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Abstract 
Accelerated Performance Degradation of Single-Phase Cold Plates for Direct-

to-chip Liquid Cooled Data Centers 

 
Lochan Sai Reddy Chinthaparthy, M.S. 

The University of Texas at Arlington, 2021 

Supervising Professor: Dr. Dereje Agonafer 

Expanding demands for cloud-based computing and storage, the Internet of Things, and 

AI-based applications have escalated thermal loads in high-density data centers which necessitated 

the utilization of more efficient cooling technologies. Direct-to-chip liquid cooling using cold 

plates has proven to be one of the most efficient methods to dissipate the high heat fluxes of modern 

high-power CPUs and GPUs. While the published literature has well-documented research on the 

thermal aspects of direct liquid cooling, a detailed account of reliability degradation is missing. 

The present investigation provides an in-depth analysis of the reliability degradation of copper 

cold plates used in high-power direct liquid cooling with accelerated failure conditions of flow rate 

and temperature. A benchtop setup is designed using a combination of different materials like 

Rubber tube copper cold plate, metal fittings, Instruments capable of measuring the thermal, 

hydraulic performance of the cold plate along with coolant chemistry (pH, ORP and Electrical 

Conductivity). The degradation was analyzed by time-based data for change in pH, ORP, and 

electrical conductivity as indicators of corrosion in the cooling loop. Non-destructive analysis of 

the cold plates was conducted change in channel dimensions using SEM, and microscopic analysis 

of the cold plate channels for copper pitting. These experimental results are presented in 

engineering design considerations for the construction of the flow loop and the choice of working 

liquid to be used. 
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Introduction 

Datacenter 

A Datacenter in any organization is a facility that houses its critical applications and data. 
Its design is based on network, computing, and storage resources that enable the delivery of sharing 
applications and data. The core components of the data center are switches, routers, firewalls, 
storage systems, servers, and controllers. Artificial intelligence (AI) has become an important area 
that may significantly impact everyone’s daily life. This means a lot of high-performance chips 
such as high-performance CPU, GPU, FPGA (Field-programmable gate array), ASIC (application-
specific integrated circuit) devices may need. The thermal design power (TDP) of these chips is 
high, and now it is very common to see a processor TDP reach as high as 300 watts. 

 

Fig 1: liquid-cooled 1U rack data center[3] 

The main component of the data center is the servers. Servers are classified based on their 
applications. Platform servers, Application servers, mail servers, proxy servers, web servers, and 
communication servers are a few of the types. The servers can be of different shapes and sizes 
according to their chassis design. The enclosure which holds the multiple servers is a rack. Rack-
mounted servers are of standard sizes termed as 1U servers (1U=44 mm). This means if a server 
is a 2U size, it has a height of 2.5 inches.  

Thermal Management of Datacenters 

The equipment’s inside the Datacenters consumes a lot of power and thus dissipates a large 
amount. This requires the cooling of the equipment to operate at optimum temperature.  As per a 
2018 study on total energy consumption, it is observed that there is a total energy consumption of 
205 terawatts of energy consumed by the data centers which is roughly 1% of energy consumption 
worldwide which is a total of 6% increase in energy consumption worldwide since 2010. These 
servers are required to operate at optimum temperature continuously without any interruption and 
thus cooling of servers inside the data center is important. Due to increasing environmental concern 
and increase in power consumption, the demand for more efficient cooling techniques has 
increased. There are three main types of data center cooling techniques  
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1. Air cooling 
2. liquid cooling 
3. immersion cooling. 

The most traditional way and a common method of cooling data centers is Air cooling, but 
due to the increase in TDP at the chip level, the cooling efficiency by air cooling is not significant 
and thus in the modern world, the use of liquid cooling is suggested. For optimum cooling and 
designing purposes of these data centers American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) have created thermal guidelines for Liquid Cooling.  

 

Fig 2: 2011 ASHRAE Liquid-Cooled Thermal Guidelines 

Liquid Cooling at Chip Level 

In liquid cooling, a cold plate sits atop any heat-generating components such as CPUs, 
GPUs, etc. to extract the heat through single-phase cold plates. Generally, this type of arrangement 
has a higher heat removal capacity. This direct-to-chip level cooling can remove 70-75% of the 
heat generated by the equipment.  

