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ABSTRACT

Analysis of Waveform Distortions Produced by Interferometer Response Functions for Future

Searches of Gravitational-Wave Signals from Core-Collapse Supernovae

Anton Gribovskiy, PhD

The University of Texas at Arlington, 2021

Supervising Professor: Malik Rakhmanov

Multi-messenger astronomy recently added a fundamentally new component to its wide array

of observational tools: a gravitational-wave detector. A number of binary black holes mergers have

already been detected by gravitational-wave interferometers and the data have been analyzed by the

scientific community. Moreover, simultaneous observation of gravitational waves with electromag-

netic signals led to the first observation of a binary neutron star merger. Success in gravitational-

wave detection motivated the efforts to improve current detectors and initiated the design of future

detectors with significantly enhanced sensitivities. The detector improvements will lead to increase

of the detection range for binary star mergers and will also allow observation of new sources. One

of the most sought-after sources is the core-collapse supernova. According to extensive numerical

simulations, gravitational-wave signals emitted during the core collapse can have frequencies in the

kilohertz range, approaching the free spectral range of Fabry-Pérot arms of future detectors. The

long-wavelength approximation, commonly used in the analysis of gravitational-wave interferome-

ters, is not applicable in this regime. Therefore, it is necessary to develop new approaches to calculate

waveform deformations, to analyze interferometer responses, and to estimate their implications for

calibration for these large-scale detectors.

We utilize the time-domain interferometer impulse response and Fourier-Laplace domain trans-

fer function of gravitational wave detectors without any limitation on the maximum frequency of the

signal. These tools will allow us to develop a general theory for waveform deformations as the signal

propagates through the interferometer arms. In particular, we analyze the time of arrival of the

gravitational wave and show that in addition to the geometrical delay due to the detector location
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on Earth, it has an additional contribution originating from the interferometer transfer function.

Accurate calculation of the signal arrival time is important for the determination of the source po-

sition on the sky. We analyze this intrinsic delay for different interferometer configurations and

present the results as sky-maps for two polarizations of the gravitational wave. In this work we

give the classification of various waveform distortions of the signal for applications to searches of

gravitational waves from core-collapse supernovae. We analyzed in detail three different features

commonly present in numerical waveforms of the supernova. These features are the core bounce,

the SASI modes, and the core oscillations. For each of these features we analyze the time delays, the

frequency shifts, signal-envelope broadening, and the signal-frequency chirps. In addition to the an-

alytical calculations, we developed numerical simulations of the interferometric gravitational-wave

detection to assess accuracy of analytical approximations we used. Good agreement found in almost

all cases we considered. Moreover, we found that the detector properties and waveform deformations

are largely controlled by the complex zeros of the interferometer response. The significance of the

zeros motivated the development of algorithms for effective calculations of the zeros (real and imag-

inary parts) as functions of the sky location. Substantial difficulty in these calculations comes from

the transcendental nature of the characteristic equation. Therefore, an algorithm was built on com-

bination of analytical and numerical methods and used recursive techniques to attain the necessary

precision. The results of this work can be used for understanding the waveform deformations of the

core-collapse supernova signals, in the development of search algorithms for detection of supernovae

gravitational-wave emissions, and for optimization of future gravitational-wave detectors.
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INTRODUCTION

Gravitational waves were predicted by Albert Einstein in 1916 [1]. He linearized the equations for

gravitational field and showed that the perturbations of the metric tensor satisfy the wave equation.

These perturbations represent weak (linearized) gravitational waves which propagate through space

with the speed of light. An important conclusion made by Einstein was that gravitational waves

carry energy. Similarly to an accelerated electron that emits electromagnetic radiation, a binary star

system will be losing its energy through emission of gravitational waves. At some point, the stars of

the binary system will merge producing a strong gravitational-wave signal.

This prediction was put to the test in 1981 when Joseph Taylor and Joel Weisberg reported their

observation of a binary pulsar PSR 1913+16 (neutron star system) over the period of six years [2].

Discovered in 1974 by Russel Hulse and Joseph Taylor [3], this binary pulsar sends out periodic

electromagnetic waves that allow an observer to measure its period of rotation. According to Taylor,

the period of the binary system decreases over time and the amount by which it changes is consistent

with the energy loss due to continuous emission of gravitational waves. In 1993, Hulse and Taylor

received Nobel Prize “for the discovery of a new type of pulsar, a discovery that has opened up new

possibilities for the study of gravitation.”

Even though the discovery of Hulse and Taylor served as a proof that gravitational waves exist,

direct observation of gravitational waves was yet to come. Moreover, the scientific advances needed to

detect gravitational waves will be very useful for astronomy and astrophysics. For example, gravita-

tional waves can be the only way to directly observe black holes which otherwise cannot be observed

because they usually do not emit electromagnetic radiation. Another interesting astrophysical source

is the explosion of a star known as Core Collapse Supernova (CCSN). It can also emit gravitational

waves that will carry information about the explosion process. These signals are likely to have a

broadband spectrum with frequencies from tenths to thousandths of hertz.
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INTRODUCTION

One of the earliest attempts to search for supernovae was made in 1966 when Joseph Weber

built the first bar detector of gravitational waves [4]. Weber’s detector was an aluminum cylinder

with 1-m diameter and 2-m length having the resonance frequency of 1660 Hz. The cylinder hung

on a single wire suspension that was resting on a steel and rubber stack placed in a vacuum cham-

ber. Multiple piezoelectric transducers were connected to the cylinder to detect its vibrations. If a

gravitational wave passes through the cylinder it would oscillate with its resonance frequency and

the signal from the piezoelectric transducers would produce a trigger indicating possible detection.

Weber was operating two such bar detectors, one in Argonne National Laboratory, and the other

on the University of Maryland campus. He reported 17 significant two-detector coincidence events

within an 81-day observation window [5]. Unfortunately, his observations were met with scepticism

because the sensitivity of his bar detectors was not sufficiently high and the false alarm rate was too

large to ignore.

Resonant bars were not the only type of gravitational-wave detectors that were considered in

the 1960s. Michael Gertsenshteı̆n and Vladimir Pustovoı̆t proposed an interferometric gravitational

wave detector [6] in 1963. Their idea was to use a Michelson interferometer for detection of gravi-

tational waves. In their scheme the laser beams traveling within the two interferometer arms are

recombined at the beam splitter. If a gravitational wave passes through the detector it would cause

changes in the optical path lengths inside the arms. These changes will result in variations of light

intensity after the beam splitter that can be measured with photodetector. It is important to note

that the change in the optical path length induced by the gravitational wave is proportional to the

arm length. Therefore, the interferometer sensitivity for low-frequency gravitational waves can be

improved by increasing the length of the interferometer arms.

Many improvements to the interferometer configuration were made after this scheme was pro-

posed. Fabry-Pérot cavities were added to the interferometer to increase the photon lifetime in the

arms thus improving the detector sensitivity. Additional mirrors were placed at the input and output

ports of the interferometer to increase the circulating power and tune the detector bandwidth. All

these improvements were tested in different laboratories around the world. Decades of research and

development led to the construction of the first large scale detector capable of direct observation of

gravitational waves. At the present time the largest gravitational-wave detectors in the world belong

to the US Laser Interferometry Gravitational wave Observatory (LIGO). This observatory consists of
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INTRODUCTION

two detectors with 4-km arm lengths separated by a distance of 3000 km. The groundbreaking cere-

mony for the first detector took place at the end of 1994 at Hanford, Washington and was followed by

another in Livingston, Louisiana next year. Both detectors came online circa 2002 and stayed opera-

tional until 2010. No gravitational waves were detected during this period. This outcome motivated

substantial improvement of the detector hardware and in 2010 both detectors were shut down for

upgrades which lasted five years. The new observatory was called “Advanced LIGO” and began its

operation in September 2015. Similar efforts were made in Europe leading to French-Italian inter-

ferometer called Virgo. It has arm length of 3 km and optical configuration similar to that of LIGO.

Construction of Virgo detector started in 1996 near Pisa, Italy. In its initial stage the Virgo detector

started its operation in 2003. It was shut down in 2011 to be upgraded to “Advanced Virgo” which

resumed its operation in 2016.

Finally, on September 14, 2015 two LIGO detectors made the first known simultaneous obser-

vation of a gravitational-wave signal [7]. It took 20 years of construction, operation and hardware

improvement to achieve this remarkable milestone. Long predicted by general relativity, it was the

first observation of gravitational waves from a binary black hole merger. In 2017 the LIGO Scientific

Collaboration received Nobel Prize “for decisive contribution to the LIGO detector and the observa-

tion of gravitational waves.”

The signal detected by LIGO interferometers has a frequency chirp from 50 to 270 Hz, as shown

in Fig. 1. It agrees well with models of numerical relativity. From the observed signal scientists were

able to estimate the distance, the initial and final masses of the system and the spin of the merging

objects [8]. Following the initial observation there were many more detections of gravitational waves

made by LIGO and Virgo [9–17]. All these events are described in the gravitational-wave transient

catalogs of compact binary mergers [18, 19]. Thus far almost all detected signals were produced by

merging black holes. The exception is one event that was produced by colliding neutron stars. In

this case the detected gravitational wave signal lasted 30 seconds and had frequencies ranging from

50 to 500 Hz. The collision of two neutron stars also produced an electromagnetic signal detected

by Interplanetary Gamma-Ray Burst Timing Network (IPN) which includes Fermi and INTEGRAL

satellites [20]. Using this information, the Swope optical telescope at Las Campanas laboratory in

Chile was able to pinpoint the exact location of the source on the sky, which was later confirmed by

other optical, infrared, ultraviolet, and radio telescopes.
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Figure 1: Gravitational-wave signals detected by Washington (left) and Louisiana (right) detectors
on September 14, 2015. Top row shows time series of the signals after filtering. Second row shows
the numerical relativity simulations. (The residual errors represent the difference between the data
and the simulation.) Bottom row shows spectrograms of the signals. (The figure is from [7].)
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Figure 2: Localization of the source performed by different detectors. The left panel shows localiza-
tion regions from LIGO interferometers (light-green) an combined LIGO-Virgo network (dark green),
Fermi and INTEGRAL satellites of IPN (light blue), and Fermi-GBM (dark blue). The top right panel
shows the location of the source taken in the Swope optical telescope at 10.9 hours after the merger.
Bottom right shows an image taken 20 days before the event on DLT-40 telescope. Position of the
possible source is shown with the reticle mark. (The figure is from [20].)
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The detection of gravitational waves played an important role in this discovery. It helped identify

the source, localize it in the sky and estimate its parameters. However, there is still some uncertainty

about this event. It is not clear what exactly happened with the remnant after the collision. The

commonly accepted theory is that the remnant collapsed to a black hole [21] but it is not clear at

what time [22]. Moreover, there is a theory that the remnant could form a long-lived neutron star

under some conditions [23]. This problem can only be solved with observation of gravitational waves

after the merger [24]. However, such gravitational waves would be in 1–4 kHz frequency range. At

these frequencies LIGO and Virgo detectors have very limited sensitivity.

Thus, gravitational waves have become an important tool for multi-messenger astronomy. Simul-

taneous observations of electromagnetic and gravitational waves, accompanied by neutrinos, provide

a perfect framework for astrophysical analyses. It also improves the detection capability of each in-

dividual approach. The possibility of combining different clues from different detection channels al-

lows probing deeply into the nature of the astrophysical events and the universe at large. Among the

most promising sources for multi-messenger astronomy are neutron star binaries and core-collapse

supernovae. While we have only one example of a neutron-star merger, the gravitational waves from

supernovae are yet be observed.

The growing interest in gravitational-wave astronomy calls for new and more sensitive detectors.

These future detectors are often referred to as the third generation (3G) gravitational-wave detectors.

Among them is the Cosmic Explorer proposed by LIGO Laboratory [25]. With the arm length of 40

km it is going to be the largest interferometer on Earth, and it is expected to be an order of magnitude

more sensitive than the current LIGO detectors. Another 3G detector is called the Einstein Telescope.

Proposed by the European collaboration it will have the shape of an equilateral triangle formed by

three independent interferometers with arm length of 10 km [26].

Drastic increase of the interferometer arm length requires placing the detector in space. Several

proposals have been made for space based detectors such as the Laser Interferometer Space Antenna

(LISA) [27–30], TAIJI [31], and TianQin [32]. These interferometers will consist of three spacecraft

on the solar or Earth orbit, at the same distance as Earth, arranged in an equilateral triangle con-

figuration. Each satellite will be equipped with two lasers and two test masses together forming

three Michelson interferometers. All test masses will be free-falling while moving on their geodesic

trajectories effectively eliminating the suspension noise that dominates the low frequency band of
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Earth-based detectors. With arm lengths of the order 105 – 106 kilometers these detectors will be

capable to detect gravitational-wave signals with sub-Hz frequencies characteristic for compact bi-

naries in their early stages of evolution, long before the final collision occurs.

With the development of future gravitational-wave interferometers it will also be possible to

detect new types of sources such as galactic CCSN [33] and extract additional information about the

explosion from the detected gravitational-wave signatures [34]. CCSNe are of major interest for the

scientific community because they help to understand better the origin of neutron stars and black

holes, the nucleosynthesis of heavy elements, as well as the particle interactions that happen under

the conditions of extreme pressure, gravity and density. However, the frequency of gravitational

waves from CCSN can be very high so that the corresponding wavelengths can be comparable to the

size of future detectors. In this case the long-wavelength approximation that was widely used in the

analysis of current gravitational-wave interferometers will no longer be valid. The extension of the

signal to higher frequencies results in additional distortions of the waveforms of the gravitational

waves. These effects become even more important for space-based interferometers which can detect

signals with wavelength much smaller than their arm lengths, thus operating in the regime quite

opposite to that of the long-wavelength approximation.

Dissertation overview

In this work we will develop a mathematical approach to analyze, model and classify the signal

distortions introduced by gravitational-wave interferometers. We will apply this analysis to study

the distortions of gravitational-wave signals produced by CCSN.

In chapter 1 of this dissertation we will provide background information about the nature of

gravitational waves. We will describe how gravitational waves interact with photons and how one

can use electromagnetic waves to detect perturbations of the space-time metric. Equations for pho-

ton propagation in presence of a gravitational wave will be used to model one-arm and Michelson

interferometers. These models include analytical equations for the detector transfer function and

its impulse response. We will show how these two quantities can be used as two different methods

for numerical simulations of gravitational wave detection and discuss their limitations. Next, we

will consider various types of CCSN signals using the numerical waveforms published thus far. Dif-
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ferent features of a gravitational-waves signature in these signals carry different information about

physical processes during supernova explosion. This information will be essential for understanding

the consequences of the induced distortions. The main features of the signals include short-duration

pulses for bounce signal, quasi-monochromatic SASI modes, and chirped p- and g-modes that are

usually present in the numerical waveforms from simulation of CCSN. The information carried by

these features makes future detection of CCSN-produced gravitational waves of primary interest for

the astrophysical community.

One of the simplest distortions that follow from the phase of the transfer function is group delay of

gravitational wave signals. This phenomenon will be reviewed in chapter 2. We show how the group

delay varies with frequency and source location in the sky. Note that different detectors will have

different delays and this will result in a systematic error in the source localization and waveform

reconstruction. We also derive analytical equations describing the group delay and the corresponding

chirp delay. To validate our theoretical predictions we will use the interferometer model developed

in the previous chapter to perform the numerical simulations. One of the most interesting results

of our model is that for some source locations of the source the delay will be negative which means

that the signal will be detected before the gravitational wave arrives at the detector site. This can

be attributed to the anomalous dispersion of the interferometer transfer function. We will perform

additional numerical simulation to consider possible violations of causality. We will also show how

the regions on the sky with different group delays change with the frequency of the signal.

In chapter 3, we will conduct further analysis of the interferometer transfer function and derive

additional equations that describe the signal distortions. These equations work well for SASI mode

of the core collapse, and they will allow predicting the mode frequency detuning as well as the chirp

and the signal broadening. Results that describe the mode frequency detuning will be applied to

the analysis of distortions of the modes with changing frequency, such as p- and g-modes. In both

cases our predictions from analytical equations will be compared with the numerical simulations. To

analyze distortions of the bounce signal we will use the interferometer transfer function and the im-

pulse response. We will show the symmetry property of the distortions that follow from the transfer

function properties and confirm our predictions with numerical simulations. For each feature we will

discuss the effect of the distortions on the information about the supernova explosion.

In chapter 4, we will study the transfer functions of one-arm and Michelson interferometers.
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We will analyze the zeros of the transfer functions and show how they change the interferometer

behavior for different locations of the source in the sky. We will develop an efficient algorithm for

calculating the zeros of the one-arm interferometer with arbitrarily high precision. The algorithm

and the information obtained with it will then be used to derive the equations for critical points of a

Michelson interferometer. The critical points represent the source location and the signal frequency

for which the detector generates largest distortions of the signals.

In the Conclusion chapter we will briefly summarize the results of this work and outline possible

applications of this analysis for future detectors.
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CHAPTER 1

DETECTION OF GRAVITATIONAL WAVES

1.1 General relativity

In general relativity the separation between two events is described with a quantity called interval

which stays the same in any coordinate system. That is to say that interval is invariant under

coordinate transformations. For flat (Minkowski) space-time the interval is given by

ds2 =−c2dt2 +dx2 +d y2 +dz2, (1.1)

where c is the speed of light. General relativity allows more complicated forms of the interval which

can be expressed with the help of metric tensor gµν that describes the local properties of the space-

time. Denote the curvilinear coordinates xα1. Then

ds2 = gµνdxµdxν. (1.2)

The interval allows us to describe trajectory of a free-falling particle that moves in space-time

defined by gµν. This trajectory is called geodesic and the corresponding equation is geodesic equation.

A particle moves according to the principle of least action with action S defined by

S =−mc
∫

ds. (1.3)

1From now on we will use Greek letters to represent indices of space-time vectors and Latin letters for indices of space
vectors.
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From the least action principle (δS = 0) follows the geodesic equation:

d2xµ

ds2 +Γµαβ dxα

ds
dxβ

ds
= 0, (1.4)

where Γµαβ are the connection coefficients

Γµαβ = 1
2

gµγ
(
∂βgγα+∂αgγβ−∂γgαβ

)
, (1.5)

where ∂α = ∂
∂xα .

The connection coefficients are important if we want to know how a vector field changes with

coordinates. If we want to find vector difference at points xβ and xβ + dxβ we need to perform a

parallel transport of the vector from one point to another. However, in curvilinear coordinates a

vector can change its component during parallel transport. This change is described with the help of

connection coefficients Γ. The total change of a vector field Aµ during an infinitesimal transport by

dxβ consists of two parts: one is the change of the vector field components dAµ, and the other is the

change of the vector due to change of the basis:

DAµ = dAµ+ΓµαβAαdxβ. (1.6)

This property of the geodesic line helps us understand better (1.4), because they correspond to

the first Newton law in free space: in absence of external forces the velocity of an object is constant.

