
Human Behavior Modeling in Long Videos:
Drowsiness Detection and Action Segmentation

Thesis Submitted in Fulfillment of the Requirements for the Degree of
PhD in Computer Science

by

Reza Ghoddoosian
1001390466

Supervised by: Prof. Vassilis Athitsos

Department of Computer Science and Engineering
UNIVERSITY OF TEXAS AT ARLINGTON

May 2022

Abstract

In this thesis we focus on two instances of human behavior modeling in long untrimmed

videos: drowsiness detection, and action segmentation. In the first section, we focus on

drowsiness detection. Specifically, we introduce a large and public real-life dataset and a

baseline temporal model to classify drowsiness into three stages of alert, low vigilant, or

drowsy. In the second section, we study action segmentation in instructional videos under

weak supervision. In order to save time and cost, weakly supervised methods are trained

based on only video-level action sequences as opposed to a fully supervised method which

is trained using frame-level labels. We study weakly-supervised action segmentation from

multiple aspects. First, we present a duration model to predict the remaining duration of

an ongoing action to iteratively align a given sequence of action in an input video. Second,

we propose a hierarchical approach to segmentation, where top level tasks are predicted

to constrain lower level atomic actions. Third, we introduce the first weakly-supervised

online action segmentation model to segment streaming videos online at test time using

Dynamic Programming and show its advantages over greedy sliding window approach.

Finally, we present a multi-view training strategy to exploit frame-wise correspondence

between multiple views as supervision for training weakly-labeled instructional videos.

The experimental results on multiple public datasets show the efficacy of our algorithms.

Dedicated to the computer vision research community...

Acknowledgments

While acknowledging the imperfection in my PhD work, I’m lucky to be proud and con-

tent about the lessons learned and the honest projects done during my program. A journey

that would not have been possible to make without the support of many behind the scenes.

I’d like to deeply thank some of those names: My parents, Ali and Noushin, my sister,

Nazanin, my aunts, Maryam and Nasrin, my deceased grandfather, Gholam Hossein, my

brother from another mother, Mohammad Keshavarzi, my close friends, Carlos Arocha

and Mathew Zinke, my cousins Hosein and Yasmin, and finally all the volunteers who

helped for data collection.

Furthermore, I would like to acknowledge the contribution of co-authors and lab mates

during my PhD projects, specially Saif Sayed and Marnim Galib, as my partners in crime,

and Prof. Dr. Vassilis Athitsos as my supervisor. To honor the work of the aforementioned

people and others, I use the plural first person pronoun (we/us) across this thesis.

All the good associated with my name is credited to my dear parents Ali Ghoddosian

and Noushin Zarifgolzar. I’m a traveler of life with a light backpack. May this journey

bring smiles to humanity somewhere, somehow, sometime...

iv

Table of Contents

1: Introduction 1

Part 1:
Early Drowsiness Detection 4

2: A Realistic Dataset and Baseline Temporal Model for Early Drowsiness De-
tection 5

2.1 Abstract . 5

2.2 Introduction . 5

2.3 Related Work . 8

2.3.1 Datasets . 9

2.3.2 Drowsiness Detection Methods 10

2.4 The Real-Life Drowsiness Dataset (RLDD) 11

2.4.1 Overview . 11

2.4.2 Data Collection . 12

2.4.3 Content . 13

2.4.4 Human Judgment Baseline . 13

2.5 The Proposed Baseline Method . 14

2.5.1 Blink Detection and Blink Feature Extraction 14

2.5.2 Drowsiness Detection Pipeline 15

2.6 Experiments . 18

2.6.1 Evaluation Metrics: . 18

2.6.2 Implementation . 19

2.6.3 Experimental Results . 20

2.7 Conclusion . 22

2.8 Supplementary Material . 23

2.8.1 Blink Retrieval Algorithm . 23

Part 2:
Weakly-Supervised
Action Segmentation 27

3: Action Duration Prediction for Segment-Level Alignment of Weakly-Labeled
Videos 28

