
Representation and Strategy Learning for Variable-Size Tree Transformation Using

Reinforcement Learning

by

SHIRIN H. SHIRVANI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2021

Copyright c© by SHIRIN H. SHIRVANI 2021

All Rights Reserved

To my little cheerful Nousheen.

ACKNOWLEDGEMENTS

First, I thank my Professor Manfred Huber for the continuous support during

my PhD studies at UTA. His trust in my success and the provided scientific freedom

and guidance were decisive to the result of this thesis. Next, I would like to express my

deepest appreciation to my PhD committee for being my thesis committee members;

Professor Farhad Kamangar, Professor David Levine, and Professor Vassilis Athitsos.

The completion of my thesis would not have been possible without their unparalleled

support and ingenious suggestions.

July 30, 2021

iv

ABSTRACT

Representation and Strategy Learning for Variable-Size Tree Transformation Using

Reinforcement Learning

SHIRIN H. SHIRVANI, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Manfred Huber

Trees as acyclic graphs are ubiquitous in representing different context where

they encode connectivity patterns at all scales of organization, from biological systems

to social networks. Trees are powerful resources which have been used many times

for the exploration and discovery of interactions and properties in different context.

Tree data structure representation approaches have led to remarkable discoveries in

different real-world applications.

In the last decades, extensive research and algorithms have been developed on

tree or acyclic graph data structures with deep theoretical properties. The cost of

solving these various problems ranges from simple linear time algorithms, to more

complex ones that solve NP-hard problems. However, trees as acyclic graph datasets

are generally not easily amenable to data-driven techniques, and unlike other big data

will not easily benefit from the growing scale of available data with sparse nature.

Recently deep learning has shown significant progress for images, texts and signals,

typically with little domain knowledge. However, the combinatorial and discrete

nature of tree space or acyclic graph data makes it non-trivial to apply deep learning

v

in this domain. This thesis investigates several aspects of how to build a connection

between deep reinforcement learning and the classical algorithms for tree space.

This dissertation introduces the use of reinforcement learning for closing the

gap between these two complementary approaches. Commonly greedy, heuristic and

supervised clustering methods provide automated tools to discover hidden built-in

structures in generally complex-shaped and high-dimensional configuration spaces of

trees. We show some potential applications of such tree transformation tools and

sampling strategies to a common problem related to tree distance and manipulation

with applications to problems in genomics, planning and control.

The first part of the dissertation presents the use of reinforcement learning

for relaxed, deterministic coordination and control of an agent to learn a tree edit

distance task. We reinterpret this classical method task for unsupervised learning

as an abstract formalism for identifying and representing tree transformations by

relating the continuous space of configurations to the combinatorial space of trees.

The second part of the dissertation introduces a generalized approach with au-

tomated representation exploration in an edit neighborhood representation, learning

to identify a neighborhood of a tree that captures the local geometric structure of a

configuration space around the tree’s instantaneous configuration. Based on this edit

neighborhood representation, we use reinforcement learning to learn a NNI distance

strategy to find the minimum-cost sequence of operations that transform one tree

into another.

The third part of the dissertation presents a generic framework for learning

representation and behavior on a tree dataset in hyperbolic space on a finite action

space, integrating policy learning using reinforcement learning. In this work, we

study the use of value function approximation in hyperbolic space and reinforcement

vi

learning problems with high dimensional state and a finite action space based on a

generalized representation and policy iteration.

The obtained results strongly suggest that reinforcement learning is, indeed, an

effective approach for automatically extracting inherent structures in configuration

spaces relevant to the solution of tree edit distance, and that it might play a key

role in the design of computationally efficient planners in complex, high-dimensional

configuration spaces in different application domains.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . xii

LIST OF TABLES . xvi

Chapter Page

1. Introduction . 1

1.1 Background . 3

1.2 Organization of the Thesis . 4

2. Background and Related Works . 6

2.1 Tree Representation Learning with Variable Size 6

2.2 Tree Transformation Representation 8

2.3 Sampling-Based Methods . 9

2.4 Tree Generative Model . 10

2.5 Preliminaries and Notation . 11

2.5.1 Tree Embedding For Relational Reasoning 12

2.6 Reinforcement Learning for Tree Transformation 13

2.6.1 Action Space . 14

2.6.2 Reward . 14

2.6.3 Reduction to RL . 15

3. Generative NNI Transformation Strategies in Binary Trees Using Reinforce-

ment Learning . 17

3.1 Introduction . 18

viii

3.2 Related Work . 19

3.3 Background and Notation . 21

3.3.1 NNI Distance δnni . 22

3.3.2 Reinforcement Learning and MDP 22

3.4 Reinforcement Learning of a Tree NNI Transformer 23

3.4.1 Reduction to an RL Problem 24

3.4.2 Function Approximation . 29

3.5 Trajectory Sampling . 30

3.5.1 Reinforcement Learning Algorithm 30

3.6 Experimental Results . 31

3.6.1 Simulated Synthetic Data . 31

3.6.2 Results . 32

3.7 Conclusions . 34

4. A Deep Reinforcement Learning Approach to Learning Tree Edit Policies

on Binary Trees . 35

4.1 Introduction . 36

4.2 Background . 38

4.2.1 Tree Space . 40

4.3 Supervised Tree Representation Model 42

4.3.1 Direct Encoding of Pairs of Trees 42

4.3.2 NNI Neighboring Aggregate Strategies 44

4.3.3 Supervised Transfer Learning 45

4.4 Transfer Representation Policy Learning 46

4.4.1 DQN Learning Policy . 48

4.4.2 Learning Q-Values For NNI Distance 49

4.4.3 Deep Q-Learning . 50

ix

4.5 Rollout Approach . 51

4.6 Simulated Synthetic Data . 53

4.6.1 Distance Learning Evaluation 54

4.7 Evaluation of Policy Learning . 55

4.8 Conclusion . 57

5. Local Tree Neighborhood - Learning Hyperbolic Representations of Tree

Pair Differences . 58

5.1 Introduction . 58

5.2 Background . 59

5.3 Related Works . 60

5.4 Preliminary and Notation . 61

5.5 Hyperbolic Transfer Representation 62

5.5.1 Geometric Embedding of Tree Pairs 64

5.5.2 The Optimization Problem . 65

5.6 Measure of Tree Pair Embedding . 66

5.6.1 Hyperbolic Tree Pair Embeddings for NNI Distance Prediction 69

5.7 Conclusions . 72

6. Deep Reinforcement Learning for Tree Transformation using Hyperbolic

Representations of Tree Pairs . 74

6.1 Introduction . 74

6.2 Background and Related Works . 75

6.3 Preliminary . 76

6.4 Feature Based Learning . 76

6.5 Action Based Features . 77

6.6 Space Exploring Policy . 77

6.7 State Representation: Tree Pairs in Local Neighborhood 78

x

6.8 Improving Deep-Q RL with Rollout using Hyperbolic Geometry Ap-

proximation . 79

6.9 Results . 81

6.10 Conclusion . 84

7. Conclusions and Future Work . 85

7.1 Conclusions . 85

7.2 Future Work . 86

REFERENCES . 87

xi

LIST OF ILLUSTRATIONS

Figure Page

3.1 An NNI operation swaps two subtree that are separated by an internal

edge. 21

3.2 Active edge iei = (A,B) with partial observation zone. 25

3.3 Dynamic decomposition strategy recursively decomposes the current

state around the active edge, into a set of 6 induced subtrees Bτ =

{π1, π2, π3, π4, π5, π6}. The features are calculated based on each in-

duced piece. 26

3.4 Learning curves showing log-normal of the average reward. The com-

plexity of the training tree pairs is increased every 250 episodes in (a)

and every 500 episodes in (b) and (c), and the exploration rate is set

back to an initial value from which it decays exponentially. 33

3.5 The performance of the learned policy on a test set for different tra-

jectory length. The y-axes shows the agent’s steps while the x-axis

represents the generation complexity. 34

4.1 An NNI operation swaps two subtrees that are separated by an internal

edge. 39

4.2 A snapshot of generated network of tree space as a simple indirect graph

G by NNI neighbors in 3− nni steps. 41

4.3 Direct encoding of a pair of trees (τi, τj) using traversal sequences with

multi-layer LSTMs. We inject the tree in different fashion either in-

order, pre-order, or post-order. 43

xii

4.4 3 − nni neighboring aggregation: the training set Φ = {φi}3i=1 is gen-

erated by sampling random walks with NNI steps starting from tree

τi. 44

4.5 DeepQ - NNI Policy Learning Framework. 51

4.6 Rollout Cycle . 52

4.7 This framework supports batching with different size, which can be en-

abled by setting the batch size. 53

4.8 a. Mean squared error (MSE) losses for NNI distance prediction during

training and validation on a tree space with 12-nni distance radius and

vaying tree sizes. Validation losses were calculated using batches with

variable size validation examples after every training batche. b. (MSE)

losses of NNI distance prediction during training and validation with

trees of a fixed size . 55

4.9 a. The agent’s learning convergence for nni transfer. b. Success rate of

reaching the target for different size of tree with maximum 5-nni distance. 56

4.10 MSE of distance loss with maximum 12-nni distance (actual steps) and

with max budgets of 32 steps. Rollout effectively can approximate the

target with between [4-8] NNI step. 57

5.1 Tree in the hyperbolic disk. Each edge has to be embedded to a min-

imum length depending on the cone in which it is embedded. The

distance of nodes increases exponentially (relative to their Euclidean

distance) the closer they are to the boundary. 64

5.2 Embedding pairwise nni distance (τi, τj) in the hyperbolic disk. 64

xiii

5.3 Sample of embedding pairwise nni distance (τi, τj) in the hyperbolic

disk. Positions of node vectors in 2-D space from an actual Poincaré

embedding with leaf nodes labeled with the leaf labels and intermediate

node labels prefaced with i. Nodes for tree 1 (green) are labeled above

the mark while nodes for tree 2 (red) are labeled below. Overlapping

nodes are green and indicated with a bold outline. Note that as we

move toward the boundary, we begin to see nodes lower and lower in

the hierarchy. Also, nodes similar to each other are close or overlap each

other. 67

5.4 Supervised architecture model . 70

5.5 Training and test performance for NNI distance prediction in terms of

loss in the number of NNI steps (left) and estimated squared error (right) 72

6.1 Overall architecture and training pipeline. The hyperbolic embeddings

of tree pairs are constructed in the first stage and, as a tree traversal

sequence of current/target node pairs fed into the LSTM embedding

network. The output of this network, having initially been pre-trained

using NNI tree distances, serves as the feature representation for the

deep-Q Reinforcement Learning component for the extrapolated tree

transformation policy learning task. 82

6.2 Performance of agent during training on variable sized tree pairs with

NNI distances between 1 and 5. The system successfully learns to trans-

form the trees in an average of 8 steps. Reward ={ Goal=1000, edit

and move=−1, 0} . 83

xiv

6.3 Performance of rollout during training on variable sized tree pairs with

NNI distances between 1 and 5 with variable size tree without normal-

ization. Average loss in nni distance across 10 runs for variable size tree

without normalization . 83

xv

LIST OF TABLES

Table Page

xvi

CHAPTER 1

Introduction

Tree data structures as acyclic graphs are ubiquitous in many real world appli-

cations. With an increase in exploratory approaches and use of tree and tree-based

tasks in different applications, from biology to planning, it has become even more

crucial to efficiently explore related data spaces to accomplish given tasks (such as,

for example, edit distance or finding structural patterns). In bioinformatics, the

molecules can be represented by acyclic graphs or trees with atoms as nodes and

bonds as edges; in knowledge graphs, entities and corresponding relationships form

a graph; in social networks, users and their interactions can also be characterized

as graphs; in correct efficient planners it is essential to model and understand the

typologies of configuration spaces of exploratory systems. Despite it being such an

apparently easy representation, the discrete, combinatorial, and sparse nature of trees

and acyclic graphs also lead to many difficulties when integrating them into various

machine learning problems. Difficulties in learning within the data space of tree data

structures are manyfold and have led to them not frequently being used or being

significantly simplified and constrained within the learning domain. Here we briefly

mention three fundamental types of difficulties in the current state-of-the-art of inte-

grating tree structures into machine learning applications.

• Representation Learning: learning to represent the acyclic graphs or trees in

more traditional, fixed dimensional vector representations has challenges that

1

have to be addressed to enable the scalability and efficiency of existing learning

algorithms.

• Generative modeling: Generating and reconstructing the tree is also a hard task.

Despite significant progress in domains with continuous noise tolerant data such

as images, the discrete nature of graphs typically forces the data to be accurate.

For example, in a molecule data set, the node can have at most a fixed number

of degrees, making this data very sensitive to noise and making it difficult to

apply many machine learning techniques. Also, the combinatorial and discrete

nature of graphs makes it hard to apply gradient based adjustments during the

generation procedure.

• Combinatorial Optimization problems with NP-complete nature such as genome

sequencing tasks, tree edit distance, nni-distance, protein interaction, etc. pose

significant challenges in the context of both pattern and action depend tasks.

The design of efficient and, if possible, provably correct models in tree space

inevitably requires to model and understand the topologies of configuration spaces of

exploratory systems. Two commonly encountered approaches to tackle the efficient

exploration problem are configuration space planning and sampling-based planning

[140, 55]. Reinforcement Learning (RL) techniques have also been extensively used to

solve many machine learning problems. Recent progress in deep learning techniques

allow RL to be extended to various new application domains. However, tree spaces

generally have complex shapes and are difficult, if not impossible, to explicitly describe

in terms of standard similarity, geometric and topological models. Moreover, the

complexity of tree spaces is known to grow exponentially as the size of the trees and

2

the configuration space grows in dimension [46]. These limitations therefore often

restrict the applicability of exploring network space to low dimensional settings.

1.1 Background

This thesis investigates methods and case studies for analyzing tree networks

such as biological networks and extracting actionable insights. As a result, it provides

techniques for next-generation algorithms for tree and acyclic data structure problems

for generic tree modeling, network modeling for systems with acyclic nature, as well

as structure analysis and optimization:

• How do we represent tree structures as acyclic graph data and what techniques

can be used to unify data coming in different formats and topologies in the

form of a time series, and how can we deal with such data coming potentially

from different experimental technologies? How do we represent different types

of entity objects such as nodes and edges, (representing entities such as genes,

diseases and drugs), and how do we represent different relation types using

networks and embed these components?

• How can we embed larger tree structures and acyclic graphs, such as sub-trees,

and entire acyclic graphs, such as molecular graphs, into a low-dimensional

vector space? How to handle multi-relational and multi-size networks?

• The basic principle in tree networks is that the same configurations (i.e. sub-

tree structures) tend to interact with each other in similar ways (for example in

the context of genes or proteins). How do we mathematically encode such prin-

ciples into a machine learning model and extract information about interactions

between components?

3

• Tree structures associated with the same function or topology tend to cluster

in the same network neighborhood. How do we use this notion to predict new

typologies or functions?

• How can representation learning methods identify the components which need

to be edited in order to yield the target structure?

While these are fundamental questions for the use of acyclic graph structures

within advanced learning and reasoning systems, this thesis tries to make progress

in this direction by focusing on the problem of efficiently embedding such structures

into deep learning architectures without the need for a priori limitations on the size

and scope of the graphs. Moreover, it develops techniques for the integration of

Reinforcement Learning techniques on these structures to allow addressing problems

on variable size graph sets. Throughout the development, the work presented here

focuses on the common problem of Nearest-Neighbor Interchange tree transformation

and tree distance calculation. However, many of the techniques developed here are

generic and should apply equally to other problems on tree structure representations.

1.2 Organization of the Thesis

The thesis is organized in the following way: in Chapter 2, we present the

related works in the underlying areas, such as representation learning, generative

learning, and combinatorial optimization on acyclic graphs. Then in Chapter 3 we

introduce an approach that combines human designed structure embeddings of cur-

rent/target tree pairs in the context of a deep learning framework to learn effective

tree transformation strategies. This illustrates how human designed algorithms and

deep learning can benefit from each other and presents a deep reinforcement learning

approach to learning tree edit policies. In Chapter 4 we then investigate the use of

4

deep learning techniques to automatically acquire an embedding for variable sized

trees without the need of hand coding or applying bounds on the size of the tree

representation. Combining this with pre-training and deep Reinforcement Learning

is again used to demonstrate its potential at learning tree transformation policies.

