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ABSTRACT

ON DIFFERENT COMPUTATIONAL ASPECTS FOR BOX-COX

TRANSFORMATION CURE RATE MODEL

Pei Wang, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Dr. Suvra Pal

Cure rate modeling is an emerging area of research not only in biomedical science

but also in other disciplines such as sociology, criminal justice, economics and engineering

reliability. In the first part of this thesis, use of the wider class of generalized gamma dis-

tributions is proposed as the distribution of the lifetime for a particular transformation cure

rate model, known as the Box-Cox transformation cure rate model. The maximum likeli-

hood estimation of the Box-Cox transformation cure model parameters is studied through

the calculated bias, mean square error and coverage probabilities of the asymptotic con-

fidence intervals. The flexibilities of both generalized gamma distribution and Box-Cox

model are utilized to carry out power studies to demonstrate the power of the likelihood

ratio test in rejecting mis-specified models. Furthermore, the bias and efficiency of the

estimators of the cure rates are studied when a wrong lifetime distribution is specified for

a given cure rate model as well as when a wrong cure rate model is specified for a given

lifetime distribution. The studies strongly suggest the importance of selecting a correct

lifetime distribution and a correct cure rate model, which can be achieved through the pro-
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posed Box-Cox model with generalized gamma lifetime distribution. An illustration of this

two-way flexibility is provided using data on breast cancer study.

In the second part of this thesis, the mixture cure rate model is considered as a special

case of the Box-Cox transformation cure rate model. Instead of modeling the incidence part

by using the traditional logistic or sigmoid link function, a new modeling approach based on

the support vector machine (SVM) is proposed under the assumption of interval censored

data. The proposed approach inherits the features of the SVM and provides flexibility to

capture non-linearity in the data. A new estimation procedure based on the expectation

maximization algorithm, that makes use of the sequential minimal optimization technique

and Platt’s scaling method, is developed to estimate the model parameters. The results of

an extensive simulation study show that the proposed approach performs better in capturing

complex classification boundaries when compared to the existing logistic regression-based

approach. It is also verified that the ability to capture complex classification boundaries

improve the estimation results corresponding to the latency parameters. For illustration,

the proposed approach is applied to an interval censored smoking cessation data.
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CHAPTER 1

INTRODUCTION

1.1 Cure rate model

Models for time-to-event data (also called lifetime or survival data) that incorporates

the possibility of cure are called cure rate models or long-term survival models. In these

models, the population under consideration is modeled as a mixture of two types of pa-

tient groups. The group that responds well to the treatment and is no more susceptible to

the event is called the “immuned” or the “cured” group. The other group for which the

treatment is not effective and the event is either observed before the end of study or takes

place after the study is called the “susceptible” or the “non-cured” group. Note that from a

given time-to-event data, the cured status of subjects under study cannot be observed due to

censoring, that is, the cured status is a latent variable. To observe the proportion of subjects

who are cured of the event, also called the “cure rate”, all subjects under study should be

followed for a sufficiently long period of time, see Sy and Taylor [1]. If a time-to-event

data actually has a cure component, the plot of survival function does not tend to zero but

levels off to some non-zero proportion, which indicates the presence of cure.

“Cured” subjects arise not only in cancer clinical trials but also in other disciplines.

Examples are employees who never lose their jobs and married couples who never break in

sociology studies, offenders who never commit crimes again in criminal justice, companies

and subjects who are never in default on loans in economics, and parts in a complex system

that never fail in engineering and so on. They all can be viewed as cured subjects and

cure models should be considered when analyzing time-to-event data produced in these

situations [2].
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In such cases, traditional methods of survival analyses, including the well-known

Cox’s regression model, are not applicable since such methods assume that all subjects

are susceptible to the event, thereby not accommodating the possibility of cure. Existing

cure rate models are modified to include the probability of being cured, and based on how

the cure proportion is introduced, the cure models can be roughly divided into two types:

mixture cure models and non-mixture cure models. Cure rate modeling is a hot area of

modern biostatistical research, and such an idea started back in 1940’s when Boag [3] first

proposed the mixture cure rate model. The formulation of the cured fraction has changed

and improved over the years, many authors developed and improved the original mixture

model further. Farewell [4] used a mixture model as a combination of logistic model and

Weibull distribution to model the toxicant and stress level for laboratory animals. Kuk and

Chen [5] proposed a semiparametric mixture cure model consisting of a logistic model for

the probability of cure, and a proportional hazard model for the time to event of interest

for uncured subjects. Goldman [6], Taylor [7], Peng and Dear [8], among others, have also

investigated parametric, semiparametric, and nonparametric mixture cure rate models [2].

The non-mixture cure rate model is another type of cure models for modeling time-

to-event data with a cure fraction. Non-mixture cure models were first introduced by

Yakovlev [9], Ibrahim [10] and Chen [11]. These models were motivated by an underlying

biological mechanism for cancer cells, which assumes that the number of cancer cells after

cancer treatment follows a Poisson distribution. Most of the current investigations on the

non-mixure cure models are in the Bayesian context due to its special form [2].

1.2 Literature review

The most widely used cure model is the mixture cure rate model introduced by Boag

[3]. The population survival function can be represented by (Berkson and Gage [12])

2



Sp(y) = p0 + (1 − p0)Su(y), where p0 is the cure proportion and Su(·) is the survival

function of the susceptible group. Usually, p0 is linked to a set of covariates x using a

logistic function p0 = 1
1+ex

′β , where β is the vector of regression coefficients. Note that

covariates can also be introduced through Su(·). Since the introduction of this mixture cure

rate model, many researchers have studied this model by making different assumptions

on Su(·), by proposing different ways to include covariates, and by proposing different ap-

proaches for parameter estimation. For example, Farewell [4] proposed a logistic regression

model for the cure rate p0 and a Weibull distribution to model the lifetime of the susceptible

subjects. Kuk and Chen [5] proposed a proportional hazards model for the lifetime of the

susceptible subjects and employed a marginal likelihood approach for parameter estima-

tion. Maller and Zhou [13] proposed a non-parametric approach based on Kaplan-Meier

estimator to estimate the proportion of immunes. A semi-parametric approach based on the

expectation maximization (EM) algorithm was proposed by Sy and Taylor [1]. Zhao et al.

[14] developed a Bayesian approach for estimating the Cox proportional hazard cure rate

model parameters. Pal and Balakrishnan [15] developed the likelihood inference based on

the EM algorithm for a cure rate model that looks at the elimination of risk factors after an

initial passage of time. For a book-length account on cure rate models, one may refer to

the monograph by Maller and Zhou [16].

Under a competing risks scenario, let M be a latent random variable denoting the

number of competing risks that can result in the event. Furthermore, letWi, i = 1, 2, · · · ,M ,

denote the progression time due to the i-th competing risk. Then, assuming M to follow

a Poisson distribution with mean η, Chen et al. [11] showed that the population survival

function under such a competing risks scenario is given by Sp(y) = e−ηF (y), where F (·)

is the common distribution function of the progression times Wi, i = 1, 2, · · · ,M . This

is known as the promotion time cure rate model or the Poisson cure rate model. In this

case, the cure rate is given by p0 = limy→∞ Sp(y) = e−η. Covariates can be linked to p0

3



through the parameter η using the log-linear function η = ex
′β. Furthermore, note that the

survival function of the susceptible subjects is given by Su(y) = Sp(y)−p0
1−p0 . Equivalently,

we can write Su(y) = e−ηF (y)−e−η
1−e−η . Under a competing risks scenario, Rodrigues et al. [17]

proposed the Conway-Maxwell Poisson (COM-Poisson) distribution to capture the unob-

served number of competing risks. Balakrishnan and Pal [18] developed the EM algorithm

for the COM-Poisson cure rate model under the assumption of Weibull lifetime for each

competing risk. Balakrishnan et al. [19] proposed a piecewise linear approximation to

model the hazard functions of competing risks in the context of mixture and promotion

time cure rate models. Very recently, Pal and Roy [20, 21 developed a non-linear conjugate

gradient type estimation algorithm for some cure rate models that look at the elimination

process of competing risks.

The mixture and the promotion time cure rate models are the two most commonly

used and widely explored cure rate models, where one may be looked as a competitor of

the other. Yin and Ibrahim [22] first proposed a wider class of cure rate models that contain

both mixture and promotion time cure rate models as special cases. The proposed wider

class was indexed by a link parameter and was built using a Box-Cox transformation [23]

on the population survival function. Peng and Xu [24] provided a biological interpretation

for the Box-Cox cure rate model and proposed an estimation method under a proportional

hazards framework. Diao and Yin [25] incorporated a frailty term in the Box-Cox cure

rate model and proposed a non-parametric estimation technique using multivariate time-to-

event data. Koutras and Milienos [26] proposed a flexible family of transformation cure

rate models that was mainly motivated by the biological mechanism of the well studied

promotion time cure rate model of Chen et al. [11] and by assuming that a metastasis-

competent tumor cell would produce a detectable tumor only when a certain number of

biological factors affect the cell. Zeng et al. [27] proposed a class of transformation survival

4



model with a cure fraction that was motivated by biological considerations and includes the

proportional hazards and the proportional odds cure rate models as particular cases. The

authors proposed an efficient recursive algorithm for the maximum likelihood estimation

of the model parameters.

Yu et al. [28] explored the use of generalized gamma distribution for cure rate es-

timation from mixture cure rate model for grouped survival data. The authors found the

cure rate estimates from the model with generalized gamma distribution to be quite ro-

bust. Balakrishnan and Peng [29] explored generalized gamma distribution in the context

of frailty survival model. In particular, the authors used the generalized gamma distribution

as the distribution of the frailty instead of the commonly used gamma distribution to model

the frailty. Balakrishnan and Pal [30] considered the wider class of generalized gamma

distribution to model the competing risk lifetime in the context of COM-Poisson cure rate

model. Pal et al. [31] used the generalized gamma distribution for right censored survival

data and developed model discrimination methods.

In the mixture cure rate model, the incidence part, say π(z), can also be referred

as uncured rate, is traditionally and extensively modeled by sigmoid or logistic function

π(z) = exp(z∗Tβ)
1+exp(z∗Tβ)

, where β = (β0, β1, . . . , βq)
T and z∗ = (1, zT)T [4, 5, 8]. As ob-

served in the case of logistic regression, the logistic model works well when subjects are

linearly separable into the cure or susceptible groups with respect to covariates. However,

problem arises when subjects cannot be separated using a linear boundary. Other options

to model the incidence include assuming a probit link function (Φ−1(π(z)) = z∗Tβ) or a

complementary log-log link function (log[− log(1 − π(z))] = z∗Tβ), where Φ is the cu-

mulative distribution function of the standard normal distribution [32–34]. However, these

link functions do not offer non-linear separability and are not sufficient to capture more

complex effects of x on the incidence. Cure rate is also estimated with few non-parametric

strategies, e.g., generalized Kaplan-Meier estimate at maximum uncensored failure time

5



[24] and modified Beran-type estimator [35]. Again, these strategies fail to capture more

complex effects of x on the incidence, especially, when multiple covariates are involved.

Therefore, there exists necessity to identify a group of classifiers which would be able to

model the incidence part more effectively by allowing non-linear separating boundaries

between the cured and non-cured subjects.

To this end, support vector machine (SVM) could be a reasonable choice. SVM [36]

is a supervised learning model with asscociated learning algorithms that analyze data for

classificaiton and regression in machine learning, it can easily handle multiple continuous

and categorical variables. SVM constructs a hyperplane in an iterative manner to minimize

an error in multidimensional space to separate different classes, see Figure 5.1. Recently,

Li et al. [37] studied the effect of the covariates on the incidence π(z) by implementing the

SVM. The new mixture model is seen to outperform existing cure rate models especially

in the estimation of the incidence, and performs well for non-linearly separable classes

and high dimensional covariates. However, Li et al. [37] have conducted the entire study

considering data generated from non-informative right censoring mechanism.

1.3 Real data application

1.3.1 Breast cancer data

Breast cancer data can be downloaded from the R package “flexsurv”. The data rep-

resents the time-to-death (time-to-event) or the censoring time of 686 patients who had

primary node positive breast cancer. In our application, we use the categorical variable

prognostic group as the only covariate. This variable can take values 0, 1 and 2 depend-

ing on whether the prognostic group status is “poor”, “medium” and “good”, respectively.

The observed time-to-event has the mean and the standard deviation as 3.08 years and
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1.76 years, respectively. The total percentage of censored observations is 56%. Interested

readers may look at [38] for more details about the data.

1.3.2 Smoking cessation data

Smoking cessation data set [39, 40] contains 223 subjects’ observations who had

enrolled for the study during November 1986 to February 1989 [41, 42]. Only those sub-

jects who had tried to quit smoking at least once and who had identifiable Minnesota zip

codes during the study period are considered in the analysis set. These subjects were all

smokers at the time of enrollment, and were randomly assigned to two groups, namely, the

smoking intervention (SI, treatment group) and the usual care (UC, control group). The

subjects were monitored once every year for a period of 5 consecutive years. Information

on whether they had relapsed or not (1:Yes and 0:No) are present in the data set. Relapse

implies resumption of smoking and the event of interest for our illustration is the time to

relapse. Obviously, the exact relapse time was unobserved since the relapse could have

happened anytime in between two consecutive annual visits. Hence, the study falls under

the scope of interval censored data analysis. Information on several additional variables are

also available, e.g., gender (GEN, 1:Female and 0:Male), duration of smoking (DUR, time

in years elapsed between commencement of smoking and entry to the study) and average

number of cigarettes smoked per day (AVGCIG) before the study period. These variables

are treated as covariates since these factors supposedly can influence the relapse.
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1.4 Scope of the thesis

In this thesis, we study Box-Cox cure rate model introduced by Yin and Ibrahim [22]

with lifetime following generalized gamma distribution in chapter 2. We present the model

fitting, model discrimination and sensitivity studies results of GGBCT cure rate model.

Moreover, we compare the performance of the proposed GGBCT cure rate model with

the piecewise exponential Box-Cox transformation cure rate model that was originally pro-

posed by Yin and Ibrahim [22]. Finally, we illustrate the flexibility of the proposed GGBCT

model using a real data on breast cancer study and again compare our proposed approach

with thepiecewise exponential approach of Yin and Ibrahim [22] for the considered data.

We discuss about the mixture cure rate model framework for interval-censored data

and develop an estimation procedure based on the expectation maximization (EM) algo-

rithm that employs the SVM to model the incidence part in chapter 3. Detailed simulation

study is carried out to demonstrate the performance of our proposed model in terms of

flexibility, accuracy and robustness. We also compare this model with the existing logistic

regression based mixturecure rate models, the model performance is further examined and

illustrated through an interval censored data on smoking cessation.
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CHAPTER 2

A generalized gamma Box-Cox transformation cure rate model

2.1 Introduction

According to Boag [3], the population survival function can be represented by

Sp(y) = p0 + (1− p0)Su(y), (2.1)

where p0 is the cure proportion and Su(·) is the survival function of the susceptible group.