 

Fig 3: Schematic representation of Liquid Cooling facility  
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For single-phase liquid cooling, cold plates are looped with cooling fluid and the fluid is 
regulated via the use of Cooling Discharge Unit (CDU) to absorb heat from server components. 
The Cooling fluid is determined by balancing the thermal capture properties and the viscosity of 
the fluid in use. Water has the highest heat capture ratio but due to being less viscous it reduces 
the pumping efficiency and due to this it is often mixed with glycol, this decreases the heat capture 
capacity by increasing viscosity that enhances the pumping efficiency.  Dielectric fluids can also 
be used but they generally have lower thermal transport capacity compared to water/glycol 
mixture. 

Liquid Quality 

The guidelines for the liquid quality are described in the Liquid Cooling Guidelines for 
Datacom Equipment Centers (ASHRAE 2014) to use the appropriate liquid at both the TCS and 
FWS level. The FWS system is often a site-wide or campus-wide building system, while the TCS 
loop is a data center-specific system and associated with a specific set of IT hardware. The TCS 
loop serves the IT equipment (ITE) and provides flow for cold plates and removing heat from 
electronic components. These cold plates and internal plumbing are far more sensitive to the liquid 
quality, as the liquid is in direct contact with the cold plate material, the material could get rusted 
and lead to impurities or resist the flow of the liquid, the potential issues are corrosion, fouling and 
microbial challenges.  

 

Fig 4: Liquid Quality Guidelines by ASHRAE 

Corrosion:  

The disintegration of metal with its surrounding environment to form a chemically stable 
compound is called corrosion. It can also be called an electrochemical process in which oxides of 
the metal are formed in reaction with their surrounding media. The below-given equation is a 
general corrosion equation of any metal on reaction with water. 
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The below figure shows typical corroded copper metal when surrounded by any liquid media under 
corrosion suitable conditions. 

 
Fig 5: corroded copper surface 

Types of Corrosion: - 

 Uniform corrosion 

 Galvanic corrosion 

 Crevice corrosion 

 Pitting corrosion 

 Selective corrosion 

 Erosion corrosion 

 Cavitation corrosion 

 Flow assisted corrosion 

 Stress corrosion 

The two main corrosions which are seen on copper metal are Pitting and Galvanic corrosion. 

Pitting Corrosion: - 
It is localized corrosion that forms cavities on the metal surface which is initiated by 

oxidation of the surface. In the below fig we can see the formation of the pit on the surface. 

 
Fig 5.1: pitting corrosion[4] 
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Galvanic corrosion: - 
This type of corrosion occurs between two dissimilar metals when immersed in 

the conductive solution and connected electrically. The cathode part is protected, and the anode 

part is corroded. In the below figure we can see the particles on the surface of the less noble part 

to be deposited on the more noble metal. 

 

Fig 5.2: representation of Galvanic corrosion[5] 

Effect of Corrosion 

Corrosion in the loop can affect the functioning of a whole data center in multiple ways. 
When the copper metal gets corroded and copper oxide and copper hydroxide can be formed which 
are given in the below equations. 

 

Fig 6.1: copper oxide formation reaction 

 

Fig 6.2: copper hydroxide formation reaction[1] 

The formation of these compounds on the metal surface results in pores in the microchannel 
fin area which can disrupt the flow and higher pumping power might be needed to maintain the 
optimum flow condition another issue is the deposition of oxides can form blockages inside the 
channels and can result in leakages and failure of the whole loop which reduces the estimated life 
of the cold plate and increases the repair and maintenance cost. 

Methods of detection 

Corrosion in the loop can be detected either in the variation of chemical properties like pH, 
electrical conductivity, and oxidation-reduction potential of coolant liquid or by observing the 
variation of performance of the cold plate-like thermal resistivity and pressure difference. 
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pH  

pH is a value that defines the acidity of the liquid. It is a measure of the concentration of 
hydrogen ions in any liquid. Its value ranges from 0- 14. 

 

 

Fig 7.1: pH scale 

Electrical Conductivity (EC) 

It is a measure of the concentration of charged particles in the respective liquid that move 
around freely. Conductivity is itself carried ions in the liquid, more the ions the conductivity. Its 
units are ‘siemens’. 

 

Fig 7.2: travel path of charged ions in a liquid[7] 

Oxidation-reduction potential: 

ORP is a measurement of the liquid that defines the ability of the liquid to either oxidize 
or reduce other substances. Its units are in ‘mV’. The higher the ORP value the higher the ability 
of the liquid’s oxidizing capability. 

 

Fig 7.3: General ORP scale[6] 
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Thermal resistance: 

It’s the ratio of the temperature difference between the base of the heat source and the 

inlet coolant temperature to the power supplier to the heat source. With the increase of corrosion 

in the cold plate the thermal resistance decreases. 