Similarly, for space-time we can introduce generalized 4-velocity of an object uµ = dxµ/ds. During

motion of the object, its 4-velocity stays constant:

Duµ = 0. (1.7)

The connection coefficients carry important information about structure of space-time. For ex-

ample, a vector Aα will change if we perform parallel transport along a closed infinitesimal contour.

To create this contour we transport vector Aα by duβ, dvν, −duβ and close it by −dvν translation.

The area enclosed by the contour can be written as ∆sβν = duβdvν−duνdvβ. The total change of the
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vector is given by

δAµ = 1
2

Rα
µβνAα∆sβν, (1.8)

where Rα
µβν is the Riemann curvature tensor:

Rα
µβν = ∂βΓαµν−∂νΓαµβ+ΓαγβΓγµν−ΓαγνΓγµβ. (1.9)

Ricci tensor is obtained by contraction of the curvature tensor with respect to two if its indices:

Rµν = gαβRαµβν = Rα
µαν. (1.10)

Similarly, we can define the scalar curvature of space-time:

R = gµνRµν. (1.11)

Space-time curvature is a good candidate for the definition of Lagrange density required for

gravitational field action because it is a scalar that contains metric tensor and its derivatives:

Sg =− c3

16πG

∫
R

√
|g|d4x, (1.12)

where G is Newton constant and g = det gµν. Integration goes over the enclosed 4-volume in curvi-

linear coordinates. The quantity
√|g| can be viewed as the Jacobian of the transformation from the

rectilinear to curvilinear coordinates.

Variation of the gravitational field action with respect to δgµν is

δSg =− c3

16πG

∫ (
Rµν− 1

2
gµνR

)
δgµν

√
|g|d4x. (1.13)

Matter action that creates the gravitational field can be described by

Sm = 1
c

∫
L

√
|g|d4x, (1.14)
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where L is the Lagrangian density of the system. Variation of the matter action is

δSm = 1
2c

∫
Tµνδgµν

√
|g|d4x, (1.15)

where Tµν is the stress-energy tensor,

Tµν = 2√|g|

[
∂
√|g|L
∂gµν

− ∂

∂xα

(
∂
√|g|L
∂∂αgµν

)]
. (1.16)

The principle of least action implies that the total variation of the action is equal to zero:

δSg +δSm = 0. (1.17)

This condition gives us the Einstein equations for gravitational field:

Rµν− 1
2

gµνR = 8πG
c4 Tµν. (1.18)

They describe how the curvature of space-time changes under the influence of matter.

The stress-energy tensor is equal to zero away from material objects:

Tµν = 0. (1.19)

In this case, the gravitational field equations take the form

Rµν = 0. (1.20)

This equation describes the spatial configuration and temporal evolution of the gravitational field

away from the source. This field can time-dependent and propagate through space in a wave-like

manner [1].
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1.2 Gravitational waves

Consider small perturbations of the Minkowski metric

gµν = ηµν+hµν, (1.21)

where hµν represents the perturbation. For convenience, we introduce the modified perturbation

h̄µν = hµν− 1
2
ηµνhαα. (1.22)

This quantity allows us to define the Ricci tensor (1.10) up to the first order of magnitude in more

compact form

Rµν = ∂α∂αh̄µν. (1.23)

After substitution of this expression into equation (1.18), we obtain the equation that describes

the generation of gravitational waves

1
2

(
− 1

c2
∂2

∂t2 + ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
h̄µν = 8πG

c4 Tµν. (1.24)

This is the wave equation and its solution can be written with the help of retarded Green function

h̄µν(t, x)= 4G
c4

∫ Tµν(tret, x′)
|x− x′| d3x′, (1.25)

where retarded time tret = t−|x−x′|/c and integration is performed over the region of space that fully

encompasses the source. In many cases we are interested in the gravitational wave far away from

the source, say at distance r. Keeping only the monopole components we can simplify equation (1.25)

h̄µν(t, r)= 4G
c4r

∫
Tµν(t− r/c, x′)d3x′. (1.26)

The stress-energy tensor satisfies the law of momentum and energy conservation

∂νTµν = 0, (1.27)
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from which it follows that

∂2
0

∫
T00xix jd3x= 2

∫
T i jd3x. (1.28)

The integral in the left part represents the quadrupole moment of the system:

I i j(t)= 1
c2

∫
T00xix jd3x, (1.29)

Therefore, the gravitational wave radiated by the source is given by

h̄i j = 2G
c4r

Ï i j(t− r/c), (1.30)

where Ï i j = c2∂2
0I i j. Thus, the gravitational wave is generated by a system with time-varying

quadrupole moment. This can be a binary star system or asymmetric stellar explosion. In contrast,

a rotating spherical object would not produce gravitational waves.

To first order in h, a small gravitational wave is described by the wave equation and, therefore,

it propagates through space as a wave. It can be approximated as a plane wave when the distance

between the source and the observer becomes very large. Let the wave propagate along the z axis.

In this case the gravitational wave equation will be

(
1
c2

∂2

∂t2 − ∂2

∂z2

)
h̄µν = 0. (1.31)

Because of the gauge freedom, we can choose hµν to be transverse and traceless [35]:

∂µhµν = 0,

hµµ = 0.
(1.32)

For a traceless gravitational wave h̄µν = hµν. Therefore, we can replace h̄ with h in equations (1.30)

and (1.31).

After gauge fixing, the gravitational wave tensor will have only two independent components
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which represent two gravitational-wave polarizations: h+ and h×,

hµν =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


. (1.33)

The coordinate system in which the gravitational-wave tensor has form (1.33) will be called the

gravitational-wave frame.

We have thus seen that any motion of matter that breaks the spherical symmetry have to pro-

duce gravitational waves. This can be, for example, two stars orbiting each other and thus producing

periodic gravitational waves. Or, this can be aspherical explosion of a star (supernova) that would

produce a short pulse of gravitational waves. In both cases, the gravitational waves will carry impor-

tant information about the physical processes happening at the source.

1.3 Gravitational waves from Core-Collapse Supernova

During its evolution a star burns its matter in a thermonuclear reaction, producing heavier elements.

This process can not last forever and stops with the elements that turned into iron. After that, the

future of the star depends on its initial mass. If it is big enough, then the pressure inside the

core can overcome the electron-degeneracy pressure and the runaway thermonuclear reaction starts,

detonating the star and producing elements that are heavier than iron [36]. For a star with initial

mass between 1.4 and 9 solar masses, this event will appear as a supernova, leaving behind a white

dwarf in its place. During the explosion of a heavier star with the mass up to 140 solar masses,

protons start capturing electrons, producing neutrons, neutrinos, and gamma radiation. This process

reduces pressure and increases density of the star core. The core implodes, producing a core-collapse

supernova (CCSN) and leaving a neutron star as a remnant. For an even heavier star with the initial

mass up to 200 solar masses, radiation pressure during the collapse is so high that it disperses the

star without any remnant, producing a pair-instability supernova. Finally, a star with the mass over

200 solar masses will collapse into a black hole, which prevents some of the energy from leaving it

and thus weakens the supernova phenomenon.
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Figure 1.1: Examples of numerical simulations of gravitational waves from rapidly-rotating CCSN.
On the left there are time series (top) and spectrogram (bottom) of the signals made by Richers et
al [37]. Top left panel shows waveforms from explosion of PNS with different rotational parameters.
The spectrogram on bottom left panel corresponds to the case of PNS rotating at 9.5 rad/s. On the
right there are time series (top) and spectrogram (bottom) of the waveform from the numerical sim-
ulation conducted by Cerda-Duran et al [38]. In this simulation the PNS was initially rotation with
angular rate of 2 rad/s. The spectrogram on the bottom right shows the bounce and additional core
oscillation modes that appear during the explosion.
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In this work we are interested in CCSNe. During the core collapse, there are two regions of

the core behaving differently. The inner part of the core shrinks, and the matter from the outer

part falls onto the inner part with the supersonic speed. At some moment, the inner part reaches

supranuclear densities and stiffens, stopping the collapse and bouncing back. This process is called

core bounce. It produces a shock wave that propagates towards the outer part. However, this shock

wave loses its energy as it expands. At some moment the shock wave stalls, and without additional

energy supplied to the shock wave the star collapses into the black hole. However, there are different

mechanisms that provide additional energy to the shock wave, making the star explode. One of

the sources of this energy is neutrino convection between the inner and outer parts. Neutrinos,

emitted during the electron capture in the inner core, carry energy that is absorbed in the outer

core behind the shock wave, preventing the star from collapsing. Another mechanism for the shock

wave revival is Standing-Acretion Shock Instability (SASI), which produces non-radial oscillations

of the shock wave. These oscillations allow small portions of matter from the outer core to reach the

inner core. This process supplies electrons and protons to the region where electron capture happens,

enhancing the neutrino convection and contributing to the star explosion. Neutrino convection, SASI,

and accretion flow of the matter perturb the star core and produce aspherical oscillations [39]. These

oscillations correspond to time-varying quadrupole moments and, according to equation (1.30) should

produce gravitational waves. Therefore, the mechanisms that are essential for CCSNe also produce

gravitational waves and these two processes are highly connected.

There is no simple physical model of the CCSN due to stochastic nature of the explosion. In-

stead, a rigorous numerical simulation is necessary to calculate dynamics of the core collapse. This

simulation starts from a proto-neutron star (PNS) with its own mass and distribution of different

elements produced during the thermonuclear fusion. After that, star evolution is calculated, taking

into account general relativity, magnetohydrodynamics, and quantum effects, all at the same time.

Therefore, the simulation depends on a large number of parameters. However, one of the most im-

portant parameters that affects emission of the gravitational waves is rotation of the original PNS

[39].

Rapidly rotating stars are oblate due to centrifugal force. This leads to the slower core bounce

along the equatorial plane than the rotational axis. An aspherical motion like this triggers a short

(10-20 ms) bounce gravitational wave. Rotational non-axisymmetric instabilities give additional de-
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Figure 1.2: Examples of numerical simulation of gravitational waves from slowly rotating CCSN.
The left panel shows spectrogram of the waveforms from simulations made by Kuroda et al [40]
for 15M¯ progenitor. Additional overlay to this simulation shows fits to the f-mode and SASI. Fre-
quency of the f-mode carries important information about the state of the PNS during the explosion,
while development of SASI carries information about the equation of state. The right panel shows
a spectrogram of the gravitational-wave signal from the simulation made by Radice et al [41] for a
progenitor with mass M = 9m¯. The line on this spectrogram corresponds to f-mode as well as low
lower g-modes, but signs of SASI mode are not present.

formation to the star, which changes its quadrupole moment, resulting in the emission of gravita-

tional waves after the bounce [42]. Simulations of rotating stars show that a gravitational wave

produced by the core bounce signal has the highest amplitude. Usually, the amplitude of the grav-

itational wave grows with the rotational rate. However, at extreme rotations the centrifugal force

prevents the matter from the outer core from falling onto the inner core, which reduces the inner

core density during the bounce. For example, the amplitude of the bounce signal from the progenitor

rotating at angular frequency 9.5 rad/s is less than the amplitude of the signal from the slower rotat-

ing progenitor, as shown in Fig. 1.1. In addition to the bounce signal, sometimes SASI and neutrino

convection make the core of the PNS oscillate. These oscillations can be seen as ridges in the spec-

trograms of the gravitational-wave signal. The ridges show change of the oscillation frequency with

time. Examples of such modes are shown in the bottom right panel of Fig. 1.1.

Non-rotating or slowly-rotating PNSs remain spherical during the bounce and do not emit grav-

itational waves at this moment of time. In the later stages of the core collapse neutrino convection

and SASI drive the explosion and aspherical oscillations of the core. A perturbation of the shock

wave generates vortices on its surface, which pull matter towards the inner core. When the core is

hit with this inflow, it starts to oscillate. This oscillation produces acoustic waves that propagate
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towards the shock wave and thus distorts it even more. It generates more vortices and amplifies the

oscillation. This process generates a gravitational-wave signal with oscillation signatures from the

core and SASI. The core mode changes its frequency because the core density increases during the

process. At the same time the frequency of SASI mode stays the same. The SASI frequency corre-

sponds to the time necessary for matter to reach the inner core and an acoustic wave to propagate

back. Since matter falls into the core with subsonic speed, SASI mode frequency is lower than the

frequencies of the core oscillation modes. An example of spectrograms of a gravitational-wave signal

that shows f-mode and SASI is given in Fig. 1.2. The impact of SASI varies for different models of

explosions, giving them distinctive gravitational-wave features. Some models do not exhibit SASI

but still produce explosion, as shown in right panel of Fig. 1.2.

There are some works [37, 43, 44] that concentrate on bounce and early post bounce parts of

gravitational-wave signals from rapidly rotating progenitors. The bounce usually produces higher

amplitudes of gravitational wave, but they have short duration with less than 5 oscillations in the

signal. The signal from core bounce can be used to estimate rotational parameters of the PNS [43,

45]. Additionally, this signal is a good time stamp which marks the start the explosion. The top-left

panel in Fig. 1.1 shows a family of such signals.

A second type of feature is SASI [44, 46–51]. This instability is a result of positive feedback

between vortices in the shock wave and oscillations of the core. The period of SASI signal corresponds

to the time interval for this feedback to occur and remains constant during the explosion. This allows

estimation of the ratio between shock and core radius by observation of the SASI mode frequency

[52]. Gravitational-wave signal from SASI can be considered as a quasimonochromatic signal. An

example of it is shown in right panel of Fig. 1.2.

The third type of features is related to different oscillations of the PNS core. They are often

called p- and g- modes, depending on what is the nature of the restoring force, pressure or gravity,

that corresponds to the oscillation. The frequencies of the p-modes are higher than g-modes. The fun-

damental p-mode (p0 mode) is called f-mode, and it separates p- and g- modes on the spectrogram.

The lifespan of these features is usually much longer than the duration of the bounce signal [44].

The frequency of these modes depends on properties of the PNS core and shock wave. By tracking

changes of this frequency with time, it is possible to estimate this change. In the work [53] the fre-

quency evolution of different modes is derived from simple spherically symmetric simulation without
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additional assumption. In this work, authors try to estimate relationship between the frequency of

different modes and properties of the core, such as core mass, radius, shock radius, core density and

pressure. This relationship is estimated by introducing polynomial equations that describe depen-

dence of the core modes with the star parameters. The polynomial coefficients of the equations are

fitted to agree with results of numerical calculations [54–56]. It is important to note that these au-

thors do not take into account the amplitude of the signal because the main information is carried

by the frequency of the signal.

To generalize our analysis, we will use simple analytical waveforms that match different features

of the numerical waveforms. To simulate a bounce signal, usually produced by rapidly rotating pro-

genitors, we will use a sine-Gaussian signal with an envelope width of a few oscillations. We will

approximate SASI modes as quasi-monochromatic signals with wide envelope and narrow spectral

width. The amplitudes of p- and g- modes stochastically change with time. However, the most impor-

tant information that these modes carry is in the frequency. Therefore, we will construct a simplified

model, assuming constant amplitude of the modes and polynomial dependence of frequency with

time [53].

1.4 Detection of gravitational waves

As was discussed in the previous chapter, interferometric methods can be used for measuring the

variation in the distance between two points by means of a bouncing photon. These methods allow

achieving high sensitivity for gravitational waves by increasing the length of the path that a photon

travels in one round trip. To show how gravitational waves affect the distance, we will consider a

simple example. Assume that we have two points in the XY plane in the gravitational wave frame.

We can describe the relative position of these points with the vector

a= (ax,ay,0). (1.34)

The definition of distance in general relativity depends on the way of measurement. For simplicity,

we assume that dt = 0 and the distance between two points depends only on their coordinates at a

single instance of time. In the absence of a gravitational wave, the distance between these two points
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is

L0 =
√

a2
x +a2

y. (1.35)

After the arrival of a gravitational wave, this distance becomes

L =√
g i jaia j

≈ L0

(
1+

a2
x −a2

y

2L2
0

h++ axay

L2
0

h×

)
.

(1.36)

The change in the distance, δL = L−L0, will have same order of magnitude as the gravitational wave.

The relative change of the distance is

δL
L0

= L−L0

L0
= 1

2

(
â2

x − â2
y

)
h++ âxâyh×, (1.37)

where the unit vector

â= a
L0

. (1.38)

This equation describes how space is squeezed or stretched in the direction â in the XY plane

of the gravitational wave frame. However, the actual measurement of distance will depend on the

way of the measurement is done. One of such ways is by bouncing a photon from the mirror and

measuring its round-trip time [57].

In general, the impact of a temporal gravitational field on the electromagnetic field can be com-

plex, but it can be simplified if we assume weak gravitational field created by a gravitational wave.

We will consider small perturbations created by a gravitational wave in the electromagnetic field

that propagate in flat space-time.

In the gravitational wave frame we have the following conditions: g00 = −1 and g0i = 0. This

allows us to consider the space properties separately from the time properties. With this notation

the interval in the presence of a gravitational wave becomes

ds2 =−c2dt2 + (δi j +hi j)dxidx j. (1.39)

We will parametrize a geodesic line with parameter ξ: t = t(ξ) and xi = xi(ξ). Then the interval

22



CHAPTER 1. DETECTION OF GRAVITATIONAL WAVES

along the geodesic line of a photon is zero. Therefore,

c2
(

dt
dξ

)2
= [

δi j +hi j(x)
] dxi

dξ
dx j

dξ
. (1.40)

In the presence of a weak gravitational wave we assume that the trajectory of a photon would not

deviate from a straight line. Therefore, we will define small perturbations of the geodesic line δt(ξ)

and δt(ξ)

t(ξ)= t̄(ξ)+δt(ξ), (1.41)

xi(ξ)= x̄i(ξ)+δxi(ξ), (1.42)

where t̄ and x̄ is unperturbed trajectory for flat metric.

