim

with top-10 candidates. It is worth mentioning that the victim and the attacker reside at two

sides of a wood table, a non-LoS scenario shown in Figure 3.22(a). We anticipate an even

higher success rate under a LoS scenario. Besides, we only deploy one prototype in the

experiment. In practice, many of them can be used. Such settings can potentially further

enhance the performance.
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Figure 3.22: Impact of victim-attacker distance. (a) Positions of the victim and the attacker.
(b) PIN recovery success rate.

Impact of victim-attacker relative direction. We also examine if the relative di-

rection between the victim and the attacker impacts the recovery accuracy. In the first set

of experiments, we fix their distance at 20 cm and place the attacker at different directions
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to the victim as shown in Figure 3.23(a). Figure 3.23(b) shows the PIN recovery success

rate at these positions. We find that the accuracy is almost the same for all the cases. In the

second set of experiments, the attacker’s and victim’s positions are fixed while varying the

smartphone orientation. Again, no apparent difference in recovery accuracy is observed.

Hence, the performance of Periscope is independent of victim-attacker relative direction.

This is not the case for radio signal based attacks. Essentially, the attacker needs a LoS

view over the victim; otherwise, the signal variance caused by multi-path propagation ren-

ders the signal hard to tract. In addition, the video-based attack also imposes stringent

requirement over the recording angle. For example, Eyetell [22] experiences about 70%

accuracy degradation when the two parties have a 10◦ displacement angle.
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Figure 3.23: Impact of victim-attacker relative direction. (a) Test scenarios for the first
set of experiments. (b) PIN recovery success rate. (c) Test scenarios for the second set of
experiments. (d) PIN recovery success rate.

Impact of target diversity. People may have distinct typing behaviors during PIN

inputs. Hence, it is critical to find out if Periscope is susceptible to this factor. Table 3.4
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Figure 3.25: Impact of device diversity.

shows the PIN recovery accuracy across seven volunteers. While each individual exhibits

a slightly different success rate, the overall performance is relatively consistent, with the

average success rate all above 40% with top-10 candidates. It means our analytic model

is capable of handling target diversity. As discussed, most acoustic and radio signal based

attacks need to train user-specific models to accommodate diverse typing behaviors and is

thus less practical for broad deployment.

Table 3.4: PIN recovery success rate over different victims.

Index 1 2 3 4 5 6 7
Top-10 52.7% 46.7% 42.5% 50.1% 40.2% 40.6% 45.6%
Top-40 68.9% 72.1% 69.5% 74.1% 63.4% 67.8% 62.2%

Impact of environmental context. We further evaluate the attack performance in

four different environments, including lab, office, coffee shop, and university center. Figure

3.24 exhibits a promising performance in all the environments, no matter whether it is quiet

or noisy, static or dynamic. In contrast, most acoustic based attacks can only succeed in

quiet places, whereas radio signal based attacks do not work with dynamic backgrounds.

In fact, public places tend to be noisy and dynamic.
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Impact of different devices. To demonstrate the usability of Periscope, we also ex-

perimented on two smartphones, an iPhone SE2 with a 4.7-inch touchscreen and a Google

Pixel phone with a 6-inch touchscreen. Figure 3.25 compares their PIN recovery accuracy.

The performance is similar for both devices. It means our attack works for a diverse set of

devices as long as they are equipped with a multi-capacitance touchscreen. We also notice

that the success rate on Google pixel is slightly higher than that on iPhone SE2. This is

attributed to the larger screen size of the former. Finger movement traces are more distinct

on a larger screen.

3.8.4 Comparison with Other Schemes

In this part, we present the performance comparison with prior keystroke inference

attacks on digit PINs. For the sake of fairness, we directly utilize the experimental re-

sults from these works. Three schemes WindTalker [74], SpiderMon [76], and the attack

proposed by Liu et al. [82] are considered. Specifically, WindTalker measures the fluctua-

tions of WiFi channels caused by victim’s typing motions. SpiderMon utilizes variations of

multi-path LTE signals to infer victim’s inputs. Liu et al. [82] analyzed the motion status

of smartwatches to launch the attack.

Figure 3.26(a) compares their success rates of recovering 6-digit PINs. It is observed

that the performance of Periscope is similar to WindTalker and Liu et al. with top-10

candidates, while SpiderMon is the best. All their success rates reach 80% with top-100

candidates. Note that all other three schemes need a training phase. A large amount of

training samples should be collected from the target victim in advance of the attack. To do

this, Liu et al. even require the pre-installation of malware on the victim’s smartwatch for

sample collection. These restrictions make them hardly practical in real-world scenarios.

In contrast, Periscope is a non-intrusive and training-free attack.
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Figure 3.26: Performance comparison with other schemes. (a) Recovery rate of 6-digit
PINs. (b) Impact of attacker’s position.

Figure 3.26(b) compares their performance under the impact of victim-attacker rel-

ative direction. We find that both SpiderMon and WindTalker experience significant per-

formance variance by placing the attacker in different directions with respect to the victim.

In contrast, the success rate of Periscope is relatively stable regardless of the displacement.

This is because the former two extract wireless channel disturbances to monitor finger

movements. They heavily rely on LoS propagation channels as they provide the most

tractable signals. These channels can be easily blocked by the victim’s body if positioning

the attacker to the left/right of the victim. On the other hand, as discussed in Section 3.4.4,

the analytic model of Periscope is irrelevant of surrounding environmental conditions. Its

performance is thus independent of victim-attacker relative direction.

3.9 Discussions

3.9.1 Limitations and Future Work

Extending attack distance. Results in Section 3.8.3 show that Periscope’s PIN

recovery rate with top-10 candidates drops to 20% when the attack distance is beyond 90

cm. The threat can be more severe if the attack can be successfully performed remotely.

The primary reason of the confined distance here is the weak signal strength of EM leakage.
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Besides, the EM field decays quickly over distance. Note that our prototype is built with

simple electronic pieces, including an Arduino nano board and a conductive wire. Neither

advanced transceiver module nor sophisticated signal processing unit is utilized. As our

future work, we plan to build a more powerful prototype with dedicated components that

can pick up useful signals from noisy and weak EM measurements so as to extend attack

distance.

Recognizing letters. Our discussion has been focused on soft numeric keyboards.

We plan to extend Periscope to recognize letter inputs. The challenge is to distinguish

subtle EM emanations from more diverse combinations of key pairs, as the number of

keys will almost be tripled. We propose to employ multiple eavesdroppers and explore

their collaboration to launch attacks. Sensor fusion techniques [88, 34] will be applied. It

combines EM readings from disparate sources such that the resulting information has less

ambiguity than would be possible when these sources were used individually. It is expected

that the aggregated EM measurement will provide more fine-granular recognition of finger

movements.

3.9.2 Defense Solutions

Periscope explores human-coupled EM emanations to recover victim’s inputs on soft

keyboards. An intuitive defense solution is thus to adopt shuffled keyboards. This idea has

been proposed before [120, 112]; the system adopts a new randomly generated keyboard

layout each time a user intends to enter a credential. Although attackers can still derive fin-

ger movement traces, they can be hardly mapped to specific keystrokes without the knowl-

edge of keyboard layout. While leaving the key inference almost impossible, as pointed by

[163], this idea sacrifices the authentication usability. Extra effort is incurred to the user
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in searching for keys on a shuffled keyboard. More input errors might also be introduced

thereby.

In a more practical way, users may intentionally disrupt their typing behaviors, for

instance, adding random pauses between keystrokes and/or adopting variant typing speeds

when entering different key pairs. For both cases, attackers will tend to make mistakes in

transforming time-dependent finger-screen distances to 3D finger movement traces. For the

former, the trace length will appear much longer than the ground truth. For the latter, as a

user adopts a dynamic speed, it is impossible for an attacker to generate a meaningful finger

movement trace with vp, a constant finger movement speed that is estimated in advance the

attack. As a result, the derived Lx and Ly become error-prone in both cases. The attacker

is less likely to accurately recover individual key pairs, let alone the whole PIN.