𝛹𝑗,𝑖𝑛=(𝑇𝑗−𝑇𝑖𝑛)/𝑃𝑜𝑤𝑒𝑟 

Pressure difference: 

  The difference between inlet and outlet pressure across the cold plate. It can be 

represented as ‘∆𝑃’. 

∆𝑃=𝑃𝑖𝑛−𝑃𝑜𝑢𝑡 

Objective   

Under general conditions, any copper metal doesn’t corrode on reaction with water, unless 

there is any chemical mixture in the liquid or the liquid flowing on the metal surface is at an 

elevated temperature. The main objective of this research is 

 To determine the change in pH Electrical conductivity and ORP values of the coolant 

liquids. 

 To observe the variation of performance of the cold plate. 

 To compare the variation of coolant chemical properties under the stagnated condition 

at elevated temperatures with a combination of different metallic compounds immersed 

in it. 
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List of liquid coolants 

Name Composition properties 
Inhibited PG-55 55%PG+45% water+ 

corrosion Inhibitors 

Freezing point -43.3 °C 

Boiling point -106.1 °C 

Density – 1.042g/ cm³ 

Viscosity – 6.19mPa.s 

Thermal conductivity- 

1.5615W/m²·K 

colorless 

Inhibited PG-25 25%PG+75% water + 

corrosion Inhibitors 

Freezing point -10.1 °C 

Boiling point -101 °C 

Density – 1.021g/ cm³ 

Viscosity – 2.45mPa.s 

Thermal conductivity - 

1.1357W/m²·K 

colorless 

Inhibited EG-25 25%EG+75% water + 

corrosion Inhibitors 

Freezing point -12.6 °C 

Boiling point -103.1 °C 

Density – 1.040g/ cm³ 

Viscosity – 2.09mPa.s 

Thermal conductivity - 

1.582W/m²·K 

colorless 

Inhibited EG-55 55%EG+45% water + 

corrosion Inhibitors 

Freezing point -45.3 °C 

Boiling point -107.9 °C 

Density – 1.088g/ cm³ 

Viscosity – 5.77mPa.s 

Thermal conductivity - 

1.215W/m²·K 

colorless 
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Literature Review 

In recent studies, experiments were conducted to elucidate down select the wetted 

materials and components which are best suitable for the loop. The experiments were kept 

running for more than 600 hours. The thermal performance and coolant properties were 

monitored during the experiment period. After analyzing the data from these experiments, 

it was seen that the degradation of the cold plate was increasing with an increase in 

temperature. The changes in the coolant properties like pH, electrical conductivity also 

proved the progression of corrosion. A soak test of the wetted materials was performed and 

the depletion of charged particles with time was observed the conductivity of the liquid 

was varying with the initial condition.[1] 

Experiments were carried out to investigate the corrosion mechanism caused by 

galvanic corrosion across the brazed alloy present in the cold plate microchannels. The 

investigation proves that the galvanic potential between the brazed plate and copper are the 

main factors for a higher corrosion rate in the loop. An effective kinematic model 

consisting of factors like temperature and external voltage was proposed to predict the 

reliability failure of engineering components. These factors act as accelerators to increase 

the corrosion rate. The results have shown an increase in galvanic potential over time across 

the test piece which can be a threat to the corrosion reliability of the cold plate. Through 

the images of surface topography obtained from the Scanning electron Microscope, the 

damages on the surface were observed by corrosion reaction.[2]  
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Chapter 3  

Experimental Setup and Procedure 

Methodology 

Corrosion is an electrochemical process that can be detected either on the surface or in the 
media surrounding the surface. The media used in the experiment is coolant liquids which are used 
in real-time data center cooling applications. The change of the coolant chemistry can be detected 
by logging the pH, electrical conductivity, and Oxidation Reduction Potential (ORP) values from 
time to time.[21] 

On the surface, which is the cold plate microchannel area, the corrosion can be detected by 
two methods. The first method is to observe the surface topography and composition by using a 
device called the scanning electron microscope (SEM) which can give, and the other method is by 
comparing the values of the Thermal resistance and pressure drop across the cold plate from time 
to time.[22] 

A single bench-top setup shown in Fig is built to monitor pH, EC, ORP values of the liquid 
in the reservoir. The outlet and inlet temperature values of the cold plate are noted to observe the 
pressure difference and thermal resistance during the duration of the experiment for each of the 
liquids used individually.[23] 

 

Fig 8: Schematic representation of the Benchtop Setup 
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Experimental Setup – I 