To address limitations in the efficiency of the learned embeddings, Chapter 5 stud-

ies a more effective way to encode local tree neighborhoods by learning hyperbolic

representations of tree pairs. Based on this, Chapter 6 then proposes an improved

deep reinforcement learning approach that combines learning of an efficient tree dif-

ference embedding from the hyperbolic geometry representation of variable size tree

pairs with a deep reinforcement learning architecture using rollouts. Using this new

embedding approach, this chapter investigates the differences in performance across

representations. Finally in Chapter 7, we conclude this dissertation and discusses

potential future research directions.

5

CHAPTER 2

Background and Related Works

In this chapter, we review related works in tree similarity, distance editing, and

tree transformation with variable size learning problems by highlighting the different

objectives, points of interest, and methods.

2.1 Tree Representation Learning with Variable Size

Trees and acyclic graphs are invaluable approaches to data structures to repre-

sent real-world relationships, e.g., in natural language processing, molecular structure

in biological systems, path planning, social and interaction networks, etc.. Study and

analysis based on editing tree structured data, including prediction over nodes, edges,

and the whole tree, becomes more and more attractive and has been applied to many

problems.

There are different mathematical abstract formalisms for the configuration and

similarity of a tree data structure in tree space. Once an explicit representation of the

tree space is generated, a number of configuration space representations can be used

to satisfy the given task specifications. However, tree configuration spaces generally

have complex shapes and are difficult, if not impossible, to explicitly describe in

terms of standard geometric and topological models. Moreover, the complexity of

possible topology is known to grow exponentially as the configuration space grows by

number of nodes. These limitations therefore often restrict the applicability of tree

data structures to low dimensional settings.

6

Most of these tasks depend on embedding the hierarchy and tree information

into vectors, which is crucial to the success of these applications [1, 2]. This approach

is generally referred to as tree embedding, i.e., the mapping of the representation of

trees and tree similarities into a vector space. A common solution for the represen-

tation of nodes and edges in trees depends on engineered domain-specific features.

Regardless of the hard effort and requirement for expert knowledge for engineering

features, such engineered features may not be sufficiently powerful to capture the

properties of the tree structures for the specific target tasks.

Recently, deep learning techniques have opened a new promising avenue for

some of these tasks, depending on the quality and applicability of the tree embed-

ding. One promising direction is preserving some desired characteristics of the tree

structure through approximating the corresponding statistics with embeddings. For

example, DeepWalk [3] extends the word2vec [4] model in NLP to graph based struc-

ture embeddings, which tries to preserve the connection between nodes in the local

structure obtained by random walks. Different heuristic methods, such as the biased

random walk model [5] have been proposed.

Another existing approach is built on the convolution operator over graph struc-

tured data, which has been showing success in covering the long-range information

in graphs in real-world applications. By using convolution in a spatial local structure

embedding domain, graph neural networks (GNNs) [6] proposed a general framework

of performing neural network operators over structured data. However, the scope of

these models is restricted since

• the variable size of the graphs and long range information within the graph

might not be easily integrated in a computationally or statistically efficient way

(either via longer random walks in traversal methods or high-order proximity

concepts in convolutional settings);

7

• these approaches are featureless and trained unsupervised, i.e., independent of

the down-streaming tasks; as a result, the generated embeddings may be weak

in covering the relevant information with respect to the labels.

2.2 Tree Transformation Representation

In the literature, various methods have been proposed in the scope of tree

transformation as a combinatorial problem [7, 8, 9]. Since these algorithms rely on

measures of similarity between two trees in the used combinatorial pattern match-

ing approaches with approximation and heuristic search techniques, most studies use

edit distance to measure the dissimilarity between trees. In general, similarity com-

putation is the dual problem of distance computation. Usually, both their memory

and computational cost become prohibitive for large-scale tree spaces, which grow

exponentially with respect to the tree size.

Common approaches are based on tree rearrangement moves and edits such

as nearest neighbor interchange (NNI), subtree pruning and re-grafting (SPR), and

tree bisection and re-connection (TBR) to estimate partition functions of trees under

some implied probability distribution on tree topology, branch lengths, or ancestral

sequences [10]. The tree edit distance (TED) measure in tree transformations is

a reference to measuring similarity of tree structured data. The tree edit distance

is defined as the minimum-cost sequence of node edit operations that transform one

tree into another.

Every interactive system requires a mechanism to encode and present the agent

the data it handles. Most times the relations between the data and its presentation is

complex. Further, most times, it is mediated by a representation technique, allowing

the agent to describe how the data should be presented.

8

In this dissertation, we propose a deep reinforcement learning model for the

embedding and representation of tree pairs and for the construction of tree transfor-

mation strategies.

2.3 Sampling-Based Methods

In general, the tree space, i.e. the network of trees generated by any tree trans-

formation, is a graph network environment. Tree sampling is a technique to pick a

set of trees from the original tree space. In some scenarios, the whole space of the

environment is known and the purpose of sampling is to obtain a sequence of sample

trees. In other scenarios, the space is unknown and sampling is regarded as a way

to explore and partially construct the environment. Commonly used techniques are

Node Sampling, Edge Sampling and Traversal Based Sampling [11]. In principle, nav-

igation in the network of trees is a trivial matter, because the number of trees over a

finite set of leaves is finite. However, in practice, the cardinality of trees grows super

exponentially based on the number of leaves or edits. Since in many real-world net-

works their size is very large, and they continuously evolve due to the dynamic nature

of the problem and the applicable transformations, the network representing the tree

space is often sampled in order to facilitate study. Thus, similarity and sampling of

tree navigation in the network of trees become fundamental to the analysis. For these

reasons, a more thorough and complete understanding of network sampling is critical

to support the field of tree transformation. Similarity search for similar trees has been

extensively studied. The relations between these approaches have been studied and

the theoretical analysis and practical implementation has been presented in previous

work [12].

Sampling-based methods, such as probabilistic, rapidly-exploring random trees,

and their variants, address and partially resolve some of the limitations by pro-

9

ducing randomly sampled configurations and simple connectivity criteria; Although

they require no explicit construction of configuration spaces, sampling-based meth-

ods strongly rely on efficient nearest neighbor and graph search algorithms, effective

sampling strategies (especially around narrow passages) and informative metric se-

lection. Sampling from the likelihood distribution of labelled tree topologies is one

the common approaches to sample, also known as the ancestral likelihood [13].

However, the theoretical understanding of sampling approaches on trees remains

considerably less developed than that for optimization approaches with regard to

the number of sampling steps needed to produce accurate samples of tree partition

functions [12]. Despite the many advantages in principle of being able to sample trees

from sophisticated probabilistic models, there is little theoretical basis for concluding

that the best performing sampling approaches do in fact yield accurate samples from

those models within realistic numbers of steps [14].

2.4 Tree Generative Model

Recent work on similarity in hierarchical structures, trees, or acyclic graphs are

focused on deep learning by embedding the structure with neural networks. Generat-

ing models for the natural construction of the graph structure have been a hot topic in

combinatorial graph theory and bioinformatics and machine learning, especially since

the invention of generative models which can be represented with tensors in discrete

space. When the discrete structures have a language representation with explicit

syntax and semantics, it can be typically reduced to a sequence generation problem.

This has been well studied, for example in the seq2seq [15] framework that models

the generation of sequences as a series of token choices parameterized by recurrent

neural networks (RNNs).

10

Additionally, several developments have been proposed within the structure

generation domain, including an extra validator model [16], data augmentation [17],

active learning in discrete sequences [18] and the use of reinforcement learning [19].

However, with the lack of formalization of the syntax and semantics serving as the

restriction of the particular structured data, underfitted general-purpose string gen-

erative models will often lead to invalid outputs.

2.5 Preliminaries and Notation

We begin by defining the concepts with basic terminology and notation. We

represent a tree τ as a graph Gτ = (Vτ , Eτ) with the vertex set Vτ and edge set Eτ .

Let τ be an unrooted, undirected full binary tree. The dummy root of τ is denoted

by root(τ) which is used for navigation on tree. The size of τ is defined by |Vτ |.

Each tree τ on N leaves has N − 2 internal nodes with degree of three. The length

of the connection between two nodes v1, v2 ∈ Vτ , len(v1, v2), is the number of edges

on the path from v1 to v2 or vice-versa. The in-degree of a node v, deg(v), is the

number of children of v. A leaf is a node with no children and every other node is

an internal node. The number of leaves of τ is denoted by leaves(τ). We denote the

parent of node v by parent(v). Two nodes are siblings if they have the same parent.

For two trees τ1 and τ2, we will frequently refer to leaves(τi) and deg(τi) by Li and

Di, i = 1, 2. Let τ(v) denote the subtree of τ rooted at a node v ∈ τ(v). Obviously,

removing an edge in any tree disconnects the tree into two subtrees, each of which

has a non-empty intersection with the set of leaves. The topology of a subtree τ(v)

is defined as the set of all splits obtained by removing an edge of v.

If u ∈ V (τ(v)) then v is an ancestor of u, and if u ∈ V (τ(v)) \ {v}, then v is a

proper ancestor of u. If v is a (proper) ancestor of u then u is a (proper) descendant of

v. A tree τ is ordered if a left-to-right order among the siblings is given. For processing

11

trees, all nodes need to be visited through one of a set of different traversal strategies.

There are different ways to traverse a tree structure depending on the order in which

children nodes are visited. Through this study, the three most common strategies:

preorder, inorder and postorder, are implemented. For tree τ with dummy root v and

children u1, ..., ui, the preorder traversal of τ(v) is obtained by visiting v and then

recursively visiting τ(uk), 1 ≤ k ≤ i, in order. Similarly, the postorder traversal is

obtained by first visiting τ(uk), 1 ≤ k ≤ i, and then v.

The tree space is a network defined as Φ(τ) containing the set of all possible

trees generated by moves and edits. A sample tree τ ′ in Φ(τ) is defined with a set of

leaves v and internal nodes with degree three or more. A common approach to solving

the tree similarity inference problem is to search through the space of all topologically

distinct Φ(τ).

2.5.1 Tree Embedding For Relational Reasoning

Learning relations in tree structures by using recurrent neural networks to model

the interactions or relations has shown promising results in visual question answering

[20] and reasoning over graphs [21]. Graph neural networks [21] integrate message

passing as part of the architecture in order to capture the inherent relations between

nodes. GCNs use convolutions to efficiently learn a continuous-space representation

for a graph of interest. Many of these relational reasoning models can be realized

in terms of an attentive read operation [22]. More formally, tree embeddings can be

characterized in terms of the maintenance of a tree metric. We define the tree metric

as follow:

Definition. Tree Metric: A pair (V, d) for trees τ = (V ′, E ′) where,

1. τ is a sample tree on V ′ that has only non-negative edge lengths

2. V ′ ⊆ V

12

is a tree metric if for each pair of nodes, u and v in V ′ the distance between nodes

in τ equals the distance in the metric, du,v = d(u, v). For simplicity it is common to

simply refer to the accurate tree metric as τ instead of the pair (V, d). The distance

between any two vertices u, v ∈ V is denoted then as τuv. And because τ is a tree,

the path from u to v is unique, which implies τuv is the distance of the shortest u-v

path in τ .

Distortion: A distortion is a measure for an approximate tree metric (V, d) repre-

sented by a value α such that duv ≤ τuv ≤ α duv∀u, v ∈ V ′.

Tree Embedding: An embedding can then be defined as an approximate tree metric

(V, d) that approximates the accurate metric (V, τ) with distortion α. Note that it is

common to say that (V ′, τ) embeds into (V,′ d) with distortion α.

Basically, this defines a tree embedding as a representation in which node dis-

tances in the embedded tree are approximately preserved to within the distortion

factor α.

Tree Pairs Embedding: An embedding for a pair of trees can then be defined as an

approximate tree pair metric (V, d) that approximates the accurate metric (V, (τi, τj))

with distortion α.

2.6 Reinforcement Learning for Tree Transformation

When trying to solve for a tree transformation, the goal is usually to determine

the sequence of transformation steps that converts the initial tree to the target config-

uration while optimizing an objective function (usually the number of transformation

steps). Due to the discrete nature of the transformation tree space, this is generally

a combinatorial optimization problem and thus computationally intractable. In this

dissertation we take the approach where we use reinforcement learning to learn a strat-

egy that performs an approximately optimal transformation on arbitrary start/target

13

tree pairs. For this, the learning framework explores and learns over trajectory sam-

ples, ρi, in the transformation tree space. In the learning process we optimize the

objective, but searching over all generated trajectory samples ρi and evaluating the

expectation of reward are both difficult in general, providing the main incentive for

us to use reinforcement learning to find an approximate solution.

To utilize reinforcement learning we need to define a set of elements, namely

actions, states, and rewards. For our problem, the state is simply the embedding of

the pair of trees.

2.6.1 Action Space

While tree transformation problems usually define their set of operations in

terms of edges in the tree, and thus have an action space that scales with the size

of the tree, this action space can be reduced to a constant sized space by providing

tree traversal (move) actions that allow the system to incrementally select an edge of

interest by traversing the tree, and by only including the transformation actions for

the selected edge. Given the set of actions A which represent the resulting traversal

or modification operations, we are interested to learn a policy and thus the state

representation features that related to elements of the action space. As indicated,

the action space here is a constant set with the combination of two types of actions,

moves or edit, which are independent of the size and labeling of the underlying trees.

2.6.2 Reward

The reward is the main driver for learning a successful sampling strategy to pick

the necessary tree pairs and ignore the rest while solving the task. The reward func-

tion is based on the task on the graph and indicates the incremental progress towards

the task objective in each step. If minimizing the number of transformations is the

14

objective, for example, a negative reward of −1 in each step can represent the incre-

mental benefit with a large reward for reaching a state in which the transformation

objective is achieved.

2.6.3 Reduction to RL

Consider S to be the space of states and A be a sequence ai, . . . , ak of actions.

The goal of RL is to find a policy π : S → A to maximize the expected cumulative

rewards E[Rρ∗], where Rρ =
∑T−1

t=0 R(st, at, st+1, at+1). We now formalize the intuition

from reinforcement learning.

Given an instance pair of (τi, τj), we would like to infer a single trajectory

output, ρy using the RL algorithm such that ρy = {τ1, ..., τn} where the initial tree is

the start tree and the final tree is the target tree.

An action derivation from τi to τj is a sample trajectory of trees ρ = {τ0, ..., τk}

with length k such that τi = τ0 , τj = τk, and τi−1 ⇒ τi for 1 ≤ i ≤ k is generated

by a sequence of random walk (traversal) actions and swapping (edit) actions over

active edges reached by the traversal actions. Let C be a Cost function that assigns

a cost to the sequence of operations. C(ρ) =
∑i=|s|

i=1 C(ρi)

To transform our problem into the RL framework, let each tree be a state St = τt

and {τ [0]..., τ [t], j[0], ..., j[t− 1]} be the entire history of a sample trajectory ρ. Also,

let the action at = Aj[t] refer to the transition that generated τ [t + 1] from τ [t]. We

let the cumulative rewards be the improvement:

R(st, at, st+1) = τ [t+ 1] ∼ Aj[t](.|τ [t]) (2.1)

The objective is to maximize the expected cumulative rewards for the sample

trajectory ρ as output in following equation (2.2).

15

max
ρ

E[Rρ∗]

s.t. Bρ ≤ B∗

LBexp ≤ B∗ ≤ UBExp

(2.2)

Where B∗ is the computation budget for length of all possible trajectories ρ.

We define B∗ = n log(n) as diameter ∆G (the maximum distance between any two

trees with N nodes). The computation budget B∗ is defined based on approximation

algorithms that have been presented in [23, 24, 25] attempting to design an effi-

cient solution for computing NNI distances. More precisely, all these approximation

algorithms run in O(n log n + β) time where β is the time complexity to find the

non-shared edges between each tree pair (τ, τj). For unweighted degree-3 trees, an

O(n log n) time algorithm has previously been presented.