3.1 Abstract . 28

3.2 Introduction . 28

3.3 Related Work . 30

3.4 Method . 31

3.4.1 Problem Formulation . 31

3.4.2 Duration Network(DurNet) . 34

3.4.3 Action Selector Network . 35

3.4.4 Segment-Level Beam Search . 36

3.5 Experiments . 39

3.5.1 Comparison to State-of-the-Art Methods 40

3.5.2 Analysis and Ablation Study . 42

3.5.2.1 DurNet vs. Poisson Duration Model. 42

3.5.2.2 Duration Step Size Granularity. 42

3.5.2.3 Analysis of the Action Selector Components. 44

3.5.2.4 Qualitative Segment-Level Alignment Results. 45

3.6 Conclusion . 46

3.7 Supplementary Material . 47

ii

3.7.1 Implementation Details . 47

3.7.1.1 The Breakfast Dataset Experiments 47

3.7.1.2 The Hollywood Dataset Experiments 47

3.7.1.3 Competitors’ Results 48

4: Hierarchical Modeling for Task Recognition and Action Segmentation in
Weakly-Labeled Instructional Videos 49

4.1 Abstract . 49

4.2 Introduction . 49

4.3 Related Work . 52

4.4 Hierarchical Task Modeling Method . 53

4.4.1 Method Overview . 53

4.4.2 Detailed Architecture . 54

4.4.2.1 Feature Extraction . 55

4.4.2.2 Semantic Hierarchy Loss 55

4.4.2.3 Temporal Hierarchy Loss 57

4.4.2.4 Stream Fusion Loss . 58

4.5 Top-Down Action Segmentation . 59

4.6 Experiments . 60

4.6.1 Comparison to State-of-the-Art Methods 61

4.6.2 Analysis and Ablation Study in Task Modeling 63

4.6.3 Qualitative Results . 64

4.7 Conclusion . 65

4.8 Supplementary Material . 67

4.8.1 Overview . 67

4.8.2 I3D and iDT Feature Comparison in Task Recognition of Weakly-

Labeled Videos . 67

4.8.3 Task Classification Results on 10 Classes of the Breakfast Dataset 68

4.8.4 Glossary of Terms and Symbols 69

iii

5: Weakly-Supervised Online Action Segmentation in Multi-View Instructional
Videos* 72

5.1 Abstract . 72

5.2 Introduction . 73

5.3 Related Work . 75

5.4 Background . 76

5.4.1 Problem Definition . 76

5.4.2 Offline Inference . 77

5.4.3 Offline Segmentation Energy Score 77

5.5 Weakly-Supervised Online Segmentation 78

5.5.1 Online Inference . 78

5.5.2 Online-Offline Discrepancy Loss (OODL) 79

5.6 Multi-View Supervision . 81

5.7 Experiments . 83

5.7.1 Comparison to the Baseline Methods 84

5.7.2 Analysis and Ablation Study . 86

5.7.2.1 Online-Offline Discrepancy Analysis 86

5.7.2.2 Multi-View Supervision 87

5.8 Conclusion . 89

5.9 Supplementary Material . 90

5.9.1 Glossary of Symbols . 90

5.9.2 Limitation . 90

5.9.2.1 Runtime Frame Rate Analysis 90

5.9.2.2 Computation Complexity of Online vs. Offline 90

5.9.3 Qualitative Results . 91

6: Conclusion 94

References 95

iv

1 Introduction

Automatic understanding of human behavior has many applications in surveillance and

human-machine interaction. Examples of such applications are in driver assistant systems

and smart factories where robots and humans interact to assemble a part or complete

a task. In this thesis we focus on two instances of human behavior modeling in long

untrimmed videos: drowsiness detection, and action segmentation.

In the first section, we focus on drowsiness detection. Specifically, we introduce a

large and public real-life dataset of 60 subjects, with video segments labeled as alert, low

vigilant, or drowsy. This dataset consists of around 30 hours of video, with contents rang-

ing from subtle signs of drowsiness to more obvious ones. we also benchmark a temporal

model for our dataset, which classifies drowsiness into three stages through processing

blinking pattern over time.

In the second section, we study action segmentation in instructional videos under

weak supervision. In the segmentation problem, the goal is to temporally partition an

input video into a sequence of actions. In order to save time and cost, weakly supervised

methods are trained based on only video-level action sequences as opposed to a fully

supervised method which is trained using frame-level labels. Instructional videos in par-

ticular are long videos where a dense number of actions takes place by a human subject

to complete a top-level task. Cooking and assembly are specific domains of instructional

videos which we focus on in this thesis.