This experiment is a closed-loop single benchtop setup. A Fluid Reservoir made of BPA-free 
plastic is used to avoid any chemical reaction with liquid coolant. A 12V DC centrifugal pump is 
attached to the reservoir to pump the fluid into the cold plate. A precision flow control device is 
used to maintain the required flow rate which can be observed using a flow meter. Thermistor and 
Pressure sensors are connected before and after the cold plate to measure inlet and outlet values of 
temperature and pressure of the flow. Cold Plate consisting of microchannels is attached to a 
ceramic heater of 1000Watt capacity with thermal interface material to achieve maximum 
heat transfer. A Micromesh filter is introduced into the loop to remove any unwanted dust particles 
present in the liquid coolant. A heat exchanger unit is attached right before the reservoir to 
maintain coolant liquid at the desired temperature. pH, EC, ORP, Temperature sensing probes are 
kept in the reservoir and connected to the display unit. Pressure sensors are connected to a DC 
power supply unit along with the centrifugal motor. A K-type thermocouple is kept in between a 
ceramic heater and a cold plate to measure the base temperature when power is given through a 
120V DC power supply. All the thermistors, pressure sensors, thermocouples, and Probes are 
connected to a Data Acquisition Unit for data logging.[24] 

List of equipment 

Name Image Properties 
Microchannel cold plate  

 
Fig 9: cold plate 

Material - Copper  

Ceramic Heater 

 
Fig 10: Ceramic Heater[8] 

Material - Aluminum 
Nitride 
Max temperature – 400°C 
Max Power – 1000 Watt 
 

Centrifugal pump 

 
Fig 11: Centrifugal pump[9] 

Power source – 12V DC 
Max Flow rate – 8lpm 
Max Head – 3m 
Material – plastic 
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Flowmeter 

 
Fig 12: flowmeter 

Flow rate – 0.083lpm to 5 
lpm 
Temp range - -40°C to 
80°C 
Max pressure - 145psi 
Accuracy - +/- 1% 
Material – Pa66 + GF/PPs 
 

Thermistor 10K sensor 

 
Fig 13: thermistor 

Material – Brass 

Pressure Sensor GP-M001 

 
Fig 14: pressure sensor[10] 

Range - -14.5 to 145 PSI 
Medium temperature - -20 
to +100°C 
Power voltage – 10-30V 
DC 
Material - SS304 

Flow control valve 

 
Fig 15: flow control valve[11] 

Material – 316SS 
Max Pressure – 200PSI 
Temperature range - -17.5 
to 176°C 
 

Micromesh 

 
Fig 16: Microfilter[12] 

50μm Mesh(SS) 
Material Housing – 
polypropylene 
Bowl material - Nylon 
 

Brazed plate heat 
exchanger 

 
Fig 17: heat exchanger[15] 

Max pressure 580psi 
Max temperature 200°C 
Material Copper and 
Nickel 
 

PolyScience Chiller 

 
Fig 18: Chiller unit[13] 

Max power – 10KW 
Operating range – 10 to 
50°C 
Max pressure – 100PSI 
Max Flow – 13.2lpm 
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Power supply E3642A 

 
Fig 19: power supply unit 

Output range – 30 to 
100W 
Low range 0 to 30V/2.2A 
High range 0 to 60V /1.3A 
 

Agilent DAQ Unit 

 
Fig 20: DAQ unit 

2-wired 22 channel inputs 
20 voltage inputs 
Two current inputs 
 

Reservoir 

 
Fig 21: insulated reservoir 

Polypropylene 
Capacity - 3Gallons 
 

HI5522 

 
Fig 22: HI5522 Display unit[15] 

12V DC power supply 
pH range - -2 to 20 
EC range – 0US 
to1000mS 
Temperature range - -20 
to 120°C 
ORP range - =/- 2000mv 
 

HI1131B 

 
Fig 23: pH sensor[16] 

Material - Glass 
Reference Ag/AgCl 
Electrolyte 3.5M KCL 
Temperature range – 0 to 
100°C 
 

HI76312 

 
Fig 24: conductivity sensor[17] 

Platinum electrode 
Range 0 to 1000mS 
Temperature range - -5 to 
100°C 
 

HI3131B 

 
Fig 25: ORP sensor[18] 

Material - glass 
Temperature range - -5 to 
70°C 
Tip platinum pin 
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Fig 26: final image of Benchtop setup 

Experiment – I Procedure 

1. Pour DI water into the Loop and run the pump for a little while.  
2. Add 10ml of Spectrus NX100 solution into the DI water and keep the loop running for a 

few more minutes which can remove any salts or any other precipitates from all the surfaces 
through which coolant liquid flows. 