Usually, p0 is linked to a set of covariates x using a logistic function

p0 =
1

1 + ex′β
, (2.2)

where β is the vector of regression coefficients. It is clear from eqn.(2.1) that Sp(y) is an

improper survival function, meaning that limy→∞ Sp(y) = p0. If J denotes the latent cured

status variable and Y denotes the time-to-event variable, then, Su(y) = P [Y > y|J = 1],

where J takes the value one if the subject is susceptible and it takes the value zero if the

subject is cured. It is also easy to see that p0 = P [J = 0]. Since the introduction of this

mixture cure rate model, many researchers have studied this model by making different

assumptions on Su(·), by proposing different ways to include covariates, and by proposing

different approaches for parameter estimation.

As discussed before, let M be a latent random variable denoting the number of com-

peting risks that can result in an event of interest. Furthermore, let Wi, i = 1, 2, · · · ,M ,

denote the lifetime due to the i-th competing risk. If we assume M to follow a Poisson

distribution with mean η, it can be shown that the population survival function

Sp(y) = e−ηF (y), (2.3)
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whereF (·) is the common distribution function of the progression timesWi, i = 1, 2, · · · ,M .

In this case, the cure rate is given by

p0 = lim
y→∞

Sp(y) = e−η. (2.4)

Covariates can be introduced through the parameter η using the log-linear function η =

ex
′β. Furthermore, note the survival function of the susceptible subjects can be expressed

as

Su(y) =
e−ηF (y) − e−η

1− e−η . (2.5)

In this chapter, we consider the unified cure rate model proposed by Yin and Ibrahim

[22] that contains both mixture cure rate model in eqn.(2.1) and promotion time cure rate

model in eqn.(2.3) as special cases. Assuming a completely parametric framework, the

main contribution is in proposing a flexible distribution for the lifetime and demonstrating

its importance through model discrimination and sensitivity studies. Model fitting results

for such a flexible cure rate model is also of primary interest. Furthermore, we compare

our parametric approach with the piecewise exponential approach considered by Yin and

Ibrahim[22].

The rest of this chapter is organized as follows. In Section 2.2, we introduce the

generalized gamma Box-Cox transformation (GGBCT) cure rate model that unifies the

mixture cure rate model of Boag [3] and promotion time cure rate model of Chen et al.

[11] and also provides flexibility in modeling F (·). We also discuss different ways of

carrying out model discrimination study for the proposed GGBCT cure rate model. In

Section 2.3, we present the model fitting results of the GGBCT cure rate model through

the calculated bias, root mean square error (RMSE) and the coverage probabilities of the

asymptotic confidence intervals. We also present the model discrimination results, where

we demonstrate the power of the likelihood ratio test to reject a mis-specified lifetime

distribution for a given Box-Cox model as well as the power of the likelihood ratio test to
10



reject a mis-specified Box-Cox model for a given lifetime distribution. Furthermore, we

demonstrate the sensitivity of the estimators of cure rates under model mis-specification.

In particular, we study the sensitivity with respect to the two quantities of interest, total

relative bias and total relative efficiency, of the estimators of the cure rates. Moreover,

through simulated data, we compare the performance of the proposed GGBCT cure rate

model with the piecewise exponential Box-Cox transformation cure rate model that was

originally proposed by Yin and Ibrahim [22]. In Section 2.4, we illustrate the flexibility of

the proposed GGBCT model using a real data on breast cancer study and again compare

our proposed approach with the piecewise exponential approach of Yin and Ibrahim [22]

for the considered data. We show that our proposed approach results in a better model fit.

2.2 Generalized gamma Box-Cox transformation (GGBCT) cure rate model

The mixture and the promotion time cure rate models are the two most commonly

used cure rate models, where one may be looked as a competitor of the other. Yin and

Ibrahim [22] first proposed a wider class of cure rate models that contain both mixture and

promotion time cure rate models as special cases. The proposed wider class was indexed by

a link parameter and was built using a Box-Cox transformation [23] on the population sur-

vival function. The Box-Cox transformation on a variable Z, indexed by a transformation

parameter φ, is defined as

Z(φ) =


Zφ−1
φ
, if φ 6= 0,

log(Z), if φ = 0.

(2.6)

Now, if we apply the Box-Cox transformation on the population survival function that

depends on a set of covariates x, the Box-Cox transformation cure rate model is defined as

S(φ)
p (y|x) = −ψ(φ,x)F (y), 0 ≤ φ ≤ 1, (2.7)
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where

ψ(φ,x) =


exp(x′β)

1+φ exp(x′β)
, if 0 < φ ≤ 1,

exp(x′β), if φ = 0

(2.8)

and F (·) is a proper distribution function. On applying eqn.(2.6) in the left hand side of

eqn.(2.7), the population survival function can be expressed as

Sp(y|x) =


{1− φψ(φ,x)F (y)} 1

φ , if 0 < φ ≤ 1,

exp{−ψ(0,x)F (y)}, if φ = 0.

(2.9)

From eqns.(2.8) and (2.9), it is easy to verify that if φ = 1,

Sp(y|x) = 1− exp(x′β)

1 + exp(x′β)
F (y)

= p0 + (1− p0)S(y), (2.10)

which reduces to the mixture cure rate model in eqn.(2.1) with p0 = 1
1+exp(x′β)

and S(y) =

1− F (y). Similarly, if φ = 0 in eqn.(2.9), we have

Sp(y|x) = exp{−ηF (y)}, (2.11)

which reduces to the promotion time cure rate model in eqn.(2.3) with η = ψ(0,x) =

exp(x′β). Thus, the Box-Cox transformation cure rate model is an attractive and elegant

way to unify the mixture and promotion time cure rate models. Furthermore, eqn.(2.8)

introduces a general link function that allows us to study the effect of covariates on the

cure rate. It is important to note that our main interest for φ is in the interval [0, 1] as it

results in an intermediate modeling structure between the promotion time or Poisson cure

rate model (φ = 0) and the mixture cure rate model (φ = 1). Mathematically, φ can take

any value in the real line.
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From eqn.(2.9), the expression of the cure rate can be easily obtained as

p0(x) = lim
y→∞

Sp(y|x) =


[1− φψ(φ,x)]

1
φ , if 0 < φ ≤ 1,

exp{−ψ(0,x)}, if φ = 0.

(2.12)

=


[

1
1+φ exp(x′β)

] 1
φ

, if 0 < φ ≤ 1,

exp{− exp(x′β)}, if φ = 0.

From eqn.(2.9), the population density function, denoted by fp(·), can also be obtained as

fp(y|x) = −S ′p(y|x) =


Sp(y|x)ψ(φ,x)f(y){1− φψ(φ,x)F (y)}−1, if 0 < φ ≤ 1,

Sp(y|x)ψ(0,x)f(y), if φ = 0,

(2.13)

where f(·) is the density function corresponding to F (·). We now turn our attention to

flexible modeling of f(·) or, equivalently, F (·) = 1 − S(·) in eqns. (2.9) and (2.13). For

this purpose, we consider a fully parametric setup and assume f(·) in eqn.(2.13) to follow

a wider class of generalized gamma distribution with the density and survival functions

respectively given by

f(y) =


q (q−2)

q−2

(λy)q
−2(q/σ) e−q

−2(λy)q/σ

Γ (q−2)σy
, if q > 0

e−(ln (λy))2/(2σ2)
√

2πσy
, if q = 0

(2.14)

and

S(y) =


Γ
(
q−2, q−2(λy)q/σ

)
Γ (q−2)

, if q > 0

1− Φ
(

ln (λy)
σ

)
, if q = 0.

(2.15)

Therefore, we have

F (y) = 1− S(y) =


1− Γ

(
q−2, q−2(λy)q/σ

)
Γ (q−2)

, if q > 0

Φ
(

ln (λy)
σ

)
, if q = 0,

(2.16)
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where q > 0 and σ > 0 are the shape parameters, whereas λ > 0 is the scale parameter.

Also, Γ(·) represents the complete gamma function and Φ(·) represents the distribution

function of a standard normal distribution. Some of the commonly used lifetime distri-

butions are included as special cases of the generalized gamma distribution. As an illus-

tration, the generalized gamma distribution in eqn.(2.14) reduces to a Weibull distribution

when q = 1, it reduces to a lognormal distribution when q → 0, and, finally, it reduces to

a gamma distribution when q = σ. Thus, the introduction of the generalized gamma dis-

tribution brings in adequate flexibility in cure rate modeling which may be easily missed if

we just use its special cases.

Once we substitute F (·) in eqn.(2.9) with the distribution function of the generalized

gamma distribution as presented in eqn.(2.16), we introduce a two-way flexible cure rate

model that has not been studied before. The first flexibility is with respect to the Box-Cox

cure rate model which contains the two most commonly used cure rate models in the lit-

erature, whereas the other flexibility is with respect to the generalized gamma distribution,

as a distribution to model the lifetime, that contains the commonly used lifetime distribu-

tions. Such a two-way flexible model will allow us to determine a suitable cure rate model

(within the Box-Cox family) and a suitable lifetime distribution (within the generalized

gamma family) that will jointly provide the best fit to a given time-to-event data. We call

this two-way flexible cure rate model as the generalized gamma Box-Cox transformation

(GGBCT) cure rate model.

2.2.1 Likelihood function and estimation

Considering the form of the data to be right censored, let Y denote the true time-to-

event variable and T denote the observed time-to-event. If C denotes the right censoring

time, then, T = min{Y,C}. Furthermore, if δ denotes the right censoring indicator, then,

δ = I(Y ≤ C) with I(A) = 1, if the event A is true, and is 0, otherwise. Now, assuming
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the censoring mechanism to be non-informative, the observed data log-likelihood function

can be expressed as

l(θ) =
∑
i:δi=1

log fp(ti|xi) +
∑
i:δi=0

logSp(ti|xi), (2.17)

where Sp(·) and fp(·) are as in eqns. (2.9) and (2.13), respectively, and θ = (β′, φ, q, σ, λ)′

denotes the vector of unknown parameters. The maximum likelihood estimates (MLEs) of

the model parameters can be obtained by directly maximizing l(θ) with respect to θ. For

this purpose, we use the function “nlm()” readily available in R software. Note that under

a similar parametric setup with a Weibull distribution for the lifetime, Pal and Balakrish-

nan [43] developed the EM algorithm for parameter estimation, where the maximization

step of the EM algorithm was carried out using a one-step Newton Raphson method. The

authors noted that the simultaneous maximization of the model parameters was not pos-

sible. To circumvent this issue, the Box-Cox transformation parameter φ was kept fixed

and estimated using a profiling technique in conjunction with the EM algorithm. Although

this technique performed satisfactorily, there were issues with the estimation results such

as under-coverage of the model parameters. In this work, even though we are dealing with

a more complicated lifetime distribution, we show that the “nlm()” [44] performs very well

in simultaneously maximizing all model parameters and in retrieving the true parameter

values very accurately.

Once we obtain the MLEs of the model parameters, we can calculate the asymptotic

variances and covariances of the MLEs by inverting the observed information matrix and

evaluating it at the MLEs. Then, we can construct the asymptotic confidence intervals of

the parameters by using the asymptotic normality of the MLEs and the estimate of the

asymptotic variance-covariance matrix of the MLEs. To judge the accuracy of this asymp-

totic method, we can study the coverage probabilities of these confidence intervals through

a Monte Carlo simulation study.
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The “nlm()” function requires us to provide initial values of the model parameters

to start the iterative algorithm. The procedure for finding the initial values may differ

depending on whether we are analyzing a simulated data or whether we are analyzing a

real data. Since in a simulation data the true parameter values are known, for a given

model parameter, say θ, we can first create an interval by taking 20% deviation off its true

value on either side, i.e., (0.8θ, 1.2θ). Then, we can randomly select a value from this

interval which may be used as the parameter’s initial value. This simple procedure will

not work for the real data analysis since we do not know what the true parameter values

are. Furthermore, the procedure for finding the initial values for a real data may depend

on the type of covariates as well as the number of covariates. We provide a technique

for finding initial values for the breast cancer data with a categorical covariate (prognostic

group status having three levels) that we analyze later in Section 2.4. For this purpose,

we first plot the non-parametric Kaplan-Meier survival curves stratified by the prognostic

group status variable. Then, from the leveling off tendency of each survival curve, we can

guess the crude estimates of the cure rates of subjects belonging to different group status.

Since we have one covariate, we introduce two regression parameters β0 and β1. Now, to

find an initial guess of the parameters β0, β1 and φ, we can use these three crude estimates

of cure rates and equate them to their corresponding theoretical expressions. This gives us

three equations involving three unknown parameters (β0, β1 and φ) solving which we can

obtain the initial values of β0, β1 and φ. Next, to find the initial values of the generalized

gamma lifetime parameters, q, σ and λ, we can first select a set of fixed values of the

generalized gamma shape parameter q, e.g., q = {0, 0.1, 0.2, · · · , 2}. Then, for each fixed

value of q, we can equate the mean and the variance of the observed time-to-event data to

the theoretical mean and variance of the generalized gamma distribution. Thus, for each

fixed value of q, we can solve these equations to find the values of the other two generalized

gamma parameters, i.e., σ and λ. This gives us a set of values of q, σ and λ. Finally, we
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select the set (q, σ, λ, β0, β1, φ) as the set of initial values for which the observed data log-

likelihood function is the maximum.

2.2.2 Model discrimination

Since we are dealing with a two-way flexible model, we propose different ways to

carry out model discrimination studies. In the first case, we utilize the flexibility of the

Box-Cox transformation cure rate model for a given (or fixed) lifetime distribution. For this

purpose, we vary the transformation parameter φ and generate data from different Box-Cox

models. In particular, we use different values of φ as φ = {0, 0.25, 0.50, 0.75, 1} that cov-

ers a wide range of Box-Cox models in the interval φ ∈ [0, 1]. For each generated data (true

model), we fit different models (fitted model) and evaluate the performance of the likeli-

hood ratio test in rejecting each fitted model. Based on a Monte Carlo simulation study,

we can report the observed levels as well as the observed rejection rates of the likelihood

ratio test, where all tests can be carried out at, say, 5% level of significance. The likelihood

ratio test statistic is defined as Λ = −2(l0 − l), where l0 is the maximized log-likelihood

value under the constrained model (i.e., under the null hypothesis) and l is the maximized

log-likelihood value under the unconstrained model (i.e., under the full model). The asymp-

totic null distribution of the likelihood ratio test statistic Λ is a chi-square with one degree

of freedom, under the standard likelihood theory. However, when testing is done in the

boundary of a parameter space, such as testing for H0 : φ = 0 and H0 : φ = 1, the asymp-

totic null distribution of Λ is a mixture of chi-square distributions (Self and Liang, 1987),

i.e., the asymptotic null distribution of Λ is such that P [Λ ≤ x] = 0.5 + 0.5P [χ2
1 ≤ x].

In the second case, we utilize the flexibility of the generalized gamma lifetime for a

given Box-Cox model. For this purpose, we vary the generalized gamma shape parameter

q and generate data from different lifetime distributions within the generalized gamma

family. In particular, we can consider different values of q as q = {0, 0.5, σ, 1}. For
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each generated data (true model), we fit different lifetimes (fitted model) belonging to the

wider class of generalized gamma lifetime and once again evaluate the performance of the

likelihood ratio test in rejecting each fitted model. Based on a Monte Carlo simulation

study, we can report the observed levels and the observed rejection rates of the likelihood

ratio test, where all tests can be carried out at, say, 5% level of significance.