The unperturbed trajectory starts at point A with coordinates xi
0 and proceeds in the direction

given by unit vector â. The unperturbed geodesic line will be

x̄i(ξ)= xi
0 + âiξ, (1.43)

and in flat space-time

c2
(

dt̄
dξ

)2
= 1, (1.44)

or,

c
dt̄
dξ

=±1. (1.45)

By choosing ξ as increasing with time we obtain the time component dependence of the unperturbed

geodesic line:

t̄(ξ)= t0 +ξ/c. (1.46)

To derive the trajectory of the photon in the gravitational wave, as well as the time of the prop-

agation, we can divide equation (1.4) over dξ and solve the corresponding system of differential

equations. However, we are interested only in photon propagation time, so we can find it directly
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from the first-order perturbed interval. With the perturbation, equation (1.39) becomes

c2
(

dt̄
dξ

+ dδt
dξ

)2
= [

δi j +hi j(x)
](

dx̄i

dξ
+ dδxi

dξ

)(
dx̄ j

dξ
+ dδx j

dξ

)
. (1.47)

To the first order in perturbation

c2
(

dt̄
dξ

)2
+2c2 dt̄

dξ
dδt
dξ

= [
δi j +hi j(x)

] dx̄i

dξ
dx̄ j

dξ
+2

dx̄i

dξ
dδxi

dξ
. (1.48)

Using equation (1.44) we obtain

2c
dδt
dξ

= hi j(x)âi â j +2âi dδxi

dξ
. (1.49)

Within the first order perturbation theory we can replace the exact geodesic xµ(ξ) with the un-

perturbed trajectory x̄µ(ξ) in the argument of hi j:

hi j(xµ(ξ))≈ hi j(x̄µ(ξ)), (1.50)

with the result:

2c
dδt
dξ

= hi j(x̄(ξ))âi â j +2âi dδxi

dξ
. (1.51)

Integrating this equation we find:

δt(ξ)= âi â j

2c

∫ ξ

0
hi j(x̄(ξ′))dξ′+ âi

c

[
δxi(ξ)−δxi(0)

]
. (1.52)

We can now calculate the time of flight for a photon that propagates between two test masses.

Let the first test mass be located at position r0 and the second at r1. In the absence of gravitational

wave

r1 = r0 + âL,

t1 = t0 +T,
(1.53)

where L is the Euclidean distance between the masses and T is the photon propagation time

T = t̄(L)− t0 = L/c (1.54)
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In the gravitational-wave frame of reference the coordinates r0 and r1 do not change. Therefore,

the geodesic line of a photon propagating between these points will be such that at the beginning

and end δx(0) = 0 and δx(L) = 0. This means that when we consider the total time deviation when a

photon travels along the geodesic line, second item in equation (1.52) will be zero. To the first order

in h the propagation time is

T01 = T +δT, (1.55)

where δT = δt(L) or

δT = âi â j

2c

∫ L

0
hi j(x̄(ξ))dξ. (1.56)

For a plane gravitational wave function hi j can be written as

hi j = hi j

(
t+ n̂ · r

c

)
, (1.57)

where n̂ is the unit vector pointing to the source of gravitational waves on the sky. Substituting this

expression and equation for the unperturbed trajectory (1.43) into equation (1.56) we obtain

δT = âi â j

2c

∫ L

0
hi j

(
t0 + n̂ · r0

c
+ (1+ n̂ · â)ξ

c

)
dξ. (1.58)

We can introduce β= ξ/c:

δT = âi â j

2

∫ T

0
hi j

(
t0 + n̂ · r0

c
+ (1+ n̂ · â)β

)
dβ. (1.59)

In this form δT is a function of x̄0 = (t0,r0), which is the beginning of the unperturbed trajectory.

Expressing r0 and t0 from (1.53) and substituting it into (1.59) we can also write

δT ′ = âi â j

2

∫ T

0
hi j

(
t1 + n̂ · r1

c
− (1+ n̂ · â)β

)
dβ. (1.60)

In this form δT ′ is a function of x̄1 = (t1,r1) which is the end of unperturbed trajectory.

To finish the measurement of the time delay perturbation of a photon it is necessary to reflect the

photon back to the original point r0. Let us consider a photon that started moving in the direction â

at the moment t−2T and finished at the moment t and the same point propagating in the direction
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−â

δTrt(t)= δT(t−2T,r0, â)+δT ′(t,r0,−â). (1.61)

Substituting equations (1.59) and (1.60) we obtain

δTrt(t)= âi â j

2

[∫ T

0
hi j

(
t−2T + n̂ · r0

c
+ (1+ n̂ · â)β

)
dβ

+
∫ T

0
hi j

(
t+ n̂ · r0

c
− (1− n̂ · â)β

)
dβ.

] (1.62)

In this equation gravitational wave is integrated within time window with width 2T. To reflect it in

the equations we introduce a new variable t′ = 2T−(1+ n̂ ·â)β for the first integral and t′ = (1− n̂ ·â)β

for the second integral, which gives us

δTrt(t)= âi â j

2

[
(1− n̂ · â)−1

∫ T(1−n̂·â)

0
hi j

(
t+ n̂ · r0/c− t′

)
dt′+

(1+ n̂ · â)−1
∫ 2T

T(1−n̂·â)
hi j

(
t+ n̂ · r0/c− t′

)
dt′

]
.

(1.63)

First part of this equation corresponds to propagation of the photon from r1 to r0 and second corre-

sponds to propagation from r0 to r1. This equation describes the simplest interferometer possible,

when a gravitational wave is estimated by measurement of the deviation of round-trip time of a pho-

ton reflected from a still object. This technique is known as Doppler tracking [58, 59]. However, a

more precise measurement can be achieved by observing the change of the photon phase. It can be

done by interfering electromagnetic wave with another wave which propagated along different path.

Deviation of the electromagnetic wave phase is proportional to the deviation of the time delay:

δϕ=ωδT. (1.64)

For a plane electromagnetic wave electric field changes as

E (r, t)= E 0 exp(iϕ(r, t)), (1.65)

26



CHAPTER 1. DETECTION OF GRAVITATIONAL WAVES

where E 0 is constant amplitude of the electromagnetic field and ϕ is the phase of the wave

ϕ(r, t)=ω
(
t− â · r

c

)
+δϕ(t), (1.66)

We will consider the electromagnetic wave at the point r0. For simplicity, we can separate the slowly

varying part of E from rapidly changing harmonic part exp(iωt):

E (r, t)= E(t)exp(iωt), (1.67)

where the slowly varying part is given by

E(t)= E0 exp(−iωr0 · â/c+ iδϕ(t)). (1.68)

We assume that the phase delay due to the gravitational wave is very small: δϕ¿ 1, so we can

write

E(t)= E0 exp(−iωr0 · â/c)+ iψ(t)E0 exp(−iωr0 · â/c). (1.69)

The first part in this equation Ē = E0 exp(−iω/c) is the constant amplitude of the wave in flat space-

time and the second part corresponds to electric field perturbation due to the gravitational wave

δE(t)= iδϕ(t)Ē. (1.70)

This equation shows that the electrical field perturbation is proportional to the phase and photon

time delay perturbation.

To derive the transfer function of a one-arm interferometer we will perform bilateral Laplace

transform

δT̃rt(s)=
∫ ∞

−∞
δTrt(t)e−stdt, (1.71)

which gives us

δT̃rt(s)= âi â j

2s
en̂·r0/c

[
e−sT(1−µ) − e−2sT

1+µ + 1− e−sT(1−µ)

1−µ
]

h̃i j(s), (1.72)

where µ= n̂ · â and h̃i j(s) is Laplace transform of the gravitational wave. Expression that stands in

front of the gravitational wave Laplace transform is the transfer function of a one-arm detector [29,
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60]

D̃(s)= en̂·r0/c

2s

[
e−sT(1−µ) − e−2sT

1+µ + 1− e−sT(1−µ)

1−µ
]

. (1.73)

This equation describes the sensitivity of a one-arm detector, or Doppler-tracking detector, to a grav-

itational wave. It is important to note that this transfer function depends on geometrical position of

the source relative to the arm direction, which is expressed in the parameter µ. In the next chapter

we will describe the properties of this transfer function in more details.

The remaining part of the equation (1.72) âi â j represents the polarization sensitivity of the detec-

tor. In the gravitational-wave frame it is possible to define two vectors p̂ and q̂ that are perpendicular

to each other and also perpendicular to n̂. Then, the gravitational-wave tensor can be expressed as

hi j = (p̂i p̂ j − q̂i q̂ j)h++ (p̂i q̂ j + q̂i p̂ j)h×. (1.74)

Therefore, the round-trip time delay perturbation can be expressed in a shorter form

δT̃rt(s)= D̃(s)
(
F+h̃+(s)+F×h̃×(s)

)
, (1.75)

where

F+ = (â · p̂)2 − (â · q̂)2 , (1.76)

F× = 2(â · p̂) (â · q̂) (1.77)

are the polarization sensitivities of the detector. For low frequencies the transfer function D̃ is ap-

proximately equal to 1, and coefficients F+ and F× correspond to the polarization sensitivity in the

long-wavelength approximation.

For a one-arm detector we can choose vector q̂ in such way that it is always perpendicular to the

interferometer arm for any direction to the source. In that case F× = 0 and F+ = 1−µ2. However, for

a Michelson interferometer this selection will not be possible and it is necessary to take into account

both polarization coefficients.
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Figure 1.3: Laser beam in a one-arm detector.

1.5 Round-trip interferometer

An example of a one-arm detector is shown in Fig. 1.3. Even though this interferometer requires only

one mirror, for precise measurements of the phase perturbation of reflected electromagnetic wave it

is necessary to interfere the wave with itself. Therefore, input electric field amplitude E in is split

by a beam splitter. The first beam travels towards mirror and reflects from it, arriving back with

the amplitude E′
a, which carries additional perturbation due to interaction of the electromagnetic

field with the gravitational wave (1.70). Round-trip towards the mirror b is much shorter, and we

consider corresponding perturbation of the field E′
b negligible. The output field Eout is the result of

interference between fields E′
a and E′

b. The signal is measured in the dark port of the interferometer

by the photodiode PD.

For simplicity, we assume that the beam splitter and all mirrors are lossless, and the beam

splitter splits power equally. Then

E′
a(t)= E inp

2
exp(−iϕa)

(
1+ iδϕa(t)

)
, (1.78)

E′
b =

E inp
2

exp(−iϕb), (1.79)

where ϕa = 2ωLa/c and ϕb = 2ωLb/c are the phases that the electromagnetic waves acquire during

the round-trip propagation, and δϕa(t) is the phase perturbation (1.64). The output field in the dark

port of the interferometer is equal to the difference between the arm fields E′
b −E′

a:

Eout(t)= E in

2
(exp(−iϕb)−exp(−iϕa))− i

E in

2
exp(−iϕa)δϕa(t). (1.80)
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The photodiode current IPD is proportional to the power of the electromagnetic wave IPD =
S |Eout|2. Keeping only first order of the δϕa, we get

IPD = S|E in|2 sin
(ϕb −ϕa

2

)[
sin

(ϕb −ϕa

2

)
+cos

(ϕb −ϕa

2

)
δϕa

]
. (1.81)

This equation shows that the photodiode signal turns to 0 when the phase change of an electromag-

netic wave during propagation is the same for both arms. Therefore, it is necessary to give the phase

difference for the arm distances by slightly shifting one of the mirrors. In that case the photodiode

signal will have two components which are the DC component introduced due to the arm phase mis-

match, and the variable component proportional to the gravitational wave. This method of detection

is known as homodyne detection, and is currently used in advanced LIGO [61].

In general, a photodiode’s response to the changing electrical field can be more complicated,

where it can act as a linear system. However, this dependence is usually taken into account during

the interferometer calibration [62]. In this work we assume that the output signal of the interferom-

eter with the subtracted constant part will be proportional to photon time delay perturbation due to a

gravitational wave. Thus, we can use the transfer function D̃(s,µ) (1.73) and polarization sensitivity

coefficients F+ (1.76) and F× (1.77).

We will start exploring the transfer function properties by calculating interferometer impulse

response. For simplicity, in this section we assume only h+ polarization of gravitational wave. Let

the gravitational wave be a delta function with arrival time t0. Then

hi j(t)= h0(p̂i p̂ j − q̂i q̂ j)δ(t− t0). (1.82)

Additionally, we set the center of the coordinate frame at the beam splitter, so r0 = 0. We can

substitute (1.82) to the equation 1.63 and obtain

δTrt(t)= h0

2
(
(p̂ · â)2 − (q̂ · â)2)[H (t− t0 −2T)−H

(
t− t0 −T(1−µ)

)
1+µ

+H
(
t− t0 −T(1−µ)

)−H (t− t0)
1−µ

]
,

(1.83)

30



CHAPTER 1. DETECTION OF GRAVITATIONAL WAVES

0 0.5T T 1.5T 2T

0

h0
4

h0
2

3h0
4

t− t0

δ
T

rt
µ= 0
µ= 0.5

0 0.5T T 1.5T 2T

0

3
8 h0T

3
4 h0T

h0T

t− t0

δ
T

rt

µ= 0
µ= 0.5

Figure 1.4: Round-trip phase change response to delta (left) and step (right) functions for different
source locations. We assume that the arm vector â is perpendicular to the polarization vector q̂.

where H(t) is Heaviside step-function:

H(t)=


1 if t > 0,

0 if t < 0.
(1.84)

Note that the response to the delta function is not physical (Fig. 1.4 left). First, the units of the

delta function is inverse seconds, which means the units of the phase response becomes radians per

second. Second, the delta-function response has a couple of holes in the graph that correspond to

photons bouncing from mirrors at the time of arrival of a gravitational wave on these points. Even

though such a response is not physical, its Fourier transform corresponds to the frequency response

of the system. This response corresponds to the kernel of the linear system. It can be used to

calculate the response to any arbitrary functions by convolution of this function with the kernel.

A more physically meaningful response can be calculated for the step function (Fig. 1.4 right),

which is an anti-derivative to the delta function.

The function in the square brackets from equation (1.83) together with the constant 1/2 make the

impulse response function D(t,µ)

D(t,µ)= 1
2

[H (t−2T)−H
(
t−T(1−µ)

)
1+µ + H

(
t−T(1−µ)

)−H (t)
1−µ

]
. (1.85)
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Finally, the perturbation of the photon round-trip time for a gravitational wave can be expressed as

δTrt(t, n̂)= âi â j
∫ ∞

−∞
D(t− t′, â · n̂)hi j(t′)dt′. (1.86)

The function D has the following symmetry property:

D(2T − t,µ)= D(t,−µ). (1.87)

This symmetry will also appear in the output signal. If the input gravitational wave is even relative

to the moment of time t0,

hi j(2t0 − t)=±hi j(t), (1.88)

then two signals from identical sources, but coming from opposite directions will be even relative to

the moment of time t0 +T:

δTrt(2(t0 +T)− t, n̂)= δTrt(t,−n̂). (1.89)

This symmetry property predicts an overall shift of the detected signal by T with additional devia-

tions, that have different sign for opposite directions to the source.

The impulse response D changes at the moments of time T(1−µ) mark. To explain the origin

of this moment, we consider an example in Fig. 1.5. First, the gravitational wave reaches the end

mirror, as shown in the left panel. The intersection point between the arm and the gravitational-

wavefront propagates faster than the photons. Therefore, the wavefront constantly reaches new pho-

tons that propagate in the same direction (co-moving photons), as shown in the middle panel with the

blue arrow. The beginning of the arrow marks the position of the first photon that the wavefront en-

countered, and the end of the arrow corresponds to the new photon. At the same time the wave-front

intersects with the photons propagating in the opposite direction (contra-moving photons). When the

gravitational wave reaches the beam splitter (right panel), the first co-moving photon that interacted

with the wave front traveled distance Lâ · n̂ = Lµ from the end mirror, and this photon is the last

one in the chain of the co-moving photons. The total length of the co-moving photon chain is L(1−µ),

and the rest of the arm is filled with contra-moving photons. For the next time duration T(1−µ), the

co-moving photons will create the signal. After that, the signal will be created by the contra-moving
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L(1− â · n̂)

Figure 1.5: Propagation of a gravitational-wave front through an interferometer arm with length L.
Blue line marks photons that are moving in the same direction with the gravitational-wave front
when it reaches them.

photons during the next T(1−µ), unless the last photon that interacted with the gravitational wave

pulse will reach the beam-splitter. A similar process happens when the gravitational wave hits the

beam splitter first. In this case, however, the first signal is created by the contra-moving photons,

and the co-moving photons arrive the last.

Bilateral Laplace transform of the impulse response D(t) gives us the interferometer transfer

function (1.73). An interferometer response to a unique gravitational-wave frequencyΩ will be equal

to the transfer function with s = iΩ [60]:

D̃(iΩ,µ)= T
e−iΩT

2

[
e−iΩT(1−µ)/2 sinc(ΩT(1+µ)/2)+ eiΩT(1+µ)/2 sinc(ΩT(1−µ)/2)

]
, (1.90)

where function sinc(x) = sin(x)/x. Two components of this equation represent the interference be-

tween the co-moving and contra-moving photons. Cnsider a train of photons propagating within this

interferometer. Its first part will arrive within time T(1−µ), when the phase of the signal changes

by

2ϕi =ΩT(1−µ), (1.91)

and for the rest of the photons the phase changes by

2ϕr =ΩT(1+µ). (1.92)

We will use these phases to simplify equation (1.90).

Additionally, we want to normalize equation (1.90) to generalize it for any arm length. If we
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Figure 1.6: Round-trip transfer function response for different angles between the arm and direction
to the GW source. For acute angles phase response of the transfer function oscillates between 0° and
−90°, while for obtuse angles phase response constantly decreasing.

normalize the photons round-trip time perturbation (1.63) over the one way arm time T, then the

transfer function (1.90) will be dimensionless, with the value of the transfer function for zero fre-

quency equal to 1. Additionally, we can normalize the frequency too. The length of the arm impulse

response is 2T. Therefore, its free spectral range (FSR) is frt = 1/(2T). From now on, we will assume

the normalized impulse response D(t) and the transfer function D̃(Ω):

D̃(iΩT,µ)= e−iΩT

2

[
e−iϕi sinc(ϕr)+ eiϕr sinc(ϕi)

]
. (1.93)

The magnitude of the normalized transfer function and its phase response are shown in Fig. 1.6.

The symmetry property of the impulse response (1.87) is also manifested in the transfer function.

By taking the Fourier transform of this equation, we find that the amplitude of the transfer function

is even relative to the µ:

|D̃(iΩ,µ)| = |D̃(iΩ,−mu)|. (1.94)

At the same time the phase of the transfer function is odd relative to the point −ΩT:

arg(D̃(iΩ,µ))=−2ΩT −arg(D̃(iΩ,−µ)). (1.95)

Another property of the transfer function is related to its imaginary part. After some algebraic
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Figure 1.7: Round-trip transfer function response on the complex plane.

transformations we obtain

Im{D̃(iΩT)}=− 1
2ΩT

1+µ−2µcos(2ϕi)− (1−µ)cos(2ΩT)
1−µ2 . (1.96)

The numerator of this equation is bound from below:

1+µ−2µcos(2ϕi)− (1−µ)cos(2ΩT)≥ 2(µ−|µ|). (1.97)

Therefore, for positive µ the imaginary part of the transfer function is not greater than zero

Im{D̃(iΩT)}≤ 0. (1.98)

For positive values of µ, the transfer function lies below the real axis, and the phase of the transfer

function is within the interval [−180°,0]. For negative values of µ, the transfer function encircles

the point (0,0) slowly approaching it. In this case, the phase of the transfer function monotonically

decreases with frequency. The behavior of the transfer function on the complex plane is shown in

Fig. 1.7.