3. Remove the Di water and Spectrus NX100 solution and add fresh Di Water again into the 
Loop. 

4. Run the Loop again for a few minutes and remove the Di water. This step is performed to 
remove and left-over residues in the loop. 

5. Add the desired quantity of Coolant Liquid in the loop and switch ON the pump. 
6. After all the air from the loop is removed add a few more amounts of liquid if required. 
7. Keep the pump at max power to ensure all the air bubbles are removed in the loop.  
8. Insert the pH, EC, ORP, Temperature sensing probes into the reservoir and make sure there 

is sufficient liquid in the reservoir such that an ample amount of liquid is in contact with 
the probes.[25] 

9. Power up the ceramic Heater to 350watts. 
10. Adjust the flow rate to 0.5 lpm using the flow control device and switch ON the Chiller 

Unit keeping the temperature at 50°C. 
11. The reservoir inlet coolant liquid will be approx. 50°C as the remaining heat is reduced in 

the heat exchanger. 
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12. After the loop reaches stable condition start the DAQ unit so that all the thermistors, 
pressure sensors, thermocouple, and Probes values are stored in the local PC. 

13. Note down the average values of each entity for every hour. 
14. The values of pH, EC, and ORP at that instant of each hour should be noted and plotted on 

a graph. 
 

Experiment – II Setup 

The second experiment is conducted to observe the change of coolant chemistry concerning 
the time at elevated temperatures when kept in stagnated conditions. Two sets of four jars are kept 
in an environmental chamber shown in fig. The first set is kept unopened through the experiment 
and the other set of jars are opened twice every 24 hours and are exposed to the outside air. The 
idea of exposure to outside air refers to the amount of time coolant liquids in a data center are 
exposed during maintenance filter change and other operations. This time is approximately around 
1 to 3% of the time for which a liquid is used. 

There are two variations in this experiment. In the first variation, the liquids are kept without 
any addition of suspended materials and the readings are observed for 240 hours. In the second 
variation combination of different materials like copper, Stainless Steel, Brass, and EPDM rubber 
is kept immersed in all eight jars. This variation is to see the effect on coolant chemistry with the 
presence of different combinations of materials. [26] 

Fig 27: Environmental chamber   Fig 28: Borosilicate jars[19]  
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Experiment – II Procedure 

Variation – I 

1. In the first variation test two sets of jars are prepared, each set containing four jars 
for four different liquids.  

2. Clean all the Borosilicate jars with DI water twice.  
3. Rinse the jars with their allocated liquid and fill the jar with ¾ quantity of liquid. 
4. Set-I jars are kept closed at elevated temperature for the entire time and the initial 

and final values of pH, EC, ORP, Temperature are noted. 
5. The other set of jars which is also kept at the same elevated temperature is exposed 

to atmospheric air for approximately 3% 
6. of the entire time and their pH, EC, ORP, Temperature values are noted twice a day. 
7. Place the jars inside the environmental chamber and edit the program. 
8. Keep the temperature inside the chamber at 70°C and 40% humidity. 
9. Save the program and run it.[27] 
 
 

 

Fig 29: Variation – I jars kept in Environmental chamber 
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Variation – II 

1. In the second variation test two sets of jars are prepared, each set containing four jars 
for four different liquids.  

2. Clean all the Borosilicate jars with DI water twice.  
3. Rinse the jars with their allocated liquid and fill the jar with ¾ quantity of liquid. 
4. Place different materials such as LPDM rubber tubes, copper plates, bars of brass, 

and stainless steel each of one quantity inside the jars after removing all the impurities 
on them. 

 
Fig 30: different metals immersed in the liquid 

5. Set-I jars are kept closed at elevated temperature for the entire time and the initial 
and final values of pH, EC, ORP, Temperature are noted. 

6. The other set of jars that are also kept at the same elevated temperature is exposed to 
atmospheric air for approximately 10% of the entire time and their pH, EC, ORP, 
Temperature values are noted twice a day. 

