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ABSTRACT

GPU-BASED MONTE CARLO APPLICATIONS IN RADIATION MEDICINE

Youfang Lai, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Yujie Chi

Co-supervising Professor: Xun Jia

Radiation can be used to image tumor site or kill tumor cells noninvasively,

playing an important role in tumor diagnosis and treatment. Because of the in-

creasing burden that cancer brings to the society, there always exists the demand of

improving imaging resolution and contrast and improving radiation conformity for

therapy. This depends on not only the advances of techniques, but, probably more

importantly, the accurate and efficient modelling of radiation transport, enabling re-

search on proof-of-concept for new tech and more complicated physics and chemical

process in a quantitative way. Monte Carlo (MC) simulation method has been exten-

sively used in medical physics to model particle transport and calculate corresponding

desired information such as dose deposition, because it can describe the physics and

chemical process in a faithful way and handle different geometry configuration flexi-

bly. Recent years have witnessed the success of MC method in guiding design of new

detectors, scattering correction, dose calculation and simulation of DNA damage to

better understand radiation induced damage etc.. Yet, MC simulation still suffers
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from low computational efficiency, which restrict the problem size or complexity for

research and shows difficulty in meeting clinical on-site requirements.

Graphical Processing Unit (GPU) provides a solution to this issue, because it

can accelerate program by parallelism. However, the adaption of MC code into GPU

compatible version is not trivial, considering the possible slowdown or even mistakes

due to improper handle of race condition and thread divergence in parallel program-

ming. It is of great importance to develop stable GPU-based codes and validate

them. The developed codes should hide details like memory operation to users but

allow flexible input, thus being beneficial to both research and clinical communities.

This thesis targets on this purpose and has conducted a lot of code development

and application tests. Specifically, We developed gPET for simulation of positron

emission tomography (PET) and studied performances of designs of PET scanner.

We also developed source models for MRI-LINAC based on gDPM, a code for MeV

photon and electron transport. We pointed out again the defects in determining dose

for biological experiments by gCTD, a code for keV photon transport. The simulated

results deviated from hand-calculated results by look-up table or the assumption that

dose is uniform.

In addition, We did a lot of studies in microscopic simulation, along with the

development of gMicroMC. We gradually added support for electron transport, heavy

ion transport, presence of DNA in chemical stage and presence of oxygen in chemical

stage. We used it to study the parameter sensitivities, showing that the cross section

and the damage model for DNA strand break are still the biggest issues. We studied

the dose inhomogeneity in proton irradiation scenario. DNA damage was shown to

vary in different cells and its relationship to cell survival fraction was updated as well.

We also studied radio-protective effect of hypothermia, where diffusion and chemical

reaction rates were thought be altered by temperature change. The curves of normal
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tissue complexity probability (NTCP) and number of DNA doubles strand breaks

(DSBs) coincided for different temperature. Our results showed that less initial DNA

damage at low temperature was the reason for radio-protective effect of hypothermia.

Further, we studied the radical yield with different oxygen concentrations. We

concluded that oxygen was not likely to be depleted purely by water radiolysis no

matter how large the dose rate was for given dose 30 Gy. We also built a model for

oxygen enhancement on DNA damages. This model was applied to high dose rate

condition again to study the effect of pulse width, pulse interval, dose in the pulse on

the DNA damage yields. It was shown that only when pulse was short enough that

DNA damage yield had a decent reduction. Our results might provide an explanation

for FLASH therapy sparing normal tissues.
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CHAPTER 1

INTRODUCTION

1.1 Cancer and radiotherapy

Cancer is a group of diseases characterized by the development of abnormal

cells that divide uncontrollably with the potential to invade or spread to other parts

of the body. It causes approximately ten million deaths over a year and leads to one

in five deaths worldwide as of 2020 [1]. What is even worse is that the number of

cancer cases is increasing continuously and quickly. Cancer has even been the leading

cause of death in many parts of the world, resulting in a great burden to the society

and demand of effective treatment method [2, 3].

There are a few ways to fight cancer [4]. Surgery could serve as a direct method

to remove tumor part, reducing the threat and possibly allowing the body to heal by

itself. Radiotherapy, which uses radiation to cause DNA damage and thus cell death,

is also a good alternative if we can focus radiation in tumor site. Chemotherapy uses

drugs to prohibit cell proliferation, preventing cancer cells from multiplication, inva-

sion or metastasis and eventually killing cancer cells [5, 6]. Recently, immunotherapy

attracts a lot of attention, which targets on stimulating immune cells rather than

killing cancer cells directly [7]. Among all of these methods, radiotherapy stands out

for its availability, effectiveness and reliability. It applied to almost all kinds of can-

cers [8] and achieved excellent tumor control for non-metastasized tumor. Nowadays,

Approximately 50% of all cancer patients receiving radiation therapy at some point

of their treatment process. It contributes towards 40% of curative treatment for can-
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cer [8–10]. Substantial numbers of patients with common cancers achieve long-term

tumour control largely by the use of radiation therapy.

Application of radiation in cancer management dose not have a very long his-

tory, but it has witnessed fast evolution over the last few decades [11–13]. Short after

the discovery of X-rays by Wilhelm Roentgen at 1895, radiation was used to treat

breast cancer, gastric carcinoma [12] and skin cancers [14], although poor knowledge

was known on how it worked. Almost in the same time, Antoine Becquerel discovered

natural radioactivity and Curie couples discovered radium and polonium, indicating

a new era to use radioactive seed as internal radiation source (brachytherapy) for can-

cer treatment. Later due to the development of particle accelerators, particles could

be accelerated to energies exceeding those occurring in natural radioactivity with a

controllable way [15, 16]. Especially, the microwave accelerator for electron could

generate stable MV electron beam easily, laying the foundation of a most important

clinical modality – LINear ACcelerator (LINAC). The development of accelerator

also gave birth to electron therapy, neutron therapy and heavy ion therapy including

proton therapy [17]. The last one – heavy ion therapy is gaining more and more at-

tention now because of their unique dose-depth curves and higher relative biological

effect (RBE), which allows for better dose delivery in tumor while sparing normal

tissues. Nowadays, radiation therapy has become an important component of cancer

treatment. Particularly, the technology advances in image guidance and treatment

delivery techniques enables radiation targeting on tumor more precisely while re-

ducing the margins and high gradients outside the target, for example Stereotactic

radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT) [18] and pencil

beams for heavy ion therapy [19].
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1.2 Radiobiology and imaging for radiotherapy

The role that radiotherapy plays in cancer treatment emphasizes the importance

of improving understanding of radiotherapy. In fact, radiation oncology has always

been at the interface of physics, engineering, biology and medicine. This is because

radiation kill cells regardless whether the cell is abnormal or not. Hence, it is of great

prominence to deliver more radiation damage into tumor cells while sparing normal

tissues as much as possible to achieve better performance of treatment. To achieve

this goal, we should first identify the quantity that indicates the level of radiation

damage so that we could optimize a treatment plan. Second, we must have some

label techniques that could help us differentiate tumor cells from normal tissues.

1.2.1 Quantification of radiation damage

Historically [20], exposure, number of electron freed in air by X-rays per unit

mass, was first introduced to describe the radiation intensity. But it is neither ap-

plicable for other radiation types like proton beam nor related to radiation received

by the medium 1, being not a good indicator. Later, concept of absorbed dose, en-

ergy absorbed by unit mass of medium, was proposed. This concept well represents

radiation damage from physical viewpoint. Human body could be viewed as water

and the average ionization energy per event could be obtained. Thus, absorbed dose

gave average number of ionization events per unit mass equivalently, which could be

related to number of chemical bond breaks, describing the radiation damage to initial

system. It indeed achieved great success in describing many variables, for instance

linear quadratic (LQ) model for cell survival [21, 22]. Dose values are widely used in

determining safety thresholds and medical standards as well.

1Transformation might be conducted but there exists restrictions
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On the other side, experiments have found that different radiation types, for

example X-ray and proton, may result in different biological outcome even when dose

is same. Oxygen level has also been shown to critically affect cellular response to

radiation. The existence of oxygen could increase cell kill by 3-fold [23, 24]. These

findings push us to investigate deeper and understand cellular behavior better.

Modern developments in cellular and molecular biology have shown that the

primary target of radiation damage is DNA through many experiments [25–27]. For

instance, integration of radiation source into cell nucleus greatly enhanced the cell

death [26]. The complete picture for radiation damage should include chemical part as

well. Besides damaging DNA molecules directly, source particles mainly interact with

water molecules since water is the most abundant component in cell, making them

ionized or excited through electromagnetic interactions. Heavy ions and neutrons

could also induce nuclear reactions. The ionized or excited water molecules then need

to decay into ground state, through which numerous radicals are generated. One of

them, hydroxyl, needed to be specially pointed out because they could cause DNA

damage by abstracting hydrogen atoms from DNA molecules, particularly on sugar-

phosphate group, which could eventually cause DNA strand breaks (SBs). Other

radicals like H . and hydrated electron eh that could also cause DNA damage, but

it would be mainly on base pairs due the difference of chemical reaction rates. The

base damage could be transformed into SBs in some studies [28, 29]. These SBs,

including those induced by energy deposition directly, determine the DNA damage

patterns, i.e. single strand breaks (SSBs) and double strand breaks (DSBs). Upon

the SBs are formed, cells would evaluate the circumstances and determine whether

to undergo apoptosis, repair process or ignore the damage. This is a complex signal

cascades, which requires participation of a lot of proteins [4]. DSBs are thought to
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be the principal lethal factor [30] for they are harder to repair. It will be very helpful

if one can simulate DNA damages from a given beam geometry.

1.2.2 Medical imaging techniques

Besides the increasing deeper understanding of radiobiology, the development of

imaging techniques is another important reason for ensuring quality of tumor treat-

ment. With improvements of de-noising and reconstruction in both hardware and

software aspects, the resolution of current medical images could easily reach 1 mm,

increasing the diagnosis accuracy. Moreover, the technique advances also enable the

real-time image guidance [31], which is better for correcting uncertainties due to dy-

namic movements.

There are many medical imaging techniques that can assist diagnosis or treat-

ment of cancer in a non-invasive way. The concerning techniques in this thesis are

X-ray radiography, X-ray computed tomography (CT), Positron emission tomography

(PET) and single photon emission computed tomography (SPECT) because radia-

tion is involved. Their mechanisms have been well explained in many references [32,

33]. Here, we just briefly summarize them for a completeness. The above methods

can be divided into two categories based on the mechanisms. One is transmission

tomography, including X-ray radiography and X-ray CT. The other one is emission

tomography, including PET and SPECT.

For transmission tomography, the essential part is photons that go through a

medium may undergo different interactions such as Compton scattering, photoelec-

tric effect, which causes the reduction of number of photons travelling in the same

direction as its original one. Mathematically, the beam intensity I ′ after a medium

with thickness l should be I ′ = I0 ∗ e−µl where I0 is the original intensity and µ

is called linear attenuation coefficient. µ is a physical property and can be used to
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distinguish materials. When the path consists of different materials, one can divide

the path into many small segments and view it as uniform in each segment. Thus,

I ′ = I0 ∗ e−
∑
i µili . Each line from source to detector unit defines a line integral of µ.

By rotating photon source and detector, equations of line integral of µ are obtained

and mathematical methods could be applied to find their values. Finally, 3D figure

of the imaged region could be obtained.

As for emission tomography, the imaging mechanism is trying to find the dis-

tribution of radionuclides. Typically, specially designed drugs with radionuclides can

accumulate in tumor sites. Hence, the imaging of radionuclides is also an imaging of

tumor site. Take PET for example [34], tumor consumes glucose faster than normal

tissues. Then glucose analogue FDG, labeled with 18F , will accumulate in tumor site.

The emitted positron only travels several mm from its emitter and annihilate to two

photons that go towards almost opposite direction. One photon pair gives possible

location of source along the line that connects the pair. And many photon pairs de-

picts the region that source located, namely the profile of tumor site. The advantage

of using labeled molecules also provides us a way to track drugs dynamically.

The mechanism described here is definitely too ideal. In practice, source size,

scattering correction, beam hardening etc. should be considered for CT and positron

range, non-linearity, scattering etc. should be considered for PET, for example. All

of these factors need to be modelled carefully and correctly. The model needed here

and that for calculating dose distribution or DNA damage are quite similar. The

purposes of these models are trying to transport particles and obtain information like

distributions of energy depositions and locations, particle speeds and production of

secondary electrons along the path. In this way, either dose distribution in a phantom

or photon energy deposition on a detector after a phantom could be obtained and

analyzed. And this is why magnetic resonance imaging (MRI), ultrasonography and
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other imaging methods are not listed here. Nevertheless, it requires the modelling

method to be faithful in describing physics and flexible in describing geometry. And

Monte Carlo method can help a lot in these two aspects.

1.3 Monte Carlo Method in radiation medical physics

1.3.1 Definition and methods

Monte Carlo (MC) was described by Metropolis and Ulam [35] as ”a statis-

tical approach to the study of differential equations, or more generally, of integro-

differential equations that occur in various branches of the natural sciences.” The

core of outlined MC schema for a practical physics problem is to formulate physics

problem mathematically and relate quantity of interest with statistical parameters

of the problem such as mean value of a distribution [36]. For example, one of the

important step in transporting particles is to find step length s, provided we know

the mean free path l at current point. This physics problem could be formulated as

drawing samples from a distribution, namely P (s) = e−s/l∫
e−s/l

.

Basically, the aims of MC methods are try to solve two kinds of problems [37]:

1. generate samples from a given probability distribution p(x);

2. estimate the integration of a function under a given probability distribution

p(x), namely

f =

∫
dxp(x)f(x). (1.1)

And the second one could actually be solved by solving the first one. Estimator

f̂ = 1
N

∑
x∼p(x)

f(x), where x ∼ p(x) means drawing samples from P (x) and N is the

sample size, is an unbiased estimator for f and variance approach 0 when N goes

to infinity. So, the essence of MC methods is to draw samples from a distribution

related with a physics problem.
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There are many MC methods to draw samples. Here, we only briefly introduce

four methods that are employed in this work.

Direct inverse method Suppose we could integrate p(x) to find the cumulative distri-

bution function P (x)

P (x) =

∫ x

−∞
f(t)dt. (1.2)

To generate samples X from f(x), we could sample ξ from U(0, 1), where U(0, 1)

means uniform sampling between 0 and 1. Then,

X = P−1(ξ) ∼ f(x). (1.3)

P−1 means the inverse function of P .

Rejection Sampling Suppose q(x) is a distribution that could be easily draw samples,

for instance uniform sampling. And q(x) > p(x) for each point x. Then, we could

draw sample X from q(x) and ξ from U(0, 1). If ξ > p(X)/q(X), we abandon the

sample and redo this process. Otherwise, we accept it. The remaining sequence of X

follows distribution p(x).

Metropolis sampling Suppose the range of x, where p(x) is defined, is known and

denoted as Rx . In other words,
∫
Rx

p(x)dx = 1. The sequence of samples after n times

sampling is {X1, X2, · · · , Xn}. For the n+ 1th sampling, we draw ξ uniformly from

Rx and have a = p(ξ)
p(Xn)

. If a > 1, we accept ξ. Otherwise, we draw another sample

ψ ∼ U(0, 1), we accept ξ if ψ < a. Here, ”accept” means xn+1 = ξ.

Importance sampling This is actually not a method to draw independent samples,

but to calculate integrals. Suppose both p(x) and q(x) are normalized, we then have

f̂ =
1

N

∑
x∼p(x)

f(x) =
1

N

∑
x∼q(x)

p(x)

q(x)
f(x) (1.4)
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1.3.2 Applications in medical physics

Advantages The interest in MC method in radiation medical physics has grown

rapidly [38–40]. One reason is that the rising need of accurate numerical methods for

a variety of transport problems. For example, treatment planning with constraints

on 3D dose distributions. Dose calculation error is suggested to not exceed 2% [36].

From above text, we know MC method provide accurate description solution to a

problem that could be formulated. Another advantage of applying MC method is

the flexibility in describing geometry by voxelization, namely gridding the space. For

example, the voxelized geometry could be consistent with the step-by-step transport

schema of MC. Although it increases the difficulties in dealing with crossing voxel

boundaries, voxelization is an effective method to describe geometry with any shape.

Classification MC simulation in medical physics could be generally divided into

two categories based on the step length: macroscopic one with step length of mm or

cm scale and microscopic one with step length of µm or nm scale. The simulation

schemes for two scenarios are pretty different. The macroscopic simulation usually

transport particles to get dose deposition in a large volume, for instance, dose de-

position in side patient body with a therapeutic MV beam. For such simulations,

scattering events are merged so that large step size could be used. The strategies of

photon interaction with medium, continuous slowing down approximation for trans-

porting charged particles etc. have been extensively discussed in many works [36,

39–45] and therefore are omitted here. The microscopic simulation usually transport

charged particles to get the so-called track structure [46], namely detailed information

for every scattering events, for example, scattering event types, status of excited water

molecules. The step size is thus very small to allow explicit simulation of each events.

From the track structure, one can calculate the quantities for microdosimetry [47–49]

or further simulate DNA damages with proper DNA structure [50–52]. The usage
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of microscopic simulation in calculating DNA damages will be further elaborated in

chapters 4 and 5.

Disadvantages MC simulation is a computationally demanding task in radiation

medical physics. For dose calculation purposes, although MC is an accurate method,

it remains accurate in terms of statistical context. A large number of particle histories

have to be simulated to achieve a desired level of statistical precision. Further, the

increasing number of voxels with increasing problem size putting an even more heavy

burden on computational efficiency. As for the computations of track structure, the

continuous slowing down approximation for charged particles cannot be used, and

the event-by-event simulation scheme substantially increases the number of compu-

tational steps. In addition, reactions among the large number of radicals and DNA

structure with billions of base pairs (bps) further increase computational complexity

dramatically for interacting many-body problem, not to mention that such process

has to be gone through thousands times for temporal length spanning multi magni-

tudes. Over the years, improving the computational efficiency of MC simulations to

facilitate large-scale research uses and clinical applications is always an active field

[40, 53].

1.4 GPU applications

One straightforward way to improve the computational performance is to apply

parallelism. If the task could be divided into several small tasks with same physics but

different problem size, one may distribute those small tasks to different computational

units. Therefore, a decent speedup could be expected. For examples, if a dose

calculation requite 1010 photons to achieve required dose uncertainty levels, we might

use 100 CPU cores and each of them runs 108 photons. At last, the summed dose
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deposition from 100 CPU cores is equivalent to running 1010 photons in one core, but

the computational time is expected to be only 1
100

of that for one core.

GPU is a computing architecture originally designed to handle extensive com-

putational tasks in computer graphics, such as rendering images in computer games.

But later, this design was found to be suitable for many scientific problems, for ex-

ample, matrix multiplication [53, 54]. GPU offers several advantages for applications

in radiotherapy. First, GPUs offer a relatively low-cost solution than CPU clusters.

One common GPU card costing only thousands of dollars could easily have thousands

of computing units while it is not that easy to have thousands of CPU cores. Second,

GPU is very easy to install and maintain as it can be integrated into personal desk-

top. Third, the GPU performances have been greatly improved and is continuously

evolving [55]. And due to the technology advances, the latent due to data transfer

in GPU computing is usually negligible because of the high bandwidth between the

CPU and GPU memory and between GPU memories.

However, previously developed MC packages in CPU cannot be launched on

GPU without modifications. Improper use of GPU may hurt the computational effi-

ciency due to possible memory transfer latent and thread divergence. It is necessary to

develop GPU-specific packages, including rewriting codes in a programming language

compatible with GPU, redesigning the data structure and even algorithm for better

performance of parallel computation. Additionally, recent years witnessed the great

advance of GPU hardware, for instance, improvement of communication between

multi GPUs. It requires developments and very studies for these technique advances.

These issues have posed significant challenges for the developers and solving these

problems has been an active research topic.
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Table 1.1. Brief summary of GPU-based MC packages

Applications Package name Reference

Photon only

Light transport
CUDAMCML [56]
GPU-MCML [57]
CUDAMCFL [58]

Light Imaging

MCGPU [59]
gCTD [60]
gDRR [61]
gMMC [62]

Brachytherapy
bGPUMCD [63]

gBMC [64]
irtGPUMCD [65]

Coupled photon-electron transport
GPUMCD [44]

gDPM [42, 66]
GMC [67]

Proton and heavy ions
gPMC [68, 69]
goCMC [70]

Microscopic simulation
MPEXS-DNA [71]

gMicroMC [52, 72]

1.5 Purpose of this work

As summarized in Table 1.1, there are a lot of GPU-based MC packages target-

ing on general macroscopic dose simulation, especially with photons and electrons.

Instead, there are few GPU-based MC packages on microscopic simulation. Partic-

ularly, there is no open-source package for microscopic simulation. Thus, this work

will focus on two aspects:

1. For macroscopic simulation, we try to provide more GPU-based applications for

specific scenario. It should be more practical and clinical.

2. For microscopic simulation, we develop new GPU-based package and apply it

to DNA damage calculation, expecting more fundamental research on related

phenomena with a prospect of first principle.
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With the above two aims bear in mind, this thesis is structured as following. The

thesis involved could be divided into two sections. One is for macroscopic simulation

with GPU packages, which is related to chapters 2 to 3. We will discuss the devel-

opment of gPET in chapter 2, which is dedicated to positron emission tomography

(PET) simulation. We used it to do a systematic study on the scanner performance

and scanner geometry designs. Later in chapter 3, we discuss a source model based on

our previous gDPM package. This source model is specifically designed for LINAC.

We will also discuss the issue of dose inaccuracies in many biological experiments

based on our previous gCTD package.

The other section is microscopic simulation with GPU-based package developed

by us, which is related to chapter 4 to chapter 8. In chapter 4, we discuss our ini-

tial development of microscopic simulation package gMicroMC, including the electron

transport model, DNA model and DNA damage model. We will also talk about the

parameter sensitivity. In chapter 5, we will describe our continuous development on

gMicroMC for the support of proton transport and concurrent transport of DNA

structure during chemical stage. In chapter 6, we then discuss two applications of

gMicroMC in sophisticated scenarios. One is the nonuniform DNA damage distri-

bution for proton case and the attempt to connect number of DSBs with SF. The

other is the attempt to explain radioprotective effect for hypothermia. In chapter 7,

we further update gMicroMC with oxygen included in chemical stage. We use it to

study the variation of radical yield under FLASH condition and point out that oxygen

is not likely to be depleted by radicals. But, this simulation is done for pure water

radiolysis. In chapter 8, We build an OER model on DNA damage enhancement that

is suitable for x-ray and proton cases. At the end of this chapter, we reinvestigate

FLASH in terms of the change of number of DNA DSBs by incorporating oxygen

diffusion and recovering effect.
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At last, we will give a short summary about this thesis and future directions in

Chapter 9.
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CHAPTER 2

GPU APPLICATIONS FOR MACROSCOPIC SIMULATIONS

2.1 Developments for gPET

2.1.1 Background

Positron emission tomography (PET) has increasing importance in modern

medicine for both diagnostic and therapeutic applications. Monte Carlo (MC) sim-

ulation methods are essential tools for refining current PET systems and developing

future systems. In the past few decades, MC simulation has been used extensively

for optimizing PET hardware/prototype designs, improving image reconstruction al-

gorithms, and removing image artifacts, etc. [73–77]. In addition to the conventional

PET applications, there is an increasing interest in MC simulations for advanced

PET applications [78], for example, the MC-simulation-assisted PET system design

for online and offline beam verifications in particle therapy [79–85].

To meet the tremendous simulation demands from both conventional and ad-

vanced PET applications, several MC packages for PET have been developed. These

can be divided into two categories, based on the purpose for their development: the

general purpose and the PET-dedicated. The general purpose MC packages, such as

Geant4 [86], EGS4 [87] and MCNP [88], are known for their accuracy and versatil-

ity. However, there are two obstacles for the wide application of these packages in

solving practical PET problems: the complex customization process and the unsat-

isfyingly long execution time for routine clinical usage, since they were all built on

CPU platforms. PET-dedicated MC simulation packages, such as GATE [89], PET-

SIM [90], SIMSET [91] and PeneloPET [92], usually have user-friendly designs with
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pre-customization of the general-purpose-based packages to PET/SPECT specifica-

tions. However, the underlying physics cores of these packages are still the same as

those in the general-purpose-based ones. Hence, the non-efficiency problem continu-

ally exists.

To overcome the obstacle of long execution time, a cost-effective option is to take

advantage of the parallel computing via advanced graphics processing units (GPUs).

Over the past several years, GPU-based MC simulations for general imaging and ther-

apeutic applications have enjoyed rapid advancements [despres˙review˙2017, 42,

93, 94] However, these packages were all general photon/electron transport focused,

instead of PET-dedicated. For example, in the hybrid GPU/CPU Geant4 package

[94] for PET applications, although the photon transport inside the phantom was

realized via GPUs, the pre-processes, from radioactive source decay to positron anni-

hilation, and the post-processes inside the PET detector, from energy deposition to

coincidence-pair generation, were still performed on CPUs, which limited the overall

speed of PET simulations.

To address this issue, we developed a GPU-based, accurate and efficient MC

simulation tool, gPET, dedicated for PET simulation. gPET has three unique fea-

tures. First, we used a combination of parametrized (for detectors) and voxelized

(for patient phantoms) geometries to make gPET applicable for various geometry

setups. Second, we used GPU computing to accelerate not only gamma transport,

but also other computationally intensive processes, including positron decay, trans-

port and annihilation, and complex PET signal processing inside the detector. Third,

we made various input and output quantities available for users such that different

aspects of the PET simulation can be examined flexibly.
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Figure 2.1. Flowchart of the gPET package. The parallelization on the GPU terminal
(dash boxes) includes gamma pair generation (green), gamma transport inside the
phantom (orange), and gamma signal detection and processing inside the detector
(blue)..

2.1.2 Methods and materials

gPET is built on the NVidia CUDA platform. Its overall workflow is illustrated

in Figure 2.1. The simulation starts with the geometrical and physical data initial-

ization, data transfer from CPU to GPU, and random number seed generation. The

physical simulation process, mainly carried out by the parallel threads at the GPU

terminal, is performed for each given history and categorized into three functional

modules: 1) gamma pair generation, including positron emission nuclei (PEN) decay,

and positron transport and annihilation; 2) gamma transport inside the voxelized

phantom, governed by the gDPM algorithm [66]; and 3) signal detection and process-

ing inside the parametrized detector [95], which includes not only electromagnetic

processes such as hit recording, but also detector responses such as spatial, tempo-
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ral, and energetic resolutions. The detector consists of three levels: panel, module

and crystal scintillator (Fig. 2.2). The user can control multiple inputs and outputs

for the simulation. The adjustable inputs are mainly particle source-related, includ-

ing PEN, positron, and gammas. The optional outputs include intermediate photon

phase space files (PSFs), hit events (initial energy deposition events inside the de-

tector by incident gammas), single events (detectable energy deposition events after

considering the detector response), and coincidence pairs (paired detectable events).

After the physics process, the code ends with a data transfer and memory release.

The next three subsections will describe the three functional components in detail.

2.1.2.1 Gamma pair generation

Positron Decay from PEN In gPET, if a PEN source is of simulation interest,

a user can provide its distribution in a predefined format with voxelized geometry.

For each voxel, the following quantities are needed: PEN types, radiation activity (in

Bq) of each type, the voxel sizes (in mm3), and the coordinates (in mm) of the voxel

center in the global coordinate frame. It is worth mentioning that under this input

format, a point PEN source can be simply defined by setting the voxel size to (0, 0,

0). PENs of common clinical or research interests, like Fluorine-18 (18F) in nuclear

medicine [96], Carbon-11 (11C) and Oxygen-15 (15O), etc. in hadrontherapy [97] are

supported in gPET. The branching ratio of the positron emission mode Γe+ and the

half-life t1/2 are pre-generated based on data from the ENSDF database [98].

The total number of decayed atoms can be calculated from the source distri-

bution and simulated time interval. If the total number is too large, smaller time

slice will be used. Each thread deals with an atom. If the sampled decay time, which

follows the exponential distribution, is inside the time slice, this atom will be dead.

And if another sampled number from a uniform distribution is less than the branch
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ratio Γe+ , a positron will be generated. Its position is sampled uniformly from the

voxel related to it and its energy is sampled from a polynomial-fitted energy spectrum,

whose parameters are extracted from [89] or given by the user.

Positron Transport After the decay process, the created positron can transport

for several millimeters depending on its kinetic energy before it annihilates with an

electron. It is important to develop reliable positron-range estimation methods for

two reasons. First, since the positron generated from the decay process typically

has a broad energy spectrum, a simple point-spread function-based estimation is not

accurate. Second, when an inaccurate positron range is used, PET reconstruction

with resolution recovery algorithms will introduce artifacts into the reconstructed

image due to inaccurate range correction [99, 100]. Historically, there have been

methods for simulating positron range, including analytical-function-based methods

[99, 101] and MC-simulation-based methods [86, 92, 102]. In gPET, we adopt the

empirical Palmer and Brownell’s algorithm [103], which is also used in simSET [101].

The readers are encouraged to refer the paper of Harrison et al. [101] if the details of

method are of interest. In gPET, the phantom information needed for the positron

transport and next-step gamma transport is pre-customized by the user. Patient

phantom from CT scanning in voxelized geometry is supported. Based on its location

and orientation in the global coordinate, it can be easily related to the PEN/positron

locations to provide material type and density information.

Positron Annihilation After simulating the positron range, we simulate the

positron annihilation process. Non-collinearity of the generated gamma pairs, which

can result from the thermal kinetic energies of the positron-electron pairs during

annihilation, is another factor that causes blurring in the PET reconstruction. In

gPET, the non-linear property is sampled from a Gaussian distribution with mean

m = π and standard deviation σ = 0.0037rad (= 0.50FWHM) for the gamma pairs,
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while the energies for both gammas remain at 511 keV for simplicity. This process is

combined with the previous positron transport process and executed by the same GPU

parallel thread. Since two photons are generated per thread constantly, a continuous

memory space is pre-created with memory addresses 2tid and 2tid + 1 for the two

photons generated in the thread with index tid. The corresponding gamma indices

are then 2n • Npt + 2tid and 2n • Npt + 2tid + 1 if the gamma pairs are generated in

the (n+1)th time slice. For each gamma generated, the following quantities are used

to tag its state: the three components of current position, the three components of

moving direction, energy, global time-of-flight (TOF) and its index. The global TOF

is defined in the global time frame, with t=0 corresponding to the moment when the

PENs are at their initial read-in activities. During the next-step gamma transport,

all other tags of the gamma will also be updated accordingly.

2.1.2.2 Gamma transport inside the voxelized phantom

In the gamma transport module, gDPM algorithm is utilized to govern the

physics transport. Photon scattering and absorption effects are considered. The

physics cross-sections are well validated for photons above several keVs in tissue-

equivalent materials [41, 42]. It’s also worth noting that in gDPM, the Woodcock

method (Woodcock et al., 1965) is applied to get rid of the frequent boundary checking

issue when there is an inhomogeneous area along the photon traveling path.

Once the gammas escape from the phantom boundary and reach a predefined

surface, gammas with the tags mentioned above are recorded as a transient PSF,

which can be saved as an intermediate output by the user.
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Figure 2.2. Illustration of the three-level configuration for an eight-panel PET detec-
tor: cuboidal panel, module, and crystal. The local coordinate of one panel is defined
based on the front surface (the surface facing the phantom) of the cuboidal panel, as
indicated by OXY Z ..

2.1.2.3 Gamma detection and processing inside the PET detector

In this gamma detection and processing module, we especially consider two

components for the MC simulation. First, in advanced PET detection systems, fine

structures such as discretized crystal scintillators are used to improve the spatial

resolution. To reflect these structural details, we configure the PET detector in

parameterized geometry [95]. Second, the electronic response of detector need to

be considered to get a comparable results with experiment. In gPET, we utilize

the gDPM algorithm [66] to govern the electromagnetic process. We then develop a

functional module, named “digitizer”, to model the detector response process to form

the detectable signals. The details of these geometrical and physical developments

are listed as follows.
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Parametrized Detector Configuration We configure a detector with fine struc-

tures in three levels: panel, module and discretized crystal scintillator, labeled as 0,

1 and 2, respectively (Fig. 2.2). As shown in Figure 2.2, a single cuboidal panel with

a detecting area of lp × wp and a thickness of hp is divided into N l
m × Nw

m × Nh
m

repetitive modules. Each module has a size of lm × wm × hp with an interval

of lmi × wmi × hmibetween each two of them. Each module is then divided into

N l
c×Nw

c ×Nh
c repetitive crystal scintillators, with each crystal having size of lc×wc×hp

and the repetition interval of lci × wci × hp between them. Here, though “crystal” is

used to represent the smallest repetition unit, a PET detector can be configured with

other materials in gPET.

With the three levels hierarchy and the repetition property of a detector, we can

easily locate and index the gamma position during its transport inside the detector.

To do this, we define a local coordinate frame for assistance (OXY Z in Fig. 2.2). We

then transform the locations and directions of the gammas from the global coordinate

O′X′Y ′Z′ to the local coordinate OXY Z based on the transform matrix between the two.

During the gamma transport, we update its location in OXY Z based on its current

position, direction and the sampled free travel length. We then index the locations

of the gammas in panel, module and crystal levels. For example, we calculate the

module index along the X direction for a gamma located at [x y z] in OXY Z as:

Ixm = floor

[
x−

(
−xp

2

)
xm + xmi

]
, (2.1)

with
(
x−

(
−xp

2

))
− Ixm ∗ (xm +xmi) ≤ xm, where floor(x) denotes the largest integer

that is smaller than or equal to x.

Altogether, we use 21 floating numbers to configure a single cuboidal panel

with fine structures, 4 floating numbers to define the material type and density for

the smallest repetition unit and its interval, and 12 floating numbers to define the co-
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Figure 2.3. Illustration of an irregularly shaped panel (left), which can be
parametrized in two steps: the fake cuboidal region (in green box) for fast repeatable
configurations and the extra restriction from the cylindrical surface to eliminate the
blue region from the real detector volume. .

ordinate transform matrix. Totally, we use 37 floating numbers to describe a cuboidal

panel with sufficient support for the gamma transport inside it.

In addition to the cuboidal panel type, gPET also allows user-specified panels

with irregular geometry, as illustrated in Figure 2.3. In this case, the effective de-

tecting sizes of the panel, modules and crystals vary from one position to another,

making it hard to adopt the repetition property in detector configuration. Conse-

quently, more memory is required to accurately describe the panel geometry, and it

can be more complex to navigate the gamma transport inside it than in the cuboidal

case.

To solve this problem, we develop a novel method in gPET to efficiently manage

the geometry of irregularly shaped detectors. The idea of this method is to model

the given detector with a repeatable cuboidal mother volume, and then obtain the

effective detection region with additional boundary constraints. Take the OPET

system shown in Figure 2.3 as an example. As indicated by the blue box in Figure

2.3, we make a mother volume as a least expansion over the given detector, and
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correspondingly extend the inner detecting unit, like the single crystal scintillator, to

fill its volume. A local coordinate is then defined based on the mother volume the

same way as for the regular cuboidal detector. In this way, we resume the repetition

property of the detector. When a particle enters this volume, its location can be

easily indexed in different detector levels. A cylindrical surface boundary is then

added for constraint as shown in Figure 2.3 to simulate the curved inner surface

of effective detector region. With the boundary constraint, though the geometric

repetition property is resumed in the non-effective region, the material will be set to

air for this region. In the current version of gPET, we define the boundary in the

local coordinate with quadratic functions as:

f (x, y, z) = a1x
2 + a2y

2 + a3z
2 + a4xy + a5yz + a6xz + a7x+ a8y + a9z + a10. (2.2)

The sign of ai for i=1, 2,. . . , 10 is defined in a way that for an arbitrary point (x,

y, z) belonging to the effective detector region, f (x, y, z) > 0. With this definition,

the parameters for the cylindrical surface boundary shown in Figure 2.3 are a1 =

a3 = 1, a9 = −2

√
R2 − (Pl

2
)
2

and a10 = −(Pl
2

)
2
, with the rest ai’s being zero. All

ai(i = 1, 2, . . . , 10) are prescribed from user input. With these 10 floating numbers

to represent one quadratic boundary, we need 10N b extra floating numbers for a

panel having Nb boundaries. Plus the 37 geometric parameters for the repetition

component configuration, we use 37 + 10N b floating numbers to completely describe

an irregularly shaped panel.

After configuring the single panel, we form the entire PET imaging system in

two formats: repetitive or non-repetitive. For a repetitive detector, we add another

three quantities in 5 floating numbers, the repetition axis (3 floating numbers), rep-

etition angle, and repetition times, leading to a total of 42 or 42 + 10N b floating

numbers to represent an entire PET system. For the non-repetitive detector, each
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panel has its own geometry, hence, 37 or 37 + 10N b floating numbers per panel would

be required, leading to a total floating number of (37+10Nb)×Np, with Np the num-

ber of panels, to configure a detector. In both cases (repetitive and non-repetitive),

the detector geometric information is manageable by the GPU shared memory, which

is much faster than the global memory. In this way, we can fully accelerate the

gamma transport process in gPET by maximally reducing the time consumption in

the frequent boundary data accessing subprocess.

It is worth mentioning that the above method for PET detector configuration in

both cuboidal and irregular shapes works for monolithic scintillators. This is because

a monolithic scintillator is just a special configuration with one crystal per module

and one module per panel.

Gamma Detection and Digitizer After accurately defining the geometry of a

detector in gPET, we simulate the gamma detection process in two stages. Stage 1

is to record the “hit” events generated from the electromagnetic processes and stage

2 is to mimic the response of the electronic devices to form singles and coincidence

pairs with a digitizer process.

Specifically, in stage 1, we feed the GPU parallel threads with gammas from

the transient PSF in a one-gamma-per-thread format. In each thread, the gamma

is transported with its energy deposition event recorded as a “hit”. The process is

repeated until its kinetic energy is lower than the cutoff energy or the gamma escapes

the detector. For each hit event, quantities such as the global time for the event

to happen, the index for the parent gamma, the index of the physics process for its

generation, its energy, 3D location, and indexed location (crystal index, module index

and panel index), are recorded. When a user chooses hits as an output, the hit events

will be recorded in a GPU global memory with a predefined length of n ∗Npt, where

n is the estimated average hit yielding rate per parent gamma for the pre-defined
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system. Otherwise, the hit generation process will only be processed in the local

GPU memory for each thread.

As for the digitizer process in stage 2, gPET utilizes similar logical module

as in GATE, which contains six components: adder, readout, spatial and energy

blurs with lower-bound energy cutoff, dead time, energy window and coincidence

sorter. Considering that the electronic readout parts can be incorporated with the

scintillation detector in different layers, a user-specified level for the “readout” and

“dead time” subprocesses (level indices 0, 1 and 2 for panel, module and crystal,

respectively) can be prescribed from user input. A new parameter, “site ID” Sj for

an event j, is then defined and used to tag the recorded events, as

Sj =
d−1∑
i=0

Ii ∗
d∏

k=i+1

Nk + Id, (2.3)

where d is the given “readout” or “dead time” level, Ii (for i = 0, 1, . . . , d) is the

ID for the event at level i, and Nk (for k = i + 1, . . . , d) is the total count of the

detector substructures in the kth level. With this linearized ID, when two events are

found to have the same site ID, they will be treated as belonging to the same unit at

the defined level.

The details of the digitizer process are then described as follows. 1) Adder The

first digitizer module adds up the hit events belonging to the same parent gamma and

with same site ID on the crystal level to form a single “pulse.” Hence, for each thread

dealing with one gamma, a local memory is used to store the pulses belonging to

different site IDs. When a hit is recorded, its site ID will be compared to the existing

pulse list in the local memory. If the same site ID is not found, the hit event will be

added to the end of the pulse list. Otherwise, it will be added to the corresponding

pulse, with the pulse energy updated as a direct sum of the list energy and the new

hit, and the position updated as an energy-weighted average of the two positions.
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2) Readout When the adding process is finished and the readout level from the

user input list is different from the crystal level, the readout process is performed

in the same thread. The site ID is calculated for each pulse. The pulses with the

same site ID are added again by either an “energy average” or a “winner takes all”

policy. The former treats the pulses the same way as in the adding process, while

the latter only keeps the pulse with the greatest energy. After the readout process,

the pulse list in the local memory of each thread is transferred to the global memory

with a predefined length of n ∗ Npt, with n denoting the average pulse yielding rate

per parent gamma for the defined system.

3) Spatial and energy blurring with lower-bound energy cutoff To simulate the

resolution of the electronic devices, spatial and energy blurring can be performed

to each pulse using a certain distribution, e.g. Gaussian, according to the user’s

preference. A cutoff energy of Emin is then applied to discard those pulses with

energies lower than Emin. In other words, Emin serves as the minimum energy to

trigger a response.