It is also possible to apply electromagnetic interference (EMI) shielding on touch-

screens. This technique has been widely employed on many electronic devices; it refers to

the shielding of radio waves so that radiations cannot penetrate the shield. In our case, it

can serve as a barrier that prevents EM emanation leakage, or at least reduces the radiation

strength. Nonetheless, this approach may be expensive and require hardware modifications,

including the introduction of new EMI materials and touchscreen circuit redesign. Another

alternative is to intentionally obfuscate the EM emanations emitted by the touchscreen, so

that the trajectories of EM readings are not recognizable. A straightforward approach is

to add well-calibrated noise to the touchscreen driving signal VTX(t). Then attacker’s EM

measurements Vm(t) become polluted. Since the attacker is unaware of the injected noise

pattern, it is hard to tell if observed EM variations are incurred by finger movements or

intentionally injected noise.
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3.10 Conclusion

In this paper, we present Periscope, a new eavesdropping attack that leverages human-

coupled EM emanations from touchscreens to infer victims’ typing inputs at a remote dis-

tance. We implemented the proposed attack with a prototype that costs less than $10.

Its effectiveness is evaluated from various aspects. Periscope exhibits promising recov-

ery accuracy over a distance up to 90 cm. It can well adapt to diverse device models and

setting contexts. Compared with prior works, our approach is built on an analytic model

that characterizes the relationship between EM measurements and finger movement traces.

Therefore, it is completely training-free, without the need to collect user-specific datasets in

advance of the attack. In summary, we believe that Periscope outperforms state-of-the-art

keystroke inference attacks, especially in terms of practicality. Meanwhile, it can be further

extended with longer attack distance and inference over letter inputs, which are deemed as

our future work.
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CHAPTER 4

ACOUSSIST: AN ACOUSTIC ASSISTING TOOL FOR PEOPLE

WITH VISUAL IMPAIRMENTS TO CROSS UNCONTROLLED

STREETS1

4.1 Introduction

Motivation: According to the records provided by the World Health Organization in

2018, the global-wide visually impaired people are estimated at 2.2 billion [104]. How to

navigate them to cross streets is a long-lasting topic. The state-of-art solution is to install

the Accessible Pedestrian Signals (APS) at intersections or crossing sections to assist the

visually impaired in determining when it is safe to cross. However, there are even more

uncontrolled crosswalks where no traffic control (i.e., traffic signals or APS) is present.

These common crossing types occur at non-intersection or midblock locations where they

may be marked or not. They typically exist in residential communities, local streets, subur-

ban areas, etc. where sophisticated traffic infrastructures are too expensive to fully deploy

around. In these road sections, the visually impaired have to mostly depend on themselves

to judge the surrounding traffic condition and decide whether it is safe to proceed to the

crosswalks. In practice, the pedestrian leverage hearing to discriminate between traffic

sounds that are too far away to pose a hazard to crossing and those that are within close

proximity. Nonetheless, hearing based judgment is not always reliable. Hearing capability

varies from person to person; young people generally have more sensitive hearing than se-

1Used with permission of the publisher, 2021.
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Figure 4.1: Some examples of uncontrolled crosswalks.

niors. Besides, environmental conditions may affect traffic sounds. For example, rain and

wind may enhance or distort sounds; snow can muffle sounds; background construction

sounds or talking from people nearby may even overwhelm the traffic sounds.

This paper aims to develop a portable tool that assists pedestrians with vision im-

pairments to cross uncontrolled streets. The tool alerts pedestrians with the presence of

oncoming vehicles that may cause hazard. To achieve this goal, it is essential to figure

out movement status of each vehicle nearby, characterized by, for example, its velocity

relative to the pedestrian, direction of arrival (DoA), and its distance to the pedestrian. To

measure these parameters, one possible solution is to use radar [85]. Due to its stringent re-

quirements over the received signal quality [147, 151, 124], the existing radar applications

mostly operate over licensed spectrum bands. For instance, Federal Communications Com-

mission (FCC) designates the X band frequencies between 10.500-10.550 GHz and the K

band frequencies between 24.050-24.250 GHz for police radar gun. In our case, applicable

radio frequencies the already over-crowded ISM bands. Besides, given that our problem

requires the ranging distance up to 200 ft, the perceived signal-to-noise ratio (SNR) would

be too low to achieve meaningful detection. Moreover, we need build our own transmitter
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or/and receiver by using radar techniques. In contrast, the proposed design can be imple-

mented on commercial off-the-shelf (COTS) devices.

LiDAR [40, 10, 118], which uses predominantly infrared light from lasers rather

than radio waves, is another potential alternative. It has been widely used in autonomous

vehicles to monitor surrounding environments to avoid traffic incidents. However, LiDAR

is a technology that requires a powerful computation and storage capacity to handle the

huge collected dataset. Its cost is another concern.

Given the above analysis, our idea leverages acoustic ranging. It is competent for

our implementation in the following aspects. First, acoustic signals can propagate around

obstructions through diffraction on their edges or reflection from their surfaces. This capa-

bility supports measuring vehicles behind obstructions. Second, its performance does not

depend on lighting conditions and is effective even in darkness. Third, we can easily cus-

tomize transmission signals on commercial COTS speakers and process received signals in

smartphones. We propose to utilize ultrasound signals ranging from 17 KHz to 19 KHz.

To our knowledge, there is no application with wide deployment operating on this band.

Thus, it is less likely to experience cross- application interference.

Motivated by the above observations, we develop Acoussist, an acoustic based assisting

tool for the visually impaired to cross uncontrolled streets. Acoussists consists of speak-

ers that are mounted on the front of vehicles to emit ultrasonic chirps and an app running

on the pedestrian’s smartphone for signal analysis. Whenever a pedestrian senses a clear

street and tends to proceed to the crosswalk, she turns on the app to double-confirm her

judgment. The app analyzes the received chirps to detect if any oncoming vehicle would

cause potential collisions. If yes, an alert is generated. Then, the pedestrian should take

precaution and wait at the curb until the street is clear. For vehicles operating in all-electric
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Figure 4.2: Illustration of three types of ranging.

or hybrid mode, the chirps can be played by their warning sounds system2. For traditional

combustion engine vehicles, chirps are proposed to emit from COTS portable speakers.

While pedestrians are “stakeholders” in our scenario, drivers do not necessarily lack the

motivation to install the speakers. Department of Public Safety (DPS) [32] regulates that

a driver who fails to yield to the pedestrians with vision impairments (regardless of any

reasons) is fully/partially liable for any injury caused to the pedestrian. As demonstrated in

this work, a participatory vehicle can effectively alert a pedestrian regarding its presence.

Challenges: Although the idea of acoustic ranging is not new, turning it into a tool

for collision detection is faced with several unique challenges. 1) Vehicle velocity mea-

surement with mutual interference: One of the key ingredients to decide if a vehicle causes

potential hazard is to figure out its velocity relative to the pedestrian. A straightforward

solution is to analyze the Doppler frequency shift of the received chirps at the receiver.

This task is easy if only one vehicle is nearby. In our case, oftentimes several vehicles

are present. Their emitted chirps overlap, rendering distinguishing among them an ex-

tremely challenging task, let alone analyzing the frequency shift for velocity measurement.

2) Dynamic multi-source localization: It is also indispensable to figure out the DoA of

each vehicle. Acoustic multi-source localization has been studied in the domain of speaker

tracking in video conferences [79, 36, 84], indoor localization [35], and noise identifica-

tion [30]. Existing approaches either assume the number of sources are fixed and a prior

known, or signals from different sources are of distinct frequency patterns. Thus, none of

2Many countries have approved legislation to enforce “quiet” vehicles install the warning sounds system,
an array of external speakers that emit artificial engine sounds for pedestrians to be aware of their presence.
For example, EU requires all new models of electric and hybrid vehicles developed and sold in EU to equip
the system by July 2019 [49].
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them is applicable to our problem. It is also worth-mentioning a set of novel ranging-based

applications, such as breathing pattern detection [21, 141, 100, 162, 150] and hand and

finger gesture detection [119, 142, 127, 60, 101]. These applications can be classified as

either type-I ranging3 or type-II ranging, while our system belongs to type-III ranging. For

the former two types, the analysis is carried over target-reflected signals. For the latter

type, the analysis is over target-emitted signals. Thus, their design rationale and applied

techniques are quite different.