Note that the aforementioned ways of carrying out model discrimination require us to

fit the full model under consideration and involves actual tests of hypotheses. An alternate

simpler way is to compare the candidate models using some well-known information-based

criteria such as the Akaike information criterion (AIC), the corrected Akaike information

criterion (AICc) and the Bayesian information criterion (BIC). The definitions of the AIC,

AICc and BIC are as follows:

AIC = −2l + 2k, AICc = AIC +
2k2 + 2k

n− k − 1
and BIC = −2l + k log(n).

In the above formulae, k denotes the number of parameters in the fitted model and n denotes

the sample size. For a given information-based criterion, a smaller value would imply

a better model fit. It must be noted here that using these information-based criteria do

not give users any warning of how good or how bad the model fit is. For example, it may

happen that all candidate models give poor fit to the data, however, these information-based

criteria would still select a model as the best fitted model.

2.3 Simulation study

2.3.1 Model fitting with one binary covariate

In this section, we first describe the mechanism to generate data from the GGBCT

model when there is one binary covariate present. We consider a scenario where subjects

are randomly assigned to either the treatment group or the placebo group. In this way, we

bring in the covariate x, where we assign x = 1 for subjects belonging to the treatment
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group and x = 0 for those belonging to the control group. The cure proportions for the

treatment and control groups are respectively denoted by p0t and p0c. If we fix the true

values of p0t, p0c and φ, the two regression parameters, β0 and β1, can be obtained using

the following expressions:

β0 =


log

[
1
φ

{
1

pφ0c
− 1

}]
, if 0 < φ ≤ 1

log{− log(p0c)}, if φ = 0

and

β1 =


log

[
1
φ

{
1

pφ0t
− 1

}]
− β0, if 0 < φ ≤ 1

log{− log(p0t)} − β0, if φ = 0.

Now, to generate the observed time-to-event data T for a subject with cure rate p0 (which

can be either p0t or p0c) and covariate x (which can be either 1 or 0) from the GGBCT

model, we first generateU1 ∼ Uniform(0, 1) and censoring timeC ∼ Exponential(rate =

α). If U1 ≤ p0, we set the observed time as the censoring time, i.e., T = C. On
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the other hand, if U1 > p0, it implies that the subject is susceptible, and we generate

U2 ∼ Uniform(0, 1) and perform the following:

{1−φψ(φ,x)F (t)}
1
φ−p0

1−p0 = U2, if 0 < φ ≤ 1

exp{−ψ(0,x)F (t)}−p0
1−p0 = U2, if φ = 0

⇒


F (t) = 1−{p0+(1−p0)U2}φ

φψ(φ,x)
, if 0 < φ ≤ 1

F (t) = − log{p0+(1−p0)U2}
ψ(0,x)

, if φ = 0

⇒



t = F−1

[
1−{p0+(1−p0)U2}φ

φψ(φ,x)

]
, if 0 < φ ≤ 1

t = F−1

[
− log{p0+(1−p0)U2}

ψ(0,x)

]
, if φ = 0,

where F (·) is the distribution function of the generalized gamma distribution defined in

eqn.(2.16). Finally, the observed time is given by T = min{t, C}. In any case, if T = C,

we set the censoring indicator δ = 0. Else, we set δ = 1. Let n denote the sample size

which is split into two parts, n1 and n2, with n1 denoting the sample size for the treatment

group and n2 denoting the sample size for the control group. We consider different values

of the sample size n(n1, n2) as n = 200(130, 70) and n = 400(230, 170). We also consider

the true values of the cure rates for the treatment and control groups as p0t = 0.65 and p0c =

0.35, respectively, and the censoring rates for the treatment and control groups as αt = 0.25

and αc = 0.15, respectively. To decide on the true values of the lifetime parameters, we

first equate the theoretical mean and the theoretical variance of the underlying lifetime

distribution to some fixed values. For example, if the lifetime distribution is generalized

gamma with parameters q, σ and λ, we equate the theoretical mean (q2)σ/q

λΓ(1/q2)
Γ(σ

q
+ 1

q2
) and
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the theoretical variance q4σ/q

λ2
1

Γ(1/q2)

[
Γ(2σ

q
+ 1

q2
)− Γ2(σ

q
+ 1
q2

)

Γ(1/q2)

]
to 0.25 and 0.05, respectively,

after fixing a true value for q. Thus, upon solving these two equations we can find the true

values of σ and λ. Note that the parameter q being the shape parameter, for different fixed

values of q we get different values of σ and λ for the same chosen fixed values of the mean

and the variance. Figure 2.1 represents a schematic view of the data generation. All

0 p0 1

cured non-cured

censored T = C ∼ Exponential (α) δ = 0

Su(t|x) = U2 ∼ Uniform (0, 1)⇒ t = F−1(·)

T = min {t, C} = t observed δ = 1

T = min {t, C} = C ∼ Exponential (α) censored δ = 0

Figure 2.1: Data generation: schematic diagram.

simulations are done using the R statistical software and the results are averaged over 1000

Monte Carlo runs.

In Tables 2.1 and 2.2, we present the model fitting results, i.e., the bias, root mean

square error (RMSE), standard error (SE) and coverage probabilities (CP), for the two

special cases of the Box-Cox transformation cure rate model. In each of these cases, we

consider the distribution of the lifetime to be generalized gamma as well as its special

cases. From the tables, it is clear that the “nlm()” performs very well in estimating the

true parameters values accurately. The bias in the estimators are reasonably small and both

SE and RMSE decrease when the sample size is large. The coverage probabilities are also

close to the nominal levels used. Note that when the lifetime distribution is generalized

gamma, the SE and RMSE corresponding to the parameter λ are large when compared to

the other model parameters. However, they both decrease significantly when the sample

size is large.
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In Tables 2.3 and 2.4, we present the model fitting results for the Box-Cox (φ = 0.25)

and Box-Cox (φ = 0.75) cure rate models, respectively. Note that in these cases, the

parameter φ is also estimated along with the other model parameters. The “nlm()” once

again retrieves the true parameter values quite accurately. The SE and RMSE once again

decrease with an increase in sample size. We do notice a slight over-coverage for the Box-

Cox transformation parameter φ. The SE and RMSE of φ are large when compared to other

model parameters and this is true for any considered lifetime distribution. In the case of

generalized gamma lifetime, the SE and RMSE of λ also turns out to be large. Once again,

when the sample size is large, a decrease in both SE and RMSE can be seen.

2.3.2 Model fitting with two covariates: one binary and one continuous

In this section, we first describe the mechanism to generate data from the GGBCT

model when we consider one binary covariate (x1) and one continuous covariate (x2). We

consider x1 to be the group covariate, where we assign x1 = 1 for subjects belonging

to the treatment group and assign x1 = 0 for subjects belonging to the control group.

Similarly, we can consider x2 to be the tumor thickness (measured in mm), where we

assume the minimum tumor thickness to be 0.1mm and the maximum tumor thickness to

be 20 mm. To generate the tumor thickness data, we can simply generate random numbers

from Uniform(0.1,20) distribution. Once again, we consider two different values of the

sample size n(n1, n2) as 200 (130,70) and 400(230, 170), where n1 denotes the sample

size for the treatment group and n2 denotes the sample size for the control group. Since

we consider two covariates, we bring in three regression parameters, i.e., β0, β1 and β2.

In this simulation study, we consider the true values of β0, β1 and β2 as 0.4, -0.5 and 0.1,

respectively. We also consider two different true values of φ as 0.25 and 0.75. Note that due
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Table 2.1: Model fitting results for the Poisson cure rate model with generalized gamma
lifetime distribution and its special cases. For the lognormal and gamma lifetime, the true
cure rates are (p0t, p0c) = (0.65, 0.25), whereas for the generalized gamma and Weibull
lifetimes, the true cure rates are (p0t, p0c) = (0.65, 0.35)

Lifetime n(n1, n2) Parameter SE Bias RMSE
CP

0.90 0.95

Gamma

200(130, 70)

β0 = 0.327 0.145 −0.003 0.150 0.880 0.944

β1 = −1.169 0.206 −0.002 0.218 0.878 0.932

σ = 0.447 0.030 −0.009 0.089 0.872 0.938

λ = 2.00 0.101 0.005 0.101 0.896 0.950

400(230, 170)

β0 = 0.327 0.093 −0.002 0.090 0.906 0.958

β1 = −1.169 0.144 0.003 0.142 0.906 0.960

σ = 0.447 0.020 −0.012 0.104 0.902 0.946

λ = 2.00 0.070 −0.001 0.068 0.916 0.960

Generalized Gamma

200(130, 70)

β0 = 0.049 0.283 −0.005 0.289 0.886 0.944

β1 = −0.891 0.309 −0.002 0.308 0.902 0.946

q = 0.500 0.306 0.031 0.311 0.938 0.966

λ = 4.632 0.779 0.032 0.737 0.892 0.950

σ = 0.871 0.086 −0.029 0.116 0.878 0.936

400(230, 170)

β0 = 0.049 0.098 −0.004 0.096 0.914 0.952

β1 = −0.891 0.148 −0.004 0.151 0.916 0.954

q = 0.500 0.179 −0.007 0.175 0.912 0.970

λ = 4.632 0.487 0.074 0.483 0.906 0.966

σ = 0.871 0.054 −0.006 0.055 0.910 0.950

Lognormal

200(130, 70)

β0 = 0.327 0.145 0.147 0.147 0.896 0.934

β1 = −1.169 0.206 0.213 0.213 0.902 0.952

σ = 0.241 0.017 0.018 0.018 0.872 0.932

λ = 0.206 0.005 0.006 0.006 0.872 0.944

400(230, 170)

β0 = 0.327 0.094 0.004 0.094 0.906 0.954

β1 = −1.169 0.145 −0.011 0.142 0.910 0.968

σ = 0.241 0.012 −0.001 0.012 0.880 0.934

λ = 0.206 0.004 0.000 0.004 0.908 0.960

Weibull

200(130, 70)

β0 = 0.049 0.198 0.005 0.205 0.890 0.948

β1 = −0.891 0.283 −0.032 0.282 0.904 0.960

σ = 0.316 0.033 −0.005 0.033 0.896 0.934

λ = 0.179 0.010 0.001 0.011 0.888 0.942

400(230, 170)

β0 = 0.049 0.128 −0.012 0.129 0.910 0.954

β1 = −0.891 0.199 −0.001 0.205 0.910 0.950

σ = 0.316 0.023 −0.002 0.024 0.902 0.936

λ = 0.179 0.007 0.000 0.007 0.906 0.962
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Table 2.2: Model fitting results for the Bernoulli cure rate model with generalized gamma
lifetime distribution and its special cases. For the lognormal and gamma lifetime, the true
cure rates are (p0t, p0c) = (0.65, 0.25), whereas for the generalized gamma and Weibull
lifetimes, the true cure rates are (p0t, p0c) = (0.65, 0.35)

Lifetime n(n1, n2) Parameter SE Bias RMSE
CP

0.90 0.95

Gamma

200(130, 70)

β0 = 1.099 0.279 −0.005 0.287 0.884 0.930

β1 = −1.718 0.335 0.009 0.342 0.894 0.944

σ = 0.447 0.031 −0.010 0.081 0.884 0.940

λ = 2.000 0.090 0.004 0.090 0.906 0.942

400(230, 170)

β0 = 1.099 0.179 0.012 0.183 0.900 0.952

β1 = −1.718 0.227 −0.011 0.225 0.908 0.952

σ = 0.447 0.021 −0.007 0.071 0.894 0.940

λ = 2.000 0.062 0.004 0.063 0.902 0.950

Generalized Gamma

200(130, 70)

β0 = 0.619 0.253 0.019 0.258 0.920 0.948

β1 = −1.238 0.314 −0.028 0.329 0.896 0.954

q = 0.500 0.272 0.010 0.258 0.934 0.984

λ = 4.632 0.696 0.019 0.657 0.892 0.934

σ = 0.871 0.073 −0.018 0.079 0.884 0.938

400(230, 170)

β0 = 0.619 0.161 −0.004 0.158 0.892 0.946

β1 = −1.238 0.213 −0.005 0.209 0.910 0.958

q = 0.500 0.181 0.001 0.179 0.912 0.960

λ = 4.632 0.474 0.016 0.462 0.908 0.954

σ = 0.871 0.050 −0.012 0.090 0.904 0.952

Lognormal

200(130, 70)

β0 = 1.099 0.282 0.002 0.279 0.894 0.950

β1 = −1.718 0.337 −0.004 0.341 0.898 0.954

σ = 0.241 0.017 −0.001 0.018 0.882 0.920

λ = 0.206 0.005 0.000 0.005 0.882 0.944

400(230, 170)

β0 = 1.099 0.180 0.010 0.186 0.890 0.956

β1 = −1.718 0.228 −0.025 0.233 0.910 0.938

σ = 0.241 0.012 −0.001 0.011 0.906 0.948

λ = 0.206 0.003 0.000 0.003 0.906 0.960

Weibull

200(130, 70)

β0 = 0.619 0.346 0.008 0.369 0.892 0.950

β1 = −1.238 0.441 −0.035 0.471 0.880 0.938

σ = 0.316 0.033 −0.009 0.034 0.866 0.926

λ = 0.179 0.009 0.001 0.009 0.910 0.944

400(230, 170)

β0 = 0.619 0.220 0.011 0.219 0.918 0.952

β1 = −1.238 0.300 0.000 0.301 0.900 0.950

σ = 0.316 0.023 −0.003 0.023 0.902 0.946

λ = 0.179 0.006 0.000 0.006 0.928 0.966
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Table 2.3: Model fitting results for the Box-Cox (φ = 0.25) cure rate model with gen-
eralized gamma lifetime distribution and its special cases. For the lognormal and gamma
lifetime, the true cure rates are (p0t, p0c) = (0.65, 0.25), whereas for the generalized gamma
and Weibull lifetimes, the true cure rates are (p0t, p0c) = (0.65, 0.35)

Lifetime n(n1, n2) Parameter SE Bias RMSE
CP

0.90 0.95

Gamma

200(130,70)

β0 = 0.505 0.679 0.088 0.712 0.918 0.952
β1 = −1.293 0.547 -0.075 0.558 0.900 0.948
σ = 0.447 0.031 -0.007 0.073 0.884 0.940
λ = 2.000 0.196 0.011 0.202 0.904 0.960
φ = 0.250 0.778 0.019 0.809 0.946 0.982

400(230.170)

β0 = 0.505 0.396 0.026 0.390 0.904 0.950
β1 = −1.293 0.322 -0.028 0.319 0.886 0.938
σ = 0.447 0.022 -0.005 0.060 0.902 0.940
λ = 2.000 0.139 0.005 0.136 0.914 0.962
φ = 0.250 0.495 -0.006 0.481 0.910 0.972

Generalized Gamma

200(130,70)

β0 = 0.183 0.778 -0.213 0.754 0.876 0.936
β1 = −0.971 0.512 0.093 0.507 0.892 0.938
q = 0.500 0.301 0.012 0.282 0.952 0.978
λ = 4.632 1.602 0.249 1.501 0.904 0.940
σ = 0.871 0.102 -0.037 0.103 0.910 0.958
φ = 0.250 1.417 -0.044 1.268 0.966 0.994

