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ABSTRACT

MACHINE LEARNING WITH GRAPHS

Jianjin Deng, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Dr. Chris H.Q. Ding

In recent years, graph-based machine learning methods have attracted great

attention because of their effectiveness and efficiency. Inspired by this trend, this

thesis summarizes my research topics on machine learning techniques for the purpose

of handling various kinds of problems on large graph data.

Generally, this thesis contains two parts. The first part is devoted to graph

embedding, which aims to encode graph structure into dense vectors (or embeddings).

In particular, we will consider a low rank-matrix factorization based approach to learn

embeddings of attributed graphs. By jointly preserving graph structure and attribute-

level similarity, our approach can generate embeddings, whose quality is higher than

that of embeddings generated by state-of-the-art methods.

The second part of the thesis is devoted to graph-based semi-supervised learn-

ing, which attempts to predict labels for unlabeled nodes given a small set of labeled

nodes and a large set of unlabeled nodes. In this part, we consider two different

approaches: graph-regularization based semi-supervised learning and graph convolu-

tional network, which deal with non-attributed and attributed graphs respectively.

For graph-regularization based semi-supervised learning, we develop a simple ap-
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proach for imbalanced classification, which can not only learn a smooth label function

on the graph but also take into account the class imbalance of datasets. For graph

convolutional network, we first introduce an attention mechanism induced by sub-

maximal entropy random walks. Given this, we propose an attention-based graph

convolutional network, which can jointly learn node attributes and graph structures

at multiply scales. Both approaches can achieve promising performance on several

benchmark datasets.
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CHAPTER 1

INTRODUCTION

Graphs are typically used to represent complex systems of interacting objects,

such as social networks [1], biological networks [2], citation networks [3], and so forth.

Generally, a graph is a collection of objects (i.e., nodes) and interactions (i.e., edges)

between them. For instance, in a citation network, nodes can represent academic

publications and edges can represent citation links between these publications. This

graph formalism provides us both mathematical elegance and effectiveness to analyze

real-world complex systems. For instance, we can obtain the similarity between two

publications by only analyzing topological structure of the citation network without

the access to the content of these publications.

However, the inputs of most dominant machine learning algorithms are real

number vectors, such as k-means [4], support vector machine (SVM) [5], neural net-

works [6], and so forth. Hence, it is difficult to directly apply them to graph data.

Moreover, in the last 20 years, there has been a dramatic increase in the large-scale

graph data which are available to researchers. Thus, the main challenge is to develop

effective and efficient way to incorporate information of graph data into machine

learning frameworks.

The aim of this thesis is to develop graph-based machine learning methods

to solve various real-world problems. In the first part of this thesis, we propose

effective graph embedding method to represent nodes as dense vectors, which can

be easily exploited by traditional machine learning algorithms. In the second part,

1



Table 1.1: Notations and definitions in this thesis.

Notation Description

G A graph.
V The set of nodes in a graph.
vi A node vi ∈ V .
E The set of edges in a graph.
eij An edge eij ∈ E between vi and vj.
Ni The index set of immediate neighbors of node vi
A The adjacency matrix.
D The degree matrix, Dii =

∑
j Aij.

n The number of nodes.
X The attribute matrix of a graph.
yi The label of a node or data point.
Y The indicator matrix corresponding to labels.

we develop two different graph-based semi-supervised learning methods to deal with

node classification task.

1.1 Notations and Definitions

Before we discuss graph-based machine learning, it is necessary to introduce

several notations and definitions required to understand this thesis. Formally, a graph

is denoted by G = (V, E) where V is the set of nodes and E is the set of edges. Let

vi ∈ V denote a node and eij = (vi, vj) ∈ E denote an edge going from vi to vj.

The index set of immediate neighbors of node vi is defined as Ni = {j ∈ V |eij ∈ E}.

The adjacency matrix A is a n-by-n matrix with Aij = 1 if eij ∈ E and Aij = 0

if eij /∈ E. D is a diagonal matrix with Dii =
∑

j Aij. A graph may have node

attributes X ∈ Rn×p, where X is an attribute matrix with xi ∈ Rp representing the

attribute vector attached to node vi. yi is the label of node vi or data point xi, and Y

is the indicator matrix consistent to labels. In this thesis, the non-attributed graph

2



refers to a graph without node attributes and the attributed graph represents a graph

attached with node attributes. Table 1.1 summarizes the notations used in this thesis.

1.2 Tasks of Graph-based Machine Learning

Generally, main tasks of graph-based machine learning can fall into three cate-

gories as follows.

Node-level prediction. For node-level prediction, there are two main graph-

based machine learning tasks: node classification and clustering. In recent years, node

classification is the most popular supervised machine learning task. Given a graph

with a portion of nodes labeled, the goal of node classification is to predict labels

for unlabeled nodes, which can be very important for many reasons. For instance,

a recommendation systems can suggest products, such as music, books or movies,

to users with similar interests or experiences (i.e., labels). Another important node-

level task is node clustering, which is also known as community detection or graph

partition. Without labels for nodes, it aims to find groups of nodes, where nodes in

the same group are more similar to each other than to the other nodes.

Link-level prediction. Another class of graph-based machine learning appli-

cations is link prediction. Give a graph with some edges (i.e., links between nodes)

which are missing, the goal of link prediction is to infer missing edges between nodes

in the graph. Link prediction is really important for many real-world applications.

For instance, in an online social network, we can recommend new friends to users by

using link prediction.

Graph-level prediction. The graph-level prediction involves classification

and clustering on entire graphs. For graph-level classification problem, each graph is

regarded as a data point and associated with a label. Instead of making prediction for

components (i.e., nodes) of a single graph, graph classification attempts to predicts la-

3



Table 1.2: Overview of graph-based machine learning.

Category Approach Inputs End-to-end Application

Unsupervised
Non-attributed graph embedding A No

node classification [7], clustering [8]
and link prediction [9]

Attributed graph embedding* X, A No
node classification [10], clustering [11]

and link prediction [12]

Semi-supervised
Graph-regularization based
semi-supervised learning*

A, Y Yes node classification [13]

Graph convolutional network* X, A, Y Yes
node classification [14], link prediction [15]

and graph classification [16]

*The topic will be included in this thesis.

bels of multiple graphs. Graph classification is an important problem with application

to many fields, such as social network analysis, bioinformatics and chemoinformatics.

For instance, in chemoinformatics molecules can be viewed as graphs where nodes and

edges correspond to atoms and chemical bonds between atoms respectively. Graph

classification could be used to predict solubility or toxicity of a molecule. Similarly,

the goal of graph clustering is to generate groups of graphs which are more similar to

each other than to the other graphs.

1.3 Overview of Graph-based Machine Learning

Generally, graph-based machine learning methods can be categorized to two

classes (see Table 1.1): unsupervised and semi-supervised methods1. Graph-based

unsupervised learning is typically termed as graph embedding, which acts as the

preprocessing method to learn informative vector representations (embeddings) for

nodes while preserving graph structure. These learned embeddings can be used as

input of down-stream machine learning tasks, such as node classification, clustering,

link prediction, and so forth. According to different types of inputs, graph embedding

1For graph-based machine learning, we usually have access to the structure of the full graph, which

includes both labeled and unlabeled nodes. To take advantage of unlabeled nodes, semi-supervised

methods are always preferred instead of supervised ones.
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falls into two categories: non-attributed and attributed graph embedding, which take

non-attributed and attributed graphs as input respectively. On the other hand, graph-

based semi-supervised learning is an end-to-end approach, which attempts to directly

predict unlabeled data by learning graph structure and labeled data jointly. Similarly,

it also contains two different approaches: graph-regularization based semi-supervised

learning and graph convolutional network, which take partially labeled non-attributed

and attributed graphs as input respectively.

1.4 Main Contributions of This Thesis

My Ph.D. research primarily focuses on both themes: graph embedding (part

I) and graph-based semi-supervised learning (part II). Specifically, the main contri-

butions of my thesis are as follows:

1. We proposed a low-rank matrix factorization based method for attributed graph

embedding (Chapter 2).

2. We introduced a simple graph-regularization based semi-supervised approach

for imbalanced classification (Chapter 3). We also proposed multi-entropy-rate

graph convolutional network for semi-supervised node classification (Chapter

4).

In summary, all proposed approaches provide insights towards better understanding

of graph-based machine learning and enjoy solid theoretical foundations. In practice,

all proposed approaches can outperform strong basedlines on popular benchmark

datasets. We also took much effort to develop software tools for these algorithms and

make them publicly available.
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1.5 Overview of Part I: Graph Embedding Approach

As we mentioned above, many complex data can be represented as graphs in the

real world. However, it is difficult to directly apply most popular machine learning

methods to graph-structured data, since they typically take attribute vector as input.

Hence, it is natural to transform graphs into data with an underlying Euclidean

structure, where each node is represented by a dense vector. In this part of the

thesis, we mainly focus on learning embeddings for nodes in the attributed graph in

an unsupervised manner.

1.5.1 Low-Rank Embedding of Attributed Graph

In the real world, graphs are typically attached with node attributes. In other

words, each node is associated with an attribute vector, which can enhance the quality

of embeddings. The goal of attributed graph embedding is to generate embeddings

by preserving the node-level similarity and attribute-level similarity simultaneously.

Since real-world graphs are typically sparse and their adjacency matrices are low-

rank, in Chapter 2 we propose an attributed graph embedding approach which is

based on low-rank matrix factorization.

1.6 Overview of Part II: Graph-based Semi-supervised Learning (GSSL) Approaches

For node classification tasks, supervised learning can only take use of labeled

nodes on the graph while missing the information of graph structure. To alleviate

this issue, GSSL approaches were proposed to learn labeled nodes and graph structure

jointly. They have achieved great success on several machine learning tasks, such as

node classification, link prediction and graph classification [12, 15, 16].
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1.6.1 A Simple Graph-Regularization based Semi-supervised Learning Approach for

Imbalanced Classification

Graph-Regularization based Semi-Supervised Learning (GRSSL) methods aim

to label unlabeled data by learning graph structure and labeled data jointly. However,

classification for imbalanced datasets is still an open problem. Especially, as we will

discuss in Chapter 3, most existing GRSSL approaches can not deal with a wide

range of class imbalance since the graph-regularization term encourages the balanced

classification result. Hence, we propose a simple GRSSL approach, which can deal

with various class imbalance of given datasets. The key idea of our approach is

to introduce a novel term in our regularization framework to control the balance

of the classification result, which can enhance the discriminative power of learned

smooth classification function. Moreover, it has interesting connections to the Markov

stability of graph partition and the group inverse of normalized Laplacain matrix. For

classification problems, experimental results demonstrate our approach can achieve

promising performance on several datasets with different class imbalance.

1.6.2 Multi-Entropy-Rate Graph Convolutional Network

Graph convolutional network attempts to generalize convolutional operation on

graph-structured data. Its main innovation is to combine graph convolutional oper-

ation with multi-layer perceptron (MLP). Hence, it can generate a vector represen-

tation for a node by aggregating feature information from its local neighborhood. In

Chapter 4, we propose a novel attention-based neural network architecture for semi-

supervised learning for node classification. Inspired by the fact that random walks

with different entropy rates can extract graph topology at multiple scales, we con-

struct the attention mechanism via random walks with different entropy rates. Using

this simple graph attention, we introduce Multi-Entropy-Rate Graph Convolutional

7



Network (MER-GCN), which can efficiently learn node features and graph topol-

ogy at multiple scales. Experimental results demonstrate that, for node classification

tasks, our approach outperforms several strong baselines under both transductive and

inductive learning settings.

1.7 Structure of the Thesis

The outline of this thesis is as follows. Chapter 2 introduces an attributed

graph embedding approach, which is framed as a matrix factorization framework.

Chapter 3 introduces a graph-regularization based semi-supervised learning method to

handle the image and text classification problems. Chapter 4 presents multi-entropy-

rate convolutional network, which can learn different topological structures and node

features jointly for node classification problem. Chapter 5 draws the conclusion of

this thesis and presents our future research plans.
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Part I

Graph Embedding Approach
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CHAPTER 2

LOW-RANK EMBEDDING OF ATTRIBUTED GRAPH

2.1 Introduction

In the last few years, a surge of approaches [7, 9, 17, 18] have been proposed

to incorporate the information of graph structure into machine learning algorithms.

Their key idea is to encode a node into a dense vector (embedding), which can capture

graph structure. Then, these node embeddings can be used for the downstream vector-

based machine learning tasks, such as node classification, clustering, link prediction,

and so forth [7, 9, 19].

More Recently, matrix-factorization (or factorization) based graph embedding

has attracted great attention, since most dominate graph embedding approaches can

be unified as matrix factorization [10], such as DeepWalk [7], Node2vec[9], Line [17].

Following this research line, attributed graph embedding approaches [10, 20] were

proposed to enhance node representations by incorporating node attributes.

However, the sparsity of real-world graphs is one of the main challenges of

existing factorization-based approaches. Given a sparse graph, the corresponding

similarity matrix can be defined by computing the local or global pairwise node

similarities. For instance, one might simply use the corresponding adjacent matrix

as the similarity matrix. Typically, this similarity matrix to be factorized is low-rank

and very sparse, when some approaches [21, 10, 20] only consider the local similarity

between nodes in the graph. On the other hand, for the methods [7, 8, 22, 23]

exploring the higher-order similarity, it is very expensive to construct and factorize a

large dense matrix in terms of both time and space.
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To addressing the graph sparseness problem, in this chapter we propose a simple

but effective attributed graph embedding approach, which approximates the similar-

ity matrix using a low-rank matrix. Moreover, we prove the objective of our approach

is convex and proposed algorithm can achieve the globally optimal solution. Empir-

ically, we evaluate our approach through extensive experiments on four wildly used

benchmarks.

In summary, our main contributions are as follows:

• We figure out a deeper insight of existing factorization based graph embedding

methods. For real-word networks, since the matrix to be factorized is typically

low-rank and very sparse, it is natural to use a low-rank matrix to approximate

the original similarity matrix.

• Inspired by this insight, we propose an attributed graph embedding algorithm,

which can efficiently obtain the globally optimal solution of proposed framework.

• Extensive experiments on four benchmarks suggest our method can outperform

several strong baselines (including deep learning approaches) on node classifi-

cation and clustering tasks.

2.2 Problem Definition and Preliminaries

In this section, we first define the problem of attributed graph embedding. Then

we briefly introduce preliminaries of matrix factorization based approaches.

2.2.1 Problem Definition

The primary input to our algorithm is an undirected 1 graph G = (V,E,A).

In addition, we suppose the graph is associated with an attribute matrix X =

[x1, · · · , xn]T ∈ Rn×p, where each attribute vector xi corresponds to vi ∈ V . Given

1If G is directed, we will convert it to the undirected.
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these, the attributed graph embedding learning aims to map nodes into a low-dimensional

vector space, where embeddings simultaneously preserve the node similarity in the

graph and encode the raw attributes. Formally, our goal is to find a mapping Φ :

Rp 7→ Rd(d << p), which satisfies two criteria: (1) similarity(vi, vj) ≈ Φ(vi)
TΦ(vj)

with vi, vj ∈ V , and (2) each Φ(vi) should extract the information of node attributes

xi.

2.2.2 Non-attributed Graph Embedding as Matrix Factorization

Given a non-attributed graph, most dominate graph embedding approaches can

be unified as matrix factorization [23]. In this subsection, we use factorization based

DeepWalk to illustrate their main idea. Inspired by word embedding algorithm Skip-

gram [24], DeepWalk [25] first applies the random walk on the graph to generate node

sequences, which can be analogized as sentences in a special language. Then it applies

the neural language model (Skip-gram algorithm) to transform these node sequences

into node embeddings.

Given a node sequence {v0, · · · , vn} generated by the random walk, they for-

mulate graph embedding as an optimization problem to maximize the likelihood of

observing the neighbors given a node.

max
Φ

S∑
i

logPr({vi−w, · · · , vi+w}\vi|vi),

= max
Φ

∑
i

∑
j∈N(i)

logPr(vj|vi),
(2.1)

where w is the window size, Ni is the index set of the neighbors of node vi.

In Skip-gram model, the conditional probability Pr(vj|vi) in Eq. 2.1 can be

defined by the softmax function,

Pr(vj|vi) =
exp(Φ(vi)

TΦ′(vj))∑
j′ exp(Φ(vi)TΦ′(vj′))

,
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where Φ(vi) and Φ′(vj′) ∈ Rd are the two embeddings of the nodes vi and vj′ , respec-

tively. The objective function in Eq. 2.1 can be optimized using stochastic gradient

decent with hierarchical softmax [7].

It has been proven in [10, 23] that DeepWalk is equivalent to the matrix fac-

torization,

M ≈ W ×HT , (2.2)

where W ∈ Rn×d, H ∈ Rn×d are the representations of nodes. And given the row-

normalized transition matrix P = D−1A with Dii =
∑

j Aij, M can be defined as

log(P+P 2+···+P l

l
), which defines the similarity between nodes vi and vj in the graph

by the logarithm of the average probability that a random walk starts from node vi

to node vj in fixed t steps. An alternative matrix factorization algorithm is Singular

Value Decomposition (SVD), whose top-d singular values and vectors can be used to

approximate M = UdΣdV
T
d . Usually, W = Ud

√
Σd is used as the embedding matrix,

whose row vectors correspond to node embeddings.