Our Approach: We find that the received samples associated with each acoustic

source generate a series of pulses in the time-frequency (t-f) domain. Lining up these pulses

produces a “t-f sweep line” that can identify the corresponding acoustic source due to the

unique combination of its signal offset time and the moving speed. Our formal analysis re-

veals that the slope of each t-f sweep line is a function of the vehicle’s relative velocity. We

thus address the first challenge by exploiting this relationship. To our best knowledge, no

existing literature has provided any closed-form formula of a moving source’s t-f sweep line

in the expression of its relative velocity, let alone leveraging the relationship for velocity

estimation. We address the second challenge by developing a modified generalized cross

correlation method, called MGCC. MGCC consists of three major components: 1) extract-

ing the LoS transmission component from the received signal for each acoustic source, 2)

applying the generalized cross correlation function over the extracted signals received by

two microphones on the smartphone to obtain the time difference of arrival (TDoA), and

3) calculating the DoA for each vehicle based on its TDoA. Comparing with conventional

3By ranging, we mean localizing/detecting objects based on their reflected or emitted electromagnetic
(EM) or acoustic signals. According to the relation among the target, transmitter, and receiver in a ranging
system, we define the following three types of ranging. For type-I ranging, an EM/acoustic wave is emitted
from a transmitter and reflects off the target the wave encounters. The signal is reflected back to the receiver
that picks up the echoed signal. The transmitter and the receiver are collocated. For type-II ranging, the
signal is also emitted from the transmitter, reflected by the target, and captured by the receiver. The only
difference is that the transmitter and the receiver are located differently. They are either cooperative or not.
For type-III ranging, the target is localized through the analysis over its own emitted signals. Thus, the target
is also the transmitter.
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GCC, which is incapable of dealing with association ambiguity caused by coexistence of

multiple sources, the proposed MGCC avoids this issue by analyzing t-f profiles of each

source extracted from the previous step.

Noise	subtraction	 FFT

... ...

Signal
characterization

T-F	profile
extraction

General
correlation	

GCC	peak
detection

Geometric
positioningCollision	detection

Relative	velocity	measurement

DoA	measurementDistance	measurementPotential	collision	detection	

Alert

Independent	T-F	profiles
[t1,	f1],	[t2,	f2]	...	[ti,	fi]Source	1:	

[t1,	f1],	[t2,	f2]	...	[ti,	fi]Source	N:	
......

Audio	recordings

Vehicle	chirps

Figure 4.3: Acoussist system architecture.

The processing flow of Acoussist is summarized in Figure 4.3. It consists of vehicle-

side mounted external speakers that emit acoustic chirps ranging from 17 KHz to 19 KHz

and a pedestrian-side detection app. To facilitate the multi-source localization, two mi-

crophones at the pedestrian’s smartphone are utilized. Upon receiving acoustic samples,

Acoussist applies a high-pass filter to remove low-frequency components in the recorded

samples. It then performs the short-time Fourier transform (STFT) over the de-noised sam-

ples. A t-f sweep line is identified for each acoustic source. It further estimates the relative

velocity for each vehicle by analyzing the slope for each t-f sweep line. Following that, it

measures the DoA of acoustic sources via the proposed MGCC method; its inputs are the

t-f profiles from each acoustic source obtained from the previous step. By employing the

geometric relations between the acoustic source and the pedestrian, it then calculates each

vehicle’s moving velocity and its distance to the pedestrian. Finally, the app decides if a

pedestrian is safe to proceed to the crosswalk by analyzing the relations among all derived

movement parameters, and produces an alert if needed.

As mentioned, Acoussist adopts the framework of type-III ranging that analyzes tar-

get’s self-emitted signal for detection. If we adopt the other two types of ranging that
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utilizes target’s reflected signal, the ranging distance would be significantly reduced due to

the high decay coefficient experienced by acoustic signals. As shown in our experiments,

the signal is still detectable by a smartphone when the v-p distance is as long as 240 ft

under type-III ranging, but it drops to 48 ft under type-I/-II ranging which is unsuitable for

moving object collision detection. Besides, Acoussist works for smartphones with more

than one microphone. Luckily, most of current smartphones meet this requirement. As

a note, Apple equips their devices with even four embedded microphones since iPhone 7

released in 2016.

The key contribution of this paper is summarized as follows:

• We develop an acoustic based collision detection system that assists pedestrians with vi-

sion impairments to perceive surrounding traffic conditions before crossing uncontrolled

streets. It supplements the conventional hearing based solution. While collision avoid-

ance systems for automobiles have been investigated for more than a decade, human-

centered collision detection has rarely been studied.

• We address unique challenges when applying acoustic ranging to collision detection.

Two salient technical contributions have been made. First, we propose a novel t-f sweep

line based analysis that derives vehicle’s relative velocity. With this basis, MGCC is

developed to calculate vehicle’s DoA according to its TDoA with respect to the smart-

phone’s two mics. Both detection methods are capable of differentiating among multiple

vehicles.

• From a generalized point of view, we study a type-III homogeneous multi-source ranging

problem that has rarely been investigated in prior ranging literature.

• We implement Acoussist on COTS speakers and mobiles without involving any central

server. We demonstrate the feasibility of Acoussist via extensive in-field testing.

Clarifications: First, Acoussist does not intend to overwrite a pedestrian’s judge-

ment; instead, it should be treated as an assisting tool that provides an added layer of
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protection for the visually impaired. That being said, if a conflict occurs between a pedes-

trian’s judgement and the detection result, the pedestrian still holds the responsibility of

decision making. A suggestive choice is to wait by the curb when either source indicates a

potential collision. Second, Acoussist is designed to use at uncontrolled crosswalks exist-

ing in residential communities, local streets, and suburban areas, where there are common

needs from the visually impaired for daily activities and commute. These venues gener-

ally impose relatively conservative vehicle speed limits. In an interview with five visually

impaired students in our university, all of them claim that they would never consider cross-

ing any less regulated road sections that allow 45 mph speed limit or higher on their own.

Third, we stress that the functionality of Acoussist does not require all vehicles to partici-

pate. It can perform collision detection only to the participatory ones. In a worst case that

no vehicle in the pedestrian’s vicinity opt-in, it degrades to the hearing-based judgment

scenario. Therefore, Acoussist will not perform worse than the current solution.

4.2 Overview and Background

4.2.1 Design Rationale

The White Cane Laws give visually impaired pedestrians the right-of-way in cross-

walks, whether or not they are marked [103]. The laws require drivers to stop and yield

to the blind who is crossing the street. On the other hand, the visually impaired rely on

themselves to judge if the street is clear and when to proceed to the crosswalk by mainly

referring to hearing. Since hearing is not always reliable, for example, mislead by the

background noise, the blind may wrongly judge the traffic condition and enter streets even

there are oncoming vehicles within close proximity. To avoid this hazard situation, Acous-

sist senses surrounding traffic conditions and estimates whether there is sufficient time for
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Sidewalk

Figure 4.4: Design rationale of Acoussist.

nearby drivers to spot the pedestrian and then take reaction to stop cars. If not, an alert is

generated at the pedestrian’s smartphone, keeping her from proceeding to the crosswalk.

The design of Acoussist relies on a basic assumption that drivers obey the laws; for

the collisions that are caused by careless driving are out of the scope of our discussion.