1.6 Michelson interferometer

The layout of the Michelson interferometer is similar to the layout of the one-arm detector. However,

now arm b has the same length as arm a. A schematic layout of the Michelson interferometer is
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Figure 1.8: Laser beam in a Michelson interferometer.

shown in Fig. 1.8. In this configuration the electromagnetic field is perturbed in both arms, and

these perturbations interfere at the beam splitter, producing the signal in the output port of the

interferometer.

Eout(t)= 1p
2

(E′
b(t)−E′

a(t)), (1.99)

where the fields in each arm are

E′
a(t)= E inp

2
exp(−iϕa)

(
1+ iδϕa(t)

)
, (1.100)

E′
b(t)= E inp

2
exp(−iϕb)

(
1+ iδϕb(t)

)
. (1.101)

The phase perturbations δϕa(t) and δϕb(t) are described by equation (1.64), with unitary arm

vectors â and b̂. Phases ϕa = 2ωLa/c and ϕb = 2ωLb/c are the unperturbed phases of round-trip

photons in both arms. The interferometer output field is

Eout(t)=−i
E in

2
exp

(
i
ϕb +ϕa

2

)[
2sin

(ϕb −ϕa

2

)
−cos

(ϕb −ϕa

2

)
(δϕb(t)−δϕa(t))

+isin
(ϕb −ϕa

2

)
(δϕb(t)+δϕa(t))

]
.

(1.102)

The signal from the photodetector, up to the first order of δϕ, will be

IPD = S|E in|2 sin
(ϕb −ϕa

2

)[
sin

(ϕb −ϕa

2

)
−cos

(ϕb −ϕa

2

)
(δϕb(t)−δϕa(t)).

]
. (1.103)
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This result is similar to the equation (1.81) for the one-arm detector. However, now the signal is

proportional to the difference in the perturbations of fields in two arms. Usually the interferometer

arms are equal to each other, with small detuning on the order of the laser wavelength to produce

the homodyne output. This allows us to normalize the impulse response and the transfer function of

both arms over one-way time T and use the normalized transfer functions from the previous section.

After subtraction of the DC component, the photodiode signal becomes

δIPD =G
(
δTrt(t, b̂)−δTrt(t, â)

)
, (1.104)

where the gain is given by

G = S|E in|2ωT
2

sin(ϕb −ϕa). (1.105)

The impulse response of the photodetector in Michelson interferometer can be derived from equa-

tion (1.104) by substituting the corresponding responses for round-trip time (1.83). However, now we

need to consider both + and × polarizations of the gravitational wave. For Michelson interferometer,

we cannot rotate gravitational wave coordinate frame in such a way that vector q̂ is perpendicular

to both arms for an arbitrary source. Therefore, we need to provide impulse response for + and ×
polarized impulses:

hi j
+ = h0(p̂i p̂ j − q̂i q̂ j)δ(t− t0), (1.106)

hi j
× = h0(p̂i q̂ j + q̂i p̂ j)δ(t− t0). (1.107)

The impulse response will be

δIPD+ = h0G(F+(b̂, n̂)D(t, b̂ · n̂)−F+(â, n̂)D(t, â · n̂)), (1.108)

δIPD× = h0G(F×(b̂, n̂)D(t, b̂ · n̂)−F×(â, n̂)D(t, â · n̂)), (1.109)

where polarization sensitivity coefficients F+ and F× are defined in (1.76) and (1.77), and D(t,µ) is

the one-arm detector impulse response. In addition to µ = â · n̂, we introduce another coefficient
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ν= b̂ · n̂. Using these notations, we can introduce two Michelson interferometer impulse responses:

M+(t,µ,ν)= 1
2

(
F+(b̂, n̂)D(t,ν)−F+(â, n̂)D(t,µ)

)
, (1.110)

M×(t,µ,ν)= 1
2

(
F×(b̂, n̂)D(t,ν)−F×(â, n̂)D(t,µ)

)
. (1.111)

The Michelson transfer functions have the symmetry property similar to that of the one-arm

detector (1.87). The arm sensitivities have symmetry for source direction flip:

F+(â, n̂)= F+(â,−n̂), (1.112)

F×(â, n̂)=−F×(â,−n̂). (1.113)

Therefore, if the source direction changes sign, then the Michelson impulse response is reflected

relative to time T:

M+(2T − t,µ,ν)= M+(t,−µ,−ν), (1.114)

M×(2T − t,µ,ν)=−M×(t,−µ,−ν). (1.115)

To see how the response changes with the source location, we need to introduce a suitable coor-

dinate system. A Michelson interferometer has one additional degree of freedom, which is the angle

between interferometer arms α. In this analysis we assume that this angle can be arbitrary taking

values from 0◦ to 180◦ but excluding the boundaries. Based on two arm vectors â and b̂, we can

introduce the coordinate system by placing the arms in the equatorial plane and setting the angle

between â and x̂ equal to the angle between b̂ and ŷ, as shown in Fig. 1.9. In this coordinate system

every unit vector can be defined in terms of the source azimuth φ, elevation θ, and gravitational

wave coordinate frame angle ψ.
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Figure 1.9: Coordinate system introduced for a Michelson interferometer with arm directions â and
b̂. Orthogonal axes x̂ and ŷ share the same bisector with the vectors â and b̂. Azimuth angle φ and
elevation angle θ set direction towards the source n̂. Vectors p̂ and q̂ are two polarization vectors of
an incoming gravitational wave.

â= cos(π/4−α/2)x̂+sin(π/4−α/2) ŷ, (1.116)

b̂ = sin(π/4−α/2)x̂+cos(π/4−α/2) ŷ, (1.117)

n̂= cos(θ)cos(φ)x̂+cos(θ)sin(φ) ŷ+sin(θ)ẑ, (1.118)

êφ =−sin(φ)x̂+cos(φ) ŷ, (1.119)

êθ =−cos(φ)sin(θ)x̂−sin(φ)sin(θ) ŷ+cos(θ)ẑ, (1.120)

p̂ = cos(ψ)êφ+sin(ψ)êθ, (1.121)

q̂ =−sin(ψ)êφ+cos(ψ)êθ. (1.122)

The response to the δ-function will look like the sum of two responses, similar to the response

shown in Fig. 1.4. The result will consist of three steps within the round-trip time 2T. The ampli-

tudes of these steps depend on the location of the gravitational wave source. The expressions for the

round-trip response can be quite long, so we just plot some characteristic examples in Fig. 1.10 for

+ polarization and in Fig. 1.11 for × polarization. It is important to note that the coordinate system

defined above is suitable for a single detector. In this case, it is convenient to set ψ= 0. However, for a

network of detectors we will need a new coordinate system, with different detectors having different
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Figure 1.10: Michelson interferometer response to + polarization δ function. Left: source with opti-
mal orientation φ= 0°, θ = 90°. Right: source with orientation φ= 135°, θ = 0°.

locations r0 and different arm directions. In this case angle ψ will be unique for each detector, and

the corresponding vectors will be rotated according to the new detector position.

When the direction to the gravitational wave source is perpendicular to the plane formed by the

interferometer arms (θ = ±90°), the response to the δ-function looks like a square wave shown in

the left panel of Fig. 1.10. In this regime the output of the interferometer is proportional to the

gravitational wave signal averaged over time interval 2T. Therefore, the response becomes zero only

for harmonic signals with period 2T/i, i εN.

When the source of the gravitational wave has azimuth 45° or 225° (gravitational wave passes

right in the middle between two arms), the response to the + polarization is zero. For these source

directions, the photon round-trip time perturbations in both arms are the same, so they cancel in the

output signal.

Another special case is when azimuth to the source is 135° or 315°, or µ = −ν. In this case the

round-trip response of the arm a transforms to the round-trip response of the arm b relative to the

time moment T. The arm sensitivities are the same for + polarization F+(â) = F+(b̂). Subtraction

of these two responses results to the response with first and last step having the same amplitudes

and opposite signs, while the middle step is zero as shown in the right panel of Fig. 1.10. This

response corresponds to the derivative of the input gravitational wave signal. The distance between

the points that are taken for the derivative calculation, as well as the averaging intervals for these

points depend on the elevation angle of the source and the angle between arms. The width of the
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Figure 1.11: Michelson round-trip response to × polarization δ function. Left: source located at
φ = 5°, θ = 30°, angle between interferometer arms α = 60°. Right: source located at φ = 135°,
θ = 10°, angle between interferometer arms α= 90°.

first and the last steps are cos(θ)sin(α/2).

The response to × polarization does not have this differential feature. The reason for that is the

change of the sign for arm sensitivity: F×(â) = −F×(b̂). As a result, for × polarization the impulse

response at angles 135° and 315° represents three steps, with the first and last having the same

amplitude, as shown in the right panel of Fig. 1.11.

By taking Laplace transform we can derive the Michelson interferometer transfer function:

M̃+(s,µ,ν)= 1
2

(
F+(b̂, n̂)D̃(s,ν)−F+(â, n̂)D̃(s,µ)

)
M̃×(s,µ,ν)= 1

2
(
F×(b̂, n̂)D̃(s,ν)−F×(â, n̂)D̃(s,µ)

)
.

(1.123)

The response of the Michelson interferometer to a particular gravitational-wave frequency fol-

lows from the normalized transfer functions:

M̃+(iΩT,µ,ν)= 1
2

(
F+(b̂, n̂)D̃(iΩT,ν)−F+(â, n̂)D̃(iΩT,µ)

)
(1.124)

M̃×(iΩT,µ,ν)= 1
2

(
F×(b̂, n̂)D̃(iΩT,ν)−F×(â, n̂)D̃(iΩT,µ)

)
. (1.125)
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1.7 Detection prospects of CCSNe gravitational-wave signals

Core-collapse supernovae are of great interest for the astrophysical community. These explosions

give insight into the origin of neutron stars and black holes, processes of nucleosynthesis of heavy

elements, as well as particle interactions under extreme pressure, gravity, and density. Observation

of neutrino and gravitational waves from the explosion can provide early signs that a supernova

occurred somewhere in the universe. Moreover, these messengers carry signatures of processes hap-

pening in the core of a proto-neutron star, that are often hidden from electromagnetic observation by

the outer shell of the star. Thus far, there has been no direct observation of gravitational waves from

CCSN. Research points towards more sensitive future detectors capable of detecting galactic CCSNe

[34, 56]. This will open a new window for observations of CCSNe which can improve our understand-

ing of the processes happening in a PNS during the core collapse and explosion. However, even with

the future interferometers, detection of a gravitational wave from core collapse would not be easy.

The main difficulty in detection of a CCSN gravitational wave is the stochastic nature of the core

collapse and the existence of many factors that could drastically change the waveform morphology.

Currently, numerous numerical simulations of CCSN have been conducted [37, 38, 40, 41, 43, 44, 46,

48–50, 54, 63–68], and many of them show similar features attributed to different types of explosions

[39].

A modern approach to detect CCSN gravitational waves is by using BayesWave [69] or cWB [70]

algorithms. BayesWave uses Morlet-Gabor (sine-Gaussian) wavelets for signal reconstruction, while

cWB uses Meyer wavelets. Although these wavelet-based methods are a good fit for detection of

bounce and early post-bounce parts of SN waveform, they are not suitable for long tails of later parts

of the signal [71]. A better approach for detailed triggered surveys is Principal Component Analysis

(PCA), where a set of orthogonal functions is created from many simulated supernova waveforms

[34, 72–74]. In the work by Logue [72] it is shown how different mechanisms of explosions produce

different SN waveforms with very distinct principal components. Detection of these waveforms is

performed by minimizing the difference between the waveform and the set of principal components,

which can be reduced to matched filtering.

Distortions of CCSN gravitational-wave waveforms due to geometrical orientation of the source or

errors in calibration of the detector may result in decreased detection probability and wrong estima-
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tion of the explosion parameters. Changes of the width of the bounce signal envelope, the frequency

shift or even the phase shift could result in wrong estimation of the rotational parameters. Time

and frequency shifts of the SASI component could also lead to wrong conclusions about the radius

of the shock wave and its duration. Errors in the measurement of frequency evolution of p- and g-

modes could lead to incorrect estimation of the core size and mass. Moreover, such distortions could

introduce a mismatch between the waveform and principal components used during PCA, as well as

reduce cross-correlation between different detectors in the network.
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GRAVITATIONAL WAVE DETECTOR GROUP DELAY

When multiple gravitational-wave detectors operate simultaneously, they detect a gravitational wave

each in its own moment of time. The time difference between detection arises from different locations

of the detectors on Earth. This time difference allows to triangulate the source of the gravitational

wave as a point in the sky. Therefore, precise measurement of the signal arrival is important for

source localization [75]. In the course of this work we have found that there is additional time delay

that originates from the group delay within each interferometer. In this chapter we will explore this

intrinsic delay. We will consider a quasimonochromatic signal: a signal with Sine-Gaussian envelope

and constant carrier frequency. The group delay of such signals depends on the carrier frequency and

properties of the transfer function [76]. For gravitational wave interferometers the group delay will

also depend on the source location and the polarization of the incoming gravitational wave.

2.1 Complex phase of transfer function

To introduce the main concepts of this chapter it would be helpful to consider first the electromagnetic

analogy. In electromagnetic theory a wave f (t, z) traveling from the left (z < 0) is incident on a slab

of dispersive medium at z ≥ 0. Let its free-space Fourier spectrum be

Ẽ(ω)=
∫ ∞

−∞
E(t,0) e−iωtdt. (2.1)

Then the EM wave in the medium will be described by

E(t, z)=
∫ ∞

−∞
Ẽ(ω)eiωte−ik(ω)z dω

2π
, (2.2)
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where k(ω) = k0
p
ε(ω) and k0 = ω/c is the free-space wavenumber. In general ε(ω) is a complex

number and therefore k =α+ iβ allowing possible absorption in the medium. Then

E(t, z)=
∫ ∞

−∞
Ẽ(ω)eiωte−iα(ω)ze−β(ω)z dω

2π
. (2.3)

Here α(ω) is known as the propagation factor and β(ω) is the attenuation factor. The first is responsi-

ble for the advancement of the phase and the second is for the gradual decay of the amplitude within

the medium.

It is our intention to follow this picture as much as possible even though the circumstances can

be very different. In case of gravitational wave h(t) producing output y(t) in an one-arm detector we

have

y(t)=
∫ ∞

−∞
D̃(ω)h̃(ω)eiωt dω

2π
, (2.4)

where D̃(ω) is the one-arm detector transfer function (1.93). Thus, it is tempting to introduce the

notation

D̃(ω)= e−ik(ω), (2.5)

even though k(ω) is not a wavenumber and has the dimensions of radians instead of inverse meters.

We can think of k(ω) as complex phase, whose real part α(ω) is responsible for phase retardation and

imaginary part β(ω) for amplitude attenuation:

k(ω)=α(ω)+ iβ(ω). (2.6)

Note that both α(ω) and β(ω) are real functions of ω.

In what follows we will use primes to denote differentiation with respect to frequency:

D̃′(ω)= dD̃
dω

. (2.7)
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We shall also use the following formulas:

α= i
2

ln
(

D̃
D̃∗

)
, (2.8)

β= 1
2

ln
(
D̃D̃∗)

, (2.9)

and consequently

α′ =−Im
(

D′

D

)
, (2.10)

β′ =Re
(

D′

D

)
, (2.11)

where prime denotes differentiation with respect to ω.

Consider now a quasi-monochromatic signal which is obtained from purely monochromatic signal

at frequency ω0 by introducing modulation:

h(t)= A(t)eiω0 t, (2.12)

where A(t) is the slowly-varying amplitude. By allowing A(t) to be complex function of time we can

account for both amplitude and phase modulation.

We assume that the signal is of narrow band and all of its energy is concentrated within the band

ω ∈ [−∆ω,∆ω]. For such a signal, Fourier spectrum Ã(ω) becomes negligible for frequencies outside

the band. The usual condition for narrow-band signals: δω¿ω0 will be augmented here by another

somewhat more stringent condition below.

Fourier transformation of h(t) leads to

h̃(ω)= Ã(ω−ω0). (2.13)

Consequently, h̃(ω) becomes negligible outside the interval |ω−ω0| < ∆ω. In this case we need to

know the transfer function only in the vicinity of ω0. Then we can approximate:

k(ω)= k(ω0)+k′(ω0)(ω−ω0). (2.14)
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Then

ỹ(ω)= D0e−ik′
0(ω−ω0) Ã(ω−ω0), (2.15)

where k′
0 = k′(ω0) and D0 = D̃(ω0). This expression allows us to calculate the output signal in time

domain:

y(t)= D0 A(t−k′
0)eiω0 t, (2.16)

or somewhat more explicitly

y(t)= |D0|A(t−α′
0 − iβ′

0)ei(ω0 t−α0). (2.17)

Here we recognize the gain |D0| and the phase shift α0 that correspond to the carrier frequency ω0

but that is all. We see that the slowly-varying envelope A(t) is shifted by the complex time lapse:

α′
0 + iβ′

0. To better understand this result we consider some examples.

2.1.1 Sine-Gaussian signal

Take for example, a slowly-varying amplitude

A(t)= e−
1
2 a(t−tp)2

, a ≥ 0, (2.18)

which results in a sinusoidal signal with Gaussian envelop that is peaked at t = tp and has a width

of 1/
p

a.

The spectrum of the amplitude in Fourier domain is also Gaussian

Ã(ω)=
(

2π
a

) 1
2

e−iωtp e−
ω2
2a , (2.19)

with the width of the peak given by

∆ω=p
a. (2.20)

Then from equation (2.16) we obtain the filtered signal

y(t)= |D0|e−
1
2 a(t−t̄p)2

eiaβ′
0(t−t̄p)e

1
2 aβ′2

0 ei(ω0 t−α0), (2.21)
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where t̄p is given by

t̄p = tp +α′
0, (2.22)

and indicates the time when the slowly-varying amplitude reaches the maximum.

The resulting wave is still sine-Gaussian but the peak of the amplitude is shifted in time by α′
0

and its carrier frequency is no longer ω0. Rather, it is given by

ω̄0 =ω0 +aβ′
0. (2.23)

This result can also be seen in Fourier domain. Namely, the spectrum | ỹ(ω)| has a peak at ω̄0 and not

ω0. In other words, β′
0 affects the peak frequency of the signal. This is the first example of the signal

deformation that is brought by the behavior of the transfer function in the vicinity of the carrier

frequency.

There is also a correction to the signal by a factor of e
1
2 aβ′

0
2

which makes the amplitude slightly

bigger. Since it is a constant factor it does not contribute to signal distortions or the time shifts.

2.1.2 Chirp signal

We have seen that the peak of the slowly-varying amplitude becomes shifted in time by α′
0 and that

the carrier frequency is shifted by the quantity proportional to β′
0. However, to fully understand the

role of parameter β′
0 in the filtering process we have to take a somewhat more complicated waveform.