2.2.3 Attributed Graph Embedding as Matrix Factorization

Besides graph structures, many real-world graphs are often attached with node

attributes. Many attributed graph embedding methods [10, 20, 26] can be framed as

matrix factorization. In this subsection, we use text-associated DeepWalk (TADW)

to show the main idea. The key innovation of TADW is to factorize the similarity

matrix into three matrices as follows

min
W,H
‖M −XWHT‖2

F +
α

2
(‖W‖2

F + ‖H‖2
F ), (2.3)

where W ∈ Rp×dand H ∈ Rn×d are the parameter matrices to optimize, and X ∈

Rn×p is the attribute matrix. α is the parameter to control the trade-off between

matrix approximation term and regularization term. In practice, factorizing P+P 2

2
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instead of log(P+P 2+···+P l

l
) is a good trade-off between efficiency and accuracy. Node

representations are obtained by concatenating XW and H. Similarly, HSCA [20]

is another approach which adds an extra graph Laplacian regularization term into

Eq. 2.3 to preserve the homophily property of the graph.

2.3 Approach

We propose a novel algorithm to solve the attributed graph embedding problem.

Its goal is to minimizes the following objective function,

J(Z) = ‖M −XZXT‖2
F + λ‖Z‖∗, (2.4)

where ‖Z‖∗ = Tr(ZZT )1/2 is the nuclear norm and λ is a trade-off parameter. Since

J(Z) is convex, the global optimal solution can be computed.

This formalism can efficiently deal with large graphs, because the variable Z

is a p-by-p matrix, where p is the number of attributes on a node. In most real

applications, the number of attributes on a node is typically several thousands or

less, while the number of nodes in the graph, n could be much larger, up to several

millions. Thus typically p� n. We will see that in the computational algorithm, we

only deal with p-by-p matrices, never deal with n-by-n matrices. Although the graph

adjacency matrix M is n-by-n, we only use repeatedly the p-by-p matrix XTMX

which is assembled once and stored for later usages. The computation of XTMX

does not require completely form the entire matrix M in memory.

One model closely related to the target model in Eq. 2.4 is

J2(Z) = ‖M −XZXT‖2
F + λ‖Z‖2

F , (2.5)
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Here, the regularization term is the widely used L2 norm on Z, instead of the rank-

suppression nuclear norm in Eq. 2.4. One big advantage of this model is that the

model solution can be expressed in closed form as the following Sylvester equation

ÃZ + ZB̃ = C̃. (2.6)

where

Ã = XTX, B̃ = λ(XTX)−1, C̃ = XTMX(XTX)−1.

The Sylvester equation is a linear equation: using vectorization notation, it can be

expressed as (I ⊗ Ã + B̃ ⊗ I)vec(Z) = vec(C̃), where ⊗ denotes Kronecker product

and I is identity matrix of size p× p same as Ã, B̃, C̃.

A well-known theorem [27] says that if Ã and −B̃ share no identical eigenvalues,

the linear equation has a unique solution. In our problem, Ã, B̃ are, by definition,

semi-positive-definite matrices; thus Ã and −B̃ do not have same nonzero eigenvalues.

A subtle issue is the zero eigenvalue. In typical attributed graph applications, p� n,

thus Ã = XTX is full rank. In the case when Ã = XTX is not full rank, we usually

compute (XTX)−1 by (XTX + εI)−1. In summary, in our problem, Ã and −B̃ do

not have same eigenvalues. Thus the Sylvester equation has a unique solution, which

gives the optimal solution Z∗ for minimizing J2(Z).

The model Eq. 2.4 is motivated by the work of Xu et al. [28] who attempt

to solve matrix completion problems, which is extended to do many other problems

unrelated the attributed graph embedding problem that we are dealing with in this

chapter.

In the following, we first present an efficient algorithm to solve the model Eq. 2.4.

Later we prove the convergence and correctness of the algorithm.
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2.3.1 Algorithm

We use an iterative algorithm to compute the globally optimal solution. We

first consider the initialization of Z. At t = 0, the initialization of Zt=0 can be set to

either a random matrix or the solutions to the closely related models which can be

solved in closed form. In our approach, we simply set λ = 0 in model Eq. 2.4 and use

the solution at λ = 0 as the initialization of the model. The λ = 0 solution of the

model is given by

Z∗λ=0 = (XTX)−1XTMX(XTX)−1. (2.7)

Note that XTX is a p-by-p matrix, whose inverse can be easily computed in typically

applications where p � n. When the semi-positive-definite matrix XTX has zero

(or very small) eigenvalues, we typically replace (XTX)−1 by (XTX + εI)−1 with

ε ≈ 10−10.

Given Zt, the key algorithm step is to compute Zt+1. Setting

Ã = (ZtZ
T
t )

1
2XTX,

B̃ =
λ

2
(XTX)−1,

C̃ = (ZtZ
T
t )

1
2XTMX(XTX)−1,

(2.8)

we solve the Sylvester equation as follows,

ÃZ + ZB̃ = C̃. (2.9)

The solution is for Zt+1. Note that all key quantities involved in this step, XTX,

XTMX, ZtZ
T
t are p-by-p matrices. XTX, (XTX)−1, XTMX are pre-computed and

stored for efficient execution. This completes the description of the computational

algorithm, which is summarized in Algorithm 1. In step 7, X̃ is the enhanced attribute

matrix, which will be introduced in Section 2.4.1.
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Algorithm 1 Our Algorithm

Input: Adjacency matrix A; attribute matrix X.

Output: A matrix of node embeddings, where each row corresponds to a node

embedding.

1: Initialization: Z∗ = (XTX)−1XTMTX(XTX)−1.

2: for t = 1 to T do

3: Compute Ã, B̃, C̃ from Eq. 2.8 for Z = Zt,

4: Solve Sylvester equation (Eq. 2.9) to obtain Zt+1,

5: end for

6: Perform spectral decomposition: ZT+1 = USUT .

7: Embedding vectors are obtained by concatenating XU and X̃U .

2.3.2 Convergence of Our Algorithm

Here we prove that the algorithm described above converges by introducing

the theorem below. In next subsection, we show that the converged Z∞ satisfies the

KKT condition of the convex optimization problem. Thus the converged solution is

a correct globally optimal solution.

Theorem 2.3.1. In the iterative algorithm, the successive updated solutions Zt, Zt+1

monotonically decrease the objective function J(Z):

J(Zt+1) ≤ J(Zt).

Because J(Z) is bounded from below, i.e., J(Z) ≥ 0, Zt converges to a fixed point.

Proof. We first introduce an auxiliary function

F (Z,Zt) = ‖M −XZXT‖2
F + Γ(Z,Zt),

17



where

Γ(Z,Zt) = Tr(ZtZ
T
t )

1
2

+
1

2
Tr(ZT (ZtZ

T
t )−

1
2Z)− 1

2
Tr(ZT

t (ZtZ
T
t )−

1
2Zt),

for any Z and Zt. We define Zt+1 as the optimal solution

Zt+1 = arg min
Z

F (Z,Zt). (2.10)

Now we wish to prove the following facts

J(Z) ≤ F (Z,Zt) ∀Z,Zt, (2.11)

and

J(Z) = F (Z,Z). (2.12)

Eq. 2.12 is obvious. To prove the inequality Eq. 2.11, we write

J(Z)− F (Z,Zt) = Tr(ZZT )
1
2 −

[
Tr(ZtZ

T
t )

1
2

+
1

2
Tr(ZT (ZtZ

T
t )−

1
2Z)− 1

2
Tr(ZT

t (ZtZ
T
t )−

1
2Zt)

]
.

(2.13)

Now, we invoke a useful lemma from (Luo et al. 2011 [29]).

Lemma 2.3.1. Given any Z and Zt ∈ Rp×p , we have

Tr(ZZT + εI)
1
2 ≤Tr(ZtZT

t + εI)
1
2

+
1

2
Tr(ZT (ZtZ

T
t + εI)−

1
2Z)

− 1

2
Tr(ZT

t (ZtZ
T
t + εI)−

1
2Zt),

where ε is a positive constant.

See [29] for the proof. Using Lemma 2.3.1, with ε → 0, Eq. 2.13 becomes

J(Z)− F (Z,Zt) ≤ 0, which gives Eq. 2.11.

From Eqs. 2.11 and 2.12, we obtain the following property of the iteration

solution,

J(Zt) = F (Zt, Zt) ≥ F (Zt+1, Zt) ≥ J(Zt+1). (2.14)
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The first equality is from Eq. 2.12. The second inequality is from the fact that Zt+1

is the global optimal solution of Eq. 2.10. Thus F (Zt+1, Zt) ≤ F (Z,Zt) for any Z.

In particular, this holds for Z = Zt, thus leads to the second inequality. The third

inequality is from Eq. 2.13.

The inequality Eq. 2.14 establishes the monotonic decreasing (not increasing)

property of the iterative algorithm.

Now we need to prove the solution for Zt+1 computed through Eqs. 2.8 and 2.9

is indeed the locally optimal solution to Eq. 2.10. For this purpose, we take

0 =
∂F (Z,Zt)

∂Z

= −2XTMX + 2XTXZXTX + λ(ZtZ
T
t )−

1
2Z,

(2.15)

which can be written as[
(ZtZ

T
t )

1
2XTX

]
Z + Z

[λ
2

(XTX)−1
]

= (ZtZ
T
t )

1
2XTMX(XTX)−1.

(2.16)

One can see that this is exactly the Sylvester equation defined in Eqs. 2.8 and 2.9.

Thus the computed Zt+1 is the locally optimal solution to the optimization problem

of Eq. 2.10.

2.3.3 Optimality of Our Algorithm

Here we show that the converged Z∞ satisfies the KKT condition of the convex

optimization problem. Thus the converged solution is a correct globally optimal

solution.

Setting ∂J(Z)
∂Z

∣∣
Z=Z∗

= 0, we obtain the KKT optimality condition

−2XTMX + 2XTXZ∗XTX + λ[Z∗(Z∗)T ]−
1
2Z∗ = 0. (2.17)
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Now we check through the solution for Zt+1 in Eqs. 2.17 and 2.18, when the

algorithm converged, Zt = Z∞, and Zt+1 = Z∞, thus the Sylvester equation in

Eq. 2.16 becomes

[
(Z∞Z

T
∞)

1
2XTX

]
Z∞ + Z∞

[λ
2

(XTX)−1
]

= (Z∞Z
T
∞)

1
2XTMX(XTX)−1.

(2.18)

One can see that Z∞ satisfies the KKT condition Eq. 2.17. Thus the computed

solution is the optimal solution Z∗ to the optimization problem.

2.4 Data Transformations

In above algorithm, the graph similarity matrix M and attribute vectors X are

assumed to be the original input data for the attributed graph. The output is the

embedding data Z.

However, like many other methods [30, 31] in machine learning, we can trans-

form the original input data to achieve better results. Below we discuss several data

transformation techniques.

First, we discuss data transformation of the graph similarity matrix. For clarity,

we assume the input graph adjacency matrix is A ∈ Rn×n.

We first consider the node pairwise similarity introduced by DeepWalk [25],

which defines the similarity between nodes vi and vj in the graph by Mij = log(1
t
(P +

P 2 + · · ·+P t))ij. In this work, to take advantage of graph sparsity, following [10] we

omit the log operation and choose

M = (P + P 2)sym, (2.19)

where for a matrix G, Gsym = (G + GT )/2, which is an ideal trade-off between

effectiveness and efficiency in practice.
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2.4.1 Attribute Transformations

In our model Eq. 2.4, X = [x1, · · · , xn]T are original attribute vectors on the

nodes of the graph. However, we may equally well use transformed attributes here.

For example, we may use principal component analysis (PCA) to reduce the dimension

of attributes; This will reduce the computation of the final solution of the model; it

will also reduce the noise in the attributes data.

Another transformation to enhance (smooth) the initial attributes is to update

each node by aggregating the attribute vectors in its local neighborhood,

x̃i ←
∑
j∈Ni

xjPj→i, (2.20)

where Pj→i is the transition probability from node vj to node vi. The widely used

graph random walk transition probability is

Pj→i = Aji/
∑
k

Ajk = Aji/dj = (D−1A)ji, (2.21)

where A is the graph adjacency matrix and dj is the degree for node vj. With these

analysis, the transformed attributes are

X̃ , [x̃1, · · · , x̃n]T = P̂X. (2.22)

Note that this smoothing transformation can be repeated several times. Furthermore,

the standard random walk transition probability in Eq. 2.21 can be replaced by

P̂ = (D + I)−1(A+ I) (2.23)

which is found to perform better in graph convolutional networks [14, 30]. Sum-

marizing all above discussions, the final smooth transformation on attribute vectors

is

X̃ = P̂KX. (2.24)
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Let us briefly explain why the smooth transformation in Eq. 2.24 can enhance

the node attributes. Theoretically, P̂K can be viewed as a filter from the perspective

of graph signal processing [32]. It will prefer the large eigenvalues of P̃ corresponding

to large-scale structure in the graph, and suppress the noise corresponding to the small

eigenvalues. Intuitively, the propagated attribute matrix X̃ = P̂KX is smoother than

initial one X. That is, the nodes nearby in the graph are more likely to share the

similar attributes. Hence, the similarity between node attribute vectors of X̃ can

reflect the initial attribute similarity and the node similarity in the graph, which

makes propagated attributes X̃ more informative.

2.5 Experiments

We compare our approach against several strong baselines on four benchmark

datasets on two tasks, i.e., node classification and clustering.

The statistics of four datasets are summarized in Table 2.1.

Table 2.1: Dataset statistics

Dataset # Nodes # Edges # Classes #Attributes

Citeseer 3,327 4,732 6 3,703
Cora 2,708 5,429 7 1,433
Pubmed 19,717 44,338 3 500
Wiki 2,405 17,981 17 4,973

2.5.1 Datasets

We conduct experiments on four widely-used datasets 2: Citeseer, Cora, Pubmed

and Wiki. Citeseer, Cora and Pubmed are three citation networks, where nodes rep-

2http://linqs.cs.umd.edu/projects//projects/lbc/index.html
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resent scientific publications and edges represent citation links. Labels indicate the

research fields of papers. Moreover, each paper is represented as a TF-IDF vector.

Wiki dataset is a web page network, where nodes represent web pages and edges

represent link relations. Similar to other three datasets, each page is represented by

a TF-IDF vector.

2.5.2 Baselines

We compare our approach against the following baselines on both node classi-

fication and clustering tasks.

Singular Value Decomposition (SVD): It applies Singular Value Decom-

position [33] on the raw attribute matrix to extract node embeddings. The dimen-

sionality of embeddings is set to 200, following the setting in [10, 20].

DeepWalk: DeepWalk [7] is a graph embedding method, which is presented

in Section 2.2.2. We set the number of walks, walk length and window size to 10, 80,

10, respectively. And the embedding dimension is set to 128.

Node2vec: Inspired by DeepWalk, Node2vec [9] designs a second order random

walk on the graph to explore different types of network structures. And it also

uses Skip-gram algorithm to generate node embeddings. We choose the optimal

parameters p and q with grid search over p, q ∈ {0.25, 0.5, 1, 2, 4}. In addition, for

other parameters, it follows the settings of DeepWalk.

SVD + DeepWalk: To learn the information of graph structure and node

attributes, we simply concatenate the embeddings learned by SVD and DeepWalk .

TADW: TADW [10] is a matrix factorization based approach inspired by in-

ductive matrix completion model [34]. Parameters for this algorithm are set as default

values.
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HSCA: HSCA [20] is another matrix factorization based approach which aims

to integrate graph structure, node attribute and homophily property to learn an

informative graph embedding. Parameters for this algorithm are set as default values.

STNE: STNE [35] casts graph embedding problem as a sequence-to-sequence

task, where the node sequences generated by random walks are mapped to node em-

beddings. We apply the default parameters for Cora, Citeseer and Wiki as mentioned

in the original paper. For Pubmed, we choose the same neural network configuration

as that for Citeseer.

DANE: DANE [11] utilizes two autoencoders to learn the hidden embeddings

by jointly capturing the information of topological structure and node attributes.

This model is trained with default parameters.

DGI: DGI [36] is an unsupervised graph convolutional neural network to max-

imize mutual information between patch embeddings and corresponding high-level

summaries of graphs.

GMI: GMI [37] aims to learn embeddings that maximize the mutual informa-

tion of both features and edges between the input (i.e., an input graph) and output

(i.e., an output graph) of a graph convolutional neural network.

GAE/VGAV: To learn the graph structure and node attributes jointly, GAE

and VGAV [12] apply graph convolutional neural network to reconstruct the graph.

We train these models with default parameters.