400(230,170)

β0 = 0.183 0.507 -0.198 0.547 0.896 0.964
β1 = −0.971 0.344 0.072 0.361 0.898 0.944
q = 0.500 0.200 0.015 0.188 0.926 0.958
λ = 4.632 1.088 0.083 0.992 0.908 0.938
σ = 0.871 0.068 -0.018 0.068 0.904 0.964
φ = 0.250 0.900 -0.026 0.851 0.944 0.984

Lognormal

200(130,70)

β0 = 0.505 0.614 -0.331 0.729 0.896 0.958
β1 = −1.293 0.487 0.209 0.575 0.887 0.938
σ = 0.241 0.018 -0.002 0.018 0.900 0.936
λ = 0.206 0.011 0.000 0.011 0.900 0.950
φ = 0.250 0.782 -0.037 0.813 0.934 0.978

400(230,170)

β0 = 0.505 0.402 -0.327 0.537 0.902 0.946
β1 = −1.293 0.326 0.198 0.407 0.893 0.951
σ = 0.241 0.012 -0.001 0.013 0.876 0.938
λ = 0.206 0.008 0.000 0.008 0.906 0.952
φ = 0.250 0.503 -0.011 0.492 0.924 0.966

Weibull

200(130,70)

β0 = 0.183 1.188 0.082 1.307 0.926 0.976
β1 = −0.971 0.832 -0.136 0.928 0.886 0.934
σ = 0.316 0.047 -0.003 0.046 0.902 0.946
λ = 0.179 0.027 0.007 0.029 0.938 0.976
φ = 0.250 1.979 0.342 2.045 0.978 0.998

400(230,170)

β0 = 0.183 0.666 -0.142 0.679 0.894 0.948
β1 = −0.971 0.495 0.043 0.507 0.868 0.910
σ = 0.316 0.032 -0.002 0.031 0.912 0.954
λ = 0.179 0.017 0.003 0.017 0.930 0.970
φ = 0.250 1.127 0.122 1.088 0.946 0.976
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Table 2.4: Model fitting results for the Box-Cox (φ = 0.75) cure rate model with gen-
eralized gamma lifetime distribution and its special cases. For the lognormal and gamma
lifetime, the true cure rates are (p0t, p0c) = (0.65, 0.25), whereas for the generalized gamma
and Weibull lifetimes, the true cure rates are (p0t, p0c) = (0.65, 0.35)

Lifetime n(n1, n2) Parameter SE Bias RMSE
CP

0.90 0.95

Gamma

200(130, 70)

β0 = 0.891 0.725 0.197 0.977 0.894 0.944

β1 = −1.567 0.574 −0.148 0.681 0.878 0.928

σ = 0.447 0.031 −0.012 0.088 0.898 0.946

λ = 2.000 0.202 0.037 0.237 0.894 0.952

φ = 0.750 0.819 0.134 1.081 0.910 0.968

400(230, 170)

β0 = 0.891 0.450 0.066 0.455 0.916 0.962

β1 = −1.567 0.371 −0.058 0.373 0.902 0.956

σ = 0.447 0.021 −0.011 0.081 0.874 0.932

λ = 2.000 0.139 0.013 0.146 0.902 0.950

φ = 0.750 0.506 0.032 0.502 0.940 0.970

Generalized Gamma

200(130, 70)

β0 = 0.468 0.878 0.121 0.856 0.906 0.958

β1 = −1.144 0.577 −0.094 0.569 0.888 0.944

q = 0.500 0.307 0.021 0.314 0.950 0.988

λ = 4.632 1.663 0.263 1.601 0.886 0.924

σ = 0.871 0.095 −0.041 0.103 0.892 0.936

φ = 0.750 1.497 0.076 1.439 0.954 0.990

400(230, 170)

β0 = 0.468 0.547 0.043 0.536 0.910 0.956

β1 = −1.144 0.380 −0.042 0.382 0.904 0.952

q = 0.500 0.202 0.026 0.205 0.908 0.950

λ = 4.632 1.077 0.083 1.054 0.882 0.936

σ = 0.871 0.063 −0.023 0.068 0.916 0.956

φ = 0.750 0.897 0.012 0.874 0.918 0.972

Lognormal

200(130, 70)

β0 = 0.891 0.547 0.056 0.732 0.882 0.934

β1 = −1.567 0.018 −0.052 0.589 0.864 0.920

σ = 0.241 0.011 −0.004 0.019 0.868 0.916

λ = 0.206 0.797 0.000 0.011 0.896 0.944

φ = 0.750 0.732 −0.013 0.846 0.916 0.976

400(230, 170)

β0 = 0.891 0.457 0.049 0.449 0.914 0.948

β1 = −1.567 0.374 −0.045 0.375 0.900 0.942

σ = 0.241 0.012 −0.001 0.012 0.912 0.960

λ = 0.206 0.008 0.001 0.008 0.890 0.966

φ = 0.750 0.522 0.035 0.524 0.928 0.958

Weibull

200(130, 70)

β0 = 0.468 1.311 0.412 1.630 0.938 0.988

β1 = −1.144 0.923 −0.343 1.181 0.910 0.946

σ = 0.316 0.046 −0.007 0.046 0.884 0.942

λ = 0.179 0.026 0.007 0.030 0.928 0.976

φ = 0.750 2.057 0.333 2.187 0.982 0.998

400(230, 170)

β0 = 0.468 0.755 0.140 0.768 0.950 0.986

β1 = −1.144 0.557 −0.106 0.566 0.916 0.964

σ = 0.316 0.031 −0.003 0.031 0.914 0.948

λ = 0.179 0.017 0.004 0.018 0.928 0.962

φ = 0.750 1.205 0.141 1.220 0.954 0.990
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to the presence of a continuous covariate, the cure rate for each subject will be different. In

particular, the cure rate can be calculated by

p0(x1, x2) =


[

1
1+φ exp(β0+β1x1+β2x2)

] 1
φ

, if 0 < φ ≤ 1,

exp{− exp(β0 + β1x1 + β2x2)}, if φ = 0.

We assume the lifetimes to follow a generalized gamma distribution and follow the same

technique as described in Section 2.3.1 to find the true values of the generalized gamma

lifetime parameters. To generate the observed time-to-event data T for a subject with

cure rate p0(x1, x2), we first generate U1 ∼ Uniform(0, 1) and censoring time C ∼

Exponential(rate = α). If U1 ≤ p0(x1, x2), we set the observed time as the censor-

ing time, i.e., T = C. On the other hand, if U1 > p0(x1, x2), it implies that the subject is

susceptible. In this case, we generate U2 ∼ Uniform(0, 1) and calculate

t = F−1

[
1−{p0(x1,x2)+(1−p0(x1,x2))U2}φ

φψ(φ,x1,x2)

]
, if 0 < φ ≤ 1

t = F−1

[
− log{p0(x1,x2)+(1−p0(x1,x2))U2}

ψ(0,x1,x2)

]
, if φ = 0,

where F is the distribution function of the generalized gamma distribution defined in

eqn.(2.16). Finally, we calculate the observed time by T = min{t, C}. Once again, if

T = C, we set the censoring indicator δ = 0, otherwise, we set δ = 1. In Table 2.5, we

present the model fitting results. It is easy to see that the “nlm()” once again performs very

well in retrieving the true parameter values quite accurately. Note that the bias, standard

error and RMSE all decreases with an increase in the sample size. The coverage proba-

bilities are also close to the true nominal levels. Thus, even with an additional covariate

(continuous), the performance of the “nlm()” is still very good.
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Table 2.5: Model fitting results for the Box-Cox cure rate model with generalized gamma
lifetime in the presence of two covariates

Lifetime n(n1, n2) Parameter SE Bias RMSE
CP

0.90 0.95

Generalized
Gamma

200(130,70)

β0 = 0.400 0.366 0.042 0.394 0.910 0.954

β1 = −0.500 0.359 -0.077 0.381 0.904 0.942

β2 = 0.100 0.045 0.009 0.045 0.924 0.966

q = 0.500 0.229 0.009 0.220 0.928 0.977

λ = 4.632 1.135 0.163 1.137 0.904 0.946

σ = 0.871 0.087 -0.019 0.086 0.908 0.947

φ = 0.250 0.294 0.013 0.280 0.940 0.979

400(230,170)

β0 = 0.400 0.214 0.003 0.227 0.901 0.948

β1 = −0.500 0.221 -0.035 0.230 0.908 0.950

β2 = 0.100 0.030 0.006 0.031 0.903 0.960

q = 0.500 0.155 -0.004 0.154 0.900 0.949

λ = 4.632 0.733 0.067 0.752 0.897 0.947

σ = 0.871 0.059 -0.008 0.058 0.911 0.960

φ = 0.250 0.181 -0.005 0.181 0.913 0.966

200(130, 70)

β0 = 0.400 0.666 0.106 0.698 0.916 0.947

β1 = −0.500 0.487 −0.065 0.520 0.909 0.955

β2 = 0.100 0.058 −0.016 0.062 0.906 0.960

q = 0.500 0.252 −0.008 0.242 0.915 0.974

λ = 4.632 1.821 0.516 1.920 0.905 0.942

σ = 0.871 0.082 −0.024 0.080 0.916 0.958

φ = 0.750 0.757 0.154 0.788 0.944 0.980

400(230, 170)

β0 = 0.400 0.369 0.042 0.424 0.890 0.940

β1 = −0.500 0.291 −0.040 0.316 0.887 0.932

β2 = 0.100 0.036 −0.006 0.039 0.901 0.941

q = 0.500 0.170 0.001 0.172 0.891 0.946

λ = 4.632 1.081 0.183 1.191 0.886 0.932

σ = 0.871 0.053 −0.014 0.054 0.914 0.957

φ = 0.750 0.443 0.043 0.488 0.923 0.955
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2.3.3 Model discrimination results using likelihood ratio test

In Table 2.6, we present the model discrimination results corresponding to utilizing

the flexibility of the Box-Cox transformation cure rate model for a given lifetime distribu-

tion. Based on 1000 Monte Carlo runs, we report the observed levels (in bold) as well as

the observed rejection rates of the likelihood ratio test. Overall, from Table 2.6, it is easy to

see that for any given lifetime distribution the observed levels are close to the significance

level. Thus, we can say that the chi-square and the mixture chi-square distributions both

provide good approximations to the null distribution of the likelihood ratio test statistic. In

some cases, however, the observed levels are found to be a little conservative. More in-

terestingly, the observed rejection rates (can also be termed as the power of the likelihood

ratio test to reject a wrong or mis-specified model) vary and depends on both true and fitted

model. For example, under the assumption of generalized gamma lifetime, when the true

model is φ = 0, the rejection rates of the likelihood ratio test keep increasing as φ deviates

from 0. In this regard, note that the likelihood ratio test rejects φ = 1 with a high power,

i.e., 82.5%. Similarly, when the true model is φ = 1, the rejection rate or the power of the

likelihood ratio test to reject φ = 0 is 77% and such a rejection rate decreases as the fitted

model gets closer to the true model. These findings clearly indicate that the likelihood ratio

test can distinctly discriminate between φ = 0 and φ = 1 models. Now, when the true

model is φ = 0.25, the power values of the likelihood ratio test to reject φ = 0, φ = 0.5,

and φ = 0.75 are low to moderate only. However, in this case, the power to reject φ = 1 is

better and turns out to be quite high for other lifetime distributions. Thus, we can say that

the likelihood ratio test can discriminate between φ = 0.25 and φ = 1 models. When the

true model is φ = 0.5, the power values of the likelihood ratio test to reject φ = 0.25 and

φ = 0.75 are low. In this case, the likelihood ratio test only has moderate power to reject

φ = 0 and φ = 1. Finally, when the true model is φ = 0.75, the likelihood ratio test has

low power to reject φ = 0.5 and φ = 1. In this case, the power to reject φ = 0 is still high
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(much better for Weibull and lognormal lifetimes, and only moderate for gamma lifetimes),

whereas the power to reject φ = 0.25 is only moderate.

Table 2.6: Observed levels and observed rejection rates of the likelihood ratio test with
respect to the Box-Cox model for a given lifetime distribution and with n = 400

True Box-Cox cure rate model
Generalized Gamma Lifetime

Fitted Model φ = 0 φ = 0.25 φ = 0.5 φ = 0.75 φ = 1
φ = 0 0.039 0.394 0.559 0.659 0.769
φ = 0.25 0.042 0.061 0.198 0.416 0.452
φ = 0.5 0.234 0.112 0.042 0.110 0.245
φ = 0.75 0.562 0.272 0.108 0.029 0.142
φ = 1 0.825 0.630 0.480 0.273 0.045

Weibull Lifetime
φ = 0 0.041 0.080 0.777 0.932 0.958
φ = 0.25 0.064 0.059 0.041 0.572 0.758
φ = 0.5 0.341 0.112 0.034 0.075 0.187
φ = 0.75 0.655 0.512 0.107 0.039 0.068
φ = 1 0.979 0.881 0.651 0.206 0.047

Lognormal Lifetime
φ = 0 0.041 0.509 0.738 0.906 0.933
φ = 0.25 0.187 0.025 0.249 0.487 0.627
φ = 0.5 0.464 0.271 0.037 0.152 0.283
φ = 0.75 0.843 0.733 0.232 0.034 0.102
φ = 1 0.973 0.958 0.791 0.201 0.039

Gamma Lifetime
φ = 0 0.052 0.094 0.183 0.437 0.872
φ = 0.25 0.067 0.038 0.047 0.105 0.518
φ = 0.5 0.625 0.059 0.033 0.034 0.099
φ = 0.75 0.834 0.735 0.134 0.026 0.082
φ = 1 0.939 0.931 0.788 0.111 0.069

In Figure 2.2, we plot the rejection rates of the likelihood ratio test for different true

values of φ. For this purpose, we assume the lifetime distribution to be generalized gamma

and the sample size to be 400. For each true value of φ, we fit models with different

values of φ as φ = {0, 0.1, 0.2, · · · , 1}. The plot clearly shows that as the fitted model
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deviates from the true model, the power of the likelihood ratio test to reject the fitted model

increases.
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Figure 2.2: Plot showing the rejection rates of the likelihood ratio test

In Table 2.7, we present the model discrimination results corresponding to utilizing

the flexibility of the generalized gamma lifetime for a given Box-Cox model. Based on

1000 Monte Carlo runs, we report the observed levels (in bold) and the observed rejection

rates of the likelihood ratio test. First, it is clear that the observed levels are very close to the

true level of significance. Next, for any fixed Box-Cox model, we can see that the likelihood

ratio test has very high power to reject the Weibull (lognormal) lifetime when the true

lifetime is lognormal (Weibull). Thus, the likelihood ratio test can distinctly discriminate

between the Weibull and lognormal lifetimes. Similarly, the likelihood ratio test can also

discriminate between the lognormal and generalized gamma q = 0.5 models as well as

between the gamma and Weibull models with adequate powers. When the true lifetime

is lognormal, the likelihood ratio test do not possess much power to reject the gamma

lifetime, however, when the true lifetime is gamma, the likelihood ratio test do have a high
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power (> 80%) to reject the lognormal lifetime. Finally, note that the likelihood ratio

test lacks power to discriminate between the generalized gamma (q = 0.5) and gamma

lifetimes although it does have moderate power to discriminate between the generalized

gamma (q = 0.5) and Weibull lifetimes.