Besides, there are some scenarios that people are using headphones/earphones listening to

music or talking on the phone when crossing streets without care. They are not the focus

of this work too. As shown in Figure 4.4, denote by d0 the distance between a vehicle and

the crosswalk, when the pedestrian is first spotted entering the crosswalk. Then the driver

takes reaction and stops the vehicle. The distance that the vehicle travels before complete

stop is called stopping sight distance (SSD) [71]. It is a near worst-case distance a driver

needs to be able to see in order to have room to stop before colliding with something in

the roadway. SSD is also one of several types of sight distance commonly used in road

design. If d0 > SSD, i.e., the driver can stop the car before hitting into the pedestrian,

the pedestrian can safely cross. This inequality can be used as a condition for pedestrian

safety. Nonetheless, it is challenging for the pedestrian to measure d0. Alternatively, we

consider di, the v-p distance. Generally, di ≈ d0 when the vehicle is faraway. For example,

given d0 = 150 ft and the street width 30 ft, then di ≤
√

1502 + 152 = 150.7 ft. Thus, the

pedestrian safety condition can be rewritten as di > SSD.

As discussed later, di is a function of DoA of the vehicle to the pedestrian, denoted

by θi, and SSD is a function of the vehicle’s moving velocity, denoted by vai . Besides,

vai is dependent of θi and the vehicle’s velocity relative to the pedestrian, denoted by vi.
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Figure 4.5: (a) Time-frequency domain representation of the chirp signal. (b) Human
hearing threshold.

Eventually, our problem to determine if di > SSD is satisfied is converted to estimate the

values of vi, θi, vai , and di.

4.2.2 Acoussist Signal Design

Acoussist uses external speakers to emit acoustic chirps periodically. As shown in

Figure 4.5(a), a chirp’s frequency linearly sweeps from the minimum fl to the maximum fh

over time. Chirp signals are widely used in radar applications for its capability of resolving

multi-path propagation. In the time domain, the expression for one chirp is

sc(t) = A cos(π
B

T
t2 + 2πflt) (4.1)

where A is the amplitude, B = fh − fl, t ∈ (0, T ], and T is the chirp duration. We choose

a high frequency chirp ranging from fl = 17 KHz to fh = 19 KHz. Such a range has been

adopted by quite a few novel applications, such as biometric sensing [109] and acoustic

imaging [89].

Although the frequency range of human hearing is generally considered from 20 Hz

to 20 KHz, high frequency sounds must be much louder to be noticeable (including children

and young adults) [115]. This is characterized by the absolute threshold of hearing (ATH),

which refers to the minimum sound pressure that can be perceived in a quiet environment.
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Figure 4.6: Frequency spreading of different background noises.

According to [128], we depict in Figure 4.5(b) the ATH with respect to sound frequency.

ATH increases sharply for frequencies over 10 KHz. In particular, human ears can detect

sounds of 1 KHz at 0 dB sound pressure level (SPL), but above 75 dB SPL for sound

beyond 17 KHz, which has about 10,000 fold amplitude increase. In our implementation,

the chirp signal is played at 69.3 dB and thus hardly perceptible by human hearing.

Another concern of applying acoustic ranging is that the signal may be polluted by

background noise in outdoor environments. We extract some recordings for commonly

seen outdoor noise from the well acknowledged dataset provided by the Google Audioset

[47] and analyze their spectrum distribution. We find in Figure 4.6 that the background

noise mainly concentrates on the lower-end of the frequency, mostly lower than 10 KHz.

As our chirp signals are above 17 KHz, there is a clear gap between these two. By applying

a high-pass filter to the received signal can easily filter out background noise.

The chirp duration and the separation between two consecutive chirps impact the

overall performance of Acoussist. Too short a chirp will cause blurs in t-f profiles of re-

ceived signals. Also, the chirp separation should be large enough to ensure that the main

reflected signals of the current chirp are received before the next chirp is transmitted. How-

ever, too long a chirp duration or the separation will add delay to the system. As examined

in 4.5.2, we found empirically that a duration of 500 ms and a separation of 125 ms repre-

sent a good tradeoff.
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4.3 Multi-Vehicle Signal Characterization

In this section, we model the received signal with the presence of multiple vehicles4.

The insight that we develop from this model guides the design of different modules of

Acoussist.

As surrounding objects, such as buildings and trees, reflect acoustic signals, a chirp

emitted from vehicle si arrives at a microphone rm from multiple paths. Denote by dki,m the

length of the k-th path associated with si and rm. va is the speed of acoustic signals, which

is considered as 340 m/s in our system. Let φi,k be the angle between the DoA of the k-th

path and the line-of-sight (LoS) path respect to mic rm. Following [129], the corresponding

time-dependent signal propagation delay is calculated by

τ ki,m(t) =
dki,m − vi cos(φi,k)t

va
.

Let aki,m(t) be the attenuation experienced by the acoustic signal transmitted via the k-th

path. Then, the aggregated time-domain channel response between si and rm is expressed

by

hi,m(τ, t) =
K∑
k=1

aki,m(t)δ(τ − τ ki,m(t))

i.e., the accumulated pulses arriving at different propagation delays. Given a particular

time instance t, the source signal (4.1) can be rewritten as sc(t) = A cos(2πftt), in which

4In this paper, we use “vehicle” and “source” interchangeably without causing confusion.
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ft =
d(πB

T
t2+2πflt)

2πdt
= B

T
t+fl. Then, the time-domain expression for mic rm received signal

coming from vehicle si is

yi,m(τ, t) =
K∑
k=1

Aaki,m(t) cos(2πft(t− τ ki,m(t)))

=
K∑
k=1

Aaki,m(t) cos(2πft(1 +
vi cos(φi,k)

va
)t−

2πftd
k
i,m

va
).

By applying the continuous Fourier transformation over yi,m(τ, t), its t-f representation is

Yi,m(f, t) =
A

2

K∑
k=1

aki,m(t)va

va + vi cosφi,k
e
−j2πf

dki,m
va+vi cosφi,k

× [δ(f − ft
va + vi cosφi,k

va
) + δ(f + ft

va + vi cosφi,k
va

)].

Then, the t-f representation of the aggregated received signal from all N vehicles at mic

rm is written as

Ym(f, t) (4.2)

=
A

2

N∑
i=1

K∑
k=1

aki,m(t)va

va + vi cosφi,k
e
−j2πf

dki,m
va+vi cosφi,k × [δ(f − (

B

T
t+ fl)

va + vi cosφi,k
va

)

+ δ(f + (
B

T
t+ fl)

va + vi cosφi,k
va

)].

Figure 4.7: T-F profile of the received signal with the presence of three vehicles.
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Figure 4.7 depicts the t-f profile of the received signal Ym(f, t) at a microphone when

three vehicles are present, with their relative velocities vi’s at 0 mph, 20 mph, and -20 mph,

respectively. The darker part in this heat map indicates the components of large power.

Insight: We can tell from (4.2) that the t-f profile of received samples consist of

a series of impulses that exist when the corresponding f and t satisfy a set of linear

equations f = (B
T
t + fl)

va+vi cosφi,k
va

(k ∈ {1, · · · , K}). Besides, according to [18],

aki,m(t) ∝ e−γd
k
i,m(t) where γ is the acoustic amplitude decay coefficient. In the air propa-

gation environment, γ is at least 40.3 dB/100m when the acoustic signal’s frequencies are

between [17 KHz, 19 KHz] [133]. Thus, the signals coming from the LoS transmission

path (with index k = 1) out-weight other components from the rest paths. This is also

another benefit of employing acoustic signals rather than radio signals. It is more con-

venient to extract LoS component from received signals that are mixed with multi-path

transmissions. Each “line” in Figure 4.7 can be specified by

f = (
B

T
t+ fl)

va + vi cosφi,1
va

= (
B

T
t+ fl)

va + vi
va

(4.3)

as φi,1 = 0. We call such a line as a t-f sweep line. As shown in Figure 4.7, each vehicle

corresponds to a unique t-f sweep line, due to its unique combination of vi and the chirp

signal offset time. Therefore, the number of different t-f sweep lines that a mic detects

implies the number vehicles within its proximity. More importantly, we also notice that the

slope of a line contains the information of vi. Therefore, we are able to infer the number of

nearby vehicles and their relative velocities by analyzing t-f profile of received signals.