4) Dead time The detecting component can be saturated when it is triggered by

an incident signal, thus requiring some time td to recover. During the recovery (dead

response) period, new incident signals will not be detected. Two modes are used to

simulate this effect: paralyzable and nonparalyzable. In the paralyzable mode, the

start time ti
a of a dead response period [ti

a, ti
a + td] triggered by the ath pulse will

be reset to a new starting point ti
b if the bth pulse is within [ti

a, ti
a + td], and the

ending time will then be reset to ti
b + td correspondingly. For the nonparalysable

mode, the start time will not be reset. For both modes, the search for the pulses

to be excluded is serial, because whether a particular pulse should be kept depends

on the previous pulse. Nevertheless, two kinds of pulses are always kept: when their

site numbers differ from the previous one, or when they are out of the dead period
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td of the previous pulse. These always-kept pulses then serve as independent start

points for the search. Hence, parallelization of the searching process is achieved by

dividing the entire pulse list into sub-lists based on these independent starting points

and feeding the sub-lists into parallel threads. For this purpose, the pulse list in the

dead time part must be sorted in advance to make it ordered according to the site ID

first, and then ordered chronologically for those with the same site ID.

5) Energy window An energy window defined according to the user’s preference

is then applied to the pulse list that survived the dead time to form the final pulse

list labeled as “singles”. At this stage, the singles can be output by the user.

6) Coincidence sorter Finally, the coincidence sorter is applied to singles to

select paired coincidences based on their positions, TOF intervals. When the TOF

interval between two singles is less than a predefined window tc and the angle between

their displacements relative to the origin is larger than a predefined value, the two

singles will be paired into a coincidence. One singles can be paired with more than

one other singles, which is called multi-coincidence. There are different ways to deal

with the multi-coincidence, such as discarding them all or taking them all. The policy

used in the simulation is the former one, namely if more than two singles within tc

satisfy the conditions, they will be discarded.

2.1.3 Case studies for gPET accuracy and efficiency

2.1.3.1 Performance test for the three functional modules in gPET – simulation case

1

To test the performance of the first two modules of gPET, we adopted the

following simulation case: a 11C point source with an activity of 1e7 Bq is put at the

center of an 8 cm3 cubic water phantom. A history of 1e7 positron decays from the
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Figure 2.4. The simulation setups for (a) cases 1 and 2, where the black circle indicates
the recording sphere for gamma PSF; and (b) case 3, the OPET detector, where red
dashed lines represent the setting of gPET, and the blue lines represent the setting
of GATE. In all setups, a three-level repeatable structure is used for the detector
configuration in gPET: panel, module (green), and discretized crystal scintillator
(yellow).
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11C point source is simulated in both gPET and GATE/Geant4. The annihilation

position of the positron is tracked inside the water phantom. After the annihilation

process, the generated gamma pairs are further transported. A virtual spherical

surface with a radius of 3 cm is assumed outside the phantom with its center coincident

with that of the water phantom. When the gammas travel outside the phantom, they

are recorded on the spherical surface to form the PSF. The positron range and spatial

spectrum distributions of the gamma PSFs from gPET and GATE are compared.

With the PSF validated, the third module of gPET is tested by incorporating

a detector part as shown in Figure 2.4(a). The detecting system is co-centered with

the origin of the global coordinates with an origin to panel distance of 6.65 cm. Each

panel is composed of 3×3 modules with each module containing 16×16 LSO crystal

scintillators. The panel has a size of 2 × 5.505 × 5.505 cm3 with a single module

of 2 × 1.825 × 1.825cm3 and a single LSO scintillator of 2 × 0.1 × 0.1cm3. Both

the intervals between the modules and the intervals between the LSO scintillators

are 0.015 cm. In both gPET and GATE, the energy resolution obeys the inverse

square law of R =
√

E0

E
∗ R0, where the reference energy resolution is R0 = 0.19 for

E0 = 511keV . The cutoff energy is 50 keV . The dead response time is 2.2 µs followed

by an energy window of [350, 700] keV . The coincidence window is 5 ns. Based on the

coincidences generated from each package, 3D images are reconstructed by a simple

retrace-back method. The spatial and energy distributions of the intermediate signals

and the spatial distributions of the reconstructed images are compared between gPET

and GATE.

It needs to mention that, to focus on the entire functional module test, we

choose a similar physics model as that used in gPET for the gamma transport in

GATE. Specifically, gPET uses the Klein-Nishima (KN) formula to sample Compton
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scattering and ignores the shell structure for the photoelectric effect. Accordingly, we

choose the EmStandard model in GATE, and label it as “GATE Sta” for convenience.

2.1.3.2 Performance test for the accuracy of the physics model in detector—simulation

case 2

The assumption that the electrons of a material are free particles reduces the

complexity of the simulation by ignoring binding effect, relativistic effect, and Doppler

effect. However, the validity of this assumption depends on the energy of the incident

photons and the effective Z number of the material. The higher the incident energy

and the lower the effective Z number, the better the assumption holds [104]. In the

PET simulation, though the Z number of the phantom material is usually similar to

that of water, the detector typically contains high Z materials for effective gamma

detection. For example, the effective Z number of an LSO scintillation detector is as

high as 66 [105]. Hence, it is necessary to quantify the performance of gPET in the

detector simulation by comparing it with more accurate models in GATE.

For this reason, we employ the EmPenelope model in GATE, labeled as “GAT-

E Pen” for simplicity. This model considers both the shell structure and the move-

ment of electrons. The results from GATE Pen are taken as ground truth. The setup

for this test is as follows: a mono-energetic isotropic point gamma source of 511 keV

in air is set at the origin of a global coordinate frame. The configuration of the de-

tector is the same as in Case 1 (Figure 2.4(a)), but the material for the phantom is

air. Ten million gamma pairs are simulated. Hit events, singles, coincidences and the

reconstructed images from gPET, GATE Sta, and GATE Pen are compared.

In addition, we simulate gammas with energies of 59 keV and 662 keV (cor-

responding to gamma peaks from calibration sources of 241Am and 137Cs, respec-

tively), under the same experimental setup as for the 511 keV simulation, out of the
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consideration of the detector energy calibration purpose. Based on the inverse square

law, the energy windows of [0, 100] keV and [500, 800] keV are applied to generate

singles for the two calibration energies, respectively.

2.1.3.3 Geometry configuration of irregularly shaped PET detector – simulation case

3

To demonstrate the accuracy and efficiency of the geometric configuration for

the irregularly shaped PET detector in gPET, we simulate the gamma transport

in a six-panel OPET detector as shown in Figure 2.4(b). The front surface of the

OPET detector is close to a cylindrical surface with a radius of 2 cm. Each panel has 8

modules distributed along the z direction while each module has 8 crystals distributed

along the tangential direction. The main difference between gPET and GATE in the

geometry description of OPET lies on the front surface of the crystal, as illustrated

in the middle zoom-in figure of Figure 2.4(b). In gPET, each crystal is modeled as a

repeatable cuboidal volume, as indicated by the red box, while the effective detection

volume is defined by the cylindrical surface. In GATE, eight different trapezoids

are used to model the detector volume. In both simulations, the dimensions of the

panel are 1× 1.99× 1.99 cm3 along radial, tangential, and z directions, respectively.

The crystals are 0.2 × 0.2 cm2 along the tangential and z axes. The gaps between

the modules and the gaps between the crystals are both 0.057 cm. The dead time

part is used in module level here rather than crystal level as in simulation cases 1

and 2 because of the constraint of setting in GATE. Fifteen million gamma pairs

are randomly sampled to travel from the center of the OPET detector. Hit events,

singles, coincidences and the reconstructed images from gPET and GATE Sta are

compared.
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Figure 2.5. Simulation results for case 1. (a) The distribution of the accumulated
annihilation ratio with respect to its range. (b) Gamma distribution along the z axis
for the PSF. (c) Angular distribution for the gammas from the PSF..

2.1.4 Results

2.1.4.1 The performance of the three functional modules in gPET

Positron Range The accumulated percentage counts of the positrons versus the

positron ranges from gPET and Geant4 in simulation case 1 are plotted in Figure

2.5(a). Here, Geant4 is used because it is the physics core of GATE and the ex-

traction of the positron track lengths from it is easier. As is shown, the percentage

distributions for positrons generated in gPET and Geant4 are comparable. The mean

and maximum positron ranges are 0.99 mm and 4.2 mm for gPET, and 1.14 mm and

4.2 mm for GATE/Geant4, respectively.

Gamma Distributions from the PSFs The distributions of the gammas from the

PSFs along the z and the azimuthal directions are shown in Figures 2.5(b) and 2.5(c).

Here, we define the difference of two histograms h and g, with g the benchmark result

from GATE, as
∑
i |hi−gi|/gi

N
, where hi is the value of the ith bin of histogram h and N

is the total number of bins. Using 0.1 cm and 10 bin sizes, the differences between

the PSFs from gPET and GATE/Geant4 are found of 0.6% and 0.5% along the z and

the azimuthal directions, respectively.
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Figure 2.6. Comparison of the energy and module distributions of (a) hits, (b) singles,
and (c) coincidences from gPET and GATE in simulation case 1. Note, log scale is
used for Hits in (a1)..

Gamma Detection and Processing inside the PET Detector The energy and

spatial distributions of the recorded hits, singles and coincidences from gPET and

GATE Sta are shown in Figures 2.6. Specifically, the first row illustrates their energy

distributions with an energy bin of 4 keV. The corresponding differences between

gPET and GATE Sta are 1.97%, 1.61%, and 1.96%, respectively. The second row

shows the spatial distribution in crystals. The corresponding differences between

gPET and GATE Sta are 1.88%, 1.51%, and 2.37%. The central slice (1 mm thick)

of the reconstructed images from the simulation results of gPET and GATE Sta are

shown in Figure 2.7 (a) and (b). As can be seen, the distributions of the reconstructed

point source are comparable. With a voxel size of 0.2 mm along the x axis, the peak

intensity is located in the center for both images. Figure 2.7(c) further illustrates

the profiles of the reconstructed images from gPET and GATE Sta along the central
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Figure 2.7. Comparison of the corresponding central slices of reconstructed images
from (a) gPET and (b) GATE Sta in simulation case 1. (c) The profiles along the
red dashed line in (a) and (b). ρ(x) denotes the normalized distribution..

lines (red dashed lines in Figs. 2.7(a) and (b)). The standard deviations of the line

profiles are 1.39 mm for gPET and 1.38 mm for GATE Sta, respectively.

2.1.4.2 Accuracy of the physics model

The energy distributions of the hit events generated in all inelastic processes by

gPET, GATE Sta, and GATE Pen in simulation case 2 are shown in Figure 2.8(a). As

is shown, in the entire energy range, the hit distributions from gPET and GATE Sta

match very well. As for GATE Pen, fewer hit events are generated in the low keV

range (zoom-in subfigure of Figure 2.8(a)), but more around the Compton edge of

340.6 keV, than for the other two models. We further compare the distributions for

hits generated from the Compton channel and the photoelectric channel, as shown in

Figures 2.8(b) and 2.8(c), respectively. As can be seen, GATE Pen has an obvious

broadening at the Compton edge and drop-off at the low energy range mainly from the

Compton channel. This can be explained by the relativistic effect and the Doppler

effect considered in the GATE Pen model. Nonetheless, the two deviations only

influence a small portion of the total yield, 0.6% for the Compton edge broadening and
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Figure 2.8. Energy distributions of (a) total inelastic interaction, (b) Compton inter-
action, and (c) photoelectric interaction..

0.3% for the low energy range, respectively. The energy and crystal distributions for

hit events generated from all interactions, including those elastic processes, are shown

in the first row of Figure 2.9. Taking the results from GATE Pen as benchmarks,

the mean differences in hit distributions over the energy (with bin size of 4 keV) and

crystal indexes are 4.56% and 1.89% for gPET, and 3.2% and 0.53% for GATE Sta,

respectively. The corresponding single distributions after the digitization process are

shown in the second row of Figure 2.9. The mean differences of singles with respect

to energy and crystal index distributions are 1.58% and 0.92% for gPET, and 0.71%

and 0.73% for GATE Sta, respectively. The smaller differences from the singles than

that from the hits are mainly due to the energy window of [350, 700] keV applied in

the digitization process, which discards the discrepancies outside the energy window.

The coincidences from the singles are illustrated in the last row of Figure 2.9. The

mean differences of the coincidences with respect to the energy and crystal index

distributions are 1.52% and 1.49% for gPET, and 0.92% and 1.27% for GATE Sta.

Figures 2.10 further illustrates the central slices of the reconstructed images with

a thickness of 1 mm from gPET, GATE Sta, and GATE Pen, respectively. With a
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Figure 2.9. Comparison of the energy and crystal distributions of (a) hits, (b) singles,
and (c) coincidences from gPET and GATE in simulation case 2..

voxel size of 0.2 mm along the x axis, the standard deviations of the line profiles

(Figure 2.10(d)) along the red dashed line shown in Figure 2.10 (a-c) are 0.94, 0.93,

and 0.93 mm for the gPET, GATE Sta, and GATE Pen models, respectively.

The comparisons for simulations with gamma energies of 59 and 662 keV are

shown in Table 2.1, in which we take the results from the GATE Pen as benchmark.

From the table, for both energy and crystal distributions of the hits and singles in

the 662 keV simulation case, the differences between gPET and GATE Pen are the

same level as those in the 511 keV one, indicating the stable performance of gPET

in the high energy range. As for the 59 keV simulation case, the main difference

is found for the energy distribution of the hit events, which is 15.12%, much higher

than that in the other two simulation cases. A more detailed examination reveals

that the difference mainly comes from the Compton edge. Noticing that gammas
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Figure 2.10. Comparison of the central slices of the images reconstructed from (a)
gPET, (b) GATE Sta and (c) GATE Pen in simulation case 2. (d) The profiles along
the red dashed line in (a), (b), and (c). rho(x) denotes the normalized distribution..

with energy of 59 keV can only travel a few millimeters inside the crystal scintillator,

after adding up the hit events from the same parent gamma at the crystal level, the

differences for the distributions of the singles significantly drop to less than 1%. These

simulation results indicate that the physics models used in gPET are sufficient for

PET simulation.
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Table 2.1. The differences of simulation results for gammas with energies of 59 and
662 keV between gPET and GATE Pen in simulation case 2.

Gamma
energy
(keV)

Differences of energy distribu-
tions with total bins of 75 (%)

Differences of crystal IDs distri-
butions (%)

Hits Singles Hits Singles
59 15.12 0.95 0.77 0.79
662 5.69 1.56 2.46 1.30

2.1.4.3 OPET geometry test

In Figure 2.11, we show the hit events, singles and coincidence distributions

from gPET and GATE Sta in simulation case 3. Taking the results of GATE Sta as

benchmark, the differences in the energy spectrum of gPET over a 4 keV bin for hits,

singles and coincidences are 4.39%, 1.49% and 3.18%, respectively. The corresponding

differences in module index distributions are 3.50%, 1.11% and 2.48%, and that in

crystal index distributions are 3.49%, 1.13%, and 2.54%, respectively.

The central slices of the reconstructed images in a 1 mm thickness are shown

in Figure 2.12 (a) and (b). The two images are very similar to each other. The

profiles (Fig. 2.12 (c)) of the reconstructed slices along the central lines (red dashed

lines in Figs. 2.12 (a) and (b)) further shows the resemblance of two images, with

the mean±standard deviations of 0±0.59 mm for GATE and 0±0.58 mm for gPET.

The consistence between gPET and GATE in this simulation case indicates that

the strategy of using repeatable geometry with parameterized surfaces to define an

irregularly shaped detector in gPET is sufficient for accuracy.

2.1.4.4 Computational time

The simulation time of gPET and GATE8.0 for the above three cases is listed

in Table 2.2. The simulation time does not differ much between the Penelope model
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Figure 2.11. Energy, module, and crystal distributions of (a) hits, (b) singles, and (c)
coincidences..

Figure 2.12. Energy, module, and crystal distributions of (a) hits, (b) singles, and (c)
coincidences..
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Table 2.2. The comparison of time expended for the three simulation cases between
gPET and GATE.

Package Platform
Computational time (s/1e7 gamma pairs)
Case 1 Case 2 Case 3

gPET
Titan Xp GPU
(1.58GHz, one card)

19.8 16.7 11.5

GATE
Intel i7-6850K CPU
(3.6GHz, single CPU)

2625 1803 2394

and the Standard model in GATE, so we summarized them as “GATE.” As the table

indicates, gPET is around 110 to 200 times faster than GATE.

2.1.5 Discussions

Although our current development of gPET achieves validated accuracy for

main functions of PET simulation, some physics processes are approximated with loss

of accuracy. For instance, we treat the annihilated gamma pairs as mono-energetic

with 511 keV energy, which is inconsistent with the experimental measurement, where

the gammas are found with energetic spread-outs [106]. This leads to a discrepancy in

energy distribution of the gamma pairs between gPET and GATE. This discrepancy

is, then, transferred to the gamma detection inside the PET detector, as indicated by

the energy tails >511keV for the hit distributions in Figure 2.6(a1). Yet, these events

only account for 0.5% of the total yield, and they are further suppressed in the single

distribution after the energy blurring and energy window cutoff, as shown in Figure

2.6(b1). This indicates that the current positron annihilation model used in gPET

has an acceptable accuracy for PET simulations. Nevertheless, we plan to incorporate

more accurate physics modeling for this process to make gPET more robust in the

future development.
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Table 2.3. Physics model comparison between gPET and GATE Sta.

Cases Packages Compton (%) Rayleigh (%) Photoelectric (%)

Case 2
gPET 50.65 5.51 43.85 (19.85a)

GATE Sta 49.95 5.66 44.39 (19.36a)

Case 3
gPET 54.03 5.34 40.63 (24.21a)

GATE Sta 53.01 5.54 41.45 (23.41a)
a The ratio of photoelectric event whose deposited energy is 511 keV .

In both simulation cases 2 and 3, the numbers of hit events from gPET are

always smaller than that from GATE. We summarize the hit generations from different

interactions in gPET and GATE for both cases and show the results in Table 2.3.

As is shown, the main differences exist in the Compton and photoelectric processes.

More Compton scattering but less photoelectric absorption are found in gPET than in

GATE. Quantitatively, it accounts for 1 2% difference in hits energy distributions, as

inferred from Table 2.3. In the current development stage of gPET, this discrepancy

is acceptable. More precise cross sections and elaborate models will be considered in

future development of gPET.

Another potential extension of gPET is to incorporate the scintillation photon

transport process [86, 107, 108] into the PET detector simulation. When the incident

gamma deposits energy inside the scintillator, the characteristic photons can be gen-

erated, transport, and get reflection and refraction among the different components of

the detector, potentially affecting the statistical distribution of the detecting signals.

However, due to the complexity of this optical process and its heavy dependence on

the material surfaces, MC simulation for the optical process is very time consuming

and challenging [107]. Inspired by the recent development of GPU-based optical pho-

ton simulation for particle physics [109], we plan to develop a GPU-based functional

42



module for PET-dedicated optical photon simulation in the future development of

gPET.
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2.2 PET simulation for small animal

2.2.1 Background

Small-animal positron emission tomography (PET) is a well-established nuclear

medical imaging technique. With the aid of positron-emitting radionuclides, small-

animal PET can image a wide range of molecular processes in vivo and hence is

broadly used in the pre-clinical studies of pharmaceutical biodistributions and tem-

poral disease progression [110–112]. It also serves as a critical platform for the devel-

opment, validation, and characterization of the paradigms and protocols for clinical

PET studies [113, 114]. Several hundred small-animal PET scanners are now in-

stalled worldwide, and most academic medical research centers and pharmaceutical

companies have access to and routinely use this technology [115, 116] .

Key performance features of small-animal PET systems are spatial resolution,

sensitivity, and count rate capability [34, 116]. Spatial resolution strongly affects the

quantitative accuracy of PET imaging due to the partial volume effect, the single

largest quantitative error in almost all small-animal PET studies. Sensitivity sig-

nificantly impacts the quantitative precision due to the statistical uncertainties that

are governed by Poisson counting statistics. Improving spatial resolution reduces the

partial volume effect, thus improving accuracy. Increasing the scanner sensitivity

increases the number of detected events thus increasing the precision of PET mea-

surements. Increasing sensitivity also enables faster dynamic imaging, and improves

the quality of temporal data that can feed into tracer kinetic models, such as the

image-derived input functions (IDIF) from major arterial vessels [117, 118].

Since its early development in the 1990s [119], both academia and industry have

put substantial effort to improve the spatial resolution and sensitivity of small animal

PET [116, 120–124]. However, none of the currently available small-animal PET
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Figure 2.13. The performance of small animal PET scanners. Only scanners with
published results were selected. The resolution and sensitivity values obtained at the
center of the scanners were used..

scanners provide a combined performance of the theoretically achievable high spatial

resolution (<0.5 mm) and high sensitivity (figure 2.13). Because the resolutions in

the axial, tangential, and axial directions were different, volumetric resolution, which

is the product of the resolution in each of the three directions, was used. Detailed

performance of the scanners including reconstruction method are shown in Table 2.4.

There have been three small animal PETs developed with 0.5 mm resolution at

the center of the field of view (FOV), however, they all suffer from low sensitivity.

Specifically, the commercially available U-PET achieves 0.5 mm resolution at the

center of the FOV using a collimator, which adversely reduces its sensitivity to a

very low level of 0.1% [116]. The PET system developed by Dr. Yamamato and

colleagues using lutetium yttrium oxyorthosilicate (LYSO) arrays with a pitch size of
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0.42 mm and thickness of 5 mm has a resolution of 0.6 mm and sensitivity of 0.5%

at the center of the FOV [123] . The dedicated mouse brain PET developed by the

University of California at Davis using lutetium oxyorthosilicate (LSO) arrays with a

pitch size of 0.5 mm and thickness of 13 mm obtains a resolution of 0.5 mm, but its

sensitivity is only 1% at the center of the FOV [122]. The low sensitivities of these

systems limit their applications to static studies or situations where the animals are

subject to very high injected doses. Additionally, the small geometry of the latter

two systems, diameter ¡ 61 mm and axial length ¡10 mm, further limits their primary

applications to static mouse brain studies.

Table 2.4. The performance of small animal PET scanners shown in Figure 2.13

Scanner
name

Volumet-
ric

resolu-
tion

(mm3)

Sensitiv-
ity
(%)

Energy
window
(keV)

Timing
window

(ns)

DOI
informa-

tion

Recon-
struction
method

Refer-
ence

MicroPET 6 0.56 250-650 12 No FBP [119,
125]

MicroPET II 1.1 2.1 250-750 6 No OSEM [126]
A-PET 8.7 3.6 250-665 7 No FRP [127]
quadHI-
DAC32

1.2 1.5 350-650 Unknow Yes FBP [120]

GE VISTA 2.9 4 250-700 5/6.5/10∗ Yes FBP [128]
CdTe PET 0.4 4 Unknow 20 Yes MLEM [129]

F120 2.4 7.1 250-750 10 No FBP [130]
Inveon 5.4 7.2 350-650 3.43 No FBP [131]

nanoPET 1.2 7.7 250-750 5 No FBP [132]
ClearPET 7.6 4.7 250-750 Unknow Yes FBP [133]
PETBox4 3.4 18 150-650 20 No MLEM [134]
nanoScan 1.8 8.4 250-750 5 No FBP [135]

LabPET-12 4.6 4.3 250-650 22 Yes FBP [136]
DigiPET 0.34 0.3 400-650 20 No MLEM [137]

Clair-
vivoPET

10 8.7 250-750 10 Yes FBP [138]

U-PET 0.17 0.3 400-600 Unknow No OSEM [116,
139]

UCD mouse
brain

0.13 0.68 -250 60 Yes MLEM [122]

Yamamoto
PET

0.22 0.5 Unknow 16 No FBP [123]

Clip-on 0.47 4.7 250-750 12 Yes OSEM [140]
β-CUBE 1 12.4 255-765 5 Yes FBP [141]
HiPET 0.9 10.4 350-650 20/15/8*) Yes OSEM [124]

Albira PET 0.64 11 Unknow Unknow Yes MLEM [142]
SIAT aPET 0.55 11.9 350-750 6 Yes OSEM [143]
∗Dual-layer crystal arrays with different crsytals were used.
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In this study, with a goal to design a small animal PET system with a resolution

of 0.5 mm and a high sensitivity ¿10% for total-body mouse/rat studies, we simulated

four scanners with similar solid angles but different diameters (110 mm vs. 160 mm),

axial lengths (167 mm vs. 254 mm) and crystal thicknesses (10 mm vs. 20 mm) (table

2.5 and figure 2.14) using gPET, a graphics processing unit (GPU) based Monte Carlo

(MC) package dedicated for PET simulation (Lai et al 2019). The performance in

terms of spatial resolution and sensitivity of the four PET scanners was compared to

find the optimal scanner for different applications.

Figure 2.14. The schematics of (left) the H2RS110-C20 PET and (right) the H2RS160-
C20 PET. The H2RS110-C10 PET and the H2RS160-C10 PET have the same diam-
eter and axial length as those of the H2RS110-C20 PET and the H2RS160-C20 PET,
respectively. C10 denotes a crystal thickness of 10 mm, and C20 of 20 mm..
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Table 2.5. Characteristics of the four small-animal PET scanners

Parameters
H2RS110-
C10

H2RS110-
C20

H2RS160-
C10

H2RS160-
C20

Crystal material LYSO
Ring diameter (mm) 110 160
Axial length (mm) 167 254
Solid angle (4π)∗ 0.84 0.85
Crystal cross section
(mm2)

0.44x0.44

Crystal length (mm) 10 20 10 20
Crystal pitch (mm) 0.5
Crystal array size 40 x 40 60 x 60
Detectors per ring 16
Number of detector
ring

8

Transaxial FOV (mm) 80 120
Axial FOV (mm) 167 254
∗The solid angle is the one subtended from the center of the FOV.
The solid angles of the gaps between detector modules were not sub-
tracted.

2.2.2 Methods

2.2.2.1 Characteristics of the four small-animal PET scanners

The characteristics of the four scanners are shown in Table I. The four scan-

ners were named H2RS110-C10 PET, H2RS110-C20 PET, H2RS160-C10 PET, and

H2RS160-C20 PET. The schematics of the H2RS110-C20 PET and H2RS160-C20

PET are shown in figure 2.2. The four scanners are all composed of 128 dual-ended

readout depth-of-interaction (DOI) encoding detector modules arranged in 8 detec-

tor rings. LYSO, the most widely used scintillator in state-of-the-art PET scanners,

was selected because of its high light output, fast decay time, and high stopping

power [144, 145]. Compared to other DOI encoding detectors, such as detectors

based on multi-layer crystals, crystal arrays with specially designed reflectors and
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monolithic crystals [146–149], the dual-ended readout detectors in combination with

finely-segmented and thick crystals can simultaneously provide better DOI resolution,

better spatial resolution and higher detector efficiency [150, 151].

The H2RS110-C10 PET and the H2RS110-C20 PET were composed of 128 40

× 40 LYSO arrays with a pitch size of 0.5 mm, and both have a diameter of 110

mm and axial length of 167 mm. They are expected to provide high-resolution and

high-sensitivity imaging across the whole body of the laboratory mice, which have a

nose-to-anus-length of 8-10 cm[152]. The H2RS160-C10 PET and the H2RS160-C20

PET were composed of 128 60 × 60 LYSO arrays with a pitch size of 0.5 mm, and

both have a diameter of 160 mm and axial length of 254 mm. They are supposed

to provide high-resolution and high-sensitivity imaging across the whole body of the

laboratory rats, which have a nose-to-anus-length of 10-20 cm [153] . The H2RS110-

C10 PET and the H2RS160-C10 use LYSO arrays with a thickness of 10 mm, whilst

the H2RS110-C20 PET and the H2RS160-C20 PET use LYSO arrays with a thickness

of 20 mm.

2.2.2.2 Selection of the pitch size of the LYSO arrays

The pitch size of the LYSO array affects the resolution and the sensitivity of

the PET scanners. The fundamental resolution at the center of the FOV of PET

scanner can be roughly estimated using [34, 154]

spatial resolution =

√
(
crystal size

2
)
2

+ (positron range)2 + (0.0022 ∗ diameter)2

(2.4)

Based on this formula, we estimated the resolution of the proposal PET scanners with

diameters of 110 mm and 160 mm as a function of the crystal size, as shown in figure

2.15. Here, we assumed a 0.102 mm FWHM positron annihilation point distribution
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from the 18F label source [155]. Better resolution can be obtained using smaller

crystals [156]. Reflectors are used to separate the LYSO elements, and optical glues

are used to glue the reflector to the LYSO element in LYSO arrays. Both the reflectors

and optical glue cannot detect gamma photons, hence they reduce the sensitivity of

the PET scanner via reducing the fractional active area of the LYSO array. The

lower the fractional active area, the lower the detection efficiency of the detector.

The fractional active area of the crystal arrays can be estimated using

fractional active area (%) = (
crystal size

array pitch size
)
2

× 100% (2.5)

Dual-ended readout detectors based on polished LYSO, Toray E60 with a thickness

of 50 µm and 10 µm optical glue between crystal elements, can provide good crystal

resolvability, energy resolution, and DOI resolution [151, 157]. The fractional active

area of these LYSO arrays is also shown in figure 2.15 (red line), which decreases

when the crystal size reduces. Based on our previous experimental results [151],

LYSO arrays with a crystal size of 0.44 mm and pitch size of 0.5 mm were chosen

in this work, which gives a good trade-off between the fractional active area of the

LYSO array and the estimated resolution of the PET scanners (figure 2.15).

2.2.2.3 Simulations

Simulations of the four PET scanners were performed using gPET [158]. NEMA

NU 4-2008, a standard for performance measurement of small animal PET systems,

was followed to simulate the scanners and to report the resolution and sensitivity

whenever possible. A 22Na point source with an activity of 1500 Bq and a varying

diameter of 0, 0.1, and 0.3 mm was used in all simulations. The source was embedded

in an acrylic cube of 10.0 mm on each side. In the simulation, the energy resolution

was set to be 16%, and the timing window was set to be 4 ns, based on experimental
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Figure 2.15. The estimated spatial resolution at the center of FOV for two scanners
with ring diameters of 110 mm and 160 mm. The red line shows the fractional active
area of the LYSO array with 50 µm Toray E60 reflector and 10 µm optical glue..

results [151]. Because we do not have the measured experimental energy resolutions

for different crystal geometries, the 16% energy resolution was used to set the en-

ergy distribution of the gamma photons for all the four scanners in the simulation.

Based on our previous experimental results, the energy resolutions of the four detector

geometries will not have significant differences [151, 159] .

Table 2.6. Positions for sensitivity studies

Parameters
H2RS110-
C10

H2RS110-
C20

H2RS160-
C10

H2RS160-
C20

Radial offset from
center (mm)

0, 5, 10, 15, 25, and 40
0, 5, 10, 15, 25, 50 and
60

Axial offset from
center (mm)

From 0 to 80 with steps
of 10

From 0 to 120 with
steps of 10
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Sensitivity The sensitivities of the four PET scanners were simulated at different

radial offsets and axial offsets, as shown in Table 2.6. At each position, more than

106 coincidence events were collected. For each scanner, sensitivities obtained from

the same data set but using three energy windows of 150-750 keV, 250-750 keV, and

350-650 keV were compared.

Table 2.7. Positions and DOI resolutions for resolution simulation

Parameters
H2RS110-
C10

H2RS110-
C20

H2RS160-
C10

H2RS160-
C20

Radial offset from
center (mm)

0, 5, 10, 15, 25, and 40
0, 5, 10, 15, 25, 50 and
60

Axial offset from
center (mm)

0 and 1
4

offset

DOI resolution
(mm)

0, 0.5, 1, 2 and 3

Source diameter
(mm)

0, 0.1 and 0.3

Spatial resolution The resolutions of the four PET scanners were simulated at

different radial offsets and axial offsets, as shown in Table III. In the real experiment,

a 22Na point source with a diameter of no more than 0.3 mm in all directions is recom-

mended to measure the spatial resolution following the NEMA NU 4-2008 standard.

To investigate the effect of source size on the resolution, sources with three different

diameters of 0, 0.1, and 0.3 mm were used in the simulation. In all simulations, an

energy window of 250-750 keV was used to select events, and at each position, more

than 106 coincidence events were collected. In our simulation, the center of mass
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location (xc, yc, and zc) of the interaction of the annihilation photons in the LYSO

array was recorded using

xc =

∑N
i=1 xiEi∑N
i=1 Ei

(2.6)

yc =

∑N
i=1 yiEi∑N
i=1 Ei

(2.7)

zc =

∑N
i=1 ziEi∑N
i=1 Ei

(2.8)

where the xi, yi, and zi (i = 1 . . . N) are the positions along axial, tangential, and

radial directions for each interaction, respectively. Ei (i = 1 . . . N) are the deposited

energies blurred by energy resolution at each interaction, and N is the number of

the interactions before one gamma photon deposited all its energy or escape from

the crystal array. To model the effect of finite DOI resolution, the recorded position

along the radial direction was added by a random displacement following a Gaussian

distribution with the full width at half maximum (FWHM) being the DOI resolution

[160].

Although the filtered back projection (FBP) method is recommended by the

NEMA NU 4-2008 protocol, the maximum likelihood expectation maximization

MLEM algorithm is more popular for the reconstruction of data from most modern

PET scanners (Hallen et al 2020). And MLEM is also more robust against noise and

systematic inconsistencies than FBP (Nuyts et al 2001). Hence, the MLEM method

with 12 iterations was used to reconstruct the images of the point source in our

studies, and a voxel size of 0.04× 0.04× 0.04mm3 was used to make the voxel size at

most one fifth of the finest resolution, following the NEMA NU 4-2008 standard. To

avoid the artificially enhanced resolution measured using MLEM to fairly compare the

four scanners with different geometries, a uniform background was used during our
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simulation. The contrast of point source to background in the reconstructed images

was 10:1 [161, 162].

The spatial resolution of the reconstructed image along the radial, tangential,

and axial direction was taken to be the FWHM of the point spread function (PSF) of

the reconstructed point source along that direction. To calculate the PSF along one

direction, the 3D reconstructed point source image was summed over the other two

directions, following the NEMA NU 4-2008 standard. For example, to calculate the

FWHM resolution along the axial direction, the reconstructed image was summed

along the radial and tangential directions.

2.2.3 Results

2.2.3.1 Energy spectrum

Figure 2.16. Energy spectra for the four scanners obtained by locating the 22Na source
at the center of FOV. For each energy spectrum, one million coincidence events were
used..
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Figure 2.16 shows the energy spectrum of the four scanners with the 22Na

source located at the center of the FOV of the scanners. Each spectrum was gener-

ated using 106 coincidence events. The energy spectrum of the H2RS160-C20 PET

had the fewest low-energy events, whilst the H2RS110-C10 PET had the most. The

percentages of events in a 250 – 750 keV energy window are 67.0%, 71.6%, 68.8%,

and 74.7% for H2RS110-C10, H2RS110-C20, H2RS160-C10, and H2RS160-C20, re-

spectively. This can be understood by the fact that the larger the detector size, the

higher the probability that a photon can deposit all energy inside the detector through

multiple interactions.

2.2.3.2 Sensitivity

Figure 2.17. Sensitivity versus radial offset and axial offset for (left top) H2RS110-
C10, (left bottom) H2RS110-C20, (right top) H2RS160-C10 and (right bottom)
H2RS160-C20. A 250-750 keV energy window was used to select events..
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Figure 2.17 shows the NEMA NU 4-2008 sensitivity of the four scanners ob-

tained at different radial offsets and axial offsets using a 250-750keV energy window

to select events. At the center of the FOV, the sensitivities of the H2RS110-C10 PET

and the H2RS110-C20 PET are 7.9% and 18.7%, respectively, and the sensitivities

of the H2RS160-C10 PET and the H2RS160-C20 PET are 8.9% and 22.0%, respec-

tively. The sensitivities of the H2RS110-C20 PET and the H2RS160-C20 PET were

more than 2 times higher than those of the H2RS110-C10 PET and the H2RS160-C10

PET, respectively. For a given crystal thickness, the scanner with a diameter of 160

mm had a slightly higher sensitivity than that with a diameter of 110 mm, which

is due to the fact that the solid angles of the gap/dead space between crystals and

detectors were smaller for the scanner with a larger diameter. The slightly lower ratio

of low-energy events also contributed to higher sensitivity (figure 2.16).

Figure 2.18. Sensitivity along center axial obtained using three different energy win-
dows. H2RS110-C10 (left top), H2RS110-C20 (left bottom), H2RS160-C10 (right top)
and H2RS160-C20 (right bottom)..
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Figure 2.18 shows the sensitivities of the four scanners along the central axis

under three different energy windows. A higher sensitivity was obtained when a wider

energy window was used, which is consistent with common expectations.

2.2.3.3 Spatial resolution

Figure 2.19 shows the spatial resolution of the four scanners obtained at different

radial offsets for varying DOI resolutions and at the axial center of the FOV using

an ideal point source (diameter of 0 mm). The resolutions obtained at one-fourth of

the axial FOV from the center of the axial FOV were similar to those obtained at the

axial center of the FOV and omitted here for conciseness. From the resolution shown

in figure 2.7, we made the following observations:

First, as expected, the radial resolution strongly depends on the source position

and DOI resolution. However, the tangential and axial resolutions did not change

significantly with source positions and DOI resolutions. A better radial resolution

can be obtained if the scanner has a better DOI resolution. These are consistent with

previous studies and suggest the importance of designing detectors with a good DOI

resolution [156, 160, 163].

Secondly, the spatial resolution of the scanners with the same diameter are

similar if the scanners have the same DOI resolution.

Finally, for a given DOI resolution, the tangential and axial resolutions of the

scanners with a diameter of 110 mm are better than those with a diameter of 160 mm

for all radial offsets studied because non-collinearity is smaller for the detector ring

with a smaller diameter (110 mm) than that with a larger one (160 mm). In contrast,

the behavior of the radial resolution is quite different. The radial resolution is better

for the scanners with a diameter of 110 mm than those with a diameter of 160 mm

at the positions close to the center of the FOV, while the relation is reversed at the
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positions near the edge of the FOV. The reasons are detailed as follows. Aside from

the non-collinearity effect, the radial resolution is affected by DOI as well. Under

a given DOI resolution, the closer the source moves to the detector, the larger the

DOI effect in the radial direction. Hence, moving from the center to the edge of the

FOV, although the 160 mm systems start with a worse spatial resolution than the 110

mm systems, their resolution evolves with a smaller slop. Depending on the relative

contribution of the DOI effect and the non-collinearity effect [34], the resolution trends

of the two types of systems cross at a certain radial offset point. After this point,

the radial resolution is worse for the 110 mm systems than for the 160 mm systems.

Note that for perfect DOI resolution (0 mm), such a crossing phenomenon was not

observed (top left of figure 2.19).

Although substantial efforts have been devoted to improving the DOI resolution

[157, 163, 164], the current experimentally achievable DOI resolution are 1 and 2

mm for dual-ended readout PET detectors with 10 mm and 20 mm LYSO arrays,

respectively [151, 159]. Taking this into account, we compared the resolutions of

the H2RS110-C10 PET and the H2RS160-C10 PET with 1 mm DOI resolution, and

the H2RS110-C20 PET and the H2RS160-C20 PET with 2 mm DOI resolution. The

results are shown in figure 2.8. As expected, for a given scanner diameter, scanners

with 1 mm DOI resolution (H2RS110-C10 PET and H2RS160-C10 PET) have a better

spatial resolution than those with 2 mm DOI resolution (H2RS110-C20 PET and

H2RS160-C20 PET), especially for the radial resolution at positions away from the

center of the FOV. This indicates that if high spatial resolution was the primary

selection criteria, the H2RS110-C10 PET and the H2RS160-C10 PET would be a

better choice.

Figure 2.21 shows the resolutions obtained using the 22Na point source with

three different diameters of 0, 0.1, and 0.3 mm for the scanners with DOI resolutions
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listed in 2.7. The source size effects on the resolution obtained at other DOI resolu-

tions exhibit similar trends as the ones shown in figure 2.9 and are omitted here for

conciseness. As can be seen from figure 2.21, the point source with a diameter of 0.1

mm has a negligible effect on the spatial resolutions, while the point source with a

diameter of 0.3 mm had a significant effect on the spatial resolution. These results in-

dicate that to measure the intrinsic resolution of the proposed PET scanners in a real

experiment, the point source should have a size as small as possible and the widely

used 22Na point sources with diameters of 0.2 0.3 mm can lead to an underestimated

resolution, i.e. an estimated resolution that is worse than the true resolution.

2.2.4 Discussion

The simulation results show that all four scanners can provide high spatial

resolution and high sensitivity performance across their FOV and there is no clear-

cut winner out of the four candidate designs. The best design choice depends on the

specific applications and their requirements on resolution and sensitivity. Here, we

recommend several choices among four designs for the following scenarios based on our

current simulation study: 1) for studies that only use mouse models, the H2RS110-

C10 PET and the H2RS110-C20 PET may be preferred, as these two scanners provide

better spatial resolution (figures 2.18 and 2.19) at a lower cost, and 2) for rat studies,

H2RS160-C10 PET and the H2RS160-C20 PET may be more appropriate as they

provide a larger FOV to cover the entire rat body. The volume of LYSO needed

for the H2RS160-C20 PET and the H2RS160-C20 would be 2.25x of those for the

H2RS110-C10 PET and the H2RS160-C10 PET, respectively.