16

CHAPTER 3

Generative NNI Transformation Strategies in Binary Trees Using Reinforcement

Learning

Learning strategies to address problems on graph and tree structures with no

a-priori size limitations in cases where no known solution exists (and thus supervised

data is hard to obtain), is a difficult problem with potential applications in a wide

range of domains ranging from biological networks to protein folding and social net-

work search. The main challenges here arise from the variable size representation

that needs to be resolved in the context of Reinforcement Learning (RL) to address

the problem. In this chapter we consider a common, specific tree problem and show

that it can be addressed using a combination of feature engineering and carefully

designed learning processes. In particular, we consider the classical Nearest Neighbor

Interchange (NNI) distance between unrooted labeled trees, which is defined as the

minimum-cost sequence of operations that transform one tree into another. We intro-

duce a representation and a reinforcement learning method that learns the transition

dynamics and iteratively changes an arbitrary initial labeled tree into a goal config-

uration reachable through NNI. The differential tree representation and NNI actions

permit the system to learn a strategy that is applicable to arbitrary sized trees. To

train the system, we introduce a training process that uses randomly sampled tra-

jectories to incrementally train more and more complex problems to overcome the

difficulty of the overall strategy space. Experiments performed show that the system

can successfully learn a strategy for effective NNI on complex trees.

17

3.1 Introduction

Graph or tree structures are very commonly used in many fields to represent

problems or information, to encode processes, or to encode information sharing con-

straints. Comparing two given trees to determine their similarity or distance is a

problem that is highly important in a variety of contexts, including in applications

in natural language processing, document similarity evaluation, medical image pro-

cessing, comparison of RNA secondary structures, quantifying neuronal morphology,

discovering and comparing shape classes, character recognition, similarity joining and

querying of XML documents, and information extraction. Dissimilarity between com-

binatorial trees has been computed in the past literature largely by recourse to one

of two approaches: either comparing edges or counting edit distances. In structure

prediction problems, such as the NNI problem, where the possible structures are un-

limited, the complete underlying representation for the problem instances is usually

exponential in the size of the structure and thus unlimited for the complete problem

domain. This frequently makes exact methods intractable for large size trees and

generally makes it impossible if no upper limit on the tree size exists. We thus have

to rely on approximations in terms of the effectively used representation of the tree

and the specification of the problem to make the problem tractable. An example is

the conversion of the problem into an approximate Markov Decision Process. In this

chapter we take this route to address the general NNI problem by mapping it first to

a sequential decision problem with a fixed action set and then developing a finite rep-

resentation that captures the approximate differences between the current tree and

the target tree, independent of size. Using this representation and process model,

we use Reinforcement Learning to learn a strategy that converts the tree into the

goal tree with the fewest possible interchange operations. The resulting strategy can

then be used to either show the transfer or, by analyzing the number of interchange

18

operations applied, to determine the approximate NNI distance between the initial

and target tree.

To permit training with arbitrary size trees, we develop an automatic, sampling-

based training approach that incrementally trains the system with increasingly more

complex instances, resulting in a strategy that can address trees independent of their

size. Evaluation shows that the system is successful at learning a generative strategy

that is effective at approximately addressing most instances of the NNI problem.

3.2 Related Work

The NNI distance between two trees is the minimum number of NNI moves

required to transform one binary tree into another. Computing the NNI distance is

an NP-complete problem [7], [8], [9] and has been actively studied in recent years. An

important property of NNI is that the number of trees in the one step neighborhood

increases linearly with the number of leaves of the tree, making NNI practical for

very large trees. For n leave nodes, there are (n − 3) internal edges in an unrooted

tree; we can split on each of these edges resulting in two new trees. By splitting on

each internal edge we generate a NNI neighborhood of (2n− 6) trees. The relatively

small neighborhood size of NNI leads to small increases in the search space with each

iteration and in a tendency toward less local optima [26]. Dasgupta et al. [27] have

proven that given two trees τ1 and τ2 with unique leaf labels, computation of the

NNI distance, δnni(τ1, τ2), is NP-complete. Therefore, there is no computationally

tractable discrete algorithm for computing the NNI distance between two trees and

the only way to compute the exact answer is to enumerate all possible answers. In

an attempt to solve the problem, Waterman et al. [28] have introduced the ”closest

partition metric”, dcp, and conjectured that dcp is equal to the NNI distance. The

CP algorithm is based on the partitions induced by the interior branches of a binary

19

tree [29]. In their method, the closest partition distance, CP (T1, T2), for trees sharing

a partition is found recursively as the sum of the two distances between the related

induced trees resulting from clustering each tree into two. For trees T1 and T2 that

do not have a shared partition, k−step NNI operations are made to achieve a shared

partition between T1 and T2, dcp = k + C(T
′
, T2), where k is the minimum number

of NNI operations required to transform a tree T1 into tree T
′

that shares a partition

with tree T2. CP is a weak measure, however, because it leads to multiple choices as

results for T
′
. Li et al. [7] and Jarvis et al. [29] presented counter examples against

Waterman et al.’s theorems and proved that there exist some trees T1 and T2 that

share a partition that is not shared by any intermediate tree on a shortest path from

T1 to T2. This lemma shows that the shape of the shortest path between two trees

can significantly depend on whether two subtrees (partitions) are within a certain

linear distance from each other, and gives the problem a sense of discontinuity. This

phenomenon can possibly be exploited to prove an NP-completeness result [7].

A number of approximation algorithms have been presented, attempting to

design an efficient solution for computing NNI distances. In all these approximation

algorithms, finding non-shared edges is a key step, and typically is the most time-

consuming part. More precisely, all these approximation algorithms run in O(n log n+

β) time where β is the time complexity to find the non-shared edges between each

pair of trees T1 and T2 [30],[31]. For unweighted degree-3 trees, an O(n log n)-time

algorithm has previously been presented [7]. For trees of varying degree, existing

approximation algorithms take O(n2) time for both un-weighted and weighted cases

[27],[30].

20

3.3 Background and Notation

For our problem, we consider an unrooted, undirected full binary tree Gτ =

(Vτ , Eτ). In other words, we consider an acyclic connected graph, with nodes Vτ , con-

sisting of n labeled leaves (nodes with a degree of one) and (n−2) internal, unlabeled

nodes, all having a degree of three, and edges Eτ consisting of n − 3 edges between

internal nodes, and n edges connecting leaves to internal nodes. The measure we con-

sider is derived from Nearest Neighbor Interchange (NNI), a simple tree transforming

operation (swap operation) over given internal edges eτ .

Let Φ(τ) denote the set of unrooted non-degenerate binary trees with n labeled

leaves which is generated by NNI operations from tree τ . For each tree τi in Φ(τ)

we generate the NNI neighbors. This is done by performing an NNI operation on

each internal edge iek in τi. The NNI operation swaps the subtrees attached to each

internal edge. As shown in Fig. 3.1, there are 2 new trees created by applying an NNI

operation.

Figure 3.1: An NNI operation swaps two subtree that are separated by an internal
edge.

The set of new trees created in this manner is the 1-nni neighborhood of τi,

where the k-nni neighborhood would contain all trees that can be obtained by per-

forming at most k successive NNI operations on the given tree. By applying the

21

NNI operation on all possible internal edges {iei}i≤(n−3) of a given tree τi, its 1-nni

neighborhood, ϕ<1−nni>, would be:

ϕ<1−nni>(τi) = {τ ′j}j≤(2n−6) (3.1)

3.3.1 NNI Distance δnni

The Nearest Neighbor Interchange (NNI) Distance is a tree rearrangement tech-

nique that has been widely used to calculate the distance between trees. In general

the NNI distance, δnni, between two trees τi and τj is defined as follow:

δnni(τi, τj) = Min{ ρ(A) | set A is a sequence of swap actions taking τi to τj }.

Before we formalize our framework for transferring the underlying problem into

a sequential decision problem on an MDP space, consider a motivating example. Sup-

pose given inputs of τ1 and τ2 with the same labeled leaves but different topology,

and the output δnni(τ1, τ2), which is the NNI distance between these two trees. In

general, there is a non-unique sequence of NNI operations that, if performed, would

transfer τ1 to τ2. The tree space along all possible NNI sequences between two trees,

Φ(τ) grows exponentially as the number of leaves increases. Thus, the brute-force

search becomes exponential in terms of time and space in this context. We thus pro-

pose to transform the problem and use reinforcement learning to find an approximate

solution in the form of a generated, compact sequence ρi.

3.3.2 Reinforcement Learning and MDP

The concept of reinforcement learning [32] provides a way in which agents can

optimize their control of an environment. To use reinforcement learning successfully

in situations approaching real-world complexity, however, agents must derive efficient

representations of the environment from high dimensional inputs, and use these to

22

generalize past experiences to new situations. Usually the control process in these

problems is modeled as a Partially Observable (POMDP) or fully-observable Markov

Decision Process (MDP).

An MDP is a tuple < S,A, T,R > where S is the state space, representing

the relevant aspects of the environment, A is the available action set for the agent,

and R(s, a, s′) is the reward for taking action a in state s and ending in state s′.

P (s′|s, a) = T (s, a, s′) is the probability of transitioning to state s′ given a prior state

s and action a with γ ∈ [0, 1] as a discount factor. Standard approaches for solving

MDPs include value and policy iteration. The optimal policy provides a mapping of

states to actions such that the long-term expected reward of the policy is maximized.

To treat the NNI Task described here as a generative decision problem in this

framework, the current and target tree have to be converted into observations, and

ultimately a state representation, and the NNI operations have to be converted into a

finite action space. During neighboring tree exploration in the NNI task, the complete

state can be observed since the complete tree configurations are known. Because we

can directly observe the state at all times, we can use this tree navigation problem as

a Markov Decision Process (MDP). The main problem arising here is that if the size

of the trees is unlimited, a complete representation of the current and target trees

would require an infinite number of features and thus a more tractable, potentially

approximate representation has to be derived.

3.4 Reinforcement Learning of a Tree NNI Transformer

To apply Reinforcement Learning to the NNI problem, a tractable representa-

tion for the tree pairs (current and target) as well as a finite representation for the

discrete action set have to be derived, both of which should be independent of the

23

tree size. Given such a transformation to a tractable (PO)MDP representation, a

policy can be learned that sequentially converts the current tree into the target tree.

3.4.1 Reduction to an RL Problem

Consider S to be the space of states representing pairs of trees, and A be a set

ai, . . . , ak of actions. The goal of RL is to find a policy π : S → A that maximizes

the expected cumulative rewards E[Vρ∗], where Vρ =
∑T−1

t=0 R(st, at, st+1, at+1). To

facilitate this for the NNI problem, a state, action, and reward representation has to

be derived.

3.4.1.1 Action Set

In the traditional NNI problem, the set of available operations consists of two

swap operations for each internal edge of the tree. For a tree, τi, with n leaves it

therefore contains 2(n− 3) operations, making the original set of operations specific

to the tree size. To address this issue, the action set for the (PO)MDP formulation is

defined here locally with respect to a current active edge, eii, which forms the center

of the swap operations and which can be changed using local walk operations which

allow the active edge to move over the tree.

Given an active edge eii as shown in Fig. 3.2, there are thus two types of

possible discrete actions: (i) two swap operations that exchange subtrees attached

to the current active edge as shown in Fig. 3.1, and (ii) four move operations which

move the active edge from its current location to one of the four neighboring edges.

For each active edge the four possible move directions, LL: Left-Left, LR: Left-Right,

RL: Right-Left, RR: Right-Right are defined as {a1, a2, a3, a4} and the two possible

swap (NNI) operations are {a5, a6}.

24

Figure 3.2: Active edge iei = (A,B) with partial observation zone.

3.4.1.2 State Space

To make the generative NNI problem addressable, we also need to transfer the

current and target tree configuration into a fixed length feature representation that

permits observations of the current problem instance. To obtain a representation that

captures the information efficiently, we represent each pair of current and goal tree,

(τc, τg), in terms of differential features aimed at expressing the differences between

the trees. To be able to do this in the context of the proposed action set, this has to

be done relative to the current active edge, iec, in the current tree which represents

a virtual root for the tree, leading to a rooted tree, τ̄c. Using this, the pair of trees,

(τ̄c, τg), is represented by 4 normalized feature categories F̄ = (f̄1, f̄2, f̄3, f̄4), where

the number of features is independent of the size of the tree and captures differences

to the target tree.

The performance of our model is directly related to the existence of good and

reliable meta-features for the action-state evaluation. We here design generic normal-

ized meta-features that have strong predictive power across the dataset. The features

are a combination of statistical, matching distance, geometric distance, and similar-

ity measures. One of the principles considered is that the meta-features should be

25

calculated fast. In order to satisfy the need to capture relevant information and to be

easily computable, we apply decomposition on the current tree to generate 6 induced

subtrees as shown in Fig. 3.3. Then, we calculate normalized meta-features on each of

the subtrees that capture their differences with respect to the corresponding subtrees

in the target tree. To achieve a unique differential feature representation, we first

identify the best virtual root for the target tree by evaluating which edge yields the

most consistent subtree composition relative to the rooted current tree. Using this,

the subtrees of the current and target tree are aligned and the meta-features of the

current state are derived as the combination of all extracted features for all partitions.

Figure 3.3: Dynamic decomposition strategy recursively decomposes the current state
around the active edge, into a set of 6 induced subtrees Bτ = {π1, π2, π3, π4, π5, π6}.
The features are calculated based on each induced piece.

To derive the differential representation we defined the following meta-features

for trees τ̄i and τ̄j

• Matching Distance: Given an active edge, Dm(τ̄i, τ̄j) between rooted trees τ̄i

and τ̄j is the weight of the minimum-weight perfect matching of the trees with

size of [1× 6].

Maximum agreement subtree:

• This is the maximum normalized cardinality (largest) isomorphic subset of the

current and goal trees.

26

• Statistical features: These are normalized statistics of the tree nodes, such as

the ratio of the shared population of nodes, and the standard deviations of node

distances

• Geometric distance: These are geometric measures capturing aspects of the

structure such as minimum relative eccentricity, and depth, and diameters.

Each of the features is computed for each of the 6 pairs of induced subtrees, resulting

in a feature vector, F̄ (τ̄ c, τ̄g), with total |F̄ | = 1× 32 normalized features. Important

to note here is that this normalized, differential feature representation is designed to

be independent of the size of the tree and the specifics of the target tree, and thus

permits learned strategies to transfer to different sized trees.

Using this representation we can formulate the generative NNI problem. In

particular, we want to learn a strategy such that, given an instance pair of (τc, τg), it

generates a trajectory output, ρy such that ρy = {τ̄1, ..., τ̄k}, where τ̄1 = τ̄c , τ̄k = τ̄g,

and transition τ̄i ⇒ τ̄i+1 for 1 ≤ i ≤ k − 1 is generated by an action ai ∈ A. To solve

the NNI problem, let C be a Cost function that assigns costs to the operations (for

the standard NNI problem this would be a cost of 1 for a swap and a cost of 0 for a

move operation), C(ρ) =
∑i=|ρ|−1

i=1 C(ai). The best solution is here a trajectory with

the lowest cost.

To transform our problem into the RL framework, let each virtually rooted tree

pair be a state, st = F (τ̄t, τ̄g). Moreover, let the reward of a transition from st to st+1

using action at be defined as:

R(st, at, st+1) = −C(at) (3.2)

with an additional reward, Rs, for successfully generating a trajectory (i.e. reaching

the goal tree).

27

The objective is then to learn a policy that maximizes the expected cumulative

rewards.

3.4.1.3 Approximate MDP

The generated meta features provide a finite dimensional observation space for

unlimited trees by building a differential representation that captures the approxi-

mated differences between the local information of the current tree with respect to

the goal tree. While each observation, Ft, is local since it represents information in the

local neighborhood of the active edge more precisely than for parts of the tree that are

further removed, treating the resulting system as a POMDP is computationally very

expensive and not generally tractable. However, since the differential features also

include features of the subtrees, we can interpret the feature representation also as an

approximate state estimate, and thus treat the problem as an MDP and try to solve

for an approximate solution. The rationale here is that since the meta features rep-

resent the differential statistic not just of the current neighbors but also, at a coarser

resolution, for the remainder of the tree, they contain global information that permit

treatment as an approximated MDP. The key components of the approximated MDP

model are:

• The continuous state space: S = {F (τ̄i, τ̄j) : τi, τj ∈ τ}

• The discrete action set A = {a1...a6}

• Transition Probabilities: Pt(st+1|st, at)

• A reward function: R(st, at, st+1) = C(at), R(sg = F (τ̄g, τ̄g)) = Rs

To approximately solve the generative NNI problem, we then use Reinforcement

Learning to find a strategy that achieves maximum expected cumulative rewards.