RWR-GAE/RWR-VGAV: RWR-GAE and RWR-VGAV [38] are random

walk based approaches to regularize the hidden embeddings learned by graph autoen-

coders. We train these models with default parameters.

All baselines can be categorized into three groups. SVD is an algorithm only

using the node attribute information. DeepWalk and Node2vec are baselines only

considering the information of graph structure. The rest approaches jointly learn
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Table 2.2: Node classification results in terms of Micro-F1 (%) on Citeseer dataset.

Method 1% 3% 5% 10% 30% 50%

SVD [33] 40.58±4.25 54.25±2.29 59.03±1.96 63.42±1.13 69.02±0.88 71.05±0.97
DeepWalk [7] 37.96±4.28 48.18±2.11 51.41±1.55 53.69±1.43 56.98±0.82 57.80±0.84
Node2vec [9] 38.29±3.72 47.62±2.10 50.81±1.58 53.73±1.15 57.51±0.88 58.42±0.88
SVD + DeepWalk 36.40±3.76 49.61±2.57 54.91±1.73 60.85±1.26 68.71±0.74 71.85±0.83
TADW [10] 41.94±6.33 61.91±1.80 66.54±1.59 70.58±0.79 73.34±0.66 74.09±0.83
HSCA [20] 41.80±4.83 58.51±2.25 64.24±1.64 69.15±0.97 73.43±0.76 74.75±0.91
STNE [35] 35.08±6.21 56.73±3.17 63.64±2.03 69.02±0.79 72.97±0.71 74.22±0.82
DANE [11] 40.58±4.93 57.63±2.32 63.05±1.40 67.97±0.98 71.97±0.62 73.31±0.91
DGI [36] 48.89±6.90 67.21±3.36 68.92±1.50 71.67±0.61 74.38±0.61 74.94±0.79
GMI [37] 50.61±4.36 67.34±2.03 69.04±1.21 71.80±0.69 74.90±0.77 74.87±0.90
GAE [12] 45.51±3.34 57.85±2.10 61.58±1.40 64.88±1.02 67.75±0.63 68.32±0.80
VGAE [12] 35.31±3.63 44.87±2.57 49.45±2.16 56.48±1.15 64.46±0.88 66.83±0.94
RWR-GAE [38] 42.80±4.93 50.56±2.62 55.00±2.03 62.74±1.26 68.22±0.79 69.24±0.83
RWR-VGAE [38] 36.92±3.87 46.32±2.82 51.15±1.70 56.50±1.17 63.58±0.70 65.69±0.81
Ours 59.37±3.98 68.03±1.80 69.91±1.18 71.77±1.01 74.57±0.64 75.97±0.93

node embeddings that encode the graph structure and node attributes. Among them,

TADW and HSCA are shallow models.

For all baselines, we execute their officially released code and report the results

for a fair comparison. All deep learning models are executed on a NVIDIA GeForce

GTX 1080 TI GPU. And the shallow models including our approach are executed on

an Intel i7-6700k @ 4.00GHz x8 CPU and 32G RAM.

2.5.3 Experimental Settings for Our Approach

Following [10, 20], as the pre-processing step, we perform SVD decomposition

of the TF-IDF matrix to reduce the dimensionality of raw attribute vectors to d. Note

that, the smooth transformation in Eq. 2.24 is performed before SVD decomposition.

We choose d = 50 for Cora and Citeseer, and d = 200 for Pubmed and Wiki. In ad-

dition, we choose regularization weight λ = 1 and number of iterations T = 20 across

all datasets. As described in Algorithm 1, embeddings are obtained by concatenating

XU and P̂KXU . In our experiments, we choose K = 3 for all datasets. Note that,

the dimensionality of final embeddings is 2d.
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Table 2.3: Node classification results in terms of Micro-F1 (%) on Cora dataset.

Method 1% 3% 5% 10% 30% 50%

SVD [33] 39.66±4.31 50.89±2.67 55.10±2.18 60.58±1.73 67.36±0.97 70.97±1.13
DeepWalk [7] 51.58±5.06 68.17±2.70 73.13±1.81 76.81±1.01 80.54±0.74 81.35±0.86
Node2vec [9] 53.66±4.83 70.69±2.61 73.70±1.61 76.22±0.90 79.48±0.85 80.56±0.92
SVD + DeepWalk 47.31±6.56 66.88±3.23 72.78±1.57 77.62±1.02 82.49±0.78 84.12±0.90
TADW [10] 46.98±7.22 68.52±3.79 75.95±2.36 81.75±1.07 85.69±0.82 86.57±0.68
HSCA [20] 54.56±6.09 74.48±2.40 78.97±1.84 83.24±0.91 86.56±0.54 87.89±0.81
STNE [35] 53.44±4.23 67.12±2.21 71.90±1.58 76.89±1.17 83.14±0.82 85.52±0.77
DANE [11] 42.98±6.13 63.58±3.44 71.02±1.77 77.58±1.18 83.02±0.83 84.33±0.81
DGI [36] 60.58±7.09 76.45±3.79 80.41±1.59 83.13±0.87 86.12±0.59 86.64±0.84
GMI [37] 61.58±4.65 76.85±3.72 80.94±1.32 83.11±0.81 85.43±0.66 86.09±0.78
GAE [12] 61.33±4.11 72.75±2.23 76.37±1.51 78.82±1.06 81.03±0.73 81.57±0.76
VGAE [12] 51.50±4.71 65.24±2.78 71.23±1.63 76.57±1.18 82.49±0.68 84.33±0.87
RWR-GAE [38] 53.69±4.81 66.56±3.32 70.40±2.10 75.29±1.48 81.44±0.74 83.14±0.77
RWR-VGAE [38] 53.78±4.02 68.36±2.49 73.31±1.72 77.50±1.02 82.34±0.73 83.76±0.92
Ours 65.45±4.66 78.59±1.78 80.95±1.25 83.62±0.78 86.48±0.61 87.22±0.68

2.5.4 Node Classification

To evaluate different graph embedding approaches, we use learned embeddings

to train a SVM classifier implemented by Liblinear [39]. Since the value of L2 reg-

ularization penalty C can affect the result significantly, we apply the grid search to

choose C over {0.1, 1, 10, 100} for all approches. For each dataset, we randomly

sample 1% to 50% of labeled data as training data and leave the rest for testing. In

Tables 2.2 to 2.5, we report the classification metric Micro-F1 scores (with standard

deviation), which are averaged over 50 different runs. For each training ratio, the

best result is boldfaced.

Our approach outperforms all baselines on Citeseer, Pubmed, Wiki (see Tables

2.2-2.4). On Cora (see Table 2.5), our approach is the best when the training ratio is

less than 30%. Moreover, our approach is still competitive with the state-of-the-art

method (HSCA) when the training ratio becomes larger. It is interesting to note that

our approach can significantly outperform matrix factorization based baselines, such
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Table 2.4: Node classification results in terms of Micro-F1 (%) on Pubmed dataset.

Method 1% 3% 5% 10% 30% 50%

SVD [33] 53.74±5.48 70.80±3.17 75.69±2.00 79.64±0.97 82.90±0.32 83.61±0.31
DeepWalk [7] 73.76±2.07 78.49±0.51 79.36±0.34 79.99±0.25 80.36±0.22 80.45±0.33
Node2vec [9] 75.15±1.04 78.30±0.51 79.10±0.39 80.10±0.26 80.88±0.22 81.00±0.28
SVD + DeepWalk 74.39±1.37 77.62±0.68 79.30±0.47 81.22±0.26 83.80±0.23 84.86±0.24
TADW [10] 74.27±3.92 82.60±0.70 83.57±0.50 84.56±0.30 85.46±0.21 85.82±0.30
HSCA [20] 78.74±1.75 83.35±0.45 84.32±0.34 85.14±0.28 86.19±0.24 86.40±0.23
STNE [35] 74.54±1.43 77.75±0.61 79.16±0.50 80.99±0.28 83.30±0.28 84.30±0.28
DANE [11] 72.70±1.53 76.90±0.64 79.02±0.46 81.43±0.36 84.38±0.27 85.36±0.33
DGI [36] 82.24±0.90 84.18±0.35 84.74±0.24 85.39±0.16 86.36±0.21 86.81±0.22
GMI [37] 81.92±1.08 83.59±0.46 84.05±0.44 84.92±0.32 85.79±0.28 86.40±0.24
GAE [12] 70.30±2.65 78.23±0.96 79.31±0.30 79.70±0.17 79.98±0.19 80.13±0.27
VGAE [12] 80.90±0.74 82.84±0.36 83.45±0.24 83.98±0.21 84.66±0.24 84.86±0.23
RWR-GAE [38] 78.86±0.90 80.40±0.43 80.72±0.26 80.99±0.22 81.27±0.23 81.29±0.30
RWR-VGAE [38] 80.60±0.91 83.12±0.38 83.72±0.23 84.24±0.17 84.74±0.24 84.79±0.28
Ours 82.18±0.99 84.55±0.50 85.65±0.40 86.79±0.26 88.21±0.22 88.72±0.25

Table 2.5: Node classification results in terms of Micro-F1 (%) on Wiki dataset.

Method 1% 3% 5% 10% 30% 50%

SVD [33] 40.01±7.21 53.86±3.62 58.64±3.16 66.24±2.24 72.60±1.11 74.63±1.09
DeepWalk [7] 32.55±3.95 47.90±2.87 53.47±1.68 59.51±1.07 65.40±1.09 66.79±1.18
Node2vec [9] 34.86±4.51 49.04±2.41 53.43±2.06 58.21±1.37 63.48±1.00 65.23±1.14
SVD + DeepWalk 39.20±5.93 55.47±3.73 60.62±2.94 67.63±1.59 74.07±1.19 76.35±1.07
TADW [10] 37.52±5.78 57.46±4.04 65.38±3.03 71.89±1.49 78.51±0.84 80.29±0.93
HSCA [20] 38.46±5.74 56.46±2.83 63.16±2.05 68.88±1.59 74.97±1.00 77.24±1.03
STNE [35] 39.31±5.21 60.02±2.69 65.61±1.99 72.20±1.26 78.90±0.67 81.27±0.92
DANE [11] 41.61±5.08 60.20±3.45 66.10±2.29 71.51±1.24 76.35±0.76 77.75±1.00
DGI [36] 45.47±5.76 60.81±3.19 65.61±1.58 68.83±1.18 72.32±1.10 73.84±1.11
GMI [37] 44.70±4.64 60.43±3.65 65.87±1.91 69.16±1.41 73.29±0.99 74.59±1.24
GAE [12] 41.36±5.89 56.47±2.45 59.71±1.98 62.94±0.99 65.55±1.06 66.20±1.06
VGAE [12] 44.38±6.71 58.85±3.01 63.24±1.76 67.62±1.00 71.24±0.89 72.33±1.12
RWR-GAE [38] 40.95±4.65 51.87±3.54 57.62±2.06 62.39±1.40 66.26±1.05 67.21±1.11
RWR-VGAE [38] 39.75±4.84 54.73±3.05 60.01±2.40 66.23±1.63 72.78±0.97 74.52±1.09
Ours 48.05±5.43 64.90±3.49 69.58±1.99 74.74±1.27 80.10±0.80 81.56±0.85

as TADW and HSCA, when training ratio is small, which indicates our embeddings

are more consistent and robust.

2.5.5 Node Clustering

In Table 2.6, we report node clustering experiments on all datasets by applying

k-means algorithm (with k-means++ initialization) implemented in Python’s Scikit-
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Table 2.6: Node clustering results in terms of ACC (%) and NMI (%).

Method Citeseer Cora PubMed Wiki

ACC NMI ACC NMI ACC NMI ACC NMI

SVD [33] 65.18±0.41 38.78±0.46 55.04±2.64 35.80±1.19 60.52±0.01 31.07±0.01 47.72±1.94 48.24±1.16
DeepWalk [7] 44.75±2.62 20.27±0.88 66.82±2.55 46.77±1.42 66.68±0.02 29.96±0.01 42.74±2.63 36.68±1.17
Node2vec [9] 45.66±0.77 25.31±0.84 65.33±1.74 46.33±0.67 68.16±0.03 28.50±0.02 40.05±1.84 37.76±1.09
SVD + DeepWalk 62.95±1.65 37.82±1.39 67.21±1.89 50.38±1.90 66.69±0.02 29.97±0.02 46.15±1.66 48.80±1.42
TADW [10] 64.93±0.31 38.77±0.29 61.66±1.56 43.29±0.44 62.00±0.05 32.19±0.06 45.19±1.91 48.31±0.96
HSCA [20] 57.65±3.39 39.06±2.07 60.62±1.64 49.71±0.97 61.47±0.04 25.55±0.05 41.16±1.72 43.89±0.76
STNE [35] 62.90±1.07 37.83±0.96 64.21±3.08 46.62±1.82 64.64±0.01 25.94±0.02 48.82±1.75 48.08±1.05
DANE [11] 64.74±0.56 38.25±0.54 65.28±2.26 44.83±1.16 66.29±0.01 29.68±0.02 48.61±1.83 49.13±1.59
DGI [36] 67.83±0.58 42.99±0.29 70.32±1.95 55.48±0.91 66.12±0.01 29.11±0.01 47.33±1.98 48.70±0.41
GMI [37] 65.37±0.45 41.21±0.36 66.88±0.97 53.42±0.75 65.81±0.01 28.23±0.01 47.98±1.45 48.24±0.38
GAE [12] 40.79±3.13 18.71±1.41 52.56±2.46 38.22±1.51 62.36±0.07 21.44±0.05 44.65±0.91 43.44±0.60
VGAE [12] 41.83±1.65 18.98±0.77 53.74±0.20 42.06±0.46 64.93±0.02 24.45±0.02 45.31±1.13 42.59±0.05
RWR-GAE [38] 47.58±2.98 24.78±2.12 58.74±2.15 43.21±1.45 69.66±0.01 33.07±0.01 45.19±0.59 42.31±0.57
RWR-VGAE [38] 39.56±2.94 18.66±2.76 57.36±1.79 44.22±0.97 65.02±0.04 21.23±0.02 41.74±1.14 39.48±0.67
Ours 69.23±0.40 44.25±0.34 71.39±2.45 57.81±1.36 67.62±0.02 34.32±0.01 49.63±1.46 49.06±0.83
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Figure 2.1: The Micro-F1 score versus d and λ on different datasets.

learn [40] to the learned embeddings. We compared output clusters to ground truth

by computing averaged accuracy (ACC) and normalized mutual information (NMI).

Numbers show mean results and standard deviation over 20 runs. For each dataset,

the best results are boldfaced.

Our approach outperforms all baselines on Citeseer and Cora. On Pubmed and

Wiki, our approach is competitive with few state-of-the-art algorithms and outper-

forms other baselines.
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2.5.6 Parameter Sensitivity

Our approach has two parameters: embedding dimension d and regularization

weight λ. We fix the training ratio to 10%, and evaluate the performance of SVM

classifier on the embeddings for remaining nodes. In Fig. 2.1, we plot the Micro-F1

score (averaged over 50 runs) versus d and λ respectively. Except for the parameter

being tested, the other parameters are set as default values.

Fig. 2.1(a) shows our approach is relatively robust to the representation dimen-

sion d on Cora and Pubmed. On Citeseer and Wiki, our approach exhibits very stable

performance when d is large enough. Moreover, when d is small, it has relatively low

compact on the performance of our approach. In addition, Fig. 2.1(b) indicates our

approach is insensitive with respect to λ across all datasets.

(a) TADW (b) DANE (c) STNE

(d) DGI (e) GAE (f) Ours

Figure 2.2: Visualizing node embeddings of Citeseer using t-SNE. Different colors
mark different classes.
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2.5.7 Visualization of Node Embeddings

Visualizing a graph in a two-dimensional space is an important application of

graph embedding. Hence, we use t-SNE algorithm [41] to visualize embeddings of

Citeseer learned by our approach (see Fig. 2.2(f)). For a fair comparison, we also

plot corresponding embeddings of four strong baselines (see Fig. 2.2(a-e)). In Fig. 2.2

each document is mapped to a point and different colors mark different classes. For

all baselines, their mapped points of different classes are still mixed with each other.

On the other hand, our result shows a reasonably good separation of classes, which

indicates the high-quality of our embeddings.

2.6 Related Works

2.6.1 Non-attributed Graph Embedding as Matrix Factorization

A large number of graph embedding methods can be viewed as matrix factor-

ization. They aims to learn embeddings in the low embedding space by preserving the

node proximity in the original graph. Many classical graph embedding approaches aim

to preserve the local pairwise (first-order) proximity, such as Locally Linear Embed-

ding [42], Laplacian eigenmaps [43], Hessian eigenmaps [44]. Besides the first-order

proximity, to learn the richer graph structure, some approaches [17, 45] consider the

second-order proximity, which is defined by the number of neighbors shared by two

nodes. Moreover, a number of recent methods [7, 8, 22] explore the global graph

structure, which is determined by the k-step (k ≥ 3) relations between nodes.