The spatial resolutions of the scanners at the center of the FOV are all better

than 0.5 mm. The radial resolution strongly depends on the radial offset and the DOI

resolution as summarized in figure 2.22. When the DOI resolution was better, the
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radial resolution was greatly improved. This indicates the importance of developing

detectors with a high DOI resolution. The tangential and the axial resolutions were

also affected by the DOI resolution, but with a much smaller magnitude (figure 2.19),

which is consistent with previous studies [160]. Since the DOI resolution of 10 mm

thick LYSO can be twice as good as that of 20 mm thick LYSO, the H2RS110-C10

PET and the H2RS160-C10 PET provide better resolution than the H2RS110-C20

PET and the H2RS160-C20 PET, respectively (figure 2.19).

The sensitivities at the center of FOV of the H2RS110-C20 PET and the

H2RS160-C20 PET are 20%, which are more than 2-fold higher than those of the

H2RS110-C10 PET and the H2RS160-C10 PET ( 10%) (figures 2.16 and 2.17). The

sensitivities of the four proposed scanners are much better than currently available

PET scanners with 0.5 mm resolution (the UCD mouse brain PET, U-PET, and

Yamamoto PET shown in figure 2.13). The high sensitivity and larger FOV of the

four scanners will also enable fast total-body dynamic imaging of mice and rats.

A 22Na point source with a diameter smaller than 0.3 mm was recommended to

measure the spatial resolution in NEMA NU 4-2008 protocol, and point sources with

diameters of 0.25 mm have been widely used [krishnamoorthy2018performance,

122, 123, 131] . However, our simulation results show that to precisely measure the

spatial resolution of scanners with an intrinsic resolution of 0.5 mm, a point source

with a diameter smaller than 0.1 mm is preferred. Otherwise, the resolution will

be overestimated (figure 2.21). To obtain the intrinsic resolution using sources with

diameters larger than 0.1 mm, the intrinsic resolution can be estimated by subtracting

the intrinsic resolution of the source, instead of the diameter or radius in quadrature

from the measured resolution. We will study the intrinsic resolution of the source as

a function of its diameter with the Monte Carlo in the future.
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The inter-crystal and inter-detector scatter were not corrected in our studies,

although the inter-crystal scatter correction can improve the spatial resolution and the

inter-detector scatter correction can improve the sensitivity, respectively [165]. The

inter-crystal scatter and inter-detector scatter were not corrected in our studies for

two reasons. First, to design a high-resolution PET scanner, position-sensitive SiPMs

(PS-SiPMs) are one attractive option [150, 151]. However, PS-SiPMs use center-of-

gravity methods to calculate the gamma interaction position in the scintillator array,

thus the inter-crystal scatter information is lost. Second, the inter-detector scatter

was ignored to mimic the case that the readout electronics for each detector module

work independently and in parallel, which can minimize the dead time of the readout

electronics and increase the event processing rate of the electronics, hence, the peak

noise equivalent count rate (NECR) will be maximized.

The NEMA image quality phantom and the micro Derenzo phantom were not

investigated in our studies, because the four scanners had different diameters and our

main focus is on comparing their sensitivity and spatial resolution. If the NEMA

image quality phantom with its relatively small diameter of 33 mm is used, the

H2RS110-C10 and the H2RS110-C20 will give misleading results, as the H2RS160-

C10 and the H2RS160-C20 provided a better resolution for positions far from the

center (figures 2.19 and 2.20). The same is true for the Derenzo phantom. The

resolution and sensitivity results from point sources at different locations already

showed that there is no winner for all tasks, and that the best choice depends on the

specific applications. In the future, before adopting any design, a simulation using

custom phantoms that reflect a specific small-animal imaging task is necessary to

assess whether the image quality can achieve the specific requirement of the small

animal PET imaging applications.
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The NECR was not investigated in our studies, which is due to that the NECR

depends both on the performance of the detector modules and the deadtime of the

readout electronics, and readout electronics for the proposed scanners is not available

at this moment. We will conduct the NECR simulation when we further develop

our readout electronics in the future. However, based on our previous experimental

results, we expected that each of the proposed detector modules can handle higher

than 100,000 events per second without performance degradation [151].

In our simulation, we chose to use LYSO crystals, which have similar properties

as LSO crystals, such as high light output, fast decay time, and high stopping power

[144, 145]. Gadolinium aluminum gallium garnet (GAGG) has a higher light output

than LYSO, and a dual-ended readout detector based on GAGG can provide a better

DOI resolution. However, the stopping power of GAGG is lower than that of the

LYSO, hence, the inter-crystal and inter-detector scatter ratios are much higher in

PET scanner with GAGG than that with LYSO [165] , making GAGG a less optimal

choice for high-resolution PET than LYSO or LSO.

To build the proposed scanners, the most complex and difficult part is the LYSO

arrays of 0.44×0.44×20mm3 polished crystal pixels. During the past 10 years, work-

ing with our industrial collaborators, we have optimized the LYSO array fabrication

methods, and it is now routine to produce reliable scintillator arrays with crystal

elements in the 0.4× 0.4mm2 cross-section range [122, 151, 166, 167]. The reliability

of the proposed scanners will also depend on the carefully designed electronics and

gantries, which will not be a problem based on currently available technologies [122,

168, 169].
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2.3 Conclusions

We developed gPET, a GPU-based, PET-dedicated MC simulation tool. gPET

has three functional modules carried out by the GPU parallel threads. It employs

voxelized and parametrized geometries in phantom-related and detector-related mod-

ules, respectively. Multiple inputs and outputs are available for users. We simulate

three test cases to demonstrate the accuracy and efficiency of gPET with benchmarks

from GATE. An average differences around 3% for the final coincidence pair distri-

butions are found between gPET and GATE, while the simulation speed of gPET is

100 200 times faster than GATE. In conclusion, gPET is an accurate and efficient

MC simulation tool for PET. The open source code of gPET version 1 is available for

the research community via email request.

Furthermore, with the efficient package gPET, we are able to conduct a large

scale PET simulations (approximately 1000 simulations in this work) and thus ex-

amine the performance of four PET scanners with different configuration. Their

resolution and sensitivity were investigated to test the goal of building a 0.5 mm res-

olution high-sensitivity small animal PET system. The simulation study shows that

the H2RS110-C20 PET and H2RS160-C20 PET have more than 2x the sensitivity

of the H2RS110-10 PET and H2RS160-10 PET ( 20% vs 10%), while the latter

two scanners provide a higher and more uniform spatial resolution across the FOV

when taking the realistic DOI resolution into account. The H2RS160-C10 PET and

H2RS160-C20 PET provide a larger FOV, which can be used for both total-body

mouse and rat imaging. The H2RS110-C10 PET and H2RS110-C20 PET provide

a smaller FOV, which is only suitable for total-body mouse imaging but provide a

better resolution across the entire mouse body at a lower cost. Our simulation also

suggest a source with diameter smaller around 0.1 mm to find the intrinsic resolution

of PET system with high resolution.

63



Figure 2.19. Radial (left column), tangential (middle column) and axial (right col-
umn) resolution versus radial offset and DOI resolution. A 250-750 keV energy win-
dow was used to select events..
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Figure 2.20. Radial (left column), tangential (middle column) and axial (right col-
umn) resolution versus radial offset with realistic DOI resolutions. A 250-750 keV
energy window was used to select events. The DOI resolution for H2RS110-C10 PET
and H2RS160-C10 PET was 1 mm, and it was 2 mm for H2RS110-C20 PET and
H2RS160-C20 PET..
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Figure 2.21. Effect of the radiation point source size on the resolution. H2RS110-C10
PET and H2RS160-C10 PET have a DOI resolution of 1 mm, and H2RS110-C20 PET
and H2RS160-C20 PET have a DOI resolution of 2 mm..
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Figure 2.22. Resolution map as function of radial shift and DOI. left:H2RS110-C10
PET; right:H2RS160-C10 PET .
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CHAPTER 3

DOSE SIMULATIONS FOR THERAPEUTIC BEAMS

In this chapter, We divert to a different field – dose calculation. As used in

countless papers, dose is an indicator of radiation damage. Typically, the more it

is, the more damage radiation brings to the target. And also, many thresholds of

radiation safety or treatment plan quality are given in dose values in a certain volume.

Hence, it is important to calculate dose accurately. And the calculation should be

fast as well to meet clinical demand for on-site planning and optimization.

MC method is accurate in terms of macro dose calculation as the physics be-

tween particles and medium is understood quite well. But it is also computational

demanding. One way to reduce the burden is to simplify the geometry, considering

less component. Such simplification requires a proper modelling of source particles

at a certain surface. We here reported a source model for a MRI-LINAC machine.

3.1 Simulation for MV beams

A source model is a description of virtual sources that could replace the source in

a real machine. There are two meanings for using the term ”replace”. First, particles

from the virtual source could produce same dose distribution in the phantom as that

from the real source. Second, the specific components of the interested machine

should not have to be considered when we transport the particles from virtual source.

Otherwise, we could just sampling particles from the real source and transport them

from the beginning to the end. In this manner, dose calculations could be accelerated

and might meet the clinical requirements of speed.
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The virtual source could be in any shape and defined in anywhere as long

as photons from it could reproduce the dose distributions. However, due to the

simplicity of source sampling and requirement of physics symmetry, virtual source is

usually defined on a plane [170–172]. Specifically to our work on MRI-LINAC, we

use a curved plane to define the virtual source.

3.1.1 Source model for MRI-LINAC

Figure 3.1. Illustration of photon paths from LINAC machine to isocenter. For better
readability, please check online colorful version..
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Before we present the source model, we have to clarify some concepts. Figure

3.1 listed the major components considered to construct our model. The opening of

MLC is along y direction and not shown. The cone collimator, MLC and X jaw are

made up of lead. They together determined the irradiated shape and size on isocenter.

The largest rectangular shape is denoted as F . Photons from the source have three

destinies: blocked by the collimators and jaw as shown in purple; directly go through

all components as shown in red; scattered by cryostat as shown in yellow. Note,

there were scattered photons in the the red region. We named these three photons as

blocked, primary and scattered photons, respectively. Here, we ignored the scattered

photons from the edge of collimators and jaw. On the one side, cryostat contains

about 50 cm thick liquid helium [173], which means around 23% of all photons go

through scattering for 2 MeV photons, estimating from e−
µ
ρ
ρ×50 cm with material data

from NIST 1. On the other side, only very small portion of the edge part of collimators

and jaw could have effective scattering photons because the very large attenuation of

lead. Furthermore, we ignored the contribution from electrons because of the block

from thick cryostat and small contributions even without cryostat [170].

We could define two kinds of 2D map. First, we could find the distribution

of primary photons and scattered photons on F ′, denoted as P (x, y) and S(x, y),

respectively, when largest field F was achieved. Here, F ′ denotes a field larger than

F to include scattered photons and P (x, y) and S(x, y) were directly related the

number of photons. In addition, the opening of different leaves of MLC and X jaw

generate a 2D map of opening time, say on a plane between X jaw and cryostat.

The sequence of opening leaves and jaw could be read from a treatment plan while

the design of a sequence is out of the scope of this thesis. Such time map could be

transformed to fluence map or MU map, which corresponds to number of photons

1https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients
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passing through. And we could always project the map onto the plane that crosses

isocenter. Because of this, all the maps mentioned in the following are defined on a

plane crossing isocenter, if necessary, by means of projection. We denoted this fluence

map on F as f(x, y).

3.1.1.1 GEANT4 simulation of P (x, y) and S(x, y) for largest field F

We simulated the source in MRI-LINAC as 7.2 MeV electrons bombarding at

a target tungsten with thickness 0.28 cm. Cone collimator is a cuboid of lead with

a cone hollow in the middle part. The half cone angle is 20 degrees. MLC and X

jaw were modeled as a cuboid with curved surface to define F . F is with dimension

58 cm× 22cm. Cryostat was modeled as cylinder shell with inner radius 51.5 cm and

outer radius 88.7 cm, whose center was isocenter, 143.5 cm away from the source.

This shell was filled with liquid helium. We then recorded the photon positions and

momentum on F ′, whose dimension was 60 cm× 60 cm. We distinguished scattered

photons by monitoring if there was momentum change along the transport. From

these information, we traced back these photons to a cylinder with radius 70.1 cm

(mid plane) and then projected to F to obtain P (x, y) and S(x, y). The reason for

choosing radius 70.1 cm was that we assumed it was the average interaction depth.

Note, P (x, y) would be same as what was recorded on F ′ yet there would be difference

between S(x, y) on F ′ and that on F through projection.

3.1.1.2 Analysis of P (x, y) and S(x, y)

Figure 3.2 shows our GEANT4 simulation results of primary photons and scat-

tered photons. It could be seen that the distribution of scattered photons is sort of a

smeared version of primary photons. Form a physics viewpoint, every photon passing

through the cryostat may undergo scattering and hence deviated from its original
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Figure 3.2. Deconvolution between two maps P (x, y) and S(x, y). left top: P (x, y);
left bottom: S(x, y); right: deconvolution kernel..

path, namely direction from source to this point. Since we chose a cylinder shell with

radius 70.1 cm as sampling plane, the deviation actually caused a blur on this curved

plane if we traced all photons to this plane. Since the region on the curved plane

covered by F is rather flat, we could assume the blur effect is quite the same for each

point. In fact, the largest angle to isocenter on the curve plane is about 20 degrees.

Therefore, we wrote

S = P ∗K (3.1)

for which we used deconvwnr function in MATLAB 2 to find the convolution kernel

K

K = deconvwnr(S, P, 100000000) (3.2)

The large value used in the function is to adjust noise ratio.

2version R2020a
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The result was shown in Figure 3.2. We found that the kernel could be well

represented by a 2D Gaussian distribution

K = RSP ×
1√

2πσx

1√
2πσy

e
− x2

2σ2
x e
− y2

2σ2
y (3.3)

where σx = 3.7 cm, σy = 1.85 cm and RSP = 0.0873. RSP basically represented

the ratio between number of scattered photons and that of primary photons. Note,

We did not set the thickness of helium shell to about 50 cm because we could not

have an exact and unique value of thickness for its irregular shape. Hence, RSP may

not reflect the real ratio between number of scattered photons and that of primary

photons. But this will not change the core of the problem where scattered photons

could be represented by a smearing effect on primary photons. When we commission

the beam to a measurement result, we could adjust RSP , σx and σy accordingly. For

a purpose of generalization, the code supported input of two maps as well.

3.1.1.3 Description of scattering photons

The above section only describes the location of photons’ start positions. Yet,

it did not mention the speed direction. For primary photons, its speed direction is a

direction from source to sampled position. But for scattered photons, their directions

must deviated from the direction of corresponding primary photons. Considering scat-

tered photons mostly come from Compton scattering for photons with MeV energy,

we may safely estimate there was only one Compton scattering effect for scattered

photons because the mean free length between two Compton events should be larger
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than λ = 1/µ ∼ 180 cm for 2 MeV photons in liquid helium 3. From Klein-Nishina

formula [174], which was

dσ/dΩ = pe(γ, θ)2 ∗ (pe(γ, θ) + 1/pe(γ, θ)− sin θ2)

pe(γ, θ) = 1
1+γ∗(1−cos θ)

,
(3.4)

we could plot cross section as function of deviation angle θ. Here, γ = Eγ/mec
2 means

the ratio between photon energy and electron rest energy. The results were shown

in Figure 3.3 and could be well presented by a Gaussian distribution with standard

deviation σθ. Like what was done for position sampling, the code supported input of

σθ map as well.

Figure 3.3. Sampling angle distribution of one million Compton scattering events for
photons with 2 MeV ..

3https://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z02.html
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3.1.1.4 Sampling of energy

Figure 3.4. Comparison between energy fitting and energy histogram for scattering
photons..

Then we need an energy model for sampling source photon energies. By ob-

serving energy histograms of primary and scattered photons, we found out that the

energy spectrum could be expressed by

P (E) = a ∗ En

1 + b ∗ Em
∗ (Emax − E) (3.5)

for both photon types. Emax = 7.2MeV is the maximum photon energy for this work.

An illustration figure was shown in Figure 3.4 for scattered photons.
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3.1.1.5 Source size effect

3.1.1.6 Source size effect

Because sometimes f(x, y) can be very concentrated, namely large value in mm

scale, the source size has non-negligible effect on the dose profiles, especially when we

consider the long distance between MLC and isocenter. A source of diameter 7 mm

would affect around 2 cm on the edge part of the field (7 mm ∗ (143.5− 37)/37). We

used a Gaussian distribution with standard deviation σS to represent the source size

effect.

3.1.1.7 Sampling of beamlets location

In this section, we will talk about how to do the sampling so that the MC

simulation gives absolute dose values. This actually consisted of two part: how to

sample photons and how to assign weights. From the importance sampling theory,

we have ∑
X∼p(X)

g(X) =
∑

X∼q(X)

p(X)

q(X)
g(X) (3.6)

Here, X ∼ p(X) means X is sampled from a distribution p(X) and same for X ∼

q(X). p(X) and q(X) are normalized probability density. N is the number of sampling

points. Hence, if we grid the field F and hence grid the maps of P (x, y), S(x, y) and

f(x, y), the product f(x, y) × (P (x, y) + S(x, y)) represents the number of photons

passing through pixel (x, y). We could always just use one variable X to represent

the pixel index (x, y), for instance linear index. Thus, we have

D(~r)MC/N =
1

N

∑
X∼f(X)∗(P (X)+S(X))

1×D(~r|X)MC

=
Nf

N
×

∑
X∼ f(X)

Nf

(P (X) + S(X))×D(~r|X)MC

(3.7)
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with

Nf =
∑

X∼U(F )

f(X). (3.8)

U(F ) means uniform sampling in field F . D(~r)MC means the dose simulated by MC at

location ~r and D(~r|X)MC means the dose produced by MC at location ~r with photon

starting from X. The reason to perform such transformation is to sample photon

position with f(X) with weight P (X) + S(X) to accelerate the dose calculation.

The reason for not choosing f(X) as weight is because f(X) can be very focused

sometimes that makes the uncertainty of dose difficult to reduce. Usually we need to

run much more photons to achieve same uncertainty as the method we used here.

After making the assignment of weight clear, the next step is to sample specific

photons and transport them to get D(~r|X)MC . The algorithm is stated as following.

1. Read photon history N and 2D map of P (x, y).

2. If Equation (3.1) was used, S(x, y) = RSP ∗ P (x, y) and read σx and σy. Oth-

erwise, read S(x, y) from file.

3. Prepare θ map. It is either a single value σθ or a map read from a file.

4. Read f(x, y) and calculate Nf from Equation (3.8).

5. Sample X from f(X) by metropolis sampling or directly assign photon location

based on the number of photons on each pixel N(X) = N × f(X)
Nf

.

6. Based on sampled Xr, determine photon types by sampling ξ ∼ U(0, 1) and

compare it with p = P (Xr)/(P (Xr) + S(Xr)). If ξ < p, the sampled location

should belong to a primary photon and continue with Step 7. Otherwise it is a

scattered photon and go to Step 8.

7. Put its position to a plane on MLC.Sample source location from N(0, σS). Its

speed direction was from source to Xr. Energy was sampled from Equation

(3.5) with n = 1.6, m = 3 and b = 3.
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8. Find the crossing point between cylinder shell with radius 70.1 cm and line from

source to Xr. Sample two random variables u1 and u2 from N(0, 1). The x and

y location should be blurred by adding σx ∗u1 and σy ∗u2, respectively. Energy

was sampled from Equation (3.5) with n = 1.1, m = 2.8 and b = 2.5. Sample θ

from N(0, σθ) and rotate the primary photon speed direction by θ.

9. Assign weight (P (Xr)+S(Xr)) to either type of photons and transport. Record

dose.

10. Repeat until we finish simulation of N photons.

11. Final dose D = C ∗Nf/N ∗DMC, where C is a calibration factor, which could

be determined by a comparison to dose in water phantom.

3.1.2 Implementation of electron transport in magnetic field

The algorithm of transporting electron has been stated clearly in reference [41,

66]. The electrons transport straightly until a hard collision event happens when

there is no magnetic field. Energy is continuously lost along the track and for those

hard collision events. Things became a little bit different When electrons were put

inside a magnetic field – the electron path should be bent. Although the existence of

magnetic field does not affect the amount of energy for each energy deposition event

physically, it altered their positions, which brought the issues checking between voxel

boundaries and a curved path and energy split between different voxels if a curve

line penetrate multi voxels. If the check is too complex, the computational efficiency

will be greatly reduced. For example, trying to get the exact positions for the curved

path and six faces of one voxel. However, as we are trying to match dose deposition

in voxels, we only need to make sure that the straight line will not deviate from the

curved one more than a threshold value dt. We empirically used dt = 1.25 mm, half

of a voxel side length, in our simulation. Hence, we restricted step length less than
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dt for each straight line. And we made the deviation angle of speed larger than it

should be so that it could compensated the error in next step as shown in Figure

3.5. The turning points of speed for two frameworks do not coincide with each other.

However, as long as we keep the relative distance between two turning points not far

away from each other, the energy depositions still fall into the same voxel for both

frameworks.

Figure 3.5. Electron transport inside magnetic field. Red lines and arrows represent
expected paths and speed directions. Black lines and arrows represent real path and
speed directions in our code. Dashed lines represent errors..

Mathematically and physically, for a step s in an uniform magnetic field with

strength ~B, the deviation angle ψ of speed ~v projected on a plane perpendicular to

magnetic field is

s⊥ =
p⊥
eB

ψ (3.9)

⊥ is the vector component perpendicular to magnetic field and s⊥ can be calculated

as

s⊥ = s ∗ | ~eB × ~ev| (3.10)
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and p is the momentum and can be expressed as

p⊥ = γmv⊥ = γmv ∗ | ~eB × ~ev| (3.11)

where γ = 1 + Ek/mec
2 and Ek the electron kinetic energy. Here, ~ev means the unit

vector for ~v and similar for ~eB.

With all the above equations, we could solve ψ and then finally obtain the

deviated speed ~v′ as

ψ =
eBs

γmv
(3.12)

~v′ = ~v ∗ cosψ + (~ev • ~eB) ∗ (1− cosψ) ∗ ~eB + ~eB × ~ev sinψ. (3.13)

From the idea we mentioned above, Equation (3.12) should be updated as

ψ = α
eBs

γmv
(3.14)

with

α = 1 +
s⊥
dt
∗ (rm − 1) (3.15)

We used rm = 1.15.

3.1.3 Results

Figure 3.6. Dose deposition in water phantom with 10×10 cm2 field. Left: cross
plane. Middle: in plane. Right: along depth direction.
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We first apply this model to dose calculation in water phantom with 10×10 cm2

field. We adjust the parameters in source model to match the profiles. The results

were shown in Figure 3.6. We could see quite good agreement was achieved. Large

error existed on both ends along depth direction because dose in air and couch was

not recorded by TPS. And we determined the calibration factor C by comparing the

average dose of dose region higher than 80% of maximum dose for MC results and

TPS results. C = 0.00042 in this work.

Figure 3.7. Comparisons between simulated results and that from TPS for a prostate
case. Top row from left to right: TPS, CT and simulated results. Bottom row from
left to right: LR, IS and AP directions..

We then present two dose simulation with the parameters determined by water

phantom on two different body part. One is prostate and the other one is lung.

We could see the model we constructed achieved good agreement for both cases. It

was a little bit worse for lung cases, possibly due the deviation brought by material
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Figure 3.8. Comparisons between simulated results and that from TPS for a lung
case.Top row from left to right: TPS, CT and simulated results. Bottom row from
left to right: LR, IS and AP directions..

segmentation. Although we used water for all voxels, but their density values were

segmented from MRI or CT images.
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3.2 Simulation for kVp beams

We now talked about some developments with kVp beams. kVp beams are

usually used for imaging purpose (tens of keV ) or therapeutic purpose ( two hundred

eV ). Physically, it shows some differences compared to MV beams.

1. No pair production interactions because of too small photon energy, which

means no need to consider positron transport and annihilation.

2. Electrons could be viewed as depositing energy locally because secondary elec-

tron cannot travel far. In fact, The CSDA range 4 for 200 keV electron in water

is only around 0.45 mm while there is few secondary electrons with such high

energy for kVp photon beams and voxel size is usually about 2 mm.

3. Rayleigh scattering needs to be considered for certain photon energy.

So for the works in this section, we just used gCTD [60], which was initially devel-

oped for CT/CBCT calculations. In this code, electron transport was ignored while

Rayleigh Scattering was included. We also used GATE (The Geant4 Application for

Tomographic Emission, version 8.1) [86, 89] was also used for some cases for valia-

dating the results from gCTD. The things we did were revising the code for different

source spectrum inputs and large phantom with millions of voxels and comparing the

results with experimental results.

3.2.1 Motivation

The accuracy of delivered radiation dose and the reproducibility of employed

radiotherapy methods are key factors for preclinical radiobiology applications and re-

search studies. The prerequisite for accurate evaluation of dose and dose uncertainty

is traceability to the reference radiation standard. In the U.S., the standard is deter-

mined and maintained by the National Institute of Standards and Technology (NIST)

4https://physics.nist.gov/cgi-bin/Star/e table.pl
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or by the Accredited Dosimetry Calibration Laboratories (ADCLs). NIST or ADCLs

calibrated dosimetry equipment ensures that there is a documented unbroken link

to the reference standard which provides known dose uncertainty under calibration

conditions. A variety of different dosimetry protocols are available for irradiator cal-

ibrations depending on the type (gamma rays, x-rays, charged particles) and energy

(kV, MV) of the radiation source. Superficial and orthovoltage x-ray energies are pre-

dominantly utilized in contemporary commercial small animal irradiation platforms.

The American Association of Physicists in Medicine (AAPM) published a guidance

document, developed by Radiation Therapy Committee Task Group 61 (TG-61), with

recommendations for 40–300 kV x-ray beam reference dosimetry. NIST traceability

and a properly calibrated irradiator, however, only provide a good starting point.

The ultimate goal is to determine dose and the corresponding dose uncertainty for

any given irradiation setup which is likely to be different from calibration conditions.

Key factors for dose calculations include reference output at the calibration

point, distance from the source, dose falloff as a function of depth and attenuation of

the medium, radiation field size (FS), the presence of beam modifiers such as filters

and lab equipment used to aid the experiments, etc. In addition, somewhat less

obvious dose variables include objects and materials beyond the irradiated target, dose

rate variations, walls and components of self-shielded irradiator systems, the number

of interfaces between different media, etc. These factors in conjunction with a given

experimental geometry may not ensure charged particle equilibrium, a fundamental

requirement necessary for accurate measurements.

In practice, the aforementioned considerations are neither trivial nor easy and

present traps for remarkable dosimetric fails. An expert panel consensus document

[175], emphasizing the importance of dosimetry standardization in radiobiology stud-

ies and reporting dosimetry details in research articles, was published as a result of
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the workshop hosted in 2011 by the National Cancer Institute (NCI), the National

Institute of Allergy and Infectious Diseases (NIAID), and the National Institute of

Standards and Technology (NIST). Publications without crucial dosimetry informa-

tion clutter valid scientific findings with results difficult or impossible to reproduce

and compare with similar studies. A study analyzing radiobiology publications in last

20 years found that highly cited journals and articles are systematically more likely

to be lacking dosimetry details related to irradiation protocols and that such practice

may have contributed to the data interpretation and reproducibility crisis.

3.2.2 Case and simulation descriptions

3.2.2.1 Case 1: total body irradiation

We started this work from a quality assurance after a service call and repair

of the irradiator for small animals. The in-air irradiator calibration was confirmed

but an additional phantom measurement did not agree with a basic hand calculation.

This puzzle was unraveled only after the series of additional measurements and MC

simulations presented in this work. This work exemplifies such a necessity for one of

the most commonly used experimental methods, total body irradiation (TBI), still

commonly utilized in contemporary studies of radiobiology and immunology.

The x-ray tube was treated as an isotropic point source emitting photons in a

cone with a half angle θ. The photon energies were sampled from a x-ray spectrum,

which was calculated using SpekCalc [176] with the electron incident angle of 30o

and an extra 1.35 mm thick Al filtration, yielding the same HVL as the experimental

value of 0.45 mm Cu. The x-ray beam was collimated with a 1.90 cm thick Pb square

opening to produce a 26.4 × 26.4 cm2 field at 65 cm from the source.
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The simulated geometry was shown in Figure 3.9. We set SSD=65 cm first

to study the the effects of different kVp. Then we replace the 3 cm water layer

with other phantom and set different SSD to match the experiments. The values

were summarized in Table 3.1. 250 kVp source was used for the consistence with

experimental results. For banchmarking with experiments, the reference simulation

was performed for the in-air calibration setup, MC-1 simulation in Table 3.1. The

center of an 1.0 mm3 water voxel was placed at 65.0 cm from the x-ray source. Dose

calculation was performed yielding dose to water at the center of the voxel. The

number was further corrected for the attenuation by the 0.5 mm water above the

center of the voxel and then a correction factor could be obtained, namely

Dexp = N ×DMC . (3.16)

Then for all other simulations, we could use N to transform simulation results and

compared with experiments. In all cases, the simulations yielded 3D dose distribu-

tions throughout the phantoms. Point doses at the position corresponding to the

measurement points were extracted.

Figure 3.9. Setup of the TBI simulation. Cone beam is used to cover the phantom.
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Table 3.1. Summary of geometries and materials in MC simulations

MC
run

Setup
description

Phantom
dimensions

(cm3)

Phantom
material

Voxel size
(cm3)

SSD
(cm) Depth

(cm)
MC-1 In-air

calibration
0.1×0.1×0.1 Water 0.1x0.1x0.1

64.95
NA

MC-2 Solid water
phantom

30.0x30.0x3.0 Water 0.5x0.5x0.1 62.0 1.5

MC-3 Small water
box

5.0x5.0x3.0 Water 0.5x0.5x0.1 62.0 1.5

MC-4 Mouse phantom 3.8x10.0x2.1 Water 0.1x0.1x0.1 62.9 1.05
MC-5 Rat phantom 8.0x21.0x3.5 Water 0.1x0.1x0.1 61.5 1.75
MC-6 Mouse phantom

in a pie cage
3.8x10.0x2.1a Water 0.1x0.1x0.1 62.0 1.05

a mouse phantom only in off-center position

3.2.2.2 Case 2: high throughput cell experiments

Multi wells plate is often used in biological experiments to have high throughput

cell experiments. The radiation dose is considered uniform on the plate and average

could be done on several wells to have better statistics uncertainty for the results.

Here, we chose a Thermo-Fast 384 PCR plate, which consists of 16 rows and 24

columns of wells. Each well looks like a cone and could be filled with liquid. Specific

tech details could be found in Pub No. MAN0014446. The illustration of the phantom

modelled in our MC simulation is shown in Figure 3.10. The plate was put under

a cone beam with isotropic fluence. Each well is filled with about 80 mL water,

which made the liquid height 6.5 mm. The tough part for this simulation is the large

number of voxels. Fine resolution (0.1 mm) have to be used to take care of the details

of wells.
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Figure 3.10. Illustration of phantom with 384 wells. Only part of the phantom is
plotted.

3.2.3 Results and discussions

3.2.3.1 Case 1: total body irradiation

From Figure 3.11, we could first know that the substrate has large influence

on the dose yields. More water along the beam direction increased the dose values

primarily because the back-scatter effect, where photons and secondary electrons have

a chance to travel backwards the beam direction. However, for thin steel or water,

this effect could be ignored. When we changed the energy spectrum from 80 kVp to

250 kVp, the resulted difference by using different substrates is altered as well, 3 mm

water and 3 mm steel showed prominent difference under 250 kVp photons. This

illustrate the difficulty of calculating dose just by lookup tables for a real case. Many

factors should be taken into consideration.

The dose rate values at the points of interest corresponding to the measurement

points in various phantom configurations are summarized in Table 3.2. Overall, the
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Figure 3.11. Dose versus depth along center axis for photon source with different
kVp.

MC calculated dose rates were in good agreement with the measured dose rates. The

relative dose rate difference e = |Dexp−DMC |/DMC was 2.6% and 0.9% for the solid

water and small water box, respectively. The difference was found to be somewhat

larger for the mouse phantom, the rat phantom, and the mouse phantom in the

pie cage scenarios, 3.3%, 3.9%, and 0.8%, respectively. This was attributed to the

uncertainties in geometry, such as phantom setup and chamber placement, as well as

to the unknown phantom material composition which was simulated as water for the

mouse and rat phantoms. The PDD in small water box phantom computed by MC

simulation is plotted in Figure 3.12. The computed PDD generally agreed well with

PDD measured using a film, and the average difference between the two curves was

0.74%. The relative difference between MC and measured PDD at 1.5 cm depth was

0.9% for the small water box.

The hand calculation of point dose is very simple and not setup specific.

D′ = D0 × (
SSD0

SSD
)2 × PDD(z)/100. (3.17)
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Table 3.2. Measure and simulated dose for different configurations

Setup description SSD
(cm)

Measure-
ment

depth (cm)

Dexp

(Gy/min)
DMC

(Gy/min)
e (%)

In-air calibration 65.0 NA 1.537 1.537 0.0
Solid water phantom 62.0 1.5 1.314 1.349 2.6

Small water box 62.0 1.5 1.155 1.166 0.9
Mouse phantom 62.9 1.05 1.070 1.106 3.3

Rat phantom 61.5 1.75 0.976 1.014 3.9
Mouse phantom in a

pie cage
62.0 1.05 1.105 1.114 0.8

The first term represents the inverse proportional with SSD square which accounts for

the energy conservation through a sphere shell and the second term represents dose

drop inside a phantom. We would use in-air calibration as D0 in Equation (3.17) and

finding corresponding dose D′ at certain depth z by look up tables of PDD line. In

real case, z = 1.5 cm is usually adopted. The general discrepancies induced by this

method versus experiments ranged from 16% to 37% [177]. Note that the irradiator

was initially calibrated following the in-air TG-61 procedure and that the 3 mm steel

plate was removed to facilitate the calibration. For all subsequent setups, the steel

plate was put back to support phantom measurements. Apparently, the steel plate did

not provide sufficient backscatter relative to the in-air reference condition, yielding

the observed dose rate overestimation for hand calculations. The 16% overestimation

for the solid water phantom increased to 27% for the small water box, which can

be ascribed to the reduction of the lateral photon scattering. For rodentomorphic

phantoms, the overestimation was further amplified from 31% for the mouse to 37%

for the rat phantom. In general, the overestimation was larger for smaller phantoms

due to reduced phantom dimensions. This was not the case when comparing the rat

with the mouse phantom. While the rat phantom was able to provide more scattered
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Figure 3.12. Dose versus depth along center axis for photon source with different
kVp.

photons relative to the mouse phantom, the measurement points were at 1.75 cm and

1.05 cm, respectively. This was different than the assumed 1.5 cm depth for hand dose

calculation and it represented the largest contribution to the dose rate discrepancies.

3.2.3.2 Case 2: high throughput cell experiments

We presented the simulation results in Figure 3.13. Although the center part

has quite uniform dose (2% difference), the edge part showed 9% lower dose than

the center part. If we further considered that there are more photons in the beam

center than edge part or a larger plate was used, the dose difference between center

and edge parts should be even larger. To compensate the dose variation for different

wells, bolus with well-designed shape could be used to reduce the photon fluence in

the center and therefore achieve dose uniformity. However, this requires extra efforts

and care. Even for the same well, the dose at different depth shows large difference.
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Figure 3.13. Left: cross section of dose distribution at the center plane of wells.
Right: dose distribution versus depth along a well center axis.

Dose difference could be 20% different for bottom and top part. It means if the water

depth is not controlled very precisely at the same value or the cells were not located

at the same depth, say bottom, the dose experienced by the cells are not the same.

Hence, the survival data or other analysis that depends on dose might be invalid.

3.2.4 Conclusion

We did dose calculation for two different cases but both were related to specific

real experiments. We found although dose was a simple concept, its correct calcu-

lation was not that trivial if MC simulation is not involved. Dose was affected by

many factors such as the support material for the phantom, the size of phantom etc..

Unfortunately, in practice, the dose were assumed to be uniform (384 wells) or calcu-

lated by some lookup tables (TBI). This leads to dose errors in biological experiments.

There are two bad results. One is that the quantitative conclusion from biological

experiments may be wrong and the other is that the comparison of experimental re-

sults among different facilities is meaningless. It certainly causes confusion and waste

of resources. From the results we showed in this section, we suggest all biological
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experiments should have physician as consultant or the dose calculation should be

done by MC simulation. The application of GPU makes sure that the simulation

time is not a problem for most clinical cases, where geometry could be simplified or

the number of voxels is just several million.
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CHAPTER 4

GPU APPLICATIONS FOR MICROSCOPIC SIMULATIONS

4.1 Introduction

When ionizing radiation interacts with water, energy transfer by a series of

energy deposition events in the physical stage results in ionization or excitation of the

water molecules. These physical events lead to direct damages to the DNA. The highly

unstable molecular ions and excited water molecules then generate a large number of

free radicals in the physicochemical stage. In the subsequent chemical stage, diffusion

and mutual chemical reactions of the radicals generate further damages to the DNA.

These initial DNA damages caused by ionizing radiation triggers subsequent biological

processes [178].

Computing the DNA damages caused by radiation is of central importance

for understanding radio-biology and for quantitatively testing hypotheses regarding

radio-biological effects. Monte Carlo (MC) simulation is one of the most widely

used approaches for the computations of the water radiolysis process and DNA dam-

ages. Based on fundamental physics and chemistry principles, MC method can pre-

cisely calculate the time-dependent behavior of energy deposition by a particle, the

reaction-diffusion process of radicals, and their damages to DNA using probabilistic

methods. Over the years, several packages have been developed, such as TRAX [179],

PARTRAC [180, 181], GEANT4-DNA [182–185] and RITRACKS [186, 187]. These

packages have demonstrated tremendous value in supporting research in related ar-

eas. For example, simulations of the energy deposition in biomolecules and cells from

radiation track structures have been performed by a number of groups [50, 188, 189].
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Estimations on the spectrum of DNA damages using MC simulations has played an

indispensable role in understanding radiation-induced biological effects in organisms

[190, 191].

4.2 Development of gMicroMC

4.2.1 General description

gMicroMC currently supports simulations of water radiolysis introduced by elec-

trons. Since the simulation models have been widely studied by many other groups

and can be found elsewhere, we will only briefly present the models for complete-

ness. Interested readers can refer to relevant literature for more details. Physical

stage (¡10-15 s). In the physics stage, an electron undergoes different types of phys-

ical interactions, until its energy falls below a cutoff level. In gMicroMC, we used a

step-by-step simulation scheme to transport the initial electron and all subsequently

generated secondary electrons. We considered four types of interactions between wa-

ter molecule and electrons: ionization, excitation, elastic collision, and dissociative

electron attachment. We employed the relativistic extension of the binary-encounter-

Bethe (rBEB) model [192, 193] to compute ionization cross sections of electrons with

the water molecular orbitals for energy range from 10 eV to 100 MeV. Specifically,

we generated the cross section data for five different shells of a water molecule (four

outer shells and one inner shell (K-shell)) based on the model. The electron binding

energies came from the work of Dingfelder et al [194]. Due to the lack of available

data on the absolute values of the excitation cross sections of H2O, the semi-analytic

model introduced by Olivero et al [195] was employed to model excitation interac-

tion. The electron excitation levels came from the work of Dingfelder et al [194] and

we considered energies for excitation levels of A1B1, B1A1, Rydberg A+B, Rydberg
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C+D and diffusion. For the modeling of elastic collisions, the cross sections were

given by a parameterized expression with adjustable parameters determined by fit-

ting to experimental data at various incident energies for energies below 200 eV. We

adopted the semi-empirical differential cross sections of Brenner and Zaider [196].

Above 200 eV, we used the Rutherford formula. Elastic scattering is known to be

described well by the Rutherford formula, which includes a correction for atomic

screening effects theoretically described by Moliere [197]. Finally, based on the study

on dissociative attachment reactions of H and O by Melton [198], H ., O− and OH−

ions were produced at electron impact energies of about 6.5 eV. H− was by far the

most abundant product and it was also observed at around 8.5 eV. The cross section

data of dissociative attachment in our work were extracted from Melton’s curve.

Let us denote the generated cross section data as σi, where i is the index for dif-

ferent interactions and subtypes (e.g. excitation from a certain shell). The transport

simulation sampled the distance to the next interaction as s = − 1
ρ
∑
i σi
lnζ, where ρ is

the density of water and ζ is a random number uniformly distributed in [0,1]. After

advancing the electron by s, we sampled the interaction type and subtype based on

the relative weight of σi/
∑

i σi . For an ionization event, the energy of the secondary

electron was determined by means of the composition sampling method, which was

developed originally in CPA100 code [199, 200]. The scattering angle θp of primary

electron for both an ionization and an excitation event was computed as sin2θp =

W/T
(1−W/T )T/(2m0c2)+1

, where W and T are energy loss of the primary electron and its en-

ergy before the event, respectively. m0 and c are the rest mass of an electron and the

speed of light. As for the secondary electron generated from the ionization process,

the ejection angle θs followed sin2θs = (1−W/T )/(1 + W/(2m0c
2))forW > 200eV .

θs was uniformly distributed in [π/4, π/2] with a 90% probability and in [0, π] for

the rest 10% probability, when 50eV¡W¡200 eV. For W¡50 eV, θs was uniformly dis-
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Table 4.1. Branching ratios for ionized and excited water molecules used in gMi-
croMC.