28

3.4.2 Function Approximation

Since the state space formed by our differential features for the NNI problem is

continuous, a function approximator has to be used to represent the value function.

We use the engineered meta-features as parameters of the function approximation

for a Q-function, q̂(s, a, w) ∈ IR, where w is a parameter vector for the function

approximator.

q̂(s, a, w) ≈ qπ(s, a) (3.3)

Since the state representation is already in the form of a real-valued feature

vector and the action set is discrete, the most direct function approximation scheme

would natively use the features fi(s) as the basis for either a linear or non-linear

function approximation. For linear function, this would yield:

q̂(s, a, w) = f(s)Tw(a) =
k∑
i=1

fi(s)wi(a) + b (3.4)

3.4.2.1 Tile Coding as Function Approximation

Based on generated normalized meta-features, the state is represented by multi-

dimensional continuous spaces. Considering the character of the features used here,

which represent normalized differences over (sub)tree statistics, a linear function ap-

proximator would not be sufficient to capture the relation between the features and

the value function. To achieve efficiency, we use tile coding as a non-linear approxi-

mation of the function. In tile coding, the approximation is represented by a set of

overlapping partitions of the feature space, called tilings. We use tilings generated by

diagonal, vertical, and horizontal stripes in 2-dimensional sub-spaces. Each element

of a tiling, called a tile, is a binary feature activated if and only if the a given state

falls in the region delineated by that tile. The approximated function that the tile

29

coding represents is determined by a set of weights, one for each tile in each tiling,

such that

q̂(f(s), a, w) =
n∑
i=1

bi(f(s))wi(a) (3.5)

where bi is a binary vector for tiling i with a single 1 for the tile within the tiling that

state s falls in.

3.5 Trajectory Sampling

Generating a random training set is a big challenge because the varying com-

plexity of trees in terms of size and topologies. In order to be able to learn efficiently in

the context of dramatically different complexities, it is useful to train the system sys-

tematically starting from simple problem instances towards more complex ones over

time. To do this, we developed a random backward sampling approach that allows

to generate problem instances with particular complexity bounds. In this approach,

random action sequences are sampled backward from the goal tree to the current

tree, allowing them to be grouped into approximate complexity sets. These samples

are then used as part of the training process to provide a bias towards increasingly

complex problem instances as the system learns to address the simpler ones.

3.5.1 Reinforcement Learning Algorithm

Given a current tree τc ∈ φ and a goal tree τg ∈ φ(τc), our algorithm learns

an action-value function Q(st, aj) that predicts the value of using aj in state sj and

a corresponding generative NNI policy using the SARSA algorithm with tile coding

function approximation [32], as indicated in Algorithm 1. As a termination, each

episode terminates when either the target tree is generated or if learning exceeds the

upper-bound of time steps.

30

Algorithm 1 SARSA on-policy Algorithm for Estimating δ(τi, τj)

1: procedure (:)

2: INPUT: Initial τ̄c ∈ φ and desired step complexity R

3: OUTPUT: predicted ρy

4: Generate τ̄g using R step random walk in A from τ̄c

5: Initialize s = F (τ̄c, τ̄g)

6: Choose a from s using ε-greedy exploration on Q

7: while no termination do

8: Generate s′ by applying a on tree τ̄c in s

9: Choose a′ from s′ ε-greedy exploration on Q

10: Update tile coding parameters w = w − α
∑

i
dQw(s,a)(

dw (Qw(s, a) − [r(s, a) +

γQw(s
′, a′))

11: return trajectory ρi

3.6 Experimental Results

To evaluate the proposed approach, we analyze the performance of the RL

method on trees with different hierarchical structure and size.

3.6.1 Simulated Synthetic Data

We have used artificial tree collections to see how the algorithm scales across

a wide range of tree sizes and NNI complexities. To generate our dataset, we first

generated a set of random binary leaf-labeled rooted target trees τgi with n nodes,

where n ∈ {15, 25, 50, 100, 200}. These trees were generated randomly using the

algorithm in [33] that assigns equal probability to all members of the family of trees

with n nodes. To generate the source trees for our tests, we took the target tree

and performed a number of actions a ∈ A to generate tree pairs with a particular

31

approximate path complexity. In our experiments, given each generated target tree,

we applied k rounds of NNI operations to our target to generate the source trees.

This put an upper bound of k steps between our trees. This method of generating

the source trees from our target trees was chosen since it offers a clear upper bound on

the maximum number of NNI operations to get from the source tree to the target tree.

If we had selected both the source and target trees completely randomly, we would

not have an upper bound on the minimum number of NNI operations separating the

trees, thus being unable to control the complexity of the training examples.

3.6.2 Results

To evaluate the ability of the system to learn NNI policies for variable size trees,

we train the system with increasing complexity trees. In particular, we increase the

trajectory distance for the training trees every 250 or 500 episodes during training,

starting with tree pairs that are solvable in a single step, increasing it to more and

more complex tree pairs. Fig. 3.4 (a,b,c) show the resulting learning curve in terms

of the lognormal of the average reward.

This figures show that the system successfully learns to solve the tree problems.

Every time the complexity is increased, a spike in the value indicates a drop in

performance with a subsequent improvement back to the solution value. The spike is

due in part to the system seeing new, more complex problems but mainly to the fact

that exploration rates are increased to permit the system to more efficiently adapt to

the new tree pairs. Fig. 3.5 shows the number of steps the learned policy requires to

solve a tree pair for each of the complexity levels. This figure shows the expected

behavior where the policy requires an increasing number of steps for more complex

problems. It can be observed that for the range of problem complexities used here,

32

(a) (b)

(c)

Figure 3.4: Learning curves showing log-normal of the average reward. The com-
plexity of the training tree pairs is increased every 250 episodes in (a) and every 500
episodes in (b) and (c), and the exploration rate is set back to an initial value from
which it decays exponentially.

33

Figure 3.5: The performance of the learned policy on a test set for different trajectory
length. The y-axes shows the agent’s steps while the x-axis represents the generation
complexity.

the length of the learned trajectories increases close to linearly with the complexity

of the problems.

3.7 Conclusions

Learning strategies for graph and tree problems is challenging due to the variable

size of the underlying representation. In this chapter we introduce an approach that

uses Reinforcement Learning to approximately solve the NNI problem on general size

trees. To facilitate this, a representation of the state and action space is developed

as well as a means of biasing the training set to increasingly more complex problem

instances. Results obtained show that the system can learn a strategy that can

generate NNI trajectories for variable size trees for a significant percentage of the

tested problems. While the designed representation shows success in the context of

the tile coding approach used here, we will in the following chapters of this dissertation

investigate the use of deep learning methods to not only learn a strategy but also

automatically derive appropriate state features to represent graph problems.

34

CHAPTER 4

A Deep Reinforcement Learning Approach to Learning Tree Edit Policies on Binary

Trees

Modeling sequential transformations between two trees is a fundamental task

in domains such as bioinformatics. Traditional methods to address this usually rely

on hand-coded heuristics and algorithms which are often hard to derive. The large

advances in deep learning technologies and computational power have recently opened

up new potential avenues. In particular, representation and policy learning provides

an interesting opportunity to model the dynamic evolution of two trees, where each

tree can be embedded in a Euclidean space and its evolution can be modeled by an

embedding trajectory in this space.

In this chapter of the dissertation we expand on the work in Chapter 3 where

hand coded features for tree differences were used and tile coding was employed to

perform reinforcement learning to acquire generative policies for the NNI tree trans-

formation problem. In particular, to avoid the need for hand-coding we here propose

a representation and policy learning framework that learns a representation for arbi-

trary sized binary tree pairs using recurrent LSTM networks and a policy to transfer

one tree into the corresponding target tree using Reinforcement Learning. Here, the

representation is pre-trained on tree transfer similarity to transform pairs of tree-

structured data into an approximate numerical multidimensional vector which en-

codes the original structure information. This model, used with a deep reinforcement

learning approach, yields a constructive method for generating basis functions for

35

approximating value functions and permits to learn an efficient, general tree transfer

policy that incrementally transforms the source tree into the target tree.

4.1 Introduction

Trees have been used extensively to model a wide range of problems. An im-

portant aspect in using trees as a data representation is the concept of tree similarity

to be able to compare and transform trees. A common similarity measure for trees is

the edit distance. Defining such a tree distance similarity is a key for many interest-

ing problems and applications such as speech recognition, machine translation, and

imitation. Search for edit distance of pairs of trees is still an open problem due to

the high complexity of computing the tree edit distance [34],[35],[36],[23],[37].

The main challenge in machine learning on tree edit is identifying a way to

integrate information about the structure of the difference of trees into the machine

learning model. For example, edit distance learning needs to encode pairwise prop-

erties between trees, such as topological similarities or the number of common nodes

and subtrees. Likewise, for tree classification, information about the global position

of a tree in the tree space or the structure of the tree’s local edit neighborhood is

required.

To extract structural information from trees, traditional machine learning ap-

proaches often rely on summary statistics information (e.g., node degrees or mem-

bership within a clustering of sub-trees), pre-designed kernel functions, or carefully

engineered features to measure local neighborhood structures [38] [3][39]. However,

these approaches are limited due to inflexibility of such hand-engineered features.

More recently, extensive work has been done to learn representations that en-

code structural information for trees or graphs. The idea is to learn a mapping that

embeds the basic elements (e.g. nodes, wordarc, label, subtree, or attribute) as well as

36

the connecting structure in the data, as points in a vector space, Rd [3][39]. The goal

is to optimize the mapping so that geometric relationships in this learned space re-

flect the structure of the original dataset. After optimizing the embedding space, the

learned embeddings can be used as feature inputs for downstream machine learning

tasks. The key distinction between these recent representation learning approaches

and previous work is how they treat the problem of capturing structural information

about the tree. Previous works treated this problem as a pre-processing step, whereas

representation learning approaches treat it as a machine learning task itself, using a

data-driven approach to learn embeddings that encode graph structure.

Learning tree edit policies that perform tree transformations from a source to

a target tree requires an embedding approach for the representation of the structural

similarity measure between trees. Although several methods for tree similarity mea-

sures have been proposed, high computational complexity and accuracy remains a

concern.

In this chapter we present an approach that learns both a representation for

arbitrary sized tree pairs and a policy to transfer one tree into another. First we

train a recurrent neural network on a challenging task of tree Nearest Neighbor In-

terchange (NNI) distance similarity and next use deep Q-learning to learn a policy

to perform NNI transformation tasks. The goal here is to use the first, supervised

task to pre-train a representation for tree pairs in the context of NNI distance, and

then use Reinforcement Learning to learn a policy that can perform the actual trans-

formation and generalize it to different size trees. Since the pre-training requires

supervised data, it relies here on the generation of a set of training examples with

known NNI distances, making this generation computationally complex and thus

limiting the maximum size and scale of trees that can be used for pre-training. The

Reinforcement Learning step only requires tree pairs and a reward function which is

37

significantly easier to obtain and is thus not only used to learn the policy but also

to further refine the representation with a larger range of tree pairs. To allow for

variable and arbitrary size trees, the representation approach here treats tree pairs

as sequences of tree traversals and uses this sequence information as the input to an

LSTM-based representation learning network. To pre-train, a fully connected regres-

sion network is added that predicts the NNI distance, while for the policy learning

task, a deep-Q network is added to the representation network to predict the utility

of the transformation actions. For training and experimentation we use a synthetic

dataset derived using a dataset generator, which is a popular benchmark for mea-

suring the quality of these models, whilst being small and relatively fast to train.

We present NNI tree similarity prediction and a training procedure for optimizing

transformation policy models based on NNI distance for pairs of trees.[3]

4.2 Background

We consider an unrooted, undirected full binary tree Gτ = (Vτ , Eτ). Vτ is a

finite set of nodes and Eτ is a binary relation on N where each pair (u, v) ∈ E

represents the parent-child relationship between two nodes u, v ∈ N . Node u is the

parent of node v and v is one of the child nodes of u. By adding a dummy root, every

arbitrary labeled tree of this form can be represented as a binary rooted tree. There

exists only one dummy root node, denoted as Root(τ) ∈ N , which has no parent.

Every other node of the tree has exactly one parent and it can be reached through

a path of edges from the root. The nodes which have a common parent u (i.e., all

the children of u) are siblings. Each node n ∈ N has a label l(n) that specifies node

information. Topology of a tree is the set of all splits induced by the edges of that

tree. A binary tree, in which all interior nodes have degree 3 contains 2n − 1 splits,

whereas unresolved (or degenerate or non-binary) trees contain fewer than 2n − 1

38

splits. The measure we consider is derived from Nearest Neighbor Interchange (NNI),

a simple tree transforming operation (swap operation) over given internal edges eτ .

The NNI operations swap the subtrees attached to each internal edge. As shown in

Fig. 4.1, there are 2 new trees created by applying an NNI operation.

Let Φ(τ) denote a tree space, i.e. the set of rooted non-degenerate trees with

n leaves which is generated by NNI operations. Note that the number of hierarchies

in Φ(τ) grows exponential as the number of leaves increases. Thus, the brute-force

search for a transformation sequence between elements of this set is exponential in

terms of time and space in this context.

Figure 4.1: An NNI operation swaps two subtrees that are separated by an internal
edge.

The set of all new trees created in the manner shown in Figure 4.1 is the 1-NNI

neighborhood of τi, whereas the k-nni neighborhood contains all trees that can be

obtained by performing at most k successive NNI operations on a given tree. By

applying NNI operations on all possible internal edges {iei}i≤(n−3) of a given tree τi,

its 1-NNI neighborhood, ϕ<1−nni>, can be defined as:

ϕ<1−NNI>(τi) = {τ ′j}j≤(2n−6) (4.1)

While in its standard notation the set of actions is defined in terms of swaps

around individual edges and thus grows with the number of edges in the tree, we

39

can redefine this action set into a set comprised of two modification operations that

swap subtrees around an edge of interest (the other transformations produce identical

trees when ignoring the child order) and four traversal operations that move the edge

of interest to one of the neighboring edges. This reformulation of the action space

provides us with a finite action set that is independent of the size of the tree and that

therefore can be used more easily for subsequent policy learning. Given this set of

actions, A, we are interested to learn to represent the relevant aspects of tree pairs

with respect to this action space. While the goal of pure feature learning is often to

encode all information about the tree pair and its relation in the tree space, this is

often not necessary and actually detrimental in terms of the efficiency of the resulting

representation in the context of a specific task. There can be different goals in the

tree space which we like to explore. We have two types of features, generic features

which are learned when pre-training using distance learning, FG, and action-based

features resulting from refinement during policy learning, FG(a). Here, we focus on

both aspects. The combined approach allows the agent to learn representations that

imitate both the past experience and the inherent large-scale environment, as well as

learning policies by using customized basis functions to approximate utility functions

for particular tasks.

4.2.1 Tree Space

To accelerate the NNI distance similarity searching in the space of possible

trees, we do not explicitly calculate the difference between all possible pairs of trees

with arbitrary size. Instead, we compress each search space to a network of trees

created by fixed-size k−steps of hybrid random walk and NNI actions. The generated

network represents the space of rooted binary trees with NNI distance connectivity.

Combined, coordinated action and swapping can boost efficiency, robustness, and

40

flexibility in achieving complex tasks such as search and area exploration, as well as

edit and modifications.

The random walk based method samples a large number of fixed-length random

walks starting from each tree, τi, and gradually increases NNI distance. Each (τi, τj)

pair of trees is proportional to the probability of visiting τj on a fixed-length random

walk starting from τi. P
k(τi, τj) is the likelihood of visiting τj on a length-k random

walk starting at τi with k nni steps. The advantage of using random walks is to

prevent a computationally expensive search for the entire neighborhood. Fig. 4.2

shows how the space of possible trees looks like for a tree with 15 leaves created by

random walk in 3 nni steps.

Figure 4.2: A snapshot of generated network of tree space as a simple indirect graph
G by NNI neighbors in 3− nni steps.

By generating the tree space using random walks, we reduce the problem of

finding similar trees to the problem of finding points in NNI distance neighborhood

space. It is intuitive that this is a valid similarity measure; the more NNI steps

between the pair of trees (τi, τj), the more distant the pair of trees are in the network.

41

4.3 Supervised Tree Representation Model

To permit unlimited tree sizes in a Neural Network architecture, input trees are

here presented as sequences in the form of unique tree traversals. Using this, the tree

representation is then fed into a Recurrent Neural Network(RRNs) which is trained

to output a corresponding fixed sized feature vector.