2.6.2 Attributed Graph Embedding

A variety of recent advances focus on attributed graph embedding, which at-

tempts to enhance embeddings by incorporating node attributes. These approaches

fall into two categories: matrix factorization based approaches and neural network
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based approaches. The former approaches view the attributed graph embedding as

a matrix factorization problem, such as TADW [10], HSCA [20]. On the other hand,

feeding adjacency matrix and attribute matrix, neural network based approaches aim

to use different types of neural networks to learn more informative embedding, such

as GraphSage [18], STNE [35], GDI [36], which will be introduced in the next chapter.

2.6.3 Inductive Matrix Completion

Our approach is inspired by the inductive matrix completion (IMC) model [34].

whose goal is to approximately recover a low-rank matrix based on the observed en-

tries. Typically, it can be applied to the problem of the recommendation system,

which aims to learn the relevance between queries and items, for example user-movie

rating. IMC is a standard approach for this problem when attribute vectors of queries

and items are available. Furthermore, IMC has been applied to multi-label classifica-

tion [46], gene-disease prediction [47], link prediction [48], semi-supervised clustering

[49], and attributed graph embedding [10, 20].

2.7 Conclusion

In this chapter, we presented a novel attributed graph embedding approach

which can be viewed as a low-rank matrix factorization framework. Moreover, we

propose a novel algorithm to optimize the corresponding objective. Theoretically,

we prove that the objective is convex and our algorithm can achieve the globally

optimal solution efficiently. The experiments suggest that our approach can learn

more informative node embeddings than several strong baselines on four benchmark

datasets.
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Part II

Graph-based Semi-supervised

Learning Approaches
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CHAPTER 3

A SIMPLE GRAPH-REGULARIZATION BASED SEMI-SUPERVISED

LEARNING APPROACH FOR IMBALANCED CLASSIFICATION

3.1 Introduction

In part I, we have considered the graph embedding problem, which does not take

use of the information of labels. In this part, we will introduce a graph-regularization

based semi-supervised learning (GRSSL) method which aims to learn graph structure

and node labels jointly.

Over the last 20 years, GRSSL approaches have attracted great attention due to

their effectiveness for classification and elegance in mathematics [50, 51, 52]. Hence,

they have been widely applied to various real-world tasks, including compute vision

[53, 54], natural language processing [55] and network analysis [56, 57]. Their key

assumption is nearby nodes in the graph are likely to share the same label, which

usually can be framed as an optimization problem or a label propagation process.

The former defines a loss function to be the tradeoff between the graph Laplacian

constraint and the initial label fitting constraint on a smooth classification function

[58, 59, 60], which can be further learned by propagating label information from

labeled nodes to unlabeled ones in an iterative fashion [61, 62].

However, aforementioned GRSSL approaches can be sensitive to class imbal-

ance, since graph Laplacian constraints of them do not provide sufficient flexibility in

dealing with a wide range of class imbalance [63, 64]. For instance, from the perspec-

tive of graph partition, normalized graph Laplacian constraint encourages balanced

partition results [65]. To mitigate this problem, various GRSSL methods have been
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proposed to utilize the class proportion information. In [13], the GRSSL method

based on Gaussian Fields and Harmonic Functions (GFHF) can incorporate the class

proportion knowledge to adjust the classification result. And class proportion can

be directly used as a regularizer to improve the discriminative power in [66]. Addi-

tionally, in [67], the proposed method can incorporate the prior knowledge of class

proportion from a graph max-cut perspective. However, these approaches suffer from

the drawback that they need prior knowledge about class proportion.

In this chapter, we present a simple GRSSL approach to jointly take into account

graph structures and class imbalance. Our approach provides a strategy to estimate

class proportion from a dynamical perspective based on random walks on the graph.

It introduces an imbalance parameter for classification such that the classification

result will become more balanced with respect to the class size as the parameter

increases. Moreover, as we will show in Section 3.5.1, our approach can also adjust

the affinities among local neighbors, which makes it insensitive with respect to the

bandwidth of the Gaussian kernel defined in Section 3.2. The experiments show that

our approach can deal with various class imbalance for real-world classification tasks.

Our approach also has interesting connections to other areas: (1) it can be

derived as an optimization problem, which provides a novel insight of our approach;

(2) it is striking that the loss function of our approach introduces the continuous-time

Markov stability for the graph naturally; (3) it also can be viewed as the group inverse

of the normalized Laplacian matrix.

In summary, our main contributions are as follows:

• We introduce a unified framework of many existing GRSSL approaches.

• We propose simple GRSSL approach, which can be used to handle datasets with

different class imbalance.
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• Our proposed approach has interesting connections to several areas, which ver-

ifies our motivation.

• Our experiments indicates that our approach can outperform several strong

baselines on four real-world datasets with different class imbalance.

3.2 Preliminaries

For a C-class classification problem, given a small set of labeled data Xl =

{(x1, y1), . . . , (xl, yl)} with yi ∈ {1, . . . , C} and a large set of unlabeled data Xu =

{xl+1, . . . , xn}, the goal of GRSSL is to learn labels for unlabeled data from both of

them. It starts with constructing a k-Nearest-Neighbor (kNN) graph whose corre-

sponding affinity matrix is given by the Gaussian kernel with bandwidth σ,

Aij =

 exp(−d(xi,xj)2

2σ2 ) if i ∈ Nj or j ∈ Ni,

0 otherwise.
(3.1)

where d(xi, xj) is the distance between nodes i and j, Ni is the index set of the kNN

of node i.

We start by reviewing a popular standard method LGC [58], which can be

interpreted as label propagation. It assumes that similar data points are very likely

to share the same label. Thus, the key idea is to define a good similarity measure

between data points. Interestingly, this similarity can be learned by a propagation

process, which propagates labels from labeled nodes to unlabeled nodes through the

entire graph. This procedure is also adopted by many GRSSL methods [13, 61, 68].

To describe this propagation process formally, we first define a propagation

matrix S = D−1/2AD−1/2, where D = diag(d1, d2, . . . , dn) and di =
∑

j Aij. Then,

we create a n-by-C indicator matrix Y , such that Yij = 1 if yi = j otherwise Yij = 0.
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That is, Y is consistent with initial labels. The label propagation of LGC is the

iteration algorithm to calculate a n-by-C soft label matrix F as follows,

F (m+1) = αSF (m) + (1− α)Y. (3.2)

The algorithm repeats Eq. 3.2 until {F (m)} converges. In each iteration, every point

receives the label information from its neighbors and ensures the initial label informa-

tion. The parameter α controls the balance between these two kinds of information.

To make sure this iteration process converge, α should be in (0, 1).

Like many other GRSSL methods [59, 69, 60], LGC can also be interpreted as

an approach to estimate a soft (smooth) label function F on the graph. F is supposed

to satisfy two constraints: 1) it should be smooth on the whole graph, and 2) it should

retain given labels on the labeled points. A regularization framework was proposed

to learn F under these two constraints,

min
F

1

2

C∑
c=1

n∑
i,j

Aij(
Fic√
di
− Fjc√

dj
)2 + ρ

C∑
c=1

n∑
i

(Fic − Yic)2, (3.3)

where the first term encourages the smoothness of the function, and the second

term penalizes the difference between initial labels and learned labels. The hyper-

parameter ρ makes a tradeoff between them. Hence the optimal soft label function

is F ∗ = arg minF J(F ). Fortunately, J(F ) is convex, we can obtain the closed form

solution easily by taking the derivative of J(F ) with respect to F .

3.3 A Unified Framework of GRSSL

To provide more in-depth understanding to the difference and connection among

GRSSL approaches, in this section we will provide a unified framework of many main-
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Table 3.1: Unifying various GRSSL algorithms as generalized solutions to a linear
system LF = ΣY . These solutions can be expressed as F ∗ = (L + Q)−1ΣY with
different choices of L, Σ and Q. Notation is as follows: ρ, η, µ1, µ2 are all hyper-
parameters. Λ is a diagonal matrix whose diagonal entries are hyper-parameters. In
the last column, L{i,j,...,k} denotes the generalized inverse of L, which is defined in
Appendix A.1.

Methods L Σ Q Generalized solutions: F ∗ Generalized inverses

GFHF [13] I − P̃ I J (I − P̃ + J)−1Y (I − P̃ ){1,3,4,5}

LGC [58] I − S ρI ρI ρ(I − S + ρI)−1Y (I − S){3,4,5}

MR [59] D − A ηI ηJ η(D − A+ ηJ)−1Y (D − A){3,4,5}

LPQC [70] D − A µ1I µ2I µ1(D − A+ µ2I)−1Y (D − A){3,4,5}

PARW [61] D − A Λ Λ (D − A+ Λ)−1ΛY (D − A){3,4,5}

Our approach I − P D−1 G (D − A+DG)−1Y (I − P ){1,2,5}

stream GRSSL baselines [13, 58, 59, 70, 61], which can be viewed as generalized

solutions to a linear system,

LF = ΣY, (3.4)

where Σ is a diagonal matrix with nonnegative entries and L can be any following

Laplacian matrices: (1) Lun = D − A, (2) Lrw = I − P and (3) Lsym = I − S

[65], where S = D−1/2AD−1/2. However, it is easy to verify that L is singular for all

methods. For instance, since 1 is the largest eigenvalue of S with non-zero eigenvector,

I − S is singular. Hence, to solve Eq. 3.4, we need to find the generalized solution.

Considering some specific matrix Q, we modify L to L + Q which is nonsingular.

Naturally, (L + Q)−1 can be regarded as the generalized inverse of L. Then the

generalized solution to Eq. 3.4 is

F ∗ = (L+Q)−1ΣY. (3.5)

Table 3.1 summarizes that many existing GRSSL baselines including our ap-

proach can be viewed as generalized solutions to Eq. 3.4. That is, all methods in
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Algorithm 2 Iteration algorithm of proposed approach

Input: Affinity matrix A defined in Eq. 3.1 with Aii = 0; initial label matrix Y ;

hyper-parameter γ.

Output: Label yi for each point xi.

1: Calculate the following matrices: diagonal matrix D = diag(d1, d2, . . . , dn) with

di =
∑

j Aij; transition matrix P = D−1A; rank-one matrix G = 1πT ,where 1 is

an all-ones vector and π = (d1
d
, d2
d
, . . . , dn

d
) with d =

∑
i di.

2: Initialize F (0) with D−1Y .

3: while not converge do

4: F (m+1) = PF (m) − γGF (m) + γD−1Y .

5: end while

6: Assign each point xi to class yi = arg maxj F
∗
ij, where F ∗ = lim

m→∞
F (m) = γ(D −

A+ γDG)−1Y .

Table 3.1 can be viewed as special cases of Eq. 3.4 with different choices of L, Σ

and Q. In Appendix A.2, we use GFHF as an example to verify the corresponding

expressions in Table 3.1.

3.4 Algorithm

Our approach for GRSSL is presented in Algorithm 2, whose intuition is as

follows: in each iteration, every node obtains three types of label information. The

first term on the right side in step 4 is the information from its neighbors. The second

term means it loses information to all nodes proportional to their degrees, which will

make it less similar to nodes in large-size classes. To illustrate this point, we consider

the label information each node loses to every class. For simplicity, we consider the

extreme case, in which F is an indicator matrix with Fic ∈ {0, 1} where 1 denotes
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node i belongs to class c. According to the second term, node i loses information

γ
∑

i
di
d
Fic to the nodes in class c, which can be viewed as an estimated quantity

proportional to the size of class c. Note that, the estimation will be more accurate

when F is closer to Y . This means each node will become less similar to nodes in

large-size classes. In other words, if γ is large enough, the size of large class will

decrease gradually as the label propagates. Note that, in the case that F is a soft

label matrix, γ
∑

i
di
d
Fic not only contains the knowledge of the class size but also the

graph structure. The third term retains the initial label scaled by D−1. In summary,

Algorithm 2 can not only propagate label information through local affinity but also

take into account the class imbalance. The hyper-parameter γ of second term trades

off the information gained from neighbors against that lost to nodes in each class.

Specifically, γ acts as an imbalance degree parameter: the larger the parameter γ is,

the more balanced the classification result is.

Before proving the convergence of Algorithm 2, we introduce the following

lemma.

Lemma 3.4.1. Let P be the transition matrix for a regular Markov chain 1, and let

G be the limiting (rank one) matrix G = lim
m→∞

Pm . Then

(P − γG)m = Pm −G+ (1− γ)mG, (3.6)

where γ is a non-zero constant.

1Here, we assume W is a primitive matrix. We will show later that our approach is still valid

when W is not primitive.
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Proof. Since P is the transition matrix for the regular Markov chain, it has two

properties: (1) PG = P1πT = G, and (2) Gm = (1πT )m = G for all positive integers

m. Applying these two facts, we obtain

(P − γG)m =
m∑
i=0

(−γ)i
(
n

i

)
Pm−iGi

= Pm +
m∑
i=1

(−γ)i
(
m

i

)
Gi

= Pm +
m∑
i=1

(−γ)i
(
m

i

)
G

= Pm + (
m∑
i=0

(−γ)i
(
m

i

)
− 1)G

= Pm −G+ (1− γ)mG.

Specifically, setting γ = 1, we have (P −G)m = Pm −G [71]. We now turn to

the proof of the convergence of Algorithm 2.

Theorem 3.4.1. The sequence {F (m)} converges to F ∗ = γ(D −A+ γDG)−1Y , for

any γ ∈ (0, 2).

Proof. We set F (0) = Y , then

F (m) =
m∑
i=0

(P − γG)iD−1Y. (3.7)

According to Lemma 3.4.1 with γ ∈ (0, 2), lim
m→∞

(P − γG)m = lim
m→∞

[Pm − G + (1 −

γ)mG] = 0, where 0 is a zero matrix. Thus (I − P + γG)−1 exists. In addition, we

have

F ∗ = lim
m→∞

F (m) = γ(D − A+ γDG)−1Y. (3.8)

Note that, in the case that the graph is connected, but W is not primitive, the

Markov chain does not have property that lim
m→∞

Pm = G. However, as we will show
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later, I − P + γG with γ 6= 0 is still nonsingular [71], which means Eq. 3.8 is always

valid when the graph is connected.

3.5 Interpretation and Connections

One of striking properties of our approach is that it can be derived from different

perspectives. In this section, we briefly present these different viewpoints which

provide us novel insights into our approach.

3.5.1 Regularization Framework

Our approach can be derived from the following regularization framework,

min
F

1

2

C∑
c=1

n∑
i,j

Aij(Fic − Fjc)2 − γ

2

C∑
c=1

n∑
i,j

didj
d

(Fic − Fjc)2

+γ
C∑
c=1

n∑
i

(d
1
2
i Fic − d

− 1
2

i Yic)
2,

(3.9)

where the first term encourages smoothness of the function on the graph. And the

second term pushes labels of high-degree nodes apart from each other, since it em-

phasizes the terms with the large value of
didj
d

. This means high-degree nodes tend to

be divided evenly among all classes to balance the class size. Moreover, the quantity∑C
c=1

∑n
i,j πiπj(Fic−Fjc)2 is also known as the Gimi-Simpsin diversity index [72, 73],

which is large when the classification result has many classes of close size, and is low

when the classification result has few and uneven classes. In our case, since the num-

ber of classes is fixed, the diversity index is maximum for the classes with equal size.

This also means the second term can control the imbalance of classification results

by tuning the value of γ: when γ is very large, and γ
2

∑C
c=1

∑n
i,j

didj
d

(Fic−Fjc)2 is the

dominant term,
∑C

c=1

∑n
i,j

didj
d

(Fic − Fjc)2 will become large to minimize the objec-

tive. As a result, the classification result will be balanced. On the other hand, when
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γ is small, and the term γ
2

∑C
c=1

∑n
i,j

didj
d

(Fic − Fjc)2 is not emphasized, minimizing

the objective will allow imbalanced classification result. The third term penalizes the

difference between learned labels and given labels, which are scaled by D
1
2 and D−

1
2

respectively.

Moreover, our approach is insensitive with respect to the Gaussian kernel width

σ. Let us consider the local and global relationships between nodes, respectively. The

first two terms of our loss function in Eq. 3.9 can be written as

1

2

C∑
c=1

∑
i∼j

(Aij − γ
didj
d

)(Fic − Fjc)2 − γ

2

C∑
c=1

∑
i�j

didj
d

(Fic − Fjc)2, (3.10)

where i ∼ j means nodes i and j are mutual k-nearest neighbors, i � j otherwise. The

first term in Eq. 3.10 means this framework can adjust the local affinity between each

node and its mutual kNN automatically. The higher the degree of its neighbor is,

the more affinity between them will be reduced. When σ is small, the local affinities

between each node and its neighbors are highly skewed since they are calculated by

the Gaussian kernel. Therefore, the high-affinity edge has high probability to attach

high-degree nodes, because if Aij is large, di and dj are more likely to be large. Then,

high affinities will be reduced more than small ones to balance the local affinity

distribution among neighbors. This means, as we will show in our experiments, our

approach can be insensitive with respect to σ.