We now consider the signal with linear frequency chirp:

ω(t)=ω0 +b(t− tp). (2.24)

It is well known that with chirp signals the reference frequency ω0 loses its meaning and can be

set an arbitrary value by shifting time. To fix ω0 we can choose it to be the frequency at which the

spectral amplitude reaches its maximum. This is the reason for tp (amplitude peak time) in equation

(2.24).

To generate such a signal we take the slowly-varying amplitude in the form:

A(t)= e−
1
2 (a−ib)(t−tp)2

. (2.25)
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Combined with the phase factor eiω0 t it will give us the desired chirp signal. Note that the spectrum

of the signal is still given by the Gaussian curve. Namely,

Ã(ω)=
(

2π
a− ib

) 1
2

e−iωtp e−
ω2

2(a−ib) . (2.26)

From this formula we can find that the width of the peak is given by

∆ω=
(
a+ b2

a

) 1
2

. (2.27)

Then the output of the filter, according to equation (2.16), will yield

y(t)= D0 A(t−k′
0)eiω0 t. (2.28)

We have thus to consider the following quantity that enters the slowly-varying envelop:

W = (a− ib)(t− tp −k′
0)2, (2.29)

which has both real and imaginary parts: W =U − iV . Then

y(t)= |D0|ei(ω0 t−α0)e−
1
2 (U−iV ). (2.30)

By separating the real and imaginary parts of W we find that

U = a
(
t− t0 −α′

0 −
b
a
β′

0

)2
−

(
a+ b2

a

)
β′

0
2, (2.31)

V = b
(
t− t0 −α′

0 +
a
b
β′

0

)2 −
(
b+ a2

b

)
β′

0
2, (2.32)

Note that the last two terms in U and V represent the constant gain and phase shift. It is worthwhile

to combine them into r0:

r0 = 1
2

(
a+ b2

a

)
β′

0
2 − i

1
2

(
b+ a2

b

)
β′

0
2. (2.33)
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Therefore, the output signal can be presented as

y(t)= |D0|ei(ω0 t−α0)e−
1
2 a(t−t̄p)2

e
1
2 ib(t−t̄c)2

er0 . (2.34)

where the two characteristic times are given by

t̄p = tp +α′
0 +

b
a
β′

0, (2.35)

t̄c = tp +α′
0 −

a
b
β′

0. (2.36)

As a result the instantaneous frequency of this signal is also a linear chirp:

ω(t)=ω0 +b
(
t− t̄c

)
. (2.37)

Note that it matches the original carrier frequency ω0 at t = t̄c.

If we consider the slowly-varying amplitude of y(t) we will find that it reaches maximum at

t = t̄p. At this time the instantaneous frequency of the signal is not equal to ω0. This situation is

quite different from that of the input signal for which the peak of the amplitude corresponds to the

nominal frequency ω0.

We observe two effects here. Both t̄p and t̄c are delayed with respect to their original value

tp by α′
0. Second, one of them is advanced and the other is further delayed in time by quantities

proportional β′
0. Therefore, the parameter β′

0 is responsible for the separation of t̄p and t̄c. In

particular,

t̄p − t̄c =
(

a
b
+ b

a

)
β′

0. (2.38)

from which it follows immediately that

|t̄p − t̄c| ≥ 2|β′
0|. (2.39)

Note that this condition does not depend on particular values of parameters a and b.
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It can be shown that the maximum of the spectrum of | ỹ(ω)| takes place at

ωp =ω0 +bβ′
0 +

b2

a
β′

0. (2.40)

This value coincides with ω(t) at t = t̄p and is the new carrier frequency. Thus the carrier frequency

(ωp) of the filtered signal is necessarily offset from the carrier frequency (ω0) of the input signal.

Moreover, from equation (2.39) we obtain that

|ωp −ω0| ≥ 2|bβ′
0|. (2.41)

Another restriction on the possible values of t̄p and t̄c can be obtained as follows. First, take

equations (2.31) and (2.32), square them and add

(t̄p − tp −α′
0)2 + (t̄c − tp −α′

0)2 =
(

a2

b2 + b2

a2

)
β′2

0, (2.42)

from which it follows that

(t̄c − tp −α′
0)2 + (t̄c − tp −α′

0)2 ≥ 2β′
0

2. (2.43)

Note that this condition does not depend on particular values of the parameters a and b. The in-

equalities equation (2.41) and equation (2.43) becomes equalities for input signals with b =±a.

We can conclude that α′ is the group delay that affects both the peak of the amplitude and the

chirp, while β′ is the time shift that offsets the peak from the center of the chirp. In what follows we

will call α′ group delay and β′ chirp delay and use the following notations for them:

τ= dα
dω

and γ= dβ
dω

. (2.44)

The group delay and chirp delay of a more complex system can be expressed through the corre-

sponding delays of the individual components. However, as we can see the delays are not additive

quanties and their combined effect is not linear. For example, Michelson interferometer transfer

functions (1.124) and (1.125) are the sums of one-arm transfer functions. Therefore, the derivative of

the Michelson interferometer transfer functions complex phases k′
M+ and k′

M× can be derived from
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the one-arm detector transfer function complex phase k′
rt:

k′
M+(ω,µ,ν)= f+(ν)k′

rt(ν)− f+(µ)k′
rt(µ), (2.45)

k′
M×(ω,µ,ν)= f×(ν)k′

rt(ν)− f×(µ)k′
rt(µ), (2.46)

where

f+(ν)= F+(b̂, n̂)D̃(ω,ν)

F+(b̂, n̂)D̃(ω,ν)−F+(â, n̂)D̃(ω,µ)
, (2.47)

f+(µ)=− F+(â, n̂)D̃(ω,µ)

F+(b̂, n̂)D̃(ω,ν)−F+(â, n̂)D̃(ω,µ)
, (2.48)

f×(ν)= F×(b̂, n̂)D̃(ω,ν)

F×(b̂, n̂)D̃(ω,ν)−F×(â, n̂)D̃(ω,µ)
, (2.49)

f×(µ)=− F×(â, n̂)D̃(ω,µ)

F×(b̂, n̂)D̃(ω,ν)−F×(â, n̂)D̃(ω,µ)
, (2.50)

These equations allow us to concentrate on properties of the one-arm detector transfer function

(1.93). We will use this analysis later to characterize the group delay of Michelson interferometer.

2.2 Numerical estimation of signal parameters

For numerical calculations we developed a method to measure the group delay and visualize it. To

determine the delay we need a strict mathematical definition for the signal arrival time. For this

purpose we will use the so-called center of the mass of the signal which is defined in a way very

similar to the center of mass of a distributed object. However, the center of mass does not reflect all

additional distortions of a signal. We are also interested in measurement of the signal instantaneous

magnitude and frequency. In general, this is very difficult problem. To achieve these measurements

starting from the time series of a real signal we resort to Hilbert transform.

2.2.1 Definition for signal arrival time

The signal arrival time is important for source localization [75] and waveform reconstruction with a

network of detectors. Each interferometer in a network of detectors has its own transfer function and

dispersion which means that the detected signals will be slightly different. One of the distortions

is represented by the time of arrival of the signal and occurs when the detected arrival time is
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different from the time of arrival of the gravitational wave. Further exploration of this effect requires

mathematical definition of what exactly constitutes the time delay that can be measured.

One of the ways to define the delay between two signals is to find maximum of the cross-correlation

function and find from it the corresponding time shift. However, this method would not work in case

of a gravitational-wave packet with carrier frequency. The reason is that dispersion of the detector

can make the phase of the carrier change independently of the delay of the wave packet.

The question of how to define the time of arrival of the signal is widely discussed in the theory

of wave propagation in dispersive media [77–79]. A convenient way to define the signal velocity, and

with it, its arrival time, was developed by Smith [78]. He defines the signal arrival time from the

center of mass of the signal E(t),

tc =
∫ ∞

−∞
tE2(t)dt

/∫ ∞

−∞
E2(t)dt . (2.51)

2.2.2 Instantaneous amplitude and frequency of a signal

It is possible to find the instantaneous parameters of a signal first by introducing its Hilbert trans-

form [80]

y(t)= 1
π

P

∫ ∞

−∞
x(t′)
t′− t

dt′, (2.52)

where P denotes the principal value of the integral, x is the original signal and y is its Hilbert

transform. Using these two parameters it is possible to build the complex version of the signal

z = x+ i y. (2.53)

For modulated signals with frequency components lying far away from 0, the spectrum of z can be

found by truncating the Fourier image of signal x after Nyquist frequency. From this complex version

it is possible to find the envelope of the signal and phase

A(t)= |z(t)|, (2.54)

φ(t)= arg(z). (2.55)
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The instantaneous frequency ω(t) can then be found by taking numerical derivative of φ.

These transformations work well only for noise-free signals. For signals with noise the envelope

and instantaneous frequency can be estimated from either the spectrogram, or wavelet transform,

or synchrosqueezed transform [81], but all these methods are less accurate than the one we used.

For the purpose of this work we will consider noise-free signals and use Hilbert transform to analyze

them.

2.3 Group delay analysis

The values of τ and γ can be calculated analytically for a one-arm detector transfer function:

τ(ω,µ)= T
(
1−µ sinc2(ϕi)+sinc2(ϕr)

sinc2(ϕi)+sinc2(ϕr)+2sinc(ϕi)sinc(ϕr)cos(ωT)

)
, (2.56)

γ=− 1
ω

(
1−2

(sinc(ϕr)cos(ϕi)+sinc(ϕi)cos(ϕr))cos(ωT)
sinc2(ϕi)+sinc2(ϕr)+2sinc(ϕi)sinc(ϕr)cos(ωT)

)
. (2.57)

Next, we analyze several remarkable limits of these equations also show them in Fig. 2.1:

• For µ= 0, τ= T, γ=−T(sinc(ωT)−cos(ωT))/sin(ωT)

• For f = 0, τ= T(1−u/2), γ= 0

• For f / frt = 1/2, τ= T(1−u), γ=−2T/π. It is the limiting frequency after which group delay can

be negative

• For f / frt = 1, τ= T(1− (1+u2)/2u),

γ=−T
π

(
1− π2(1−u2)

4
sinc(uπ/2)
cos(uπ/2)

)
.

Similar behavior of τ and γ can be observed for even higher frequencies, as shown in Fig. 2.2.

When the frequency increases, the group delay and chirp delay maintain their symmetry prop-

erty and acquire additional oscillations. The divergence of the group delay for higher frequencies

is demonstrated in Fig. 2.3. For a source perpendicular to the arm, the chirp delay tends to infinity

for frequency equal to multiple of FSR. Similar behavior can be observed for other source locations.
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Figure 2.1: Group delay and chirp delay dependence as a function of source location. Frequencies
of the gravitational signals are normalized over FSR. These graphs show antisymmetric property of
the group delay (left): when µ changes sign, group delay flips relative to time T. At the same time
chirp delay (right) has symmetric property.
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Figure 2.2: Group delay and chirp delay for different source location and high source frequencies.
Group and chirp delays have more variance when frequency increases.

For example, the source located at an angle 60° relative to the arm has chirp delay with an unbound

value around the frequency equal to 4 FSR.

The equations for group delay and chirp delay are not bound when frequency of the source is

multiple of the FSR and µ = 0. We will call such a point the critical point. In the vicinity of the

critical point the delays can be expressed in terms of small deviations δ and ε, where µ = δ and

f /FSR = 1+ε:
τ= T

(
1− 2δ

ε2π2 +4δ2

)
, (2.58)

γ= T
(
π2 −1

4π
+ πε

π2ε2 +4δ2

)
. (2.59)
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Figure 2.3: Frequency dependence of group delay and chirp delay for different source locations.
When amplitude of the transfer function approaches zero, chirp delay of the interferometer becomes
inversely proportional to the frequency.
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Figure 2.4: Behavior of functions τ and γ next to critical points. The group delay drastically changes
with small change of source location. The chirp delay drastically changes with small change of source
frequency.

These equations show that k′(ω) is not well-defined for the critical points. The limit of these expres-

sions depends on the way we take ε and δ to zero and the results can be different.

For example, if we set δ to zero first, the group delay will be equal to T and will not depend

on ε. At the same time, the chirp delay will diverge to infinity. However, if we set ε equal to zero

first, then the chirp delay will be constant, and the group delay will diverge when δ approaches zero.

Illustration of this dependence is in Fig. 2.4.

This asymptotic behavior, which is also shown in Fig. 2.1, indicates that the group delay can be

negative. Moreover, it can be arbitrarily big if the signal frequency approaches a critical point. In

this case the signal will experience significant distortion as shown in Fig. 2.5. The actual shift of the
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Figure 2.5: Distortion of a signal at carrier frequency 1 FSR by one-arm detector. Source location is
at 89◦. Derivative of phase of the interferometer transfer function is 27.7 T.

signal approaches the group delay only when the width of the signal increases and bandwidth of the

signal decreases. However, in this case the delay of the signal is small in comparison with the signal

width. To explain this effect we need to keep in mind that our derivation of the group delay is valid

only when the second order terms in Taylor series of the function k(ω) are small compared to the first

order terms. From this observation we obtain the condition when our equations for group and chirp

delay can be applicable:

∆ω¿
∣∣∣∣ k′(ω0)
k′′(ω0)

∣∣∣∣ . (2.60)

The negative group delay rises a question about causality of gravitational wave detection. Is it

possible to detect a gravitational wave before it reaches the interferometer? Similar questions were

considered in the analysis of short EM pulses propagating in the media with dispersion. This topic

is very important in the field of superlumenal light propagation [77–79, 82] in which EM pulses with

speeds faster than light were observed and reported. A review of these studies is given in a recent

book by Oughstun [83]. The author calls the superluminal pulse propagation “just an illusion” arising

from the definition of the pulse velocity from the centroid group delay, that does not describe well all

the details of the propagation of EM pulses.

The effect of negative group delay was reproduced and measured with a tuned amplified circuits
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Figure 2.6: Detection of a gravitational wave signal with abrupt start. Input corresponds to the
gravitational wave signal, output corresponds to the interferometer output. Right panel shows the
moment when gravitational wave starts.

[84–87]. However, the experiments with real systems show that such behavior is not a violation of

causality but the consequence of Bode’s law for causal systems. Further discussion of this paradox

can be found in the work of Garrison [88]. For example, in these experiments the waveform was

abruptly turned off during the transmission of the pulse through an electrical circuit. The circuit

was tuned to produce negative group delay for these pulses. It was shown that the moment when the

output pulse shuts down always happens after the corresponding moment for the input pulse. These

effects happen not only for signals with Gaussian-shaped envelope, but also for signals of more a

complicated nature [89].

To demonstrate similar effects for a gravitational-wave signal, we conducted numerical simula-

tion of a gravitational-wave detection and the results are shown in Fig. 2.6. The peak of the output

signal confirms the negative group delay and appears before the peak of the input signal. However,

the output signal starts at the same moment of time as the input signal. In real systems, the output

signal is mixed with noise which is why it makes sense to define arrival of the signal at the moment

of time when amplitude reaches its maximum. Therefore, we come to the conclusion that the output

signal arrived before the input. Thus, the negative delay.

It must be noted that in the ideal system (without noise) we can redefine the time of arrival for

signal as the moment of time when the detector output first acquires a non-zero value. In this case,

our simulation shows that input and output signals arrive at the same time.

The question about causality comes from the assumption that the peak of the input signal (or
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signal center of mass) is the cause of the peak in the output signal. A closer investigation shows

that this assumption is not correct. During the detection of an analytical signal the position of

the peak can be predicted by observing how the signal changes at the start. This prediction is

inadvertently made by the detector and it does not matter if the input signal ever reaches the peak.

The predictability of the signal allows the detector to shift it by any time within the signal duration.

Instead of the time delay of the analytic signal the special points of the signal are connected with

causality. In these special points the signal is not analytic anymore. Examples of such points are

represented by sudden jumps in the signal amplitude or phase [88]. These jumps usually broaden

the spectrum of the signal and the validity condition (2.60) is no longer satisfied. As a result, the

group delay can not be applied to such signals.

2.4 Michelson interferometer group delay sky maps

The group delay for a Michelson interferometer can be calculated from the group delay and chirp

delay of the one-way interferometer by substituting equations (2.56) and (2.57) into equations (2.45)

and (2.46). The outcome of the analytical calculations are shown in the bottom two panels of Fig. 2.7.

As can be seen from the figure our results agree well with numerical simulations.

To conduct the numerical simulations we applied the interferometer transfer function to the

Fourier image of the input signal. We used Hilbert transform to find the envelope of the signal and

equation (2.51) to define moment of the signal arrival. These calculations were made for the signal

with carrier frequency equal to 0.8 FSR. This frequency is far from the frequency of the nearest

critical point located at 1 FSR. However, we still can observe regions with negative group delay; they

are shown by graphs with blue color in Fig. 2.7.

We can describe four regions in the sky with different properties. The first region covers azimuth

angles 0°<φ< 90° and lies between the two arms of the Michelson interferometer. Most sky locations

in this region have negative group delay. This can be explained if we look at the behavior of the

round-trip group delay for mu > 0, which is shown in Fig. 2.1. In this region both interferometer

arms are set in the general direction to the source. As a result, both arms have negative group

delay. The opposite region with 180° < φ < 270° has only positive group delays. In this region both

interferometer arms make obtuse angles with the direction to the source. This situation corresponds
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Figure 2.7: Group delay for a Gaussian packet with center frequency 0.8 FSR for Michelson interfer-
ometer. Top row: measured group delay of a signal plotted on a sphere. Middle row: measured group
delay in cylindrical projection. Bottom row: analytical calculation of the group delay. Left panels
show the group delay for + polarization and right panels show the group delay for × polarization.
White line on the graph corresponds to the location of the source with zero group delay.
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Figure 2.8: Group delay for different frequencies and polarizations. Top panels show group delay
for + polarization. Bottom panels show group delay for × polarization. From left to right the signal
frequency is 0.5, 0.7, 0.9, and 1.2 FSR.

to the part of the graph 2.1 with µ < 0. In this region both arms have positive group delay. Finally,

there are two regions on the sky with 90°<φ< 180° and 270°<φ< 360°. In these regions time delay

in each arm is different and the resulting time delay depends on the amplitudes of the coefficients

(2.47)-(2.50).

To show how the sky map of group delay changes as a function of the signal frequency we car-

ried out analytical calculations of the time delay shown in Fig. 2.8. The negative time delay first

appears for × polarization for signal frequency around 0.7 FSR. The region with negative delay

grows with frequency when it approaches the FSR. After this critical frequency, the negative delay

region shrinks, disappearing at frequency around 1.2 FSR. During this process the pattern on the

sky formed by the group delay remains symmetrical. However, the planes of the symmetry do not go

through the arms of the interferometer. Instead, they are related to the bisector of the arms. The

first plane splits the sky on azimuth φ= 45°. The group delay is symmetric with respect to this plane:

τ(θ,45°+φ)= τ(θ,45°−φ). (2.61)

To highlight this symmetry we plotted the sky maps in Fig. 2.8 for azimuth angle starting from 45°

instead of 0°.