Excited
status

Shell Pathway Decay channel
Branching
ratios
(%)

Ionized
water
molecules

1b1, 3a1, 1b2, 2a1, K Dissociation H3O
+ +HO. 100

Excited
water
molecules

A1B1 Dissociation HO. +H . 65
Relaxation H2O + ∆E 35

B1A1

Auto-ionization H3O
+ +HO. + e−aq 55

Dissociation H2 + 2HO. 15
Relaxation H2O + ∆E 30

Rydberg A+B,Rydberg
C+D and diffusion

Auto-ionization H3O
+ +HO. + e−aq 50

Relaxation H2O + ∆E 50

tributed in [0, π]. For an elastic collision event, the primary electron did not have

energy loss and the scattering angle was sampled using the inverse transform method

[60]. As for the dissociative attachment reactions, the primary electron disappeared,

and products were produced. This process was repeated, until the electron was ab-

sorbed, or its energy was below the cut off energy Ec = 5eV , which deposited energy

locally.

Physicochemical stage ( 10−15–10−12 s). During this stage, the types and loca-

tions of initial radiolytic chemical species entering the subsequent chemical stage were

determined. We adopted the same simulation models used in PARTRAC, including

the pathways of ionized and excited water molecules and the thermalization of hot

dissociation fragments and subexcitation electrons [180]. Specifically, ionized water

molecules were assumed to undergo dissociation as the sole pathway. Excited water

molecules had three possible pathways, relaxation, dissociation and auto-ionization,

depending on the excitation type. The decay channels and the corresponding branch-
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ing ratios used in our package are shown in Table 4.1 . After determining a pathway

according to the branching ratio, the hot dissociation fragments had to be thermalized

by getting rid of kinetic energy released in the dissociation process. Here, we sam-

pled the thermalization displacements r isotropically from a radial density function

f(r) =
√

2
π

1
σ3 r

2exp
(
−1

2
r2

σ2

)
, where σ is the standard deviation of one dimensional

normal distribution [180]. Sub-excitation electrons transferred their excess energy to

the surrounding medium until thermal energies through a number of inelastic pro-

cesses. The thermalization displacement r was sampled according to a distribution

f(r) = 4re−2r, where the unit of r is nm. At the end of the thermalization process, a

low energy subexcitation electron formed a cluster in aqueous solution by attaching

surrounding water molecules.

Chemical stage ( 10−12−10−6 s). The chemical stage of water radiolysis consists

of two types of chemical kinetics: diffusion of the radiolytic molecules e−aq, HO
., H .,

H3O
+, H2, OH−, and H2O2 and their mutual chemical reactions. Brownian motion

was used to model the diffusion of the radiolytic molecules with each being consid-

ered as an individual Brownian object with random independent motions. All the

chemical reactions considered in our package were assumed to be diffusion-controlled,

as in PARTRAC and GEANT4-DNA. A reaction would occur, when the distance of

the reactants was no greater than the reaction radius. The diffusion constants and

reaction constants were taken from published data. Detailed descriptions of modeling

can be found in Tian et al [201].

4.2.2 DNA model

We built a DNA geometry model to describe the DNA structure inside a lym-

phocyte cell nucleus. The model was constructed in a multi-scale fashion with its

structure described at six scales. From the finest to the coarsest scale, they were
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Figure 4.1. (a1) The nucleotide pair including a base pair (yellow) and two sugar-
phosphate groups (blue and red), (a2) a B-DNA segment, and (a3) the overlap be-
tween two neighboring groups. (b1) (b2) Nucleosome structure. (c1) (c2) Chromatin
fiber loop. (d1) A straight chromatin fiber unit and (d2) a bent chromatin fiber unit.
For colorful figures, please see online version..

nucleotide pair, DNA double helix, nucleosome, chromatin fiber loop, chromatin fiber

unit, and finally the cell nucleus.

Nucleotide pair According to Bernal et. al. [202], the nucleotide pair is sepa-

rated into three parts as shown in Figure 4.1 (a1): the base pair (yellow) and a left

and a right sugar-phosphate group (blue and red). In our model, the base pair was

represented by a cylinder with 1 nm in diameter and 0.34 nm in height. Each of the

two sugar-phosphate group was described as a sphere with a radius of 0.45 nm. The

two groups were separated by 135°, as presented in Figure 4.1 (a1).

DNA double helix The B-DNA double helix was formed with each nucleotide

pair turned by 36° relative to the previous nucleotide pair and shifted by 0.34 nm
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along the central axis of the helix, as shown in Figure 4.1 (a2). The sugar-phosphate

spheres at two adjacent levels overlapped. The overlapping volume was cut into

two equal parts, each assigned to the nearest sphere (Figure 4.1 (a3)). With these

settings, the volume of the modified sphere equaled to the volume of all atoms in a

sugar-phosphate group.

Nucleosome The nucleosome was made of a histone octamer and the DNA

double helix. The histone octamer was modeled as a cylinder with a 3.13 nm radius

and the DNA double helix winded 1.75 times with a 2.7 nm pitch around the histone

octamer to form a nucleosome of 11 nm in diameter and 6 nm in height. Each

nucleosome contained 147 base pairs (bps) as shown in Figure 4.1 (b1) and (b2) in

two different views.

Chromatin fiber loop A chromatin fiber loop contained six nucleosomes. The

six nucleosomes were placed around a circle separated by 60o and each nucleosome

was rotated about the radial direction of the circle by 20o. This formed a chromatin

fiber loop with a diameter of 30 nm and height of 11 nm, as shown in Figure 4.1 (c1)

and (c2).

Chromatin Fiber Unit With the chromatin fiber loop, we constructed two chro-

matin fiber units that served as the building blocks of a cell nucleus. Both were

defined in a cubic volume with a side length of 55 nm. The first type was a straight

chromatin fiber unit extending from one face of the cube to the opposite face, and

the second type was a bent fiber unit connecting one face of the cube to one of the

adjacent faces. The straight unit contained 30 nucleosomes (six layers of chromatin

fiber loop), while the bent unit contained 24 nucleosomes. The configurations are

shown in Figure 4.1 (d1) and (d2), respectively. Depending on the starting and end-

ing faces of the chromatin fiber, there are in total six types of straight units and 24

types of bent units. We generated a detailed geometry representation for one of each
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type, and used simple coordinate transformation, e.g. rotations, to generate all types

of the chromatin fiber units. For example, the straight unit connecting the left and

right sides of the cube is equivalent to the one connecting the front and back sides

with a rotation by 90° about the vertical axis.

Figure 4.2. A DNA model of a human lymphocyte cell nucleus generated based on
an SCD Model.
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Cell nucleus We generated the DNA structure of a medium size lymphocyte

cell nucleus in a sphere with a diameter of 11 µm. As such, we first employed the

spherical chromatin domain (SCD) model [181, 203, 204] to simulate the arrangement

of chromosome in the cell nucleus. This model assumed that every chromosome is

composed of a chain of spherical chromatin domains (CDs). The diameter of each CD

is 500 nm containing 1 Mbp DNA. To determine the locations of CDs, we followed

the following three steps. First, we represented each chromosome by a sphere whose

radius was proportional to the number of DNA it contained. The locations of the

chromosome spheres were determined based on their radii with larger spheres placed

closer to the nucleus center, as shown in Figure 4.2 (a). Second, each chromosome

was filled with CDs, and the total number of DNA in all CDs of a chromosome was

equal to the DNA content of the chromosome. The CDs were placed side-by-side with

a 14 nm separation to form a linear arrangement of a ‘start cylinder’, as shown in

Figure 4.2 (b). After that, a Markov process was used to model a relaxation process

and generate the final configuration of CDs. During this process, there were three

potential energies considered: entropic spring energy, volume potential, and weak

potential barrier around each chromosome chain. In this way, the final configuration

of the CDs was generated in equilibrium as reported in detail by Kreth et. al [203].

This configuration is shown in Figure 4.2 (c).

The next step was to generate a DNA structure using the CD positions and

chromatin fiber units. We partitioned the spherical space of the lymphocyte nucleus

with cubical voxels of 55 nm in size. After that, we placed chromatin fiber units

in these voxels to connect the centers of the CDs computed previously using a self-

avoiding random walk model. There were two constraints in this process. First,

the total number of DNA linking two CDs should be 1 Mbp. Second, chromatin

fiber units in two neighboring voxels should be connected smoothly. The cell nucleus
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model constructed in this way contained 6.2 Gbp DNA (Figure 4.2 (d)) and the DNA

density was around 6.8× 10−12 g per cell.

4.2.3 DNA damage calculation

The particle and radical transport simulations resulted in locations and types

of physics events, as well as locations of radicals at the end of the chemical stage.

We overlapped these physical events and radical locations with the DNA geometrical

model to compute DNA damages of different complexities [205]. The computation

included two major steps. The first step was to calculate strand breaks (SBs) caused

by physical events (direct damages) or radicals (indirect damages). For the direct

strand breaks, we first identified if each physical event fell in a sugar-phosphate group.

This was considered true, if the event location was within a distance of R+Rp from

the center of the sugar-phosphate group, where R is the radius of the group and Rp is

reaction distance taken as the thickness of the first hydration layer, which is 0.1 nm

[181]. If the event fell into multiple groups, the one with its center closest to the event

location was chosen. After processing all energy deposition events, we aggregated all

the energy deposit to each sugar-phosphate group. The strand was considered broken,

if the deposited energy was over Ethres = 17.5eV .

As for the indirect strand breaks, we assumed that only the HO. radical could

lead to a break. Hence, for each HO. radical location, we searched the DNA struc-

ture to find whether it was within a distance of R+Rc from the center of the sugar-

phosphate group, where Rc = 0.08 nm is the chemical reaction radius decided by the

chemical reaction rate between the radical and the DNA according to Smoluchowski’s

diffusion equation Rc = k•NA
4πD

[206]. k is the chemical reaction rate between radicals

and DNA, NA the Avogadro constant and D the diffusion rate. Similar to the com-

putations of physical damages, the sugar-phosphate group with its center closest to
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the radical was selected, if the radical was found to be reacting with multiple groups.

After that, the strand break was formed with a possibility Pc of default value 0.4, the

same parameters chosen by GEANT4-DNA [205]. After processing all radicals, those

sugar-phosphate groups damaged by at least one radical were considered as damaged.

The second step of DNA damage calculation was to compute damages of dif-

ferent levels of complexities. Specifically, after combining the list of damaged sites

caused by physical events and radicals, we first removed duplicated sites and then

analyzed the locations of these damage sites along the DNA double helix to identify

damage of complexities of seven types [50]. We followed the definition in references

[50, 207]. Two parameters dS and dDSB were used to define complexities of single

strand break (SSB) and double strand breaks (DSB). dS was the minimum nucleotide

index difference for two SBs to be considered independently and dDSB was the maxi-

mum nucleotide index difference for two SBs on the opposite sides of the DNA chain

to be considered a DSB. The default values of dS and dDSB were set to 216 and 10,

respectively. With the help of dS and dDSB, we can label SSB and DSB of different

complexities. For example, the simplest break is SSB, defined as the one that has

no nearby breaks closer than dS. SSB+ refers to any number of SBs within dS on

the same DNA strand, while 2SSB refers to two SBs on both sides of the DNA chain

that are closer than dS but further than dDSB. As for DSBs, one DSB is defined as

two SBs on both sides that are closer than DSB, while DSB+, a type slightly more

complex than DSB, refers to any number of SBs on both sides, whose largest distance

is smaller than dDSB. It should be noted that damages of two complexities can have

at most one SB overlap in this classification.
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4.2.4 Comparison with other works

4.2.4.1 Physical stage

Figure 4.3. Mass stopping power for electrons in liquid water as a function of electron
energy (a) and relative difference between gMicroMC results and ICRU data..

Figure 4.3 compares the electron mass stopping power given by ICRU 16, ICRU

37 reports and that computed by gMicroMC. Our result agreed with the ICRU 16

data, with the maximum percentage difference of 16% at 100 eV. The ICRU 37

stopping power data begins at electron kinetic energy of 10 keV . The maximum

percentage difference between our result and ICRU 37 data were 15% at 0.6 MeV ,

which is likely due to random fluctuation in our MC simulation results.

Track lengths and penetration as a function of the incident electron energy

from 12 eV to 250 keV were obtained by using GEANT4-DNA with the default

model, GEANT4-DNA with the CPA100 model and were compared with our results

in Figure 4.4. Relatively good agreements were observed at higher energies region (¿

1 keV) and the differences were within 10%. Larger discrepancies were seen in the

low energy range.
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Figure 4.4. Track length (a) and penetration (b) as a function of incident electron
energy. The right column shows the relative differences between gMicroMC results
and GEANT4-DNA results..

The numbers of events computed by GEANT4-DNA were compared with those

computed by gMicroMC in Figure 4.5. For ionization interaction, the percentage

differences were within 10% between GEANT4-DNA CPA100 and our result, and

within 20% between GEANT4-DNA default model and our result. For elastic inter-

action, the discrepancy between our result and that of GEANT4-DNA default model

was within 20% (Figure 4.5 (c)). As for excitation interaction, the results between

GEANT4-DNA default model and GEANT4-DNA CPA100 model already presented

with large differences. Our results agreed with GEANT4-DNA CPA100 model better

than with the default model, although a relatively large discrepancy appeared at the

energy range higher than 1 keV
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Figure 4.5. Number of interactions for ionization (a), elastic (b) and excitation (c)
events per incident electron as a function of electron incident energy. The right
column shows the relative differences between gMicroMC results and GEANT4-DNA
results..
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4.2.4.2 Physicochemical and chemical stages

Figure 4.6. Yield values of different radiolytic species for (a) 100 keV, (b) 175 keV,
(c) 250 keV and (d) 750 keV incident electrons computed by GEANT4-DNA CPA100
model (red filled circle), GEANT4-DNA default model (green filled square) and gMi-
croMC (blue filled diamond). The inset figures show relative differences between
gMicroMC results and GEANT4 results..

We computed the yields of different free radicals at the end of the chemical stage

(1 µs) triggered by an initial electron with energies of 100 keV, 175 keV, 250 keV

and 750 keV. The results are presented in Figure 4.6 and compared with the results

from GEANT4-DNA using different models. Since the maximum electron energy of

GEANT4-DNA CPA100 model is 256 keV, this model was not included in the study
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with an electron initial energy of 750 keV. In all the cases, relative differences were

within 10% for those species with relatively large yield values, such as HO., H3O
+

and e−aq. Generally speaking, the yield values computed by gMicroMC agreed better

with results computed by GEANT4-DNA CPA100 model than with GEANT4-DNA

default model.

4.2.4.3 DNA damage yields

For the computations of DNA damages to the lymphocyte nucleus model caused

by the 662 keV photons from 137Cs decay, the SSB yield was 196 ± 8 SSB/Gy/Gbp

and the DSB yield was 7.3 ± 0.7 DSB/Gy/Gbp, which were in agreement with the

result of 188 SSB/Gy/Gbp and 8.4 DSB/Gy/Gbp computed by Hsiao et al [208]. We

also computed DNA damages caused by 1.0 keV electrons. Simulations gave the SSB

yield of 177±6 SSB/Gy/Gbp and DSB yield of 11±1 DSB/Gy/Gbp. These numbers

were consistent with the results in Bernhardt et al [209], where 150 SSB/Gy/Gbp and

10.5 DSB/Gy/Gbp were reported for 1 keV photons. At this energy level, photons

generate electrons almost through the photoelectric process, and hence the generated

electrons have energy 1 keV. In another study, DSB yield of 13.4 DSB/Gy/Gbp was

found for 947 eV electrons [208].

4.2.4.4 Computational efficiency

As the main motivation of developing gMicroMC is to accelerate computations,

we compared the computation time of gMicroMC running on one Nvidia TITAN Xp

GPU (1.58 GHz) with GEANT4-DNA running on single core of Intel i7-6850K CPU

(3.6 GHz). We report in Table 2 the computation time for the transport simulation

of the physical stage for cases with an initial electron of energy of 750 keV and 500

keV. It was found that gMicroMC on GPU sped up computations by factors of 5.5x
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Table 4.2. Efficiency test for cases with 750 keV and 500 keV electrons.

GEANT4-DNA (s) gMicroMC (s) Speedup

Physical stage
750 keV 81.5 14.8 5.5
500 keV 40.2 10.8 3.7

Chemical Stage
750 keV 71642 132.8 539.5
500 keV 60747 113.4 537.6

and 3.7x over GEANT4-DNA on a single thread CPU. In the chemical stage, mutual

and competitive reactions between molecules led to much longer computational time.

In our previous study 19, the chemical stage in water radiolysis was substantially

accelerated by GPU. In this study, we timed the simulation starting from the initial

electron to the end of the chemical stage at 1 µs. gMicroMC using one GPU card

was found to be 540x faster than GEANT4-DNA executed on a single thread CPU

(Table 4.2).

As for the computations of DNA damages, due to parallel processing on the

calculations of SBs, it took about 2 sec to complete the damage calculations.

4.2.5 Discussion

Aiming at overcoming the challenge of high computational burden associated

with MC simulations for radiation interaction with water in physical, physicochemical,

and chemical stages, as well as for the computations of DNA damages, we have de-

veloped a GPU-based fast microscopic MC simulation package, gMicroMC. Instead

of developing and implementing new physics or chemistry models, as having been

performed extensively by many groups, our study focused on developing novel GPU

implementations to accelerate computations. We also built a human lymphocyte

nucleus DNA model and implemented a DNA damage calculation method to com-

pute SSBs and DSBs of different complexities. We compared our simulation results
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with those generated by GEANT4-DNA. In the physics stage, mass stopping power,

track length, penetration, and number of interactions were in good agreement with

GEANT4-DNA results. For the results in chemical stage, yield values of major radi-

cal species differed from those computed by GEANT4-DNA by less than 10%. With

the powerful parallelization capability of a GPU card, we achieved speed-up factors of

3.7 5.5 times for physics stage computations of 500 750 keV electrons, and 540 times

for the entire simulation process, compared to the computations by GEANT4-DNA

executed on CPU using a single thread.

We noticed that there are some discrepancies among results for the physical

stage generated from gMicroMC and GEANT4-DNA models (Figures 4.4 and 4.5),

which can be ascribed to the difference in cross section models used in the three

packages (Table 4.3). For instance, for ionization interaction, rBEB model extended

the uphold 256 keV of BEB model [210] in the origin CPA100 code [211]. Hence,

the numbers of ionization events were consistent between gMicroMC and Geant4-

DNA CPA100, while they were quite different from that obtained using Geant4-

DNA default model (Figure 4.5 (a)). As for the electron excitation, the cross section

data were similar between gMicroMC and Geant4-DNA CPA100 model up to 103 eV

[195, 199], since the data in Olivero et al [195] only ranges up to this energy. This

leads to a quite good agreement between gMicroMC and CPA100 model in the low

energy range as shown in Figure 4.5 (c). In the low energy range, elastic scattering

dominates. In this range, our model for the elastic scattering interaction agreed with

Geant4-DNA default model better than the CPA100 model [199]. This explained

the agreement between gMicroMC and Geant4-DNA default model in electron track

length, penetration (Figure 4.4), and number of events (Figure 4.5 (b)) in the low

energy range.
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Table 4.3. Physical models of cross section data in gMicroMC, GEANT4-DNA default
model, and GEANT4-DNA CPA100 model.

Channel gMicroMC
GEANT4-DNA
default model
[182]

GEANT4-DNA
CPA100 model
[199]

Ionization
rBEB model [192,
193]

Emfietzoglou
dielectric model
[212]

BEB model [210]
from CPA100
code [211]

Excitation

Semi-analytic
model introduced
by Olivero et al
[195]

Emfietzoglou
dielectric model
[212]

Dielectric model
from CPA100
code [211]

Elastic

scattering Brenner
and Zaider for en-
ergies below 200
eV [196]
Screened Ruther-
ford formula [197,
213] for energies
above 200 eV

Partial wave
model [185]

Independent
Atom Method
model [214] from
CPA100 code

Vibrational N/A
Sanche’s data
[215]

N/A

Dissociative
attachment

Melton’s data
[198]

Melton’s data
[198]

N/A

In contrast to some studies only considering DNA damages induced by ion-

ization events [205, 216], in gMicroMC, all physics events were considered for two

reasons. First, there is a lack of studies on the exact mechanism of physical damage

formations in aqueous environment. Energy deposition events, regardless of ioniza-

tion, may still cause DNA damages, such as by pressure wave [217]. Second, there

are much more ionization events than other excitation events, as seen in Figure 4.5.

Considering all physical events would not affect the DNA damage results significantly.

Compared to the achieved acceleration factors for the entire simulation process,

the factors for the simulations of the physical stage (3.7 5.5) were much lower. The
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reason for this fact was that the simulation in the physical stage was mostly a serial

computation and hard to be parallelized. At the beginning of the physical stage, only

one electron existed, and we had to compute its transport step by step sequentially.

After that, a number of secondary electrons were generated, and their transport

simulation could be parallelized using different GPU threads. Hence, most of time the

GPU was not used to its full capacity, yielding a much limited acceleration factor. The

used GPU capacity increases with initial electron energy, as a higher energy electron

generates more secondary electrons (all electrons generated by the primary electron),

favorable for parallel processing. The efficiency also increases with the number of

primary electrons.

In contrast, the acceleration of the entire simulation process was found to be

much more substantial, because of the GPU-friendly algorithm used to effectively

handle the chemical stage simulations [201] and the much small portion of the physics

stage simulation time relative to the entire simulation process. Compared to the

acceleration factors reported in our previous study [201], we achieved even higher

accelerations in the current study, which can be ascribed to different GPUs and

CPUs used in the current and the previous studies.

We would like to point out that microscopic simulations are typically performed

for research purposes. A parallel computational platform such as a CPU cluster is

often employed. The acceleration factors reported in Table 4.2 were with respect to

a single CPU. We reported these numbers and clarified the corresponding hardware

settings for readers to objectively interpret the results. We also emphasize that the

advantage of GPU is clearly substantial, as it would require a cluster with hundreds

of CPUs to achieve the performance of a single GPU. A CPU cluster of this size is

not available to most of researchers. Meanwhile, computations using a multi-GPU

or GPU cluster platform are increasingly performed nowadays in research and clinic.
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With future extension of our tool to support these platforms, it is expected that the

advantages of GPU over CPU will be clearer.

There are a few directions that we plan to pursue in the near future. First, gMi-

croMC currently only supports computations with an electron as the initial particle.

It will be our future developments to add supports for the physical stage computations

of other particle types, such as protons and heavy ions. This will enable studies on

radiobiological effects in different contexts, e.g. carbon ion therapy, space radiation

etc. Second, DNA damage computation is currently performed by simply overlapping

the track structure with the DNA geometry as a post processing step. In reality, the

presence of DNA affects radiation transport, e.g. scavenger effect, which in turn has

impacts on DNA damage calculations. We plan to modify gMicroMC to perform

transport simulations while considering the existence of the DNA structure for DNA

damage calculations. It is expected that the simulations will be computationally more

challenging, and hence GPU-based computations will be beneficial. Third, the search

for DNA damages was done in a hierarchical multiscale way to reduce the expenses

in computational memory and time. In principle, this can handle any kind of DNA

geometry, if it is described in a similar multiscale way. However, for models with a

greater number of scales, e.g. including atomic descriptions of the DNA, we expect

that modifications on specific searching functions would be needed. It will be our

future work to better support different types of DNA geometries and provide more

examples, so that users can easily choose their own geometries.

gMicroMC is an open-source package available to the research community. In-

terested user could contact the corresponding authors to inquire our package.
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4.3 Sensitivity of MC parameters

4.3.1 Introduction

In the first part of this study, we reported our recent developments on a new

open-source Monte Carlo (MC) simulation package, gMicroMC, for microscopic trans-

port simulations of electrons and free radicals in the physical, physico-chemical, and

chemical stages of water radiolysis, as well as for DNA damage calculations. With

rapid parallelization capability of a GPU and novel GPU-friendly parallel simulation

schemes, substantially increased computational efficiency has been achieved. For the

cases tested, speedup factors of 540x over simulations performed on a conventional

CPU platform were observed using a NVidia TITAN Xp GPU card.

Computational efficiency is a critical factor affecting practical applications of

MC simulation tools. There are situations in which efficiency is particularly impor-

tant, such as in the studies requiring accurate descriptions of the complex physical,

chemical processes, and the simulation geometry, or in the studies repeatedly con-

ducting simulations to extensively investigate certain issues. One example problem is

to evaluate the sensitivity and uncertainty of DNA damage calculations with respect

to MC simulation parameters, which requires performing simulations under different

parameter values. Hence, in the second paper of this series, we will conduct such

a study on this scientifically important but computationally challenging problem to

demonstrate the practical value of gMicroMC.

Investigating the uncertainty of DNA damage calculation is an important scien-

tific problem. Computations of DNA damages inevitably involves many user-defined

physical or biological parameters and the parameter values are associated with un-

certainties for several reasons. First, it is usually hard to measure these parameters

accurately in experiments and one must decide parameter values based on certain as-
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sumptions. Hence, different values for the same parameter are often seen in different

MC simulations. For instance, the probability of generating a single strand break

(SSB) for the reaction between radicals and a sugar-phosphate group has been cho-

sen as 0.4 [207], 0.65 [50], 0.7 [218] in different studies. Second, some parameters are

measured experimentally with great uncertainties. For example, the cross section of

low energy electrons with water could have 30% uncertainty [219, 220]. Third, some

parts of the MC simulation process are simplified descriptions of physical reality and

empirical parameters are introduced in the simplified model. Parameter values may

critically affect the simulation results. Take the computation of a direct DNA damage

as an example, one usually checks if energy deposition events are within a geometrical

range of the sugar-phosphate group and uses an energy threshold model to decide the

damage, whereas the underlying physics charge transport and electrical conduction

are ignored [221]. With all these factors considered, it is of central importance to

comprehensively quantify the impacts of the variations in different parameters on the

simulation results, e.g. DNA SSB and double strand break (DSB). Doing so would

be helpful to gain insight about robustness and reliability of the computation results.

It would also serve as a guideline for us to pay attention to those parameters that

may affect the results significantly in future studies.

As such, we performed a comprehensive evaluation regarding the sensitivity

and uncertainty of DNA SSB and DSB calculations with respect to 12 parameters

by using the rapidly accelerated GPU-based MC simulation tool gMicroMC. These

parameters included 1) physics cross section, 2) cutoff energy for electron transport,

3)-5) three branching ratios of hydroxyl radicals in the de-excitation of excited water

molecules, 6) temporal length of the chemical stage, 7)-8) reaction radii for direct

and indirect damages, 9) threshold energy defining the threshold damage model to

generate a physics damage, 10)-11) minimum and maximum energy values defining
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the linear-probability damage model to generate a physics damage, and 12) proba-

bility to generate a damage by a radical. Extensively exploring the parameter space

to understand their impacts would inevitably lead to a large number of MC simula-

tions. Although the computation time for a single MC simulation using conventional

CPU-based MC packages may be acceptable, as the number of simulations increases,

the total time will quickly become a barrier for an comprehensive study. This fact

indeed highlights the needs for a highly efficient MC tool. Take the current study as

an example, gMicroMC is about 6 30 times faster than GEANT4-DNA running on

single CPU in the targeted energy range of the current study, which makes the total

computation time acceptable. The advantages of gMicroMC would be even higher

for studies with a higher incident electron energy.

4.3.2 Methods and materials

We used the DNA model of the lymphocyte cell nucleus containing 6.2 Gbp,

which was presented in section 4.2.2. We considered a water sphere with the cell

nucleus at its center. The sphere’s radius was r = rnucleus + Re− , where rnucleus is

the radius of cell nucleus and Re− = Ek/S(Ek) is the maximal distance that the

initial electron can travel, with Ek and S(Ek) being the initial kinetic energy and

the stopping power in water at Ek, respectively. We sampled electrons once at a

time with their initial position uniformly distributed in the virtual sphere and the

initial direction isotropically sampled. We simulated the electron transport in the

physical stage and the water radiolysis process in the subsequent physicochemical and

chemical stages. During the transport in the physics stage, cartesian coordinates and

deposit energy were recorded for each event. The incident and secondary electrons

were tracked, until their energies were less than the cutoff energy Ec, where the

electrons were assumed to deposit energy locally and became thermalized. In the
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physicochemical stage, water molecules excited during the physics stage underwent de-

excitation processes and produced radicals of different species [180]. At the chemical

stage, diffusions of radiolytic molecules e−aq, HO
., H ., H3O

+, H2, OH−, and H2O2,

as well as mutual reactions among them were simulated by a step-by-step method

for a total time interval Tc. Details of the simulation scheme for the chemical stage

can be found in to our previous publications [201]. During the simulation, we did

not consider the existence of the DNA model. At the end of the chemical stage, we

recorded positions of the radicals. We repeatedly sampled electrons and performed

simulations, until the dose accumulated inside the cell nucleus reached 2 Gy, a typical

dose level of clinical interest. At the end, a series of energy deposition events (positions

and energy deposit values) generated during the physical process and the positions

of radicals were stored, based on which DNA damages were computed.

For the damages in the physical stage, we first compared every recorded position

of the energy deposition events with the DNA geometry model. If the event fell in

a sugar-phosphate group with a reaction radius Rp, we considered the event deposit

the energy to the group. After processing all the physical events, we generated a list

of DNA sugar-phosphate groups and the accumulated energy deposit Etot to each of

them. We considered two models to compute strand breaks (SBs). The first was

a simple threshold damage model. A SB was generated if Etot > Ethre, with Ethre

being the threshold value. The second was a linear-probability damage model. Two

model parameters Emin and Emax were used. The damage probability was zero if

Etot < Emin, unity if Etot > Emax, and linearly interpolated between 0 and 1 for Etot

in the range [Emin, Emax].

For the damages in the chemical stage, we compared recorded positions of

hydroxyl radicals with the DNA geometry model. Only hydroxyl was considered,

because the reaction rate between hydroxyl and DNA is much larger than other
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radicals [205]. If the radical was found in a sugar-phosphate group with a reaction

radius Rc, we considered the radical interacted with DNA, which generated a SB

with a probability Pc. Once the distribution of SBs was generated, we followed the

definition in references1,2 to search for SSBs and DSBs based on two parameters.

Specifically, ds = 216 was the minimum nucleotide index difference for two SBs to

be considered independently and dDSB = 10 was the maximum nucleotide index

difference for two SBs on opposite sides of the DNA chain to be considered as a DSB.

More complex damages were also computed. SSB+ referred to any number of SBs

within ds on the same DNA strand, while 2SSB referred to two SBs on the opposite

sides of the DNA chain that were closer than ds but further than dDSB. As for DSBs,

it was defined as two SBs on opposite sides that were closer than dDSB while DSB+

referred to any number of SBs on opposite sides with the largest distance smaller than

dDSB. We finally computed SSB yield as (NSSB +NSSB+ +N2SSB) /(2Gy ∗ 6.2Gbp)

and DSBs yield as (NDSB + NDSB+)/(2Gy ∗ 6.2Gbp), where NSSB, NSSB+, N2SSB,

NDSB, NDSB+ were number of damages of different types.

4.3.3 Simulation parameters of interest

The aforementioned simulation process involved a number of parameters. In

table 4.4, we list major parameters and their default values. In the following para-

graphs, we will first present how we defined sensitivity and uncertainty in this study,

the reasons to investigate impacts of those parameters of interest, as well as how we

varied their values in our study.

To quantify sensitivities and uncertainties of SSB and DSB yields with respect

to these parameters, we performed calculations in different runs but with these pa-

rameters varied from their default values. We changed one parameter at a time, while

keeping all others fixed at the default values. For each parameter setup, we performed
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five simulations to estimate the mean and standard deviation of the SSB and DSB

yields.

Table 4.4. Summary of parameters studied and the default values for this work

Process Notation Descriptions
Default
values

Physical
SCS

Scaling factor to change the cross section
of electron in water

1

Ec Cutoff energy of electrons in water 5 eV

Physico-
chemical

Γ1
Probability for dissociation pathway from
A1B1 excitation status

0.65

Γ2
Probability for auto-ionization pathway
from B1A1 excitation status

0.55

Γ3

Probability for auto-ionization pathway
from Ryd A+B, Ryd C+D and diffuse
bands excitation status

0.5

Chemical Tc Temporal length of the chemical stage 1.0 ns

DNA
damage
analysis

Rp
Reaction radius to search for a direct
damage

0.1 nm

Rc
Reaction radius to search for a direct
damage

0.08 nm

Ethres
Reaction radius to search for a direct
damage

17.5 eV

Emin

Minimum energy defining the linear-
probability damage model for direct dam-
age

5 eV

Emax

Maximum energy defining the linear-
probability damage model for direct dam-
age

37.5 eV

Pc
Probability of a radical to generate an in-
direct damage

0.4

We defined sensitivity S as the ratio between the percent change of the SSB

or DSB yields and the percent change of the parameter values, i.e. S =
∆Y/Ydef
∆X/Xdef

,

with Xdef being the default value for parameter X (listed in Table 4.4) and Ydef
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being the corresponding yields of SSBs and DSBs at Xdef . ∆X = X − Xdef and

∆Y = Y − Y def , where X is the parameter value and Y is the corresponding yields

under X. To compute S, we linearly fit data points and obtained the slope CL

as ∆Y/∆X to compute the sensitivity S = CLXdef/Ydef . The linear fitting also

reported uncertainty in CL, which was used to compute uncertainty of the sensitivity.

For some cases that SSB and DSB yields varied in a nonlinear fashion with respect

to the parameter of interest, the fit only used three data points around the default

parameter value, which will be specified clearly later. For each case, we will graph all

the data points and fitted straight lines as a guidance.

As for the uncertainties of SSB and DSB yields, we first estimated the uncer-

tainty of a parameter 〈∆X/Xdef〉 based on literature search. We then multiplied

the parameter uncertainty ∆X/Xdef with the calculated sensitivity S to obtain the

estimated uncertainty of the SSB and DSB yields ∆Y/Ydef = S ×∆X/Xdef caused

by the parameter uncertainty.

We performed studies in two cases with different initial energies of the electrons

Ek = 1 keV and 4.5keV . Considering the number of parameters studied in Table

4.4, the number of values per parameters, and five runs per parameter setup, we

performed DNA damage calculations for a total number of 205 times for each energy.

Again, the high performance of gMicroMC was helpful to conduct large-scale studies

like this.

4.3.4 Scs and Ec in the physical stage

Physical stage plays a fundamental role for DNA damages. Not only does the

direct energy deposition in this stage trigger direct SBs, the number and spatial

distribution of events also affects subsequently generated radiolytic chemical radicals,

which cause indirect SBs. We considered two parameters relevant to the physical
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stage: the cross section of electron interacting with water and the cutoff energy to

stop the transport of an electron.

There are two sources that cause uncertainties in the cross section. First, cross

section in the low energy range obtained via experiments can have uncertainties up

to 30% [215, 220]. Second, the uncertainty could come from the assumption that

the entire cell nucleus, including the DNA chromatin, is treated as water for particle

transport calculation. Yet, materials other than water, e.g. DNA and proteins exist,

which may affect physical interactions between electrons and the environment [209]. It

is difficult to comprehensively study the impacts of the cross-section data in different

interaction channels at different energy levels and different spatial location. Hence,

we took a simplified approach. We used a scaling factor Scs to generate new cross

section data by uniformly scaling the cross-section data used in gMicroMC. This was

expected to represent the overall effect of all factors leading to uncertainties in the

cross section data. We chose Scs ∈ [0.7, 1.3] to cover the range of 30% uncertainty

with an interval of 0.1 of Scs = 1, indicating the original cross section data stated in

part I.

As for the cutoff energy Ec, its value is expected to be around the first exci-

tation energy of water, which is 7.445 eV [222]. For example, cutoff energy value

for GEANT4-DNA default physics model is 7.4 eV [207]. However, there are two

concerns. First, different studies reported different first excitation energy of water,

for instance, 6.42 eV in Tachikawa et al [223]. Second, previous work showed that

electrons with energy lower than 5 eV can still produces DNA damages due to the

dissociative electron attachment [224]. While it is expected that the lower the cutoff

energy is, the more accurate the simulation is, transport simulation of low energy

electrons is very time consuming due to the rapid increase of elastic cross section 5.

Hence, it is important to know the role of cutoff energy to have a better tradeoff
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between accuracy and efficiency. In our study, four Ec levels of 4.5 eV, 5 eV, 7.5 eV

and 10 eV were investigated. 4.5 eV was the minimum cutoff energy supported by

gMicroMC.

4.3.5 Γ1,Γ2 and Γ3 in the physico-chemical stage

There are five ionization shells (1b1,3a1,1b2,2a1, oxygen K-shell) and five ex-

cited states of the water molecules (two electronic excitations A1B1 and B1A1, two

Rydberg series Ryd A+B and Ryd C+D and diffuse bands) [180]. A water molecule

in each excited state can undergo three pathways to de-excite, namely dissociative,

relaxation and auto-ionization, with different branching ratios. These branching ra-

tios have impact both the number of radicals and their initial distribution in space.

They were usually determined by matching simulation results with experiments. Dif-

ferent branch ratios were used in previous studies, which has been well summarized

in Ballarini et al [225]. In this study, we studied three parameters Γ1, Γ2, Γ3 related

to the generation of hydroxyl radical, representing the branching ratio for the excited

water molecules to de-excite through channel listed in Table 1. Values of 0.5, 0.65

and 0.8 for Γ1, 0.4, 0.55 and 0.7 for Γ2 and 0.35, 0.5 and 0.65 for Γ3 were used. It

is worth mentioning that in each simulation, only one of the three parameters were

changed. The remaining branching ratios for pathways from the same excitation state

were changed accordingly to maintain the sum of branching ratios to unity.

4.3.5.1 Tc in the chemical stage

After the radiolytic chemical species are produced at the end of the physico-

chemical stage, they will react mutually through a diffuse-controlled process. Because

we will compute DNA damage by overlapping the positions of hydroxyl with the DNA

geometry after the chemical stage, the length of the chemical stage needs to be inves-
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tigated, as this parameter affects the geometry configuration of radicals. According

to the assumption that the radicals will travel in a random walk way, the root-mean-

square (rms)-displacement of radicals in the three dimensional space can be estimated

as
√
〈r2〉 =

√
6DTc where D is the diffusion rate and Tc is the diffusion time. Exper-

imentally, the rms-displacement of the radicals in liquid water was reported as <8.6

nm [226]. With DOH. = 2.8× 10−9 m2/s, a displacement of 8.6 nm is equivalent to a

diffusion time of 4.4 ns. In this study, we used 1 ns as the default value, which was

also the choice in other works [227, 228]. Tc = 2.5 ns [229], 10 ns [51] were also used

previously. Thus, we reported the dependences of SSB and DSB yields on Tc for five

values, namely 1 ns, 2.5 ns, 5 ns, 7.5 ns and 10 ns.

4.3.5.2 Rp, Rc, Ethre, Emin, Emax and Pc in DNA damage analysis

When computing DNA damages, SBs are computed using an effective model,

instead of performing simulations based on fundamental principles. A few parame-

ters are estimated from statistical models and hence cause uncertainties in the DNA

damage calculations. For example, recent study indicated that the energy deposited

in the hydration shell can also cause DNA damage [28]. Hence, the reaction radius for

a physical damage Rp was introduced when computing the direct SB. Rp = 0.1 nm

was set as the default value in gMicroMC, similar to the value of 0.12 nm in refer-

ence [181]. The corresponding effective spherical volume of 0.582 nm3 for searching

a physics damage was similar to the value 0.573 nm3 in a previous study [230]. To

reflect uncertainty in the thicknesses of the hydration shell, we performed simulations

with Rp = 0.05, 0.1 and 0.15 nm.

In addition to the reaction radius Rp, dependence of SB on the deposit energy

is another factor to consider. Since the fundamental correlation between energy de-

position events and SB is not clear, two models have been widely used in previous
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studies. The first one was a simple threshold damage model that used a threshold

Ethres = 17.5eV to determine whether an SB can occur following a deposited energy

level [231, 232]. The second one was a linear-probability damage model. The proba-

bility of generating a SB linearly increased from 0 to 1, when the accumulated energy

increased from Emin = 5eV to Emax = 37.5eV [51, 233]. These energy parameters

were determined by matching simulation results with experiment results. To study

the effect of these energy parameters, we first studied the threshold damage model

with Ethres = 12.5, 15, 17.5, 20 and 22.5 eV , respectively. We then explore the

linear-probability damage model at different slopes by separately setting Emin=3, 4,

5, 6 and 7 eV with Emax = 37.5eV , and Emax=34.5, 36, 37.5, 39 and 40.5 eV with

Emin = 5eV , respectively.

In the indirect damage calculation, to consider the dynamic process for a radical

to react with a DNA strand, an effective chemical reaction radius Rc calculated as

Rc = k
4πNAD

is utilized, where k is the chemical reaction rate between the radical

and the DNA strand, NA is the Avogadro constant and D is the diffusion rate. The

formula is deduced from Smoluchowski’s diffusion equation [206], and represents the

initial reaction radius between a diffusive and a static reactant. The reaction radius

equals to 0.08 nm using published chemical reaction rate and diffusion rate [218]. To

quantify the uncertainty in this formula, we changed Rc by 20% and hence 0.064 nm

and 0.096 nm for Rc were also studied.