We study weakly-supervised action segmentation from multiple aspects. First, we

present a duration model to predict the remaining duration of an ongoing action to iter-

atively align a given sequence of action in an input video. Second, we propose a hierar-

chical approach to segmentation. In this approach, we first predict the top-level task of

the video and use the predicted task to constrain the segmentation results. We show both

the efficiency and the efficacy of low-level segmentation results can be improved upon

our proposed hierarchical paradigm. Third, we introduce the first weakly-supervised on-

line action segmentation model to segment streaming videos online at test time using

1

Dynamic Programming and show its advantages over greedy sliding window approach.

Finally, we present a multi-view training strategy to exploit frame-wise correspondence

between multiple views as supervision for training weakly-labeled instructional videos.

Our experimental results show that such a multi-view supervision improves performance

of single view online segmentation models at test time.

In summary, the main contributions in this thesis are as follows:

• We present a large and public real-life dataset of 60 subjects in three drowsiness

classes. This dataset consists of around 30 hours of video, with contents ranging

from subtle signs of drowsiness to more obvious ones.

• We introduce a Duration Network for action alignment, that is explicitly designed to

exploit information from video features and show its edge over the Poisson model

used in previous work [1, 2].

• We present a novel top-down approach for weakly-supervised action segmentation,

where the video-level task is used to constrain the segmentation output.

• We are the first to address the problem of weakly-supervised online action segmen-

tation in instructional videos, and offer a DP-based framework.

• We use frame-wise multi-view correspondence, during training only, to generate

more accurate action pseudo-ground-truth in weakly-labeled videos with no addi-

tional annotation cost. Our work is the first to incorporate multi-view video under-

standing in action segmentation.

Finally, the list of published papers that constitute this thesis is provided below:

• Reza Ghoddoosian, Isht Dwivedi, Nakul Agarwal, Chiho Choi and Behzad Dar-

iush. Weakly-Supervised Online Action Segmentation in Multi-View Instructional

Videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, 2022

• Reza Ghoddoosian, Saif Sayed, and Vassilis Athitsos. Hierarchical modeling for

task recognition and action segmentation in weakly- labeled instructional videos.

In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer

Vision, 2022

2

• Reza Ghoddoosian, Saif Sayed, and Vassilis Athitsos. Action duration predic-

tion for segment-level alignment of weakly-labeled videos. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision, pages 2053–2062,

2021

• Reza Ghoddoosian, Marnim Galib, and Vassilis Athitsos. A realistic dataset and

baseline temporal model for early drowsiness detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,

pages 0–0, 2019

3

Part 1:
Early Drowsiness Detection

4

2 A Realistic Dataset and Baseline
Temporal Model for Early Drowsi-
ness Detection

2.1 Abstract

Drowsy driving can be as dangerous as drunk driving, and it is a constant threat for every

driver on the road. It is imperative to find an economical way for the general public to

detect the onset of drowsiness. In this chapter, we address early drowsiness detection,

which can provide drivers ample time to react. We present a large and public real-life

dataset1 of 60 subjects in three drowsiness classes. This dataset consists of around 30

hours of video, with contents ranging from subtle signs of drowsiness to more obvious

ones. We also benchmark a temporal model2 for our dataset, which is computationally

suitable for cell phones. We detect drowsiness via an intermediate regression step that

rates the drowsiness level with a score. The core of our proposed method is a Hierarchical

Multiscale Long Short-Term Memory (HM-LSTM) network, that is fed by detected blink

features in sequence. Our experiments highlight the temporal relationship between blinks.

In the experimental results, our baseline method produces higher accuracy than human

judgment.

2.2 Introduction

Drowsiness detection is an important problem. Successful solutions have applications

in domains such as driving and workplace. For example, in driving, National Highway

1 Available on: sites.google.com/view/utarldd/home

2 Code available on: https://github.com/rezaghoddoosian

5

Figure 2.1: Sample frames from the RLDD dataset in the alert (first row), low
vigilant (second row) and drowsy (third row) states.