In NNI distance, the embedding has to maintain structural relations between

two trees that are relevant to the sequence of NNI edits. LSTMs are principally de-

signed to avoid the long-term dependency problem and be able to learn and remember

relations and dependencies between distant parts of the input. Remembering infor-

mation for long periods of time is practically their default behavior, not something

they struggle to learn [40]. As a result, long term dependencies are the significant

features of LSTM-based RNNs which makes them extremely useful in learning persis-

tent representations. In the NNI distance similarity task, LSTMs are able to connect

aspects of the current and target trees even though the relevant parts are at different

points in the traversal sequences for the two trees.

4.3.1 Direct Encoding of Pairs of Trees

The core of our model contains a standard LSTM network to encode features

that represent the differences in trees in terms of NNI distance. In the encoding phase,

the aggregation method builds up the representation by converting batches of pairs

of trees recursively into parallel node sequences derived by the traversal of the two

trees in each pair, and then feeding these into the LSTM network to yield a hidden

state representation at the output of the LSTM network that encodes the information

about the tree pair. To be able to train it, this combined embedding is fed through

a dense neural network layer to predict a known property of the tree pair. In this

case, nni distance from the previously introduced tree space will be used for this as

42

it should retain important aspects needed for our learning tasks. For computational

reasons, we process data in mini-batches (i.e batch size = 512, 1028). It is important

to note that each batch of pairs of trees has arbitrary size and topology. Every tree

in a batch should correspond to a time series with a node being present at time t.

As Fig. 4.3 shows, a recurrent neural network learns a set of features in Rd for

a batch size of one pair. The result is a feature representation as the tree embedding

which is generalized across different trees.

Figure 4.3: Direct encoding of a pair of trees (τi, τj) using traversal sequences with
multi-layer LSTMs. We inject the tree in different fashion either in-order, pre-order,
or post-order.

In the network space of trees with NNI distance connectivity, a tree pair cor-

responding to an edge with the two trees corresponding to connected nodes in the

network is the smallest element which is considered as direct encoding. The goal is

to encode tree pairs with different size as fixed low-dimensional vectors that sum-

marize their tree position and the structure of their local tree neighborhood. These

low-dimensional embeddings can be viewed as encoding, or projecting, trees into a

latent space, where geometric relations in this latent space correspond to interactions

43

(e.g., subtree) in the tree space. Consider function F̂ which maps a tree pair (τi, τj)

to a vector embedding zt ∈ Rd.

F̂ : (τi, τj)→ zt ∈ Rd (4.2)

4.3.2 NNI Neighboring Aggregate Strategies

Figure 4.4: 3−nni neighboring aggregation: the training set Φ = {φi}3i=1 is generated
by sampling random walks with NNI steps starting from tree τi.

Adopting from direct encoding and its sequence to vector view, the intuition of

this model is that it generates embeddings for a tree pair by aggregating information

incrementally from its local neighborhood in nni − 1 steps, but not necessarily the

entire tree space with unlimited size. This aggregation method relies on traversal tree

features. This method represents a tree pair as a function of its surrounding potential

neighborhood. As Fig. 4.4 shows, the neighboring aggregation method generates the

representation for tree pairs recursively.

44

Algorithm 2 NNI neighboring algorithm: Transfer Supervised Learning

INPUT: Tree Space Dataset Φ; depth K

OUTPUT: Vector representation z(τi,τj) for all (τi, τj) ∈ Φ

for k = 1...K do

for (τi, τj) ∈ φk do

hkN(φk)
= nnik({hk−1u ,∀(τi, τj) ∈ N(φk)})

hk(τi,τj) = σ(ωk.(hk−1(τi,τj)
, hkN(φk)

)

hk(τi,τj) → Norm(hk(τi,τj))

z(τi,τj) = hk(τi,τj), ∀(τi, τj) ∈ Φ

Algorithm.2 generates the differentiable representation for the pair of trees re-

cursively. After this aggregation, every tree pair is assigned a new embedding, equal

to its aggregated neighborhood vector combined with its previous embedding from the

last iteration. As the process iterates, the tree pair embeddings contain information

aggregated from further and further reaches of the tree space.

4.3.3 Supervised Transfer Learning

In this section we focus on the learning of generic features and transfer learn-

ing. The key idea is optimizing the tree pair embeddings so that trees have similar

embeddings if they tend to co-occur on short random walks over the tree space. Thus,

instead of using a deterministic measure of tree similarity proximity, the random walk

method employs a flexible, stochastic measure of tree pair proximity through neigh-

boring aggregation, which has led to superior performance in a number of settings.

We define the NNI edit transfer learning task as minimizing a loss function on a set

of pairs of trees as a pre-training procedure. This function measures the NNI edit

45

distance similarity between trees and generates the pair of trees’ embedding. A loss

function, L(δ, δ̄), is used which determines how the quality of the pairwise reconstruc-

tions is evaluated in order to train the model, i.e., how δ̂nni(τi, τj) is compared to the

true δnni(τi, τj) values.

We assume that the primary input to our representation learning algorithm is

a dataset Φ of input and output pairs such that Φ ≡ {φk = ((τi, τj), Y (δnni))m}Nk=1

generated by random walks using NNI operations. We are interested in learning a

mapping from an input pair of trees to a NNI edit distance δnni ∈ Y as target output

for different level of complexity tasks (e.g. nni− 2 distance is harder than nni− 1).

L =
∑
(τi,τj)

‖ δ(nni)(τi,τj) − δ̂(nni)(τi,τj) ‖22 (4.3)

The goal of the pre-training is not necessarily to get the optimal distance but to

force it to encode features that represent the differences in trees in terms of NNI edit

distance. Therefore, the distances learning task does not have to be perfect because

the main goal is not to predict the NNI distance. We are using it to pre-seed the

representation that we use for policy learning.

4.4 Transfer Representation Policy Learning

The dynamic embedding representation phase generates the embedding of the

NNI edit tree transfer space given actions by the agent and does not explicitly model

the future trajectory of the agent in the embedding space of the environment. There-

fore, it does not explicitly model the optimal policy for generating the trajectory of the

tree transfer in the embedding space. Here we propose a deep Q-learning model that

learns the embedding trajectories between two trees. The proposed method employs

46

deep recurrent neural networks as function approximators to update the embedding

of a pair of trees at every action.

The concept of reinforcement learning provides a way in which agents can op-

timize their control of an environment. However, to use reinforcement learning suc-

cessfully in situations approaching real-world complexity, agents must derive efficient

representations of the environment from high dimensional inputs, and use these to

generalize past experiences to new situations. Usually the control process in these

problems is modeled as a Partially Observable (POMDP) or Fully Observable Markov

Decision Process (MDP).

An MDP is a tuple < S,A, T,R > where S is the state space, representing

the relevant aspects of the environment, A is the available action set for the agent,

and R(s, a, s′) is the reward for taking action a in state s and ending in state s′.

P (s′|s, a) = T (s, a, s′) is the probability of transitioning to state s′ given a prior state

s and action a with γ ∈ [0, 1] as a discount factor. Standard approaches for solving

MDPs include value and policy iteration. The optimal policy provides a mapping of

states to actions such that the long-term expected reward of the policy is maximized.

We started with a tree NNI edit distance exploration task in tree space. The

goal is to visit as many of the trees in the space as possible within a fixed number of

steps. This is motivated by applications such as mapping in a geometric environment,

where an agent explores an environment and builds a map. In this phase, the agent

only observes a batch of trees in a small neighborhood around its current location and

does not know the whole tree space it has visited. At each time step, it has a batch of

6 possible actions corresponding to the location. We use the following configuration

to set up each element in the batch for this task:

• Observation: the observed pair of trees contains the active edge and the

connectivity for the part of the tree space the agent has traversed up to time t.

47

• Reward: a positive reward is only received if the target is visited. Otherwise

a negative reward with respect to estimated distance is obtained.

• Termination: when the agent has reached the target, or has used up the

exploration budget T.

We use an episodic setting, where each episode starts with a state independently

sampled from S0, and ends in finite T ≤ Tmax steps. Our performance evaluation

metric is the episode reward, which is the non-discounted sum of all rewards collected

in a full episode. We train on random binary tree space of different size trees with

up to 200 leave nodes, and test on the same space from the same distribution. The

starting location is chosen randomly. We allow the agent to traverse the space and

perform NNI edits within the given budget, and report the average distance. The

budget is defined based on the NNI edit upper bound on the tree space.

4.4.1 DQN Learning Policy

The Transfer Policy learning technique learns an inductive bias that accelerates

the learning of a new task by training on a large of number of easier tasks. Training

on tasks from set Φ = {φk} involves learning a policy.

θ̂ = arg min
θ
Loss (4.4)

To adapt the policy, the DQN agent samples experiments from the training

replay buffer that are similar. This boosts the amount of available data for adaptation.

However, this process is difficult to train due to the large potential bias.

48

Algorithm 3

Generative Representation Policy Iteration on Tree with DQN(Φ, ω, k, ε, π0)

INPUT: D; Source of samples (s, a, r, s′);ω, ε, ρo; depth K

OUTPUT: policy ρ∗

1. Random Walk: Sample Collection

2. Representation Learning

3. Learning Representation Policy

for k = 1...K do

Initialize policy π
′

repeat

πt = π
′

π
′
= DQN(D0, ω, k, ε, πt)

t = t+ 1

until πt ∼ π
′

We consider a distinct output unit for each possible action in the action set

and use the state representation as input to the Deep neural network. The outputs

correspond to the predicted Q−values of the individual actions for the input state.

The key advantage of this type of approach is the ability to compute Q−values for all

possible actions in a given state with only a single forward pass through the network.

4.4.2 Learning Q-Values For NNI Distance

We propose to use a Reinforcement Learning algorithm to calculate optimal

Q-values exactly and efficiently for the value metrics of negative NNI distance

V (τ̂nni, τnni) = −δnni (4.5)

49

which can be easily embedded with a reward function that assings −1 to an nni

(swap) operation and 0 to a move action.

Actions are chosen using a greedy method, gerneating the next step sample

from the tree space environment. We record the results in the replay buffer and also

run an optimization step in every iteration. Optimization picks a random batch from

the replay buffer to do training of the new policy. A target network is used in the

optimization to compute the expected Q values. It is updated occasionally to keep it

current.

4.4.3 Deep Q-Learning

The main idea behind this deep Q-learning model is to utilize an RNN trained on

data, as the state representation. The model uses a standard DQN implementation,

complete with an experience buffer and Target Q-network. A trained RNN is used to

supply the initial values of the states in the Q-network and Target Q-network. In this

deep Q-learning, as Figure 4.5 shows, we use LSTM-FC as the distance estimator.

The pre-trained LSTM-FC takes a batch of pair of trees as input, converting it to an

embedding state s at its output.The corresponding output will then be used as input

to the Q-network as the policy network which is used to approximate Q(s, a) values

for each action in state s.

The loss function here is mean squared error of the predicted Q-value and the

target Q-value, Q*, which is derived from the Q-value update equation derived from

the Bellman equation, Q(St, At) = Q(St, At) + (αγmax
a′

Q(St, a))−Q(St, At).

Loss =‖ r + γmaxa′Q(s′, a′; θ′)−Q(St, a; θ) ‖2

50

Figure 4.5: DeepQ - NNI Policy Learning Framework.

4.5 Rollout Approach

Especially in early stages of training in RL systems, basing value updates on

a single time step can be inefficient and performing longer look-aheads can improve

learning performance. A common way to include such look-aheads is in using rollouts.

In this section we show how we apply the rollout algorithm to train the agent to master

the nni distance in the tree space environment. The rollout algorithm is a decision-

time planning algorithms based on Monte-Carlo tree search to simulated trajectories

that all begin at the current environment state. It estimates action values for a given

policy by averaging the returns of many simulated trajectories that start with each

possible action and then follow the given policy. When the action-value estimates are

51

considered to be accurate enough, the action having the highest estimated value is

executed [41].

In a training step, the system executes a single episode of the task using Monte-

Carlo tree search with the given agent network. It returns the experience tuples

collected during the search. During Tree search it performs multiple simulations in

the tree (following trajectories) until a given number of nodes have been encountered

and it returns the leaf nodes which were encountered. Then it expands and evaluates

these leaf nodes. Given the number of leaf states which the agent network can evaluate

at once, the tree search limits the number of simulations to stay efficient. Figure 4.6

shows the cycle of four phases such as Selection, Expansion, Rollout/Simulation, and

Back-propagation in Monte Carlo tree search.

Figure 4.6: Rollout Cycle

This algorithm builds on the idea of iteratively improving a deep policy network

and a tree search by looking at the successors. The policy improves its estimates by

planning ahead via the tree search. Conversely, the tree search makes use of the

progressively more accurate policy to estimate the best branches to explore during

the search. It changes the way to estimate the action or the successor state. The basic

idea is that by looking deeper in the future, the value which is backed up is closer

to the real value than the value obtained when only looking at the direct successors.

52

The value function for any tree pair that is closer to the goal should always be a more

accurate estimate than for a pair that requires a large number of nni operations to

be resolved.

Figure 4.7 shows the architecture of the proposed approach for deep reinforce-

ment learning that uses the rollout algorithm for optimization of the deep neural

network. Tree search performs multiple simulations in the tree (following trajecto-

ries) until a given amount of leaves to expand have been encountered. Then it expands

and evaluates these leaf nodes. If it reaches the goal state, it does not need the agent

network to bootstrap. It can backup the value right away. Otherwise, it enqueues

the leaf for evaluation by the agent network. Finally it evaluates the leaf-states all at

once and backs up the value estimates.

Figure 4.7: This framework supports batching with different size, which can be en-
abled by setting the batch size.

4.6 Simulated Synthetic Data

We have used artificial tree collections to predict how the performance of the

algorithms scales across a wide range of dataset sizes. To generate artificial datasets,

we first generate an initial random binary leaf-labeled rooted tree τi with n nodes,

where n ∈ {15, 25, 50, 100, 200}. These trees were generated randomly by using the

53

algorithm introduced by Arnold and Sleep [14] that assigns equal probability to all

members of the family of trees with n nodes. This method produces a uniform

distribution of random binary trees [15]. These are the target trees for our algorithm.

To generate the source trees for our tests, we take the target tree and perform

a number of actions A to generate exhaustive neighborhood trees a certain number

of steps away. At each tier, we choose a uniform distribution of random neighbors to

perform all possible numbers of actions A on all internal edges of the tree to generate

all distinct new neighbors. We then select a tree from the resulting neighborhood.

This process is repeatedly performed to generate trees with a set number of NNI

operations away from our source trees. In our experiments, given each generated

target tree, we applied k rounds of NNI operations to our target to generate the

source tree. This puts an upper bound of k − nni steps between our trees. For these

experiments, we used 1− nni, ..., k − nni.

4.6.1 Distance Learning Evaluation

In this section, we study the effectiveness of transferable exploration in the

domain of predicting NNI distance. In this phase, our model proposes inputs (test

cases) to the program being tested, with the goal of finding the target point. Figure

4.8 shows convergence of the error in predicting the number of NNI steps in 600 epocs.

Mean squared error (MSE) loss was minimized with stochastic gradient descent and

plotted here against training epoch count. The validation error tracks the training

error without upward divergence, demonstrating a stable training with NNI bias-

variance trade-off.

The train and test set from the tree space is represented in two dimensions

based on the configuration and size of the trees. To fully evaluate the performance in

learning general representations, we investigate three aspects in multiple dimensions

54

a. b.

Figure 4.8: a. Mean squared error (MSE) losses for NNI distance prediction during
training and validation on a tree space with 12-nni distance radius and vaying tree
sizes. Validation losses were calculated using batches with variable size validation
examples after every training batche. b. (MSE) losses of NNI distance prediction
during training and validation with trees of a fixed size

based on configuration and size of the data set. First, we show that the system can

predict the configuration of a tree which has not been seen previously. The next

investigation is whether the size is outside the envelope. Last, it is tested whether

overfitting is happening in the hidden representation. We evaluate the model with

different ranges of tree sizes and nni distances by generalizing the range n between

N1 < N2 such that N ∈ N.