While the t-f signal analysis is a common approach for target tracking in a radar sys-

tem, no existing work has tried to establish an explicit relation between the received signal’s

t-f sweep line and the source relative velocity. Such a relation enables velocity estimation

when multiple sources with homogeneous signals are present. As discussed later, the anal-
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ysis also lays the basis for the DoA measurement module. One reason that this idea has not

been explored previously is because the generalized problem, type-III homogeneous multi-

source ranging, is hardly observed in any other real-world ranging-based applications. For

example, speaker localization [79, 36, 84] and noise identification [30] can be classified

as type-III heterogeneous multi-source ranging. Radio-based indoor localization [23] can

be treated as type-III single-source ranging. Radio-based breathing pattern detection [3],

sleep monitoring [81], gesture detection [131], and radar guns all belong to type-I ranging

or type-II ranging.

4.4 Design Details of Acoussist

Next, we discuss the design details of Acoussist’s modules and describe how they

interact to perform multi-vehicle detection.

4.4.1 Measurement of Relative Velocity

The objective of this module is to estimate each vehicle’s velocity relative to the

pedestrian, vi. A straightforward solution is to analyze the Doppler frequency shift of the

received chirps at the receiver. This task is easy if only one source is nearby or source

signals are heterogeneous, e.g., different combinations of frequency components. In our

case, oftentimes several vehicles are present. Additionally, they emit homogeneous chirps.

These chirps overlap at the receiver, rendering distinguishing among them an extremely

challenging task, let alone analyzing the frequency shift for velocity measurement. To ad-

dress this issue, in the previous section, we formulate the received signal into a generalized

expression that quantifies the effect of source movements by jointly characterizing the re-

ceived signal’s time and frequency properties. More importantly, we model the t-f profile

of a source as a closed-form expression of its relative velocity. Specifically, the slope of a
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t-f sweep line, denoted as κ, is unique and dependent of vi, i.e., κ = B
T
va+vi
va

. Hence, vi is

calculated as vi = va(κT/B − 1). As va, T and B are known values, the remaining task is

to find out κ of each t-f sweep line.
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Figure 4.8: (a) Normalized amplitude of all frequency components in a window. (b) All
detected peaks in the received signal’s t-f profile.

The app takes the denoised-stream at runtime as input and continuously slides a win-

dow of short time-width over it to get t-f profile by applying short-time Fourier transform

(STFT) at each window. Consider a sliding window indexed by l; the window size is ∆t.

Figure 4.8(a) depicts all frequency components contained in this window. As a note, Fig-

ure 4.8(a) is actually a slice of Figure 4.7 at window l. Each peak exists at the frequency

fi = (B
T
t + fl)

va+vi
va

with t = l ·∆t. The rest components are the signals from multi-path

propagation or ambient noise that may consist of sound of sudden wind or machinery in

a construction site or their harmonics in the higher frequency range. We then identify all

the peaks in window l by applying the peak detection algorithm [15]. Denote by (l, fi) an

index-frequency pair of window l. We are able to identify three such pairs in Figure 4.8(a),

indicating three detectable vehicles.

Figure 4.8(b) plots all the index-frequency pairs obtained at all windows of the re-

ceived signal’s t-f profile; each dot is associated with one pair. To extract the t-f sweep lines

from a set of discrete dots, we employ the Hough transformation technique [13], which is

a classic scheme in detecting edges, including lines, circles and ellipses, from a digital im-
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age. In our scenario, by treating the collected index-frequency pairs as the entire dataset,

the t-f sweep lines are then detected as the edges by applying Hough transmissions over

the dataset. Since there are substantial prior discussions on Hough transformation, we omit

its implementation details here. So far, we are able to extract the t-f sweep lines and thus

the slope κ for each of them. Then the number of lines is exactly the number of detectable

vehicles. Each relative velocity is computed by vi = va(κT/B − 1).

One critical issue in STFT is to decide the frequency resolution (∆f ) and time reso-

lution, i.e., sliding window size (∆t). These two parameters determine whether frequency

components close together can be separated and the time at which frequencies change. A

properly selected set of ∆f and ∆t produces concentrated, rather than blurred, t-f sweep

lines, which are essential to measure relative velocity accurately. Suppose the microphone’s

sampling rate is 64 KHz. Here, 64KHz is a conservative value. Many smartphones, such

as Razer phone 2 and Pixel XL, even support a sampling rate of 192KHz. ∆t and ∆f

are computed as ∆t = N/64 KHz and ∆f = 64 KHz/N , respectively, where N is the

number of samples taken from a window. To strike a balance between these two, N

is set to 2048 in our system. Given the chirp duration as 500 ms, the time resolution

∆t = 2048/64 KHz = 32 ms is precise enough to capture the variance of received chirps

in the time domain caused by multi-path propagation. Consider that most of vehicles are

not traveling with speed lower than 10 mph, i.e., 4.5 m/s. According to (4.3), its spec-

trum offset is ft viva , which ranges from 225 Hz (ft = 17 KHz) to 251 Hz (ft = 19 KHz).

Thus, the frequency resolution ∆f = 64 KHz/2048 = 31 Hz is satisfactory to measure the

spectrum offset.

4.4.2 Measurement of DoA
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This module estimates the vehicle’s DoA with respect to

the pedestrian, θi. As shown in Figure 4.9, it is the angle be-

tween the LoS transmission and the line connecting two mics

on the phone. Its measurement is achieved by analyzing the

time difference of arrival (TDoA), denoted by τi, at the two

mics. Since the v-p distance is much larger than the inter-mic

distance, denoted by D, LoS propagation paths to the two mics

are deemed parallel with each other. Then, θi is calculated as θi = arccos( τiva
D

). As va

and D are available values, the remaining task is to find out τi. The inter-distance of two

microphones of a mobile phone is available in open source dataset like [48]. This value can

be instantiated during the initiation of the app.

A naive approach: It examines the inter-channel phase difference (ICPD) to derive

DoA [25, 166]. Specifically, the ICPD observed by two mics can be expressed as

ψi(f) = ∠
Y1(f, l)

Y2(f, l)
= 2πfτi + 2πpf (4.4)

where Ym(f, l) (m = 1 or 2) is the T-F representation of the signal received at mic rm under

discrete time. The wrapping factor pf is a frequency-dependent integer and 2πpf represents

possible phase wrapping. If pf = 0, then τi is calculated by ∠Y1(f,l1)
Y2(f,l2)

/2πf and thus our

problem is solved. In theory, pf = 0 when D is smaller than half the wavelength [25]. In

our system, the longest wavelength is about 2cm (340m/s
17KHz ). Its halve, i.e., 1cm, is apparently

smaller than the inter-mic distance for many smartphones, e.g., the ones with one mic

located on bottom and the other on top. Therefore, the ICPD based TDOA measurement is

unreliable in our case.
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The proposed approach: We start from a conventional approach, called generalized

cross correlation (GCC), to identify TDoA [24, 130]. Consider a function

R(τ) = |
∑
l

∑
f

Y ∗1 (f, l)Y2(f, l)

|Y1(f, l)Y2(f, l)|
e−j2πfτ | = |

∑
i

∑
l

∑
f

e−jψi(f)e−j2πfτ |

where Ym(f, l) (m = 1 or 2) follows the definition above. Y ∗m(f, l) stands for the conjugate

of Ym(f, l). ψi(f, l) = 2πfτi is the phase difference between Y1 and Y2. Ideally, R(τ)

shows a peak at τ = τi. However, due to the presence of multiple vehicles, the strong

interference from multiple acoustic sources generates multiple peaks, as shown in Figure

4.10(a).
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Figure 4.10: (a) Association ambiguity caused by multi-source and multi-path interference.
(b) Eliminate association ambiguity by calculating GCC of LoS signals from a separated
single source.