The last parameter we considered was Pc, the probability to generate an SB

for a chemical reaction between a hydroxyl radical and a sugar-phosphate group. It

is reported that Pc may vary for different sites of the DNA and even the hydroxyl-

mediated base may also cause damage in sugar moiety [229]. However, a uniform Pc

was typically used in current MC simulation packages. Pc = 0.4, 1, 0.65 [50] and

0.7 [218] have been used in different studies. The variation in Pc directly change the
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Figure 4.7. Dependences of SSB and DSB yields on the scaling factor SCS of cross
section data of electrons in water for electrons with initial energy of (a) 1 keV and
(b) 4.5 keV.

distributions of the final SBs. In this study, Pc ∈ [0.3, 0.7] with an interval of 0.1

was investigated.

4.3.6 Results

4.3.6.1 Parameters in the physical stage

Dependences of SSB and DSB yields on the scaling factor of cross section data

Scs are shown in Figure 4.7. As the scaling factor Scs increased from 0.7 to 1.3, the

DSB yield increased from 6.8 ± 0.7 DSB/Gy/Gbp to 14 ± 1 DSB/Gy/Gbp, while

the SSB yield decreased from 199 ± 6 SSB/Gy/Gbp to 169 ± 2 SSB/Gy/Gbp for

the case of 1 keV incident electrons. As for the case of 4.5 keV electrons, the DSB

yield increased from 4.8 ± 0.4 DSB/Gy/Gbp to 9.3 ± 0.6 DSB/Gy/Gbp, and the

SSB yield decreased from 223 ± 10 SSB/Gy/Gbp to 204 ± 9 SSB/Gy/Gbp. With

a larger cross section, the mean free path length decreases, reducing the distance

between energy deposition events and making it easier to form DSBs. Hence, the

DSB yield ratio increased with Scs. On the other hand, scaling the cross-section data
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Figure 4.8. Dependences of SSB and DSB yields on the cutoff energy Ec of electrons
in water for electrons with initial energy of (a) 1 keV and (b) 4.5 keV.

did not change the total number of physical interactions. With more SBs classified

into DSBs, the SSB yield hence decreased. The variation of SSB and DSB yields were

found to be approximately linear in the studied parameter range. After fitting the

data, the sensitivities of SSB and DSB yields with respect to Scs were −0.28 ± 0.03

and 1.02± 0.08 for the case with 1 keV electrons, and −0.14± 0.01 and 1.1± 0.1 for

the case with 4.5 keV electrons, respectively.

As for the cutoff energy Ec, the results are summarized in Figure 4.8. As Ec

increased, the SSB yield varied a little, but the DSB yield changed relatively more

rapidly. Variation of Ec affects the last a few steps of an electron track, because it

determines when the remaining energy of the electron should be deposited. With

a higher cutoff energy value, the last few energy deposition events are grouped into

a single event. This energy accumulation effect makes it easier to produce an SB.

Meanwhile, the distances between the last few events are usually in the nanometer

range. Increased SB will hence be more likely to form DSB than SSB. The sensitivities

of SSB and DSB yields with respect to Ec were 0.008± 0.001 and 0.50± 0.07 for the

case with 1 keV electrons and 0.07± 0.01 and 0.75± 0.06 for 4.5 keV electrons.
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4.3.6.2 Parameters in the physicochemical stage

The results for the branching ratios of different channels are summarized in

Figure 4.9. SSB and DSB yields were found to be insensitive to these three parame-

ters. The sensitivities of SSB and DSB yields were −0.004 ± 0.002 and −0.08 ± 0.1

for Γ1, −0.02 ± 0.04 and 0.02 ± 0.1 for Γ2, −0.05 ± 0.03 and −0.02 ± 0.1 for Γ3 in

the case with 1 keV electrons. As for the case with 4.5 keV electrons, the values were

0.01± 0.04 and 0.1± 0.2 for Γ1, −0.0218± 0.0005 and 0.2± 0.1 for Γ2, −0.04± 0.04

and 0.1±0.1 for Γ3. The rather insensitive dependence of SSB and DSB yields can be

ascribed to the low contribution of the three channels to the production of hydroxyl

radicals. These three channels are related to de-excitation of excited water molecules.

For both cases, the three channels considered here gave less than 10% of hydroxyl

production.

4.3.6.3 Parameters in the chemical stage

As indicated in Figure 4.10, both SSBs and DSBs decreased as Tc increased.

The reason was that the hydroxyl radicals are depleted, as the chemical stage length

is prolonged because of radicals reactions with each other [180]. The sensitivity of

SSB and DSB yields on T¬c were −0.012±0.002 and −0.04±0.01 for 1 keV electrons

and −0.020± 0.002 and −0.033± 0.009 for 4.5 keV electrons, respectively.

4.3.6.4 Parameters in DNA damage analysis

The dependences of SSB and DSB yields on Rp and Rc are shown in Figure

4.11. All cases showed increased yields with respect to these reaction radii, as a

large radius allows for more SBs to generate. The sensitivity of SSBs and DSBs were

0.119 ± 0.007 and 0.547 ± 0.006 for Rp, 0.054 ± 0.009 and 0.11 ± 0.02 for Rc with 1
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keV electrons. As for the 4.5 keV electrons, the sensitivities of SSBs and DSBs were

0.12± 0.01 and 0.55± 0.02 for Rp, 0.07± 0.02 and 0.03± 0.04 for Rc.

Figure 4.12 shows the dependence of SSB and DSB yields on energy threshold

Ethres in the threshold damage model. When increasing the energy threshold value,

both SSB and DSB yields were reduced because of reduction in generated SBs in

the physical stage. But DSBs decreased 5 times, while SSBs only decreased less

than 2 times with Ethres increases from 12.5 eV to 22.5 eV. This can be understood

as following. The threshold acts on the total energy deposited to a sugar-phosphate

group. As shown in Figure 4.13, most energy deposit events have energy below 10 eV.

Damages are likely generated, only when multiple events are within a sugar-phosphate

group, so that the accumulated energy is higher than the threshold. However, only

at the very end of the electron track can multiple events be more likely to be in

the same group. Hence, reducing physical damages by raising the threshold energy

mainly affect DSBs, since the distances between physical events are close in the end

of the track. The dependence of SSB and DSB yields appeared to be nonlinear

with respect to Ethres. Hence, we computed sensitivity using only data points close

to the default value. The sensitivities were −0.7 ± 0.2 and −3.1 ± 1.0 with 1 keV

electrons, −0.9±0.2 and −3.3±1.0 with 4.5 keV electrons, respectively. Considering

the nonlinearity of the dependence of SSB and DSB yields on Ethres, the reported

values underestimated the importance of Ethres at energy lower than 17.5 eV and

overestimate it for energy higher than 17.5 eV.

Figure 4.14 shows the function of SSB and DSB yields on parameters Emin and

Emax in the linear-probability damage model. Generally speaking, increasing either

parameter would decrease the chance of SB formation, yielding the decreasing trend

seen in these figures. The sensitivities of SSB and DSB yields were −0.15± 0.01 and

−0.20± 0.01 for Emin, and −0.35± 0.05 and −1.1± 0.1 for Emax for 1 keV electrons.
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As for 4.5 keV electrons, the sensitivities of SSB and DSB yields were −0.165± 0.002

and −0.37± 0.06 for Emin, and −0.37± 0.05 and −1.7± 0.4 for Emax.

SSB and DSB yields increased with Pc, the probability for a chemical reaction

between the hydroxyl radical and the sugar-phosphate group to generate a SB (Figure

4.15). With a larger Pc, more SBs are induced and therefore more SSBs and DSBs are

produced. The sensitivity of SSB and DSB yields on Pc are 0.57±0.01 and 0.40±0.03

for 1 keV, and 0.585± 0.007 and 0.40± 0.03 for 4.5 keV electrons, respectively.

4.3.6.5 Convert sensitivities of DNA SSB and DSB yields to their uncertainties

Table 4.5. Summary of sensitivities of SSBs and DSBs on different parameters

Parameters
1.0 keV electrons 4.5 keV electrons

SSB DSB SSB DSB
Scs −0.28± 0.03 1.02± 0.08 −0.14± 0.01 1.1± 0.1
Ec 0.008± 0.001 0.50± 0.07 0.07± 0.01 0.75± 0.06
Γ1 −0.004± 0.002 −0.08± 0.1 0.01± 0.04 0.1± 0.2
Γ2 −0.02± 0.04 0.02± 0.1 −0.0218± 0.0005 0.2± 0.1
Γ3 −0.05± 0.03 −0.02± 0.1 −0.04± 0.04 0.1± 0.1
Tc −0.012± 0.002 −0.04± 0.01 −0.020± 0.002 −0.033± 0.009
Rp 0.119± 0.007 0.547± 0.006 0.12± 0.01 0.55± 0.02
Rc 0.054± 0.009 0.11± 0.02 0.07± 0.02 0.03± 0.04

Ethres
∗ −0.7± 0.2 −3.1± 1.0 −0.9± 0.2 −3.3± 1.0

Emin −0.15± 0.01 −0.20± 0.01 −0.165± 0.002 −0.37± 0.06
Emax −0.35± 0.05 −1.1± 0.1 −0.37± 0.05 −1.7± 0.4
Pc 0.57± 0.01 0.40± 0.03 0.585± 0.007 0.40± 0.03

∗ SSB and DSB yields depend on Ethres in a nonlinear way. The sensitivity
value here was derived using three data points around default value.

We summarize all the sensitivity values with respect to different parameters of

interest in Table 4.5. Sensitivity means how sensitive the result (SSB and DSB yields)

is with respect to the variation of a parameter. Practically, it may be of more interest
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to understand the uncertainty of SSB and DSB yields. As such, we first estimated

uncertainty levels of the parameters (Table 4.6) based on a literature search, which

covered both experimental and simulation studies.

Table 4.6. Summary of uncertainties of SSB and DSB yields due to the uncertainties
of different parameters. Numbers in bold face are larger than 10% threshold and
considered as large uncertainties.

Parameters
Estimated
uncertainty level

1.0 keV electrons 4.5 keV electrons
SSB DSB SSB DSB

Scs 30% 8.3% 30.6% 4.2% 33.0%
Ec 39% 0.3% 19.5% 2.9% 29.4%
Γ1 100% 0.4% 8.3% 1.3% 9.8%
Γ2 100% 2.3% 2.3% 2.2% 18.0%
Γ3 100% 5.1% 2.6% 4.4% 11.3%
Tc 85% 1.0% 3.0% 1.3% 2.8%
Rp 50% 6.0% 27.3% 5.8% 27.7%
Rc 35% 1.9% 3.7% 2.4% 1.1%

Ethres 48% 32.3% 147.4% 43.0% 158.9%
Emin 48% 7.3% 9.5% 7.9% 17.8%
Emax 48% 17.0% 54.9% 17.5% 83.8%
Pc 55% 31.2% 21.9% 32.2% 21.8%

The uncertainty of cross section data mainly exists in the low energy range

(<100 eV) [185, 234], but the low energy electrons are of critical importance in de-

termining the DNA damages. The overall uncertainty of cross section was estimated

as 30%, same as reported in Munoz et al [220]. As for Ec, different values were used

in previous studies, ranging from 7.4 eV for the default model of GEANT4-DNA

to 11 eV for option 6 [207]. The uncertainty for Ec was hence estimated as 39%

(3.6/9.2, range/mean value). As for the three parameters Γ1, Γ2, Γ3, it is difficult to

estimate their uncertainties due to lack of experiment information. We estimated the

uncertainties to be 100% according to the Table 2 in Ballarini et al [225]. For the
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chemical stage time Tc, the common values used in literatures were 1 ns and 2.5 ns.

When it was larger than 2.5 ns, the scavenger effect was usually considered. Hence,

we considered the uncertainty to be as 85% (1.5/1.75). Next, Rp is used to account

for the damage transferred from the first hydration shell (quasi-direct effect) [235].

Yet, the reported thickness for the first hydration shell varies depending on studies.

For example, 12 molecules/nucleotide [185], 12-15 molecules/nucleotide [181] and 20

molecules/nucleotide [28] were used previously. The uncertainty was thus estimated

to be 50% (8/16). In terms of Rc, it is determined by the chemical reaction constant

and the diffusion rate of hydroxyls. The reported variation for diffusion rate among

published works can be 28% [225] and the variation for chemical reaction rate can

be 20% [218, 236]. Hence, the uncertainty for Rc was estimated as 35% using error

propagation. As for Ethres, others used 10.79 eV [229] instead of the commonly used

value of 17.5 eV. The uncertainty is estimated as 48% (6.7/14.1). Same uncertainty

level was hence applied to Emin and Emax. Finally, uncertainty of Pc was estimated

as 55% (0.3/0.55) to account its change from 0.4 to 0.7 reported in previous studies

[207, 218]. All these parameter uncertainties are summarized in the second column

of Table 4.6.

Based on the estimated uncertainties of each parameter, uncertainties of SSB

and DSB yields were calculated as the product of the parameter uncertainties and

the corresponding sensitivities. The results are listed in columns 3-6 of Table 4.6.

Negative signs are dropped here. Nowadays, the uncertainty of measuring DSB is

about 10% [237–239]. If we choose 10% as the criterion for an uncertainty level to

be consider as large, we highlighted those numbers in Table 4.6. It was found that

Ethres for the threshold damage model, Emax for linear-probability damage model,

and probability Pc can cause large uncertainties in both SSB and DSB yields. The

scaling factor of the cross section Scs, cutoff energy Ec, physics searching radius Rp
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and Emin in the linear-probability damage model can cause more uncertainties in DSB

yields than SSB yields. Although the uncertainties due to Γ2 and Γ3 were also found

to be large for DSB yields in the 4.5 keV electron case, this was likely a consequence

of the large error bars in the simulation results (Figure 4.9).

4.3.6.6 Computation time

Since one of the motivations of this study was to demonstrate the practical value

of gMicroMC in the large-scale simulation problem of interest, we report computation

time required to perform the study. The GPU code was executed on one Nvidia

Titan Xp GPU (1.58GHz) card. It took gMicroMC 1.4 seconds to simulate one

electron with energy 1 keV from the start of the physics stage to the end of the

chemical stage. Meanwhile, we also ran a few cases using GEANT4-DNA on one

single core of Intel i7-6850K CPU (3.6GHz) to estimate the computation time of

GEANT4-DNA, if that were used to perform the same study. The computation

time for GEANT4-DNA was found to be 9 seconds. For the total number of 205

simulation runs with each run accumulating 2 Gy dose (about 8000 electrons) inside

the cell nucleus, the computational time was 28 days for gMicroMC to finish all the

computations but would be 6 months for GEANT4-DNA. The speed up factor was

relatively low due to the low usage of GPU resources in the low energy context. The

advantages of gMicroMC increased with electron energy. The time to transport one

4.5 keV electron was 1.9 seconds for gMicroMC and 61 seconds for GEANT4-DNA.

Hence, the time needed for gMicroMC to complete all the simulations in this case was

38 days but would be over three years for GEANT4-DNA. In reality, such a large-

scale computation is usually conducted using CPU clusters for GEANT4-DNA, which

could substantially reduce the overall computation time. However, with multi-GPU

133



platform, we could also further reduce computation time as well, which will allow us

to perform more detailed studies.

4.3.7 Discussion

Calculations of SSB and DSB yields depend on microscopic radiation transport

simulation and DNA damage computation. Hence, the resulting sensitivities vary

with the specific methods in these two tasks. The current study focused on sensitiv-

ities computed using detailed MC simulation in the physical, physicochemical, and

chemical stages for radiation transport and using a realistic DNA geometry model.

It would be an important study to investigate sensitives in other methods, such DB-

SCAN method 35 that does not consider transport in the chemical stage and estimate

damages using a probabilistic approach without involving a DNA geometry model.

These investigations are beyond the scope of the current study and will be our future

work. We expect the developed GPU tool will be beneficial for studies as such.

While conducting this study, we noticed that the research group at the Mas-

sachusetts General Hospital (MGH) performed a similar research to investigate the

impacts of different simulation parameters on DNA damages in the context of proton

irradiation [240]. They studied the effects of variation of physics model (G4EmDNAphysics

opt2, opt4 and opt6), chemical stage model (TsEmchemistry model and G4Emchemistry

model [241]), energy model (threshold and linear-probability damage models), chem-

ical stage length (1 ns, 2.5 ns, 10 ns) and hydroxyl damage probability (0.4, 0.65) on

SBs and DSBs under different linear energy transfer (LET) conditions. Our result

generally agreed with theirs. For example, the ratio of SB yield with Pc = 0.65 to

that with Pc = 0.4 was found to be 1.43 for protons with LET of 10 keV/µm, while

our work gave 1.38 for 1 keV electrons that are approximately at the same LET level.

For the DSB uncertainties, the MGH group reported 20% due to physics model, 30%
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due to chemical stage time and 30% due to Pc, whereas the numbers were found to

be 20 35%, 10% and 25% in our work, respectively.

4.4 Conclusions

We described the initial development of gMicroMC here, including its algo-

rithm and implementation on GPU. Because of the advantages of fast MC simulation

achieved by our gMicroMC package, we performed an extensive study using gMi-

croMC to evaluate the sensitivities of calculated DNA SSB and DSB yields with

respect to 12 parameters in the computations. Based on calculated sensitivities, we

further estimated the uncertainties of calculated SSB and DSB yields due to uncer-

tainties in those parameters. It was found that, using a threshold of 10% uncertainty

as a criterion, uncertainties of SSBs and DSBs were found to be largely affected by

Ethres in the threshold damage model, Emax in the linear-probability damage model,

and probability Pc for a radical to generate a damage. The scaling factor of the

cross section Scs, namely the accurate cross section data, cutoff energy Ec, physics

searching radius Rp and Emin in the linear-probability damage model caused large

uncertainties in DSB yield but not in SSB yield. Our study could serve as a starting

point for future investigations to reduce uncertainties of those simulation parameters

and hence to reduce uncertainties of the simulation results.
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Figure 4.9. Dependences of SSB and DSB yields regarding different branch ratios for
electrons with initial energy of (a) 1 keV and (b) 4.5 keV.
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Figure 4.10. SSB and DSB yields for the case with (a) 1 keV electrons and (b) 4.5
keV electrons as a function of chemical stage length Tc. .

Figure 4.11. SSB and DSB yield regarding physics reaction radius (a) Rp and chemical
reaction radius (b) Rc for cases with electron energy of 1.0 keV (left column) and 4.5
keV (right column)..
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Figure 4.12. SSB and DSB for the case with (a) 1 keV electrons and (b) 4.5 keV
electrons as a function of energy threshold Ethres..

Figure 4.13. Distribution of deposit energy of events and accumulated deposit energy
to DNA sugar-phosphate group for 1 keV electron. The distribution is averaged on
1000 simulations of 1 keV electrons..
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Figure 4.14. SSB and DSB yields as a function of (a) Emin and (b) Emax. The left
column and right column are for 1 keV electrons and 4.5 keV electrons, respectively.

Figure 4.15. SSB and DSB yields for (a) 1 keV electrons and (b) 4.5 keV electrons
as a function of Pc..
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CHAPTER 5

FURTHER DEVELOPMENT OF GMICROMC

5.1 Introduction

Understanding biological responses to ionizing radiation is of crucial importance

for cancer treatment using radiotherapy. Mechanistic Monte Carlo (MC) simulation

of radiation effect on DNA in water medium is a promising tool for relevant studies

after decades of development [242]. The central idea of such an approach is to obtain

the initial DNA damage spectrum via mechanistic modeling of the radio-biological

interactions at the atomic or molecular levels. This includes the development of

track-structure codes [50, 52, 181, 185, 199, 243–251] and the subsequent computa-

tion of DNA damages by incorporating DNA models [181, 203, 245, 252, 253]. The

track-structure simulation can be divided into the simulations for physical stage and

chemical stage. The physical stage simulation deals with the ionization, excitation

and elastic scattering processes between the ionizing radiation particles and the wa-

ter media and records the 3D coordinates of energy deposition events. The chemical

stage simulation computes how the chemical radicals, produced after the physical

stage simulation, diffuse and react mutually with a recording of the residual radicals’

positions. The positions for these energy deposition events and radicals are then uti-

lized to compute the initial DNA damage sites, followed by an analysis to characterize

DNA strand-break patterns.

Although a lot of developments have been performed to generate state-of-the-

art mechanistic MC simulation tools, there are still needs to further improve the

simulation methods to accommodate different scenarios [185]. For instance, to make
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the code versatile for studies on oxygen enhancement ratio (OER) [254], the Fenton

reaction effect [255], it is desired to include more types of molecules other than free

radicals generated by initial radiation into the chemical stage simulation. However,

due to the computation complexity of ‘many-body’ problem and the long temporal

duration of the chemical stage, a step-by-step simulation of these relevant processes

on conventional CPU computational platforms can be extremely time consuming

[256]. Under the constraint of computational resources, studies typically suffer from

restricted simulation region or shortened temporal duration [205, 207, 257], limiting

their broad applications.

To overcome these obstacles, Graphical Processing Unit (GPU)-based parallel

computing can be a cost-effective option [53, 54]. We have developed an open-source,

GPU-based microscopic MC simulation toolkit, gMicroMC [52], with the first version

available at GitHub https://github.com/utaresearch/gMicroMC. We initially focused

on boosting the chemical stage simulation for radicals produced from water radiolysis,

achieving a speedup of several hundred folds compared to CPU-based packages [201].

Later on, we supported the physical track simulation for energetic electrons and im-

plemented an DNA model of a lymphocyte cell nucleus at the base-pair resolution

for the computation of electron induced DNA damages [52]. Recently, we have also

included oxygen molecules in the chemical stage simulation in a step-by-step man-

ner, which enabled the study of the radiolytic depletion effect of dissolved oxygen

molecules [258]. With these efforts, we were able to quantitatively study multiple

critical problems that are computationally demanding. For example, we performed

comprehensive simulations with gMicroMC to answer how uncertainties from simu-

lation parameters affect the accuracy of final DNA damage computations [259]. We

also studied the radiolytic depletion of oxygen under ultra-high dose rate radiation
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(FLASH) to investigate the fundamental mechanism behind FLASH radiotherapy

with the developed oxygen module in gMicroMC [258].

In this Chapter, we will report our recent progress on two new and important

features that we recently introduced to gMicroMC, namely 1) enabling the physical

stage simulations of protons and heavy ions, and 2) considering the presence of the

DNA structure and its chemical reactions with radicals in the chemical stage simu-

lation. It is expected that the first feature will contribute greatly to the mechanistic

study for particle irradiation, such as particle radiotherapy [260, 261]. The presence

of DNA structure in chemical stage simulation will allow us to realistically describe

the indirect DNA damage process. With the GPU acceleration, we are able to afford

computationally challenging simulations that include detailed physics modeling and

chemical reactions that span over a large temporal duration, enabling more realistic

simulations of the relevant processes.

5.2 Materials and Methods

5.2.1 Cross sections for transport simulation of protons and heavy ions

When a proton or heavy ion moves through a medium, it interacts with the

atomic electrons inside the medium [262]. Considering that there have been various

models developed and implemented to describe this process, in this work, we focused

on a novel implementation of existing models on GPU parallel computing platforms.

Specifically, we only considered the interactions between particles and water molecules

because it is representative for modelling cell environment. We employed the Rudd’s

model[263] to compute the ionization of a water molecule by a proton at the energy

range from 10 eV to 1 TeV. We implemented the Plante’s model[264] and Dingfelder’s

model[265] to simulate the excitation of a water molecule for protons with energy
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above and below 500 keV, respectively. We also applied the Booth’s empirical formula

[266] to include the charge effect on the cross section computation. Lastly, we used

the charge scaling rule [267] to obtain the cross sections for heavy ions based on those

for a proton. To make the manuscript easy to follow, we briefly introduced these

models in the following subsections.

5.2.1.1 Ionization for proton

An energetic proton could eject a secondary electron from different atomic sub-

shells when it ionizes a water molecule. In the Rudd’s model [263, 268], the partial

singly differential cross section (SDCS) can be described as

dσioni
dw

=
Si
Bi

(F1 (ν) + wF2 (ν))

(1 + w)3

1

1 + exp
[
α(w−wi)

ν

] (5.1)

Here, i refers to the sub-shells of the water molecule, namely 1b1, 3a1, 1b2, 2a1,

and 1a1. Bi is the binding energy for electrons on shell i. w = Ee/Bi and Ee the

energy of the secondary electron. Si = 4πa2
0∗Ni∗(ER/Bi)

2, where a0 = 5.3×10−11 m

is the Bohr radius, ER = 13.6 eV is the Rydberg energy, and Ni is the number of

electrons on shell i. ν =
√
T/Bi denotes the scaled velocity of the projectile, with

T = m
M
∗Ek. m and M are the masses of electron and proton, while Ek is the kinetic

energy of proton. wi = 4ν2 − 2ν − ER/4Bi is the scaled cutoff energy and α is a

numerical parameter related to the relative size of the target molecule. The specific

values for Bi, Ni and α were listed in Table 5.1. F1(ν) and F2(ν) are fitting functions,

defined as:

F1 (ν) = L1 +H1 (5.2)

F2 (ν) =
L2H2

L2 +H2

(5.3)
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where

L1 =
C1ν

D1

1 + E1νD1+4
, (5.4)

H1 =
A1 ln (1 + ν2)

ν2 +B1/ν2
, (5.5)

L2 = C2ν
D2 , (5.6)

H2 =
A2

ν2
+
B2

ν4
. (5.7)

The values for the nine basic parameters A1, ..., E1 and A2, ..., D2 used in Equa-

tions (5.4)-(5.7) could be seen in Table 5.1. These values differed for inner-shell orbital

and external orbital, and an orbital was regarded as an inner one when its binding

energy exceeded twice the binding energy of the least-tightly bound orbital [263].

From Equation (5.1), we can calculate the total cross section for the sub-shell

i as

σioni =

∫ wm

0

dσioni
dw

dw, (5.8)

where wm = Em
Bi

and Em is the scaled maximum transferable energy from the proton

to the ejected electron. The relativistic expression of Em is given by Plante et. al.

[264] as

Em =
2mc2 (γ2 − 1)

1 + 2γ
(
m
M

)
+
(
m
M

)2 , (5.9)

with

γ = 1 +
Ek
Mc2

, (5.10)

and c the speed of light. The relativistic format for the scaled velocity ν is then

written as
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Table 5.1. Parameters used in this work for Equations (5.1)-(5.7). Data were ex-
tracted from [265, 268]

Parameter
Inner orbitals External orbitals

1a1
2a1

1b2
3a1

1b1

A1 1.25 1.25 1.02 1.02 1.02
B1 0.5 0.5 82 82 82
C1 1 1 0.45 0.45 0.45
D1 1 1 -0.80 -0.80 -0.80
E1 3 3 0.38 0.38 0.38
A2 1.1 1.1 1.07 1.07 1.07
B2 1.3 1.3 14.6 14.6 14.6
C2 1 1 0.6 0.6 0.6
D2 0 0 0.04 0.04 0.04
α 0.66 0.66 0.64 0.64 0.64
Ni 2 2 2 2 2
Bi 539.7 32.2 18.55 14.73 12.61

ν2 =
mc2

2Bi

[1− 1

γ2
]. (5.11)

With the ionization model and parameters determined under both relativistic

and non-relativistic formalism, we could integrate Equation (5.8) numerically to ob-

tain the ionization cross section table for different sub-shells of a water molecule in a

broad proton energy range. In our implementation, we computed the table for proton

energies ranging from 10 eV to 1 TeV with a 0.01 increment along the logarithmic

scale. It is worthy mentioning that the computation of the cross section table only

needed to be computed once in an offline manner and was stored in a data file that

can be loaded to GPU memory for query of cross sections of any incident energy.

More detail of this usage was given in subsection 5.2.3.1.
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5.2.1.2 Excitation for proton

Due to the lack of experimental data, different models could have differential

configurations of the excitation pathways. In our implementation, we adopted the

three-pathway model [269, 270] containing Ã1B1, B̃1A1 and plasma mode for protons

with energy ¿ 500 keV, and the model with excitation channels of Ã1B1, B̃1A1, Ryd

A+B, Ryd C+D and diffusion band [dingfelder2000inelastic] for proton energy ¡

500 keV. Specifically, in the three-pathway model, the differential cross section for

the excitation channel j is expressed as

dσexcj

dW
= ρ (W )Wfj (W ) ln

(
W

Qmin

)
, (5.12)

where

ρ (W ) =
8πZ2a2

0

mu2

Ry2

W 2
, (5.13)

Qmin = 2T

(
M

m

)2
(

1− 1

2

m

M

W

T
−
√

1− m

M

W

T

)
. (5.14)

Here, j denotes different excitation channels, namely Ã1B1, B̃1A1 and plasma mode.

u, Z and W are the velocity, charge and energy loss of the incident proton. Other

parameters are the same as that used in section 5.2.1.1. When m
M

W
T

= W
Ek
� 1,

Equation (5.12) can be simplified as

dσexcj

dW
= ρ (W )Wfj (W ) ln

(
4T

W

)
. (5.15)

At the relativistic situation, mu2 in Equation (5.13) can be expressed as

mu2 = mc2
[
1− γ−2

]
. (5.16)

fj (W ), as a function of the excitation pathway j, has the form of

146



fj(W ) =


f 0
j

√
αj/πe

[−αj(W−wj)2], if j = Ã1B1, B̃
1A1

f 0
j αje

x/ (1 + ex)2 , otherwise

(5.17)

where x = αj(W − wj) and f 0
j , αj, wj are parameters with their values summarized

in Table 5.2. Under the assumption that the proton only loses a small portion of its

kinetic energy to excite a water molecule, i.e. W
Ek
� 1, Equation (5.15) can be used

to calculate the total cross section for excitation channel j as

σexcj =

∫ Wmax

Wmin

dσexcj

dW
dW. (5.18)

In principle, the upper and lower boundaries of the integration can be Ek and 0.

However, in practical usage, it is common to set Wmax = 50 eV and Wmin = 2 eV .

The reason is that
dσexcj

dW
(W ) drops to a negligible value when W /∈ [Wmin, Wmax]

and the boundary cutoffs also assures a positive and convergent integrated total cross

section.

Table 5.2. parameters used in Equations (5.17).

j Ã1B1 B̃1A1 plasma mode

f 0
j 0.0187 0.0157 0.7843
αj 3 (eV −2) 1 (eV −2) 0.6 (eV −1)
wj 8.4 10.1 21.3

When a proton’s energy is smaller than 500 keV, Born approximation is no

longer a good approximation [265] and Equation (5.15) may have problem in evalu-

ating the cross sections. We then applied the semi-empirical model [265] to obtain

the excitation cross section for a low energy proton as
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σexcj (Ek) =
σ0 (Za)Ω (Ek − Ej)v

JΩ+v + EΩ+v
k

. (5.19)

Here, j denotes the excitation channels Ã1B1, B̃1A1, Ryd A+B, Ryd C+D and dif-

fusion band. The corresponding energy loss Ej of the proton is discrete instead of

continuum. Further details of the model can be referred from [265].

With the excitation cross section given in Equation (5.18) and relevant param-

eters determined, we could integrate it numerically to obtain the excitation cross

section table for different sub-shells of a water molecule at proton energies above 500

keV. Meanwhile, we could rely on Equation (5.19) to handle protons with energies be-

low 500 keV. To make the cross section data computed from the two models smoothly

connected at the proton energy of 500 keV, we adjusted the obtained cross section

data as follows. We applied coefficients of 1.23 and 3.5 to the cross section data

for Ã1B1 and B̃1A1 channels obtained from Equation (5.18) to make them smoothly

connected to that obtained from Equation (5.19) at 500 keV for these two modes.

We then multiplied 0.339 to the plasma mode to make the total cross section also

smoothly connected. Similar to the strategy applied to obtain the ionization cross

section table, we also only needed to compute the excitation cross section table once

and stored it in a data file. Its usage on GPU was also given in subsection 5.2.3.1.

5.2.1.3 Charge effect

When charge particles travel through a water medium, except for ionizing or

exciting the water molecule, it could also drag electrons from the medium to move

with it, forming a reduced effective charge Zeff < Z. This effect is found reversely

proportional to the kinetic energy of the incident particle. In our simulation, we

adopted the empirical Booth’s model [266] to obtain the effective charge Zeff as:
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Zeff = Z
(
1− exp

[
−1.316y + 0.112y2 − 0.065y3

])
, (5.20)

where y = 100Z−2/3

√
1− (1 + Ek/(AMc2))−2 and A is the mass number of the par-

ticle. The correction is larger than 5% (Zeff < 0.95 • Z) when y < 2.172, which gives

Ek ∼ 18 MeV per nucleon for Fe ion and 0.22 MeV for proton.

5.2.1.4 Cross section for heavy ions

Within the first-order plane wave Born approximation, we could correlate the

ionization and excitation cross section for bare and sufficiently fast heavy ions to that

of proton by the scaling law. Specifically, for a heavy ion with velocity u and charge

number Z, the doubly differential cross section can be scaled from that of proton with

same velocity u by a factor Z2 [267]

d2σion
dWdQ

(u) = Z2 × d2σproton
dWdQ

(u) , (5.21)

where W and Q refer to the energy transfer and the recoil energy, respectively. After

integrating over Q, we could obtain the SDCS as a function of W . Considering that

an ion of mass number A and kinetic energy Ek had the same velocity with a proton

of kinetic energy Ek,p = Ek
M
Mion

≈ Ek
A

, we could rewrite the scaling formula as a

function of Ek as

dσion
dW

(Ek) = Z2 × dσproton
dW

(Ek/A) , (5.22)

It holds for ions at both non-relativistic and relativistic formats. The electron

attachment effect can be more significant for a heavy ion than for a proton of the

same velocity since a heavy ion typically carries more charges than a proton. With

the electron attachment effect considered, we replaced Z with Zeff when scaling the
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cross section from proton to a heavy ion using equation (5.22), with Zeff calculated

from Equation (5.20).

5.2.2 Concurrent transport method

Due to the computational challenge, existing MC tools computed the DNA

damage formed by radical attachment typically via two successive steps. First, the

radicals were diffused and mutually reacted in the chemical stage without DNA.

Second, the coordinates of OH . radicals obtained at the end of the chemical stage

were overlapped with DNA geometry such that DNA damages caused by radicals

could be computed [52, 259]. We referred this approach as the “overlay method”.

This approach is effective for simple applications. However, it can be problematic

for those scenarios sensitive to radical evolution. In reality, DNA could be present

and react with radicals during the radical diffusion. This could affect the radical

yields and the damage site distribution on the DNA chain, consequently impacting

the final characterization of the DNA strand breaks. To model this effect, in this

work, we included the simulation of the reactions between radicals and DNA at the

time of transporting the radicals in the chemical stage and referred this approach as

the “concurrent transport method”.

In our previous development of gMicroMC without considering DNA in the

chemical stage, we simulated the diffusion and reactions among radicals in a step-

by-step fashion. The relevant parameters are the diffusion coefficient for each radical

species and the reaction rates for possible radical-radical reaction types. To include

DNA into this transport frame, we need to know the diffusion coefficient of DNA and

the reaction rates between radicals and DNA. Considering the relatively large mass

of DNA, we assumed that the whole DNA was static during the chemical transport

and took its diffusion coefficient as 0 to simplify the simulation. As for the reaction
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rates between radicals and DNA, we considered two types of reactions based on the

DNA model for a whole lymphocyte cell nucleus [52]. The DNA was described in a

voxel-based format with each voxel of side length 55 nm. The voxel is either empty

or filled with a DNA chain that connects two faces of the voxel. The DNA chain

consists of a group of spheres representing the basic structures of the DNA: the base

pair, sugar-phosphate group and histone protein. With it, we considered the first

reaction type as the damaging effect of OH . and eh radicals on the DNA bases and

sugar-phosphate groups. The reaction rates were listed in Table 5.3. Here, although

there were four types of DNA bases, that is adenine (A), guanine (G), cytosine (C)

and thymine (T) bases, associated with four different reaction rates with OH . or eh

radical, we used the average reaction rate in our simulation since our DNA model

had no differentiation among the base types. The second type was the scavenging

reaction for all radical species by the histone protein. In this reaction, the radical

was assumed to be fully absorbed once it was within the histone protein volume.

Table 5.3. Reaction rates (×109 L •mol−1 • s−1) used in gMicroMC for concurrent
DNA transport [271].

Radicals A G C T DNA base DNA sugar-phosphate group

OH . 6.1 9.2 6.4 6.1 6.95 1.9
eh 9 14 18 13 13.5 −1∗

∗ Negative value means no reaction between the radical and the DNA sub-structure.

After introducing DNA into the chemical stage simulation, two consequences

required special attention. First, radicals were not supposed to be produced inside

the DNA region, hence at the beginning of the chemical stage, we needed to exclude

those radicals produced inside the chromatin zone from the subsequent diffusion [240]
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without recording any damages on DNA. Second, as there were a huge number of DNA

basic structures in our DNA model, for instance, 6.2 × 109 base pairs, the checking

for reactions between radicals and DNA after each diffusion step would generate

numerous computations. To circumvent the problem, we defined a time interval ti to

control the frequency to check for reactions between radicals and DNA. During the

simulation of the chemical stage, as the time evolution occurred, we only checked for

radical-DNA reactions every ti. In the limit of a small ti, the frequent inspection for

reactions ensures simulation accuracy. In the other extreme of a large ti, the DNA

related reactions will be less frequently checked, which eventually converged to the

overlay picture. We studied the impact of ti in later sections.

5.2.3 GPU implementation

5.2.3.1 Physical transport for protons and heavy ions

Before transporting protons and heavy ions on GPU, we prepared lookup tables

on CPU host to store the tabulated cross sections for a proton as stated in sections

5.2.1. The lookup tables were then transferred to GPU texture memory such that we

could employ the GPU built-in fast interpolation technique to obtain cross section

data for particle transport. We supported two types of source particle generations:

reading from a Phase Space File (PSF) or sampling from a given distribution. We

sorted the source particles in a descending order based on their charge number Z.

If the particles were protons or heavy ions, we transported the sorted particles in

groups using the GPU kernel we developed in this work dedicating for proton and

heavy ion transport. If they were electrons, we transported them with our previ-

ously developed kernel for electron transport [52]. The purpose of particle sorting
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and grouping was to minimize the thread divergence on GPU and hence to improve

simulation efficiency[53, 54].

For the GPU kernel in charge of the transport of protons and heavy ions, each

thread takes care of one primary particle. For a particle with charge number Z, atomic

mass number A and incident energy Ek, the thread sampled its free travel distance

s in water and its interaction with the water molecules in iteration. Specifically, we

first calculated the effective charge number Zeff according to Equation (5.20) and the

kinetic energy Ep = Ek
A

for proton with the same velocity as that of the primary

particle. Based on the logarithmic value of Ep, we interpolated the lookup tables

to obtain the cross section σi(Ep) for proton. Here, i represented all ionization and

excitation channels listed in the tables. We then scaled and summed σi to obtain the

total cross section for the primary particle as σt = Z2
eff

∑
σi based on Equation (5.22).

With σt, we sampled the free travel distance s in water as s = − Mw

ρ•σt•NA
ln ζ, where

ρ and Mw are the density and atomic mass of water. NA is the Avogadro constant

and ζ is a random number uniformly distributed between 0 and 1. We forwarded the

particle position by s along the momentum direction followed by a sampling of the

interaction type based on the relative cross section distribution σi∑
σj

.

If the sampled interaction i0 was an ionization event, we then sampled the en-

ergy Ee and the emission angle of the ejected secondary electron, along with updating

the kinetic energy of the primary particle. Noticing that the partial SDCS in Equation

(5.1) had the form of
dσioni
dw
∝ f (w)φ(w), with f (w) = (F1 (ν) + wF2 (ν))/ (1 + w)3

that was relatively easy to integrate and φ (w) = 1/(1 + exp [α (w − wi) /ν]), we took

f(w) as a sampling function and φ(w) as the rejection function to effectively sample

Ee. Specifically, for a given proton energy Ep, ν can be solely determined based on

Equation (5.11) and hence F1(ν) and F2(ν) are just numbers. We wrote them as
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F1 and F2 for simplicity in the following equations. Applying the direct inversion

method, we could sample ws from f(w) as

ws = (−F1 + 2Ncζ +
√
F 2

1 + 2F2Ncζ − 2F1Ncζ)/(F1 + F2 − 2Ncζ). (5.23)

Here, ζ ∈ [0, 1) is a randomly sampled number and Nc has the form of

Nc =

∫ wm

0

f (w) dw = (wm (F2wm + 2F1 + F1wm))/(2 (1 + wm)2). (5.24)

We repeatedly sampled ws with Equation (5.23) and updated φ(ws) until we obtained

φ(ws) > ζ ′ with ζ ′ a random number ∈ [0, 1/(1 + e−αwi/v)]. Once reaching this

stopping criteria, we accepted ws and computed Ee as

Ee = ws ∗Bi0 . (5.25)

The polar scattering angle θe of the electron relative to the moving direction of the

primary particle satisfied cos θe =
√

Ee
4∗T for Ee > Bi0 and uniformly distributed

between 0 and π otherwise [cobut1998monte]. The azimuth scattering angle was

uniformly sampled between 0 and 2π. The residual energy of the primary particle

after ionization was E ′k = Ek − Ee −Bi0 and its polar scattering angle was 0.