4.7 Evaluation of Policy Learning

In this section, we study the effectiveness of transferable exploration in the

domain of NNI. Our model proposes inputs (test cases) to the program being tested,

with the goal of learning a policy to generate as many actions as necessary to reach

the target. The information needed to be able to built a policy might still be finite

given the infinite space with its finite representation. The training set is represented

55

as a finite set of elements of the infinite tree space. By generating a test data set, we

showed that the proposed system can learned a successful tree transformation policy

based on the tree structure in a form of a representation that has not been trained

before. Fig 4.9 shows the success rate to reach the goal without the use of rollouts

for different tree sizes.

a. b.

Figure 4.9: a. The agent’s learning convergence for nni transfer. b. Success rate of
reaching the target for different size of tree with maximum 5-nni distance.

This data shows that while the system is able to learn policies for smaller NNI

distances, the failure rate becomes high for more complex problems. To address

this, the addition of rollouts through Monte-Carlo Tree search is used to bolster

performance by allowing for more competent backups. Fig 4.10 shows the performance

of Monte Carlo Tree Search combined with a policy that is used to narrow the search

tree pairs in the complex tree space.

This data shows a significant improvement in the policy with much higher

success rates of the policy even with complex tree transformation problems.

56

Figure 4.10: MSE of distance loss with maximum 12-nni distance (actual steps) and
with max budgets of 32 steps. Rollout effectively can approximate the target with
between [4-8] NNI step.

4.8 Conclusion

In this chapter we proposed a representation and policy learning framework that

learns a representation for arbitrary sized binary tree pairs using recurrent LSTM

networks and a policy to transfer one tree into the corresponding target tree using

Reinforcement Learning. Here, the representation is pre-trained using tree transfer

similarity to transform pairs of trees into an approximate numerical multidimensional

vector which encodes the original structure information. This model, used with a deep

reinforcement learning approach, yields a constructive method for generating basis

functions for approximating value functions and permits to learn an efficient, general

tree transfer policy that incrementally transforms the source tree into the target tree.

We have shown that in the context of the tree transformation with arbitrary sized

problem, an agent version of the rollout algorithm has greatly reduced computational

requirements while still maintaining the fundamental cost improvement property of

the standard rollout algorithm.

57

CHAPTER 5

Local Tree Neighborhood - Learning Hyperbolic Representations of Tree Pair

Differences

5.1 Introduction

Learning tree pair edit distance representations via low dimensional embeddings

that preserve relevant tree properties is an important class of problems in machine

learning and bioinformatics. Particularly, we are interested in geometrically modeling

tree pair and tree transfer structures via low dimensional embeddings. Examples of

applications include predicting maximum likelihood, tree edit distance, and recon-

struction of phylogenetic trees from a given set of genetic data [42] which are widely

used for tasks ranging from tree transformation to sentiment analysis. Thus, repre-

sentation learning has become an invaluable approach for learning dynamic behavior

in tree space such as tree pair edit distance. However, state-of-the-art embedding

methods typically do not account for latent hierarchical structures which are charac-

teristic of many complex symbolic datasets as well as the related action sequence for

tree pair edit distance representations.

In this chapter, we present a novel method for embedding tree pairs in the

hyperbolic space for use in edit distance tasks. This approach improves the repre-

sentational capacity of previous embeddings on the tree pair edit distance prediction

task. Recent experiments show that hyperbolic spaces provably model tree-like struc-

tures better than Euclidean geometry. Also, hierarchical relations can be presented

as partial orders. The key components are to induce a partial order relation in the

58

embedding space and have an appealing closed form expression derived in a principled

manner.

5.2 Background

Different schemes and algorithms were introduced over the past decades based

on interesting characteristics of hyperbolic embeddings [43]. Here, we introduce a

new approach for learning hierarchical representations for tree pair edit distance by

embedding tree pairs into hyperbolic space or more precisely into an n-dimensional

Poincaré ball before utilizing this representation to derive a fixed size embedding vec-

tor for edit distance prediction using a recursive LSTM network. Due to the inherent

implicit hyperbolic geometry property, this allows us to learn parsimonious represen-

tations of tree pairs by simultaneously capturing hierarchy and similarity. We present

an efficient method to learn the embeddings based on Riemannian optimization and

show experimentally that Poincaré embeddings can outperform Euclidean embed-

dings significantly on data with latent hierarchies, both in terms of representation

capacity and in terms of generalization ability.

In general, tree structured data sets are very high dimensional. In order to

maintain connectivity between local patterns, we need to know structure and topology

better. Relation with neighbors and the dimension depends on the taken action to

reach the corresponding neighborhood. As a result, the pattern should equally likely

exist for every orientation in the space of trees, except if the edge or node has a

particular property that assigns it to a particular dimension. They should be variable

but all in the same direction. For example, given a change of orientation of one, all

dependent elements (i.e. nodes and edges) should be rotated in the same way. So one

nice property of tree networks is that they are orientation-free. Otherwise the local

connectivity will be distorted. Therefore, the structure of a pattern will be preserved

59

and orientation is taken into account by embedding the direction. The orientation

in a graph is defined by the selection of the edge to traverse. Changing orientation

corresponds to remapping the dimensions in the underlined space.

We consider an unknown dynamic environment, where the agent observes a

network of trees through random walks, with each tree corresponding to a visited

unique environment state, and each edge of the traversal tree corresponding to an

experienced transition. In this configuration, the network grows in size during an

episode, and the agent controls the speed of this growth. The agent constructs the

map for the unknown dynamic environment while keeping track of its local zone.

The more of the network one can visit, the better the trajectory map reconstruction

could be. With limited time or simulation trials, having a good exploration strategy

is important. The key innovation is a representation of value functions for variable

size trees, using the ”task based features” of local neighborhood.

5.3 Related Works

Generating high quality feature representations and corresponding re-mapping

of data such as text or images is a central point of interest in artificial intelligence.

A large area of research focuses on embedding discrete data such as graphs [5, 44] or

natural language processing and linguistic instances [45, 46] into continuous spaces

that present desirable geometric feature properties.

Existing different embedding approaches for tree and acyclic graph structures

are based on Neural Networks such as Graph Convolution Neural Networks (GCNs)

[47] or GraphSAGE [48] which are state-of-the-art models for representation learning

in graph data sets, where nodes or edges in graphs or trees are mapped into points in

Euclidean space [49]. However, many real-world graphs, such as protein interaction

networks and social networks are scale-free or have a tree structure for their data

60

representation [50]. Therefore, existing GCNs or GraphSAGE embeddings generate a

highly biased and deformed Euclidean embedding of the graph structures. In general,

the volume or size of a tree, defined as the number of leaves within some radius

from a given center node as a root of the tree, grows exponentially as a function

of the radius [51, 52]. However, the volume of balls in Euclidean space only grows

polynomially with respect to the radius, which leads to high distortion embeddings

while volume grows exponentially [53, 54]. Moreover, the embedding techniques with

GCNs can only handle networks with particular size and can not handle variable size

data structures. Once it becomes bigger, as a result the network has to grow and

extend.

Alternatively, [55] proposed embeddings in hyperbolic space. Hyperbolic geom-

etry enables embeddings with smaller distortion when embedding scale-free graphs

[55]. However, current hyperbolic embedding techniques only account for the graph

structure and do not leverage rich node features. On the other hand, in contrast to

Euclidean space where each dimension is flat, in hyperbolic space, the space is curved.

Therefore naturally points in this space move faster apart from each other as they

move away from the center, so this means the available space through moving, grows

faster compared with Euclidean space. As a result, it changes the density of leaves,

making them easier to separate.

5.4 Preliminary and Notation

Given a graph G(V,E) representing a network in tree space, i.e. each node in

this graph be an undirected or directed tree τ . A tree τ v in this space as a source tree

and a set of transformed candidate trees τu could generate a partial local observation

with given edges connecting the trees to tree τ v through NNI and move operations.

We label those edges of τ v that generate new sample states in the future as target

61

nodes ND = {τ d1 , ..., τ dk}, and other belief nodes which τ s does not generate edges

to (no-linked nodes) L = {l1, ..., ln}. We label candidate nodes as a partial local

observation with a set O = {oi} = ND ∪ L. We assume ND to be a set of positive

nodes and nodes in L as negative training samples.

Given u and v (i.e. tree pair (τu,τ v)), We assume that each edge (u, v) has a

corresponding feature vector χ̂uv that describes the nodes u and v (i.e., pair of trees).

For each edge (u, v) in G, we calculate the distance as the score of connectivity level

auv = Fw(χ̂uv). Function Fw parameterized by w takes the edge feature vector χ̂uv

as an input and estimates the corresponding edge score auv that models the tree

transformation. It is exactly the function Fw(χ̂uv) that we learn in the training phase

of the learning representation algorithm. Now our task is to learn the parameters w

of function Fw(χ̂uv) that assigns each edge.

5.5 Hyperbolic Transfer Representation

In this step, we are interested in geometric modeling of tree pair relations in the

context of NNI distance and similarity via low dimensional embeddings of the tree

pair as a vector x ∈ Rn which represents a more general concept than any embedding

in Euclidean space.

Our goal is to produce a hyperbolic embedding that preserves all distances

between nodes in the tree but also encodes similarity between the two trees. Starting

from the same motivation [56], the hyperbolic embeddings method explicitly models

hierarchical data structures. [57] shows the connection between hyperbolic space and

tree distances and provides the relationship between reconstruction and learning for

hierarchical data structure embeddings through partially ordered structure.

62

Partially ordered sets: The concept of hierarchy forms a partially ordered

set (poset), which is a set X equipped with reflexive, transitive, and anti-symmetric

binary relations �. We extend this idea for application to a tree pair. Considering

the reachability from one node to another in hierarchy order, we obtain a partial

ordering. The partial ordering is equivalent to the inclusive relation between certain

subsets called the lower cone (or lower closure), Cx = y ∈ X|y � x [43].

Different version of hyperbolic models include Poincaré disk, Poincaré ball,

Poincaré half-plane, and hyperbolic cones. For example, as Figure 5.1 shows, hyper-

bolic space with Poincaré disk D2 is a two-dimensional model of hyperbolic geometry

with points located in the interior of the unit disk . The hyperbolic space provides

several useful properties, with a key property of this space being the relation between

the mapping and the corresponding interpretation in Euclidean space. In particular,

angles are preserved between hyperbolic and Euclidean space.

The hyperbolic distance: in a Poincaré disk D2, the distances between any two

points x1 and x2 are given by curves minimizing the distance between these two

points and are called geodesics of the hyperbolic plane. To calculate the distance of

a geodesic between two points x1 and x2 and thus obtain their hyperbolic distance

DH , we use the Poincaré metrics which is an isometric invariant.

DH(x1, x2) = acosh(1 +
2(|x1 − x2|2))

(1− |x1|2)(1− |x2|2)
) (5.1)

The hyperbolic distance DH(x1, x2) is additive along geodesics and is a Rie-

mannian metric [58].

A NNI-distance tree hyperbolic embedding is a mapping F : (τi, τj)→ V for a

pair of trees τi, τj and an embedding v with distances d(τi, τj) and DH .

63

Figure 5.1: Tree in the hyperbolic disk. Each edge has to be embedded to a mini-
mum length depending on the cone in which it is embedded. The distance of nodes
increases exponentially (relative to their Euclidean distance) the closer they are to
the boundary.

Figure 5.2: Embedding pairwise nni distance (τi, τj) in the hyperbolic disk.

5.5.1 Geometric Embedding of Tree Pairs

The nature of hyperbolic space lends itself towards perfect tree embeddings.

Therefore, it is possible to embed trees into the Poincaré disk H2 with arbitrarily low

distortion.

We use a two-step process for embedding a tree pair into hyperbolic space:

• Embed two trees (τi, τj) into one tree T ,

• Embed T into the Poincaré ball Hd.

The idea is to embed the root of two trees at the origin and recursively embed

the children of each node in each tree in the pair by spacing them around a sphere

centered at the parent. As Figure 5.2 shows, the radius of the sphere can be set to

64

precisely control the distortion. There are two factors to good embeddings: local and

global. Locally, the children of each node should be spread out on the sphere around

the parent. Globally, subtrees should be separated from each other; in hyperbolic

space, the separation is determined by the sphere radius.

The goal of embedding a pair of tree (τi, τj) into a space V is to preserve the

local structure of the tree within the embedding while maintaining information related

to the nni distance (the shortest path with nni swap between a pair of tree) in the

space V . If (τi, τj) are two trees and their nni distance is dnni(τi, τj), we would like the

embedding to have dvnni(τi, τj) close to dnni(τi, τj). Now consider two children (τi, τj)

as subtrees of parent z in a tree. We place z at the origin O. The graph distance

is d(τi, τj) = d(τi, O) + d(O, τj), so normalizing we get
d(τi,τj)

d(τi,O)+d(O,τj)
= 1. Starting

from the root, z, we embed each node by mapping it to coordinates x and y in the

two-dimensional hyperbolic space. We start with x and y at the origin, and with

equal speed move them toward the edge of the unit disk as nodes move away from

the root.

5.5.2 The Optimization Problem

The training data contains information that source node τ s will generate edges

to target nodes d ∈ D and not to nodes l ∈ L. So, we define the objective to set

the parameters w of function fw(χ̂uv) so that it will assign edge weights auv in such a

way that a walk will be more likely to visit nodes in D than L, i.e., pl < pd, for each

d ∈ D and l ∈ L. To compute Poincaré embeddings for a set of tree pair distance

S = {(τi, τj)k}k=1
n , we are then interested in finding embeddings θ = {θi}ni=1 which

map each node in the trees to a location in the hyperbolic space such that it maintains

node distances in the trees where θi ∈ Hd can be used in predicting the distance of

the tree pair. We assume loss function L(θ) which encourages semantically similar

65

tree pairs to be close in the embedding space according to their Poincaré distance.

To estimate θ, we then solve the optimization problem θ

arg min
w

θ = L(θ)

s.t.

∀θi ∈ θ, ||θi|| < 1

(5.2)

where in particular, we minimize the following loss function:

L(θ) =
∑
(τi,τj)

∑
(u,v)∈D

log
e−d(u,v)∑

v′∈N(u) e
−d(u,v) +

∑
ω(u).d(u, v) (5.3)

In loss function 5.3, the first term is aimed at preserving the structure informa-

tion in each tree by attempting to maintain the node distances in each tree within

their hyperbolic embedding. The second term, by contrast, is aimed at encoding the

difference between the two trees (related to their nni distance) by regulating the dis-

tance between identical leaf nodes in the two trees. Through this we rank loss where

related nodes should be closer than nodes for which their relationship has not been

observed. This loss function is motivated by the fact that we don’t want to push

nodes belonging to distinct subtrees arbitrarily far apart as their subtrees might still

be close. Instead we want them to be farther apart than nodes with an observed

relation. We evaluate the performance of the embeddings similar to graph embed-

dings. For each observed relationship (u, v), we rank its distance d(u,v) among the

ground-truth negative examples.

5.6 Measure of Tree Pair Embedding

Given a tree pair with 1-NNI distance, it can be presented in the Poincaré disk,

H. For a given tree with n leaves {V0, .., Vn}, the embedding coordinate vi, denoted

V (vi) is the set of points whose distance to vi is not larger than the distance to vj for

66

any j 6= i. Figure 5.3 shows a projection of the embedding into Cartesian space for a

pair of trees with NNI distance of 1 and 8 leave nodes.

Figure 5.3: Sample of embedding pairwise nni distance (τi, τj) in the hyperbolic disk.
Positions of node vectors in 2-D space from an actual Poincaré embedding with leaf
nodes labeled with the leaf labels and intermediate node labels prefaced with i. Nodes
for tree 1 (green) are labeled above the mark while nodes for tree 2 (red) are labeled
below. Overlapping nodes are green and indicated with a bold outline. Note that as
we move toward the boundary, we begin to see nodes lower and lower in the hierarchy.
Also, nodes similar to each other are close or overlap each other.

This figure shows the embedded tree nodes labeled with the node ID. Nodes of

the first tree are green while nodes for the second tree are shown in red with bold

circled nodes in the embedding representing situations where the nodes for the two

trees embed to approximately the same coordinate. This figure demonstrates how

67

the proposed hyperbolic embedding for tree pairs can maintain information about

structural similarity within the hierarchical tree structure between the two trees.