To avoid the association ambiguity in the conventional GCC approach, we adapt it

to multi-source scenarios. Recall that in Section 4.4.1 we are able to extract the discrete

index-frequency pairs for each source si, and thus the t-f profile of the received signal

from si via the LoS path, denoted as Yi,m,1(f, l). Here, “1” means the index of the LoS
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path. Then, a modified GCC (MGCC) function that associated with a particular source si

is expressed as

Ri(τ) = |
∑
l

∑
f

Y ∗i,1,1(f, l)Yi,2,1(f, l)

|Yi,1,1(f, l)Yi,2,1(f, l)|
e−j2πfτ |

= |
∑
l

∑
f

e−jψi(f)e−j2πfτ |. (4.5)

Since Yi,1,1 and Yi,2,1 only contain the signals that are transmitted via the LoS paths from

source si, there is only one peak at τ = τi, as shown in Figure 4.10(b). Thus, the TDoA

τi of source ri can be calculated by τi = arg maxRi(τ) i ∈ [1, N ]. Then, θi is derived

accordingly.

4.4.3 Measurement of Vehicle Velocity and V-P Distance

Vehicle velocity: The measurement of vehicle si’s velocity vai relies on the esti-

mation results of its relative velocity vi and DoA θi derived in Section 4.4.1 and 4.4.2,

respectively.

Figure 4.11: Geometric
relation illustration.

Denote by vai (t1) and vai (t2) the vehicle’s instance veloci-

ties at t1 and t2, respectively. Let δt = t2−t1 be the measurement

interval. In the implementation, δt is set to 500 ms. Thus, vai (t1)

and vai (t2) are deemed equal. As shown in Figure 4.11, denote

by α the angle between the vehicle’s moving direction AB and

the line connecting two mics O1O2. Besides, let β be the angle
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between the vehicle’s velocity vai and its velocity relative to the

pedestrian vi. Then we have the following system of equations


vai (t1) cos β(t1) = vi(t1), vai (t2) cos β(t2) = vi(t2)

α + β(t1) = θi(t1), α + β(t2) = θi(t2), vai (t1) = vai (t2)

The first two equations are from the relation between vai and vi. Regarding the third equa-

tion, θ(t1) = α + ∠OAO1 due to the application of exterior angle theorem in the triangle

∆AOO1 in Figure 4.11. Similarly, the fourth equation holds. Since there are five variables

(α, β(t1), β(t2), vai (t1), vai (t2)) and five uncorrelated equations above, we can derive the

closed form expression for vai (t) as

vai (t) = vi(t2)
(

cos(arctan(
cos(θ(t1)− θ(t2))− vi(t1)

vi(t2)

sin(θ(t1)− θ(t2))
))
)−1

. (4.6)

V-P distance: The v-p distance at t, i.e., di(t), is calculated based on the knowl-

edge of vai (t), θi(t), and τi(t) which are all known values by now. Consider two triangles

∆AO1B and ∆AO2B in Figure 4.11. Since v-p distance is significantly larger than the

inter-mic distance, vehicle’s DoAs with respect to the two mics are deemed the same, de-

noted by θi(t). Thus, ∠AO1B = θi(t1)− θi(t2) and ∠AO2B = θi(t1)− θi(t2). Due to the

law of cosines in trigonometry, we have the following relation


cos(θi(t1)− θi(t2)) =

d2i (t1)+d2i (t2)−(vai ∆t)2

2di(t1)di(t2)

cos(θi(t1)− θi(t2)) =
(di(t1)+vaτi(t1))2+(di(t2)+vaτi(t2))2−(vai ∆t)2

2(di(t1)+vaτi(t1))(di(t2)+vaτi(t2))

(4.7)

which is a system of two quadratic equations of two variables, di(t1) and di(t2). Thus, it

is not difficult to solve it by some existing libraries. In the implementation, we use the

GSL [45] that provides a library to compute the root of polynomials.
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4.4.4 Piecing All Components Together

The design rationale of Acoussist is to estimate whether nearby drivers have suffi-

cient time to spot the blind pedestrian and stop their vehicles when the pedestrian tends to

enter the crosswalk.

As discussed, it is equivalent to have driver’s SSD larger than the v-p distance di. In

practice, we should further take into account the processing latency of the system, denoted

by tdl. We thus adopt the following conservative pedestrian safety condition

di > SSDi + vai × tdl. (4.8)

Acoussist generates an alarm as long as any detectable vehicle si violates the above con-

dition. In our implementation, tdl is instantiated with a device-dependent value that is

associated with 90% confidence level. To obtain this value, app runs on the smartphone

dozens of times prior the usage. More details will be discussed in Section 4.5.2.

Since di and vai are all known, the remaining task is to find out a particular vehicle

i’s SSD. As recommended by design standard of American Association of State Highway

and Transportation Officials (AASHTO) [2], SSD is estimated by

SSD = 1.47× vai tpr + 1.075(vai )
2/a (4.9)

where vai is the instant vehicle velocity that is derived in Section 4.4.3. tpr and a stand for

the driver’s perception-reaction time and acceleration rate, respectively. AASHTO allows

2.5 seconds for tpr and 11.2 ft/s2 for a to accommodate approximately 90% of all drivers

when confronted with simple to moderately complex road situations. SSD is the sum of

two distances: 1) brake reaction distance (i.e., the distance traversed by the vehicle from the

instant the driver sights an object necessitating a stop to the instant the brakes are applied);
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and 2) braking distance (i.e., the distance needed to stop the vehicle from the instant brake

application begins). According to AASHTO, in the above expression for SSD, conservative

parameters are used, including a generous amount of time given for the perception-reaction

process, and a fairly low rate of deceleration, such that it allows a below-average driver to

stop in time to avoid a collision in most cases.

It is noteworthy that our system does not impose any requirement on the position/ori-

entation of the phone during usage. Even though the calculation of DoA θi is dependent

on the phone orientation, the pedestrian safety condition is related to vai and di (4.8). As

shown in (4.6) and (4.7), vai and di are relevant to θi(t1) − θi(t2) which is independent of

the phone orientation.

4.5 Implementation and In-field Testing

4.5.1 Implementation Setup

Implementation: As a proof-of-concept implementation, we develop the prototype

of Acoussist on four Tronsmart portable speakers, around $40 each, and three Android

smartphones, Google Pixel XL, Galaxy S8 and Nexus 2. Four vehicles, Ford Focus 2014,

Ford escape 2019, Toyota corolla 2017 and Honda Accord 2016, are used in the testing.

A speaker is mounted in front of the vehicle, shown in Figure 4.12(a), playing the pre-

loaded chirps that sweep from 17 KHz to 19 KHz at 69.3 dB 5. We use the two built-

in microphones at the smartphones to receive signals. An Android app is developed to

process received signals and generate alarm when needed. We use NDK [46] to implement

the STFT operations, and GNU Scientific Library (GSL) for other mathematical operations

in our design.

5This value is measured at the speaker directly, which equals to 8.5×10−7 mW/cm2 [132]. As a reference,
the FDA regulation over preamendments diagnostic ultrasound equipment is ≤ 94 mW/cm2 [42]. It restricts
the maximal intense level of ultrasound exposed when people take medical evaluations such as peripheral
vessel detection, cardiac diagnostic, and fetal imaging.
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Figure 4.12: In-field testing setup.

In-field testing setup: All testings are conducted at the campus parking lot as shown

in Figure 4.12(b) during weekends when the space is relatively empty. A pedestrian stands

at the end of the crosswalk and records the performance. In each testing round, a driver

accelerates the vehicle to a target speed. Meanwhile, the pedestrian activates the app to

sense the environment. If no alarm is generated, the pedestrian waves a flag, indicating the

action of street crossing. Otherwise, she keeps the flag down, indicating waiting at the curb.