2.3.4 Sensitivity analysis

In this section, we study how sensitive the bias and the mean square error (MSE)

of the estimators of the cure rates are when (i) a wrong cure rate model within the Box-

Cox family is fitted assuming the lifetime to follow a generalized gamma distribution and

(ii) a wrong lifetime distribution within the generalized gamma family is fitted for a given

Box-Cox model. Since in our simulation study setup we have considered two groups, a

combined measure of bias involved in the estimation of cure rates from both groups over

1000 Monte Carlo runs can be termed as the total relative bias (TRB) and can be defined

as

TRB =
1

1000

1000∑
j=1

{[ |p̂0t, j − p0t(true value)|
p0t(true value)

]
+

[ |p̂0c, j − p0c(true value)|
p0c(true value)

]}
. (2.18)

Similarly, we can use the MSE to define the total relative efficiency (TRE) under wrongly

specified model (i.e., the fitted model) over 1000 Monte Carlo runs as

TRE =
1

1000

1000∑
j=1

MSE(p0t(true model, j)) + MSE(p0c(true model, j))

MSE(p̂0t, j) + MSE(p̂0c, j)
. (2.19)

In Table 2.8, we present the TRB values and the TRE values (in parenthesis) in the estima-

tion of the cure rates when mis-specification is done with respect to the Box-Cox family

of cure rate models. It is clear that when the true Box-Cox model and the fitted Box-Cox

model are the same, the TRB is always the lowest, as one would expect. However, when

the fitted Box-Cox model deviates from the true Box-Cox model, i.e., when the model is

mis-specified, the TRB is seen to increase, whereas the TRE is seen to decrease. In this re-

gard, note that when the true model is φ = 0 (φ = 1) and the fitted model is φ = 1 (φ = 0),
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Table 2.7: Observed levels and observed rejection rates of the likelihood ratio test with
respect to the generalized gamma distribution for a given Box-Cox model and with n = 400

True lifetime distribution within generalized gamma family

Poisson (φ = 0)

Fitted Lifetime Lognormal Generalized Gamma (q = 0.5) Gamma Weibull

Lognormal 0.058 0.837 0.806 0.981

Generalized Gamma (q = 0.5) 0.725 0.049 0.057 0.556

Gamma 0.107 0.370 0.044 0.691

Weibull 0.999 0.758 0.869 0.059

Bernoulli (φ = 1)

Lognormal 0.034 0.853 0.803 0.991

Generalized Gamma (q = 0.5) 0.744 0.046 0.182 0.588

Gamma 0.358 0.397 0.040 0.713

Weibull 0.998 0.774 0.841 0.052

Box-Cox (φ = 0.75)

Lognormal 0.043 0.849 0.816 0.986

Generalized Gamma (q = 0.5) 0.729 0.047 0.253 0.627

Gamma 0.324 0.392 0.051 0.724

Weibull 0.999 0.764 0.857 0.049
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the TRE is very low and varies between 15%− 33% only. The findings clearly suggest that

for a given real data one should be very careful in choosing the correct cure rate model.

Otherwise, the estimators of the cure rates will be biased and less efficient. Also, note that

with an increase in the sample size, the TRB decreases whereas the TRE increases.

In Table 2.9, we present the TRB values and the TRE values (in parenthesis) in the

estimation of the cure rates when mis-specification is done with respect to the lifetime dis-

tribution belonging to the wider class of the generalized gamma distribution. For any given

cure rate model, i.e., either the Poisson model, or the Bernoulli model, or the Box-Cox

(φ = 0.75) model, it is easy to see that when the lifetime distribution is correctly specified,

the TRB is always the lowest. On the other hand, when the true lifetime distribution is

lognormal (Weibull) and the fitted lifetime distribution is Weibull (lognormal), the TRB is

the highest and the TRE is the lowest. This finding is in line with the findings from Table

2.7, where the likelihood ratio test was able to discriminate between the lognormal and

Weibull lifetimes with the highest power. In general, for any considered scenario, when a

wrong model is specified for the lifetime distribution, the TRB is much higher compared

to the case when there is no mis-specification in the lifetime distribution. In this case of

mis-specification of lifetime distribution, the TRE is also considerably less than one. These

findings suggest that for a given real data, where we do not know the true lifetime distribu-

tion, one should be very careful in coming up with a proper choice of the lifetime distribu-

tion. If there is any mis-specification in the lifetime distribution, the resulting inference on

the cure rates will be biased and less efficient. In section 2.4, through a real breast cancer

survival data, we illustrate how the Box-Cox family of cure rate models together with the

generalized gamma family of lifetime distributions can aid us in selecting a parsimonious

cure rate model together with a parsimonious lifetime distribution that jointly provides the

best fit.

34



Table 2.8: TRB and TRE (in parenthesis) in the estimation of cure rates when fitting dif-
ferent Box-Cox models for a given true Box-Cox model and assuming generalized gamma
lifetime

True Box-Cox Model
Fitted Model φ = 0 φ = 0.25 φ = 0.5 φ = 0.75 φ = 1

n = 400
φ = 0 0.083(-) 0.109(0.946) 0.135(0.524) 0.155(0.361) 0.173(0.259)
φ = 0.25 0.107(0.943) 0.072(-) 0.109(0.890) 0.139(0.493) 0.156(0.299)
φ = 0.5 0.143(0.646) 0.103(0.920) 0.073(-) 0.105(0.819) 0.143(0.455)
φ = 0.75 0.216(0.417) 0.144(0.638) 0.101(0.935) 0.068(-) 0.101(0.751)
φ = 1 0.221(0.334) 0.183( 0.458) 0.146(0.580) 0.099(0.872) 0.061(-)

n = 200
Fitted Model φ = 0 φ = 0.25 φ = 0.5 φ = 0.75 φ = 1

φ = 0 0.121(-) 0.144(0.631) 0.168(0.374) 0.188(0.244) 0.216(0.147)
φ = 0.25 0.141(0.730) 0.107(-) 0.140(0.659) 0.178(0.365) 0.211(0.241)
φ = 0.5 0.175(0.458) 0.135(0.730) 0.100(-) 0.131(0.624) 0.177(0.291)
φ = 0.75 0.240(0.266) 0.172(0.417) 0.126(0.706) 0.095(-) 0.127(0.587)
φ = 1 0.262(0.230) 0.219(0.262) 0.174(0.400) 0.123(0.702) 0.074(-)

2.3.5 Comparison with piecewise exponential approximation

Assuming the lifetimes of patients to be non-homogeneous, and based on a propor-

tional hazards model, we model F (·) in eqn.(2.9) as

F (t|x) = 1− S0(t)exp(γx), (2.20)

where S0(t) is the baseline survival function, x is a binary covariate and γ is the corre-

sponding regression parameter. Note that we only considered one covariate (binary) for

the sake of simplicity. The approach can be easily extended to multiple covariates. As

done in Yin and Ibrahim [45], we approximate S0(t) using a piecewise exponential (PE)

function. For this purpose, we divide the entire time axis into J partitions, i.e., we have

0 < s1 < · · · < sJ , where sJ is greater than the maximum of the observed lifetimes. We

denote the constant hazard corresponding to the interval (sj−1, sj] by λj , j = 1, 2, · · · , J .

Note that J = 1 reduces to a parametric exponential assumption for S0(t). In Tables 2.10

and 2.11, we compare the GGBCT fit (our proposed model) with the PE fit (approach pro-
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Table 2.9: TRB and TRE (in parenthesis) in the estimation of cure rates when fitting differ-
ent lifetime distributions for a given true lifetime distribution and assuming a given Box-
Cox model (n = 400)

True Lifetime Distribution

Poisson (φ = 0)

Fitted Distribution Lognormal Generalized Gamma (q = 0.5) Gamma Weibull

Lognormal 0.022(-) 0.125(0.596) 0.113(0.613) 0.142(0.199)

Generalized Gamma (q = 0.5) 0.108(0.610) 0.101(-) 0.095(0.864) 0.092(0.398)

Gamma 0.089(0.678) 0.108(0.735) 0.082(-) 0.096(0.383)

Weibull 0.113(0.533) 0.125(0.593) 0.108(0.648) 0.048(-)

Bernoulli (φ = 1)

Lognormal 0.043(-) 0.131(0.565) 0.123(0.757) 0.183(0.295)

Generalized Gamma (q = 0.5) 0.110(0.629) 0.123(-) 0.115(0.893) 0.102(0.738)

Gamma 0.045(0.888) 0.128(0.657) 0.078(-) 0.158(0.423)

Weibull 0.116(0.557) 0.136(0.479) 0.128(0.635) 0.063(-)

Box-Cox (φ = 0.75)

Lognormal 0.048(-) 0.124(0.626) 0.122( 0.806) 0.228(0.125)

Generalized Gamma (q = 0.5) 0.060(0.853) 0.102(-) 0.103(0.836) 0.107(0.573)

Gamma 0.083(0.723) 0.117(0.705) 0.074(-) 0.134(0.368)

Weibull 0.089(0.668) 0.127(0.539) 0.127(0.726) 0.080(-)
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posed by Yin and Ibrahim [45]) when data are generated from a Box-Cox transformation

cure rate model with lifetime distribution as exponential and generalized gamma, respec-

tively. Based on the AIC, AICc and BIC values, it is clear that in both cases the proposed

GGBCT model provides a better fit.

Table 2.10: Comparison of GGBCT fit with the PE fit when data is generated from a Box-
Cox (φ = 0.5) model with exponential lifetime distribution having rate parameter λ=4.632.
Note that (n1, n2) = (230, 170) and (p0t, p0c) = (0.65, 0.35)

Model l AIC AICc BIC Parameters MLE SE

PE (J = 1) -131.643 273.286 273.438 275.269

β0 0.265 0.474
β1 -1.129 0.351
γ -0.216 0.210
φ 0.514 0.808
λ1 5.197 1.267

PE (J = 2) -122.863 257.725 257.939 257.708

β0 0.351 0.471
β1 -1.085 0.336
γ -0.171 0.210
φ 0.527 0.591
λ1 5.001 1.281
λ2 7.382 2.344

PE (J = 3) -141.64 297.28 297.566 295.263

β0 0.329 0.410
β1 -1.056 0.548
γ -0.222 0.507
φ 0.495 0.860
λ1 1.861 0.377
λ2 0.743 0.096
λ3 0.058 0.091

GGBCT -121.982 255.964 256.178 255.947

β0 0.338 0.533
β1 -1.083 0.378
φ 0.499 0.882
q 1.018 0.232
λ 4.679 1.342
σ 0.982 0.120
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2.4 Illustration with breast cancer data

In this section, we apply the GGBCT model to the data on breast cancer survival

patients introduced in section 1.3.1.

In Figure 2.3, we present the non-parametric Kaplan-Meier survival curves stratified

by the prognostic group status variable. As can be seen from the plot, subjects in the “poor”

group status has the lowest survival probability. Furthermore, the survival probability in-

creases with an improvement in the prognostic group status. Moreover, from the leveling

off tendency of each survival curve, we can say that the crude estimates of the cure rates

of subjects belonging to the “poor”, “medium” and “good” groups are 0.07, 0.32 and 0.66,

respectively. In the real data analysis, we first fit the general GGBCT model. The MLEs

of the parameters of the full model, i.e., the GGBCT model, together with their standard

errors are presented in Table 2.12. Since the estimate of β1 is negative, it implies that with

an improvement in the prognostic group status the cure rate also increases. In particular,

the estimates of the cure rates turn out to be p̂0(poor) = 0.019, p̂0(medium) = 0.174 and

p̂0(good) = 0.463.

Now, from Table 2.12, we can see that the estimate of the Box-Cox transformation

parameter φ is close to zero. This clearly suggests that the promotion time (or Poisson)

cure rate model might be appropriate for this dataset. So, we test for the suitability of the

promotion time model, i.e., we test for H0 : φ = 0. Using the likelihood ratio test, the

p-value turns out to be 0.611. As such, we fail to reject the promotion time cure rate model.

The estimate of the generalized gamma shape parameter q also encourages us to test for the

suitability of the lognormal lifetime distribution, i.e., H0 : q = 0. In this case, the p-value

corresponding to the likelihood ratio test turns out to be 0.007. Clearly, the assumption of

the lognormal lifetime distribution gets rejected at both 1% and 5% nominal levels. We can

also test for the joint suitability of the promotion time model with the lognormal lifetime,

i.e., H0 : φ = 0, q = 0. Interestingly, the null hypothesis gets rejected at 5% level of
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significance, however, we fail to reject the null hypothesis at 1% level of significance. In

Table 2.13, we present the likelihood ratio test results for different tests of hypotheses that

one may be interested in carrying out in the given context. Note that in Table 2.13, l0 and

l represents the restricted (i.e., under H0) and the unrestricted maximized log-likelihood

function values, respectively. It is clear that at 5% level of significance only the model with

φ = 0 doesn’t get rejected and, as such, can be considered to be suitable. Note that none of

the commonly used special cases of the generalized gamma lifetime distribution turns out

to be suitable, which indicates that our working model is the promotion time (or Poisson)

cure rate model with generalized gamma lifetime distribution.

In Table 2.14, we present the Akaike information criterion (AIC), the Bayesian in-

formation criterion (BIC), and the corrected AIC (AICc) values to discriminate between

different models. It is once again clear that the model with φ = 0 together with the gen-

eralized gamma lifetime provides the best fit to the data since all the three AIC, BIC and

AICc turns out to be the lowest among all candidate models. Thus, the conclusion drawn

from the likelihood ratio test is in line with the conclusion drawn the information-based

criteria. In Table 2.15, we present the MLEs and the standard errors (SE) of the param-

eters corresponding to the working model, i.e., promotion time (Poisson) cure rate model

with generalized gamma lifetime. In this case, the estimates of cure rates turn out to be

p̂0(poor) = 0.037, p̂0(medium) = 0.223 and p̂0(good) = 0.507.

In Figure 2.4, for the working model, we present the estimated parametric survival

curves which are superimposed on the non-parametric Kaplan-Meier curves. As can be

seen, both the parametric and the non-parametric survival curves show close concordance.

Finally, we are interested in checking for the goodness-of-fit or model adequacy. For this

purpose, we calculate the randomized quantile residuals (Dunn and Smyth, 1996). In Fig-

ure 2.5, we present the quantile-quantile (QQ) plot, where each point in the plot corre-

sponds to tPiise he median of five sets of ordered residuals. The plot clearly suggests that

39



the promotion time cure rate model with the generalized gamma lifetime provides a very

good fit to the considered breast cancer data. Using the Kolmogorov-Smirnov’s test, we

also test for the normality of the residuals. The p-value, in this case, turns out to be 0.918,

which provides a very strong evidence for the normality of residuals.
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Figure 2.3: Kaplan-Meier survival curves for different prognostic group status

In Table 2.16, we present the results of PE approximation for different values of J .