Since the loss function in Eq. 3.9 is convex, we can obtain the closed form

solution by setting its first derivative to zero. We now differentiate our loss function

with respect to F ,

(D − A)F ∗ − γ(D −DG)F ∗ + γDF ∗ − γY = 0,

which can be written as

(D − A+ γDG)F ∗ = γY.
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Finally, we have

F ∗ = γ(D − A+ γDG)−1Y,

which is the closed form expression of our iteration algorithm.

3.5.2 Linearisation of Markov Stability at Short Time

Our approach can be explained as the linearisation of Markov stability at short

time. We now ignore the label information and consider a graph partition prob-

lem. First we introduce a finite continuous-time Markov process on the kNN graph.

According to [74], the corresponding transition matrix is defined as

p(t) = e−t(I−P ).

The entry Pij is the probability that the process moves from state i to state j. From

this Markov viewpoint, a good partition should be: a random walker should stay in

a component for a given time scale before escaping it. This observation leads to the

definition of continuous-time Markov stability [73],

r(t, F ) = Tr[F T (
D

d
e−t(I−P ) − ππT )F ], (3.11)

where πi(e
−t(I−P ))ij is the joint probability that the walker visits node i at time 0 and

j at time t at stationarity, and πiπj is the joint probability of finding a first walker

on node i at time 0 and a second independent walker on node j at time t. ππT is

known as the null model, which serves as the benchmark to display some non-trivial

features, such as the component structure in the graph.
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However, in practice, calculating the exponential of the Laplacian L = D −W

for a large graph can be computationally expensive. Therefore, it is natural to study

the first-order approximation [75] in the limit of small times, t→ 0,

r(t, F ) = r(0, F ) + t
dr(t, F )

dt

∣∣∣∣
t=0

=
1

d
(Tr[F T (D − dππT )F ]− t T r[F TLF ]).

(3.12)

Given this, the optimal graph partition can be obtained by maximizing the the

linearized Markov stability r(t,H), for which we further have

max
F

r(t, F )⇔ min
F

t tr
(
F TLF

)
− tr

[
F T (D − dππT )F

]
. (3.13)

After setting γ = 1
t
, Eq. 3.13 becomes first two terms in our regularization framework.

Therefore, from the perspective of Markov stability, our approach can be interpreted

as follows: the random walker starting from unlabeled node is more likely to stay in

the same community given time scale t, and the walker starting from labeled node

has higher probability staying at the initial node. If this probability is equal to one,

this node becomes the absorbing state. Over short time, the process is dominated by

the null model so, as we explained above, it encourages equal-size classes. And as t

increases, the Markov process explores larger regions with various sizes of the graph.

Thus, from the perspective of classification, the Markov time scale acts as an intrinsic

parameter to uncover the graph structure at different class imbalance.

3.5.3 Group Inverse of I − P

Our approach can be derived from the group inverse of I −P . It is known that

GRSSL can be viewed as the solution to a linear system [61]. Now we consider a

linear system as follows,

I − P = D−1F. (3.14)
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Since 1 is the largest eigenvalue of P with nonzero eigenvector, I − P is singular.

Our approach can be derived from the group inverse of I − P , which is a generalized

solution of Eq. 3.14.

Let us first define the group inverse of I − P . We use {λi} to denote the

eigenvalues of P , and order them decreasingly 1 = λ1 > λ2 ≥ . . . ≥ λn. Then the

spectral decomposition of I − P is

I − P =
n∑
i=2

(1− λi)uivTi , (3.15)

where ui and vTi are the right and left eigenvectors of I − P corresponding to 1-λi

respectively. According to [76], the group inverse of I − P is defined as

(I − P )# =
n∑
i=2

1

(1− λi)
uiv

T
i . (3.16)

According to this definition, it is easy to prove (I−P+γG) with γ 6= 0 is nonsingular.

Furthermore, we have the following theorem.

Theorem 3.5.1. (I − P )# = (I − P + γG)−1 − 1
γ
G, for any γ 6= 0.

Proof. Since

G = lim
m→∞

Pm = U



1 0 . . . 0

0 0 . . . 0

...
...

. . .
...

0 0 . . . 0


U−1, (3.17)

where U = [u1, · · · , un] and U−1 = [v1, · · · , vn], we have

I − P + γG = U



γ 0 . . . 0

0 1− λ2 . . . 0

...
...

. . .
...

0 0 . . . 1− λn


U−1. (3.18)
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Thus,

(I − P + γG)−1

= U



1
γ

0 . . . 0

0 1
1−λ2 . . . 0

...
...

. . .
...

0 0 . . . 1
1−λn


U−1

= U



0 0 . . . 0

0 1
1−λ2 . . . 0

...
...

. . .
...

0 0 . . . 1
1−λn


U−1 + U



1
γ

0 . . . 0

0 0 . . . 0

...
...

. . .
...

0 0 . . . 0


U−1

= (I − P )# +
1

γ
G.

(3.19)

It has already been proven in Theorem 3.5.1 that, the closed-form solution to

our approach is given by F ∗ = γ(D−A+ γDG)−1Y . By using Theorem 3.5.1 above,

we further have

F ∗ = γL̃#F (0) +
1

d
11

TY, (3.20)

with F (0) = D−1Y being the initialization of our approach (see Algorithm 2), and

11
TY =



∑
i Yi1

∑
i Yi2 . . .

∑
i Yin∑

i Yi1
∑

i Yi2 . . .
∑

i Yin
...

...
. . .

...∑
i Yi1

∑
i Yi2 . . .

∑
i Yin


.

As implied by Eq. 3.20, the significance of Theorem 3.5.1 is to enable us to decouple

our closed-form solution into two terms, allowing for an intuitive interpretation of

our approach. Specifically, the first term is usually called graph filtering [77, 57],

which encodes the basic label propagation procedure on the graph, similar to general
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GRSSL [13, 58]. And the second term actually adds a constant bias ȳc = 1
d

∑
i Yic,

which is proportional to the number of labeled samples for the c-th class, to the c-th

column of the soft label matrix obtained by the first term. It can therefore play a role

of retaining all the classes in the label propagation results, or otherwise the c-th class

will vanish if the c-th column of the obtained label matrix all has very low values

(small classes usually tend to vanish in the case of imbalanced data).

To sum up, by resorting to the concept of group inverse, the solution given by

our approach can be decoupled into two terms with intuitive interpretation, i.e., a

graph filtering term that encodes the label propagation procedure and a bias term

that prevents all the classes from vanishing during label propagation.

3.6 Experiments

In this section, experiments are conducted on semi-supervised classification

tasks on both synthetic and real-world datasets.

3.6.1 Experiments on Synthetic Datasets

Table 3.2: Classification errors of individual classes on two-circles patterns with dif-
ferent imbalance ratios. Pos. and Neg. represent positive and negative classes re-
spectively.

Imbalance ratio 1 20 40 60 80 100

Class name Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.

LGC [58] 0.267 0.149 0.085 0.884 0.097 0.850 0.109 0.826 0.138 0.878 0.153 0.784
Ours 0.301 0.243 0.021 0.635 0.017 0.607 0.007 0.605 0.019 0.731 0.027 0.706

To intuitively illustrate the effectiveness of our approach on imbalanced pat-

terns, synthetic datasets (two-circles patterns) with different imbalance ratios were

generated (see Figs. 3.1(a)- 3.1(f)). The number of positive data was fixed to 1000,
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(g) The classification error versus the imbalance ra-
tio on two-circles patterns.

Figure 3.1: (a-f) Ideally classified two-circles patterns with imbalance ratio ({size of
positive class}/{size of negative class}) ranging from 1 to 100; (g) classification results
of LGC and our approach on two-circles patterns with different imbalance ratios.
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and the number of negative data was set from 1000 to 10. As a result, the imbalance

ratio varies from 1 to 100. For each synthetic dataset, a kNN graph with k = 20 was

constructed. Given 6 labeled data points, we applied LGC and our approach (γ =

0.001) to classify each pattern. For both methods, every test error is averaged over

50 random trials. In each trial every class includes at least a labeled point, otherwise

we redo the random sampling.

Generally, our approach consistently outperforms LGC on all datasets except

balanced one. Fig. 3.1(g) shows LGC can outperform our approach on balanced

dataset (imbalance ratio = 1), since γ = 0.001 is too small for balanced datasets.

When the imbalance ratio increases, our approach will become better with imbalance

ratios smaller than 60. Note that, LGC also becomes better, because the dataset size

becomes smaller and the number of labeled data is fixed. In addition, on datasets

with higher imbalance ratios (lager than 60), our approach becomes worse but still

outperforms LGC. Moreover, since some synthetic datasets are highly imbalanced, we

also report classification errors of individual classes on selected datasets (see Table

3.2). For each class, the best result is boldfaced. In Table 3.2, except the balanced

dataset, our approach outperforms LGC for each class.

3.6.2 Experiments on Real-world Datasets

Our approach is also evaluated on four real-world tasks with different class

imbalance: natural image classification, hand-written digit recognition, text classifi-

cation, cross-media learning. Dataset statistics are shown in Table 3.3. The datasets

and hyper-parameter settings for them are described as follows.

• Stanford Dogs: The Stanford Dogs dataset [78] contains natural images of

120 categories of dogs, where 10 categories were selected (Maltese dog, Afghan

hound, Irish wolfhound, Airedale, Bernese mountain dog, basenji, pug, Leonberg,
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Table 3.3: Dataset statistics

Name # examples dimension # classes k d(xi, xj)
2

Stanford Dogs 2180 9216 10 15 ||xi − xj||2
USPS 9298 256 10 20 ||xi − xj||2
20 Newsgroups 1738 8014 4 15 1− 〈xi, xj〉/‖xi‖‖xj‖
Wikipedia 2866 138 10 15 ||xi − xj||2

Figure 3.2: Sample images from our subset of Stanford Dogs dataset.

Great Pyrenees, Pomeranian). The class size varies from 200 to 252 (see Fig.

3.2). After applying pre-trained AlexNet [79] on ImageNet [80] to extract fea-

tures, each image was transformed to a 9216-dimensional vector. Then, AlexNet

features were scaled by l1 norm. No further preprocessing was done.

• USPS: The USPS dataset [81] contains 9298 gray handwritten 16x16 digits in

10 classes (see Fig. 3.3). The number of digits per class varies from 708 to 1553,

which makes the dataset imbalanced.

• 20 Newsgroups: The 20 Newsgroups dataset [82] consists of approximately

20,000 articles divided into 20 different groups. Each article is represented by a

61188 dimensional sparse vector. A subset of the topic rec was selected. It con-

tains autos, motorcycles, baseball, and hockey. The articles were preprocessed

following [58]. Then feature vectors were normalized into TF-IDF representa-

tions. To show the effectiveness of our approach to deal with the class imbalance,

a highly imbalanced subset of the preprocessed dataset was selected. The class

size of each class is as follows: 988 (autos), 500 (motorcycles), 200 (baseball),

50 (hockey).
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Figure 3.3: Sample images from USPS dataset.

In 1775, Fort Ticonderoga, in 
disrepair, was still manned by a 
token force.  On May 10, 1775, 
less than one month after the 
American Revolutionary War was 
ignited with the battles of 
Lexington and Concord, the 
British garrison of 48 soldiers … Dakota tribes, mostly 

the Mdewakanton, as 
early as the 16th 
century were known as 
permanent settlers near 
their sacred site of St. 
Anthony Falls… Around 850, 

out of 
obscurity rose 
Vijayalaya, 
made use of 
an opportunity 
arising out 
of…

To save money for the production, 
director Michael Bay reduced his 
usual fee by 30%. He planned an 
eighty-three day shooting schedule, 
maintaining the required pace by 
doing more camera set-ups per day 
than usual. Bay chose to shoot the 
film…

Wales won 
two matches 
in each Five 
Nations 
championship 
between 1980 
and 1984…

Figure 3.4: Sample documents (image+text) from Wikipedia dataset.

• Wikipedia: The Wikipedia dataset [83] is a widely-used dataset for cross-

media retrieval (see Fig. 3.4). It consists of 2866 featured documents of 10

classes, each including a single image and at least 70 words. Following [84], the

features of each document were extracted by the bag-of-words encoder for text

and the SIFT descriptor for the image. The class size of each class is as follows:

172 (art), 360 (biology), 340 (geography), 333 (history), 267 (literature), 236

(media), 237 (music), 185 (royalty), 285 (sport), 451 (warfare).

In all experiments, when we talk about 20 Newsgroups and Stanford Dogs datat-

sets, we always refer to their subsets reported in Table 3.3. Note that, besides two

imbalanced datasets, the relatively balanced one (Stanford Dogs) was also adopted,

since we believe that an ideal GRSSL approach should also work well on balanced

data. Otherwise, if a method can only perform well in highly imbalanced data but not

on balance data, it will be very limited in practice since the level of class imbalance is
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Table 3.4: Hyper-parameter settings with respect to different datasets

Method GFHF [13] LGC [58] MAD [69] GMMC [67] OMNI [85] CAMLP [68] LPGMM [86] ADP [84] Ours

σ α σ µ1 µ2 µ3 σ µ σ λ σ β σ α U α β θ γ

Stanford Dogs 0.005 0.99 0.005 1 10 10 0.015 0.01 0.015 10 0.02 0.1 0.035 1 30 0.99 0.99 0.01 1
USPS 1.25 0.99 1.25 1 10 1 2.75 0.01 1.25 1 4.75 1 3.25 1 30 0.99 0.99 0.01 -0.01
20 Newsgroups 0.15 0.99 0.15 1 1 10 0.75 0.01 0.5 0.1 0.3 10 0.3 1 30 0.99 0.99 0.01 0.3
Wikipedia 0.1 0.99 0.05 10 10 10 4.5 0.01 0.5 1 3.25 1 3.75 1 30 0.99 0.99 0.01 0.5

typically unknown. According to our analysis in Sections 3.4 and 3.5, our approach

with large γ can deal with balanced datasets.

3.6.2.1 Baselines

On each dataset, our approach is compared against two standard baselines of

GRSSL: Gaussian Fields and Harmonic Functions (GFHF) coupled with the Class

Mass Normalization (CMN) [13] and Local and Global Consistency (LGC) [58]. In ad-

dition it is further compared against the state-of-the-art methods: Modified Adsorp-

tion (MAD) [69], greedy gradient Max-Cut (GMMC) [67], OMNI-Prop [85], CAMLP

[68], LPGMM [86] and ADP [84]. Moreover, from the perspective of imbalanced clas-

sification, aforementioned baselines can be categorized into two groups. LGC, MAD,

CAMLP, LPGMM and ADP are standard baselines of GRSSL, which do not take

into account the class imbalance. And, GFHF, GMMC and OMNI-Prop can adapt

to imbalanced datasets, since they can incorporate class proportion estimated from

labeled data.

For fair comparison, all methods use their optimal parameters, which are sum-

marised in Table 3.4. Note that, LPGMM [86] adopts geodestic distance for graph

construction and ADP [84] takes an adaptive scheme to set the Gaussian kernel band-

width, so they do not have the parameter σ. And for the other parameters in these

two methods, we use the default settings suggested by the authors in the original

papers, which we experimentally observed are insensitive across different datasets,
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Figure 3.5: The classification error versus the number of labeled points on different
datasets.

consistent with the claims of the authors [86, 84]. For each setting of the number of

labeled points, we repeat for 50 trials by using the same random sampling strategy

as the experiments on synthetic datasets above, and report the average test error.

3.6.2.2 Classification Results

Fig. 3.5 shows the performance in terms of test error versus the number of

labeled points obtained by various approaches on the four datasets. Notice that,

Stanford Dogs is a balanced dataset, USPS and 20 Newsgroups are more imbalanced,
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Table 3.5: Classification errors of individual classes on USPS with 20 labeled points.

Digit 0 1 2 3 4 5 6 7 8 9

GFHF [13] 0.049 0.006 0.184 0.109 0.454 0.279 0.055 0.202 0.264 0.517
LGC [58] 0.037 0.011 0.106 0.159 0.488 0.345 0.067 0.116 0.263 0.286
MAD [69] 0.039 0.019 0.198 0.132 0.387 0.318 0.052 0.086 0.199 0.367
GMMC [67] 0.037 0.032 0.331 0.227 0.336 0.358 0.157 0.203 0.244 0.247
ONMI [85] 0.070 0.034 0.243 0.176 0.418 0.404 0.076 0.098 0.246 0.308
CAMLP [68] 0.078 0.045 0.233 0.139 0.356 0.303 0.082 0.088 0.183 0.292
LPGMM [86] 0.038 0.018 0.202 0.161 0.353 0.333 0.091 0.125 0.221 0.274
ADP [84] 0.054 0.021 0.167 0.119 0.323 0.306 0.063 0.097 0.185 0.236
Ours 0.040 0.007 0.120 0.095 0.302 0.302 0.036 0.051 0.177 0.294

Table 3.6: Classification errors of individual classes on 20 Newsgroups with different
number of labeled points.