Upon noticing a waving flag, the driver takes reaction and stops the car. The reason we use

flag signals instead of having a pedestrian physically proceed to the crosswalk is for safety

consideration. Besides, as the driver needs be signaled with the pedestrian’s action of street

crossing by waving a flag, the pedestrian cannot be simulated by a stand mounted with a

smartphone. A test is viewed success, if a) the flag is not waved, since a potential collision

is detected, or b) the flag is waved while the vehicle stops completely before reaching the

crosswalk.

Acoussist requires users to hold their smartphones steady for about 1 second to have

an accurate detection of oncoming vehicles. It is also the time duration between the time

point that a user activates the app and the time point that he/she decides to wave the flag or

not. Beyond the 1 second time limit, the user can choose to wave the flag at any time, as

long as no alert is observed. The 1 second is attributed from two aspects, the duration of

two consecutive measures to derive the v-p distance (δt =500 ms) and the processing delay

(the 90-percentile value of tdl =220.7 ms as shown in Section 5.2).

100



Evaluation metrics: The performance of our system is evaluated via the following

metrics: ranging distance, warning distance, miss detection ratio (MDR), and false alarm

ratio (FAR). Particularly, ranging distance is the v-p distance at which the app is able to

measure this value for the first time. It implies the largest detectable range of our system.

Warning distance is the v-p distance at which the pedestrian safety condition (4.8) is vi-

olated for the first time. MDR is the probability that a vehicle which has violated (4.8)

but not detected. FAR is the probability that a vehicle satisfies (4.8) but wrongly reported.

Traffic cones are placed along the vehicle trajectory. To measure the ranging distance, the

pedestrian records the parking slot number, where the pedestrian stands denotes the first

slot. With the assistance of traffic cones, the v-p distance becomes measurable. Then, the

ranging distance is approximated by multiplying the slot number with the width of each

slot, 10.7 ft in our case. Warning distance is obtained similarly.

4.5.2 Micro Benchmark

Impact of parameter settings: We first examine the impact of two most crucial pa-

rameters of our system, ∆t and δt. Recall that ∆t is the STFT window size and δt is the

time interval between two consecutive measures. Figure 4.13(a) shows the accuracy perfor-

mance of Acoussist with various ∆t. The best performance 93.6% exists when ∆t = 2048.

As discussed in Section 4.4.1, the value of ∆t strikes a trade-off balance between frequency

resolution ∆f and time resolution ∆t of STFT. Figure 4.13(b) shows the accuracy perfor-

mance with various δt. The best performance is achieved for δt = 500 ms. On one hand, a

large δt and thus an apparent difference between θi(t1) and θi(t2) is beneficial for deriving

an accurate vai . On the other hand, it inevitably leads to a long processing delay which

impacts the detection accuracy. ∆t and δt are set to 2048 and 500 ms, respectively, in the

rest experiments.
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Figure 4.13: Impact of parameters.
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Figure 4.14: Accuracy of measurements.
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Table 4.1: Detection performance of different devices.

Device Pixel XL Galaxy S8 Nexus 2

MDR 3.4% 4.1% 3.6%

FAR 3.2% 3.7% 4.8%

Table 4.2: Impact of phone orientation.

Orientation Ranging dist. Warning dist.

P1 P2

P3 P4

P1 189.8± 10.1 ft 157.6± 10.4 ft

P2 181.1± 13.2 ft 155.3± 15.3 ft

P3 186.9± 11.8 ft 150.7± 10.5 ft

P4 178.1± 14.4 ft 159.2± 10.5 ft

Measurement performance of motion parameters: Figure 4.14 depicts the distri-

bution of measurement errors of velocity vai and v-p distance di. The measurement error
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is defined as the difference between measures and the ground truth. Here, the ground truth

of vai and di is set to 25 mph and 120 ft, respectively. We observe that 90% of errors for

these parameters are within 2.4 mph and 11.8 ft, respectively, which are acceptable for

implementation.

Ranging distance and warning distance: Figure 4.19(a) evaluates the ranging dis-

tance of our system with respect to the vehicle speed. The ranging distance decreases from

208.1 ft to 165.5 ft on average when the speed changes from 5 mph to 45 mph. This is

because the vehicle travels a longer distance at a higher speed given δt and thus perceives a

shorter v-p distance when this value is first obtained. As shown in Figure 4.19(b), the warn-

ing distance increases almost linearly as the speed grows from 5 mph to 30mph. It reaches

175.2 ft when vai = 30 mph. The result meets our expectation; when a vehicle moves faster,

the driver needs longer distance to react and stops the vehicle which corresponds to a larger

warning distance. However, as the speed continues to increase, the warning distance ex-

periences slight decrease. This is because the warning distance is capped by the ranging

distance. As the latter decreases, it also brings down the former.

Impact of different devices: Figure 4.15 shows the smartphone’s received SNRs

of chirps with frequency 17 KHz-19 KHz at different v-p distances. Three devices ex-

hibit different sensitivity responding to high-frequency signals. Particularly, the detectable

threshold, defined as the maximum distance within which the received signal are perceiv-

able from the background noise, is 237.6 ft, 221.1 ft and 207.9 ft for Google Pixel, Galaxy

S8, and Nexus 2, respectively. They bring about various detection performances as shown

in Table 4.1. Combining the results of Figure 4.15 and Table 4.1, we observe a positive

correlation between a device’s detectable threshold and its detection accuracy, and Pixel

XL has the best performance among the three.

Impact of phone orientation: We also examine if the phone orientation in usage

impacts the detection performance. We test four different positions, the combinations of
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the screen facing above/aside and the head pointing up/down, as shown in Table 4.2. We

find that the ranging distance and the warning distance are almost the same for all four

positions. Thus, the performance of Acoussist is independent of how the pedestrian holds

the phone. It meets our discussion in Section 4.4.4.
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Figure 4.17: Impact of the background noise.

Impact of background noise: Among commonly observed background noise in

streets, truck sound is typically the most powerful one. We thus evaluate its impact to

the performance of Acoussist. First of all, as shown in Figure 4.6 (e), the signal frequency

components are mainly concentrated on the lower-end of the frequency. Particularly, 88.7%

of them reside lower than 10 KHz. Recall that the acoustic chirp signal used by Acoussist

ranges between 17 KHz and 19 KHz. Thus, there is a clear gap between the truck sound

and the acoustic chirp signal. In our design, a high-pass filter, with a cutting frequency of

10 KHz, is then applied to get rid of most background noise, including traffic noise, music

noise, speech noise, construction noise, as well as truck sound.

On the other hand, we notice that truck noise does have frequency components above

10 KHz. To examine its impact to f-t analysis of our system, we first add truck sound

as background noise to the chirp signals recorded at different distances by using Matlab

audio toolbox [94]. Then SNR is measured after passing the received signal through all
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noise removal modules. The relation of SNR versus the v-p distance is plotted in Figure

4.17(a). As a comparison, we also show the SNR without truck noise. We observe that

the two curves are quite similar to each other, except when the pedestrian is very close

to the noise source, i.e., within 25 ft. We further depict in Figure 4.17(b)-(d) the CDF

of warning distance under different vehicle speeds, from 10 mph to 30 mph. Recall that

warning distance is the v-p distance at which the alert is triggered. Take Figure 4.17(b) as

an illustration. When the vehicle speed is at 10 mph, all alerts are generated when the v-p

distance is between 40.6 ft and 48.7 ft. Thus, vehicles are all detected even at distances

much longer than 25 ft away from the pedestrian. Combining the observations above,

we can infer that a truck will trigger the alert even it is larger than 25 ft away from the

pedestrian. Besides, its detection performance should be similar to regular vehicles. If a

truck is within 25 ft from the pedestrian, its presence can be easily picked up by human

ears. In this scenario, the visually impaired pedestrians can simply rely on their hearings to

detect the potential hazard.