The second plane with azimuth φ = 135 splits the sky on two regions that looks antisymmetric

relative to each other. However, this symmetry is not perfect: τ(θ,135°) 6= 0 which is noticeable in Fig.
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Figure 2.9: Contour plot of the group delay for different frequencies and polarizations. Top panels
show group delay for + polarization. Bottom panels show group delay for × polarization. From left
to right the signal frequency is 0.5, 0.7, 0.9, and 1.2 FSR.

2.8 for the signal frequency at 0.9 FSR (third column). To understand the antisymmetric property

of the time delay we found the contour lines for the sky-maps in Fig. 2.8. In Fig. 2.9 we show

the contour plots, and the main contour in this figure is marked with green line. This contour line

corresponds to the group delay τ = T, and it can be found on the contour map for any frequency.

Moreover, this contour exhibits almost no change for different frequencies. In the equatorial plane,

the group delay for + polarization is equal to 1 for azimuth angles 0°, 90°, 180°, 270°. These points

on the sky correspond to the arm directions. For the × polarization, τ= T lines goes along φ= 135°.

It means that the group delay is antisymmetric relative to φ= 135° and time T:

τ(θ,135°+φ)= 2T −τ(θ,135°−φ). (2.62)

This symmetry comes from the one-arm detector impulse response symmetry described by equations

(1.87), (1.114), and (1.115).
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DISTORTIONS OF CCSN GRAVITATIONAL-WAVE SIGNALS

3.1 Second order approximation of the transfer function complex phase

In previous chapter we showed how first order approximation of the complex phase of transfer func-

tion (2.14) gives analytical equations for group delay (2.22) and frequency shift (2.23). Here we will

extend this approximation to the second order:

k(ω)= k(ω0)+k′(ω0)(ω−ω0)+ 1
2

k′′(ω0)(ω−ω0)2. (3.1)

With this approximation, a quasimonochromatic gravitational wave with envelope (2.25) will be de-

tected as

y(t)= D0

√
1

1+ ik′′
0(a− ib)

exp

(
− (a− ib)(t−k′

0)2

2(1+ ik′′(a− ib))

)
eiω0 t. (3.2)

If k′′
0 = 0, our equation will agree with (2.28). In a more complicated situation the real and

imaginary parts of k′
0 and k′′

0 will have somewhat different effect on the detected signal. We will

introduce the following notations

Re{k′
0}= τ,

Im{k′
0}= γ,

Re{k′′
0}= ρ,

Im{k′′
0}= ε.

(3.3)

With these definitions the time dependence of the envelope function in (3.2) becomes

− (a+ ib)(t−k′
0)2

2(1+ ik′′
0(a+ ib))

=−ā(t− t̄e)2/2− ib̄(t− t̄c)2/2+ r̄+ iφ̄, (3.4)

63



CHAPTER 3. DISTORTIONS OF CCSN GRAVITATIONAL-WAVE SIGNALS

with

ā = (an −ε)
(an −ε)2 + (bn −ρ)2 ,

b̄ = (bn −ρ)
(an −ε)2 + (bn −ρ)2 ,

t̄e = τ− bn −ρ
an −ε

γ,

t̄c = τ+ an −ε
bn −ρ

γ,

r̄ = γ2

2(an −ε)
,

ϕ̄= γ2

2(bn −ρ)
,

(3.5)

where ā describes the new envelope width, b̄ corresponds to the new envelope chirp, t̄e is the time

shift of the envelope, t̄c is the time shift of the chirp, r̄ corresponds to amplitude change due to the

slope of the magnitude of a transfer function, and φ̄ corresponds to the additional phase due to the

slope of the magnitude of a transfer function, an = a/(a2 + b2) and bn = b/(a2 + b2) are renormalized

parameters.

Equation 3.5 describes the effect of the real and imaginary parts of derivatives on the output

signal. It can be summarized as follows. First, the derivative coefficients are responsible for the

time shift of the envelope with imaginary part γ showing how much the signal envelope and signal

instant frequency are shifted relative to each other. Second, the second derivative of k is necessary

in order to properly describe signal broadening or focusing and chirp change. These derivatives can

be ignored when |ε|¿ an and |ρ|¿ |bn|.
A special case occurs when the chirp of the original signal is equal to zero. The signal at the

output of the detector nonetheless will acquire a chirp from the dispersion effect and the magnitude

of the chirp will depend on its carrier frequency and bandwidth. This observation can be important

for data analysis. Also it could affect detection of signals if they are based on matched filter approach.

To consider this case we assume that the chirp change is negligible when change of the frequency

within the signal time span ∆t ≈ 1/
p

a is much less than signal bandwidth ∆ f ≈p
a:

b̄∆t ¿∆ f , (3.6)

or when a|ρ| ¿ (a− ε)2 +ρ2. This condition holds true in most cases except when ε is on the order of
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a. In this case the envelope width will change considerably. Thus, in case of a signal with zero chirp

we can neglect second derivatives when ε¿ a or |ρ|¿ a.

3.2 Sources of distortions

As can be mentioned in the previous chapter, the reason for signal distortion is variability of the

interferometer transfer function. To cancel out this variability, the interferometer calibration and

signal whitening is performed [62]. This calibration is performed by passing the raw signal through a

filter with transfer function corresponding to the estimation of the interferometer transfer function.

The transfer function is estimated by measuring response of the interferometer to the motion of

the end test masses. This measurement corresponds to response of the detector to low frequency

gravitational wave coming from a direction perpendicular to the interferometer arms. However, this

measurement does not take on account possible changes of the transfer function for sources with

other locations on the sky [90]. Moreover, this estimation is not precise, and it can also introduce

slight distortions of the signal. For example, during interferometer calibration Fabry-Pérot cavity

pole frequency p̄ is measured. To flatten the response, raw signal from the photo-detector is passed

through a notch filter with the zero equal to the measured pole. However, if the actual frequency of

the cavity pole p slightly deviates from the estimate the result is that the signal is distorted by a

notch filter with the transfer function

F(ω)= 1− iω/p̄
1− iω/p

. (3.7)

Therefore, there are two mechanisms for distortions. In the first mechanism the distortions are

due to the position of the source relative to the interferometer; they depend on the source location and

the interferometer arm length. These distortions are typically small for low-frequency signals, and

increase when the frequencies approach FSR. Even though they make detection of the signal with

a network of detectors more complicated, they carry some information about the source location.

In the second mechanism the distortions come from the error in calibration of the interferometer

sensitivity or in the features of interferometer sensitivity not accounted during the calibration. They

will be unique for each detector, and the knowledge of these distortions can be used to improve

the calibration procedure. Our approach allows us to treat both of these mechanisms under one

formalism which is built on the transfer function from the original GW signal to the final signal after
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Figure 3.1: Example of a filter that signal passes through when pole of the transfer function is
determined during the calibration with 5% error. Top: amplitude transfer function, bottom: phase
transfer function.
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Figure 3.2: Examples of distortion of a pulse by a Michelson interferometer for different frequencies
and different source locations. The interferometer response was normalized to have the same ampli-
tude for the largest peak. The azimuth and elevation of the source: top left (30◦, 60◦), top right (120◦,
60◦), bottom left (0◦, 90◦), bottom right (210◦, 60◦).

the calibration.

3.3 Distortion of a short pulse

When we use the term short pulse we will mean a signal with only a few oscillations inside its

envelope. An example of this kind of signals is the bounce core oscillations [37, 43, 44]. Examples of

the core bounce signals are in Fig. 1.1.

When the center frequency of the pulse f0 is small compared to the detector FSR, the signal shape

does not change, as shown in Fig. 3.2. Even though this signal is not monochromatic [76, 91], it still

has small bandwidth compared to the interferometer bandwidth and the first-order approximation

for k is good enough. Thus, the only parameters that change are the signal amplitude and the signal

delay.
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For signals with the center frequency higher than FSR/2, the first order approximation is not

sufficient, and the second order effects become significant: the envelope broadening and the appear-

ance of chirp. The envelope broadening leads to increased width of the signal and the additional

chirp, usually negative, makes the output signal less symmetric with the distance between its zero

crossings increasing with time.

When the center frequency of a signal approaches 1 FSR, the transfer function can not be ap-

proximated with Taylor series anymore. If the amplitude of the transfer function tends to zero the

imaginary part of k tends to negative infinity. In this regime the envelope broadening can take ex-

treme forms with additional oscillations appearing at the top of the envelope peak or at the tail of the

signal. When the bandwidth of the signal is broad the response of the interferometer is not defined

by properties of the transfer function in the vicinity of the center frequency. Then the output of the

detector can be analyzed with its impulse response. If center frequencies are higher than the FSR

the output signal is wider than the input signal with width of the output signal approaching 1/FSR.

The pulse deformations also depend on the source location in the sky. This dependence can be

understood from the fact that photons propagating in the fiel of a gravitational wave acquire different

phase shifts depending on the propagation direction.

Consider the case when the direction to the source makes an acute angle with the interferome-

ter arm. At first,the photons that hit the beam-splitter propagate in the same general direction as

the gravitational wave. They acquire bigger phase shifts and result in bigger amplitude of the sig-

nal. Following these photons, the beam-splitter receives the photons which were propagating in the

general direction opposite to that of gravitational wave. These photons result in smaller amplitude

signal but with longer duration, as shown in Fig. 3.2 top left.

Consider now the case when the direction to the source makes an obtuse angle with the arm. In

this case the situation is reversed. At first, the photons that hit the beam-splitter propagate in the

general direction opposite of that of gravitational wave, producing smaller but longer signal followed

by the bigger and shorter signal, as shown in Fig. 3.2 bottom right. This effect makes the time delay

shorter and pulse distortions smaller, with an interferometer response having less dependence on the

angle change. A gravitational wave source at an obtuse angle produces signals that are more delayed

with stronger dependence of distortions on the source angle. The biggest distortions happen when

the direction to the source makes an acute angle with one arm and an obtuse angle with another
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Figure 3.3: Distortion of a symmetric (left) and an asymmetric (right) pulses by a single arm inter-
ferometer for pulse frequency equal to 4 FSR and source azimuth 135◦ and elevation 62◦. On the
left panel response is overlapped with the interferometer impulse response. Dash-dotted lines on the
pictures show moments of arrival of the photons bounced from the end mirrors when signal passed
through these mirrors.

arm, as shown in Fig. 3.2 top right. In this case additional peaks appear.

Fig. 3.2 shows that the distortions increase with the pulse frequency. High frequency pulses can

be so short that the width of the pulse is smaller than the photon round-trip time. The interferometer

response to these pulses carry more information about the interferometer itself than the pulse signal.

For example, a pulse can appear copied multiple times, as shown in Fig. 3.3 left. For a pulse of such

a high frequency most photons in the arms propagate during full lifetime of the pulse. Thus, the

total phase shift of these photons correspond to the integral of the pulse over time. Only the photons

that were approaching the beam-splitter or leaving it by the moment when the signal arrived have

phase shifts that differ from other photons in the arm. Therefore, interferometer will produce two

signals, one at the moment of original pulse arrival, and another one when the photons that left the

beam-splitter will finish the round trip. These signals will have phase shifts equal to π/2 relative to

the original signal. The interferometer output between those echoes depend on the constant part of

the signal. It equals to zero for an antisymmetric pulse, or nonzero constant value for a symmetric

pulse.

Note that other echoes can appear between these two echoes, which are shifted by the photon

round-trip time. The additional echoes can appear at T(1−n̂ · â) and T(1−n̂ ·b̂), as shown in Fig. 3.3.

These additional echoes are produced by the photons reflected by the end test mass at the moment of

the signal arrival. The phase shifts acquired by these photons depend on the direction of propagation
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Figure 3.4: Examples of distortion of a pulse by Michelson interferometer for different frequencies
and different source locations. Here the frequencies are much higher than the FSR. The interferom-
eter response was normalized to have the same maximum value as the original signal. Azimuth and
elevation of the source: top left (30◦, 60◦), top right (120◦, 60◦), bottom left (0◦, 90◦), bottom right
(210◦, 60◦).
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(φ, θ)
(30◦, 30◦) (120◦, 30◦) (0◦, 0◦) (210◦, 30◦)

f / frt 0.1 43% 21% 98% 43%
0.4 32% 14% 73% 32%
0.7 18% 8% 38% 18%
0.9 14% 7% 20% 14%
1.2 12% 5% 15% 12%

Table 3.1: Cross-correlation of the signals from Fig. 3.2 with original signals.

of these photons. Moreover, these echoes can appear when the signal propagates at either acute or

obtuse angle relative to the arm.

The cross-correlation of the original signal and the detected signal plays an important role in

the algorithms for detection of gravitational waves. This cross-correlation changes over the sky,

as shown in table 3.1. It is important to note that the cross-correlation is not maximal for source

located directly above the interferometer. In fact, the most sensitive direction can take place at an

angle relative to the ẑ axis.

Another interesting property of the interferometer is the symmetry of its response function. For

the sources directly above or below the interferometer, the symmetry of the response function corre-

sponds to the symmetry of the signal. This is not true for gravitational waves coming from sources

at other angles. Nevertheless, the response function still has some symmetry properties. The re-

sponse for the sources with opposite azimuth (e.g. 30◦ and 210◦) can be very different, but the

cross-correlation coefficient for these angles is the same. The reason for these similarities comes

from the symmetry of the impulse response for these angles. It is possible to show that the one-arm

detector transfer function has property

M̃(ω,φ,θ)= e−2iωT M̃∗(ω,φ+180◦,θ), (3.8)

where T is one way photon travel time. Since the interferometer impulse response is the inverse

Fourier transform of the transfer function the impulse response for adjacent angles are related:

M(t,φ,θ)= M(2T − t,φ+180◦,θ). (3.9)
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Figure 3.5: Interferometer normalized response to symmetric and asymmetric signals with center
frequency f = 0.7 frt. On the left: original signal is symmetric, so response of the arm has symmetric
property relative to the moment of time t = 2.3T. On the right original signal is antisymmetric, so
response has antisymmetric property relative to the same moment of time.

The interferometer response to a signal s(t) will be

x(µ, t)=
∫ ∞

−∞
M(µ, t−τ)s(τ)dτ. (3.10)

Now lets assume that our signal has a symmetry property such that there is a moment in time

t0 for which

s(t0 + t)= s(t0 − t). (3.11)

By substituting this equation and the relation for the impulse response (3.9) into (3.10) we can find

x(t,φ,θ)= x(2T +2t0 − t,φ+180◦,θ), (3.12)

or

x(T + t0 + t,φ,θ)= x(T + t0 − t,φ+180◦,θ). (3.13)

This symmetry property is illustrated in Fig. 3.5.

3.4 Distortion of a Sine-Gaussian wave packet

We characterize a Sine-Gaussian signal by the center frequency f0, the envelope width σt, the band-

width σω = 1/σt, and the chirp parameter b that shows how the instantaneous frequency changes
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with time: f (t)= f0+bt. This kind of signals can approximate well SASI mode of CCSN gravitational-

wave signal. Example of this mode can be found in the left panel of Fig. 1.2.

We assume that the Sine-Gaussian signal bandwidth is much smaller than the interferometer

FSR, so that the response of the interferometer to such signals depends on the behavior of its trans-

fer function in the vicinity of the signal center frequency. To analyze the process of detection, we

expand the complex phase function k(ω)= i ln D̃(ω) into Taylor series near the center frequency. The

zeroth order term corresponds to signal attenuation and signal phase shift, which do not change the

envelope shape or its frequency dependence. The first order term, which has the order O(T/σt) is

responsible for the envelope time shift τ and the frequency shift ∆ f of the signal. The second order

term, which has the order O((T/σt)2), is responsible for the envelope width change ∆σt and chirp

factor b. These distortions depend not only on the signal center frequency and the interferometer

FSR, but also on the signal bandwidth. Fortunately, we can introduce the normalization constant

that removes this dependence. Later on we will provide a stricter mathematical derivation of the

normalization parameters. Here we will use simple dimensional and physical arguments.

The transfer function is a function of the dimensionless argument ωT, which makes natural the

normalization of signal frequency with the interferometer FSR:

ωT =π f0

frt
. (3.14)

Other time-based parameters of the Sine-Gaussian signal (envelope time shift and envelope width

change) can be normalized over its envelope width σt, while the frequency parameters (frequency

change and chirp) can be normalized over the signal bandwidth σ f . Thus, the envelope time shift as

the first order distortion,
τ

σt
=O

(
T
σt

)
(3.15)

can be normalized into
τ

T
=O(1). (3.16)

The frequency shift
∆ω

σω
=O

(
T
σt

)
(3.17)
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can be normalized into
∆ω

Tσ2
ω

=O(1). (3.18)

The envelope width
∆σ

σt
=O

((
T
σt

)2)
(3.19)

can be normalized into
∆σσt

T2 =O(1). (3.20)

To treat the chirp parameter similarly we can consider the frequency change within the signal enve-

lope bσt normalized over signal bandwidth σω

bσt

σω
=O

((
T
σt

)2)
, (3.21)

with the corresponding normalization
b

T2σ4
ω

=O(1). (3.22)

Additionally, we will define the quality factor Q =ω0/σω = 2π f0σt which describes the number of

signal oscillations within its width. For a quasimonochromatic signal Q−1 ¿ 1.

3.4.1 First order distortions: time shift and frequency shift

For a Sine-Gaussian signal

h(t)= h0 exp

(
− t2

2σ2
t

)
exp(iω0t) (3.23)

we can expand the transfer function near the center frequency ω0,

D̃(ω)≈ exp
[
ik0 + ik′

0(ω−ω0)
]

(3.24)

with the response

x(t)= x0 exp

(
− (t−k′

0(ω0))2

2σ2
t

)
exp(iω0t). (3.25)

First derivative of k has the order of magnitude T except for some special frequencies where the

amplitude of the transfer function approaches 0.
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Let k′
0 = τ+ iγ. Then we can rewrite x as

x(t)= x′0 exp

(
− (t−τ)2

2σ2
t

)
exp(i(ω+γ/σ2

t )t). (3.26)

From this equation it follows that the envelope of the signal will be delayed by

τ=Re{k′
0(ω0)}=O(T) (3.27)

and the frequency of the signal will change by

∆ f = γ

2πσ2
t
=O(T/σ2

t ). (3.28)

We will use these approximate values for normalization: T for the time shift of the signal and Tσ2
f

for the frequency shift.

The slope of the phase of the transfer function corresponds to the signal group delay giving rise to

the phenomenon of a signal time shift. By signal time shift we will understand shift of the envelope

position in time relative to the envelope of the original signal. This shift corresponds to the difference

of arrival times defined by equation (2.51).

The time shift has order of magnitude comparable to the round-trip time. The delay is much less

than the signal width for a quasi-monochromatic signal with high quality factor, as shown in Fig.