Class name autos motorcycles baseball hockey

# labeled points 10 30 50 10 30 50 10 30 50 10 30 50

GFHF [13] 0.130 0.048 0.038 0.664 0.526 0.441 0.646 0.581 0.518 0.589 0.711 0.729
LGC [58] 0.388 0.233 0.169 0.358 0.268 0.238 0.427 0.370 0.316 0.507 0.622 0.733
MAD [69] 0.247 0.143 0.101 0.508 0.421 0.402 0.508 0.421 0.402 0.437 0.590 0.655
GMMC [67] 0.295 0.226 0.172 0.313 0.238 0.245 0.398 0.378 0.369 0.373 0.581 0.495
ONMI [85] 0.172 0.075 0.048 0.495 0.433 0.415 0.565 0.546 0.504 0.500 0.716 0.796
CAMLP [68] 0.186 0.102 0.081 0.476 0.412 0.386 0.502 0.481 0.430 0.438 0.628 0.688
LPGMM [86] 0.304 0.211 0.157 0.361 0.281 0.275 0.426 0.385 0.365 0.413 0.591 0.575
ADP [84] 0.225 0.144 0.108 0.417 0.349 0.338 0.479 0.459 0.428 0.431 0.636 0.643
Ours 0.317 0.183 0.130 0.304 0.226 0.225 0.356 0.241 0.192 0.369 0.573 0.677

and Wikipedia is a cross-media dataset including most balanced classes with a few

imbalanced ones. As can be observed, our approach can outperform the other com-

pared approaches on all the datasets consistently, which demonstrates its effectiveness.

Among the other methods compared, ADP [84] and LPGMM[86, 84] that are pub-

lished more recently, show relatively better overall performance. Further, among the

four datasets, our approach can generally outperform by a larger margin on 20 News-

groups than on the other three datasets. This should not come as a surprise since

our approach takes the class imbalance issue into particular consideration. Similarly,

GMMC [67] also performs well on 20 Newsgroups, although it performs rather poorly

on the other datasets, since it explicitly considers imbalanced data as well like our

approach.
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Table 3.7: Classification errors of individual classes on Wikipedia with 20 labeled
points.

Class name art biology geography history literature media music royalty sport warfare

GFHF [13] 0.860 0.188 0.547 0.780 0.531 0.553 0.580 0.465 0.096 0.263
LGC [58] 0.865 0.184 0.560 0.777 0.430 0.576 0.561 0.442 0.128 0.249
MAD [69] 0.784 0.201 0.531 0.720 0.425 0.576 0.575 0.357 0.155 0.286
GMMC [67] 0.818 0.211 0.584 0.775 0.446 0.599 0.531 0.529 0.126 0.309
ONMI [85] 0.809 0.198 0.553 0.741 0.433 0.555 0.589 0.387 0.142 0.281
CAMLP [68] 0.812 0.200 0.526 0.736 0.444 0.556 0.587 0.384 0.143 0.272
LPGMM [86] 0.822 0.195 0.544 0.750 0.470 0.561 0.581 0.409 0.128 0.275
ADP [84] 0.819 0.178 0.528 0.758 0.411 0.565 0.570 0.352 0.116 0.222
Ours 0.828 0.158 0.513 0.778 0.385 0.573 0.551 0.318 0.090 0.167

To further show the merits of our approach, we comparatively list in Tables

3.5-3.7 the performance in terms of test error for each class on the three imbalanced

datasets, i.e., USPS, 20 Newsgroups and Wikipedia. One can observe that, our ap-

proach can retain relatively balanced accuracy across different classes in each dataset,

leading to superior overall performance. By contrast, other methods (most typically

LGC [58] and MAD [69]) can be able to perform well only on a part of classes, but not

on the others, particularly for the imbalanced 20 Newsgroups dataset. We believe this

is due to that we carefully designed the algorithm to take into account imbalanced

data.

3.6.2.3 Parameter Study

Our approach involves three parameters: the Gaussian kernel width σ, the

number of nearest neighbors k and the parameter γ. We now carry out experiments

to investigate the impact of these parameters on performance. Here we report the

results and make discussion on the most imbalanced dataset 20 Newsgroups, although

similar conclusions can be achieved on the other datasets.

Sensitivity to σ: According to the theoretical analysis in Section 3.5, our ap-

proach should be less insensitive to the Gaussian kernel width σ than conventional
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Figure 3.6: Hyper-parameter sensitivity tests on 20 Newsgroups. Each sub-figure
shows the test error versus the value of σ.

GRSSL methods (e.g., most typically LGC [58]). To experimentally verify this point,

we vary the values of σ to compare performance between our approach and LGC [58]

under three different numbers of labeled points, as shown in Fig. 3.6. One can observe

that, the curve of LGC exhibits a sharp peak, which means favorable performance can

only be achieved within a very narrow interval. This suggests LGC is highly sensitive

to σ, making the parameter selection very difficult. By contrast, the performance of

our approach remains very stable as σ, indicating its insensitivity to this parameter.

Sensitivity to k: Fig. 3.7(a) plots the performance of our approach with varying

k. As can be observed, our approach exhibits very stable performance as long as k

is not too small (k ≥ 5 is favorable for this dataset). Generally our approach is

not sensitive to this parameter, which is also the case for most conventional GSSL

methods [13, 58].

Sensitivity to γ: The parameter γ controls the trade-off between the terms

in Algorithm 2 and finally influences the strength of our approach in dealing with

imbalanced data. As suggested in Section 3.5, the general principle for tuning this

parameter is that, smaller γ is preferred for more imbalanced data, and vice versa.

We experimentally observed that, there usually exists a relatively wide interval for

various datasets where the performance remains stably good, making the parameter
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Figure 3.7: Hyper-parameter sensitivity tests on 20 Newsgroups. Each sub-figure
shows the test error versus the value of k and γ.
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Figure 3.8: Convergence analysis of proposed approach on 20 Newsgroups.

tuning feasible and easy. Fig. 3.7(b) illustrates results on the 20 Newsgroups dataset

specifically as an example. As can be seen, the performance is favorable if γ lies within

the interval [0.2, 0.6], which becomes worse to some extent if γ is inappropriately set

to be too small or too large.
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3.6.2.4 Convergence Analysis

Since our approach works in an iterative fashion, one may be naturally con-

cerned with its convergence. In Section 3.4, we have already theoretically proven the

convergence of Algorithm 2. Here we further perform another experiment to demon-

strate the convergence intuitively, by taking the 20 Newsgroups as an example. The

results are shown in Fig. 3.8, which indicates that our approach can converge fast

within only a couple of iterations.

3.7 Related Works

3.7.1 Imbalanced Classification

Learning from imbalanced data is challenging for classification problems, since

many classifiers are designed without considering the underlying data distribution.

To overcome the class-imbalance problem, many approaches were proposed at the

data or algorithmic levels. The data-level approaches aim to generate a balanced

class distribution by over-sample minor classes or under-sampling major classes [87].

On the other hand, many algorithmic-level methods have been proposed to deal with

class imbalance, such as cost-sensitive learning [88], feature selection [63], and hy-

brid/ensemble techniques [89].

Besides aforementioned methods, the main strategy of GRSSL to deal with

class imbalance is incorporating the (estimated) class proportion, since GRSSL takes

into account labeled and unlabeled data. As we have explained in Section 3.1, sev-

eral methods [66, 67] directly incorporate class proportion knowledge, which is not

available for most applications. In this case, it is nature to use labeled data to esti-

mate class proportion [13]. However, this is not always feasible since for real-world
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datasets, the class proportion of labeled data can be different from that of unlabeled

data, especially in the case when very few labeled data are available.

3.7.2 Graph-Regularization based Semi-Supervised Learning

The most well-known standard GRSSL baselines are GFHF [13] and LGC [58],

which can be derived from the perspective of both label propagation and optimization

problem. Inspired by them, a large number of GRSSL methods have been proposed to

incorporate richer graph structures or prior knowledge [50, 52]. For instance, recently

several confidence-aware GRSSL approaches [90, 68] were proposed. Their key idea

is that it will be more confident to predict a node with more neighbors, since it has

enough evidence to make prediction. Similar to our approach, considering the node

degree during the propagation process is crucial to these methods.

As we explained in Section 3.5.2, GRSSL can also be viewed as the problem

of semi-supervised graph partition, which aims to divide nodes of a graph into a

number of groups by incorporating the label information. For real-world graphs, e.g.

social networks, the most well-known algorithm for graph partition is modularity

optimization [91], which has been applied to semi-supervised learning [92]. However,

the modularity optimization suffers from a drawback that it implicitly favours clusters

with a certain size, depending on the size of the entire graph, not only on its internal

structure. To address this issue, as we explained in Section 3.5.2, Markov stability

[93, 94] was introduced based on the fact that a continuous-time random walk on a

graph is trapped for long time in good clusters before being able to escape.

3.8 Conclusion

We have introduced a novel GRSSL approach, which could control the imbal-

ance degree of classification result to improve classification accuracy. Theoretically,
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our approach can be derived from the perspective of different areas. Especially, we use

the linearisation of Markov stability to construct our regularization framework. From

a practical standpoint, our approach is extremely easy to implement and has fewer

hyper-parameters than most of our counterparts. Finally, our experimental results

validate the effectiveness of our approach, as well as the robustness to the Gaussian

kernel width. As a result, it enables us to simply choose the unweighted kNN graph

for real-world applications.

Besides these advantages, our approach also suffers from a drawback. It is

well known that, some standard methods [13, 58] are efficient since their algorithms

are based on the sparse matrix induced by kNN graphs. On the other hand, for

our approach, it is easy to notice that G in Algorithm 2 is a dense matrix, which

makes our algorithm more computationally expensive than these standard ones. In

the future, we would like to develop more efficient algorithm for our approach.
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CHAPTER 4

MULTI-ENTROPY-RATE GRAPH CONVOLUTIONAL NETWORK

4.1 Introduction

In Chapter 3, we have discussed graph-regularization based semi-supervised

learning, which can jointly learn information of graph structure and node labels.

However, it can not incorporate node attributes into its framework when it deals with

attributed graphs. It can be problematic since node attributes typically contains rich

content information, which can be crucial for node classification tasks.

In recent years, encouraged by the great success of convolutional neural net-

works, an increasing number of works applied neural network models to learn from

graph-structured data, which are generated from non-Eulidean domains and rep-

resented as graphs with node attributes. And these models are typically termed

as graph convolutional networks (GCN). By learning graph structure and node at-

tributes jointly, these GCN-like models can dramatically improve the performance of

Multi-Layer Perceptron (MLP) in practice. Hence, they have been widely applied to

various real-world tasks, including 3D point clouds classification [95, 96], molecular

structure studying [97, 98], text classification [99, 100, 101], and so forth.

In this chapter, we focus on attention-based GCN, which deploys a certain at-

tention mechanism to guide graph nodes to aggregate attribute information from their

neighborhoods more effectively. These approaches are effective mainly because that,

graphs in real-world applications are usually complexly structured and noisy, and

the attention mechanism enables us to suppress the noise and reveal the most task-

relevant information. For this purpose, existing attention-based approaches [102, 103]
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usually learn graph attention from feature representations at each layer, which assigns

larger weights to more important neighbors for each node. Despite their effectiveness

to some extent, previous attention-based GCN models share one major limitation,

that is, they only take into account immediate neighborhood in the calculation of

attention coefficients while ignoring higher-order topological structures in the graph.

Moreover, their attention parameters have to be learned along with neural network

weights by gradient decent, which makes them computationally inefficient.

To address these issues, we propose a novel method called Multi-Entropy-Rate

Graph Convolutional Network (MER-GCN) for semi-supervised node classification.

One major contribution of MER-GCN is that, it establishes a simple but effective

graph attention mechanism upon the so-called Sub-maximal Entropy-rate Random

Walk (SERW), which can capture the topological structures underlying the given

graph at multiple scales. With this attention mechanism, MER-GCN can encode

graph structures at multiple scales so that richer structural information can be ex-

ploited to guide the feature aggregation on nodes, leading to performance improve-

ment. Since our proposed graph attention only relies on the graph structure, it does

not need to train the attention parameters by gradient descent. Hence, MER-GCN

can be more efficient than existing approaches relying on sophisticated attention

mechanisms.

Our main contributions in this chapter summarized as follows:

• We introduce an efficient attention mechanism induced by random walks with

different entropy rates.

• We propose the Multi-Entropy-Rate Graph Convolutional Network (MER-GCN),

a simple but effective attention-based GCN model which can capture richer

topological structures in graphs to derive the graph attention.
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• We apply MER-GCN to semi-supervised node classification tasks. Extensive

experiments on four benchmarks under both transductive and inductive learning

settings suggest that, our method can outperform several strong baselines.

4.2 Preliminaries

In this section, we first formally define the problem we are trying to solve. Then

we briefly present a standard baseline [14] of GCN-like approaches. The notations in

this chapter are consistent to these defined in Chapter 1.1.

4.2.1 Graph Convolutional Network (GCN)

Here we use a standard baseline GCN [14] to illustrate the main idea of GCN-

like approaches, which attempt to incorporate feature aggregation into MLP. At each

layer, nodes aggregate feature information from their neighborhoods via graph convo-

lution. For multi-layer GCN , at the lth layer, each node obtains feature information

from its neighbors uniformly as follows,

h̃
(l)
i = Pii ∗ h(l)

i +
∑
j∈Ni

Pij ∗ h(l)
j , (4.1)

where Ni is the index set of vi’s neighbors, h
(l)
i and h̃

(l)
i are the hidden representations

of vi before and after the graph convolution respectively, and P = (D + I)−1(A+ I)

is a normalized adjacency matrix 1.

Combing convolution operation with the fully connected layer, we can write the

building block layer of GCN in matrix form as

H(l+1) = σ(PH(l)W (l)), (4.2)

1In the original paper, P is a symmetric normalized matrix. In practice, these two matrices are

very close with respect to classification problems.
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where H(l+1) is the output, W (l) is a trainable weight matrix and σ() is a non-linear

activation. To relieve the over-smoothing problem [104], typically a two-layer GCN

architecture is applied to capture high-order between nodes. Moreover, at the output

(Lth) layer, GCN evaluates loss on labeled nodes only,

L = −
∑
i∈YL

∑
j

Yij lnH
(L)
ij , (4.3)

where YL is the index set of labeled nodes, Y is the given label matrix and H(L) is

the output of GCN.
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Figure 4.1: Illustration of different random walks on an unweighted directed graph.
(a) The generic random walk (GRW) uniformly chooses among paths of length-1
starting from node v1. The corresponding probability distribution is (P12, P13, P14) =
(1

3
, 1

3
, 1

3
). (b) Considering the local topological structure beyond the first-order, SERW

uniformly chooses among paths of length-2 starting from node v1. The corresponding
probability distribution is (P̃

(1)
12 , P̃

(1)
13 , P̃

(1)
14 ) = (1

2
, 1

3
, 1

6
).
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4.3 Sub-maximal Entropy-rate Random Walk (SERW)

Before we present our proposed attention mechanism, we first introduce a series

of random walks, which can extract different topological structures of the graph.

Given an unweighted graph G with its adjacency matrix A, we can define a

Generic Random Walk (GRW) on the graph. Its corresponding transition matrix is

commonly defined by P = D−1A, where D is a diagonal matrix with Dii =
∑

j Aij.

This means a random walker at node vi always uniformly chooses among immediate

neighbors to decide where to jump.

However, GRW cannot fully extract the topological structure of the graph, since

it only consider the immediate neighbors. When the graph structure is complicated,

it is helpful to consider the topological structure with higher-order neighbors. To

capture richer graph topology, we introduce the Sub-maximal Entropy-rate Random

Walk (SERW) [105], which is the local approximation to Maximal Entropy-rate Ran-

dom Walk (MERW) [106]. The transition probability of SERW is defined as

P̃
(t)
ij =

Aij
∑

k A
(t)
jk∑

j′ Aij′
∑

k′ A
(t)
j′k′

, (4.4)

where A
(t)
jk is the number of paths of length-t from vj to vk. Thus the transition

probability P̃
(t)
ij is defined by the proportion of all paths of length-(t + 1) starting

from vi and routing through vj compared to all paths of length-(t+ 1) starting from

vi. In matrix form, the corresponding transition matrix P̃ can be efficiently calculated

by

Ã = A� (AtE)T , (4.5a)

P̃ = D̃−1Ã, (4.5b)

where � is the Hadamard product, E is a square matrix with all 1s and D̃ is a

diagonal matrix with D̃ii =
∑

j Ãij. According to Eq. 4.4, a random walker of SERW
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at node vi always uniformly chooses among paths of length-(t + 1) starting from vi.

Intuitively, the paths generated by SERW with t > 0 are more random than those

generated by GRW, especially when t → ∞, This randomness can be quantitatively

measured by the entropy rate (see Appendix B.1). Note that, GRW is a special case

of SERW with t = 0. That is, P = P̃ (0).