7. Place the jars inside the environmental chamber and run the same program as in 
variation – I. 

 

Fig 31: Variation – II jars kept in Environmental chamber 
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Calibration:  

Thermistor calibration 

The calibration of the thermistor is done by the Thermistor calibration bath shown in the 
figure below. The thermistors are kept immersed in the thermal bath. A program is set from 15 to 
80 and is kept running till the temperature of the liquid inside the bath reaches both the given 
setpoints. The thermistor reading is noted at both setpoints. Offset and gain values are calculated 
and are fed to the DAQ unit.[28] 

 

Fig 32: Thermistor calibration bath[20] 

Pressure sensor calibration 

The calibration of the pressure sensors is done by the Pneumatic Pressure Comparator P5510 
shown in the figure below. the sensor is attached at another end of the air outlet. The knob is 
pressed down after closing the exhaust valve. Multiple readings are noted and the mean of 
difference in the values is calculated and is fed to the DAQ unit. Offset and gain values are 
calculated and are fed to the DAQ unit. 

 

Fig 33: Pneumatic Pressure Comparator P5510 
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Flowmeter calibration 

Coriolis flowmeter fig is a device that shows the accurate flow rate of a liquid irrespective of the 
viscosity of the liquid. The digital flow meter is connected in series with the Coriolis flowmeter 
and a pump is connected to give a flow in the loop. The flow rate is varied and the readings of 
both the flow meters are noted, after calculating the offset value it is adjusted in the digital flow 
meter.  

 

Fig 34: Coriolis Mass Flow Meter 

pH and Conductivity sensor calibration 

The display unit HI5522 is set on calibration mode. The pH electrode along with the 
temperature sensing probe is inserted in 4 different liquids which have some standard pH values 
at certain temperatures. The probe sends the values to the display unit and calibrates them 
automatically. In a similar way the conductivity sensing probe is set at calibration mode and the 
sensor is kept immersed in a liquid with a standard EC value. The display unit automatically 
calibrates the probe. In the below Fig and Fig, we can see four different liquids in which pH and 
Temperature probes are kept inserted and the conductivity probe is kept immersed. 

   

 

 

 

 

 

 Fig 35: calibrating liquids with standard pH values    Fig 36: Standard conductivity 
solution  
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Results 

Experiment – I 

EG-25 

The benchtop setup is used to experiment on EG-25 coolant liquid. The values are logged into 
a computer through a data acquisition unit. The result of the logged values for the EG-25 are plotted 
on the graphs below. 

On corrosion reaction oxides of copper are formed which are stable and have less thermal 
resistivity than pure copper. From the increase in thermal resistivity as shown in the graph in the 
duration of the experiment we can say that the surface of the microchannel cold plate is corroded 
which can affect the life of the cold plate.[29] 

 

Graph 4.1.1: Thermal resistance vs Time of EG-25 

From the graph, we can say that due to the corrosion reaction pores and cavities are formed 
inside the cold plate microchannel area which results in disrupting the flow of coolant across 
the cold plate and results in an increase of pressure drop across it. The sudden increase of 
pressure difference around 110 hours is due to elevating the rear end of the reservoir to increase 
the head level of liquid inside the reservoir as the liquid level was decreasing because of 
evaporation.[30] 
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Graph 4.1.2: Pressure difference vs Time of EG-25 

The pH value is seen to decrease over time in the graph. This is due to an increase in H+ 
ion concentration in the liquid which is released with the formation of copper oxides. Initially, 
during the first 40 hours, the value pH is decreased at a higher rate due to the initial passivation 
reaction. Later, the pH value is almost stable throughout the experiment.[31] 

 

Graph 4.1.3: pH vs Time of EG-25 
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 The conductivity of the liquid at different intervals of time is observed in the graph below 
the conductivity value reduces due to the loss of charge carriers in the liquid which reduces the 
rate of corrosion. These charge carriers are initially added as corrosion inhibitors which deplete 
as time passes by. The fluctuation of the graph observed is due to the exposure of outside air 
to the reservoir for the removal of probes during their calibration process.[32] 

 

Graph 4.1.4: Electrical Conductivity vs Time of EG-25 

The ORP represents the oxygen levels in a liquid. In the below graph the ORP of EG-25 is 
seen to be increasing concerning time which tends that the oxygen level in the liquid is 
increasing which can result in a higher corrosion rate in the loop. 

 

Graph 4.1.5: ORP vs Time of EG-25 

0

1000

2000

3000

4000

0 15 30 45 60 75 90 105 120 135 150 165

co
nd

uc
ti

vi
ty

 (
μS

)

Time (hours)

Conductivity vs Time

conductivity Log. (conductivity)

0
10
20
30
40
50
60
70
80
90

100

-10 10 30 50 70 90

O
R

P
 (

m
v)

Time (hours)

ORP vs Time

ORP Log. (ORP)



32  
 

PG-55 

The benchtop setup is used to experiment on PG-55 coolant liquid. The values are logged 
into a computer through a data acquisition unit. The result of the logged values for the PG-55 
are plotted on the graphs below. 