If the sampled interaction i0 belonged to the excitation category, there was no

secondary electron emission and we only needed to sample the energy loss W of the

primary particle. In this case, the polar scattering angle for the primary particle was

0 as well. When Ep > 500 keV, we sampled W based on Equation (5.15). Noticing

that
dσexci0

dW
∝ fi0 (W ) g(W ), where g (W ) = 1

W
ln(4T

W
), we then used fi0(W ) for the

sampling of W and g(W ) for rejection. For Ã1B1 and B̃1A1 channels, Ws can be

directly sampled as
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Ws = wi0 +
1√
2αi0

ζn, (5.26)

where ζn is a random number following the standard normal distribution. As for the

plasma mode, we applied the direct inversion method to get Ws as

Ws = wi0 +
1

αi0
ln

(
u1

1− αi0u1Ncζ
− 1

)
. (5.27)

Here ζ is a random number ∈ [0, 1) and Nc has the form of

Nc =

∫ Wmax

Wmin

fi0 (W ) dW =
1

αi0

(
1

u1

− 1

u2

)
, (5.28)

with u1 = 1 + eαi0(Wmin−wi0) and u2 = 1 + eαi0(Wmax−wi0). We repeated the sampling

of Ws and updating g(Ws) until obtaining g(Ws) > ζ ′ with ζ ′ a random number

∈ [0, 1
Wmin

ln
(

4T
Wmin

)
]. The residual energy of the primary particle after excitation is

then E ′k = Ek−Ws. When Ep ≤ 500 keV, the energy loss Ei0 was directly obtainable

from the discrete energy spectrum[267]. The residual energy of the primary particle

was then E ′k = Ek − Ei0 .

After transporting the primary particle with one step and simulating its inter-

action with one water molecule, we updated Ek with E ′k and started the next round of

transport sampling until the kinetic energy of primary particle reached cutoff energy

or ran out of the simulation region. During the process, all secondary electrons were

stored in a global stack to be further simulated using our previously developed ker-

nel in charge of electron transport, the physics models in which covered the electron

spectrum as low as a few eV [52]. The ionized and excited water molecules were also

tagged for further analysis.
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5.2.3.2 Concurrent transport

In the concurrent transport picture, we simulated the reactions among radicals

and DNA and the diffusion of the radicals in a step-by-step manner. Considering

the complex structure of DNA and the possibly different checking frequencies for

radical-DNA interactions and radical-radical reactions depending on the value of ti,

we utilized two GPU kernels for the chemical stage transport at the presence of DNA.

One GPU kernel is responsible for the interactions between radicals and DNA, and

the other kernel is in charge of the radical-radical reactions and the diffusion of the

radicals.

For the GPU kernel managing the reactions between radicals and DNA, each

GPU thread is responsible for one radical. To obtain the possible reaction and reaction

type between the radical and DNA, we needed to search the DNA geometry and

compute the distances from the radical to the centers of DNA basic structures (DNA

base, sugar-phosphate group and histone protein). The smallest distance dmin was

then compared to the reaction range of R + Rc with R the radius of that DNA

structure. Rc = k/4πNAD for reactions between the radical and DNA base or sugar-

phosphate group, where k is the reaction rate, NA is the Avogadro constant and D is

the diffusion rate for the radical. For all considered radical species, Rc was < 1 nm.

Due to the lack of experimental data for the reaction between radicals and histone

protein, we assumed that the radical was only absorbed when it hit the histone and

hence set Rc = 0 for this case. If dmin < R+Rc, a reaction was recorded. Otherwise,

the Brownian bridge method [52] was applied to compensate for possible reactions

between radical and DNA during the diffusion. As our DNA model was constructed

with a huge amount of the basic structures, it would be too time consuming to search

the entire space to obtain the smallest distance from radical to DNA. To reduce the
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searching burden, we relied on the voxelized geometry of the DNA model and only

performed the search at most in two voxels. Specifically, noticing that the outer

boundary of the DNA chain was ¿ 2 nm away from all edges of the voxel it occupied

[52] and Rc < 1 nm for all reactions between radical and DNA, it indicated that a

radical was only possible to react with those DNA structures in two special voxels:

the current voxel it located and the adjacent voxel having the surface closest to it.

The latter voxel was not considered unless the radical was < 2 nm from its closest

surface. In this way, we reduced the searching burden significantly. Once a reaction

was recorded, the radical was removed from the reactant list. If the reaction was

with the DNA base or sugar-phosphate group, the reaction site was stored in a global

stack for further analysis.

For the radical-radical reactions and radical diffusion, we continued to employ

the GPU kernel developed in our previous work [52]. Each thread is in charge of

one radical. To reduce the searching burden for mutual reactions, the entire space

was divided into small grids with the grid size twice the largest reaction radius. It

ensures that each radical only reacted with other radicals in the same or adjacent

grids. The distances from the radical to other radicals were then computed and

compared to the reaction radii to obtain whether a reaction would occur. If a reaction

happened, the new products were placed and radical-radical reactions were checked

again. Otherwise, the radical was diffused by one step followed by the check for

radical-radical reactions based on the Brownian bridge method.

At the beginning of the chemical stage, the GPU kernel for the DNA-radical

reactions was executed to remove the radicals within the chromatin region from sub-

sequent chemical stage simulation. It was followed by the launch of the GPU kernel in

charge of the radical-radical reaction and radical diffusion. After that, we compared

telap, the time elapsed from the last execution of the former GPU kernel, to ti. If
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telap ≥ ti, the former and latter kernels were called in sequence. Otherwise, only the

latter kernel was executed. The process was repeated until reaching the end of the

chemical stage.

5.2.4 Simulation setup

5.2.4.1 Simulation setup for transport of protons and heavy ions

We performed a series of simulations to validate the physical stage transport for

proton and heavy ions. These include 1) the computations of the cross section, linear

energy transfer (LET) and traveling range, 2) the validation of the energy spectrum

of secondary electrons, the radial dose distribution and the track structure and 3) the

evaluation of the DNA damage spectrum.

We first calculated the total cross section for both ionization and excitation

channels according to Equations (5.8) and (5.18), under the relativistic formats. The

results were compared to Plante et. al.’s [264] and Dingfelder et. al.’s [265] works, as

shown in Figure 5.1. Based on it, we calculated the track-length-averaged unrestricted

LET for different ion species with their energy ranging from 0.1 ∼ 104 MeV amu−1.

For an ion with energy Ek, we sampled the energy loss of primary particles εi and the

free-fly distance si. We then repeated the simulation for N = 105 times, computed

the length-averaged unrestricted LET as

LET =
N∑
i=1

εi
si
• si∑N

j=1 sj
=

∑N
i=1 εi∑N
j=1 sj

. (5.29)

We compared the LETs to those reported by Plante et. al. [264]. After that, we

simulated the proton range by tracking its starting and ending positions for proton

energy of 0.1 ∼ 100 MeV and compared to NIST data. We showed both results in

Figure 5.2.
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As for the validation of the energy spectrum of secondary electrons, we simu-

lated the interactions of 5 MeV proton and 4 MeV alpha particles with liquid water

target, recorded the energy of the secondary electrons, and compared to those ob-

tained with GEANT4-DNA simulation [234] (GEANT4 version 10.5.1). The result

was plotted in Figure 5.3. As for the radial dose distribution, we transported 5 and

10 MeV protons within a water slab of 10 µm thick and infinitely long at the other

two dimensions, and analyzed the dose distribution within a thin slice 4 to 6 µm

away from the proton starting point along the thickness direction. We accounted

the dose distributed in an annular ring with inner and outer radii of r and r + ∆r

as dose at radius r. We set ∆r = 1 nm, same as that used in Wang et. al.’s work

[272]. We repeated the simulation for 105 times, averaged the obtained radial dose

and compared with that reported in Wang et. al.’s work [272]. Finally, we showed a

representative physical track structure for a 5 MeV proton in Figure 5.5, including

the track for both primary proton and secondary electrons.

We used the lymphocyte nucleus model developed in our previous work for this

evaluation study [52]. We initiated a proton emission plane of 11 × 11 µm2 and 5.5

µm away from the center of the cell nucleus for two proton energies, 0.5 and 0.9 MeV.

For each energy, we randomly sampled the proton position at the emission plane and

its momentum towards positive z direction, transported the proton until reaching a

cutoff energy of 1 keV and recorded the dose inside the cell nucleus. We repeated

the simulation until reaching the accumulated dose of 2 Gy. After that, we simulated

the physio-chemical and chemical stage with the chemical stage duration tc = 1 ns.

We then applied the overlay method to obtain the DNA damage sites and grouped

them into DNA single strand break (SSB) and double strand break (DSB)[259]. The

result was compared to Nikjoo et. al.’s work with KURBUC model [273] and shown

in Table 5.4.
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5.2.4.2 Simulation setup for concurrent transport

We studied the impact of ti on the radical yields. We simulated the cases with

chemical stage duration tc = 1, 10 ns and 1 µs, and ti from 1 ps to 1 µs with an

increment of 1 at the logarithmic 10 scale. Again, the lymphocyte cell nucleus with

radius 5.5 µm was used as the region of interest (ROI). As for the radical yielding, we

transported a 4.5 keV electron with its initial position randomly sampled inside the

ROI and its direction towards the ROI center. We then took the generated radicals

as inputs for the chemical stage simulation. The final G values for eh, OH
., H . and

H2O2 radicals were recorded. We repeated the simulation for 100 times to reduce

statistical uncertainties and reported the averaged G values over all simulations. The

results were shown in Figure 5.6.

We also computed the DNA damage as a function of the incident proton energy

and the chemical stage duration under the concurrent DNA transport frame. Proton

energy Ek of 0.5, 0.6, 0.8, 1.0, 1.5, 2, 5 10, 20 and 50 MeV and chemical stage duration

tc of 1, 2.5 and 10 ns were considered, following the parameters used in Zhu et. al.’s

work [240]. We initiated the proton on a spherical shell with a radius of 5.5 µm and

shot it randomly towards the inner space of the sphere. We repeated the simulation

until having the accumulated dose in the sphere of 1 Gy. We then simulated the

chemical stage with DNA concurrent transport (ti = 1 ps) and computed the total

DSB yield. For each proton energy, using DSB yield at tc = 1 ns as a reference, we

defined R (t) = NDSB (tc = t) /NDSB (tc = 1 ns) to represent the relative DSB yields

at tc = t. For each pair of Ek and tc, we ran the simulation for 20 times and computed

the mean and standard deviation for the relative DSB yield. We then compared the

data with tc = 2.5 ns (R(2.5)) and 10 ns (R(10)) to Zhu et. al.’s work [240] and

showed the results in Figure 5.7.
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5.3 Results

5.3.1 Validation of development for protons and heavy ions

Figure 5.1 presented the total and partial cross sections for ionization and ex-

citation as a function of incident proton energy. From Figure 5.1(a), the total cross

section for ionization from our simulation agreed well with that from Plante et. al.’s

work [264]. From Figure 5.1(b), for proton energy> 500 keV, our simulated total cross

section for excitation matched that from Plante et. al.’s work [264]. As for the slow

proton, it followed that from Dingfelder et. al.’s work [dingfelder2000inelastic].

The results revealed that the ionization model and the two-stage excitation model

was successfully implemented as expected.

Figure 5.1. Total and partial cross sections of (a) ionization and (b) excitation
channels for protons with different energies..

In Figure 5.1(b), we noticed a dramatic drop-off of the total excitation cross-

section at around 10 keV for the Plante model. This is due to that the cross section

formula shown in Equation (5.15) depends on the scaled energy T = m
M
Ek. When

Ek drops below 10 keV, T is too small to excite even the lowest excitation channel

(j = Ã1B1) . After replacing it with the Dingfelder’s model (Equation (5.19)) at the
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low energy region, excitation cross section drops much slower. Considering that the

low energy proton largely appears after the Bragg peak, a proper excitation model

could be important for the distal dose computation in proton therapy.

Figure 5.2. (a) The unrestricted LET for different ions with different energies. The
unit amu−1 means per nucleon. Solid lines represent data extracted from Plante et.
al.’s work while data with diamond symbol are from our simulation with gMicroMC.
(b) The simulated proton range for different energies..

The calculated unrestricted LET for different ions were plotted in Figure 5.2(a).

They agreed well with Plante et. al.’s work for ions with energy larger than 0.5 MeV

per nucleon. At the low energy range, LETs from our simulation are lower than that

from Plante et. al.’s work, which can be explained by the different excitation models

used in the two simulations. As shown in Figure 5.1(b), the excitation cross section

from our work was higher than that from Plante et. al.’s work at the low energy

range, resulting in a higher sampling rate of excitation interactions in our simulation.

Considering that the energy loss from an excitation event was typically smaller than

that from an ionization event (Table 5.1), a higher sampling of excitation could result

in a lower LET. In Figure 5.2(b), we showed the proton range from our simulation and

its comparison with NIST data. As is shown, our simulation result matched well with
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NIST PSTAR data (https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html)

with the relative difference smaller than 1%.

Figure 5.3. Secondary electron spectrum for (a) 5 MeV proton (b) 4 MeV alpha
particle..

Figure 5.3 shows the energy spectrum of secondary electrons generated from

5 MeV proton and 4 MeV alpha particle. From the figure, the yielding rates of

secondary electrons drop quickly along with the increase of the electron energy. For

the entire plotting, our simulated results agreed well with that from GEANT4-DNA.

We didn’t compare the spectrum for electron energy larger than 200 eV due to a too

low yielding rate and a consequent large uncertainty.

Figure 5.4. Radial dose distributions for (a) 10 MeV (b) 50 MeV protons..
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In Figure 5.4, we see the radial dose distributions for 10 and 50 MeV protons

from our and Wang et. al.’s work (Equations (1)-(7) in [272]) under a same setup. As

is shown, the two curves matched quite well, although the curve from our simulation

suffered a relatively large statistical fluctuation for the regions ¿ 1000 nm from the

primary track axis. Figures 5.3 and 5.4 together validated the energy spectrum and

angular distribution of secondary electrons from our simulation, furthering proving

the successful implementation of the transport models for proton and heavy ions.

We then presented a track structure for a 5 MeV primary proton and its pro-

duced secondary electrons in liquid water in Figure 5.5. For simplicity, we only

presented the entrance (Figure 5.5(a)) and Bragg peak (Figure 5.5(b)) regions. At

the entrance region, the secondary electron tracks are quite sparse. In contrast, they

are much denser at the Bragg peak region. In addition, the electron track lengths

are shorter at the Bragg peak region. This is mainly due to that the kinetic energy

of the proton is much higher at the entrance than the Bragg peak region. It leads to

smaller total cross section and longer interval between the production of secondary

electrons. Plus, high energy electrons (Equation (5.23)) would be favored when the

proton energy is high. In general, most of the electrons travel a tiny distance before

locally deposited, forming the dense blue area around the central proton line and

hence a high radial dose distribution at the regions with small radii (Figure 5.4).

Finally, in Table 5.4 we reported the DNA damages in the form of DSBs induced

by 0.5 and 0.9 MeV protons. The results from our simulation were compared with

that from Nikjoo et. al.’s work with KURBUC model [273]. The difference was found

within 10%.
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Figure 5.5. A representative track structure for a 5 MeV proton at the entrance
part (a) and the Bragg peak region (b). The proton was emitted along positive Z
direction. Red and blue dots represent the energy depositions by the proton and
secondary electrons, respectively. Note: in the two subplots, we kept the same aspect
ratio between z and x/y axes but plotted with different ranges..

5.3.2 Validation of the concurrent transport

As for the validation of the concurrent DNA transport module, we first studied

the influence of different checking time interval ti and chemical stage duration tc on

the yields of different radicals. As shown in Figure 5.6, at a fixed ti, the yields of

eh and OH . radicals reduced when tc increased. This is because longer tc enabled

more reactions among radicals and DNA. For eh and OH .radicals, these reactions

Table 5.4. The DSB yields (number per Gy per Gbp) obtained under the overlay
method for two proton energies.

Energy (MeV) from gMicroMC from Nikjoo’s work

0.9 20.1 18.2
0.5 25.1 23.9
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Figure 5.6. The yields of (a) eh (b) OH . (c) H . and (d) H2O2 chemical species at
different checking time intervals ti and chemical stage duration tc..

were mainly consumption channels, resulting in a reduced yielding rate when tc in-

creased. In contrast, although the presence of DNA also consumed H . and H2O2

radicals, reactions among radicals could contribute positively to the yields of these

two radicals. Hence, the production of H . and H2O2 radicals could be dependent

on tc in a more complex way. In addition, at a fixed tc, varying ti from 1ps to tc

transforms the simulation from the concurrent method to the overlay method. All

lines were connected smoothly and the G value with ti = tc matched with that in

our previous publication under overlay method, indicating the self-consistence of the

concurrent DNA transport in gMicroMC.

166



After examining the self-consistence of the developed concurrent DNA transport

method, we comprehensively studied the DSB yields as a function of proton energies

Ek and chemical stage duration tc. The results were compared to Zhu et. al.’s

work [240] and shown in Figure 5.7. From the figure, all data points have relative

DSB yields ¿1 and R(10) values are larger than R(2.5) for same Ek. This indicates

the DSB yields increase when the chemical stage expands from 1 ns to 10 ns under

the concurrent transport frame. The reason is that the longer the chemical stage

lasted, the more checks between radicals and DNA were performed, and hence the

more DSBs could be formed. Along with the increase of the proton energy, the

relative DSB yields exhibit maximum in the middle energy range. Compared the

data from our simulation to that from Zhu et. al.’s work, the trends generally agree,

especially for the R(2.5) data. Some larger discrepancies exist for R(10) values, which

could be explained partially by the different radical diffusion rates and different DNA

geometries applied in the two works. For example, the diffusion rate of OH . radical is

larger in our package. It could make the OH . diffuse longer and experience a higher

scavenge rate from the histone protein within one diffusion step. In addition, a larger

diffusion rate could result in a smaller reaction radius between OH . and DNA sugar

phosphate moiety. Both led to a reduced DSB yield. The longer the tc is, the more

reduction effect it could create, such that we would get a smaller relative DSB yield

than that from Zhu et. al.’s work for the R(10) data than for the R(2.5) data.

5.3.3 Computational efficiency

After evaluating the two newly developed features of gMicroMC by comparing

to NIST data or simulation results from other packages, it is important to evaluate

the time performance of the new modules for practical applications. In Table 5.5,

we showed the simulation time for the physical transport of 1, 10 and 100 protons
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Figure 5.7. The relative DSB yields at different chemical stage durations tc and differ-
ent proton energies with R (t) = DSB(tc=t)

DSB(tc=1 ns)
. The data from gMicroMC simulation

were compared to that from Zhu et. al.’s work [240]..

at 1 and 10 MeV with gMicroMC on a single GPU card (Nvidia V100). As can be

seen, it only takes 2 and 4 seconds to transport a single proton with initial kinetic

energy of 1 and 10 MeV. In contrast, it could take multiple hundreds to thousands of

seconds to perform similar simulations with single-CPU based packages, showing the

high efficiency of gMicroMC. It is also important to point out that when raising the

proton numbers from 1 to 100, the simulation time only increased by ¡ 5 and 10 folds

for 1 and 10 MeV proton, respectively. This feature is against the linearly increasing

behavior for typically CPU based simulations, making gMicroMC especially suitable

for large-scale simulations. Actually, when the proton number is small, the parallel

computing capacity of GPU is far from fulfilled when launching the kernel for primary

particle transport, such that increasing the proton number, the running time will not

significantly increase.

As for the simulation time of the concurrent transport (ti = 1 ps) in the chemical

stage, it could be affected by many parameters, such as the number of radicals, the

chemical stage duration and the DNA complexity. Here we reported the simulation
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Table 5.5. The simulation time (seconds) of physically transporting 1, 10 and 100
protons for proton energies at 1 and 10 MeV by gMicroMC on a single GPU card.

Energy (MeV)
Number of primary protons
1 10 100

1 1.9 3.1 9.3
10 3.9 9.8 40.5

time for a representative case. Considering that the number of radicals produced

from one 100 keV electron or 1 MeV proton is roughly 105 and the longest chemical

stage duration used in the overlay method is ∼ 1 µs, we set the initial number of

radicals Ni = 105 and chemical stage duration tc = 1 µs in our simulation. We have

also included our DNA model containing ∼ 6.2 × 109 bps for a human lymphocyte

cell nucleus in the simulation, the complexity of which is high. The simulation time

was found 470 seconds with gMicroMC on a single GPU. Compared to the simulation

time of 31 seconds under the overlay scheme for gMicroMC, the concurrent transport

frame is still quite efficient since the simulation becomes much more sophisticated with

the presence of DNA. This indicates that gMicroMC can be applied for simulations

with realistic settings. In comparison, restrictions on the reaction region and time

duration, etc., were typically required in other packages for memory or time saving

purpose [205, 207].

5.4 Discussions

This is a continuous development work of gMicroMC. In this work, we suc-

cessfully implemented the physical transport for proton and heavy ions, and the

concurrent transport of radicals and DNA in the chemical stage. For the former im-

plementation, we considered the ionization, excitation and charge effect during the
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transport, and performed a series of case studies to validate the development. The

obtained results matched well with literature reports. We then computed the DNA

DSBs for two proton energies and the results agreed with that computed with the

KURBUC model in Nikjoo et. al.’s work [273] within 10%. As for the latter, we

considered the interaction of radicals with DNA histone protein, base and sugar-

phosphate groups during the chemical transport. To validate it, we first performed a

self-consistency check for the evolution of chemical radicals and induced DNA DSBs

under different checking frequencies for radical-DNA interactions. The result showed

high self-consistency of the developed module. We then did a comprehensive study of

the DSB yields as a function of the chemical stage duration and incident particle ener-

gies under the DNA concurrent transport frame. The results generally followed that

from Zhu et. al.’s work. The use of GPU made the code of high computational effi-

ciency. Running gMicroMC on a single GPU card, it takes only 41 s to transport 100

protons with a kinetic energy of 10 MeV and around 8 mins to transport 105 radical

up to 1 µs with the presence of a DNA model containing ∼ 6.2× 109 base pairs. The

high computational performance of gMicroMC makes it suitable to simulate complex

radiation scenarios like proton FLASH radiotherapy, which is our next step work. To

benefit the community, we are also working on to release the newly developed features

of gMicroMC on GitHub (https://github.com/utaresearch/gMicroMC) .

Despite of the above success, there are also some limitations in our current

development. In the physical transport of protons and heavy ions, we ignored the

nuclear inelastic interaction, nuclear and electromagnetic elastic scattering. Among

them, the nuclear inelastic interaction can fragment the target and/or projectile nu-

clei, which is a main factor to remove primaries from the projectile beam. However,

due to the complexity of the fragmentation process and its products, this process is

typically not directly included in any mechanistic MC simulation tools at this mo-
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ment [274]. Since this work mainly focuses on novel GPU implementation of existing

models, it will be our next step work for a possible inclusion of the nuclear inelastic

scattering process. As for the elastic scattering, it could change the direction of the

primaries, hence affect the track structure and radical dose distributions. However,

elastic scattering mainly dominants interactions between proton and water medium

at very low energy range and the scattering angle is typically small [274, 275]. Hence

we expect it will not affect much the accuracy of the DNA damage computation.

Considering the powerful computational capacity of GPU, it is promising to con-

sider a more complete modeling of the physical interactions between ions and water

molecules, making gMicroMC versatile for advanced applications.

It is also worthy to point out that we applied a low-energy five-pathway model

and a high-energy three-pathway model to simulate the proton-induced excitation

of a water molecule such that both very low energy and relativistic situations could

be covered. Yet, this could cause a concern that some excitation pathways could be

discontinuous at the model switching point. A previous study showed that the low-

energy model could be extended up to 80 MeV with some proper parameter fitting

[264]. We hence made it an option in our package to only apply Equation (5.19) to

model the excitation process up to 80 MeV. In addition, for the two-model picture,

although we currently set the model switching point at 500 keV to distinguish the

slow and fast proton behavior following the same logic as stated in [265], it deserves

a further study to investigate its impact on the subsequent radical yielding process.

Another important procedure that could affect the computational accuracy of

the proton and heavy ion induced DNA damage was the modeling of the secondary

electron transport, especially for the low-energy electrons (sub keV range). Previous

studies revealed their critical importance in determining the initial distribution of

radicals and the consequent DNA damage patterns [50]. However, due to the lack
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of sufficient experimental data, uncertainties on the simulation results could be in-

troduced by the inaccurate modeling of this process. For instance, with different

models adopted in gMicroMC and Geant4-DNA, the maximal discrepancies of the

track length and penetration depth for electrons below 1 keV computed by the two

packages were around 10 and 4 nm, respectively [52]. In recent years, there were a lot

of efforts contributing to improve the accuracy of describing the low energy electron

transport process [247–251, 276]. However, more efforts are required to fully elucidate

this problem.

In addition, as discussed in our previous study [259], the cross section used

to simulate the ionization and excitation processes from electrons could significantly

impact the accuracy of the finally obtained DSB yields. In the case of proton and

heavy ions, due to the lack of experimental data, the cross sections and models could

also be associated with large uncertainties, causing concerns for the robustness of the

simulation results. To reduce these uncertainties, there have been multiple exper-

iments and models [47, 249, 277–283] developed in a more elaborate fashion. Yet,

more studies are needed to more thoroughly understand the relevant processes.

In our previous study [259] with the overlay method, the DSB yields reduced

when the chemical stage duration enlarged, which was against the trend obtained

in this work with the concurrent DNA transport method (Figure 5.7). This is due

to that in the overlay method, the radical-DNA interaction was only simulated after

the chemical stage simulation. The longer the chemical stage lasts, the more the

OH .radicals were consumed during the mutual radical reactions, and the fewer the

DSBs could be formed. Nonetheless, the controversial behavior between the concur-

rent and overlay frames reminds us to watch carefully about the parameters used

in our simulation. One such parameter is the scavenging probability from histone

proteins to chemical radicals, the value of which was not well regulated by current
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Figure 5.8. Ratio of DSB yields with different scavenge probability..

experiments. We performed a new simulation to study its impact on DSB yield by

gradually reducing the scavenging probability Ps from 1 to 0. Here, Ps = 1 means

total scavenge once radicals hit histone proteins. Taking the DSB yields at Ps = 1

and tc = 1 ns as reference, we computed the relative DSB yields at other Ps’s and

tc’s. The results were shown in Figure 5.8. Clearly, DSB yields increased when Ps

decreased. However, even under a same Ps, when tc differs, Ps could have different

impacts on the relative DSB yield. For instance, the relative DSB yield was 1.4 for

tc = 1 ns while it was 3.1 for tc = 1 µs when Ps = 0. It indicated that to make

the simulation tool robust for various applications, we need apply a proper cutoff

on tc and a detailed coordination of multiple parameters used in the chemical stage

simulation. This should be considered in future studies.

In our development of the concurrent transport module, we used a complete

set of cellular DNA at the base-pair resolution to simulate the radical-DNA interac-

tions. Previous studies have incorporated other DNA models, including the simple

cylinder DNA [50], other cellular DNAs [181, 233, 240, 284] and DNA model at the
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atomic resolution [236, 285]. Due to the different simulation setups and different DNA

structures adopted, the absolute DSB yields from different studies were typically non-

comparable [286]. However, there were some common trends shared among different

studies. For example, the DSB yields were found increasing and then decreasing when

the LET increases. The maximal yields of DSB occurred at the LET value around

60 keV/µm in [233] and around 27.2 keV/µm (LET value for 1 MeV protons [205])

for gMicroMC and TOPAS-nBio, respectively. These consistences motivated further

studies with the concurrent simulation scheme while the expense was the lowered

simulation efficiency. Our adoption of the GPU-based acceleration could shed light

onto this issue upon experiences from previous studies [52, 201, 258, 287].

Figure 5.9. The yields of DSB at different ti and tc from gMicroMC simulation..

At last, we performed a further study on the effect of ti, which was introduced

to balance the simulation efficiency and accuracy. We have shown the obvious impact

of ti on the radical evolution. It would be interesting to see how it could consequently

affect the final DNA damage. As DSB is widely accepted as the most important factor

for cell death, it is thus reasonable to use DSB as a metric to evaluate this impact

of ti. We initiated a 4.5 keV electron with its position randomly sampled inside a

174



sphere of radius 6.1 µm and its direction following isotropic distribution. The sphere

was concentric with the cell nucleus of our DNA model. We repeated the simulation

until the accumulated dose inside the cell nucleus region reached 1 Gy, equivalent

to simulating ∼ 2000 electrons. The generated radicals were then transported in

the chemical stage with considering the radical-DNA reactions. We calculated the

resulted DNA DSBs as a function of ti and showed it in Figure 5.9. For the three tc

studied, the DSB lines showed similar trend when ti increased. The maximal DSB was

obtained at ti = 10 ps. The result could be interpreted as follows. At the beginning

of the chemical stage, all generated radicals has a relatively dense distribution. When

ti slightly increased, the OH . radical could diffuse a longer distance away from its

initial position before it reacted with DNA, while its reaction probability with other

radicals was not much affected. Hence, a sparser but equivalent (or slightly reduced)

number of DNA damage sites could be formed, which could lead to more generations of

simple DSBs (composed of 2 damage sites) rather than DSB+ (composed of multiple

damage sites). In this way, the total DSB yields could increase. However, along with

the further increase of ti, the checking frequency for radical-radical reactions would

be much higher than that for radical-DNA reactions. This could lead to a higher

consumption of OH . radicals through radical-radical reactions than through DNA

damaging reactions, which resulted in a reduced DSB yield.

5.5 Conclusions

We have successfully developed and validated two new features in gMicroMC,

the transport of proton and heavy ions in the physical stage and the concurrent

transport of DNA in the chemical stage. We implemented the two features on the

GPU parallel computing platform, resulting in a remarkable time performance. The

physical transport of 100 protons with initial kinetic energy of 10 MeV can be finished
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in seconds. The chemical simulation with concurrent DNA transport is far more

complex, but it still just took a few minutes to run a representative case. The two

newly developed features in gMicroMC that is of both high accuracy and efficiency,

makes gMicroMC of high promise to solve large-scale problems in active radiation

research areas.
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CHAPTER 6

APPLICATIONS OF GMICROMC

Starting from this chapter, we will discuss the application of gMicroMC to three

scenarios that may be challenging for other MC packages. These studies do not only

prove the advantage of computational efficiency of gMicroMC because of utilization of

GPU, but also make sense that the improvement of computational efficiency extend

our understanding of radio-biology in these scenarios. In this chapter, we discuss

the proton damage pattern in a millimeter scale and our attempts to connect the SF

with this pattern. We will also discuss the protection effect by hypothermia. This

simulation requires a DNA damage simulation up to 40 Gy. In the next chapter

(Chapter 7), we will discuss the oxygen effect and oxygen enhancement on DNA

damage. This knowledge will then be applied under FLASH condition.

6.1 Pattern analysis of proton damage

6.1.1 Introduction

For many microscopic simulations [50, 205, 207, 240, 288, 289], DNA damage

simulation is only done in micrometer scale, i.e. in the cell. The source particles,

either electron or proton, merely start from a position inside the cell or near the

cell. The energy deposition events inside the cell are used to determined the dose

level. Yet, dose is not a good indicator when the volume becomes very small. dose

would be divergent if the sampling volume approaches a point from its definition

D = ∆E
ρ∆V

, where ∆E is the energy deposited inside the volume ∆V with density ρ.

In other words, while the clinic dose may be smooth in the whole region because it is
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measured in a millimeter scale, dose for a small volume suffers from large fluctuation

possibly, leading to the mismatch between simulation dose and clinical dose and the

invalidity between simulation results and experimental results. The severity of this

issue depends on the scale of the volume we are interested and the pattern of energy

deposition events. For photon and electron cases, their energy depositions become

uniform rapidly even in a scale of cell because their tracks can be bent and it requires

a number of tracks to deposit even a few Gy. Yet, since proton and heavy ions

basically travel straightly in water medium and secondary electrons from the primary

track can only carry energy several µm away, the energy deposition for a proton or

heavy ion track is very dense along the track while very sparse just a few µm away

from the track. In addition, proton or heavy ions deposit energy very efficiently that

the number of primary particles required to deposit same dose for proton or heavy

ions is much smaller than that for electron or photon. Hence, only when dose level

is large enough could the dose distributions in a scale of micrometer be regarded

as uniform. In the following discussion, we then restrict ourselves in proton cases

without losing generality to present this issue.

The concentration of energy deposition along the proton track makes us over-

estimate our simulation doses if we limits ROI to only a cell in the simulation. This

overestimation means our results, for example the number of DNA SBs versus simula-

tion dose, need to be shifted to lower doses. Hence, the relationship between derived

results, say SF, from DNA damage and simulation dose need to be corrected as well.

However, the shift is not the same for different dose levels, which makes the prob-

lem complex. Additionally, cells in different positions experience different dose levels

because of the inhomogeneity of dose deposition. Hence, any biological endpoints

on many cells are an average effect, which makes the comparison between simulation

results from one cell further deviated from the experimental truth.

178



One straightforward way is to capture the fluctuation of energy deposition in

analysis by statistical method like what is done in microdosimetry [47]. we could

summarize the frequency of deposited energy f(q) and use it to calculate other pa-

rameters such as linear energy yD for further analysis [36]. Because the simulation

for physics stage is not very time consuming, we could afford ROI being in a scale

of millimeter and obtain f(q) with good statistical properties. Yet, there are two

disadvantages for adopting this method. First, as we emphasized through this thesis,

DNA damage is more directly connected with the cell death and subsequent biologi-

cal effect. Such analysis via microdosimetry method ignores the DNA structure and

cannot capture the biological part of the radiation. For example, the protection effect

by folding DNA structure (geometry part) and oxygen enhancement (chemical part).

Second, this analysis ignored the spaces among cells, or specifically cell nucleus. The

behavior of f(q) applied to the whole sampling region with equal importance. But,

the damage should be inside cell nucleus primarily to be effective for cell death.

To solve the above two issues, a full mechanistic microscopic MC simulation

should be done in a scale of millimeter and sample cell nucleus accordingly. This goal

is hard to achieve because of unaffordable simulation time. We then use gMicroMC to

finish this simulation and present the results of DNA damage patterns. Furthermore,

we used a network to find the relationship between DNA damage and SF.

6.1.2 Methods

The overall idea is shown in Figure 6.1. We constructed a Biology-guided Cell

Survival deep neural network (BgCSDNN). The network structure was designed based

on prior information of cell repair pathways [261], where each node represented the

function reflected by its name. Each node included a sub fully connected network (not

shown), whose connections were assumed to be the interaction of different proteins.
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Figure 6.1. Workflow of generating data for the network and prediction of the network.

The input to BgCSDNN is the spectrum of DNA damages of different complex-

ities. We chose this as input for two reasons. First, DNA damages are quantities

directly affecting cell survival that can be computed via MC simulations. Using DNA

damages as input avoids the task of extracting hidden biologically relevant informa-

tion. Second, the energy depositions under proton irradiation are concentrated along

the proton tracks, and DNA damages vary depending on cell positions relative to

the tracks. The spectrum of DNA damages calculated for cells at different positions

represent the average survival effect, which was characterized by the SF measured in

experiments.

The output of BgCSDNN is a single number representing the SF under the input

variables. As discussed on the above, SF is the average effect of cells experiencing
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different dose levels. Hence, the “Combine” function node has one more sigmoid

layer to output the survival state of each cell based on the DNA damage on it. The

survival state can be either alive or dead (1 or 0). Then the “Average” layer averages

the number of survived cells to give the final SF (number between 0 and 1). In fact,

the “Average” is just a linear layer with same weight on different cells since we have

no priority for the cells that we sampled in the MC simulation. It does not participate

in the gradient backward process.

The goal of the network was to find the correspondance between DNA damage

and SF. Therefore, We trained BgCSDNN by solving an optimization problem

argmin
θ

Ndata∑
j=1

[ln

Ncell∑
i

f(xji , θ)

Ncell

− lnSj]
2 (6.1)

where j is the index for different target dose, i the index for different cell positions,

Sj the corresponding survival ratios measured in experiment. Ndata and Ncell are the

number of dose levels and cell positions we sampled. f(xji , θ) denotes the BgCSDNN

function, with θ the parameters in the network, and xji is input DNA damage data.

Data and Model training We considered a previous experiment of high throughput

measurement on cell survival fractions under different doses and LETs [290]. We used

GEANT4 ([182]) to acquire the kinetic energy spectrum of the protons before they

reached the cell layer. gMicroMC was then used to compute physical and chemical

stages of water radiolysis to compute positions of energy deposition events and radicals

at 1 ns for a pool of proton tracks. Protons’ energy was sampled from the energy

spectrum described on the above. ROI was 360×360×33 µm3 while protons started

in a 370×370 µm2 plane on one side of ROI along dimension with 33 µm. For every

given dose levels, we randomly chose proton tracks from the pool until the dose inside

ROI reached the target dose. We then randomly sampled Ncell cells in the middle
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11 µm of ROI and obtained the DNA damage based on the track structure inside

these sampled cells. To eliminate correlation between diferent runs, cell positions

were updated for every new dose values. Ndata = 300 dose values in an interval from

0.02 to 6 Gy and Ncell = 1000 were used in the MC simulation. In this manner, DNA

damages on 0.3 million cells were recorded. The DNA damage was classified into four

categories:SSB, SSB+, DSB, DSB+, which could be referenced to previous chapters

for definition.

The training was performed with PyTorch Adam optimizer and initial learning

rate 0.001. We used data in ten LETs (1.2-17.7 keV/µm) to train the network, and the

remaining two LETs (0.9 and 19.0 keV/µm) to test the model. The range of testing

data is outside LET range of training data to test generalizability of the model. We

also did a simulation for x-ray (137Cs) to see if the network could be applied as well.

6.1.3 Results

We first show explicitly that the DNA damages varied in different cells even if

the dose inside ROI was of little fluctuations. Figure 6.2 presented the probability

histograms of the number of DSB (NDSB) among cells and dose in ROI. Generally,

NDSB increases with dose level and LETs. At a given dose level and LET, it was

also noted that there is a spread of NDSB among cells, indicating the heterogeneity

among cells under a given experimental condition. Numerically, at 6 Gy, when LET

increases from 0.9 to 19.0 keV/µm, NDSB increases from 334±26.7 to 574±101.7

(mean ± standard deviation).

The results on training and testing data were shown in Figure 6.3(a-b). The

mean relative error on training and testing data were 0.1 and 0.11, respectively. As

experiment data has relatively large uncertainty, we did not further reduce the errors

to avoid over fitting. It should be emphasized that although dose and LET were
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Figure 6.2. Probability histograms of the number of DSB and deposited dose for
protons with different LET (a) 1.9 (b) 2.3 (c) 5.1 (d) 10.8 (e) 15.2 (f) 17.7 in units of
keV/µm..

used in the plotting, we did not use such a tag in the model. The agreement on

both training data and test data implies a universal model without the involvement

of LET, if we chose DNA damages as independent variables.

We show in Figure 6.3(c) the plots of fitting of α and β by polynomials. As can

be inferred from the figure, their values agreed quite well with the experimental one,

which was determined by fitting experimental SF data with LQ model [4, 21]. Yet,

with predicted α and β outside the fitting LET range (0.9 and 19 keV/µm), it did not

do well for those two SF curves. The mean relative error was 0.23. Comparing the

maximum difference between (b) and (d), predictions from network based on the DNA
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Figure 6.3. Comparison of ground truth and predicted results on (a) training data
(b) test data. (c) comparison of ground truth and the predicted results using fitted
α and β by polynomials..

damage simulaitons outperform that from fitting LQ parameters. This comparison

indicated better generalizability of our model explaining the experimental data.

A motivation of BgCSDNN was to incorporate the biological basis in the net-

work to allow interpretation. After training the network, we examined the weights

on SSB related and DSB related pathways represented by blue and red arrows in

Figure 6.1. It was found that weights for DSB related pathways ranged from 0.2 to

0.55, substantially larger than weights for single strand break of 0.008, indicating the

importance of DSBs in cell kills under proton irradiation. Besides, we included x-ray

data into training data and test it on another two LET values. The result was shown
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Figure 6.4. Predictions of SF when x-ray data was included.

in Figure 6.4. It could be seen that the inclusion of x-ray data had little effect on the

performance of network predictions on test data. The mean error now became 0.14,

as compared to previous 0.11. The consistence between this two scenarios means that

cells respond similarly for x-ray and proton with LET up to 20 keV/µm and function

from DNA damage to SF preserves.
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6.2 Hypothermia

6.2.1 Introduction

Since radiation do damage to cells regardless of whether they are in tumor or

normal tissue, it is always of great importance to restrict the damage. One straightfor-

ward way is to improve apply radio-protective effect to normal tissues. Such methods

are quite beneficial even for the use of new radiation technology. For example, SBRT.

Although it emerged as a cost-effective, convenient radiation therapy method because

of technology advances of imaging guidance [18], its escalation of dose per fraction

still poses potential harm, which weighed against its benefits.

One well known radio-protective effect is brought by hypothermia through

decades of study on the interaction between temperature and ionizing radiation. It

was found that hibernating squirrel survived more to radiation when under 5 oC

than under normal temperature [291]. Later experiments on ilium crypt cells also

proved it [292]. Control tests on mice were done and again showed the reduction

of tissue toxicity of rectum [293]. There are a lot hypothesis on the mechanism.