Traffic Safety Administration in the US estimates that 100,000 police-reported crashes

are the direct result of driver fatigue each year. This results in an estimated 1,550 deaths,

71,000 injuries, and $12.5 billion in monetary losses [3]. To put this into perspective, an

estimated 1 in 25 adult drivers report having fallen asleep while driving in the previous 30

days [4, 5]. In addition, studies show that, when driving for a long period of time, drivers

lose their self-judgment on how drowsy they are [6], and this can be one of the reasons that

many accidents occur close to the destination. Research has also shown that sleepiness

can affect workers’ ability to perform their work safely and efficiently [7, 8]. All these

troubling facts motivate the need for an economical solution that can detect drowsiness

in early stages. It is commonly agreed [9, 10, 11] that there are three types of sources of

information in drowsiness detection: Performance measurements, physiological measure-

ments, and behavioral measurements.

For instance, in the driving domain, performance measurements focus on steering

wheel movements, driving speed, brake patterns, and lane deviations. An example is the

Attention Assist system by Mercedes Benz [12]. As practical as these methods can be,

such technologies are oftentimes reserved for high-end models, as they are too expensive

to be accessible to the average consumer. Performance measurements at workplace can

be obtained by testing workers’ reaction time and short-term memory [8]. Physiologi-

6

cal measurements such as heart rate, electrocardiogram (ECG), electromyogram (EMG),

electroencephalogram (EEG) [13, 14] and electrooculogram (EOG) [14] can be used to

monitor drowsiness. However, such methods are intrusive and not practical to use in the

car or workspace despite their high accuracy. Wearable hats have been proposed as an

alternative for such measurements [15], but they are also not practical to use for long

hours.

Behavioral measurements are obtained from facial movements and expressions using

non-intrusive sensors like cameras. In Johns’s work [16], blinking parameters are mea-

sured by light-emitting diodes. However, this method is sensitive to occlusions, where

some object such as a hand is placed between the light emitting diode and the eyes.

Phone cameras are an accessible and cheap alternative to the aforementioned methods.

One of the goals of this chapter is to introduce and investigate an end-to-end processing

pipeline that uses input from phone cameras to detect both subtle and more clearly ex-

pressed signs of drowsiness in real time. This pipeline is computationally cheap so that

it could ultimately be implemented as a cell phone application available for the general

public.

Previous work in this field mostly focused on detecting extreme drowsiness with ex-

plicit signs such as yawning, nodding off and prolonged eye closure [17, 10, 18]. How-

ever, for drivers and workers, such explicit signs may not appear until only moments

before an accident. Thus, there is significant value in detecting drowsiness at an early

stage, to provide more time for appropriate responses. The proposed dataset represents

subtle facial signs of drowsiness as well as the more explicit and easily observable signs,

and thus it is an appropriate dataset for evaluating early drowsiness detection methods.

Our data consists of around 30 hours of RGB videos, recorded in indoor real-life

environments by various cell phone/web cameras. The frame rates are below 30 fps,

which makes drowsiness detection more challenging, as blinks are not observed as clearly

as in high frame-rate videos. The videos in the dataset are labeled using three class labels:

alertness, low vigilance, and drowsiness (Fig.3.4). The videos have been obtained from

60 participants. The need for research in early drowsiness detection is further illustrated

by experiments we have conducted, where we asked twenty individuals to classify videos

from our dataset into the three predefined classes. The average accuracy of the human

observers was under 60%. This low accuracy indicates the challenging nature of the early

drowsiness detection problem.

In addition to contributing a large and public realistic drowsiness dataset, we also

implement a baseline method and include quantitative results from that method in the ex-

periments. The proposed method leverages the temporal information of the video using a

7

Hierarchical Multiscale LSTM (HM-LSTM) network [19] and voting, to model the rela-

tionship between blinking and state of alertness. The proposed baseline method produces

higher accuracy than human judgment in our experimental results.

Previous work on drowsiness detection produced results on datasets that were either

private [20] or acted [17, 10]. By “acted” we mean data where subjects were instructed

to simulate drowsiness, compared to “realistic” data, such as ours, where subjects were

indeed drowsy in the corresponding videos. The lack of large, public, and realistic datasets

has been pointed out by researchers in the field [11, 17, 10].