When compared to our proposed parametric approach with generalized gamma lifetime,

it is clear that the parametric approach results in better model fit based on the AIC, BIC

and AICc values (see Table 2.14 for comparison). Note that Yin and Ibrahim (2005) also

concluded that a parametric approach (i.e., J = 1, which reduces to an exponential model)

results in a better fit. Hence, our findings are in line with the findings of Yin and Ibrahim

[22], who employed a Bayesian framework to develop the inference.
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Table 2.11: Comparison of GGBCT fit with the PE fit when data is generated from a
Box-Cox (φ = 0.5) model with generalized gamma lifetime distribution having param-
eters (q, λ, σ) = (0.5, 4.632, 0.871). Note that (n1, n2) = (230, 170) and (p0t, p0c) =
(0.65, 0.35)

Model l AIC AICc BIC Parameters MLE SE

PE (J = 1) -159.47 328.939 329.091 330.922

β0 0.450 0.443
β1 -1.155 0.328
γ -0.258 0.196
φ 0.835 0.730
λ1 4.629 1.029

PE (J = 2) -155.151 322.302 322.515 322.285

β0 0.179 0.406
β1 -1.034 0.297
γ -0.099 0.219
φ 0.459 0.535
λ1 4.045 0.984
λ2 9.762 4.344

PE (J = 3) -175.210 364.420 364.706 362.403

β0 0.335 0.414
β1 -1.044 0.550
γ -0.220 0.468
φ 0.517 0.764
λ1 1.899 0.317
λ2 0.742 0.092
λ3 0.027 0.083

GGBCT -141.890 295.780 295.993 295.762

β0 0.340 0.529
β1 -1.094 0.378
φ 0.485 0.868
q 0.486 0.213
λ 4.669 1.102
σ 0.861 0.068

Table 2.12: MLEs and standard errors (SE) of GGBCT model parameters corresponding to
the breast cancer data

Parameter MLE SE
β0 1.385 1.078
β1 -0.822 0.426
φ 0.005 0.292
q 0.084 0.407
λ 0.152 0.079
σ 1.049 0.335
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Table 2.13: Likelihood ratio test results for different tests of hypotheses

H0 l0 l Λ p−value
φ = 0 , q = 0 -799.155 -795.416 7.476 0.024
φ = 0 , q = σ -799.797 -795.416 8.762 0.013
φ = 0 , q = 1 -803.745 -795.416 16.658 ≈ 0.000
φ = 1 , q = 0 -806.593 -795.416 22.354 ≈ 0.000
φ = 1 , q = σ -811.859 -795.416 32.886 ≈ 0.000
φ = 1 , q = 1 -816.916 -795.416 43.000 ≈ 0.000

q = 0 -799.050 -795.416 7.268 0.007
φ = 1 -805.441 -795.416 20.050 ≈ 0.000
φ = 0 -795.546 -795.416 0.260 0.611

Table 2.14: AIC, BIC and AICc for different fitted models

Cure Rate Model Lifetime AIC BIC AICc
Generalized Gamma 1601.092 1623.746 1601.180

(φ = 0) Lognoramal 1606.309 1624.433 1606.368
Poisson Gamma 1607.594 1625.718 1607.653

Weibull 1615.489 1633.613 1615.548
Generalized Gamma 1620.882 1643.536 1620.970

(φ = 1) Lognormal 1621.185 1639.309 1621.244
Bernoulli Gamma 1631.719 1649.842 1631.778

Weibull 1641.831 1659.955 1641.890
Box-Cox (φ) Generalized Gamma 1602.833 1630.018 1602.957

Table 2.15: MLEs and standard errors (SE) of the working model corresponding to the
breast cancer data

Parameter MLE SE
β0 1.196 0.227
β1 -0.791 0.079
q 0.084 0.279
λ 0.173 0.037
σ 1.002 0.164
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Figure 2.4: Fitted survival curves stratified by prognostic group status (for the working
model)
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Figure 2.5: QQ-plot of the normalized randomized quantile residuals for the breast cancer
survival data

43



Table 2.16: Piecewise exponential approximation results corresponding to the breast cancer
data

J l AIC AICc BIC Parameters MLE SE

1 -835.876 1681.753 1681.841 1704.407

β0 1.279 0.311
β1 -0.890 0.209
φ 0.204 0.142
λ1 0.216 0.173
γ -0.157 0.069

2 -830.342 1672.685 1672.808 1699.870

β0 1.860 0.209
β1 -0.332 0.199
φ 0.009 0.115
λ1 0.051 0.032
λ2 0.068 0.046
γ -0.597 0.145

3 -827.713 1669.425 1669.590 1701.141

β0 1.573 0.527
β1 -0.948 0.268
φ 0.014 0.263
λ1 0.316 0.188
λ2 0.409 0.262
λ3 0.411 0.275
γ -0.140 0.038

4 -827.650 1671.299 1671.512 1707.546

β0 1.680 0.920
β1 -0.628 0.537
φ 0.596 0.317
λ1 0.210 0.426
λ2 0.301 0.616
λ3 0.322 0.658
λ4 0.465 0.627
γ -0.612 0.466

5 -818.892 1655.784 1656.050 1696.561

β0 1.698 0.356
β1 -0.726 0.499
φ 0.169 0.274
λ1 0.179 0.487
λ2 0.390 0.309
λ3 0.309 0.736
λ4 0.307 0.356
λ5 0.481 0.248
γ -0.568 0.551

6 -814.801 1649.603 1649.929 1694.912

β0 1.449 0.366
β1 -0.689 0.368
φ 0.065 0.106
λ1 0.165 0.140
λ2 0.407 0.128
λ3 0.321 0.134
λ4 0.384 0.123
λ5 0.381 0.100
λ6 0.503 0.182
γ -0.524 0.046

7 -810.672 1643.344 1643.736 1693.184

β0 1.526 3.708
β1 -0.614 1.384
φ 0.498 2.766
λ1 0.134 0.345
λ2 0.361 0.881
λ3 0.301 0.680
λ4 0.279 0.588
λ5 0.290 0.587
λ6 0.291 0.559
λ7 0.729 1.408
γ -0.599 0.474
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CHAPTER 3

Inference for mixture cure model with support vector machine under interval

censored data

3.1 Introduction

Introduced by Boag [3] and exclusively studied by Berkson and Gage [12], the mix-

ture cure rate model can also be expressed in the following form. If T ∗ denotes the lifetime

of a susceptible (not cured) subject, then, the actual lifetime T for any subject can be mod-

eled by

T = JT ∗ + (1− J)∞, (3.1)

where J is a cure indicator denoting if an individual is cured (J = 0) or not (J = 1).

Further, considering Sp(t) = P (T > t) and Su(t) = P (T ∗ > t) as the respective survival

functions corresponding to T and T ∗, we can express

Sp(t) = (1− π) + πSu(t), (3.2)

where π = P (J = 1). The latency part Su(t) = Su(t|x) and the incidence part π = π(z)

are generally modeled to incorporate the effects of covriates x = (x1, . . . , xp)
T and z =

(z1, . . . , zq)
T for any integers p and q. Note here that x and z may have overlap.

The incidence part π(z) is traditionally and extensively modeled by sigmoid or lo-

gistic function

π(z) =
exp(z∗Tβ)

1 + exp(z∗Tβ)
, (3.3)

where β = (β0, β1, . . . , βq)
T and z∗ = (1, zT)T [4, 5, 8]. As observed in the case of

logistic regression, the logistic model works well when subjects are linearly separable into

the cure or susceptible groups with respect to covariates. However, problem arises when
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subjects can not be separated using a linear boundary. To this end, support vector machine

(SVM) could be a reasonable choice. Motivated by Li et al. [37] we propose to employ the

SVM based modeling to study the effects of covariates on the incidence part of the mixture

cure rate model by considering the form of the data to be interval-censored.

Unlike right-censored data, interval-censored data occur for a study where subjects

are inspected at regular intervals, and not continuously over time. If a subject experiences

the event of interest, the exact survival time is not observed. However, it is only known

that the event has occurred between two consecutive inspections. Interval-censored data

marked by cure prospect are often observed in follow-up clinical studies (cancer biochemi-

cal recurrence or AIDS drug resistance) dealing with events having low fatality and patients

monitored at regular intervals [46, 47]. As in the case of right-censored data, some subjects

may never encounter the event of interest, and are considered as cured. Mixture cure rate

models with interval censored data are examined based on several estimation techniques

for both semi-parametric and non-parametric set-ups [42, 48–51].

The rest of the chapter is arranged as follows. In Section 3.2, we discuss about the

mixture cure rate model framework for interval-censored data and develop an estimation

procedure based on the expectation maximization (EM) algorithm that employs the SVM

to model the incidence part. In Section 3.3, a detailed simulation study is carried out to

demonstrate the performance of our proposed model in terms of flexibility, accuracy and

robustness. Comparisons of our model with the existing logistic regression based mixture

cure rate models are made in this section. The model performance is further examined and

illustrated in Section 3.4 through an interval censored data on smoking cessation.
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3.2 SVM based mixture cure rate model with interval censoring

3.2.1 Censoring scheme and modeling lifetimes

The data we observe in situations with interval censoring are of the form (Li, Ri, δi,xi, zi)

for i = 1, . . . , n, where n denotes the sample size. For a subject, Li denotes the last inspec-

tion time before the event and Ri denotes the first subsequent inspection time just after the

event. Note that Li < Ri. The censoring indicator is denoted by δi = I(Ri < ∞), which

takes the value 0 if Ri =∞, meaning that the event is not observed for a subject before the

last inspection time, and takes the value 1 if Ri <∞, meaning that the event took place but

its exact time is not known and is only known to belong to the interval [Li, Ri]. Now, xi

and zi are the respective p dimensional and q dimensional covariate vectors affecting the

incidence and latency parts, respectively, of the mixture cure rate model. To demonstrate

the effect of covariates on the latency part, we consider a proportional hazards structure

to model the lifetime distribution of the susceptible or non-cured subjects. That is, for the

susceptible subjects, we model the hazard function by

h(ti|xi) = h0(ti) exp
{
xT
i γ
}
, (3.4)

where γ = (γ1, . . . , γp)
T is the p dimensional regression parameter vector measuring the

effects of x and h0(·) is the unspecified baseline hazard function. To facilitate our discus-

sion, we assume the baseline hazard to follow a parametric form given by h0(ti) = αtα−1
i ,

where α > 0. One is of course free to use other non-parametric or semi-parametric forms

for the baseline hazard. Therefore, we have

h(ti|xi) = αtα−1
i exp

{
xT
i γ
}
. (3.5)

Note that eqn.(3.5) turns out to be the hazard function of a Weibull distribution with shape

parameter α and scale parameter {exT
i γ}−1/α. Consequently, the susceptible lifetime fol-

lows a Weibull distribution with the aforementioned scale and shape parameters. Weibull
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distribution is a popular and flexible choice for modeling lifetimes or failure times in sur-

vival analysis. It is closed under proportional hazards family when the shape parameter

remains constant, and it accommodates decreasing (α < 1), constant (α = 1) and increas-

ing (α > 1) failure rates [4, 52, 53]. From eqn.(3.2), the resulting survival function and

density function of any subject in the study (irrespective of the cured status) are respectively

given by

Sp(ti|xi, zi) = 1− π(zi) + π(zi) exp {− (ti/mi)
α} (3.6)

and

fp(ti|xi, zi) = π(zi)
αtα−1

i

mα
i

× exp {− (ti/mi)
α} , (3.7)

where mi = {exT
i γ}−1/α.

3.2.2 Form of the likelihood function

As missing observations are inherent to the problem set-up and model framework,

we propose to employ the EM algorithm to estimate the unknown parameters [1, 8, 54].

For implementing the EM algorithm, we need the form of the complete data likelihood

function. Let us define ∆0 = {i : δi = 0} and ∆1 = {i : δi = 1}. Missing observations

that appear in this context are in terms of the cure indicator variable J , where J is as defined

in eqn. (3.1). Note that Ji’s are all known to take the value 1 if i ∈ ∆1. However, if i ∈ ∆0,

Ji can either take 0 or 1, and is thus unknown or missing. Using these Ji’s as the missing

data, we can define the complete data as (Li, Ri, δi, Ji,xi, zi), for i = 1, . . . , n, which

contains both observed and missing data. Under the interval censoring mechanism, we can

now express the complete data likelihood function and log-likelihood function as:

Lc =
∏
i∈∆1

[π(zi) {Su(Li|xi)− Su(Ri|xi)}]Ji ×
∏
i∈∆0

(1− π(zi))
1−Ji {π(zi)Su(Li|xi)}Ji

(3.8)
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and

lc =
∑
i∈∆1

Ji [log π(zi) + log {Su(Li|xi)− Su(Ri|xi)}]

+
∑
i∈∆0

(1− Ji) log(1− π(zi)) + Ji {log π(zi) + logSu(Li|xi)} , (3.9)

where Su(ti|xi) = exp {− (ti/mi)
α}, Ji is unobserved for i ∈ ∆0 and Ji = 1 for i ∈ ∆1

[55]. It can be further noted that

lc = lc1 + lc2, (3.10)

where

lc1 =
n∑
i=1

[Ji log π(zi) + (1− Ji) log(1− π(zi))] (3.11)

is a function that depends on the incidence part only and

lc2 =
n∑
i=1

[δi log {Su(Li|xi)− Su(Ri|xi)}+ (1− δi)Ji logSu(Li|xi)] (3.12)

is a function that depends on the latency part only. The steps of the EM algorithm by

incorporating the SVM to model the incidence part π(zi) are discussed henceforth.

3.2.3 Modeling the incidence part with support vector machine

Let us assume that Ji for i ∈ ∆0 are observed by some mechanism to assist our the-

ory. Support vector machine algorithm maximizes the linear or non-linear margin between

the two closest points belonging to the opposite classification groups (cured and suscepti-

ble). That is, SVM solves the following optimization problem for di; i = 1, . . . , n:

max
d1,...,dn

[
−1

2

n∑
i=1

n∑
j=1

didj(2Ji − 1)(2Jj − 1)Φk(zi, zj) +
n∑
i=1

di

]
(3.13)

subject to the constraint
∑n

i=1(2Ji − 1)di = 0 and 0 ≤ di ≤ C, for i = 1, . . . , n, where

C is a parameter that trades off between the margin width and misclassification proportion.
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Smaller values of C cause optimizer to look for a larger margin width allowing higher mis-

classification. Φk(., .) is a symmetric positive semi definite kernel function, which we con-

sider to be the radial basis function (RBF) given by Φk(zi, zj) = exp
{
− (zi−zj)T(zi−zj)

σ2

}
.

RBF is a popular choice of the kernel function owing to its robustness in transforming

observations to higher dimension. The parameter σ2 determines the kernel-width. Both

hyper-parameters C and σ2 are to be tuned to obtain the highest classification accuracy us-

ing cross-validation methods [56]. Grid search can be implemented to determine C and σ2.

Low values of σ2 result in overfitting and jagged separator, while high values of σ2 result

in more linear and smoother decision boundaries. Also, it is recommended to standardize

the covariate vector z.