Dang et al suggested that low temperatures reduce the cellular proliferation rate

and micro-nucleus frequency [294]. It was also found out that hypothermia could

suppress pro-inflammatory cytokines tumor necrosis factor-α and interleukin-6 [295]

and protect cells from stimulated apoptosis through p53-dependent and -independent

mechanisms [296]. Baird et al observed that DNA damage repair was postponed

under hypothermia and it protected cells from being killed [297]. Lisowska et al

proposed that low temperature could reduce the transformation from DNA damage

to chromosome aberration [298]. From above memorization, the central idea is about

the DNA damages. Considering that normal temperature would be restored after

the radiation, we would naturally think of that it is the process during the radiation
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affected by low temperature that causes different patterns of DNA damage and later

different responses to DNA damages.

The low temperature has two effects on radiation outcomes. Physically, low

temperature alters the diffusion rates and chemical reaction rates, which change the

yields of radicals and DNA damages. On the other side, biologically, it could also

affect the activities of some enzymes, which makes the cell respond differently. In

this work, we want to test if the change on physical properties would result in large

enough change of DNA damages that could explain the radio-protective effect by

hypothermia. We did not choose the biological factor for two reasons. First, low

temperature was only applied during radiation for several minutes [294]. The time is

so short that we might regard that most DNA damage repair did not even start. Yet,

radio-protective effect could still be observed. Second, many biological explanations

were based on DNA damages as well, for example adding radical scavenger eliminated

the radio-protective effect for reducing DNA damages [299].

Hence, the purpose of this work is two folds. One is to simulate the variation

of DNA damages versus temperature based on some assumptions about how those

coefficients vary with temperature. Another is to explain the experimental results

[293] based on our simulation results.

6.2.2 Methods

6.2.2.1 Diffusion, chemical reaction and temperature

The relationship between chemical reaction rate and temperature could be de-

scribed by Arrhenius equation [300], that is,

k(T ) = k0e
− Ea
RT . (6.2)
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Here, k(T ) means reaction rates at certain absolute temperature T and Ea means the

activation energy for a reaction to happen in unit of J/mol. R = 8.31J/(mol •K) is

the gas constant. k0 is called pre-exponential factor. For our interest, we would only

concern two experimental temperatures [293], TL = 15 oC (288 K) and TH = 37 oC

(310 K). Hence, given we know k(TH), we need to multiply coefficients c(TL) to

k(TH) to obtain k(TL). c(TL) was calculated as

c(TL) = e
− Ea
RTL /e

− Ea
RTH (6.3)

All values of Ea were retrieved from reference [301]. Those reactions that cannot be

found in this reference, we used averaged value 11 kJ/mol.

As for diffusion, its relationship to temperature should be similar, i.e., following

exponential form [302]. Considering in solid case, one atom needs to gain enough

energy to leave the original place and hop into nearby places. liquid may not be

well ordered like solid crystals, but the diffusion mechanism could be retained [303].

Hence, D(T ) = D0e
( − Ed

a/RT ). As summarized in reference [301], most activation

energy Ed
a for diffusion ranges 15 kJ/mol to 19 kJ/mol. In this simulation, we just

set Ed
a = 17.5kJ/mol for all radicals. This gave the reduction coefficient for diffusion

constant 0.6, meaning the diffusion constant at TL was 0.6 times the value at TH .

6.2.2.2 Simulation setup

After clarifying the values for diffusion and chemical reaction rate at different

temperature, we just need to score the number of DNA damage versus the simulated

dose in a cell for different temperature. The simulation was decribed in the following

steps.

1. We irradiated photons from 225 kVp into a thin water layer with thickness 1

mm to obtain the energy spectrum of secondary electrons.
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Table 6.1. Activation energy and reduction coefficients for different reactions in gMi-
croMC

Index Reaction channels Ea (kJ/mol) c(TL)
1 eh +H . → OH− +H2 11 0.7217
2 OH . +H . → H2O 8 0.7888
3 H . +H . → H2 8 0.7888
4 H2 +OH . → H . 11 0.7217
5 eh +H2O2 → OH . +OH− 15 0.6410
6 eh +H+ → H . 11 0.7217
7 H+ +OH− → H2O 11 0.7217
8 eh +OH . → OH− 8 0.7888
9 OH . +OH . → H2O2 7.7 0.7959
10 eh + eh → 2OH− +H2 23 0.5056
11 H . +O2 → HO.

2 10.6 0.7303
12 eh +O2 → O.−

2 11 0.7217
13 H . +O.−

2 → HO−2 11 0.7217
14 OH . +HO.

2 → O2 11 0.7217
15 OH . +O.−

2 → O2 +OH− 8 0.7888
16 OH . +HO−2 → HO.

2 +OH− 11 0.7217
17 H . +HO.

2 → H2O2 11 0.7217
18 eh +HO.

2 → HO−2 11 0.7217
19 eh +O.−

2 → 2OH− +H2O2 11 0.7217
20 H+ +O.−

2 → HO.
2 11 0.7217

21 H+ +HO−2 → H2O2 11 0.7217

2. We randomly sampled electrons in a sphere with radius 70 µm. Its momentum

direction was also sampled randomly. The energy of electrons was sampled from

the energy spectrum obtained at step 1.

3. Transport electrons one by one. If there was any water radiolysis events inside

the center sphere with 5.5 µm (cell nucleus radius of our DNA model), continue;

otherwise, go to step 2.

4. Simulate the subsequent physicochemical and chemical stage and record the

damage site by hydroxyl.
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Figure 6.5. Fitted NTCP as a function of dose for different temperatures [293].

5. determine DNA damage with chemical attack in step 4 and direct damage in

step 3.

6. Repeat step 2 to 5 until dose inside the cell nucleus reached 40 Gy.

7. Do steps 2 to 6 for a different temperature. The things that have to be altered

are the values of diffusion rates and chemical reaction rates.

6.2.2.3 Analysis setup

From the paper [293], we could have normal tissue complexity probability

(NTCP) as a function of dose D for different temperature T , denoting as fT (D).

These lines are shown in Figure 6.5. From the simulation, we obtained curves be-
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Figure 6.6. Simulated DSB versus dose at different temperature.

tween number of DSB NDSB and dose D at different temperature T , denoting as

NT (D). Then, we could find NTCP as a function of number of DNA damages, using

the inverse function of NT (D) and substituting it into fT (D).

6.2.3 Results and discussions

Figure 6.6 showed the computed number of DSBs versus dose. We could clearly

see that fewer DNA damages were recorded at lower temperature.

Figure 6.7 showed the NTCP as a function of number of DNA damages. By do-

ing the variable transformation, all the experimental points were collapsed together,

which might indicate a uniform relationship between NTCP and DNA damage. The
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Figure 6.7. Probit analysis using all observations. Shaded area means 95% confidence
level.

effect of temperature was automatically considered through the low yield of DNA

damage at lower temperature. We further did a probit analysis with number of DSBs

as independent variable, the fitted line was shown in Figure 6.7 as well. Shaded area

means 95% confidence level. All experimental points were well described by such fit-

ting line. The analysis suggested that the raddioprotective effect by hypothermia was

majorly the effect of temperature on radical diffusion and chemical reactions. With

smaller diffusion rates, diffusion length of radicals especially hydroxyl became smaller.

Yet, their average distance at the beginning of chemical stage was not changed by

temperature. They were still dense in the beginning. Hence, the slowed diffusion
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gave radicals more time to react locally, resulting in smaller probability to touch

DNA components and fewer DNA damages.

6.3 Conclusion

In this chapter, we discussed two problems that need to run tens of thousands of

primary particle tracks. Such problems bring about an issue of great computational

burden. With improved efficiency in chemical stage and searching DNA damages

through the DNA chain, these issues were investigated by gMicroMC.

We pointed out that if the sampled region is not large enough for proton cases,

the simulated dose was not consistent with the target one. When cells were irradiated

by a beam, cells experienced a large variation of dose and hence the DNA damages.

SF, an average parameter to determine how many cells are able to proliferate, must

be considered as a function of DNA damages that span a wide range, rather than the

single value of experimental dose. We further developed a network to describe this

mapping function, which mapped the simulation results to experimental SF values

quite well. Under this scheme, the x-ray data could be included into the proton’s.

We also studied the radio-protective effect by hypothermia during radiotherapy.

Based on the fact that diffusion rates of radicals and reaction rates among radicals

are affected by temperature, we simulated the DNA damage with different system

temperature. We found out that lower temperature did induced fewer DNA damages.

By mapping the data, the probability of complexity can be represented as a single

function of DNA damages for both low and high temperature. Our simulation results

consistently support the idea that change of DNA damages by different temperature

may be the primary reason for radio-protective effect for hypothermia.
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CHAPTER 7

OXYGEN EFFECT AND FLASH

7.1 oxygen effect on radical yields

7.1.1 Introduction of oxygen effect

It is well known that oxygen plays a critical role in DNA damages produced

by ionizing radiation. First, dissolved oxygen promotes the production of deleterious

reactive oxygen species (ROS), such as superoxide and hydroperoxyl radicals, which

are very toxic to cells. Second, oxygen can fix the DNA damages rapidly after their

occurrence, forming stable organic peroxides and making it difficult to repair them

([304]). It is an important research topic to accurately model the presence of oxygen

in the water radiolysis process and the impact on radio-biological endpoints, such as

DNA damages.

Monte Carlo (MC) simulation is commonly accepted as one of the most accu-

rate methods to model radiation transport and interactions with matters because of

the faithful modeling based on physics principles. Yet, in the context of studying

the oxygen effects, simplifications in modeling have to be made in most of the MC

packages due to the heavy computational burden, primarily in the modeling of the

chemical stage of the water radiolysis process. In fact, MC simulations of the chemical

stages is challenging due to the spatial-temporal simulation that spans over multiple

order of magnitudes in time and the transport of a large number of radicals, which is

an interacting many-body problem caused by the mutual competitive chemical reac-

tions between the radiolytic molecules. Hence, to reduce the computational burden,

the oxygen is sometimes ignored [205, 241] or treated as a temporally constant and
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spatially uniform background [256, 305] that serves as a scavenger for the radiolytic

radicals. The method assuming a constant uniform background ignores the spatial

and temporal variations of chemical reactions, an important factor in certain scenar-

ios. For instance, when rapid consumption of oxygen due to reactions with radicals

occur, temporal variation of oxygen concentration may not be omitted. Meanwhile, as

the oxygen distribution is sparse compared to the very short reaction radii, reactions

with oxygen happens non-uniformly, making spatial variation a factor to consider.

Modeling the effect of oxygen is of particular importance in the context of ultra-

high dose rate radiotherapy termed as FLASH radiotherapy [306] that has lately at-

tracted a lot of attentions. FLASH radiotherapy holds the potential of better sparing

normal tissue, while maintaining the tumor control probability, than radiotherapy de-

livered at a conventional dose rate, as having been demonstrated using electron [307]

, photon [308, 309], and proton beams [310]. However, the mechanism of FLASH

radiotherapy remains unclear and oxygen depletion has been pointed out as one of

the factors contributing to the advantage of FLASH radiotherapy [311, 312]. In this

hypothesis, a hypoxia or anoxic environment created by radiolytic oxygen depletion

[313, 314] under the FLASH condition in normal tissue raises its radiation tolerance,

hence enlarging the window between normal tissue complication probability and tu-

mor control probability. To understand the effect of oxygen, several studies have

been performed [312, 315]. Spitz et al estimated the constant of oxygen consumption

rate (OCR) due to different factors. Pratx et al further investigated whether oxygen

depletion could occur during the chemistry stage of radiolysis under different dose

rates with a constant OCR independent of the initial oxygen concentration. Yet, as

oxygen concentration decreases, the probability for oxygen molecules reacting with

other molecules is expected to decrease, leading to a gradually reduced OCR. Hence,
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it is desired to perform a detailed mechanistic modeling study to investigate the time

evolution of chemical yields under the FLASH condition.

The purpose of this work is twofold. First, We will present the implementa-

tion in gMicroMC to process the chemical stage with the presence of oxygen. This

development is expected to greatly facilitate the research using MC simulations to

investigate the impacts of oxygen effects. The second purpose is to use the improved

gMicroMC package to study the hypothesis of oxygen depletion in the FLASH con-

dition, which could demonstrate the advantages of gMicroMC in terms of supporting

large scale microscopic MC simulations. Specifically, we will apply gMicroMC under

the FLASH condition to investigate the OCR under different dose rates and initial

oxygen concentrations. To our knowledge, this is the first time that the time evolu-

tion of radical yields under the FLASH condition are computed in a step-by-step MC

simulation program with oxygen species explicitly included in the modeling.

7.1.2 Materials and methods

7.1.2.1 Implementation of oxygen in gMicroMC

The development of physics and chemical stage have been illustrated in 4 and

5. The advantage of gMicroMC is the high computational efficiency realized via GPU

parallelization and GPU-friendly parallel simulation algorithms in all four stages,

which substantially improves the efficiency of this computationally challenging prob-

lem. The initial development of gMicroMC did not include oxygen in the simulation

process. To enable this feature, we considered oxygen-related reactions with param-

eters listed in previously published studies [186]. Because of the absence of O.−, O3,

O.−
3 , O(3P ) in the physicochemical stage, we only considered three radicals in addi-

tion to those already included in the original gMicroMC, namely hydroperoxyl radical
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Table 7.1. Radical species and diffusion coefficients D. The root-mean-square dis-
tance λ traveled for t = 1 µs was calculated as λ =

√
6Dt.

Species D (×109 nm2s−1) λ(nm) Reference
eh 4.9 171.5 [180]
OH . 2.8 129.6 [180]
H . 7.0 204.9 [180]
H+ 9.0 232.4 [180]
H2 4.8 169.7 [180]
OH− 5.0 173.2 [180]
H2O2 2.3 117.5 [180]
O2 2.4 120.0 [186]
HO.

2 2.3 117.5 [186]
O.−

2 1.75 102.5 [186]
HO−2 1.4 91.7 [186]

HO.
2, superoxide radical O.−

2 and hydroperoxide anion HO−2 . All the chemical species

are listed in Table 7.1.

As for the simulation, we first sampled the initial position of oxygen molecules.

Let us denote the oxygen concentration in percentage by Po2 (%), which means

the ratio of partial oxygen pressure in water to the atmosphere pressure Patm with

Patm = 760 mmHg. Equivalently, PO2 can be expressed in mmHg, i.e. the par-

tial oxygen pressure in water. PO2 (mmHg) = Po2 (%) ∗ Patm. Additionally, we

will also use PO2 in µM(PO2 (µM)) to denote the concentration of dissolved oxy-

gen molecules in the unit of µM . PO2 (µM) = PO2 (mmHg) ∗ Hc with Hc =

1.26 µM/mmHg being the coefficient of Henry’s Law for oxygen dissolving in water

[316]. In this section, PO2(%) will be always used to specify the oxygen concentration,

while PO2(%)(PO2 (mmHg) , PO2(µM) ) will be explicitly stated in some places. For

a region of interest (ROI) studied, we first extended the volume along both directions

of the x, y and z axes by ∆r, which is estimated as the root-mean-square diffusion

length of the oxygen under a given temporal duration t of the chemical stage. For
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example, we took ∆r = 120 nm when t = 1µs since the diffusion length was about

120 nm (Table 7.1). Once other t values were used, we would change ∆r accordingly.

The purpose of this extension is to ensure an equilibrium oxygen diffusion background

within the ROI during the simulation, especially at the area close to the ROI bound-

aries. We denoted the volume of the extended region as V. The number of initial

oxygen molecules was decided as NO2 = PO2 (%)∗Patm ∗Hc ∗NA ∗V , which were then

uniformly sampled inside the region.

The existence of oxygen was assumed to not affect the physical stage and the

physicochemical stage. In fact, the concentration of water molecule is 55.6M but the

concentration of dissolved oxygen is 0.2mM for Po2 = 21%. Hence, the probability

for the incident initial particles to collide with dissolved oxygen in the physical stage

is low and can be safely ignored. However, the dissolved oxygen molecules could

play a crucial role in determining the temporal production and spatial distribution

of radicals, as the chemical stage can last for microseconds and radicals can spread

out through diffusion. The oxygen is then expected to have a high probability to

participate in the reactions with radicals. The chemical reactions included in this

study are summarized in Table 7.2. During the transport simulation of the chemical

stage, we followed the same algorithm as described in our previous publication [201].

7.1.2.2 Studies to validate simulations of the chemical stage with oxygen included

During the development of gMicroMC, we noticed that another MC simulation

package TRAX-Chem (Boscolo et al., 2020) had updated its functions to support

the oxygen in chemical stage simulation by treating oxygen as a uniform constant

background. The results have been compared with other studies for 5 MeV proton
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Table 7.2. Chemical reactions and reaction rate constants kobs. HO molecules were
ignored in the chemical equations assuming they were everywhere.

Index Reaction channels kobs(1010 L •mol−1 • s−1) Reference
1 eh + eh → 2OH− +H2 0.5 [180]
2 eh +OH . → OH− 2.95 [180]
3 eh +H . → OH− +H2 2.65 [180]
4 eh +H+ → H . 2.11 [180]
5 eh +H2O2 → OH . +OH− 1.41 [180]
6 OH . +OH . → H2O2 0.44 [180]
7 OH . +H . → H2O 1.44 [180]
8 H . +H . → H2 1.20 [180]
9 H+ +OH− → H2O 14.3 [180]
10 H2 +OH . → H . 0.00417 [180]
11 eh +O2 → O.−

2 1.74 [186]
12 eh +HO.

2 → HO−2 1.29 [186]
13 eh +O.−

2 → 2OH− +H2O2 1.29 [186]
14 OH . + HO.

2 → O2 0.79 [186]
15 OH . +O.−

2 → O2 +OH− 1.07 [186]
16 OH . +HO−2 → HO.

2 +OH− 0.832 [186]
17 H . +O2 → HO.

2 2.1 [186]
18 H . +HO.

2 → H2O2 1.0 [186]
19 H . +O.−

2 → HO−2 1.0 [186]
20 H+ +O.−

2 → HO.
2 4.78 [186]

21 H+ +HO−2 → H2O2 5.0 [186]

under oxygen partial pressure of PO2 = 21% (160 mmHg, 201.1µM). This study

provided a CPU-based simulation code to benchmark our development.

We used GEANT4-DNA [182] to produce secondary electrons generated by an

incident 5 MeV bombarding into a 10 µm thick water slab. The reason to choose a thin

slab as the simulation volume of interest was to ensure that the proton does not lose

energy significantly within the volume of interest, and hence the results were relevant

to the proton with 5 MeV energy. As such, we simulated the proton transport using

GEANT4-DNA (GEANT4 version 10.5.1) and recorded the initial positions, energy

values, and directions of secondary electrons, as well as locations and types of ionized
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and excited water molecules caused by the proton inside the water slab. After that,

electron transport simulation in the physical stage was performed using gMicroMC,

generating ionized and excited water molecules. These water molecules, together with

those directly generated from protons, were fed into the physicochemical stage sim-

ulation of gMicroMC, generating the initial distribution of chemical radicals. These

radicals were subsequently simulated to go through the chemical stage. During the

simulation, we recorded the yield, or G value, of different radicals and compared the

time evolution of yield of hydrated electron with published data from previous works

[256, 305] . The G value calculates the ratio between the number of molecules of the

chemical species and the deposited energy to generate such a number of molecules in

the unit of number of molecules per 100 eV. In addition, we also performed simula-

tions for 10 MeV proton beams. The simulation setup was the same as we did for

the 5 MeV one. Radicals in the first 10 µm water slab were tracked and the yields

of eh, H
., O.

2 and HO.
2 at 1 µs under oxygen concentration levels of PO2 = 0, 0.1%,

0.5%, 1%, 3%, 5% and 7% were recorded and compared to the results reported by

Boscolo et al. [256].

7.1.2.3 Simulation setup under a conventional dose rate

Conventional dose rate usually refers to an average dose rate less than 0.03

Gy/s (Favaudon et al., 2014; Vozenin et al., 2019b). For a primary electron with a

kinetic energy of 4.5 keV and a mass stopping power of S
ρ

= 4.0× 109 MeV • µm2/g,

this low dose rate Ḋ would be equivalent to an electron fluence φ = Ḋ/(S
ρ
) ≈

0.05 electron µm−2s−1. Considering a cross section with a radius of 2 µm, approxi-

mately twice the lateral spread-out of the primary electron, this fluence corresponds

to a time interval ∆t = 1.59 s between two adjacent primary electrons. Noticing

that the typical consideration of the physical and chemical duration triggered by an
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incident particle in the DNA damage computation is 10−6 second, it is then unlikely

that secondary products from different primary particles would overlap spatially or

temporally. Hence, to study the impacts of oxygen on radical yields, it is sufficient

to consider the single electron irradiation. We initialized an electron (Ek = 4.5 keV )

at the origin of the global coordinate with its momentum direction randomly sam-

pled in the 4π angular range. We then performed the first two stage simulation in

gMicroMC and recorded the initial radical distribution. Considering the stochastic

nature of MC simulations, we repeated the simulation for N times and determined the

ROI as the smallest circle containing all radicals from all runs. Assuming the chem-

ical stage last for 1 µs, we sampled the initial oxygen distribution in an extended

region . We then performed the chemical stage simulation for each radical list with

the presence of oxygen, in which, the radicals and molecules were tracked until they

reacted or the chemical stage ended. Oxygen concentrations of PO2 = 0, 3%, 9% and

21% were considered to cover different scenarios of biological interest. PO2 = 21%

(160 mmHg, 201.1 µM) corresponds to the normoxia situation under the standard

atmosphere. PO2 = 3% (23 mmHg, 28.7 µM) and PO2 = 9% (69 mmHg, 86.1 µM)

cover the physoxia condition [317, 318]. We empirically chose N=1000 times for each

configuration as a tradeoff between the simulation accuracy and simulation time cost,

and reported the average G values of different chemical species as a function of time

after irradiation. With 1000 simulations, the maximum uncertainty of G values was

reduced to 0.5%, while the total simulation time was tolerable, ranging from less than

one hour to a few days.

7.1.2.4 Simulation setup under the FLASH condition

Under FLASH condition, there is a high chance that chemical species from dif-

ferent initial particle tracks can react with each other due to a much shorter time
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Figure 7.1. (a) Time structure of radiation in FLASH condition. T : total irradiation
time. ti: time interval between the beginning of two successive pulses. tp: temporal
width of a single pulse. (b) Cross section of the simulation geometry. Inner circle
with a radius of r is the ROI. The circle with a radius of R is the sampling region for
source particles. The square with side d is the sampling region for oxygen molecules..

interval between two adjacent source particles. Still take the 4.5 keV primary elec-

tron as an example. An instantaneous dose rate of 106 Gy/s will be equivalent to

∆t = 5.3 ns for a cross section with a radius of 2 µm, which is much shorter than

the chemical duration of 1 µs. Hence, the beam time structure is one of the most

important issues to be considered in the simulation. As shown in Figure 1, there can

be multiple temporal-scales to be considered. The total irradiation time is labeled

as T, which was used to calculate the nominal average dose rate Ḋa = Dtotal/T ,

whereDtotal is the total delivered dose. The criteria of 40 Gy/s for Ḋa was reported

to define the FLASH condition in early studies [307], which was in contrast with the

dose rate for conventional photon beam of only 0.03 Gy/s. The radiation is usu-

ally delivered in a pulse mode, for instance, using a medical linear accelerator. Let

ti represent the time interval between two adjacent pulses and tp the duration of a

pulse. The instantaneous dose rate can be computed as Ḋi = Dtotal
T
∗ ti
tp

. For a typical

linear accelerator, ti is of the order of milliseconds with tp of microseconds, which

makes Ḋi about three orders of magnitudes larger than Ḋa. Specific values of Ḋi for

observing a reproducible FLASH effect ranges from 104 Gy/s to 109 Gy/s (Bourhis
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et al., 2019). In this study, we will focus on Ḋi rather than Ḋa to test the oxygen

depletion hypothesis, because Ḋi characterizes the reaction intensity between radicals

and oxygen molecules. From the time structure shown above, oxygen regeneration

can be ignored within a pulse, because the pulse only lasts for microseconds and one

microsecond corresponds a diffusion distance of the oxygen molecule of only 120 nm

(Table 7.1), 1 percent of the cell nucleus dimension (11 µm).

In this study, we focused on the simulation of electron particles with kinetic

energy Ek=4.5 keV from a pulse width tp=1 µs. The chemical stage is determined as

tc=1 µs post irradiation, to ensure enough time for radicals produced at the end of

the pulse to propagate. The simulation geometry is shown in Figure 1(b). We set the

ROI as a sphere with radius r = 1.5µm. The initial electrons were sampled inside a

sphere V(e) with radius R = r+ l(Ek) with l(Ek) being the maximum length that an

electron with kinetic energy Ek can travel. Here, l(Ek) is taken as 1 µm. The oxygen

molecules were initialized in a cubic volume with each side d = 2(r + ∆r). Here,

∆r = 300nm, is computed with the method given in Table 7.1, using the reference

time duration t=tp + tc=2µs. As mentioned in above, the purpose of this extension

is to ensure an equilibrium oxygen diffusion background within the ROI during the

simulation, especially at the ROI boundaries.

With the beam temporal structure considered, we initialized an electron with

its spatial position randomly sampled within V(e), initial time randomly within [0, tp],

and traveling direction uniformly in the 4π spherical anglar range. We then simu-

lated its physical and physicochemical stages, and recorded all the produced chemical

species. We repeated this process until the deposited energy Ed inside the ROI reached

the predefined value of Ḋi ∗ tp ∗ 4πr3ρ/3, where ρ = 1 g/cm3 is the density of the
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medium. In this way, we obtained the initial temporal and spatial distributions of all

radicals from these primary electrons.

Next, we performed the chemical stage simulation in a step-by-step fashion.

Every time when the simulation process was advanced by a time interval, we checked

the pre-generated group of radicals, and included those initiated inside the time step

into the simulation. This approach allowed us to model the time evolution of the

chemical stage with radicals triggered by source electrons gradually included into the

simulation. Through the entire simulation, all radicals and molecules were tracked

until they reacted or the chemical stage ended.

We considered cases with different dose rates Ḋi = 106, 107, 108 Gy/s and

oxygen concentrations PO2 = 0.01%, 0.1%, 0.5%, 1%, 3%, 9%, 21%. The dose rates

were chosen to be consistent with the one pulse mode implemented in the current

FLASH radiotherapy experiments, in which the dose rate started above 106 Gy/s. We

included 0.01% and 1% in this section to cover the hypoxia condition [317, 318]. For

each case, we tracked the G-values evolution for all radical types and calculated the

OCR defined as the ratio between the reduction of oxygen concentration and the dose

of the pulse for the specific oxygen concentration PO2 , OCR(PO2) = ∆N(O2)/NA ∗

ρ/Ed. Here, ∆N(O2) is the difference in the number of oxygen molecules between

the beginning of the pulse and 1 µs post irradiation. NA is the Avogadro constant.

The unit for OCR is µM/Gy. The G-values and OCRS were averaged on 20 times of

simulation to account for the uncertainty.
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7.1.2.5 Evaluation of oxygen concentration evolution and oxygen enhancement ratio

The OCR computed above depends on the initial oxygen concentration level.

Under the irradiation, as the oxygen concentration is continuously consumed, the

variation of the oxygen concentration is governed as

dPO2

dt
= −OCR(PO2) ∗ Ḋi. (7.1)

To quantitatively describe this process, we first fit the OCR computed above un-

der different oxygen concentrations as a continuous function of oxygen concentration

in the hyperbolic form [319, 320]

OCR(PO2) = OCRmax ∗ PO2/(PO2 + α) (7.2)

where OCRmax and α are fitting parameters.

During an experiment, a number of pulses of radiation are delivered. The

oxygen concentrations and cumulative delivered dose between two successive pulses

can be expressed as

PO2(j + 1) = PO2(j)−OCR(PO2(j)) ∗ Ḋi ∗ tp (7.3)

D(j + 1) = D(j) + Ḋi ∗ tp, (7.4)

where j is the index of pulses. This expression allowed us to iteratively evaluate time

evolution of oxygen concentration. Note that this expression only considered oxy-

gen consumption by radiation and ignored oxygen regeneration caused by diffusion.

In contrast, if the OCR is assumed to be a constant, OCRC , the residual oxygen

concentration would be PO2(0)−OCRC ∗D(j).

We further estimated changes in biological effects due to changes in oxygen

concentration using oxygen enhancement ratio (OER), which is the ratio of radiation
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Figure 7.2. Time-dependent yield of eh radical produced by a 5 MeV proton for
PO2 = 21% (160 mmHg, 201.1 µM).

dose without oxygen to that with oxygen to achieve the same biological effect. An

empirical formula was used [321],

OER(PO2) = 1 + ΦO/ΦD ∗ (1− e−φPO2 ) (7.5)

where ΦO/ΦD = 1.63 and φ = 0.26mmHg−1.

7.1.3 Results and discussions

7.1.3.1 Validation of simulations of the chemical stage with oxygen included

Figure 7.2 shows the comparison of the calculated chemical yield of hydrated

electron eh for a 5 MeV proton as a function of time after irradiation computed by our
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Figure 7.3. (a) Yields of different radicals and (b) oxygen consumption rate (OCR)
at 1 µs as a function of oxygen concentration levels for the 10 MeV proton beam.
Extracted data were from [256].

study and two other previous studies [256, 305]. The oxygen concentration was 21%

(160 mmHg, 201.1 µM). t = 0 was the moment for the proton entering into the water.

The simulation results of gMicroMC generally agreed well with results in the other

two works. The differences, mainly the quicker consumption of hydrated electrons by

gMicroMC before 10 ns, may be attributed to different values of diffusion rates and

reaction rates from different studies and different simulation methods. For example,

Brownian bridge method [184] was employed in gMicroMC to take the ‘crossing’ event

into consideration, whereas the other two studies did not considered this effect.

Figure 7.3 showed the comparison of the yields of different radicals and the

oxygen consumption rate at 1 µs for a 10 MeV proton beam between our package and

the work of [256]. In general, the yields ofO−2 andHO.
2, the major product of reactions

with oxygen, were consistent between two packages. The oxygen consumption rates

matched with each other as well. Yet, there are also some notable differences. For

example, as shown in Figure 3 (a), difference exists for the absolute residual amounts

of eh and H ., the main radicals reacting with oxygen, and the absolute yields of O−2

207



Figure 7.4. Yields of different chemical species as a function of diffusion time under
different oxygen concentrations of (a) 0 (b) 3% (c) 9% and (d) 21%..

and HO.
2 at different oxygen levels. Since we are using different packages to generate

the initial distribution of the radicals from water radiolysis, the observed difference

may come from different parameters in different packages. When comparing the OCRs

at the low oxygen concentration level from the two simulations, our simulated OCR

goes down closer to 0 when the oxygen level drops to 0, which is more consistent with

the real situation.

7.1.3.2 Effect of oxygen under a conventional dose rate

Figure 7.4 shows the time evolution of the yields of major chemical species

under different oxygen concentrations. There are a few important observations. First,
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Table 7.3. G values (molecules/100 eV) of different molecules
at 1 µs under different oxygen concentrations

PO2 eh OH . H . H2 O2 HO.
2 O.−

2

0% 0.94 2.02 0.87 0.73 0 0
3% 0.46 2.08 0.34 0.77 0.55 0.50
9% 0.12 2.12 0.07 0.79 0.87 0.89
21% 0.00 2.14 0.00 0.82 1.02 1.06

the impacts of oxygen on various chemical species were found to be different. The

reductions of hydrated electron eh and hydrogen radical H . became more significant

with an increasing oxygen concentration level. Yet, yields of hydroxyl HO. and

hydroperoxide H2O2 only increased slightly. This can be understood as following. As

indicated in Table 7.2, oxygen predominantly reacts with eh and H . (lines 11 and

17), which accounts for the rapid reduction of eh and H . with the increase of oxygen

concentration. Meanwhile, the active reactions of oxygen with eh and H . radicals in

turn reduce the reaction probabilities of OH . with eh and H . radicals. This leads to a

reduced consumption of OH ., and hence an increased production of H2O2. Numerical

results are shown in Table 7.3. The production of OH . and H2O2 increased by 6% and

12%, respectively, when PO2 increased from 0 to 21%. Second, massive amounts

of HO.
2 and O.−

2 were produced, but the productions saturated after a certain time,

which was found to be dependent on the initial oxygen concentration. The saturation

time for PO2=9% occurred at about 1 µs, while it was around 0.4 µs for PO2=21%.

This trend was also observed by Boscolo et al [256], while a slight difference existed

regarding the specific values for the saturation time between the two works.

Third, it required 10 ns to observe a noticeable oxygen effect. From a prob-

abilistic perspective, the species eh and H . must diffuse a long enough distance to

meet oxygen molecules and react with them. Take the case with PO2=21% (160
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mmHg,201.1 µM) as an example, where the rise of the yield of O.
2 and HO.

2 can

be clearly seen at 10 ns. The average distance dO2 between oxygen molecules can be

estimated as dO2
3
√

1/(PO2 ∗NA) = 20.2nm. The time it takes for eh to meet with an

oxygen molecule can be estimated by
√

6 ∗ (D(O2) +D(eh)) ∗∆t = dO2 , which gave

∆t = 9.3 ns. This fact also highlighted the need to perform simulations for a relatively

long time to investigate effects of oxygen via MC simulations. Previous simulations

sometimes stop the chemical stage at 1 ns or 2.5 ns to reduce the computational

burden, which is likely not sufficient to fully capture the effect of oxygen.

It can be observed that the time evolution of the yield curves contained some

discontinuities, for instance, at 10 ns. This was caused by the change of time step size

in gMicroMC. A larger time step size generally leads to a higher reaction probability

and hence a steeper change of G value shown in the logarithmic plot. The same

reason for the discontinuities in Figure 7.5.

7.1.3.3 Effect of oxygen under the FLASH condition

Figure 7.5 shows the evolution of the chemical yields for different instantaneous

dose rates Ḋi under different PO2 with the initial electron energy of Ek=4.5 keV . One

notable feature in these curves is the existence of spikes. These spikes were caused

by the inclusion of new OH . and eh radicals generated by new primary electrons at

the corresponding moments. Specifically, the large number of additional OH . and eh

radicals increased G values, causing spikes in these two species. In contrast, since

the numbers of other radicals were unchanged, and the deposit energy was increased,

the G values of radicals other than OH . and eh were reduced at those moments.

Comparing the three columns of Figure 7.5, it was found that the dose rate has

impacts on radical yields due to spatial density of radicals. We then summarized the

mean G values from the 20 runs for critical radicals in Table 7.4. From both Figure
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Figure 7.5. Comparison of the chemical yields under different dose rates of FLASH
radiation with Ḋii= (a) 106 Gy/s (b) 107 Gy/s and (c) 108 Gy/s. Top and bottom
rows represent PO2=0.1% (hypoxia) and 3% (physoxia). Note, the result was taken
from one simulation to show the evolution of radicals specifically and the spikes may
be different for different simulation runs..

Table 7.4. G values (molecules/100 eV) of different molecules at 1 µs post irradiation
under different oxygen concentrations

Dose rate (Gy/s) PO2 eh OH . H . H2O2 HO.
2 O.−

2

106

0.1% 0.83 1.92 0.79 0.75 0.04 0.03
3% 0.28 1.94 0.21 0.81 0.70 0.62
21% 0 2.04 0 0.82 1.05 1.03

107

0.1% 0.82 2.03 0.78 0.72 0.03 0.03
3% 0.32 2.08 0.26 0.77 0.67 0.58
21% 0 2.13 0.01 0.82 1.11 1.01

108

0.1% 0.20 1.16 0.60 0.78 0.02 0.01
3% 0.09 1.23 0.27 0.90 0.52 0.17
21% 0 1.31 0.02 1.00 1.24 0.40
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Figure 7.6. (a) Average OCRs for different instantaneous dose rates Ḋii from our
simulation study. (b) The average OCRs for different dose rate with PO2=21%. Error
bars represent the standard deviation from 20 simulation runs. (c) The simulated
OCRs and the fitted OCR curve under different initial oxygen concentration levels
with Ḋii=107 Gy/s. .

7.5 and Table 4, the results indicated that the probability of mutual reactions among

radicals generated by initial electrons increased along with the increased dose rate,

as the spatial density of radicals increased, and hence they were more likely to react.

This can be seen from two aspects. First, both yields of eh and O.−
2 decreased for

Ḋi=108 Gy/s compared to that for Ḋi=107 Gy/s. As O.−
2 can only be generated by

the reactions between oxygen and eh, simultaneous reduction of eh and O.−
2 implied

that ehwas largely consumed even without the participation of oxygen. Second, the

yield of OH . reduced for Ḋi=108 Gy/s, compared to that for Ḋi=107 Gy/s. But as

discussed in above, the inclusion of oxygen dose not lead to the reduction of OH ..

Hence, the reduction of OH . suggested increased reactions between OH . and other

radicals.

The dependence of OCR on initial PO2 levels for different Ḋi are plotted in

Figure 7.6(a) with Ek=4.5 keV . The OCR quickly dropped as the initial oxygen con-

centration decreased because of the reduction in reaction probability between oxygen

and radicals. Numerically, for Ḋi=107 Gy/s, the OCR dropped from 0.23 µM/Gy

for an oxygen concentration level of 21% to 0.0007 µM/Gy, when the concentration
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was decreased to 0.01%. In terms of the dependence on dose rate, for PO2=21%,

it remained unchanged at 0.22-0.23 µM/Gy for Ḋi=106 107 Gy/s. When the dose

rate was increased to 108 Gy/s, OCR dropped rapidly to 0.19 µM/Gy. We knew

from Figure 5 that radicals must travel a long enough distance to react with oxygen

molecules from a probabilistic view. Mutual reactions between radicals may happen

before they collide with oxygen molecules, but the overlap between different tracks

was very unlikely for small Ḋi. Only when Ḋi exceeds a certain threshold, it will show

the consequence of reduced OCR. To investigate this threshold, we have performed

two new simulations with Ḋi=2×107 Gy/s and Ḋi=5×107 Gy/s. We plotted the

variation of OCR versus dose rate with PO2=21% in Figure 7.6(b). We found that for

all simulated dose rates larger than 107 Gy/s, the OCR drops quickly. We hence esti-

mate that the threshold dose rate is around Ḋi=107 Gy/s, under the current setting

with pulse width of 1 µs.

From Figure 7.6(a), we used Equation (7.2) to fit OCR(PO2). As an illustration,

we showed the results for Ḋi=107 Gy/s in Figure 7.6(c). The fitting parameters

OCRmax and α were 0.270 µM/Gy and 0.030, respectively.

With the fitted OCR curve, we computed the time evolutions of oxygen con-

centration using Equation (7.3) for the irradiations under a dose rate of Ḋi=107 Gy/s

and an initial oxygen concentration of PO2=21% and 0.1%, respectively. The results

are plotted in Figure 7.7(a). If 0.001% was taken as the criteria of oxygen depletion, it

would require 1770 Gy and 500 Gy to reduce oxygen to this level for initial PO2=21%

and 0.1%, respectively. On the other hand, after Dtotal=30 Gy, a typical dose used

in FLASH experiments, the residual oxygen concentrations for different initial PO2

were computed and plotted in Figure 7.7(b). Notably, the final oxygen concentration

was always above zero. As a comparison, we plotted the residual PO2 under the as-
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sumption of a constant OCRC=0.42 mmHg/Gy (0.53 µM/Gy) [315]. In this case,

the oxygen would be depleted, if the initial PO2 was lower than 1.6%.

In the low dose rate conventional radiotherapy, oxygen regeneration should be

considered, and the cells can be viewed as exposing to a constant oxygen concentra-

tion surrounding. Consequently, we used the initial PO2 value to compute the OER

for conventional radiotherapy. Its behavior with different initial PO2 was plotted in

Figure 7.7(c) by the red solid line. As for the FLASH radiation, assuming the oxygen

regeneration is ignored, we then computed its OER with the oxygen level at the end

of the radiation. Its behavior with different initial PO2 and a total dose of 30 Gy is

plotted in Figure 7.7(c) by the dash lines. OER dropped from 1.3 to 1.2 for the initial

hypoxia oxygen concentration of PO2=0.1%, from 2.63 to 2.62 for physoxia condition

of PO2=3%, and stayed almost unchanged for normoxia condition of PO2=21%. In

contrast, with a constant consumption rate of OCRC=0.42 mmHg/Gy [315], the

changes in OER were from 1.3 to 1 for PO2=0.1%, and from 2.63 to 2.50 for PO2=3%.

The reduction in OER for FLASH radiotherapy compared to conventional ra-

diotherapy provides the possibility of dose escalation, with potentially improved dose

tolerance of normal tissues (Vozenin et al., 2019a). The ratio between OERs of

the conventional radiotherapy and that of FLASH radiotherapy is plotted in Figure

7.7(d). With a constant OCR, an OER ratio as large as 2.61 at the initial oxygen

level of 1.6% can be obtained, which corresponds to the sharp fall-off of OER for

FLAH-RT with constant OCR in Figure 7.7(c). In contrast, the maximum ratio

was only about 1.08, once the varied OCR obtained from our simulation was used

for the computation of the OER. We comment that the calculation overestimated

the oxygen concentration for conventional radiotherapy and hence its OER, because

oxygen consumption occurs, as long as there exists radiation radicals. Meanwhile,

it underestimated the oxygen concentration for FLASH radiotherapy and its OER,
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because we used the minimum value of oxygen concentration after the radiation and

ignored oxygen regeneration. Therefore, we overestimated the ratio between OER of

conventional radiotherapy and that of FLASH radiotherapy.