Energy consumption: A dedicated hardware, Monsoon power monitor [98], is ap-

plied to measure the energy consumption of mobile phones for running our app. During the

measurement, we keep other components, e.g., WiFi and Bluetooth, offline. Figure 4.16

shows the instant power reading via the power monitor when executing one detection. We

clearly specify the part dedicated to each module. We can tell that the measurement of

relative velocity and DoA consumes a larger amount of power among all modules, which

is about 2967.2 mW and 2656.8 mW on average, separately. As a note, the average power

consumption of some common smartphone tasks, such as video call, map service, and web

browsing take 3351.6 mW, 2642.8 mW, and 1732.7 mW, respectively. Besides, our app is

only activated when a pedestrian tends to cross streets and thus offline most of the time.

Thus, the power consumption of our app is practically acceptable.
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Figure 4.18: Processing latency.

Table 4.3: Detection performance when a vehicle is at different speeds.

Speed (mph) 5 10 15 20 25 30 35 40 45
MDR 11.3% 9.9% 6.4% 5.4% 4.7% 3.4% 5.8% 6.3% 8.2%
FAR 10.0% 9.5% 7.2% 6.5% 5.3% 3.2% 2.8% 2.5% 2.1%

Processing latency: Figure 4.18(a) gives the stacked computation time of each sys-

tem module. The module for DoA measurement incurs the largest delay, which is about

137.2 ms on average. This is because it involves an exhaustive search for the solution of

the MGCC function. Figure 4.18(b) further illustrates the cumulative distribution function

(CDF) of the total processing latency of the app. The average value is 186.3ms, with 90%

of measurements lower than 220.7 ms. We thus instantiate tdl with 220.7 ms for the im-

plementation (4.8). We also believe that by leveraging the parallelization, we can further

bring down the processing latency.

4.5.3 System Benchmark

Impact of vehicle speeds: Table 4.3 gives the detection accuracy of Acoussist to-

ward a vehicle in a wider range of speeds. Interestingly, both MDR and FAR experience

significant decrease when the speed increases from 5 mph to 45 mph. This is because a

higher speed generates a larger slope of the t-f sweep line as revealed in (4.3). As a re-

sult, the difference between f(t + ∆t) and f(t) will be more apparent to tolerate errors
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caused by insufficient frequency resolution ∆f . Therefore, when a target vehicle moves

in a higher speed, its t-f profile tends to more accurate which leads to a better detection

accuracy. MDR grows as the speed continues to increase from 30 mph to 45 mph. This is

because the ranging distance becomes close or even shorter than the the warning distance

when a vehicle is at a high speed. As a result, some hazard situations are missed in the

detection.

Table 4.4: Detection performance with the presence of multiple vehicles.

Speed (mph) 5 10 15 20 25 30 35 40 45
MDR 8.5% 6.8% 4.3% 3.7% 2.6% 1.9% 4.0% 5.5% 6.2%
FAR 12.0% 11.6% 10.1% 8.4% 7.3% 6.7% 5.0% 4.5% 3.2%

Impact of multiple vehicles: We examine the detection performance of Acoussist

with the presence of four vehicles in Table 4.4. Compared with Table 4.3, we notice that

FAR slightly increases with the presence of more cars. This is because a false alarm is

generated by the system when any of the four vehicles is falsely reported to incur a potential

collision. In contrast, MDR becomes smaller when there are more vehicles. This is because

a collision is correctly forecast, when any one of the vehicles triggers the alarm. While FAR

experiences a slight increase, it does not impact the performance of Acoussist much. A

visually impaired pedestrian uses Acoussist to double-confirm the situation when sensing

a clear street with hearing. Thus, MDR is more crucial than FAR in practical usage.

Figure 4.20 shows the ranging distance and warning distance when vehicles move

in the same/opposite direction(s). While the average measures are closely the same, the

variance associated with opposite directions is smaller than the same direction. This is

because t-f sweep lines of the four vehicles are better separated and easier to extract in the

former case.
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Figure 4.19: Impact of vehicle speeds.
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Figure 4.20: Impact of multiple vehicles.
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Figure 4.21: Impact of nearby objects.

Impact of nearby objects: To evaluate the impact of nearby objects, we place a

second vehicle to partially block the line of sight between the target vehicle and the pedes-

trian (as shown in Figure 4.21(a)). The ranging distance and the warning distance toward

the target vehicle is shown in Figure 4.21(b) and 4.21(c), respectively. The trend of these

two distances with respect to the vehicle speed is very similar to that in Figure 4.19(a) and

4.19(b), the performance without any blocking object. However, the two distances exhibit a

larger variance with the existence of a blocking object. This is because the blocking object

absorbs a portion of energy of chirps in the LoS path and thus slightly impacts the detection

performance.

Impact of time/weather of usage: Table 4.5 shows the detection accuracy of Acous-

sist at different time of a day. The performance is relatively stable. Acoussist performs well

at evenings when there are typically lack of visible light. Note that some existing systems
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for pedestrian safety, such as WalkSafe [140], rely on back camera of mobile phones to

detect hazard vehicles. Thus, their performance is largely impacted by the time of usage.

Table 4.6 further compares the detection performance under different weather conditions.

We notice that both MDR and FAR experience slight increase in rainy days due to higher

loss of acoustic signals when propagating in saturated air.

Table 4.5: Detection performance at different time of a day.

Usage time Morning Noon Afternoon Evening
MDR 3.8% 4.5% 4.7% 5.2%
FAR 6.2% 4.9% 5.3% 4.8%

Table 4.6: Detection performance under different weather conditions.

Usage weather Sunny Windy Cloudy Rainy
MDR 3.7% 3.5% 4.2% 4.4%
FAR 4.8% 5.3% 4.8% 5.2%
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CHAPTER 5

CONCLUSIONS

In this thesis, we discuss three mechanism designs that extends the sensing boundary

of mobile systems to secure the device pairings, disclose potential security threats, and

develop novel assistive applications to facilitate blind pedestrians’ daily travels.

First, we propose a novel pairing scheme for wearables devices, which builds upon

the core idea of treating the human body as a conductor. We observe that the on-body

wearables can receive identical RF noise variations, regardless of which skin positions they

contact. RF noise serves as an ideal entropy source due to its ubiquitous presence and high

randomness. Under the touch-to-access policy, we present a pairing protocol that turn the

RF variation trends as the ingredients to securely distribute the pairing key between two

legitimate devices. A prototype is developed to evaluate the effectiveness of the proposed

scheme from the aspects of robustness against various types of attackers, key generation

performances, and time and energy consumption.

Second, we present, Periscope, a new side-channel eavesdropping attack to infer

users’ PIN from the human-coupled EM emanations from touchscreens during the typing

process. Periscope is motivated by the observation that finger movements over the touch-

screen leads to time-varying coupling between these two. Consequently, it impacts the

screen’s EM emanations that can be picked up by a remote sensory device. We developed

an comprehensive analytic model to formulate the relationship between screen-finger dis-

tances and EM measurements. Based on the analysis, the finger’s movement traces are

reconstructed to recover the typed PINs. Meanwhile, the proposed attack is completely
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training-free and do not need to collect large amount of user-specific datasets in advance

of the attack. We build the prototype on a low-cost MCU device and conduct a suite of

experiments to validate this attack’s impact.

Last, we design a new application, Acoussist, that uses COTS smartphones’ micro-

phones to measure the motion status of oncoming vehicles and then provide assistive guid-

ance to the pedestrians with impairments before they take actions across the uncontrolled

streets. The key novelty of Acoussist is to leverage the t-f sweep line of received chirp

signals to derive multiple vehicles’ relative speeds and resolve the association ambiguity

issue in their DoA measurements. We exploit geometric relations of vehicle’s sequential

motion status to calculate the important movement parameters, such as vehicle velocity and

distance to the pedestrian. Based on these parameters, a carefully designed alert generation

mechanism is proposed to warn the pedestrian if there is one vehicle cannot stop before the

crosswalk and thus lead to potential collision hazards.
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