The mapping Ji to 2Ji − 1 converts the respective 0 and 1s to -1 and +1s, which

aids in formulation of the optimization problem under the SVM framework. Once di’s are

obtained, we can derive a threshold b as b =
∑n

i=1(2Ji − 1)diΦk(zi, zj) − (2Jj − 1), for

some dj > 0. For any new covariate vector znew, the optimal decision or classification rule

is given by

ψ(znew) =
n∑
i=1

di(2Ji − 1)Φk(zi, znew)− b. (3.14)

As suggested by Li et al. [37], the sequential minimal optimization method (SMO), in-

troduced by Platt [57], can be applied to solve eqn.(3.13). As opposed to solving large

quadratic optimization problems to train a SVM model, SMO solves a series of smallest

possible quadratic problems. Thus, SMO is relatively time inexpensive algorithm. Any

subject with covariate znew is assigned to the susceptible group if ψ(znew) > 0 and to the

cured group if ψ(znew) < 0.

In the given context, note that it is not enough to just classify subjects as being cured

or susceptible. It is also of our interest to obtain the estimates of uncured probabilities

π(zi) or equivalently the cured probabilities 1 − π(zi). For this purpose, we use the Platt
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scaling method to obtain an estimate of π(zi) from the classification rule ψ(.) [58]. The

estimate of π(zi) by Platt scaling method is given by

π̂(zi) =
1

1 + exp{Aψ(zi) +B} , (3.15)

where A and B are obtained by maximizing the following function:
n∑
i=1

(1− ζi)[Aψ(zi) +B]− log[1 + exp{Aψ(zi) +B}]. (3.16)

Here,

ζi =


n(1)+1
n(1)+2

, if Ji = 1

1
n(0)+2

, if Ji = 0,

(3.17)

and n(1) and n(0) represents the number of subjects in the susceptible and cured groups,

respectively.

Now, we started our discussion on the SVM based modeling of the incidence part

with the assumption that Jis are observed and available for training purpose. However, in

practice, the cure status Ji is not known for i ∈ ∆0. Multiple imputation based approach

can be applied here to obtain π̂(zi) with imputed values of Ji for i = 1, . . . , n. The steps

are as follows:

1. For a pre-defined integer N∗ and n∗ = 1, 2, . . . , N∗, generate {J (n∗)
i : i = 1, . . . , n},

where J (n∗)
i is a Bernoulli random variable with success probability p(n∗)

i . The dis-

cussion on deriving p(n∗)
i is provided in Section 3.2.4.

2. For the imputed data {J (n∗)
i : i = 1, . . . , n}, obtain π̂(n∗)(zi) as the estimate of π(zi)

by the Platt scaling method given in eqn.(3.15) for n∗ = 1, 2, . . . , N∗.

3. π̂(zi) = (1/N∗)
∑N∗

n∗=1 π̂
(n∗)(zi) is the final estimate of π(zi).

3.2.4 Development of the EM algorithm

Since the EM algorithm involves finding the conditional expectation of the complete

data log-likelihood function given the current estimates (say, at the (r+1)-th iteration step)
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and the observed data, we begin our discussion by deriving the conditional expectation of

Ji given the observed data, π(zi) and (α,γT)T, as

w
(r+1)
i = δi + (1− δi)

π(r)(zi)S
(r)
u (Li|xi)

1− π(r)(zi) + π(r)(zi)S
(r)
u (Li|xi)

, i = 1, . . . , n, (3.18)

where S(r)
u (Li|xi) = exp

{
−
(
Li/m

(r)
i

)α(r)
}

with m(r)
i = {exT

i γ
(r)}−1/α(r) . Note that eqn.

(3.18) implies that w(r+1)
i = 1 for all i ∈ ∆1. Hence, we obtain the conditional expectation

of lc by simply replacing Ji’s with w
(r+1)
i in eqn.(3.9). We denote the aforementioned

conditional expectation by

Qc = Qc1 +Qc2, (3.19)

where

Qc1 =
n∑
i=1

[
w

(r+1)
i log π(zi) + (1− w(r+1)

i ) log(1− π(zi))
]

(3.20)

and

Qc2 =
n∑
i=1

[
δi log {Su(Li|xi)− Su(Ri|xi)}+ (1− δi)w(r+1)

i logSu(Li|xi)
]
. (3.21)

For r = 0, 1, . . . , the procedure below is given for the (r + 1)-th iteration step of the

EM algorithm.

1. Carry out the multiple imputation technique, as described in Section 3.2.3, by con-

sidering p(n∗)
i = w

(r+1)
i , for n∗ = 1, . . . , N∗ and i = 1, . . . , n. Obtain π̂(r+1)(zi) =

(1/N∗)
∑N∗

n∗=1 π̂
(n∗)(zi) by applying the Platt scaling method with the classification

rule ψ(·) defined in eqn. (3.14). Recall that the classification rule is built based on

the imputed data {J (n∗)
i : i = 1, . . . , n}, where J (n∗)

i is a Bernoulli random variable

with success probability p(n∗)
i .

2. Obtain (α(r+1),γ(r+1)T) by maximizing the function Qc2, as defined in eqn. (3.21),

with respect to α and γ. That is, find

52



(α(r+1),γ(r+1)T)T = arg max
α,γ

Qc2. (3.22)

3. Check for the convergence as follows:

||θ(r+1) − θ(r)||22 < ε,

where θ(k) = (π(k)(z), α(k),γ(k)T)T, with π(k)(z) = 1
n

∑n
i=1 π

(k)(zi), ε > 0 is some

pre-determined and sufficiently small tolerance and || · ||2 is the L2-norm. If the

above criterion is satisfied, then, stop the algorithm. In this case, π̂(r+1)(zi), for

i = 1, . . . , n, and (α(r+1),γ(r+1)T)T are the final pointwise estimates. On the other

hand, if the above criterion is not met, continue to Step 4.

4. Update w(r+1)
i in eqn. (3.18) to

w
(r+2)
i = δi + (1− δi)

π̂(r+1)(zi)S
(r+1)
u (Li|xi)

1− π̂(r+1)(zi) + π̂(r+1)(zi)S
(r+1)
u (Li|xi)

, (3.23)

where S(r+1)
u (ti|xi) = exp

{
−
(
ti/m

(r+1)
i

)α(r+1)
}

andm(r+1)
i = {exT

i γ
(r+1)}−1/α(r+1) .

5. Repeat steps 1-4 until convergence is achieved.

3.2.5 Calculating the standard errors

The standard errors are estimated by non-parametric bootstrapping. For b′ = 1, . . . , B,

b′-th bootstrapped data set is obtained by resampling with replacement from the original

data. The sample size of the b′-th bootstrapped data is the same as the original data. Then,

we carry out steps 1-5 of the EM algorithm as detailed in Section 3.2.4 to obtain the esti-

mates of model parameters for each bootstrapped data. This gives us B estimates for each

model parameter. For each parameter, the standard deviation of these B estimates provide

an estimate of the standard error of the parameter.
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3.2.6 Finding the initial values

To start the EM algorithm, we need to provide initial values of π(zi), for i =

1, . . . , n, along with α and γ. To come up with an initial guess of π(zi), first, we can

consider the censoring indicator δi, i = 1, . . . , n, as the cure indicator (i.e., δi = 0 would

imply Ji = 0 and δi = 1 would imply Ji = 1). Then, we can apply the SVM to come

up with the classification rule, as given in eqn.(3.14), and, finally, we apply the Platt scal-

ing method, as given in eqn.(3.15), to obtain π(zi). Now, to obtain an initial guess of the

latency parameters α and γ, we make use of the form of the survival function of the sus-

ceptible subjects, i.e., S(ti) = exp {− (ti/mi)
α} , where mi = {exT

i γ}−1/α. Note that this

form implies that

log{− logS(ti)} = α log ti + xT
i γ, i = 1, . . . , n.

Hence, we can fit a linear regression model using log{− logS(ti)} as the response to obtain

estimates of α and γ, which can be used as the initial guesses. Here, S(ti) can be the

estimated using the non-parametric Kaplan-Meier estimates. Since the form of the data is

interval censored, we can take ti = Li+Ri
2

, if Ri <∞, and take ti = Li, if Ri =∞, for all

i = 1, . . . , n. Note that this procedure may result in negative estimates of α. As such, we

can take the initial guess of α as 0.05 or 0.1 if the estimate of α turns out to be negative.

3.3 Simulation study

In this section, we assess the performance of the proposed SVM based EM algorithm

to estimate the model parameters of the mixture cure rate model for interval censored data.

We generate two random values x1 and x2 independently from standard normal distribution

and assume x = z with x = (x1, x2)T. We consider two different sample sizes: n = 300
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and n = 400 and use the following links to generate uncured probabilities π(z):

Scenario 1: π(z) =
e0.3−5z1−3z2

1 + e0.3−5z1−3z2
;

Scenario 2: π(z) =
e0.3+10z21−5z22

1 + e0.3+10z21−5z22
;

Scenario 3: π(z) = exp{− exp(0.3− 4 cos z1 − 5 sin z2)}.

Note that Scenario 1 represents the standard logistic regression model which captures a

linear classification boundary. On the other hand, Scenarios 2 and 3 capture non-linear or

more complex classification boundaries; see Figure 3.1. In Figure 3.2, we present the plots

of simulated uncured probabilities and how they vary with respect to the covariates z1 and

z2.

We assume lifetimes of the susceptible subjects follow proportional hazards structure

with the hazard function

h(t) = h0(t) exp(γ1x1 + γ2x2)

where h0(t) = αtα−1. As discussed before, the above hazard function implies that the

susceptible lifetime follows a Weibull distribution with shape parameter α and scale pa-

rameter {exp(γ1x1 + γ2x2)}− 1
α . We consider the true values of (α, γ1, γ2) as (0.5, 1, 0.5).

The censoring time is generated from a Uniform (0, 20) distribution. Using these, the cure

probabilities range from 50%−65%, whereas the overall censoring proportions range from

60% − 75%. To generate interval censored lifetime data (Li, Ri, δi), i = 1, 2, · · · , n, we

carry out the following steps:

Step 1: Generate a Uniform (0,1) random variable Ui and a censoring time Ci;

Step 2: If Ui ≤ 1− π(zi), set Li = Ci, Ri =∞, and δi = 0;

Step 3: If Ui > 1− π(zi), generate Ti from a Weibull distribution with shape param-

eter α and scale parameter {exp(γ1x1i + γ2x2i)}−
1
α ;
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Step 4:

a. If min{Ti, Ci} = Ci, set Li = Ci, Ri =∞, and δi = 0;

b. If min{Ti, Ci} = Ti, set δi = 1, and generate L1i from Uniform (0.2, 0.7)

distribution and L2i from Uniform (0, 1) distribution. Next, create intervals

(0, L2i], (L2i, L2i + L1i], · · · , (L2i + k × L1i,∞], k = 1, 2, · · · , and select

(Li, Ri) that satisfies Li < Ti ≤ Ri.
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Figure 3.1: Simulated cured and uncured observations for the three considered scenarios
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Figure 3.2: Simulated uncured probabilities and their behavior with respect to the covari-
ates for the three considered scenarios
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All simulations are done using the R statistical software (version 4.0.4) and all results

are based on M = 500 Monte Carlo runs. To employ our proposed methodology, we

consider number of imputations in the multiple imputation technique to be 5, which is in

line with [37]; see also [59]. In Table 3.1, we report the bias and mean squared error

(MSE) of the estimated uncured probability π̂(z) and the overall survival probability Ŝp =

Ŝp(., .;x, z). These are calculated as:

Bias(π̂(z)) =
1

M

M∑
k=1

[
1

n

n∑
i=1

{
π̂(k)(zi)− π(k)(zi)

}]
;

Bias(Ŝp) =
1

M

M∑
k=1

[
1

n

n∑
i=1

{
Ŝ

(k)
p (Li, Ri;xi, zi)− S(k)

p (Li, Ri;xi, zi)
}]

;

MSE(π̂(z)) =
1

M

M∑
k=1

[
1

n

n∑
i=1

{
π̂(k)(zi)− π(k)(zi)

}2
]
;

MSE(Ŝp) =
1

M

M∑
k=1

[
1

n

n∑
i=1

{
Ŝ

(k)
p (Li, Ri;xi, zi)− S(k)

p (Li, Ri;xi, zi)
}2
]
,

where π(k)(zi) and S(k)
p (Li, Ri;xi, zi) are the true uncured probability and population sur-

vival probability, respectively, corresponding to the i-th subject and the k-th Monte Carlo

run. Similarly, π̂(k)(zi) and Ŝ(k)
p (Li, Ri;xi, zi) are the estimated uncured probability and

population survival probability, respectively, corresponding to the i-th subject and the k-th

Monte Carlo run.

Table 3.1: Comparison of Bias and MSE of the uncured probability and overall survival
probability

n Scenario
Uncured Probability Overall Survival Probability

Bias MSE Bias MSE
SVM LOGISTIC SVM LOGISTIC SVM LOGISTIC SVM LOGISTIC

400
1 -0.126 -0.002 0.083 0.002 -0.000 0.002 0.015 0.002
2 -0.063 0.132 0.042 0.209 0.028 -0.050 0.014 0.063
3 -0.020 0.089 0.019 0.080 0.010 -0.029 0.008 0.013

300
1 -0.126 -0.001 0.088 0.002 -0.001 0.001 0.018 0.002
2 -0.063 0.130 0.046 0.210 0.028 -0.049 0.016 0.063
3 -0.023 0.087 0.022 0.080 0.013 -0.027 0.010 0.014
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From Table 3.1 and looking at the results related to the uncured probability, it is clear

that the bias and MSE of the logistic based EM algorithm is smaller than the proposed SVM

based EM algorithm when logistic regression is the correct model (Scenario 1). However,

when the true model for the uncured probability is not the logistic regression, i.e., when

the models considered in Scenarios 2 and 3 are the true models, the proposed SVM based

EM algorithm produces smaller bias and MSE. In Figure 3.3, we present the bias of the

estimates of the uncured probabilities when plotted against each covariate. On the other

hand, in Figure 3.4, we present the bias of the estimates of the uncured probabilities when

plotted against both covariates.

Looking at the results corresponding to the overall survival probability, it turns out

that when the logistic regression model (Scenario 1) is the true model for the uncured prob-

ability, both SVM based EM algorithm and logistic based EM algorithm produce similar

biases, but the logistic based EM algorithm produces smaller MSE. On the other hand,

when the true model for the uncured probability is non-logistic (Scenarios 2 and 3), the

SVM based EM algorithm results in smaller bias and MSE of the overall survival probabil-

ity when compared to the logistic based EM algorithm. These findings clearly indicate that

the SVM based EM algorithm is able to capture more complex and non-linear classifica-

tion boundaries, where the standard logistic based EM algorithm produces relatively larger

bias and MSE. In Figure 3.5, we present the bias of the estimates of the overall survival

probabilities when plotted against each covariate, whereas, in Figure 3.6, we present the

bias of the estimates of the survival probabilities when plotted against both covariates.