On corrosion reaction oxides of copper are formed which are stable and have less thermal 
resistivity than pure copper. From the increase in thermal resistivity as shown in the graph in 
the duration of the experiment we can say that the surface of the microchannel cold plate is 
corroded which can affect the life of the cold plate.[33] 

 

 

Graph 4.2.1: Thermal resistance vs Time of PG-55 

From the graph, we can say that due to the corrosion reaction pores and cavities are formed 
inside the cold plate microchannel area which results in disrupting the flow of coolant across 
the cold plate and results in an increase of pressure drop across it. The trendline of the Graph 
indicates the mean pressure increase throughout the experiment. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100 120 140 160 180 200 220

T
h

em
ra

l 
re

si
st

an
ce

 K
(

m
2/

W
) 

Time (hours)

Thermal resistance vs time

thermal resistnce Log. (thermal resistnce)



33  
 

 

Graph 4.2.2: Pressure difference vs Time of PG-55 

The pH value is seen to decrease over time in the graph. This is due to an increase in H+ 
ion concentration in the liquid which is released with the formation of copper oxides. Initially, 
during the first 40 hours, the value pH is decreased at a higher rate due to the initial passivation 
reaction. Later, the pH value is almost stable throughout the experiment. 

 

Graph 4.2.3: pH vs Time of PG-55 

The conductivity of the liquid reduces due to the loss of charge carriers in the liquid which 
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which deplete as time passes by. The charge carriers supply charged ions to the copper surface 
to nullify the imbalance and prevent the formation of copper oxides. [34] 

 

Graph 4.2.4: Electrical Conductivity vs Time of PG-55 

The ORP value of PG-55 is seen to be increasing over time which tends that the oxygen 
level in the liquid is increasing which can result in a higher corrosion rate in the loop. The 
fluctuation of ORP is due to the exposure of liquid to outside air during the removal of sensing 
probes for calibration purposes. 

 

Graph 4.2.5: ORP vs Time of PG-55 
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Experiment – II 

Variation – 1 

Set – I (pH) 

The pH values of all the liquids are measured initially and compared to the pH value at the 
end of the experiment. The set-1 jar is unexposed to outside air during the whole test. From the 
below graph we can say that all the liquids have a similar trend in pH levels. EG-55 has a 3.9% 
change which is the least while EG-25 has a 5.07% change as the highest change among the four 
liquids in pH value. 

 

 
Graph 4.3.1.1:  Variation – I Set – I pH vs Time 

Set – II (pH) 

In the second set of jars which were exposed to the outside air for a period approximately 
1-2% of the time, the readings were taken twice every day with 12 hours gap. From the below 
graph it is observed that all the liquids have a similar trend in pH levels even with periodic exposure 
to the outside air. PG-55 has the least change of 8.87% and PG-25 has the highest change of 10.3% 
in pH value. 
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Graph 4.3.1.2: Variation – I Set – II pH vs Time 

Set – I (EC) 

 The conductivity of the liquids seems to be increased in the case of jars that were kept 

unexposed. They all have an almost similar trend. EG-55 has a change of 47.55% which is the 

highest While PG-55 has a change of 13.6% which is the least among the four liquids. From the 

below graph we can say that the concentration of charge carriers increases in the liquids when kept 

unexposed to the outside air. 
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Graph 4.3.2.1: Variation – I Set – I Electrical conductivity vs Time 

Set – II (EC) 

In the second set of jars which were exposed to the outside air for a period approximately 

1-2% of the time, the readings were taken twice every day with 12 hours gap. From the below 

graph it is observed that three of the liquids have a similar trend in conductivity level, but the 

conductivity value of PG-55 has constantly decreased with time. EG-55 has a change of 42.77% which 

is the highest While PG-55 has a change of 24.51% which is the least among the four liquids.[35] 
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Graph 4.3.2.2: Variation – I Set – II Electrical conductivity vs Time 

Set – I (ORP)  

The ORP values in all the liquids which were kept un-exposed were reduced over time. From the 

below graph we can say that all the liquids are having fewer oxygen levels compared with the 

values at the start of the experiment. PG-55 has the highest change whereas EG-25 has the least 

change among the four liquids.[36] 
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Graph 4.3.3.1: Variation – I Set – I ORP vs Time 

Set- II (ORP) 