7.1.3.4 Computational efficiency

Since one of the motivations of this study was to demonstrate the practical

value of gMicroMC to handle computationally challenging MC simulation problems

in the presence of oxygen, we report the computational time required to perform

the study. Due to the lack of the step-by-step simulation support of oxygen effect

in the chemical stage in other CPU-based MC packages, we effectively evaluated

the efficiency of our package by comparing to GEANT4-DNA under simulations of

approximately the same number of molecules in the region of interest for the chemical

stage. Although Geant4-DNA is distinct from gMicroMC that it cannot simulate

radical interactions from different tracks simultaneously, this comparison is still valid,

because the simulation time is mainly determined by the number of molecules. For

the simulation of 103 molecules (PO2=0%) with the chemical stage ending at 1 µs,

the speedup factor was 30 for gMicroMC running on one Nvidia Titan Xp GPU

(1.58 GHz) card as compared to GEANT4-DNA running on a single core of Intel

i7-6850K CPU (3.6 GHz). When the molecule number increased to 105 (PO2=3%),

the speedup factor increased to 1228 (Table 7.5). We did not perform the simulations

for the case of PO2=21% with Geant4-DNA, because the computation time can be 4 5

orders higher than that for the zero-oxygen case. In contract, gMicroMC can handle

the simulation in an affordable time. It took twenty hours to simulate seven million

molecules for the FLASH cases with the chemical stage ends at 2 µs. It needs to be

pointed out that both techniques can be further accelerated using, e.g. multi GPUs

for gMicroMC or a CPU cluster for GEANT4-DNA.
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Figure 7.7. (a) The time evolution of oxygen concentration PO2 and total dose for
Ḋi=107 Gy/s with two different initial oxygen levels. (b) The residual oxygen con-
centration for Ḋi=107 Gy/s after receiving a dose of 30 Gy. (c) The OERs as a
function of the initial oxygen concentration levels under conventional radiotherapy
(“Original”), and under FLASH radiotherapy of Ḋi=107 Gy/s with a constant OCR
(“Constant OCR”) and from our calculation (“Varied OCR”). (d) The ratio of OER
between conventional radiotherapy and FLASH radiotherapy as a function of different
initial oxygen levels, with constant and varied OCRs, respectively. .

Table 7.5. Time performance for gMicroMC and GEANT4-DNA running
same number of molecules to 1 µs

PO2 Number of molecules GEANT4-DNA gMicroMC
0% 103 61 s 2 s
3% 105 70000 s 57 s
21% 106 ∗ 227 s

∗ simulation not performed due to long computation time.
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7.1.4 Discussion

The current study only investigated the impact of oxygen on the chemical yields

of radicals. It is probable of more relevance to study the impact on DNA damages.

Actually, gMicroMC is able to achieve this goal with its DNA geometry model. How-

ever, as the DNA damages are generated only by the hydroxyl radicals in gMicoMC,

and the existence of oxygen was not found to significantly change the hydroxyl radical

yield (Table 7.3 and Figure 7.5), oxygen in the simulation would then unlikely change

the DNA damages. We have performed a simulation to compute DNA damages

under the conventional dose rate and compared the results with those at PO2=0%.

The damages were found to be slightly increased by 8% at PO2=3% and 10% at

PO2=21%. Moreover, the DNA damage calculation in current gMicroMC did not

consider other aspects of oxygen, such as the oxygen fixation hypothesis on the DNA

repair process triggered by the initial damages. To consider the biological conse-

quence of DNA damages, it would be necessary to include these into the simulation,

for instance, by considering the variation of DNA damage probability with regards

to oxygen concentration [229].

When we computed the G-values for different chemical species, we considered

only those secondary electrons initially produced inside the 10 um water slab. This

may cause a concern that the boundary-crossing electrons could alter the computa-

tional results. Yet, when we simulated the secondary electron distributions for the

first few tens of micrometers along its depth direction with Geant4, we found that

the kinetic energies of most secondary electrons were of a few hundred eVs, or equiv-

alently, their travel lengths were of a few hundred nanometers. Hence, only those

secondary electrons produced a few hundred nanometers away from the slab bound-

ary could have a non-zero boundary-crossing probability. Additionally, the produced

radicals all had diffusion lengths of a few hundred nanometers with a chemical stage
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duration of 1 µs (Table 7.1), which further implied that the boundary effect was quite

limited. To verify our estimation, we performed a new simulation by considering all

secondary electrons in a slab 2 µm thicker than the slab-of-interest and computed

the G values for radicals inside the slab-of-interest. Comparing the newly obtained G

values to that obtained in section 2.2, the mean absolute and maximum differences

between the two simulations were found of 2% and 3.8%, respectively, for all radi-

cals with G value higher than 0.1 per 100 eV, indicating that the boundary-crossing

electrons did have limited impact on the simulation results.

Pratx and Kapp [315] analyzed the oxygen depletion at different dose rates.

They solved differential equations for the diffusion of dissolved oxygen molecules from

a blood microvascular structure to the cells under different dose rates and estimated

the OER according to different remaining oxygen concentration after radiation. It was

concluded that the oxygen depletion can be achieved at a low oxygen concentration

level with a high dose rate. However, under a typical dose level of 30 Gy used in

FLASH experiments, we found the oxygen is unlikely to be depleted, although it may

occur at a very high dose level, e.g. 1000 Gy. In addition, due to the decreased OCR

with reduced oxygen concentration, our simulation results showed a relatively small

OER change. The different conclusions between Pratx et al. and ours were caused by

the different treatments of OCRs. A constant OCR (the ‘LROD’ term in their paper)

was assumed, whereas the OCR may not be a constant, as shown in our simulation

via mechanistic modeling of the chemical stage, because the probability for radicals to

meet and react with oxygen molecules decreases, as the oxygen distribution gradually

becomes sparser in the space. On the other hand, Labarbe et al. [322] considered

the oxygen effect in FLASH by solving a system of ordinary differential equations

(ODEs) representing the biological reactions at more than 1 µs post irradiation with

presence of oxygen. They reported that the oxygen reactions were suppressed under
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Figure 7.8. Angular distributions of secondary electrons from (a) 1 MeV photon (b)
1 MeV electron and (c) 4.5 MeV proton beams. θ and φ are polar and azimuth
angles in the spherical coordinate system. The incident beam direction is along z
axis..

FLASH dose rates. However, the reason differs. They attribute the decreased oxygen

reaction, and hence a reduced production of the radiobiological damaging radicals to

an increase of self-recombination of alkyl radical R. after typical chemical stage of

1 µs. In our simulation, the reduced OCR is due to an increased mutual reaction

between radicals in chemical stage. It may require more efforts to specify the overall

oxygen effects in the FLASH radiotherapy.

The computations were performed using electrons with Ek=4.5 keV . We have

also performed the simulation using electrons with Ek=0.3 keV , as the two energies

play important roles in water radiolysis, creating spurs, blobs, and short tracks for

DNA damages (Ward, 1988). Quantitative results were slightly different. For in-

stance, for Ek=0.3 keV , the calculated OCR were 0.31, 0.32 and 0.23 µM/Gy for

dose rates of 106 , 107 and 108 Gy/s, respectively, at the oxygen concentration level

of 21%. However, the same behavior in terms of OCR reduction with reduced oxygen

concentration was observed. The oxygen may not be depleted under FLASH condi-

tion and the consequent change of OER due to oxygen consumption was also small.
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With a further analysis, the findings from our current simulation studies could be

extendable to the preclinical photon or electron FLASH radiotherapy. The reason is

of two-fold. First, in our simulation study, we initialized our primary electrons with

a uniform spatial distribution and an isotropic momentum direction, which is found

consistent with secondary electron distributions from MeV photon or electron beams

in a water phantom (Figure 7.8). We obtained Figure 9 via shooting three irradiation

beams (1 MeV photon, 1MeV electron and 4.5 MeV proton) along the z axis into

a water phantom and recording the secondary electron distributions in the spherical

coordinate system. From Figure 7.8, the maximum difference for the polar(cos(θ))

distribution of secondary electrons from the photon and electron beams are 3.1% and

4.5%, and that for the azimuthal (φ) distribution are 0.4% and 0.6%, respectively.

In contrast, there is a significant forward distribution for the simulation case with a

proton beam, which alters the uniform distribution assumption. Second, the electron

energies of 4.5 keV and 0.3 keV used in our study are also found representative for

the second electron spectrum from the MeV photon and electron beams. Specifically,

we found that the portions of secondary electrons with kinetic energies ≤ 4.5 keV are

64.9% and 99.9% for 1 MeV photon and 1 MeV electron beams, respectively. In the

former case, if we take those secondary electrons produced from the photon interac-

tions as primary, their further induced secondary electrons have kinetic energies well

below 4.5 keV , just as that for the 1 MeV electron case. In the overall water radiolysis

process triggered by the 1 MeV photon or electron beams, these low energy secondary

electrons (below 4.5 keV ) contribute more than 99% of the total radical productions.

Combining all these factors, we reasonably referred that the simulated energies of the

electrons well represent the situation for x-ray or electron beam FLASH radiotherapy.

As shown in our previous study [259] and other similar studies [207, 240, 279],

one important aspect affecting result validity in MC simulations is the uncertainty
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introduced by unrefined parameter values. As specific to this study, uncertainties

in the diffusion and reaction rates can be of concern. Take reaction 11 in Table 2

as an example, total diffusion rates of 7.3 and 6.6 nm2/ns, and reaction rates of

1.74× 1010 and 1.9× 1010 dm3mol−1s−1 were used in gMicroMC and TRAX-CHEM

[256], respectively. There was a 10% difference between the two packages, which

will lead to about 10% differences of the reaction radii. To study its impact on our

simulation results, we reperformed the computations at PO2=21% for electrons with

Ek=4.5 keV and the reaction radii changed by 10%. The yields of different chemical

species were found only minimally changed with a maximum of the change being

0.3%. The robustness can be understood as following. Oxygen distribution is very

sparse compared to the reaction radii. Mean distance between oxygen molecules is 20

nm for PO2=21% (160 mmHg,201.1 µM) while the radii are usually less than 1 nm.

Hence, the uncertainties in the reaction radii caused by different reaction rates and

diffusion rates is very small compared to the large distance between reactants. Asides

from the uncertainty of parameters, the stochastic nature of MC simulation would

cause uncertainty of results as well. Unlike the case for conventional dose rate mode,

where 1000 runs were needed to reduce uncertainty to 0.5% level, the simulation

results for FLASH mode were relative more robust because there are already many

electrons inside one pulse. For all oxygen concentrations, 20 runs per simulation were

adequate to reduce the uncertainty to a level of 3% for 106 Gy/s and well below 2%

for cases with dose rate higher than it.

As discussed in [305], it is expected that the results, e.g. in terms of yields,

computed by explicitly treating oxygen as molecules and as a continuum background

in MC simulations should be similar. However, this is only valid in certain scenarios.

For instance, when the oxygen consumption occurs in a spatially small and temporally

large scale, oxygen diffusion can compensate the consumption, making the oxygen
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distribution spatially and temporally approximately unchanged. Another scenario is

when irradiation tracks are dense enough and most reactions happen among radicals.

In this case, the effect of oxygen inhomogeneity may be ignored. However, the FLASH

condition does not fall in these categories, which hence likely requires the method

explicitly treating oxygen as molecules. Oxygen diffusion length for 2 µs is only 170

nm and it would be difficult for oxygen to diffuse from the outside of the ROI to the

middle of the ROI to compensate the oxygen consumption.

7.1.5 Conclusions

In this work, we reported our recent progress on the modeling of the chemical

stage of the water radiolysis with an explicit consideration of the oxygen reaction

effect, and its implementation in the open-source GPU-based MC simulation tool,

gMicroMC. To demonstrate the practical value of gMicroMC in large scale simulation

problems, we applied the oxygen-simulation-enabled gMicroMC to compute the yields

of chemical radicals under a high instantaneous dose rate Ḋi to study the oxygen

depletion hypothesis in FLASH experiments. We computed the time evolution of

oxygen concentration under FLASH irradiation setups. At the dose rate level of 107

Gy/s and initial oxygen concentrations from 0.01% 21%, the oxygen is unlikely to be

fully depleted with an accumulative dose of 30 Gy, which is a typical dose used in

most FLASH experiments. gMicroMC is found efficient in simulating the chemical

stage with oxygen effect explicitly considered. With an initial oxygen concentration of

3% ( 105 molecules), a speedup factor of 1228 was achieved for gMicroMC on a single

GPU card when comparing with Geant4-DNA on a single CPU. This implementation

makes a more elaborate model of oxygen enhancement on DNA damages, which will

be presented in the following sections.
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CHAPTER 8

OER MODEL AND REINVESTIGATION ON FLASH

8.1 Oxygen enhancement ratio

8.1.1 Introduction of oxygen enhancement on DNA damages

It has long been known that the existence of molecular oxygen can modify

radio-sensitivity ([23, 24, 304]). Higher oxygen concentration leads to cells being more

vulnerable to ionizing radiation. There are two reasons for this phenomenon. First,

molecular oxygen can react with chemical products of water radiolysis process ([323]),

altering the yields of different radicals ([258]). For instance, high concentration of

oxygen can effectively eliminate hydrated electrons and hydrogen radicals and produce

toxic superoxide O.−
2 radical and its protonated form HO.−

2 . Second, molecular oxygen

can react with DNA radicals, which are carbon-centered radicals after ionization

radiation ([28, 29]). The product of this reaction is easier to cause strand break (SB)

than the initial DNA radicals themselves ([29, 324]). To quantify the degree to which

the vulnerability of cell has been changed, the concept of oxygen enhancement ratio

(OER) is introduced. It is defined as the ratio between doses required to achieve same

biological effects without and with oxygen,

OER(pO2) =
D(0)

D(pO2)
|isoeffect (8.1)

where pO2 represents the partial oxygen pressure and D(pO2) the dose for certain

biological endpoint with pO2 .

It is important to model OER from both clinical and mechanism aspects. Clin-

ically, an OER model may help design treatment plan for tumor with hypoxia areas,

which would be radio-resistant (OER 1). On the other side, an OER model may help
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understand clinic phenomenon and testify hypothesis. For example, the role of oxy-

gen in a recent hot topic FLASH radiotherapy ([325, 326]) and relationship between

OER and linear energy transfer (LET) ([327]).

Current OER models could be divided into three categories based on the meth-

ods used in different models. First category is based on linear quadratic (LQ) model

([4, 21]). For this category, assumptions were made on the dependencies between

parameters alpha and beta of LQ model and pO2 and LET ([328, 329]). Usually, the

values of parameters in the assumption were obtained from experimental data. How-

ever, this fitting procedure suffered from the dependence between OER and choices

of biological endpoints. Second is based on statistical analysis of collisions between

oxygen molecules and DNA ([321]). But, this study has limitations in application

to high LET cases because of the Poisson distribution, as concluded in the paper.

Another one is based on microscopic Monte Carlo (MC) simulations, where track

structures ([274]) are involved. For this category, either dose-mean lineal energy yD

([283]) or DSB damage clusters ([229]) were used to further evaluate OER. However,

the absence of DNA structure and oxygen in simulating track structures makes the

results defective in principle.

From the above works, we can infer a good OER model should

1. capture the biological features of OER to be more robust in principle.

2. explain the behavior between OER and other experiment conditions such as

LET.

3. have fitted model parameters irrelevant to source types or choices of biological

endpoints. In other words, these parameters should be intrinsic properties of

the biology system.

For the above purposes, OER models based on microscopic MC simulations would

be preferable. On one side, MC simulation is faithful to physics principles and gives
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details about the interaction events. On the other side, experimental conditions like

different source particles can be used as input to match OER variation tendency,

leaving model parameters universal. However, Fully mechanistic modelling of water

radiolysis via microscopic MC simulation, especially with presences of DNA structure

and oxygen molecules, is quite difficult because of computational burdens in both

memory and time.

Graphical Processing Unit (GPU)-based parallel computing can be a cost-

effective option ([53, 54]) to accelerate the simulation. Our group has done a lot

of continuous work to develop the GPU-based programs, gMicroMC. We initially

focused on the chemical stage simulation among radicals ([201]) and later a whole

package enabling simulation of the physical track for electrons and DNA damages

with a DNA model of a lymphocyte cell nucleus at the base-pair resolution ([52]).

Recently, we have also tested simulation of oxygen molecules in the chemical stage

with a step-by-step manner ([258]) and updated support to transport for protons

and heavy ions and simulation with presence of DNA in chemical stage ([72]). With

these efforts, we were able to quantitatively study problems that are computation-

ally demanding. For example, the radiolytic depletion of oxygen under ultra-high

dose rate radiation (FLASH) ([258]). The first version can be downloaded on GitHub

https://github.com/utaresearch/gMicroMC while developing version can be obtained

via request. In this work we report our recent work on modelling OER via microscopic

MC simulation on DNA damage. The primitive objectives of this work were

1. to provide a model for OER with biological explanations based on mechanistic

simulation.

2. to achieve experimentally observed values of OER for different cases.
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8.1.2 Methods

8.1.3 Modelling oxygen enhancement on DNA double strand break

8.1.3.1 Brief introduction of gMicroMC

gMicroMC is a GPU-based microscopic MC simulation package that is able

to compute DNA damages with the built-in DNA model of lymphocyte cell ([52,

72]). The simulation is divided into four stages–physical stage, physicochemical

stage, chemical stage and searching for DNA damage. In the physical stage, it trans-

ports primary particles and secondary electrons, producing ionized and excited water

molecules. The time for a source particle traversing several micrometers, which is

often the scale of region of interest (ROI), is only of magnitude 10−18 seconds. The

information of every energy deposition events, such as positions and excitation types,

is recorded. In the physicochemical stage, the de-excitation process of those recorded

molecules is simulated, generating the initial distribution of radicals at a preset time

10−12 seconds. These radicals then diffuse in chemical stage in an environment with

DNA structures and oxygen molecules. Along with the diffusion, reactions among

radicals, between radicals and DNA components and between radicals and oxygen

molecules are examined in a step-by-step simulation scheme. Hence, the DNA dam-

age sites attacked by hydroxyl could be recorded. Finally, deposited energy is ac-

cumulated to its nearest DNA components and is used to determine a strand break

(SB) together with information of DNA damage sites by hydroxyl. To keep this arti-

cle concise, details about explicit simulation parameters such as searching radius and

SB criteria are omitted here. Interested readers could find more explanations in our

previous publications ([52, 72, 259]).
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8.1.3.2 Oxygen enhancement

We consider the oxygen enhancement on radio-sensitivity only stems from the

interplay between oxygen molecules and DNA radicalsR.. The existence of oxygen not

affecting the physical stage and the physicochemical stage is a reasonable assumption

because of very short time scale of these two stages and the relative few number

of oxygen molecules in aqueous environment. In fact, the concentration of water

molecule is 55.6M but the concentration of dissolved oxygen is 0.2mM for normoxia.

And the root-mean-square diffusion length of oxygen in 1 ps is only 0.12 nm, given the

diffusion constant of oxygen DO2 = 2.4 nm2/ns. Hence, either the incident particles

or the excited water molecules basically only ”see” water molecules around them in

a vert short time.

Figure 8.1. Illustration of the simulation scheme.
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The essential idea of our model is the usage of two kinds of DNA radicals, R.

and ROO., where ROO. is the product of chemical reaction

R. +O2 → ROO. (8.2)

As shown in Fig. 8.1, the production of ROO. comes from two aspects. In the begin-

ning of chemical stage, the reactions among radicals are quite intense and hydroxyl

radicals could continuously attack DNA if they are not consumed. Hence, we adopted

step-by-step (SBS) manner to simulate this process. To include DNA radicals into the

simulation scheme, R. or ROO. is considered as a point with same position as that of

hydroxyl, which could react with DNA sugar-phosphate moiety. Reaction (8.2) is thus

considered as fully diffusion-controlled with reaction rate k0 = 5× 107 (mol/L)−1s−1

([330]). Under this scheme, the influence of the presence of DNA structure and oxygen

molecules on radical yield and distribution of DNA radicals is considered naturally.

We chose the first 1 ns to conduct such SBS simulation because it is considered to be

the lifetime of hydroxyl in cell environment.

Then we introduced the first parameter t0 into our model. It represents the time

interval, within which oxygen molecules must be present near R. to make reaction

(8.2) happen. This is related to a fact that no increase in OER occurs if oxygen

is added too late post irradiation ([331]). The threshold is considered to be several

milliseconds, which would be the magnitude of parameter t0. From termination of

hydroxyl radicals till t0, we considered every remaining R. was bathed in a background

of oxygen and its probability to transform into a ROO. could be expressed ([186]).

P (R. → ROO.) = e−k0∗t0∗pO2 (8.3)
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Here, pO2 should be expressed in unit of mol/L, consistent with the unit of k0. The

unit transformation (percentage, mol/L and mmHg) of pO2 has been illustrated in

our previous work ([258]) with the help of Henre’s law

pO2(µmol/L) = 1.26 ∗ pO2(mmHg) = 957.6 ∗ pO2(%). (8.4)

For the following text, we will treat the three units equally and use them without

further explanation.

So far, we recorded the positions and types of two kinds of DNA radicals. We

made another assumption that they had different potential to cause SBs. We assigned

two probabilities p0 and p1 for R. and ROO., respectively. To determine whether a

SB should be recorded, we could sample random numbers ξ between 0 and 1 for

each DNA radicals and compare it with the probability associated to this location.

If ξ < p0 or ξ < p1, depending on the type of DNA radicals, a SB was formed and

could be used later for grouping into double strand breaks (DSBs).

8.1.4 Computation of OER

Conventionally OER is defined with biologically measurable endpoint, such as

cell survival fraction (SF). Although are many studies ([48, 332, 333] that aim to

related microscopic simulation results with SF, we argued that it may not be a good

option to do so for two reasons. First, these models relied on obtaining the relationship

between parameters of LQ model and simulation results like linear energy y. Their

accuracy would be affected by the deviation of LQ model from experimental results

([21]) and the model parameter fitting process for benchmark. The uncertainty of

predicting SF would make calculation of OER suffering from larger uncertainty and

thus nor reliable. Second, most of these models were case dependent, for instance,

more applicable to high LET case ([48]), losing generality. Hence, in this work, we
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directly used the number of DSB as the endpoint to measure biological effect. This

was because DSB was considered as the lethal factor to cell death after ionization

radiation. Similar idea was used in ([229, 334]). The difference was that we only

assumed one-to-one function between the number of DSB and SF but we did not

know the exact form. It implied that same number of DSB was related to same SF,

i.e. same biological endpoint. Thus, from equation (8.1) OER could be expressed as

OER(pO2) =
D(0)

D(pO2)
|NDSB . (8.5)

8.1.5 Evaluation

For the purposes described in Section 8.1.1, we first conducted simulations of

photon cases (X-ray 280 kvp) as described in ([24]) and used it to benchmark the

three parameters t0, p0, p1 for our model. The simulation is divided into two steps

([208]). We first obtained the electron energy spectrum from the photon source and

then sample electron from the spectrum but uniformly distributed in space ([258])

one by one until the dose inside the cell nucleus reached target dose. Number of

oxygen is calculated as NO2 = PO2(µmol/L) × Vcell × NA, where Vcell is the volume

of cell nucleus and NA Avogadro constant. Oxygen molecules were also uniformly

distributed in the space at the beginning of chemical stage. After we obtained the

relationship between NDSB and dose D, we could find the fitting slope m by applying

NDSB = m×D. Because typically OER for x-ray scenarios does not depend on the

selection of biological endpoints, equation (8.5) is equal to

OER(pO2) =
m(pO2)

m(0)
. (8.6)

The adjustment was performed as following. First, we set pO2 = 0. Then, t0 and

p1 is of no use and we could adjust p0 to match the absolute DSB yield per Gy

per Gbp, whose value was 8 ([208]) in our simulation. Next, we set pO2 = 21%.
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Under this case, we could assume all R. has been transformed into ROO. because

of the saturation behavior of OER at large oxygen concentration. we could adjust

p1 so that the maximum of OER matched experiment results, which was 3 in our

simulation. Finally, We simulated cases with PO2 = 0.1%, 0.5%and1%. We adjusted

t0 to match the trend between OER and pO2 in the range 0− 2%.

To further validate this model, we applied it directly to the proton cases. The

proton source is a beam with energy 79.7MeV . Cells were put at different depth

along the beam to undergo proton radiation of different LET. We chose the same

depth point as in reference ([290]). We examined the obtained OER for protons with

LET 1.8 keV/µm. Then we calculated maximum OER versus LET and the maximum

of OER versus dose for LET 15.2 kev/µm and compared them to reported results in

other literature.

8.1.6 Comparison with other works

After the process described in section 8.1.5, the parameter values were t0 =

3.8 ms, p0 = 0.08 and p1 = 0.28. The obtained OER results were shown in Fig.

8.2. As can be seen from the figure, the simulated OER generally matched the

experimental one, especially for the region with low oxygen concentration. The mean

relative error is 3.18%. The fitted line from mechanically statistical analysis was

within error bar of the simulated results as well. But they deviated from experimental

results when oxygen partial pressure larger than 20 mmHg, while our simulation

results captured the trend within uncertainties.

With the implemented model, we further analyzed the OER of protons with

LET=1.8 keV/µm. It is known that proton has lower OER than photon beams.

From our calculation, the OER for proton was 2.93 at oxygen partial pressure 15.2

mmHg, slightly smaller than that of photon beams (OER = 3.04). We then show the
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Figure 8.2. OER versus PO2 for x-ray case. Fitted line was from reference ([321]).
Experiment results were extracted from reference ([24]). Error bar shows the standard
deviation..

OER versus LET in Fig. 8.3. our results well showed the decreasing trend between

OER and LET.

We then picked a case with LET 15.2 keV/µm to illustrate the effect of selecting

different biological endpoints. From the SF versus dose curve shown in [290], we could

know that dose of 1, 2, 3 Gy is equal to SF of 0.62, 0.15, 0.01 while SF under 4 Gy

radiation is unknown experimentally for H460 cells. Our simulation suggested around

10% increase of OER when SF changed two magnitudes. This trend is very close on

the results on V79 cell while different for those on T1 cell ([336]).
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Figure 8.3. OER versus LET for proton cases. Experiemtnal results were from
references ([329, 335]).

8.1.7 Discussions

First, we want to comment on the values we got from the benchmark of this

model to experimental results for x-ray case. t0 = 3.8 ms is of same magnitude

suggested by other papers ([315, 331]). It is a very long time period, compared to

lifetime of most radicals, which are just several microseconds or even less ([271, 337]).

This is why we can view oxygen as a background after for the period from 1 µs to t0

and use probabilistic method to find the transformation probability of R.. p0 = 0.08

and p1 = 0.28 means ROO. is easier to cause SB than R. since p1 > p0, which is the

basis of OER. Yet, one thing worthy being noted is that the resolution of our DNA

model is base pairs and it cannot distinguish different carbon atoms in the sugar-
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Figure 8.4. OER versus dose endpoints for proton case with LET 15.2 kev/µm. Data
was extracted from Figure 2 of [336]..

phosphate moiety or in the base. Thus, R. or ROO. is a so crude description that it

ignores the different properties of DNA radicals centered at different carbon atoms.

For example, C2′ radical is easier to combine with oxygen and cause strand breaks

almost for certain ([29]). Therefore, p0 and p1 are just an average effect of causing

strand break for all kinds of DNA radicals. That is why their calues are smaller than

expected, for instance, p1 = 1.

Second, our model considered the enhancement of DNA radicals only by indirect

effect, i.e. attack by hydroxyl. This is actually limited by our model of determining

direct damage. Although we know biologically there exists DNA radicals from direct

effect either through ionization or electron transfer from hydration shell ([28, 29]),
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only accumulated energy on one sugar-phosphate group was used as criteria, which

is widely accepted for simulation of DNA damage for various simulation ([51, 207,

273]). Without modification to the model, no DNA radical is recorded along with

energy deposition process. However, such modification further requires more elabo-

rate description of DNA structure and physics models for site-specific interactions,

which is beyond the scope of this paper. In addition, typically, indirect effect causes

more than half to 70% of total SBs ([205, 207, 240]). The OER model based on DNA

radicals by indirect effect would be enough to capture the main behavior.

Following this, we can discuss about the decreasing of OER with increasing

LET. From our simulation, there are two reason for this. One is that SBs from

direct effect becomes more important for higher LET, which shows no OER from the

above discussion. Another is shorter average distance between damage sites along

with higher LET because of larger cross sections ([72]) and shorter mean free length.

Hence, it is easier to cause DSB if we have more damage sites locally.

Finally, we want to point out a future direction for this model. one hidden logic

for sampling track one by one and safely using probabilistic method for transformation

of DNA radicals after termination of hydroxyl is that no inter-track effect ([181]) is

considered nor oxygen concentration should undergoes large variation. Otherwise, we

cannot guarantee uniform background of oxygen for every DNA radicals. There are

scenarios where dose rate is so high that chemical stages of different tracks could have

overlap and local oxygen regeneration is prominent, for example FLASH radiotherapy

([307, 309]). For these cases, oxygen diffusion and probabilistic method should be

consider in a very careful way. However, due to the simplicity and integration with

step-by-step method, our model could be easily extended with oxygen regeneration

via diffusion ([315]) to consider pulse radiation in FLASH radiotherapy. We will

present this issue in a future paper.
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8.2 FLASH

The effects on radical yield by FLASH was studied on Section 7.1. However,

there were two defects for that work. One is that the change of radical yield cannot

fully represent the oxygen effect in terms of biological effect. Second, pulse number

and width were not considered which ignores the oxygen regeneration. To include

all these two factors, we have to consider DNA structure during chemical stage and

oxygen diffusion between pulses.

8.2.1 Oxygen diffusion

The oxygen diffusion could be described by the partial equation [315]

∂PO2

∂t
= DO2∇2PO2 − λ (8.7)

PO2 is the oxygen concentration in unit of µM and λ means the metabolism con-

sumption rate in unit of µM/s. Different research reported or used different values

for λ. For example, 4.1 µM/s in [315], 2.6 µM/s in [338] and 2.7 µM/s for whole

body[339]. In this work, we used a value of 3 µM/s.

As the detailed vascular map in µm scale is not known to us, we just simulated

a free space with a center straight artery for illustration of oER under FLASH and

effect of number of pulses in FLASH. We set P0 = 60 µM to account for typical

value at the end of micro-vascular artery [317]. Under such cylindrical symmetry, the

steady state could be easily solve along radial direction

DO2

d2

dr2
PO2 − λ = 0 (8.8)

The numerical solution by finite element method (FEM) is shown in Figure 8.5. The

penetration depth is around 100 µm, which is similar to what has been done in [315].

We labeled the steady distribution as P S
O2

.
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Figure 8.5. Radial oxygen concentration for steady state.

According to results in section 7.1, the OCR only depends on the initial oxygen

concentration under FLASH (Equation (7.2) and Figure 7.6). We presume that this

relationship holds for all FLASH conditions. Hence, if the FLASH beam shoot along

the cylinder axis and covers at least 200×200 µm2 field, the oxygen drop would

preserve the cylindrical symmetry and so would oxygen regeneration. We still only

need to consider radial part by equation

∂PO2

∂t
= DO2

∂2

∂r2
PO2 − λ (8.9)

with reduced oxygen distribution PR
O2

as the initial state. The recovering time from

PR
O2

to P S
O2

is usually of ms scale, which is just the scale of OER taking effect shown in

section 8.1. An illustration of recovering time has been shown in Figure 8.6. Typically,

237



it would require 3, 10 and 30 ms if the oxygen concentration drops by 20, 50 and 80

percent, respectively.

Figure 8.6. Oxygen recovering at 20 µm away from the artery for sudden drop of
oxygen with different ratios.

8.2.2 Simulation of OER on DNA damage for proton FLASH

Like what we did in section 8.1, we applied the OER model to find OER on

DNA damages. The difference now is we have to consider oxygen diffusion since the

time interval between two particles may be shorter than t0 and the recovering time

may approximate t0 as well depending on the drop of oxygen concentration during
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the pulse. To integrate the OER model, we adopted the following steps for FLASH

conditions.

1. Defining oxygen concentration array PO2 and solve the steady state P S
O2

for

given P0 and λ by Equation (8.8).

2. For given target dose Dt, simulated all the physics tracks that could deposit

enough energy Dt ∗ VROI and prepare the initial radicals for all tracks. We

denoted all energy deposition events that belongs to particle i as Y phys
i and

corresponding radicals as Y chem
i .

3. Based on a given time structure, we sampled the time point when particles

entered the ROI. We did a time structure for synchrocyclotron, namely pulse

width tp of µs and pulse interval ∆t of ms [340, 341]. We then sorted the time

in ascending order denoted as T and assign them to the particle tracks we just

simulated. All Y phys
i and Y chem

i have same Ti.

4. At the beginning of jth pulse, uniformly sampling NO2 = P j
O2
×VROI inside ROI.

Here, temporary initial oxygen concentration P j
O2

is equal to PO2(r0) where r0

is the center of ROI.

5. For Ti that was in jth pulse, read Y chem
i into chemical stage one by one and

simulate chemical stage by concurrent transport method. Record all R. and

ROO..

6. For the interval between jth and j+ 1th pulses, we update the whole PO2 array

by Equation (7.2) at the beginning of the interval. This served as the initial

condition for Equation (8.9). In this manner, we obtained PO2 array for j+ 1th

pulse.
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7. The transformation probability from R. to ROO. (Equation (8.3)) should then

be revised because of the oxygen variation during the pulse interval. The up-

dated version was

P (R. → ROO.) = e−k0∗
∫ ∆t
0 pO2

(r0)dt. (8.10)

where ∆t is the time interval between jth and j + 1th pulses. As an approx-

imation,
∫ ∆t

0
pO2(r0)dt could be replaced by (pO2(r0, tj + tp) + pO2(r0, tj+1))/2.

Here, tj and tj+1 represented the beginning time of jth and j + 1th pulses.

8. Repeat steps 4-7 for all pulses.

8.2.3 Results and discussion

We presented the summarized results in Table 8.1 for a total dose of 10 Gy. The

proton source is what used for section 6.1 with LET=19.2 keV/µm. DNA damage

under conventional dose rate was obtained by simulating track one by one without

any consideration of oxygen diffusion and recovering. It is always under oxygen con-

centration P0. OER model was applied for both conventional and FLASH conditions,

though.

As described in the section 8.2.2, the different initial oxygen concentration was

achieved by put cell at different distance r0 from the region with constant oxygen

concentration P0 = 60 µM . Our simulation suggested no difference of DNA damage

reduction with initial oxygen concentration ranging from 4.8 to 19.2 µM , which are

typical values for tissue oxygen level. For the characters of proton beam, number

of pulses, pulse width and pulse interval all had great impact on the yielded DNA

damage. The larger their values were, the less prominent the radio-protective effect

by FLASH. This is because the lifetime of radicals are limited and the proton track

must be close enough in both temporal and spatial dimensions so that radicals may

240



Table 8.1. DNA damage for FLASH with different parameters

Number of pulse tp (µs) ∆t (ms) Initial oxygen
concentration

(µM)

Reduced ratio (%)

1 1 100 4.8 10
3 1 100 4.8 8
5 1 100 4.8 7
10 1 100 4.8 3
1 0.001 100 4.8 43
1 0.01 100 4.8 30
1 0.1 100 4.8 10
3 1 10 4.8 13
3 1 50 4.8 11
3 1 500 4.8 5
3 1 1000 4.8 3
3 1 100 19.2 8
5 1 100 19.2 7

Reduced ratio was compared to corresponding number of DNA
DSBs with conventional dose rate and same iniital oxygen

concentration

interact with each other between tracks. Yet, the number of proton track required

to obtain same target dose is much less than electron cases, increasing the difficulty

of two tracks meeting spatially and temporally. Hence, those values must be small

enough to enlarge the radio-protective effect. The maximum reduction of number of

DNA DSBs from our results was with 1 pulse, 1 ns pulse width and 100 ms pulse

interval.

8.3 Conclusion

We developed an OER model and applied it to FLASH condition. OER model

was based on mechanistic modelling of DNA damage via GPU-based MC simulation

package, gMicroMC. Only three parameters were included in our model. Yet it was
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effective to match with experimental results for photon cases. The model was also ap-

plicable to proton cases, replicating the tendency between oER and LET and different

biological endpoints. The simple yet effective model did not ruin the computational

efficiency and was applied to FLASH condition with consideration of oxygen diffusion.

We found that number of pulses, pulse width and pulse interval all had great impact

on the yielded DNA damage. If their combined effect was to enlarge the oxygen drop

and enhance the inter-track radical reactions, then the protective effect by FLASH

could be maximized. For proton cases, the pulse width should be as short as of ns

scale because the number of proton track required to obtain same target dose is much

less than electron cases, increasing the difficulty of two tracks meeting spatially and

temporally.
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CHAPTER 9

CONCLUSIONS AND FUTURE DIRECTIONS

To summarize, this thesis presented several GPU MC applications for radio-

therapy:

1. We implemented the crystal detector part for PET simulation. We applied it to

systematically study the performance of PET detector versus several key factors

such as coincidence time window and DOI.

2. We implemented electron transport in a magnetic field in gDPM. Source mod-

els for MeV beams were built to do the dose calculation. It achieved good

agreement with current TPS while pushing the simulation time to less than one

minutes, making it possible for onsite dose calculation.

3. We developed a microscopic simulation package gMicroMC. It now supports

the transport of electrons and protons. Heavier ions could also be considered is

scale of z2
eff was applied to obtain cross section. We included DNA structure,

oxygen molecules into chemical stage.

All of them are either open-source or obtained upon request. With the involvement

of GPU, the computational performances have been greatly improved, which targets

one of the biggest barrier of applying MC in radiotherapy. The improvement of

computational performance is not just an application of a new technology, but also

makes it possible for increasing the problem scale, studying the mechanisms in a

fundamental way. For this point of view, we particularly pointed out what we obtained

with gMicroMC when we shifted our focus from dose to DNA damage.
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1. We analyzed the DNA damage pattern by proton beams in ROI with dimensions

of mm scale. Large variation (±20%) of DNA damage induced inside cells

was obtained even when dose variation is only of 0.1% for ROI. We thus used

the DNA damage pattern as input to a network and tried to find connections

between DNA damage and cell SF. A network was trained, which work for x-ray

cases and proton cases ranging from ∼ 1keV/µm to ∼ 20keV/µm.

2. We analyzed DNA damage yield with hypothermia. We found the radioprotec-

tive effect could be explained by the reduced DNA DSBs under low temperature,

which is because of more chemical reactions locally.

3. we studied radical yield change and oxygen consumption during FLASH con-

dition. We suggested that oxygen depletion was not achievable only from radi-

olytic oxygen depletion.

4. We built an OER model, which applied well to both x-ray cases and proton

cases. We then considered FLASH again based this OER model with oxygen

diffusion and recovering effect included. We found that the inter-track radical

reactions, together with the lower level of oxygen concentration during the pulse

interval, could reduce the number of DNA DSBs. Hence, we suggest reducing

the number of pulses, pulse width and also pulse interval to enhance the FLASH

effect of sparing normal tissue. We did not study why FLASH would remain

effective to tumors.

Based on what we have now, we could picture a variety of future directions.

1. Auto-commissioning method by [342] could be integrated with the suoce model

to have better adjustment of parameters.

2. Tumor growth models were proposed by several groups as summarized in [343].

We could integrate DNA damage simulation with tumor growth model to better
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describe the radiation effect on tumor. This method could be even combined

with deep learning to optimize best treatment plan [344].

3. We could study more complex cases with nano-particles, for instance nonuni-

form distribution in the cell to specifically evaluate the performance of nano-

particles in terms of DNA damage.

4. We could apply the same method in Section 8.2 to electron and photon cases

to test if our explanation to the simulation results preserve.
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LIST OF ABBREVIATIONS AND SYMBOLS
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This table lists the abbreviations used in this thesis for readers’ reference.

Table A.1. Summary of common abbreviations used in this thesis

Abbreviations Explanations
AAPM American Association of Physicists in Medicine

BgCSDNN Biology-guided Cell Survival deep neural network
CSDA continuous slowing down approximation

CT computerized tomography
DNA deoxyribonucleic acid
DSB double strand break
GPU graphical processing unit
LET linear energy transfer

LINAC linear accelerator
MC Monte Carlo

MLC multi leaf collimator
MRI magnetic resonance imaging
MU monitor unit

OCR oxygen consumption rate
OER oxygen enhancement ratio
PET positron emission tomography
RBE relative bioilogical effect
ROI region of interest
ROS reactive oxygen species
RRS Radiation Research Society
SB strand break
SSB single strand break
SSD source surface distance
SF survival fraction

SRS Stereotactic radiosurgery
SBRT Stereotactic Body Radiation Therapy
TPS treatment planning system
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This table lists the symbols used in this thesis for readers’ reference.

Table A.2. Summary of symbols used in this thesis

Symbols Explanations
M (as a unit) mol/L

yD linear energy
DO2 diffusion constants of oxygen
U(a, b) uniform distribution in [a, b]
N(µ, σ) Gaussian distribution with mean value µ and standard

deviation σ.
zeff effective atomic number
eh, e

−
aq hydrated electrons
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