In Table 3.2, we present the estimation results corresponding to the latency parame-

ters. In particular, we compare bias, standard error (SE) and MSE of the estimates of the

latency parameters corresponding to the proposed SVM based mixture cure rate model and

the traditional logistic regression based mixture cure rate model. From Table 3.2, we can

see that the bias, SE and MSE corresponding to the logistic regression based EM algo-
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Figure 3.3: Bias of the uncured probabilities with respect to each covariate for the three
considered scenarios
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Figure 3.4: Bias of the uncured probabilities with respect to both covariates for the three
considered scenarios

rithm is smaller when the logistic regression is the true model for the uncured probabilities

(i.e., Scenario 1 is true). In this case, bias corresponding to the SVM based EM algorithm

is relatively higher. However, when the true model for the uncured probabilities is non-
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Figure 3.5: Bias of the overall survival probabilities with respect to each covariate for the
three considered scenarios
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Figure 3.6: Bias of the overall survival probabilities with respect to both covariates for the
three considered scenarios

logistic (i.e., Scenarios 2 and 3 are the true models), the SVM based EM algorithm results

in smaller bias, SE and MSE. With an increase in the sample size, the bias, SE and MSE

tend to decrease further, which is what we would expect.
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Summarizing the findings from both Table 3.1 and Table 3.2, we can conclude that

the proposed SVM based EM algorithm performs better than the standard logistic regres-

sion based EM algorithm, both in terms of the incidence part and the latency part of the

mixture cure rate model, when the true classification boundary is non-liner and complex.

This clearly demonstrates the ability of the proposed SVM based model to handle complex

non-linear classification boundaries.

Although, in practice, the cured status is unobserved for a real data, we do know

which observations can be considered as cured when we simulate data. Using such infor-

mation on the cured status for a simulated data, we can easily compare the proposed SVM

based mixture model with the logistic regression based mixture model using the receiver

operating characteristic (ROC) curves and the area under the curves (AUCs) for different

scenarios we have considered. In Figure 3.7, we present the ROC curves under different

scenarios for a particular simulated data of size 400. The corresponding AUC values are

presented in Table 3.3. It is once again clear that under Scenarios 2 and 3 (i.e., when the

classification boundaries are non-linear), the performance (or the accuracy) of the SVM

based model is better than the logistic regression based model. Note, in particular, that the

performance of the SVM based model is significantly better under Scenario 2. However,

under scenario 1 (i.e., when the classification boundary is linear), the logistic regression

based model performs slightly better than the SVM based model.

3.4 Illustrative example: smoking cessation data analysis

We further demonstrate our proposed methodology using a dataset on smoking cessa-

tion study [39, 40]. Out of those who relapsed, most did so in the first year of their smoking

cessation trial (see Figure 3.8). Figure 3.9 presents the Kaplan-Meier curve. Clearly, we
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Table 3.2: Estimation results corresponding to the latency parameters

n Scenario Latency Parameter
Bias SE MSE

SVM LOGISTIC SVM LOGISTIC SVM LOGISTIC

400

1
α = 0.5 0.103 0.008 0.052 0.050 0.014 0.003
γ1 = 1.0 -0.498 0.010 0.139 0.123 0.270 0.018
γ2 = 0.5 -0.269 0.004 0.109 0.105 0.086 0.012

2
α = 0.5 0.074 -0.117 0.056 0.038 0.008 0.016
γ1 = 1.0 -0.099 -0.111 0.102 0.109 0.018 0.026
γ2 = 0.5 -0.012 0.740 0.167 0.132 0.022 0.574

3
α = 0.5 0.047 -0.010 0.049 0.045 0.005 0.002
γ1 = 1.0 -0.037 0.257 0.141 0.120 0.018 0.082
γ2 = 0.5 0.085 0.079 0.121 0.106 0.017 0.018

300

1
α = 0.5 0.107 0.007 0.062 0.060 0.015 0.004
γ1 = 1.0 -0.526 0.006 0.164 0.143 0.303 0.021
γ2 = 0.5 -0.281 -0.004 0.131 0.125 0.096 0.014

2
α = 0.5 0.067 -0.116 0.067 0.047 0.009 0.017
γ1 = 1.0 -0.093 -0.102 0.123 0.129 0.022 0.029
γ2 = 0.5 0.009 0.722 0.198 0.164 0.033 0.598

3
α = 0.5 0.056 -0.004 0.060 0.053 0.007 0.003
γ1 = 1.0 -0.036 0.252 0.162 0.141 0.021 0.085
γ2 = 0.5 0.092 0.073 0.142 0.125 0.021 0.022
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Figure 3.7: ROC curves based on simulated data for different scenarios

Table 3.3: AUC values under different scenarios

Scenario LOGISTIC SVM
1 0.983 0.948
2 0.468 0.949
3 0.809 0.965
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can see that the curve levels off to a significant non-zero proportion. This indicates that

there could be a greater likelihood of the presence of cured fraction in the data.

In Table 3.4, we present few important descriptive statistics related to the study. The

proportion of relapses in the SI group for males and females are, respectively, 0.329 and

0.219. The proportion of relapses in the UC group for males and females are, respec-

tively, 0.357 and 0.375. A two-sample z-test reveals statistically non-significant (p-value

= 0.1959) difference in proportion of relapses between the SI and UC groups. A Pear-

son’s χ2 test for independence results in no significant association between gender and

relapse rate (p-value = 0.3426). Further, no significant differences in duration of smok-

ing (p-value = 0.088) and average number of cigarettes smoked per day (p-value = 0.369)

before the study period are found between the relapsed and non-relapsed categories by non-

parametric Mann-Whitney U-test. The distributions of DUR and AVGCIG, categorized by

whether relapsed or not, are given in Figure 3.10.

Table 3.4: Distribution of proportion of relapse, average duration and average number of
cigarettes smoked per year by gender and treatment group

Treatment Group Measure Gender
Female Male

n (%) 73 (32.735) 96 (43.049)
SI p̂r (95% CI) 0.329 (0.221, 0.437) 0.219 (0.136, 0.301)

Avg Dur (SD) 29.506 (6.390) 25.246 (9.667)
Avg Cig (SD) 30.343 (7.115) 29.375 (12.552)

n (%) 14 (6.278) 40 (17.937)
UC p̂r (95% CI) 0.357 (0.106, 0.608) 0.375 (0.224, 0.525)

Avg Dur (SD) 28.214 (8.833) 22.714 (9.160)
Avg Cig (SD) 30.750 (7.502) 26.875 (9.915)

SI: smoking intervention, UC: usual care, n: sample size, %: percentage of the total, p̂r: proportion of
relapse, CI: confidence interval, Avg Dur: average of DUR, Avg Cig: average of AVGCIG, SD: standard

deviation
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Figure 3.8: Number of relapses in between every consecutive annual visits from study entry
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Figure 3.9: Kaplan Meier curve for the smoking cessation data
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Figure 3.10: Distributions of DUR and AVGCIG categorized by the relapsed category
DUR: duration of smoking, AVGCIG: average number of cigarettes smoked per day

In our application, we consider duration of smoking and average cigarettes smoked

as two covariates of interest. We fit the proposed SVM based mixture cure rate model and,

for comparison, we also fit the logistic regression based mixture cure rate model. First, we

draw inference on the incidence part of the model. In Figure 3.11, we plot the estimates

of the uncured probabilities against the two covariates for both models. Clearly, under the

proposed SVM based model, the change in the estimates of the uncured probabilities is

non-monotonic with respect to duration of smoking and average cigarettes smoked. The

estimates of the uncured probabilities vary from 21% – 38%. Under the logistic regression

based model, owing to its rigid model assumption, the estimates of the uncured probabilities

decrease with an increase in both duration of smoking and average cigarettes smoked. In

this case, the estimated uncured probabilities vary from 16% – 51%. However, for fixed

average cigarettes smoked, the uncured probability is a decreasing function of duration of

smoking (β̂1 = −0.319). This may sound counter intuitive, but our finding is in line with
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the finding reported in [55]. On the other hand, for fixed duration of smoking, the uncured

probability increases with an increase in average cigarettes smoked (β̂2 = 0.181).

Now, we turn our attention to the latency part of the model. In Table 3.5, we present

the estimates of the latency parameters and their standard errors for both SVM based and

logistic regression based models. The effects of duration of smoking and average cigarettes

smoked on the latency part is the same for both models. Clearly, duration of smoking and

average cigarettes smoked turns out to be significant as far as the time to relapse of uncured

patients is concerned. Since the estimate of γ1 is positive, the hazard of smoking relapse

increases with longer duration of smoking. On the other hand, since the estimate of γ2 is

negative, it implies that those who smoked less cigarettes tend to relapse faster. In Figure

3.12, we plot the predicted survival probabilities of uncured subjects for fixed duration

of smoking and different values of average cigarettes smoked. In Figure 3.13, we plot the

predicted survival probabilities of uncured subjects for fixed average cigarettes smoked and

different values of duration of smoking.
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Figure 3.11: Estimates of uncured probabilities as a function of duration of smoking and
average cigarettes smoked
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Table 3.5: Estimation results corresponding to the latency parameters for the smoking ces-
sation data

Parameter Estimates SE p-value
SVM LOGISTIC SVM LOGISTIC SVM LOGISTIC

α 0.895 0.875 0.072 0.064 – –
γ1 (DUR) 0.229 0.277 0.124 0.138 0.064 0.044
γ2 (AVGCIG) -0.214 -0.255 0.106 0.130 0.044 0.050
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Figure 3.12: Predicted survival probability of the susceptible for fixed duration as smoker
(x1) and different values of average cigarettes smoked per day (x2)
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Figure 3.13: Predicted survival probability of the susceptible for fixed average cigarettes
smoked per day (x2) and different values of duration as smoker (x1)
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CHAPTER 4

Concluding remarks

4.1 Summary of research

The mixture cure rate model and the promotion time cure rate model are the two most

commonly used cure rate models in the literature. Through a Box-Cox transformation on

the population survival function, the Box-Cox transformation cure rate model provides an

elegant way to unify the two commonly used cure rate models. In chapter 2, we pro-

posed the use of generalized gamma distribution as the distribution of the lifetime for a

particular transformation cure rate model, known as the Box-Cox transformation cure rate

model, which contains the mixture and promotion time cure rate models as special cases.

The generalized gamma distribution contains the commonly used Weibull, lognormal, and

gamma distributions as its particular cases, and hence has substantial flexibility to capture

the characteristics in a distribution that may be easily missed when using these particular

cases. This allows us to carry out formal tests of hypotheses to check for the suitability

of the mixture and the promotion time cure rate models. On the other hand, the general-

ized gamma distribution introduces flexibility that allows us to test for the suitability of

the commonly used lifetime distributions. The proposed GGBCT model provides two-way

flexibility in selecting a correct cure rate model (within the family of Box-Cox transforma-

tion cure rate models) together with a correct lifetime distribution (within the wider class of

generalized gamma distribution) that jointly provides the best fit to a given data. Through

model discrimination studies, we have shown that the likelihood ratio test can discriminate

between models both within the Box-Cox family and within the generalized gamma fam-

ily. The sensitivity analysis results clearly suggest that model mis-specification can lead to
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highly biased and highly inefficient inference on the cure rates. Thus, for a given time-to-

event data, it is important to correctly specify the cure rate model as well as the lifetime

distribution, assuming a completely parametric framework. Through the real breast cancer

data, we are able to illustrate the importance of the Box-Cox family and the wider class of

generalized gamma distribution. The Box-Cox family allows us to reject the specification

of the mixture cure rate model (φ = 1) for the breast cancer data. Furthermore, the gener-

alized gamma family allows us to reject all the commonly used lifetime distributions, i.e.,

gamma, lognormal and Weibull distributions. It turns out that the promotion time cure rate

model (φ = 0) together with the generalized gamma lifetime (q = 0.084) provides the best

fit to the breast cancer data. When compared to the piecewise exponential approach of Yin

and Ibrahim [45], we found that our proposed parametric approach results in a better model

fit.

Support vector machine has received a great amount of interest in the past two

decades. It has been shown that SVM performs well in a wide array of problems including

face detection, text categorization and pedestrian detection. However, the use of SVM in

the context of cure rate models is new and not well explored. In chapter 3, we proposed

a new cure rate model that uses the SVM to model the incidence part and a proportional

hazards structure to model the latency part, given that the form of available data is interval

censored. The new cure rate model inherits the properties of the SVM and can capture

more complex classification boundaries. For the estimation purpose, we proposed an EM

algorithm, where sequential minimal optimization together with Platt scaling method were

employed to estimate the uncured probabilities. In this regard, due to the non availability of

the training data, in the sense that the cured statuses are unknown, we made use of the mul-

tiple imputation based approach to generate missing cured statuses. Due to the complexity

of the proposed model and the estimation method, we calculated the standard errors of the

estimated parameters using non-parametric bootstrapping. Through simulation study, we
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have shown that when the true classification boundary is non-linear the proposed SVM

based model performs much better than the standard logistic regression based model. This

is true with respect to both incidence and latency parts of the model.

4.2 Future work

In this section, we discuss some future research problems that are along the lines of

the research work carried out in this thesis.

4.2.1 Developing new optimization algorithms

In chapter 2, we used a readily available optimization method to calculate the max-

imum likelihood estimates of the GGBCT model parameters. Such an in-built optimizer

may not perform well when the number of parameters to be estimated is high or when there

are parameter(s) that make the likelihood surface flat. As such, it is of interest to explore

other optimization algorithms that can handle the aforementioned issues [20, 60, 61].

4.2.2 Integrating other machine learning techniques with cure rate model

In this thesis, we considered a SVM-based approach in chapter 3 to capture non-

linearity in the data. In this regard, it will be of great interest to study other machine

learning algorithms such as the neural network, k-nearest neighbours and decision trees,

among others. Furthermore, it will be of interest to employ the aforementioned machine

learning algorithms to study more flexible and biologically motivated cure rate models such

as those that look at the elimination or destruction of competing risks after a passage of time

[62, 43, 63].
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4.2.3 Semiparametric machine learning technique-based cure model

In chapter 3, we assumed a particular parametric form for the baseline hazard func-

tion when modeling the latency part of the mixture cure model. In such a case, as we have

seen, the lifetime distribution of the susceptible subjects reduced to a parametric Weibull

distribution. In this regard, we may think of modeling the baseline hazard using a semi-

parametric approach such as the piecewise linear or piecewise exponential function.
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CHAPTER 5

Appendix

5.1 Appendix for Introduction
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Figure 5.1: Three different hyperplanes for SVM
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5.2 Appendix for Chapter 1

5.2.1 Generalized Gamma data generation verification

Let Y ∼ f(y;γγγ), which is defined as in eqn.(2.14). Let S(y;γγγ) be the survival

function of Y , which is given as in eqn. (2.15). Then, we have

V = Y
q
σ ∼ Γ

(
1

q2
,
q2

λq/σ

)
.

Therefore, F (y) = 1− S(y;γγγ) = 1− Γ
(
q−2, q−2(λy)q/σ

)
Γ (q−2)

= A. Note that

Γ
(
q−2
)

= Γ
(
q−2, q−2(λy)q/σ

)
+ γ

(
q−2, q−2(λy)q/σ

)
.

Hence,

F (y) =
γ
(
q−2, q−2λq/σyq/σ

)
Γ (q−2)

.

Let yq/σ = v, then we have

y = vσ/q,

and

A = F (y) =
γ
(
q−2, q−2λq/σv

)
Γ (q−2)

= Fgamma

(
v; q−2,

q2

λq/σ

)
.

Then,

yq/σ = v = qgamma
(
A,shape = q−2,rate = q−2λq/σ

)
,

which implies

v = yq/σ ∼ Γ

(
1

q2

q2

λq/σ

)
.

Therefore,

y =
(
qgamma

(
A,shape = q−2,rate = q−2λq/σ

))σ
q .
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