From the below-plotted graph, we can state that ORP values were increased for all the 

liquids at the starting 24-hour period and then the ORP value kept on increasing. All the liquids 

seem to have a similar trend. PG-55 has the highest increase in ORP value whereas EG-25 has the 

least increase in ORP value. 
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Graph 4.3.3.2: Variation – I Set – II ORP vs Time 

Experiment – II 

Variation – 2 

Set – I (pH) 

The pH values of all the liquids are measured initially and compared to the pH value at the end 

of the experiment. The end pH values of these liquids when the combination of materials is kept 

immersed in them is less than the pH values observed in Variation – I. The set-1 jar is unexposed 

to outside air during the whole test. From the below graph we can say that all the liquids have a 

similar trend in pH levels. EG-55 has a 3.9% change which is the least while EG-25 has a 5.07% 

change as the highest change in pH value among the four liquids.  
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Graph 4.4.1.1: Variation – II Set – I pH vs Time 

Set – II (pH) 

In the second set of jars where the combination of materials are kept immersed were 

exposed to the outside air for a period of approximately 1-2% of the time, the readings were taken 

twice every day with 12 hours gap. From the below graph it is observed that all the liquids have a 

similar trend in pH levels even with periodic exposure to the outside air. EG-55 has the highest 

reduction of 14.42% EG- 25 has a reduction of 10.46% among the four liquids.[37] 
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Graph 4.4.1.2: Variation – II Set – II pH vs Time 

Set – I (conductivity) 

 The conductivity of the liquids seems to be increased in the case of jars with a combination 

of materials kept immersed. They all have an almost similar trend. PG-55 has a change of 30.78% 

which is the highest While EG-25 has a change of 7.97% which is the least among the four liquids. 

From the below graph we can say that the concentration of charge carriers increases in the liquids 

when kept unexposed to the outside air. 
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Graph 4.4.2.1: Variation – II Set – I Electrical conductivity vs Time 

Set – II (conductivity) 

In the second set of jars which were exposed to the outside air for a period approximately 
1-2% of the time, From the below graph it is observed that all the liquids have a similar trend in 
conductivity level. All the liquids had almost similar charge concentrations throughout the 
experiment PG-55 has a change of 53.03% which is the highest While EG-55 has a change of 
19.73% which is the least among the four liquids.[38] 
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Graph 4.4.2.2: Variation – II Set – II Electrical conductivity vs Time 

Set – II (ORP) 

The ORP values in all the liquids when a combination of materials was kept immersed and 

kept un-exposed were reduced over time. From the below graph we can say that all the liquids are 

having fewer oxygen levels compared with the values at the start of the experiment. EG-55 has the 

least value and PG-25 has the highest value at the end of the experiment among the four liquids. 
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Graph 4.4.3.1: Variation – II Set – I ORP vs Time 

Set – II (ORP) 

 From the below-plotted graph, we can state that ORP values were decreased for three of 

the liquids at the starting 24-hour period and then the ORP value kept on increasing. In the case of 

PG-25 ORP value never decreased but kept on increasing unevenly. All the liquids seem to have 

a similar trend after 24 hour period. PG-55 has the highest increase in ORP value whereas EG-25 

has the least increase in ORP value among the four liquids.[39] 
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Graph 4.4.3.2: Variation – II Set – II ORP vs Time 
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Conclusion 

From the experimental results, it can be said that corrosion is taking place inside the loop even 
after the addition of charge carriers or corrosion inhibitors. 

The exposure of outside air is directly proportional to the rate of corrosion as the coolant liquids 
had a higher change in pH, Electrical conductivity, and ORP values than compared to that of jars 
that were kept un-exposed to the outside air. 

The temperature of the coolant at the inlet should be kept at lower limits which can reduce the 
corrosion rate. This may increase the cooling power for a data center facility, but it can save 
many other costs such as pumping power maintenance costs and repair costs.  

When a cold plate is replaced due to blockage by corrosion the whole server might be shut down 
for its repair which can cost an ample amount.  

The addition of charge carriers should be done to the liquid coolants at regular periods to keep 
the corrosion level minimum and to increase the life of cold plates. 

Future Work 

Investigate the trend of the variation in coolant properties for the coolants at two more 
concentrations PG-25 and EG-55 to compare the effects of concentrations of the coolants that are 
used in the data center cooling industry 

To find the corrosion level by studying the surface topography of the cold plate 
microchannels using SEM. 

Studying the surface topography of the materials which were kept immersed in the coolant 
liquids and comparing the corrosion levels in between them. 
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