In the first set of experiments, we evaluate the ability of the proposed Poincaré

embeddings to embed tree pairs with NNI distance to present the relevant information

in a clear latent hierarchical structure. For this purpose, we conduct experiments on

tree pairs with variable size. In tree space, we need to measure the quality of the

embedding based on a local or global view. Based on a local view, we might want

a local measure that checks whether neighbors remain closest to each other without

considering the exact distances between them. We also want a global measure that

keeps track of these explicit values. We use mean average precision (MAP), proposed

by [43] for our local measure for a tree pair; MAP captures how well each node’s

neighborhoods are preserved. It exactly measures the quality of an embedding.

We measure the quality of embeddings with MAP based on local and global

points. For a dynamic environment of a tree space Gτ = (V τ , Eτ), let a tree τi ∈ V τ

have a neighborhood tree set Nτ = {τ1, τ2, ..., τ2(n−3)}, where 2(n − 3) denotes the

number possible neighbors for τi with n leaves. In the embedding F , consider the

points closest to F (δnni(τi, τj)), and define φτi,τi to be the smallest set of such points

that contains (τi, τj) (that is, φτi,τj is the minimum set of nearest points required to

retrieve the 1− nni neighbor of τi in F). The MAP is defined by Equation (5.4).

MAP (F) = 1
|V τ |

∑
τ∈

1
|Nτ |

∑
Precision(φτ,τi)

= 1
|V τ |

∑
τ∈

1
2(n−3)

∑ |Nτ∩φτ,τi|
|φτ,τi |

(5.4)

In the ideal case, MAP (f) ≤ 1 where equality is the best case. MAP is not

affected by the underlying distances, but only by the ranks between the 1 − nni

distances of immediate neighbors with respect to the target.

68

The standard metric for the quality of graph embeddings is distortion D. For

an n point embedding as a global measure, we use distortion.

distortion =
∑

(τi,τj)∈G,τi 6=τj

|d(τi, τj)− dH(τi, τj)|
d(τi, τj)

(5.5)

5.6.1 Hyperbolic Tree Pair Embeddings for NNI Distance Prediction

The goal of the proposed hyperbolic embedding of tree pairs and tree pair

differences in this dissertation is to utilize it to obtain a better representation for

NNI tree transformation learning. The rationale here is that by embedding the trees

in a way that maintains tree structure and tree difference information we provide

the LSTM network used to address the variable size of the used trees with a more

informative and easier to process representation which explicitly focuses on structure

and tree differences while allowing to eliminate the need to explicitly encode tree

labels in the input representation. The tree pair embedding model achieves this by

defining a loss function that penalizes low distances between unconnected nodes and

high distances between connected nodes, and optimizing it by training over the list

of connected nodes, along with randomly sampled negative examples, using gradient

descent. This a leads to significant improvements in terms of representation and

generalization ability for tree pairs. For instance, Figure 5.3 shows how efficient a

tree pair can be embedded in hyperbolic space.

Following the approach for NNI distance prediction and tree transformation

policy learning for variable and unlimited sized trees, we again utilize a recurrent

LSTM network to further embed the tree representations into a fixed length vector.

The input to the recurrent neural network is a tree pair that represents a state. To

allow the hyperbolic embedding of the tree pair to be fed to the LSTM network, a

tree traversal on the current tree starting with the active edge is performed and the

69

input to the network is the corresponding sequence of node pairs from the current

and target tree. Each set of coordinates represents the position of the node in the

current tree with respect to its location in the target and is used at the input to the

recurrent network at a time-step t− T + 1, ..., t. To further normalize the input, the

tree space is oriented relative to the perspective of the current tree. Figure 5.4 shows

the model architecture used for the hyperbolic embedding and its use for constant

length tree embedding and NNI distance prediction.

Figure 5.4: Supervised architecture model

As in Chapter 4, we use the recurrent network architecture to address variable

sized tree pairs, utilizing that LSTMs can effectively preserve the characteristics of

historical information in sequences, and extract local features of the tree pairs using

70

the structure of NNs. We again proposes a hybrid model of LSTM and fully connected

NN, where we construct a fully connected NN model for NNI distance prediction on

the top of an LSTM which is intended to learn a fixed size embedding of the relevant

features of the tree pairs. In this way, the tree pair feature vector output from

LSTM serves as the state representation and is driven by the task performed by the

subsequent NN structure and learning task.

As opposed to the more direct application to the structure learning, the use

of the hyperbolic embedding of the tree pair in the input to the LSTM should here

reduce the burden on the LSTM. In particular, the LSTM does here not have to deal

with local connectivity in tree space in the same way as the hyperbolic embedding

deals with low level connectivity. Moreover, as leaf nodes of the two trees are now

fed as pairs, the need for leaf labels to be included in the input disappears, further

easing the burden on the LSTM network, allowing it to more directly concentrate

on handling the arbitrary size of the trees and on identifying features relevant to the

NNI prediction task.

The resulting combined approach should better enable agents to learn represen-

tations that reflect both their past experience and the inherent large-scale information

of the environment, as well as learn policies by using these customized basis functions

to approximate value functions.

To verify the benefits of the proposed hyperbolic embedding, we evaluated the

performance of embeddings for predicting distance of tree pairs in a complex tree

space generated by NNI edits. Since each tree in such networks can often be explained

via latent hierarchies over their nodes, we are interested in the benefits of Poincaré

embeddings in terms of representation of similarity and generalization performance for

predicting distance metrics. For training, we randomly sample tree pairs and collect

experimental results on the NNI transformation distance in different size trees with

71

in 5-NNI distance up to 5. Figure 5.5 shows the result of training and evolution for

500 steps. Experimental results demonstrate that our approach is extremely effective

for distance prediction.

Figure 5.5: Training and test performance for NNI distance prediction in terms of
loss in the number of NNI steps (left) and estimated squared error (right)

5.7 Conclusions

In this chapter, we introduced Poincaré embeddings for learning representa-

tions of tree pairs and showed how they can simultaneously learn the similarity and

the hierarchy of two trees to predict the edit distance. In Addition, we proposed

an efficient algorithm to compute the embeddings and showed experimentally, that

Poincaré embeddings provide important advantages over Euclidean embeddings on

tree edit distance. First, Poincaré embeddings enable parsimonious representations

that allow us to learn high quality embeddings of variable size trees. Second, excel-

lent distance prediction results indicate that hyperbolic geometry can introduce an

important structural bias for the embedding of complex data such as genome. In

the next chapter, we study Poincaré embeddings for value function approximation in

72

reinforcement learning problems with high dimensional state and a finite action space

based on a generalized representation policy iteration.

73

CHAPTER 6

Deep Reinforcement Learning for Tree Transformation using Hyperbolic

Representations of Tree Pairs

6.1 Introduction

In this chapter, we consider the classical NNI distance problem and efficient

exploration of unseen environments in a network of trees with variable size by adapting

a novel approach for learning tree pair representations utilizing embedding entities

into hyperbolic space. We propose a learning exploration strategy where we learn

a sampling policy from an unseen environment generated by NNI operations. The

policy aims to generalize the sampling strategy over NNI and move steps to visit the

minimum number of unique sample states in a limited number of NNI and move steps.

We study a fundamental aspect of representation learning on tree pairs, in particular,

the impact of the underlying geometry of embedding tree pairs into hyperbolic space.

We particularly focus on environments with tree-structured state-spaces that

are encountered in many important real-world applications like bioinformatics and

formulate this task as a reinforcement learning problem where the exploration agent

is rewarded for transitioning to previously unseen environment states and employs a

graph-structured memory to encode the agents past trajectory. Our proposed model

uses the original AlphaZero algorithm [59], a general purpose Monte-Carlo tree search

(MCTS) algorithm.

We present a generic framework for learning representation and behavior of tree

datasets in hyperbolic space with a finite action space, integrating policy learning us-

ing MCTS with automated hyperbolic representation exploration. We evaluate the

74

value function approximation in reinforcement learning problems with high dimen-

sional state and a finite action space based on a generalized representation policy

iteration in hyperbolic space. We consider the limitations at accurately approximat-

ing the value function in low dimensions and highlight the importance of features

learning for an improved low-dimensional value function approximation. We answer

two questions:

• How can we build a representation of the local tree neighborhood which gives

enough information for a tree pair to decide the next node?

• How should the agent move to gain the highest accumulated rewards through

tree space?

6.2 Background and Related Works

The study of tree transformation is a fundamental topic both in computer sci-

ence and bioinformatics. Tree edit distance subsequently became the grand challenge

task for a generation of researchers since these tasks are highly tuned to their domain,

and cannot be generalised to other problems without significant human effort.

We consider an unknown dynamic environment, where the agent observes a

tree at each step, with each tree corresponding to a visited unique environment state,

and each edge between trees corresponding to an experienced transition. In this

configuration, the network of trees grows in size during an episode, and the agent

maximizes the speed of this growth. The agent constructs the map for the unknown

dynamic environment while keeping track of its local zone. The more trees one can

visit, the better the trajectory map reconstruction could be. With limited time or

simulation trials, having a good exploration strategy is important.

The key innovation is a representation of value functions for variable size trees,

using the ”task based feature” as a smooth function with partial observation based on

75

the local neighborhood. This approach allows applying powerful mathematical tools

for basis function generation by exploiting information obtained during training. This

representation may not transfer information as much as generic features but is able

to focus on features relevant to a specific task. There might be a lot of information

which may be irrelevant with respect to the set of goals which we are trying to solve,

but not irrelevant across different actions in the local neighborhood.

6.3 Preliminary

Given in a graph G(V,E) that represents a network in tree space (i.e. each node

in this graph is a tree), a source tree τ s as a source node state and a set of candidates

of tree τ c could generate a partial local observation with given edges connecting them

to tree τ s through NNI and move operations. We label those edges from τ s that

generate new sample node states in the future as target nodes ND = {τ d1 , ..., τ dk}.

We assume the availability of a tree space G(V,E) with a given set of actions

A and a derived path P = {pi}i∈k with known target, where pi is a graph query

(generated induced graph). The goal of RL is to find a policy π : S → A to maximize

the expected rewards with finding correct trajectories.

Without having access to all the environment, we need to define a navigation

strategy that can traverse the space with the aim to find the target. In an episodic

manner, the upcoming observations rely on the current query. The policy is how the

agent can find the given particular pattern based on the current set of observations.

6.4 Feature Based Learning

Intuitively, we generalize from seen nodes to unseen nodes in the network en-

vironment by feature learning. Thus, the challenge is that the current node is very

76

highly correlated with respect to the next node that will be visited. The nodes’ data

that is obtained by following a trajectory is thus highly correlated and learning that

relies on iid techniques is not effective. Therefore we require a training method that

is suitable for non-stationary and non-iid data. We estimate the value of the state

corresponding to a pair across the nodes and edge space by considering differentiable

function approximation Q(s, a) ≈ Qh
φ(s, a) in the hyperbolic geometry. In the first

step, the learning algorithm (feature navigator) is to derive a set of base tree features

using the tree pair topology and some available attributes on each sampled nodes and

edges. These features represent generic aspects of the tree pairs.

6.5 Action Based Features

Action based features are conceptually easier and may be better at represent-

ing the important aspects of the state than general state features in the context of

Reinforcement Learning. But they may not transfer information as much as generic

features. The reason for this is that there might be a lot of information which may

be irrelevant with respect to the set of goals which we are trying to solve.

6.6 Space Exploring Policy

We first define the building blocks that we use to define our search space in the

given environment. We consider we have a set of seed nodes as initial states:

Action-based features should carry all information from the past versions of Gs,

of which we only get to observe the final in the form of a static snap-shot. Note that

we also do not know the ages of nodes and edges. Let Gs
t+1 represent graph Gs

t at

some point in time t + 1, when it had exactly NR
t+1 nodes. Now, we want to find a

new sample Gs with NR nodes that is most similar to graph GNR
t+i, i.e. an expansion

77

of the current snapshot when graph Gs was of the same size as S. The hard part here

is that we want to match patterns describing the temporal evolution together with

the patterns defined on a single snapshot of a graph, which also changes over time.

If one would have node ages, then the best possible approach would be to simply

roll-back the evolution (addition/deletion of nodes and edges over time). Note that

our sampling algorithms do not know the age of individual nodes and edges. So

the question here is whether we can roll-back the time without having any temporal

information (age of nodes/edges).

6.7 State Representation: Tree Pairs in Local Neighborhood

Let the state be the representation of observed tree pairs in tree space with the

given action set. In the work presented here, we utilize recurrent neural networks

to learn the representation and the input to the recurrent neural network is a tree

pair that represents the state. Each set of feature values/coordinates represents the

position of a tree with respect to a target at a time-step t. The tree space is oriented

to the perspective of the current tree.

In this section we describe the state representation of the tree pair inputs, and

the representation of the action outputs, used by the recurrent neural network block,

a re-trained model of the LSTM network introduced in the previous chapter. The

pre-trained LSTM model was trained to predict the number of steps to be taken

to transfer one state into another one. LSTMs were chosen as they can effectively

preserve the characteristics of historical information in sequences, and extract local

features. We proposes a hybrid model of LSTM and fully connected layers. At first,

an unsupervised NN constructs the hyperbolic embedding of the tree pair as described

in Chapter 5 which, in the form of a sequential tree traversal of current/target tree

node pairs serves as the input to the LSTM network. The LSTM learns to compress

78

this traversal sequence into a relevant, fixed size feature vector that addresses the

variable tree size and captures the task-relevant aspects of the state as driven by the

learning problem applied on one of the follow-up networks, either a fully connected

network for NNI distance training during the pre-training stage, or a Q-Value network

for the policy learning stage. The output of the LSTM represents the hidden state

representation used for both the prediction and the policy learning problem. We use

the last hidden layer before the fully connected one from the pre-trained model as

the initial state representation for the value function.

The resulting combined approach enables agents to learn representations that

reflect both their past experience and the inherent large-scale information of the

environment, as well as learn policies by using these customized basis functions to

approximate value functions.

6.8 Improving Deep-Q RL with Rollout using Hyperbolic Geometry Approximation

The algorithm builds on the idea of iteratively improving a deep policy network

and a tree search in tandem. The policy improves its estimates by planning ahead

via the tree search. Conversely, the tree search makes use of the progressively more

accurate policy to estimate the best branches to explore during the search. The

basic mechanism of the tree search-based rollout used during pre-training and policy

learning is shown in Algorthm 4.

Our implementation was adapted from the original AlphaZero [59] algorithm

implementation, which is limited to the game of Go (two-player game). We modified

the algorithm to play single-player games and based it on a previous version from a

repository that provides an implementation of the MCTS algorithm that is indepen-

dent of any deep learning framework. Each search consists of a series of simulated

NNI transformations done by the agent that traverse a sub-tree of the tree space from

79

Algorithm 4 General Rollout with Pre-Train

1: procedure Learn NNI Distance

2: Input: Starting transition τ0 = (X1
s , a1, r1, X

0
s).

3: Π: Policy to be evaluated

4: Returns(Xs): an empty list, ∀Xs ∈ S

5: Vh: Value Function

6: Dynamic model f with error estimate

7: Reward model r.

8: Output: Transitions Trajectory τ1, τ2, .., τk

9: Initialize Weights from pre-trained block:

10: Repeat

11: Generate an episode using Π

12: For each state Xs observed in the episode:

13: Return that path P occurrence from state Xs

14: Append P to Returns(Xs)

15: V (Xs) Average(Returns(Xs))

root (corresponding to the current tree pair towards the leafs (corresponding to tree

pairs where the current tree is equivalent to the target tree or tree pairs that are at

the fringe of the search horizon). As Algorithm 4 explains, each MCTS simulation

proceeds by choosing in each state Xs an action with low visit count, high move

probability and high value (averaged over the leaf states of simulations that selected

action a from Xs) according to the output estimation of the current recurrent neural

network F (θ). The search returns a vector Π representing a probability distribution

over actions, either proportionally or greedily with respect to the visit counts at the

root state. The parameters θ of the deep recurrent neural network are trained by

80

reinforcement learning, starting from pre-trained parameters θ. At the end of run,

the terminal position XT is scored according to the rules of the reward function to

compute the outcome Z : −1 for a swap, 0 for a move, and +1000 for reaching the

target state. The neural network parameters θ are updated so as to minimise the

error between the predicted distance vt and the NNI distance outcome Z, and to

maximise the similarity of the policy vector pt to the search probabilities Πt. Specifi-

cally, the parameters θ are adjusted by gradient descent on a loss function that sums

over mean-squared error.