We now use a simple example to demonstrate SERW can capture various topo-

logical structures of the graph by considering paths of different length. Without

loss of generality, we consider a directed graph (see Fig. 4.1) since the undirected

graph can be regarded as its special case. Moreover, we assume this graph is un-

weighted. In Fig. 4.1 (a), with the knowledge about the first-order (immediate)

neighbors, the walker of GRW at node v1 applies the uniform probability distribution

(P12, P13, P14) = (1
3
, 1

3
, 1

3
) to choose its next position. On the other hand, in Fig. 4.1

(b), knowing the first-order and the second-order neighbors, the walker at node v1

uniformly chooses among paths of length-2 starting from v1. The corresponding dis-

tribution is (P̃
(1)
12 , P̃

(1)
13 , P̃

(1)
14 ) = (1

2
, 1

3
, 1

6
). This distribution is much different from the

one of GRW since the degrees of v1’s neighbors are different, which also reveals the

different topological structure around v1. Especially, these two distributions can be

the same if and only if every node has the same degree. That is, the graph is regular.

However, for real world graphs, the local topological structure around each node can

be various. Thus, on these graphs, SERW considering paths of different length can

naturally reveals graph topology at different scales. Note that, without introducing

any additional assumptions, SERW can be applied to the weighted graph, because it

be can viewed as the multi-edge graph.
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On the other hand, SERW can be viewed as the local approximation to the

Maximal Entropy-rate Random Walk (MERW) (see Appendix B.2), whose transition

probability is defined as

P̃
(∞)
ij = lim

t→∞

Aij
∑

k A
(t)
jk∑

j′ Aij′
∑

k′ A
(t)
j′k′

=
Aijπj
λπi

, (4.6)

where λ is the largest eigenvalue of A, and π is the corresponding eigenvector. SERW

is equal to MERW when t =∞.

However, in practice, the walker does not need the global information of the

graph for most applications [105]. Moreover, especially for large graphs, the calcula-

tion of the eigenvector is computationally expensive.

It has been shown [18, 107, 108] that, the way to aggregate features is crucial to

GCN-like approaches. To capture more task-relative information, several attention-

based GCNs [102, 103] were proposed. Moreover, from the perspective of random

walk, graph convolution can be viewed as applying transition matrix (normalized

adjacency matrix) P of GRW to do feature aggregation. Inspired by this viewpoint,

we apply the transition matrix of SERW in Eq. 4.4 to capture richer graph structures,

which can be viewed as SERW-based attention mechanism. In the following section,

we will explain how to combine this attention mechanism with graph neural network

to compose a novel GCN-like model.

4.4 MER-GCN Architecture

In this section, we first introduce the attention mechanism based on SERW.

Then, with this mechanism, we present the building block layers of MER-GCN. In

addition, by adopting different transition matrices to do feature aggregation, we pro-

pose three variants of MER-GCN. Finally, we analyze the computational complexity

of our approach.
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concat/avg

Figure 4.2: The lth layer with three-head attention, where H̃
(l)
t = P̃ (t)H(l)W

(l)
t . P̃ (t)

and W
(l)
t corresponds to tth attention head. We concatenate or average all attention

heads as the output.

4.4.1 Attention Mechanism via SERW

Considering the local topological structure of the graph beyond the first-order,

we can construct the attention mechanism via SERW to aggregate features as follows

h̃
(l)
i = P̃

(t)
ii ∗ h

(l)
i +

∑
j∈N(i)

P̃
(t)
ij ∗ h

(l)
j , (4.7)

where h̃
(l)
i is the hidden representation of vi at lth layer after feature aggregation,

and P̃ (t) is transition matrix of SERW defined in Eq. 4.4. Intuitively, considering all

paths of length-(t+1) starting from vi, if there are more paths starting from vi routing

through its immediate neighbor vj, vj is more important than other neighbors of vi.

Thus, our attention mechanism encourages vi to aggregate more feature information

from vj. Note that, according to Eq. 4.4, our attention mechanism only re-weights

the existing edges without changing the graph structure, which means it does not add

or delete any edges.
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4.4.2 Graph Attentional Layer

To capture the graph topology at multiple scales, at each layer we apply T -

head attention to aggregate feature representations (see Fig. 4.2). Each attention

head is independent and corresponds to P̃ (t) with specific t. Then, we concatenate

all attention heads, resulting in the following output representations,

H(l+1) = σ(P̃ (0)H(l)W
(l)
0 ‖ · · · ‖P̃ (T−1)H(l)W

(l)
T−1), (4.8)

where ‖ represents concatenation operation, H(l) ∈ RN×Ris the output of the previous

layer, and specifically H(0) = X. W
(l)
t is the trainable weight matrix at lth layer

corresponding to tth attention head.

4.4.3 Output Layer

As showed in Fig. 4.2, we also perform multi-head attention at the output layer.

However, following [102], instead of concatenating different attention heads, we apply

the averaging as follows:

H(L) = σ(
1

T

T−1∑
t=0

P̃ (t)H(L−1)W
(L−1)
t ). (4.9)

For classification tasks, we feed H(L) to a softmax or logistic sigmoid function, and

evaluate the loss on labeled nodes only as in Eq. 4.3.

4.4.4 Transition Matrix

Obviously, our attention mechanism is defined by the transition matrix of

SERW, which determines how each node aggregates feature information from its

neighbors. However, SERW suffers from a drawback that it can be over degree-

biased, which means the random walker inherently biased visits nodes with higher

degree. In the real world, many graphs have been reported to be scale-free, which

means the degree distribution of them asymptotically follows a power law [109, 110].
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Figure 4.3: The degree distributions of three citation graphs, which are scale-free.
For all graphs, there are some nodes whose degree greatly exceeds the average.

For instance, in Fig. 4.3, there are some nodes in three citation graphs whose degrees

greatly exceed the average. Even though the number of high-degree nodes is small,

they can affect SERW dramatically, especially when SERW takes into account the

long paths.

To alleviate this over degree-biased issue, without introducing any hyper-parameters,

we can define SERW via normalized adjacency matrices, i.e. Asym = (D+ I)−1/2(A+

I)(D + I)−1/2 and Arw = (A+ I)(D + I)−1.

Given Asym, we first calculate the re-weighted adjacency matrix Âsym = Asym�

(AtsymE)T following Eq. 4.5a. Then, we transform Âsym to a symmetric matrix Ãsym =

max(Âsym, Â
T
sym). Finally, we obtain the symmetric transition matrix 2

P̃sym = D̃−1/2
sym ÃsymD̃

−1/2
sym , (4.10)

where D̃sym is a diagonal matrix with (D̃sym)ii =
∑

j(Ãsym)ij. Note that, the way we

construct the transition matrix here is slightly different from Eq. 4.4, because here

we calculate the symmetric transition matrix.

Given Arw, since it is asymmetric, we consider the out-degree and in-degree of

nodes in the corresponding directed graph, respectively. By counting the directed

paths on this graph, we can calculate Â′rw = Arw � (AtrwE)T and Ârw = ÂTrw �
2In this work, we use the term ”transition matrix” loosely.
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((Âtrw)TE)T following Eq. 4.5a. Then, we obtain Ãrw = max(Â′rw, Â
T
rw). Finally, we

have the transition matrix

P̃rw = D̃−1/2
rw ÃrwD̃

−1/2
rw , (4.11)

where D̃rw is a diagonal matrix with (D̃rw)ii =
∑

j(Ãrw)ij.

4.4.5 Computational Complexity

MER-GCN is computationally efficient. In the pre-training procedure, since the

set of transition matrices {P̃ (t)} can be calculated efficiently according to Eq. 4.5a

and 4.5b before training the neural network, our model is more efficient than so-

phisticated attention-based approaches. During the network training procedure, for

a single layer with T -head attention, the complexity of computing Tdout features is

O(nTdindout + |E|Tdout), where din and dout are the number of input and output fea-

tures corresponding to a single attention head respectively, and |E| is the number of

edges in the graph. Hence, when T = 1, the time complexity of MER-GCN is exactly

equal to that of GCN [14]. Furthermore, since each attention head is independent,

the computation of all heads can be parallelized.

4.5 Experiments

We compare our approach with several baselines on node classification tasks

under both transductive and inductive learning settings.

4.5.1 Datasets

Transductive learning. We employ three citation graph datasets: Cora, Cite-

seer and Pubmed, whose node represents a document and edge represents a citation

link between documents. The feature vector corresponding to each node is the bag-
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Table 4.1: Dataset statistics

Dataset # Nodes # Edges # Classes # Features Label rate Task

Cora 2,708 5,429 7 1,433 0.052 Transductive
Citeseer 3,327 4,732 6 3,703 0.036 Transductive
Pubmed 19,717 44,338 3 500 0.003 Transductive
PPI 56,944 (24 graphs) 818,716 121 50 0.789 Inductive

of-words representation of each document. Following the experimental setup in [111],

we only use 20 labeled nodes per class for training, 1000 nodes for testing and 500

nodes for validation.

Inductive learning. We use a protein-protein interaction (PPI) dataset [18],

which contains 24 graphs. Each graph has 2372 nodes on average. Every node has 50

features and can be assigned to multiple labels falling into 121 categories. Following

the same data preprocessing in [18], we use 20 graphs for training, 2 for validation

and 2 for testing. During training, the testing graphs and their corresponding node

features are unobserved.

The characteristics and statistics of datasets are described in Table 4.1.

4.5.2 Baseline Methods

Transductive learning. For transductive learning tasks, we compare against

several strong baseline approaches as follows:

• Label Propagation: Label Propagation (LP) [13] is a graph-based semi-

supervised learning baseline, which aims to label unlabeled nodes with the

information of graph structure and labeled nodes.

• DeepWalk: DeepWalk [25] is a graph embedding method, which is presented

in Section 2.2.2.
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Table 4.2: The grid search space for the hyper-parameters.

Hyper-parameter Range

Learning rate 1e-3, 5e-3, 1e-2, 5e-2
Dropout rate 0.4, 0.5, 0.6, 0.7
Weight decay 1e-6, 1e-5, 1e-4

• Planetoid: Planetoid [111] is a neural network model to jointly learn the label

information and the neighborhood context in the graph.

• GCN: GCN [14] is a standard baseline which combines graph convolutional

operation with MLP to learn the graph-structured data efficiently. It is the

special case of our approach with one-head attention.

• MoNet: MoNet [112] is a graph neural network approach adopting peudo-

coordinates of nodes to determine the relative position between them, then

applying the shared graph filter to do feature aggregation.

• GAT: GAT [102] is a GCN-like approach applying trainable attention mecha-

nism to improve the model’s expressive capability.

• AGNN: AGNN [103] is an attention-based approach, which aims to learn the

attention coeffient based on the cosine similarity in the latent space.

Inductive learning. For inductive learning task, we compare against four

variants of GraphSAGE [18]: GraphSAGE-GCN, GraphSAGE-mean, GraphSAGE-

LSTM and GraphSAGE-pool. GraphSAGE is an inductive framework to generate

node representations by sampling and aggregating features from node’s neighbors. In

addition, we report the performance of GAT.
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4.5.3 Experimental Setup

By applying different transition matrices, we compare three variants of MER-

GCN: MER-GCN (unnorm), MER-GCN (sym) and MER-GCN (rw). Specifically,

MER-GCN (unnorm) corresponds to transition matrix P defined in Eq. 4.4, and

MER-GCN (sym) and MER-GCN (rw) correspond to Psym, Prw defined in Eq. 4.10

and 4.11, respectively.

Transductive learning. For transductive learning tasks, we apply a two-layer

MER-GCN model, whose first layer is composed of T = 8 attention heads with 8 units

each (for a total of 64 units). Following the settings in [102], for Cora and Citerseer

datasets, the output layer contains one attention head, and for Pubmed dataset, the

output layer averages T = 8 attention heads. Finally, we feed the output to a softmax

function.

Inductive learning. For inductive learning task, we use a three-layer model.

The first two layers contains T = 4 attention heads with 256 units each (for a total

of 1024 units). The output layer averages T = 6 attention heads with 121 units each,

then followed by a softmax function. The batch size for training is one graph. For a

fair comparison, following [102], our model also applies the skip connection [113] to

all attention layers.

The network weights are initialized using Glorot initialization [114]. Further-

more, we train our model for maximum of 10,000 epochs using Adam [115], and stop

training if validation loss does not decrease for 100 epochs. The LeakyReLU nonlin-

earity [116] and dropout are applied to each layer. The hyper-parameters (learning

rate, dropout rate and weight decay (L2 regularization) of our model are optimized

on different datasets by grid search. The ranges of grid search for all dataset are

summarized in Table 4.2.
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Table 4.3: Results (%) of transductive learning experiments in terms of classification
accuracy on Citeseer, Cora and Pubmend datasets.

Method Cora Citeseer Pubmed

LP [13] 68.3 45.3 63.0
DeepWalk [25] 67.2 43.2 65.3
Planetoid [111] 75.7 64.7 77.2
GCN [14] 81.5 70.3 79.0
MoNet [112] 81.7 – 78.8
GAT [102] 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3
AGNN [103] 82.6 ± 0.08 71.7 ± 0.07 79.9 ± 0.07

MER-GCN(unnorm) 83.0 ± 0.7 72.8 ± 0.7 79.0 ± 0.3
MER-GCN(sym) 83.5 ± 0.6 73.1 ± 0.6 79.5 ± 0.3
MER-GCN(rw) 83.8 ± 0.6 73.4 ± 0.7 79.9 ± 0.3

4.5.4 Results

Experimental results of transductive and inductive learning are summarized in

Tables 4.3 and 4.4, respectively.

Transductive learning. Every classification accuracy in percent is averaged

over 100 random runs. Besides reporting the results of three variants of our ap-

proach, we also reuse the metrics reported in [102] as the baselines. On Cora and

Citeseer datasets, all variants of MER-GCN can outperform not only GCN, but also

sophisticated attention-based approaches. On Pubmed dataset, MER-GCN (sym)

and MER-GCN (rw) consistently perform better than all baselines except AGNN

[103]. Moreover, MER-GCN (rw) outperforms MER-GCN (unnorm) and MER-GCN

(sym) on all citation datasets, because we believe MER-GCN (rw) can capture richer

topological structures than other variants by capturing the asymmetric node similar-

ity.

Inductive learning: In Table 4.4, we report the micro-averaged F1 score

averaged over 10 random runs. In addition, we reuse the metrics reported in [18] and
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Table 4.4: Results of inductive learning experiments in terms of micro-averaged F1

scores on PPI dataset.

Method PPI

GraphSAGE-GCN [18] 0.500
GraphSAGE-mean [18] 0.598
GraphSAGE-LSTM [18] 0.612
GraphSAGE-pool [18] 0.600
Const-GAT [102] 0.934 ± 0.006
GAT [102] 0.973 ± 0.002

MER-GCN(unnorm) 0.986 ± 0.001
MER-GCN(sym) 0.987 ± 0.001
MER-GCN(rw) 0.987 ± 0.001

Table 4.5: Average training time (seconds) for each dataset over 50 runs. The number
in parentheses is the time for calculating transition matrices {P̃ (t)}.

Dataset GAT MER-GCN(rw)

Cora 445.4 105.5 (0.5)
Citeseer 663.5 139.8 (0.3)
Pubmed 489.5 308.4 (31.1)
PPI 4320.7 1086.1 (17.2)

[102] as the baselines. The Const-GAT [102] in Table 4.4 shares the same architecture

with GAT, but has the constant graph attention. MER-GCN (sym) and MER-GCN

(rw) outperform all baselines and improve upon Const-GAT and GAT by 5.3% and

1.4%, respectively.

For all datasets, MER-GCN (sym) and MER-GCN (rw) perform better than

MER-GCN (unnorm), which empirically verifies normalizing the adjacency matrix

can overcome the over degree-biased problem.
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Figure 4.4: Visualizing the feature representations of the first layer of pre-trained
MER-GCN (unnorm) on Cora datasets. (a) Visualization of the feature represen-

tations and the attention coefficients of P̃
(0)
rw . (b) Visualization of the same feature

representations and the attention coefficients of P̃
(1)
rw . Node colors represent classes.

Edge thickness indicates 10 times attention coefficients. The upper-left figures in Fig.
(a) and Fig. (a) are the zoom-in views corresponding to the red rectangles.

4.5.5 Visualization of Feature Representations and Graph Attention

To demonstrate the effectiveness of our model intuitively, we visualize the

learned feature representations of the first layer on Cora dataset in Fig. 4.4 with

the t-SNE [41] package. Each node in Fig. 4.4 corresponds to a feature representa-

tion. The nodes sharing the same color belong to the same class. Fig. 4.4 indicates

most nodes having the same color group together, which reveals our approach has

strong discriminative power for Cora dataset. In addition, we visualize the relative

strength of the attention coefficients of two attention heads (P̃
(0)
rw and P̃

(1)
rw ) in Fig. 4.4

(a) and (b), respectively. For clarity, we only plot one-tenth edges, and edge thickness

indicates 10 times attention coefficients. The difference between corresponding atten-

tion coefficients in Fig. 4.4 (a) and (b) shows different attention heads can actually

capture different topological structures.
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Figure 4.5: Training time per epoch of GAT and MER-GCN (rw) on different
datasets. For Pubmed and PPI datset, due to the limitation of our GPU memory, we
applied the sparse matrix multiplication to train two models.