3.6. When the phase response of the transfer function has positive slope it results in negative time

shift, shown by turquoise line on the right pane of Fig. 3.6. This effect does not break causality [88]

and same effect happens during the pulse propagation in dispersive media [77–79] or electronics [86,

92–94].

Big deviations of the time delay from the photon one-way transit time happens only around crit-

ical frequencies when the signal frequency is equal to multiple of FSR, as shown in Fig. 3.7. The

group delay for some cases can become negative when signal frequency approaches the multiple of

FSR. Numerical simulations of the group delay in the interferometer agree with analytical calcula-

tions of the interferometer transfer function based on the Taylor expansion, as shown in Fig. 3.8.

If the phase part of the interferometer transfer function changes the signal delay, the amplitude

part affects the center frequency of the signal. The interferometer can be viewed as a linear filter that
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Figure 3.6: The envelope of the response of a Michelson detector to Sine-Gaussian signal coming
from a source with azimuth 30◦ and elevaton 60◦. Left: full envelope, right: zoom to the top part of
the envelope
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Figure 3.7: The dependence of the interferometer group delay with frequency. The group delay is
normalized over the photon one-way transit time.

76



CHAPTER 3. DISTORTIONS OF CCSN GRAVITATIONAL-WAVE SIGNALS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-8

-7

-6

-5

-4

-3

-2

-1

0

1

Numerical
Analytical

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Numerical
Analytical

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Figure 3.8: The difference between the numerical simulation and analytical calculation of the group
delay (top) and the frequency detuning (bottom). The calculations were made for the source located
at (30◦, 60◦). The analytical calculations of the group delay show good agreement with the numerical
simulations for all frequencies, while the analytical calculations of the frequency detuning have
drastic difference with numerical simulations for the signal with frequency close to 3 FSR.
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Figure 3.9: Instantaneous frequency detuning produced by a Michelson interferometer for different
source location. Azimuth and elevation of the source: top left (30◦, 60◦), top right (120◦, 60◦), bottom
left (0◦, 90◦), bottom right (210◦, 60◦). These pictures demonstrate deviation of the instantanious
frequency from the original signal, as well as small chirpness of the output signal.

amplifies some frequencies in the signal while it attenuates the others. The instantaneous frequency

of the signal restored with the Hilbert transform is shown in Fig. 3.9. Note that the input signal

with constant frequency can acquire the frequency shift and the slope. To pinpoint the exact value of

center frequency we measure it at the center of the signal envelope. The slope of the instantaneous

frequency as a function of time at this point corresponds to the chirp parameter.

The resulting normalized frequency detuning is shown in Fig. 3.10. Because of the high quality

factor for quasi-monochromatic signals, the actual frequency detuning is a couple orders of magni-

tude less than the signal bandwidth, except at some special points when the carrier frequency is

equal to multiple of FSR.

The estimations of the group delay and the frequency detuning from numerical simulations agree

well with equations (3.27) and (3.28) that can be derived from the interferometer transfer function,
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Figure 3.10: The frequency detuning of a single arm detector normalized over Tσ2
f . The lines for

sources with opposite azimuths and same elevation (e.g. 30◦ and 210◦) match each other because the
amplitude of the transfer function has the same dependence on frequency for such locations.
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as shown in Fig. 3.8. The only time when the frequency detuning does not agree with the equation

is when the frequency of the signal corresponds to a critical point of the interferometer, i.e. when the

amplitude of the transfer function is zero.

3.4.2 Second order distortions

Similarly to the first order distortions, we can represent the real and imaginary parts of the second

derivative of the transfer function as k′′
0 = ρ+ iε, with ρ = O(T2) and ε= O(T2). In this case the new

values of the envelope width will be

σ′
t =

√
σ2

t −ε+
ρ2

σ2
t −ε

. (3.29)

If we keep only the terms of second order in T/σt we obtain

σ′
t =σt − 1

2
ε

σt
, (3.30)

with the approximate value of pulse broadening

∆σt =−1
2
ε

σt
=O

(
T2

σt

)
. (3.31)

It is important to note that this approach is valid only when ε<σ2
t . Otherwise, the amplitude of the

transfer function increases faster than the spectrum of the signal decreases, which requires to take

into account higher order derivatives of k to make sure that the integral in (2.4) converges.

The value of the acquired chirp is

b = ρ

(σ2
t −ε)2 +ρ2

, (3.32)

and if we keep only the second order terms

b = ρ

σ4
t
=O

(
T2

σ4
t

)
. (3.33)

We will use O-values for normalization of ∆σt and b.

80



CHAPTER 3. DISTORTIONS OF CCSN GRAVITATIONAL-WAVE SIGNALS

We can estimate the envelope width in the same way as we estimated the envelope center. From

the analytic signal we can find the envelope A and estimate its width:

σe =
√

2

∫ ∞
−∞(t− te)2 A2(t)dt∫ ∞

−∞ A2(t)dt
. (3.34)

The chirp can be found from the phase of the analytic signal. The derivative of the phase gives us

the frequency for different moments of the time, and the slope of the frequency for moment te is

estimation of the signal chirp factor.

Usually the slope of the interferometer transfer function |D̃(ω)| decreases and the amplitude of

the transfer function looks like a parabola with its branches pointing down. Therefore, when we

multiply the signal spectrum by this transfer function the central part of the signal spectrum is

amplified relative to the edge parts. As the result, the bandwidth of the signal decreases, which

makes envelope of the signal broader. However, the slope of the interferometer transfer function

increases in the vicinity of the critical frequency and the opposite effect will take place: the signal

envelope will become narrower, as shown in Fig. 3.11. This effect is also referred as pulse focusing

in [76].

When the slope of the phase of the transfer function changes with frequency, different frequency

components of the signal will have different group delays. This will result to the shift of different

frequencies relative to each other, resulting to the chirp of the output signal. This effect is shown in

Fig. 3.12.

The numerical calculations of the second order distortions agrees well with the analytical equa-

tions (3.31) and (3.33), which is illustrated in Fig. 3.13. The with the biggest mismatch between

analytical equations and numerical simulations happen for frequencies equal to the multiple FSR.

3.5 Distortions of signals with changing frequency

In this section we will consider the distortion of signals from a resonance system with changing

parameters. One example of such a system is core oscillations during CCSN which produces a grav-

itational wave signal. This type of signal contains different oscillation modes, that carry important

information about the explosion process [53, 95]. These modes can last quite long, hundreds of mil-

liseconds, with frequency of the signal changing in the wide range (from hundreds to thousands
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Figure 3.11: Change of a signal envelope width with frequency. Envelope width is normalized over
T2/σt. Lines from opposite azimuths (e.g. 30◦ and 210◦) match each other because they have match-
ing amplitudes of the transfer function for those angles.
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Figure 3.12: The chirp acquired by a signal after the interferometer normalized over T2σ2
f .

of hertz). These modes are shown in the bottom right panel of Fig. 1.1, as well as right panel of

Fig. 1.1. The frequency sweep, attributed to these signals, shows that this type of signals is not

quasi-monochromatic. This makes the problem of distortion characterization more complicated. To

simplify it, we will consider only the distortion of the phase component of the signal, because it car-

ries the main information about the explosion process. In addition, we assume that the change of the

parameters happens in the adiabatic regime, which means that the change of the frequency within

one period of oscillation is small, or

b ¿ f 2. (3.35)

In this case we assume that the frequency shift at each moment of time is described by equation

(3.28). To take on account changing frequency we calculate the interferometer parameters for the

instantaneous frequency, instead of the carrier frequency:

∆ f (t)= 1
2π

(τ(ω(t))b(t)+γ(ω(t))/σ2
t ), (3.36)
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Figure 3.13: The difference between the numerical simulations and analytical calculations for signal
broadening (top) and acquired chirp (bottom). The calculations were made for source azimuth 120◦

and elevation 60◦. Discrepancy between the numerical simulation and analytical calculation appear
at frequencies when the transfer function approaches zero.
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Figure 3.14: Example signal 1. Original GW signal has constant chirp. Left: GW spectrogram. Right:
frequency shift between the original signal and detected signal.

where b = dω(t)
dt is the chirp of the original signal and τ(ω) is the signal time delay for corresponding

frequency. For the signals discussed in this section b À 1/σ2
t , giving us the frequency shift

∆ f (t)= τ(ω(t))c(t)
2π

. (3.37)

This frequency shift is proportional to the τ parameter which is unbound next to critical frequen-

cies. Therefore, the frequency shift also will be unbound when the instantaneous frequency of the

signal will approach multiple of FSR. At the same time amplitude of the signal will decrease. Approx-

imately, the frequency shift has the same order of magnitude as the change of the signal frequency

within one round-trip time of the interferometer.

To measure how well the actual frequency agrees with the theoretical approximation described

above, we run numerical simulations for different signals. We use the interferometer with 100 km

arm length ( frt = 1.5 kHz) and signal length of 1 second. We vary the frequency in the signal from

0.5 FSR to 1.5 FSR during the test. We took the source at an angle 89° relative to the arm, which is

close to the critical angle at 1 FSR.

We performed numerical calculations of a gravitational wave signal by applying the interferom-

eter transfer function to the signal in frequency domain, followed by the inverse Fourier transform.

We then apply Hilbert transform to build the analytical version of the detected signal, and find the

phase and the frequency as functions of time from the Hilbert transform. The resulting predictions

are shown in Figs. 3.14 and 3.15.
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Figure 3.15: Example signal 2. Original GW has quadratic chirp. Left: GW spectrogram. Right:
frequency shift between the original signal and detected signal.
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ZEROS OF INTERFEROMETER TRANSFER FUNCTION

For the purpose of the following analysis we treat the gravitational-wave detector is a linear dynamic

system. If we take the one-arm detector, this linear system has the transfer function defined by

equation (1.73). In the theory of linear dynamic systems one of the most important characteristics of

the system are the poles and zeros of its transfer function [96]. The transfer functions of the one-arm

and Michelson interferometer do not have poles. However, they have countable infinite number of

zeros. To find these zeros we need to solve the transcendental equation in the complex plane. This

seems to be a very difficult task.

To simplify this problem, we find the relationship between the real and imaginary parts of the

zeros of the one-arm detector transfer function and use it to reduce the problem to one-dimensional

transcendental equation. To find the solution of this transcendental equation numerically, we iden-

tify the regions where only one root of this equation is present. This semi-analytical approach allows

us to find all roots of the one-arm detector transfer function using the method of bisections.

The Michelson interferometer has two transfer functions, one for plus and one for cross polariza-

tions of the gravitational wave. The final response of the interferometer depends on the polarization

of the gravitational wave which effectively combines + and × transfer functions into one quantity.

This operation changes the zeros of the interferometer response transfer function. However, we

found regions in the sky where transfer functions for both polarization share the same zeros. These

points are based on the solution for zeros for the one-arm detector transfer function that we found

before.

In addition to the zeros we define critical points for the transfer functions. These critical points

correspond to the locations on the sky and source frequencies at which the interferometer has zero

87



CHAPTER 4. ZEROS OF INTERFEROMETER TRANSFER FUNCTION

sensitivity. In terms of the transfer function zeros, the critical points are imaginary zeros. We show

that the critical points of the Michelson interferometer form a grid in the sky. The exact locations

of the critical points for Michelson interferometer will be defined by critical points of the one-arm

detector.

4.1 One-arm detector

For a one-arm detector the pole corresponds to the value of s for which the denominator in (1.73)

turns to 0. This gives us a single pole at s = 0. However, for s = 0 the numerator also turns to 0.

Therefore, the apparent pole at s = 0 is canceled by the matching zero.

All other values of s for which the transfer function turns to zero can be described by the tran-

scendental equation

(1+µ)exp(sT)−2µexp(sTµ)− (1−µ)exp(−sT)= 0. (4.1)

We introduce the normalized parameter σ = sT with real and imaginary parts σ = γ+ iη. With the

help of this notation, we can write two separate equations for the real and imaginary parts

(1+µ)eγ cos(η)−2µeγµ cos(ηµ)− (1−µ)e−γ cos(η)= 0,

(1+µ)eγ sin(η)−2µeγµ sin(ηµ)+ (1−µ)e−γ sin(η)= 0.
(4.2)

Next, we can multiply the first equation by sin(η) and the second equation by cos(η). Then add

and subtract the resulting equations. These steps will lead to the new system of equations:


(1+µ)eγ sin(2η)= 2µeγµ sin(η(1+µ)),

(1−µ)e−γ sin(2η)=−2µeγµ sin(η(1−µ)).
(4.3)

These equations may have solutions only when the left and right hand sides have the same sign.

This sign depends also on µ. For simplicity, we will consider first positive values of µ and then
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negative values. This condition gives us the system of inequalities for η:





sin(2η)> 0,

sin(η(1+µ))> 0,

sin(η(1−µ))< 0.

sin(2η)< 0,

sin(η(1+µ))< 0,

sin(η(1−µ))> 0.

(4.4)

Here, the square brackets mean that one of the conditions (inside the brackets) must be true,

whereas the curly brackets mean that all of the conditions (inside the brackets) must be true.

From the system (4.4) we can find the intervals for η where it can have the solution:





πn < η<πn+π/2,

π
2m

1+µ < η<π 2m
1+µ +π 1

1+µ ,

π
2k

1−µ −π 1
1−µ < η<π 2k

1−µ ,

πn−π/2< η<πn,

π
2m

1+µ −π 1
1+µ < η<π 2m

1+µ ,

π
2k

1−µ < η<π 2k
1−µ +π 1

1−µ ,

(4.5)

where n, m, k are integers. All of these intervals must overlap which gives us the relations for m

and k:
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1+µ
2

n− 1
2
< m < 1+µ

2
n+ 1+µ

4
,

1−µ
2

n < k < 1−µ
2

n+ 3−µ
4

,

1−µ
1+µm < k < 1−µ

1+u
m+ 1

1+µ ,

1+µ
2

n− 1+µ
4

< m < 1+µ
2

n+ 1
2

,

1−µ
2

n− 3−µ
4

< k < 1−µ
2

n,

1−µ
1+µm− 1

1+µ < k < 1−µ
1+µm.

(4.6)

To write the solution of the system (4.5) we introduce new variable r = {n(1+µ)/2}, where {·} is a

fractional part of a number. This allows us to express k and m in terms of n and r from (4.6) and

substitute it to (4.5). After considering all possible cases we can simplify it to


πn < ηn <πn+min

(
1−2r
1+µ , 2r

1−µ
)
π for 0< r < 1/2,

πn−min
(

2r−1
1+µ , 2−2r

1−µ
)
π< ηn <πn for r > 1/2,

(4.7)

where ηn is imaginary part of the zero that lies in the interval (πn−π/2,πn+π/2). For r = 0 and

r = 1/2 there are no solutions for the system (4.5). The intervals from (4.7) tell us where the equation

(4.3) can have solutions. To find them we have to divide one equation by the other and express the

real part of the root via its imaginary part:

γn = 1
2

ln
(
− (1−µ)sin(ηn(1+µ))

(1+µ)sin(ηn(1−µ))

)
. (4.8)

We can also multiply both equations and substitute result for the real part of the root to obtain

the transcendental equation for the imaginary part:

(1−µ2)sin2(2η)= 4µ2
(

1−µ
1+µ

)µ
|sin(η(1+µ))|1+µ|sin(η(1−µ))|1−µ. (4.9)

It is important to note that this equation can have only one solution within one of the intervals

from (4.7). Within this interval sin(2η) has the same sign and has one extremum. At the same time

one of the functions sin(η(1+µ)) or sin(η(1−µ)) becomes zero at one end of the interval, and it can not
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have an extremal point within this interval. Thus, in equation (4.9) left and right hand sides have

only one extremal point, and the maximum number of roots in this case can be two. However, at one

end of the interval, when η=πn, the left side of the equation is zero and the right side is positive. At

the other end of the interval the right side becomes zero and left side is positive. In this way, there

should be an odd number of roots in this interval which means that there is only one root.

During the transformation of equation (4.2) we multiplied it by sin(η) and cos(η). We want to

make sure that we did not add additional roots which may appear when sin(η)= 0 or cos(η)= 0.

For the case when sin(η) = 0 equation (4.3) requires that sinη(1−µ) = 0 and sinη(1+µ) = 0. This

happens when the product µn is integer. However, the real part of the zero (4.8) becomes undefined,

so we need to find it from equation (4.2). Note that it automatically satisfies the second equation in

(4.2). For the first equation, the solution for γn depends on parity of (1+µ)n. If (1+µ)n is even, or

r = 0, then n and µn have the same parity, all cosines in (4.2) have the same sign, leaving

(1+µ)eγ−2µeγµ− (1−µ)e−γ = 0. (4.10)

This equation represents difference between two monotonic functions, therefore it can have only one

solution. The solution is trivial: γ = 0. If (1+µ)n is odd, or r = 1/2, then cosηn = −cosηnµ, and the

real part of the zero can be found from equation

(1+µ)eγ+2µeγµ− (1−µ)e−γ = 0. (4.11)

This equation also has only one solution. However, it is not a trivial one. The value of γ can be found

using method of bisections.

Now let us consider the second case when cosη= 0. From the first equation of the system in (4.2)

it follows that cos(ηµ)= 0. Then the second equation does not have solutions at all. Therefore, we did

not introduce any new roots when we multiplied equation (4.2) by cosηn.

Special treatment is needed for limits when µ approaches 1 or −1. It requires finding the corre-
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sponding limit of equation (3.8), which is

D̃(sT,1)= 1
4sT

(
1− e−2sT +2sT

)
,

D̃(sT,−1)= 1
4sT

(
1− e−2sT +2sTe−2sT

)
.

(4.12)

By setting these values to zero and doing some algebraic transformations we can write


e1+2σ(1+2σ)= e u → 1,

e1−2σ(1−2σ)= e u →−1.
(4.13)

Therefore, a zero with index n can be expressed with n-th branch of the Lambert W function:


σn = (Wn(e)−1)/2, u → 1,

σn = (W−n(e)+1)/2, u →−1,
(4.14)

where e is Euler number. We set the branch for the Lambert function in the second equation to −n

to make sure that the imaginary parts of the zeros are the same for u → 1 and u →−1, and that the

zeros do not have discontinuity when we approach µ=±1.

It is obvious that D̃(s∗,µ) = D̃∗(s,µ). Additionally, using equations (4.7) and (4.3) we can write

ηn =−η−n. This gives us the first property of the zeros:

σ−n =σ∗
n. (4.15)

The second property comes from equation (4.2). This equation does not change if we replace µ

with −µ and γ with −γ which means that γ(µ) is an odd function, and η(µ) is an even function. It

gives us the second property of the zeros:

σn(µ)=−σ∗
n(−µ). (4.16)

This equation allows us to find the zeros of the transfer function (3.8) for negative µ.