This mechanism is integrated into an overall learning architecture that utilizes

multiple neural network structures to achieve hyperbolic tree pair embedding to a

traversal sequence of pairs of tree coordinates for arbitrary sized trees, fixed size

embedding learning into a feature vector representing important tree structure dif-

ferences, prediction of NNI distances, and, finally, learning of tree transformation

strategies and corresponding value functions using deep Q-learning. As shown in Fig-

ure 6.1, which presents an overview of the complete RL architecture used, we provide

a pipeline in which the agent learns to find the best strategy to perform NNI tree

transformations and thus the best path through the tree space environment by using

tree pair similarity.

6.9 Results

We have tested the fixed steps rollout with numbers of steps of {1, 2, 3, 4, 5, 8, 32}

on the NNI distance problem. We have used 2-layer recurrent neural networks to learn

the fixed-length state approximation f and a 2-layer fully connected network for the

the value function learning V , with hidden layer dimensionality of 64 for f and 256

for V . f and V both use a dropout rate of 0.05. All neural networks use tanh as

their hidden activation and no output activation. For optimizer, we used the Adam

81

Figure 6.1: Overall architecture and training pipeline. The hyperbolic embeddings
of tree pairs are constructed in the first stage and, as a tree traversal sequence of
current/target node pairs fed into the LSTM embedding network. The output of
this network, having initially been pre-trained using NNI tree distances, serves as
the feature representation for the deep-Q Reinforcement Learning component for the
extrapolated tree transformation policy learning task.

optimizer [60] for training with a learning rate of 0.001. Figure 6.2 shows the average

episode rewards for 800 Epocs averaged over 10 runs. Running 10 runs for variable

size tree {8, 10, 25}, Figure 6.3 shows the performance of rollout during training on

variable sized tree pairs with NNI distances between 1 and 5 with variable size tree

without normalization.

82

Figure 6.2: Performance of agent during training on variable sized tree pairs with
NNI distances between 1 and 5. The system successfully learns to transform the trees
in an average of 8 steps. Reward ={ Goal=1000, edit and move=−1, 0} .

Figure 6.3: Performance of rollout during training on variable sized tree pairs with
NNI distances between 1 and 5 with variable size tree without normalization. Average
loss in nni distance across 10 runs for variable size tree without normalization

83

6.10 Conclusion

We present a generic framework for learning representation and behavior on

tree datasets in hyperbolic space on a finite action space, integrating policy learning

using Markov decision processes with automated representation exploration. In this

work, we study value function approximation in reinforcement learning problems with

high dimensional state and a finite action space based on a generalized representation

policy iteration. We consider the limitations at accurately approximating the value

function in low dimensions and we highlight the importance of features learning for

an improved low-dimensional value function approximation.

84

CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

This dissertation introduced a representation and reinforcement learning ap-

proach to solve tree transformation problems without the need to impose limitations

on tree size. We showed potential applications of these tree transformation tools and

learning-based sampling strategies to a common problem related to tree distance and

tree manipulation with applications to problems in genomics, planning and control.

The first part of the dissertation presented the use of reinforcement learning

for relaxed, deterministic coordination and control of an agent to learn a tree edit

distance task. We reinterpreted this classical method task for unsupervised learning

as an abstract formalism for identifying and representing tree transformations by

relating the continuous space of configurations to the combinatorial space of trees.

The second part of the dissertation introduced a generalized approach with au-

tomated representation exploration in an edit neighborhood representation, learning

to identify a neighborhood of a tree that captures the local geometric structure of a

configuration space around the tree’s instantaneous configuration. Based on this edit

neighborhood representation, we used reinforcement learning to learn a NNI distance

strategy to find the minimum-cost sequence of operations that transforms one tree

into another.

The third part of the dissertation presents a generic framework for learning

representation and behavior on a tree dataset in hyperbolic space with a finite action

space, integrating novel hyperbolic embeddings of tree pairs with recurrent networks

85

to obtain effective representations of tree distances in arbitrary sized trees, and policy

learning using reinforcement learning. In this work, we study the use of value function

approximation in hyperbolic space and reinforcement learning problems with high

dimensional state and a finite action space based on a generalized representation and

policy iteration.

The obtained results strongly suggest that reinforcement learning is, indeed, an

effective approach for automatically extracting inherent structures in configuration

spaces relevant to the solution of tree edit distance, and that it might play a key

role in the design of computationally efficient planners in complex, high-dimensional

configuration spaces in different application domains.

7.2 Future Work

Applying a recurrent architecture for the encoder networks might allow discov-

ering such structures in uncertain environments such as Partially Observable Markov

Decision Problems. Additionally, the equivalence properties of predicted value func-

tion bounds in the proposed approach needs to be verified. Furthermore, it would

be interesting to map states and action spaces of multiple environments to the same

latent space. Given such a representation, any policy learned for the latent transition

model, can be projected back to the real world environments.

86

REFERENCES

[1] L. G. Shapiro and R. M. Haralick, “Structural descriptions and inexact match-

ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

PAMI-3, no. 5, pp. 504–519, 1981.

[2] A. Wong, M. You, and S. Chan, “Algorithm for graph optimal monomorphism,”

Systems, Man and Cybernetics, IEEE Transactions on, vol. 20, pp. 628 – 638,

06 1990.

[3] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of

social representations,” CoRR, vol. abs/1403.6652, 2014. [Online]. Available:

http://arxiv.org/abs/1403.6652

[4] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient estima-

tion of word representations in vector space,” 2013. [Online]. Available:

http://arxiv.org/abs/1301.3781

[5] A. Grover and J. Leskovec, “node2vec: Scalable feature learning

for networks,” CoRR, vol. abs/1607.00653, 2016. [Online]. Available:

http://arxiv.org/abs/1607.00653

[6] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The

graph neural network model,” IEEE Transactions on Neural Networks, vol. 20,

no. 1, pp. 61–80, 2009.

[7] M. Li, J. Tromp, and L. Zhang, “On the nearest neighbor interchange distance

between evolutionary trees,” Journal of Theoretical Biology, vol. 182, no. 4, pp.

463–467, 1996.

87

[8] D. F. Robinson, “Comparison of labeled trees with valency three,” Journal of

Combinatorial Theory, vol. 11, no. 2, pp. 105–119, 1971.

[9] M. Krivanek, “Computing the nearest neighbor interchange metric for unlabeled

binary trees is np-complete,” Journal of Classification, vol. 3, no. 1, pp. 55–60,

1986.

[10] K. Takahashi and M. Nei, “Efficiencies of fast algorithms of phylogenetic infer-

ence under the criteria of maximum parsimony, minimum evolution, and maxi-

mum likelihood when a large number of sequences are used.” Molecular biology

and evolution, vol. 17 8, pp. 1251–8, 2000.

[11] N. K. Ahmed, J. Neville, and R. Kompella, “Network sampling: From

static to streaming graphs,” ACM Transactions on Knowledge DIs-

covery from Data, vol. 8, no. 2, p. 7, 2014. [Online]. Available:

http://arxiv.org/abs/1211.3412%5Cnhttp://www.arxiv.org/pdf/1211.3412.pdf

[12] N. Misra, G. Blelloch, R. Ravi, and R. Schwartz, “An optimization-based sam-

pling scheme for phylogenetic tree,” Journal of computational biology : a journal

of computational molecular cell biology, vol. 18, no. 11, pp. 1599–1609, 2011.

[13] J. P. Huelsenbeck and F. Ronquist, “Mrbayes: Bayesian inference of phylogeny,”

Bioinformatics, vol. 17, no. 8, p. 754755, 2001.

[14] P. Diaconis and S. Holmes, “Random walks on trees and matchings,” Electronic

Journal of Probability, vol. 7, no. 6, pp. 17–28, 2002.

[15] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” CoRR, vol. abs/1409.3215, 2014. [Online]. Available:

http://arxiv.org/abs/1409.3215

[16] D. Janz, J. van der Westhuizen, and J. M. Hernndez-Lobato, “Actively learning

what makes a discrete sequence valid,” 2017.

88

[17] E. J. Bjerrum, “Smiles enumeration as data augmentation for neural network

modeling of molecules,” 2017.

[18] D. Janz, J. van der Westhuizen, B. Paige, M. J. Kusner, and J. M. Hernndez-

Lobato, “Learning a generative model for validity in complex discrete structures,”

2018.

[19] G. L. Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. L. C. Farias, and

A. Aspuru-Guzik, “Objective-reinforced generative adversarial networks (organ)

for sequence generation models,” 2018.

[20] A. Santoro, D. Raposo, D. G. T. Barrett, M. Malinowski, R. Pascanu,

P. Battaglia, and T. Lillicrap, “A simple neural network module for relational

reasoning,” 2017.

[21] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural

networks,” 2017.

[22] C. Gulcehre, M. Denil, M. Malinowski, A. Razavi, R. Pascanu, K. M. Hermann,

P. Battaglia, V. Bapst, D. Raposo, A. Santoro, and N. de Freitas, “Hyperbolic

attention networks,” 2018.

[23] M. Li, J. Tromp, and L. Zhang, “On the nearest neighbor interchange distance

between evolutionary trees,” Journal of Theoretical Biology, vol. 182, no. 4, pp.

463–467, 1996.

[24] W. Hon and T. W. Lam, “Approximating the nearest neighbor interchange dis-

tance for evolutionary trees with non-uniform degrees,” Computing and Combi-

natorics, vol. 1627, no. 1999, pp. 61–70, 1999.

[25] W. Hon, M. Kao, T. Lam, W. K. Sung, and S. Yiu, “Non-shared edges and

nearest neighbor interchanges revisited,” Information Processing Letters, vol. 91,

no. 3, pp. 29–134, 2004.

89

[26] S. Whelan, “New approaches to phylogenetic tree search and their application

to large numbers of protein alignments,” Systems Biology, vol. 56, no. 5, pp.

727–740, 2007.

[27] B. DasGupta, X. He, M. L. T. Jiang, J. Tromp, and L. Zhang, “On distances

between phylogenetic trees,” in Proc. of the 8th Annual ACM-SIAM Symp. on

Discrete Algorithms (SODA ’97), 1997, pp. 427–436.

[28] M. S. Waterman and T. F. Smith, “On the similarity of dendrograms,” Journal

of Theoretical Biology, vol. 73, no. 4, pp. 783–800, 1978.

[29] J. P. Jarvis, J. K. Luedeman, and D. R. Shier, “Counterexamples in measuring

the distance between binary trees,” Mathematical Social Sciences, vol. 4, no. 3,

pp. 271–274, 1983.

[30] W. Hon, M. Kao, T. Lam, W. K. Sung, and S. Yiu, “Non-shared edges and

nearest neighbor interchanges revisited,” Information Processing Letters, vol. 91,

no. 3, pp. 29–134, 2004.

[31] W. Hon and T. W. Lam, “Approximating the nearest neighbor interchange dis-

tance for evolutionary trees with non-uniform degrees,” Computing and Combi-

natorics, vol. 1627, no. 1999, pp. 61–70, 1999.

[32] R. Sutton and A. Barto, Reinforcment Learning: An Introduction. MIT press,

2017.

[33] D. B. Arnold and M. R. Sleep, “Uniform random generation of balanced paren-

thesis strings,” ACM Trans. Program. Lang. Syst., vol. 2, no. 1, pp. 122–128,

1980.

[34] B. Allen and M. Steel, “Subtree transfer operations and their induced metrics

on evolutionary trees,” Annals of Combinatorics, vol. 5, no. 1, pp. 1–15, 2001.

90

[35] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on

graphs: Methods and applications,” CoRR, vol. abs/1709.05584, 2017. [Online].

Available: http://arxiv.org/abs/1709.05584

[36] M. Krivanek, “Computing the nearest neighbor interchange metric for unlabeled

binary trees is np-complete,” Journal of Classification, vol. 3, no. 1, pp. 55–60,

1986.

[37] D. F. Robinson, “Comparison of labeled trees with valency three,” Journal of

Combinatorial Theory, vol. 11, no. 2, pp. 105–119, 1971.

[38] B. DasGupta, X. He, M. L. T. Jiang, J. Tromp, and L. Zhang, “On distances

between phylogenetic trees,” in Proc. of the 8th Annual ACM-SIAM Symp. on

Discrete Algorithms (SODA ’97), 1997, pp. 427–436.

[39] B. Perozzi, V. Kulkarni, and S. Skiena, “Walklets: Multiscale graph embeddings

for interpretable network classification,” CoRR, vol. abs/1605.02115, 2016.

[Online]. Available: http://arxiv.org/abs/1605.02115

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-

tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[41] R. S. Sutton and A. G. Barto, “Reinforcement learning,” Learning, vol. 3, no. 9,

p. 322, 2012.

[42] M. Gast and M. Hauptmann, “Efficient Parallel Computation of Nearest

Neighbor Interchange Distances,” Computing Research Repository (CoRR)

preprint arXiv:1205.3402 [cs.DS], pp. 1–17, 2012. [Online]. Available:

http://arxiv.org/abs/1205.3402

[43] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical rep-

resentations,” Advances in Neural Information Processing Systems, vol. 2017-

December, pp. 6339–6348, 2017.

91

[44] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and

performance: A survey,” Knowledge-Based Systems, vol. 151, p. 7894, Jul 2018.

[Online]. Available: http://dx.doi.org/10.1016/j.knosys.2018.03.022

[45] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” 2013.

[46] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for

word representation,” in Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association

for Computational Linguistics, Oct. 2014, pp. 1532–1543. [Online]. Available:

https://aclanthology.org/D14-1162

[47] E. Ravasz and A. L. Barabási, “Hierarchical organization in complex networks,”

Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisci-

plinary Topics, vol. 67, no. 2, p. 7, 2003.

[48] T. N. Kipf and M. Welling, “Semi-supervised classification with graph

convolutional networks,” in 5th International Conference on Learn-

ing Representations, ICLR Toulon, France, April 24-26, 2017, Con-

ference Track Proceedings. OpenReview.net, 2017. [Online]. Available:

https://openreview.net/forum?id=SJU4ayYgl

[49] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning

on large graphs,” in Advances in Neural Information Processing Systems 30,

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 1024–1034. [Online].

Available: http://papers.nips.cc/paper/6703-inductive-representation-learning-

on-large-graphs.pdf

[50] S. Mahadevan, “Representation policy iteration,” CoRR, vol. abs/1207.1408,

2012. [Online]. Available: http://arxiv.org/abs/1207.1408

92

[51] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Bogu, “Hyperbolic

Geometry of Complex Networks,” Physical Review E, vol. 82, no. 036106, Oct

2010.

[52] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning

on large graphs,” in Advances in Neural Information Processing Systems 30,

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 1024–1034. [Online].

Available: http://papers.nips.cc/paper/6703-inductive-representation-learning-

on-large-graphs.pdf

[53] R. Sarkar, “Low distortion Delaunay embedding of trees in hyperbolic plane,”

Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-

tificial Intelligence and Lecture Notes in Bioinformatics), vol. 7034 LNCS, pp.

355–366, 2012.

[54] F. Sala, C. De Sa, A. Gu, and C. Ré, “Representation tradeoffs for hyperbolic

embeddings,” 35th International Conference on Machine Learning, ICML 2018,

vol. 10, no. 1, pp. 7071–7096, 2018.

[55] I. Chami, Z. Ying, C. Ré, and J. Leskovec, “Hyperbolic graph convolutional

neural networks,” in Advances in Neural Information Processing Systems 32,

H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and

R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 4868–4879. [Online].

Available: http://papers.nips.cc/paper/8733-hyperbolic-graph-convolutional-

neural-networks.pdf

[56] C. D. Sa, A. Gu, C. Ré, and F. Sala, “Representation tradeoffs for

hyperbolic embeddings,” CoRR, vol. abs/1804.03329, 2018. [Online]. Available:

http://arxiv.org/abs/1804.03329

93

[57] R. Sarkar, “Low distortion delaunay embedding of trees in hyperbolic plane,” in

Graph Drawing, M. van Kreveld and B. Speckmann, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 355–366.

[58] A. F. Beardon and D. Minda, “The hyperbolic metric and geometric function

theory,” Quasiconformal mappings and their applications, no. November 2004,

pp. 9–56, 2007.

[59] D. Silver, “Lecture 4 : Model-Free Prediction,” UCL,Computer Science Depart-

ment, Reinforcement Learning Lectures, 2015.

[60] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

94