4.5.6 Training Time

Fig. 4.5 reports the average training time (seconds) per epoch over 100 epochs

on all datasets. We decided to only compare MER-GCN (rw) with GAT since they

share the same architecture. Both models were implemented with NVIDIA CUDA

® Deep Neural Network library (cuDNN) to be run on a Nvidia GTX 1080 Ti. For

Pubmed and PPI datasets, due to the limitation of our GPU memory, we applied

the sparse matrix multiplication to train two models. Obviously, MER-GCN (rw) is

significantly faster than GAT on all datasets with respect to each epoch. In Table

4.5, we also provide the average training time (including the time for calculating

transition matrices) of GAT and MER-GCN (rw) for each dataset over 50 runs. The

number in parentheses is the time (seconds) for calculating transition matrices {P̃ (t)}.

For MER-GCN (rw), calculating transition matrices is roughly 10 to 400 times faster
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than training the neural network. As a result, MER-GCN (rw) is more efficient than

GAT on all datasets.

4.6 Related Works

4.6.1 Biased Random Walks on the Graph

Random walks have been playing a crucial role in analyzing graph structures,

since they are ideal tools to uncover various structural properties of graphs. For in-

stance, diffusion maps [117] utilize random walks to define diffusion distance between

data points to do non-linear dimensionality reduction. On the other hand, since nodes

are not identical in the real-world graph, algorithms based on biased random walks

were proposed to capture richer topological graph structures. PageRank [118] is the

most well konwn biased-random-walk based algorithm to estimate how important the

a web page is. Recently, [9] proposed an algorithmic framework to learn the node

representations through biased random walks.

4.6.2 Graph Convolutional Networks

Inspired by the convolutional neural network, [119] generalized the convolu-

tional operation to the graph-structured data based on the spectral graph theory.

Following this work, [120] proposed an efficient localized spectral filtering approxi-

mation. Furthermore, [14] introduced an efficient approach by utilizing a localized

first-order approximation of the spectral graph convolution. Since this time, there

have been an increasing number of GCN-like approaches were proposed. As presented

in Section 4.1, generally they fall into two categories: the spectral-based approaches

and the spatial-based approaches.
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4.6.3 Graph Attention-based Approaches

Recently, attention mechanism was applied to the graph-based approaches. For

graph embedding tasks, [121] proposed attention model on the power series of the

transition matrix to guide the random walk on the graph. On the other hand, [102]

trained a self-attention mechanism to encourage each node to aggregate features from

its more relevant neighbors. Following this, [103] proposed a similarity-based atten-

tion where a function is applied to calculate the similarity of representations of two

nodes. In addition, [122] proposed a motif-based attention mechanism, where each

node selects the most motif-induced neighborhood to aggregate features from.

4.7 Conclusion

In this chapter, we first demonstrate SERW can extract topological structures at

multiple scales with different local knowledge of the graph. With SERW, we construct

a novel attention mechanism which can capture various local topological structures

of the graph. Furthermore, we utilize this attention mechanism to build an attention-

based graph convolutional network (MER-GCN) for semi-supervised learning. With

SERW-based attention mechanism, MER-GCN can jointly learn the node features and

graph topology at multiple scales effectively. Experimental results on four benchmarks

illusrate the effectiveness and efficiency of MER-GCN.

Besides above advantages, our approach also has several limitations. As we

mentioned in Section 4.4.4, our approach suffers from over degree-biased problem.

Besides the re-normalized trick, in the future we would like to develop new strategies

to allivate this issue. Moreover, since MER-GCN applies full-batch gradient descent,

it is not scalable to large graphs which can not fit in GPU memory. Fortunately, to

alleviate this issue, several recent GCN approaches [18, 123, 124] using mini-batch
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stochastic gradient descent (SGD) have been proposed. Their key ideal is to down-

sample neighbors of nodes in the original graph as the pre-processing step. Hence,

our approach can incorporate these neighborhood sampling strategies to deal with

large datasets.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In the previous chapters, we have introduced three graph-based machine learn-

ing approaches, which belong to main themes, i.e., graph embedding and graph-based

semi-supervised learning. All proposed approaches have the solid theoretical justifi-

cations, which can verify our motivations. In practice, they can achieve the state-of-

the-art performance on standard benchmark datasets.

Besides proposed graph-based methods, this thesis also provides several promis-

ing directions and open problems, which are discussed below.

In Chapter 2, we introduced a low-rank embedding approach for attributed

graphs. It is easy to notice that the goal of our low-rank embedding approach is to

learn a linear projection, which maps initial feature vectors into a low-dimensional

embedding space. Hence, to learn non-linear projection, it is natural to extend pro-

posed approach to a deep learning model by replace X by f(X), where f(·) can be

any non-linear neural network encoder, whose weights can be learned via gradient

decent. Consequently, we may obtain more informative node embedding by extract

non-linear information from initial attributes.

In Chapter 3, we discussed graph-regularization based semi-supervised learning

for node classification. Since our approach is not sensitive to edge weights, we are

interested in applying it to unweighted real-world graphs, such as social networks,

biological networks and information networks. However, real-world graphs can be

very sparse, hence some of them may not be connected. In this case, like other label-
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propagation based baselines, if every connected component in the network has at least

one labeled node in it, our approach can be valid for node classification.

In addition, as we presented in Section 3.3, our approach can be viewed as a

special case of generalized inverses of Laplacian matrices. Hence, it is interesting to

apply other generalized inverses to GRSSL or network analysis, for instance, Moore-

Penrose inverse. To our best knowledge, there is no work which has fully studied the

difference and connections between these generalized inverses from the perspective of

GRSSL. In the future, we plan to give a literature survey to fill this gap and develop

new efficient GRSSL algorithms based on other generalized inverses.

In Chapter 4, we discussed an attention-based GCN method on attributed

graphs to solve node classification problem. Besides attributed graphs, we are in-

terested in applying our approach to non-attributed graphs. In the real world, there

are numerous non-attributed graphs. Since our approach focuses on topological struc-

tures of the graph, it may produce node representations with high quality on non-

attributed graphs. In addition, our approach can be applied to other important tasks,

such as graph classification, link prediction and graph embedding.

An intriguing open question is how to suppress the noise in the graph. Graph

convolution is the key operation of most GCN models. It is typically represented by

the message passing between immediate neighbors. However, real-world graphs are

typically noisy because some edges in them may attach two dissimilar nodes. In this

case, a node attached to arbitrarily defined edges will obtain noisy feature information

via graph convolution, which will reduce the quality of hidden representation. Gener-

ally, there are two approaches to overcome this problem. The first is attention-based

method, which can suppress the noise and reveal the most task-relevant informa-

tion. The second method is suppressing the noise via graph diffusion, such as the
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heat kernel and personalized PageRank, which will encourage the node to aggregate

information from a larger neighborhood.
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APPENDICES

A.1 Definition of Generalized Inverses

Definition 1. For every real square matrix A, A{i,j,...,k} denotes the set of matrices

X that satisfy equations (i), (j), . . . , (k) of the following conditions. X ∈ A{i,j,...,k} is

called an {i, j, . . . , k}-inverse of A.

(Condition 1) AXA = A,

(Condition 2) XAX = X,

(Condition 3) (AX)T = AX,

(Condition 4) (XA)T = XA,

(Condition 5) AX = XA.

Specifically, the unique matrix A{1,2,5} is called the group inverse of A, which

is studied in Section 3.5.3. In this thesis, we focus on the generalized inverse of

Laplacian matrix, which has intimate connection to GRSSL.

A.2 GFHF as a Generalized Inverse of I − P

We now show GFHF can be explained as a generalized solution to Eq. 3.4.

Let us first consider an absorbing Markov chain on the graph, where labeled points

correspond to absorbing states and unlabeled points correspond to transient states.

In addition, we let l denote the number of labeled data, and let u denote the number

of unlabeled data. The corresponding transition matrix will have the canonical form

P̃ =

 Ill Olu

Pul Puu

 ,
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where Ill is a l-by-l identity matrix, Olu is a l-by-u zero matrix, Pul and Puu are the

submatrices of P at the corresponding positions. Note that, I − P̃ can be viewed a

generalized Laplacian matrix. We also divide Y and F ∗ into [ Yl
Yu

] and [F
∗
l
F ∗u

] respectively.

In addition, we set Σ = I, and Q = J , where J is a diagonal matrix with the first l

diagonal entries as 1 and the rest as 0. Then, I − P̃ + J can be written as Ill Olu

−Pul Iuu − Puu

 .
Since Iuu−Puu is nonsingular [71], I − P̃ + J is nonsingular as well. Hence, we

can write the solution to Eq. 3.4 in matrix form,Fl
Fu

 =

 Ill Olu

−Pul Iuu − Puu


−1  Ill Olu

Oul Ouu


Yl
Yu

 .
Finally, we obtain the closed form expression of GFHF,

Fu = (Iuu − Puu)−1PulYL.

Moreover, with the definition in Appendix A.1, we have (I−P̃+J)−1 ∈ (I−P̃ ){1,3,4,5}.

Similarly, it is easy to verify that other methods in Table 3.1 correspond to

generalized inverses L{i,j,...,k}. Consequently, they can be viewed as the special cases

of Eq. 3.5 (see Table 3.1).

B.1 Entropy Rate of Random Walks on the Graph

Let v1, v2, ..., vt denote a path of length-t generated by the random walk on

the graph. And the corresponding joint probability of this path is denoted by

p(v1, v2, ..., vt). Given these, we can define the Shannon entropy in the set of all

paths of length-t as

St = −
∑
v1,...,vt

p(v1, ..., vt) ln p(v1, ..., vt). (B.1.1)
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Then, the entropy rate of this random walk is the fixed rate of the entropy St increas-

ing with time,

s = lim
t→∞

St
t

= − lim
t→∞

∑
v1,...,vt

p(v1, ..., vt) ln p(v1, ..., vt)

t

= − lim
t→∞

∑
v1,...,vt

p(v1, ..., vt) ln(p(v1)p(v2|v1)...p(vt|vt−1))

t

= − lim
t→∞

∑
v1,...,vt

p(v1, ..., vt)(ln p(v1) + ln p(v2|v1) + ...+ ln p(vt|vt−1))

t

= − lim
t→∞

∑
v1,...,vt

p(v1, ..., vt)(ln p(v1) + (t− 1) ln p(v2|v1))

t

= −
∑
v1,v2

p(v1, v2) ln p(v2|v1)

= −
∑
i,j

πiPij lnPij,

(B.1.2)

where P is the transition matrix of this random walk, and π is the stationary dis-

tribution. Note that, since random walks in this thesis are time-homogeneous, we

have p(v2|v1) = p(vk+1|vk) ∀k. On the other hand, s can be regarded as the average

entropy per step in ensemble of paths of infinite length generated by the random walk.

In the long run, s is maximized when every path has equal probability.

To extract the local topological structure of the graph, MERW considers the

paths of finite length instead of infinite length. In practice, for each node vi, its goal

is to determine the appropriate local distribution in the neighborhood so that all

possible paths of equal length starting from vi are equally likely. The corresponding

matrix is defied in Eq. 4.6.

B.2 Maximal Entropy-rate Random Walks

We now prove that P̃ (t) is the local approximation to P̃ (∞).
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Theorem B.2.1.

P̃
(∞)
ij = lim

t→∞

Aij
∑

k A
(t)
jk∑

j′ Aij′
∑

k′ A
(t)
j′k′

=
Aijπj
λπi

, (B.2.1)

where λ is the largest eigenvalue of A, and π is the corresponding eigenvector.

Proof. By introducing the all-ones vector 1, we can rewrite the term
∑

k A
(t)
jk as [At1]j.

Then, we have

lim
t→∞

∑
k A

(t)
jk∑

k′ A
(t)
j′k′

= lim
t→∞

[At1]j
[At1]j′

. (B.2.2)

On the other hand, we use {λi} to denote the eigenvalues of A, and order them

decreasingly λ = λ1 > λ2 = ... = λn. Then the spectral decomposition of A is A =∑n
i=1 λiψiφ

T
i , where ψi and φTi are the right and left eigenvectors of A corresponding

to λi. Given this, we have

lim
t→∞

∑
k A

(t)
jk∑

k′ A
(t)
j′k′

= lim
t→∞

[At1]j
[At1]j′

= lim
t→∞

[(λt1ψ1φ
T
1 +

∑n
i=2 λiψiφ

T
i )1]j

[(λt1ψ1φT1 +
∑n

i=2 λiψiφ
T
i )1]j′

= lim
t→∞

[(ψ1φ
T
1 +

∑n
i=2(λn

λ1
)tψnφ

T
n )1]j

[(ψ1φT1 +
∑n

i=2(λn
λ1

)tψnφTn )1]j′

=
[ψ1]j
[ψ1]j′

=
πj
πj′
.

(B.2.3)

where ψ1 is denoted as π. Since
∑
Aij′πj′ = λπi, we obtain

lim
t→∞

Aij
∑

k A
(t)
jk∑

j′ Aij′
∑

k′ A
(t)
j′k′

=
Aijπj∑
j′ Aij′πj′

=
Aijπj
λπi

. (B.2.4)

According to Eq. B.2.4, the entropy rate of MERW is lnλ. We now show

that MERW indeed maximize the entropy rate. The entropy production rate of the
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random walk is maximized when every path shares the same probability in the long

run. That is, the maximal entropy rate is

smax = lim
t→∞

ln
∑

i,j A
(t)
ij

t
= lnλ, (B.2.5)

where
∑

i,j A
(t)
ij is the number paths of length-t. Hence, we see that MERW obtains

the maximal entropy rate.
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[105] R. Sinatra, J. Gómez-Gardenes, R. Lambiotte, V. Nicosia, and V. Latora,

“Maximal-entropy random walks in complex networks with limited informa-

tion,” Physical Review E, vol. 83, no. 3, p. 030103, 2011.

101



[106] Z. Burda, J. Duda, J.-M. Luck, and B. Waclaw, “Localization of the maximal

entropy random walk,” Physical Review Letters, vol. 102, no. 16, p. 160602,

2009.

[107] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural

message passing for quantum chemistry,” in Proceedings of the 34th Interna-

tional Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.

1263–1272.

[108] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung, “Gaan: Gated atten-

tion networks for learning on large and spatiotemporal graphs,” n Proceedings

of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, 2018.

[109] R. Albert, H. Jeong, and A.-L. Barabási, “Diameter of the world-wide web,”

Nature, vol. 401, no. 6749, pp. 130–131, 1999.

[110] G. Lima-Mendez and J. van Helden, “The powerful law of the power law and

other myths in network biology,” Molecular BioSystems, vol. 5, no. 12, pp.

1482–1493, 2009.

[111] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-supervised

learning with graph embeddings,” International Conference on Machine Learn-

ing (ICML), 2016.

[112] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bron-

stein, “Geometric deep learning on graphs and manifolds using mixture model

cnns,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017, pp. 5115–5124.

[113] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 770–778.

102



[114] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-

forward neural networks,” in Proceedings of the Thirteenth International Con-

ference on Artificial Intelligence and Statistics, 2010, pp. 249–256.

[115] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Pro-

ceedings of the 3rd International Conference on Learning Representations, 2014.

[116] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified acti-

vations in convolutional network,” International Conference on Learning Rep-

resentations (ICLR) Workshop, 2015.

[117] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and

S. W. Zucker, “Geometric diffusions as a tool for harmonic analysis and struc-

ture definition of data: Diffusion maps,” Proceedings of the National Academy

of Sciences, vol. 102, no. 21, pp. 7426–7431, 2005.

[118] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation rank-

ing: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[119] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally

connected networks on graphs,” Proceedings of the 3rd International Conference

on Learning Representations, 2013.

[120] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural net-

works on graphs with fast localized spectral filtering,” In Advances in Neural

Information Processing Systems, 2016.

[121] S. Abu-El-Haija, B. Perozzi, R. Al-Rfou, and A. A. Alemi, “Watch your step:

Learning node embeddings via graph attention,” in Advances in Neural Infor-

mation Processing Systems, 2018, pp. 9180–9190.

[122] J. B. Lee, R. A. Rossi, X. Kong, S. Kim, E. Koh, and A. Rao, “Higher-order

graph convolutional networks,” arXiv preprint arXiv:1809.07697, 2018.

103



[123] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convolutional net-

works with variance reduction,” International Conference on Machine Learning,

2017.

[124] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling towards fast

graph representation learning,” in Advances in Neural Information Processing

Systems, 2018, pp. 4558–4567.

104



BIOGRAPHICAL STATEMENT

Jianjin Deng received his Ph.D. in Computer Science and Engineering from

the University of Texas at Arlington (UTA) at 2021. Prior to the Ph.D. program in

UTA, he received his M.Eng. degree in Pattern Recognition and Intelligent System

and B.Eng. degree in Software Engineering from Huazhong University of Science and

Technology, Wuhan, China in 2015 and 2012, respectively. His main research interests

are deep learning and machine learning on graph structured data.

105