One more property of the zeros is that the real part is non-negative for negative µ and non-
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positive for positive µ: 
γn ≥ 0, for µ< 0,

γn ≤ 0, for µ> 0.
(4.17)

To find σn(µ) we use the following algorithm,

1. Calculate µp = |µ|

2. Find r = n(1+µ)/2

• If r = 0: Return value of σ= iπn

• Else if r = 1/2: η = πn and γ can be found from equation (4.11). Return the value of

σ= γ+ iη.

3. Find interval for η from equation (4.7)

4. Find η by searching solution of (4.9) on the interval from the previous step

5. Find γ from equation (4.8)

6. Return σ= γ+ iη

The dependence of the zeros on µ is shown in Fig. 4.1. The zeros on the imaginary axis are

of special interest. Only these zeros repeat for different values of µ. Moreover, these zeros have

different dependence for even and odd n around µ = 0. For odd n the real part of the zero changes

linearly, thus producing smooth line on the complex plane. For even n the real part of the zero stays

constant when µ passes through zero, producing a cusp in the graph.

4.2 Round-trip interferometer critical points

We shall now consider how the properties of the imaginary roots affect the interferometer response

and the output signal. There is a number of discrete points ηc =ΩcT and some particular values of

µc, j for which D̃(iηc,µc, j) = 0. It means that the interferometer can not detect signals with frequen-

cies Ωn from the corresponding locations in the sky. The combination of these special frequencies

and the directions on the sky will be called the critical points. The solutions for the critical points
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Figure 4.1: Dependence of one-arm detector transfer function zeros from source location. Top left
and bottom right graphs represent dependence of real or imaginary part of the zero with direction,
while on the bottom left graph shows movement of the zeros on complex plane when direction to the
source changes.
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Figure 4.2: The absolute value of the one arm interferometer transfer function for different frequen-
cies and source angles. White dots correspond to the zeros of the first kind and red dots correspond
to the zeros of the second kind.

follow from the cases when η=πn as well as when µ= 0




ηc = N

µc, j = N −2 j
N

ηc = 2N −1

µc = 0

, N ∈N, 1≤ j ≤ N −1 (4.18)

Graphical representation of the zeros of D̃(iη,µ) is shown in Fig. 4.2. There are two types of criti-

cal points. The first type corresponds to the signal frequency equal to N frt with N−1 critical angles.

The second type takes place only when N is odd and the direction to the sources is perpendicular to

the interferometer arm.

The interferometer can not detect the signal at critical point but it can detect it next to the critical

point. In such detection the interferometer transfer function next to these points behaves differently
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for different types of critical points. For the first type the transfer function can be approximated as

D̃1(iη,µ)≈ 1
ηc

(η−ηc)− µc, j

1−µ2
c, j

(µ−µc, j). (4.19)

For the second type the transfer function can be approximated as

D̃2(iη,µ)≈ 1
ηc

(η−ηc)− 2i
ηc
µ. (4.20)

Both of these transfer functions experience rapid change of phase from −180◦ to 0◦ when the fre-

quency is changing, but this jump is shifted for the type 1 critical point, and it happens for frequency

η= ηc

(
1+ µc, j(µ−µc, j)

1−µ2
c, j

)
. (4.21)

The second type of the critical point experiences the jump exactly at the critical frequency ηc.

4.3 Michelson Interferometer

The signal from the photodetector is a mixture of the responses to + and × polarizations of the

gravitational wave. This mixing adds another complex parameter to the interferometer transfer

function: gravitational wave polarization. Complex zeros of the transfer function would change

with the polarization, which complicates the general conclusion about the interferometer properties.

Instead, we are looking for source locations such that the interferometer sensitivity will be zero no

matter what kind of polarization the incoming gravitational wave carries. In other words, we are

looking for a solution of equation

|M̃+(s,µ,ν)|2 +|M̃×(s,µ,ν)|2 = 0. (4.22)

If we change the gravitational-wave frame angle ψ the responses of Michelson interferometer will

transform as a vector under rotation by 2ψ. Thus, if we find the point at which both sensitivities are

zero, they will remain zero during the rotation of the vectors p̂ and q̂. Using this freedom of choice

for the GW polarization frame we can set p̂ · b̂ = 0. It is always possible to do so because vector p̂

can be anywhere in the plane perpendicular to n̂. So we either choose p̂ along b̂× n̂ or, in case when
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n̂=±b̂, vector p̂ is always perpendicular to b̂. In this case the Michelson interferometer response to

cross polarization can be equal to 0 when one of these 3 conditions are met:

p̂ · â= 0, (4.23)

q̂ · â= 0, (4.24)

D̃(s,µ)= 0. (4.25)

For the case (4.23), the polarization vector p̂ is perpendicular to the plane of the interferometer,

thus the source is in the plane of the interferometer. In this case the difference between arm-to-

source angles θa and θb will be equal to the angle between the arms: α = |θb −θa|, where µ = cosθa

and ν= cosθb, which can be written as

cosα=µν−
√

1−µ2
√

1−ν2, (4.26)

or

µ2 +ν2 −2µνcosα= sin2α. (4.27)

Additionally, if vector p̂ is perpendicular to â and b̂, we can easily find that (n̂ · â)2 = 1−µ2,

(n̂ · b̂)2 = 1−ν2. This gives us the following transcendental equation for s:

(1−µ2)D̃(s,µ)− (1−ν2)D̃(s,ν)= 0, (4.28)

which can be transformed to

(µ−ν)
(
esT + e−sT

)
−2

(
µesTµ−νesTν

)
= 0. (4.29)

For the case (4.24) we are looking for the directions on the sky when q̂ = ±â× n̂/
√

1−µ2 and

p̂ = ±b̂× n̂/
p

1−ν2. At the same time we know that p̂ · q̂ = 0, which gives us the condition for the

source direction

µν= cosα. (4.30)

For example, if α= 90◦ then µ or ν should be equal to zero, which corresponds to the source location
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at azimuth angles of 0, 90, 180, and 270 degrees.

The transcendental equation for the zeros is

(
1−µ2)

D̃(s,µ)+ (
1−ν2)

D̃(s,ν)= 0, (4.31)

or after substitution of one-arm detector transfer function

2
(
esT − e−sT

)
+ (µ+ν)

(
esT + e−sT

)
−2

(
µesTµ+νesTν

)
= 0. (4.32)

Finally, for the last case (4.25) we need to have both D̃(s,µ) = 0 and D̃(s,ν) = 0. In cases when

µ = ν and the source is right between the interferometer arms the solutions for the zeros are the

same as for the one-arm detector. But if µ 6= ν then both responses can be zero only when the roots

for different µ and ν are equal to each other which is possible only when Re{sT}= 0, as shown in Fig.

4.1. Therefore, the zeros of Michelson interferometer can exist only in special places on the map.

In summary, all equations that describe the zeros of Michelson interferometer are




µ2 +ν2 −2µνcos(α)= sin2(α),

(µ−ν)
(
esT + e−sT

)
−2

(
µesTµ−νesTν

)
= 0.

µν= cos(α),

2
(
esT − e−sT

)
+ (µ+ν)

(
esT + e−sT

)
−2

(
µesTµ+νesTν

)
= 0.

D̃(sT,µ)= 0,

D̃(sT,ν)= 0.

(4.33)

These equations can be conveniently written in terms of µ and ν as coordinates that define the

direction to the source on the sky. These coordinates represent n̂x and n̂y components when the

interferometer arms are perpendicular. We can also derive n̂x and n̂y for an arbitrary angle between

the arms:

n̂x = 1
sin(α)

(
µcos

(π
4
− α

2

)
−νsin

(π
4
− α

2

))
, (4.34)

n̂y = 1
sin(α)

(
νcos

(π
4
− α

2

)
−µsin

(π
4
− α

2

))
. (4.35)
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4.4 Michelson interferometer critical points

The zeros of Michelson interferometer can exist only for sources located at the following areas in the

sky:

• on the equatorial plane,

• between the arms when µ= ν,

• points where µν= cos(α),

• points where transfer function for each arm is 0, so µ and ν satisfy equation (4.18).

Location in the sky where this zero is imaginary, together with the zero itself, corresponds to a

critical point. All critical points can be described with this system of equations:





µ2 +ν2 −2µνcosα= sin2α,

(µ−ν)cosΩT − (
µcosΩTµ−νcosΩTν

)= 0,

µsinΩTµ−νsinΩTν= 0.

µν= cosα,

(µ+ν)cosΩT −µcosΩTµ−νcosΩTν= 0,

2sinΩT −µsinΩTµ−νsinΩTν= 0.

sinΩT −µsinΩTµ= 0,

µcosΩT −µcosΩTµ= 0,

sinΩT −νsinΩTν= 0,

νcosΩT −νcosΩTν= 0.

(4.36)

There are two source locations in the equatorial plane that we will call type 0 critical points.

These points have elevation angle of θ = 0° and azimuth angles of 45° and 225°. At these points

the interferometer response is always zero regardless of the frequency of the gravitational-wave

signal. The additional points appear for azimuth angles of 135° and −45°, as shown in Fig. 4.3. The
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Figure 4.3: Examples of zeros for signal frequencies at non-integer FSR for the case (4.23). the
left panel shows additional zero which appears for azimuth angle −45◦ at frequency 4 frt/3 for arm
angle 60◦. The left panels shows the zero with the same azimuth that appear for signal frequency
4 frt/(2+

p
2) and interferometer with angle between arms 90◦.

frequency of the gravitational wave at these critical points is described by the equation

ΩT = 2πN
1±sin(α/2)

. (4.37)

This critical point will be called type 2 critical point. It has the same behavior as type 2 critical point

of the one-arm detector: the frequency of the lowest sensitivity shifts with the small change of the

source position.

The critical points for the source locations between interferometer arms, or when µ = ν, are a

subset of the one-arm detector critical points. For these source locations M+ = 0 and M× turns to

zero only when responses of both arms are zero.

For source locations that satisfy condition µν = cos(α), the critical points are possible only for

cos(α)< 0 and µ= ν, as show in Fig. 4.4. This solution comes from the solution of the transcendental

equation

sinωT =µsin(ωTµ), (4.38)

where µ=p−cos(α). This equation follows from (4.32) when we set µ=−ν. These points, similar to

the equatorial critical points, are of type 2.

Finally, the critical points for Michelson interferometer for the case when each arm transfer

function is zero are shown in Fig. 4.5. The third system has the solutions that are already described

100



CHAPTER 4. ZEROS OF INTERFEROMETER TRANSFER FUNCTION

Figure 4.4: Example of the zero for the case in (4.24) that appears at low frequency approximately
0.752 frt for azimuth 45◦ and elevation 35.26◦. The angle between the arms is 120◦. The zeros from
the case (4.24) are marked with red cross, while zeros from the case (4.23) are marked with red dot.

in (4.18), and it will form a grid in the sky for frequencies equal to multiple of FSR. If both arms have

type 1 critical point then corresponding critical point of the Michelson interferometer also belong to

type 1. However, if at least one of the arms has type 2 critical point, then Michelson interferometer

critical point is also of type 2. This can happen for sky locations along the directions perpendicular

to the interferometer arms. The grid, formed by the critical points has two basis vectors ĝa and

ĝb. These vectors are orthogonal to the arm vectors: ĝa · b̂ = 0 and ĝb · â = 0. This property has

an important implication for critical point symmetry: they will overlap over rotation by the angle

between ĝa and ĝb. For example, for interferometer with arms angle 60°, the critical points will

overlap if this interferometer will be rotated by 120°. Even if a point in the grit goes over the unit

circle, it still makes a critical point, as demonstrated in the top right panel of Fig. 4.5. On this panel

the transfer function approaches zero for source direction next to the interferometer arms, but it

never reaches it.
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Figure 4.5: Michelson interferometer sensitivity for signal frequency at 4 frt (left) and 5 frt (right).
Top plots correspond to the interferometer with 60◦ angle between arms, bottom plots correspond to
the interferometer with 90◦ angle between arms. Interferometer arms are marked with black lines.
The zeros corresponding to the case (4.25) are marked with white dots and zeros corresponding to
the case (4.23) are marked with red dots. The red dot corresponds to only one solution when u = v.
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Summary of the Main Results

In this work we analyzed the propagation of gravitational-wave signals through laser interferometric

detectors. We studied how these signals become distorted by the detectors and developed a math-

ematical formalism that allows us to calculate these distortions directly from the interferometer

transfer function and its impulse response. We showed that the transfer function is completely de-

fined by its zeros in the complex plane. We also derived the relationships between the real and

imaginary parts of the zeros that were crucial for the development of effective computation of the ze-

ros on the computer. These analytical equations allowed us to introduce the method of bisections for

numerical calculations of the zeros with arbitrarily high precision. Based on these results we were

able to identify signal frequencies and source locations that we called critical points. At the critical

point the source location corresponds to the zero with a small real part; the critical frequency then

equals the imaginary part of the zero. In the vicinity of these critical points the signal distortions

are extreme.

In addition to the phase delay the signal has the group delay which is defined by the phase of

the interferometer transfer function. We derived the analytical equation for the group delay and

analyzed how the group delay depends on the source location and the signal frequency. Moreover,

we showed that the group delay can be negative for some source locations on the sky. This can

be seen in the appearance of the peak of signal amplitude in the interferometer before the arrival

of the corresponding peak of the gravitational wave. We showed that this effect appears only for

signals with smooth envelopes and narrow bandwidths. For signals that have abrupt changes of the
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amplitude the normal or positive delay takes place.

Other distortions that we derived from the interferometer transfer functions are the frequency

shift, frequency chirp, and signal broadening. These distortions are applicable to any quasi-monochro-

matic signal. The frequency shift distortion causes the peak frequency of the signal to shift within

its bandwidth. The frequency chirp distortion adds a linear trend to the frequency evolution of the

signal, making it appear as a tilted line on the spectrogram. The signal broadening makes the line

appear wider or narrower, changing its time span. Analytical equations are derived for these distor-

tions.

The analysis of signal distortions is applied to study how the interferometer will filter the compli-

cated gravitational-wave signals from Core Collapse Supernovae (CCSN). Here we distinguish three

types of CCSN gravitational-wave features and show how they become distorted by the detector.

We conducted numerical simulations of gravitational wave detection to estimate the distortions of

each of these features. The results of these numerical simulations agree well with the analytical

calculations except when the source location and the signal frequency approached the critical points.

The first feature in our analysis is the supernova core bounce. It experiences the biggest distor-

tion during the detection. We described symmetry properties of the distortions on the example of a

short pulse. If the pulse originates from a source located in the plane bisecting the detector arms, it

experiences a small time shift, has minor distortions, and mostly preserves the amplitude of its first

peak. When the direction to the source is making an obtuse angle with both interferometer arms, the

first peak becomes attenuated and stretched. Additionally, we observed copies of the signal or echoes

that appear for detectors with photon round trip time greater than the pulse length. A detector with

a Michelson configuration can produce up to four copies of the signal which appear in the moments

defined by the angle between the source and the interferometer arms.

The second feature corresponds to the frequency-changing modes of CCSN gravitational waves

such as p- and g-modes. We showed that the signal distortions will not affect the whole feature

because the frequencies of these modes change in a wide range within the signal. However, the

frequency shift added by the interferometer can be large when the frequency of the signal passes a

critical point. In this case the mode splitting occurs at the critical frequency. This splitting can make

a single mode appear as two different modes and thus confuse the interpretation of the signal during

the data analysis stage.
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The third feature is the quasi-monochromatic oscillations that appear in the CCSN gravitational-

wave signal and is known as SASI mode. We showed that in addition to the time shift, the mode can

change its frequency within its bandwidth, and acquire a chirp which can make it appear as a g-

mode. Additionally, this feature can change its length due to the envelope broadening or focusing of

the signal in time domain.

Implications for Future Gravitational Waves Searches

The distribution of the critical points in the sky can be used for optimization of a single detector and

detector networks. We showed that there are special locations of critical points where the interfer-

ometer has low sensitivity for signals with frequencies equal to multiple of the FSR. Therefore, it is

advantageous to arrange the network of detectors in such a way that the critical points of individual

detectors do not overlap. We also found that future detectors with triangular configuration such as

the Einstein Telescope or LISA space mission will have overlapping sets of critical points.

The location of critical points can be considered for optimization of future detectors for searches

of CCSN signals. For ground based detectors, the maximum frequencies of the CCSN features will be

on the order of the FSR. The most distorted features will be the core bounce and the core oscillation

modes. The SASI mode has the lowest frequency. Therefore, we do not expect it to be significantly

distorted during if detected by currently operational gravitational-wave detectors. For frequency

of the signal near 2 FSR the critical points are located above and below the interferometer and

in the plane of the interferometer arms. To optimize the location of the interferometer for known

sources, such as the Milky Way galactic center, it is important to place the interferometer so that

the source never crosses the critical point. It is possible to do so by choosing the latitude of the

interferometer away from the declination of the source, as well as the declination ±90°. For space

based interferometers, the frequencies of the CCSN features will be much higher than the FSR. In

this case most of the sky will be filled with critical points. Consequently, precise location of the

interferometer becomes less important. However, the signal distortions become more pronounced

and their effect becomes more substantial. In this case, the analysis of signal distortions described

in this work will be very useful for search algorithms and the subsequent waveform reconstruction.

Another result of this work that can be used for optimization of detector networks is the infor-
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mation about the signal delay. This effect must accounted for when a gravitational wave signal from

multiple detectors is used to find the source location in the sky. For signals with known frequency our

analytical equations allow us to estimate systematic errors in source localization which are crucial

for searches of the electromagnetic counterpart of the gravitational-wave source. Time shift can also

have an impact on the CCSN waveforms. Different features of the signals have different frequencies.

Therefore, they will be shifted by different time lags. This effect needs to be considered during the

signal analysis. For example, the changes in the time lags become important when measuring the

time between the core bounce and generation of shock instabilities.

The distortions of the bounce signal can affect coherent detection of the gravitational wave by

a network of detectors because the bounce signals detected by interferometers with different orien-

tations can have a substantially lower cross-correlation than the ideal signals. If such signals are

detected, the source localization will be necessary to restore the original bounce signal. Additionally,

the effect of echoes can lead to a wrong conclusion about the processes that happen during binary

coalescence or CCSN. Fortunately, the present analysis makes it possible to improve localization of

the source by measuring the time when each echo appears.

Precise localization of the source by electromagnetic observations can be aided by our model of

the frequency detuning. Knowing the source position we can then remove the distortions of the

CCSN modes over a wide range of frequencies including the p- and g-modes. These modes tend

to have most of their power at the end of the frequency range. If this frequency is close to the

detector FSR additional time-dependent frequency detuning will appear which can affect estimation

of explosion parameters and how they change over time. The mathematical formalism developed

in this work makes it possible to remove the systematic errors that these distortions introduce to

the gravitational-wave signals and obtain precise estimation of the astrophysical properties of the

supernova.
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