Our work is motivated to some extent by the driving domain (i.e., camera angle and

distance in our dataset, and the calibration period in our method as explained in Sec. 4.2).

However, our dataset has not been obtained from driving and it does not capture some

important aspects of driving such as night lighting, camera vibration due to car motion

and head movements for monitoring the environment. Given these aspects of our dataset,

we do not claim that our dataset and results represent driving conditions. At the same

time, the data and the proposed baseline method can be useful for researchers targeting

other applications of drowsiness detection, for example in workplace environments.

The proposed dataset offers significant advantages over existing public datasets for

drowsiness detection, regardless of whether those existing datasets have been motivated

by the driving domain or not: (a) it is the largest to date public drowsiness detection

dataset, (b) the drowsiness samples are real drowsiness as opposed to acted drowsiness

in [21], and (c) the data were obtained using different cameras. Each subject recorded

themselves using their cell phone or web camera, in an indoor real-life environment of

their choice. This is in contrast to existing datasets [21, 13] where recordings were made

in a lab setting, with the same background, camera model, and camera position.

Other contributions of this chapter can be summarized as follows: (a) introducing, as

a baseline method, an end-to-end real time drowsiness detection pipeline based on low

frame rates resulting in a higher accuracy than that of human observers, and (b) combin-

ing blinking features with Hierarchical Multiscale Recurrent Neural Networks to tackle

drowsiness detection using subtle cues. These cues, which can be easily missed by hu-

man observers, are useful for detecting the onset of drowsiness at an early stage, before it

reaches dangerous levels.

2.3 Related Work

Drowsiness Detection has been studied over several years. In the rest of this section, a

review of the available datasets and existing methods will be provided.

8

Figure 2.2: The model design and configuration.

2.3.1 Datasets

As pointed out above, there are numerous works in drowsiness detection, but none of

them uses a dataset that is both public and realistic. As a result, it is difficult to compare

prior methods to each other and to decide what the state of the art is in this area. Several

existing methods [16, 22, 23, 9, 24] were evaluated on a small number of subjects without

sharing the videos. In some cases [25, 10] the subjects were instructed to act drowsy, as

opposed to obtaining data from subjects who were really drowsy.

Some datasets [26, 27, 28] have been created for short and general micro expression

detection which are not applicable specifically for drowsiness detection. The NTHU-

driver drowsiness detection dataset is a public dataset which contains IR videos of 36

participants while they simulate driving [21]. However, it is based on subjects pretending

to be drowsy, and it is an open question whether and to what extent videos of pretended

drowsiness are useful training data for detecting real drowsiness, especially at an early

stage.

The DROZY dataset [13], contains multiple types of drowsiness-related data includ-

ing signals such as EEG, EOG and near-infrared (NIR) images. An advantage of the

DROZY dataset is that drowsiness data are obtained by subjects who are really drowsy,

as opposed to pretending to be drowsy. Compared to the DROZY dataset, our dataset

has three advantages: First, we have a substantially larger number of subjects (60 as op-

posed to 14). Second, for each subject, we have data showing that subject in each of the

three predefined alertness classes, whereas in the DROZY dataset some subjects are not

recorded in all three states. Third, in DROZY all videos were captured using the same

camera position and background, under controlled lab conditions, whereas in our dataset

9

each subject used their own cell phone and a different background. Compared to DROZY,

our dataset also has the important difference that it provides color video, whereas DROZY

offers several other modalities, but only NIR video.

Last but not least, Friedrichs and Yang [20], used 90 hours of real driving to train and

evaluate their method, but their dataset is private and not available as a benchmark.

2.3.2 Drowsiness Detection Methods

Features in non-intrusive drowsiness detection by cameras are divided into handcrafted

features or features learned automatically using CNNs. Regarding handcrafted features,

the most informative facial region about drowsiness is the eyes, and commonly used fea-

tures are usually related to blinking behavior. McIntire et al. [22] show how blink fre-

quency and duration normally increase with fatigue by measuring the reaction time and

using an eye tracker. Svensson [14] has shown that amplitude of blinks can also be an

important factor. Friedrichs and Yang [20] investigate many blinking features like eye

opening velocity, average eye closure speed, blink duration, micro sleeps and energy of

blinks as well as head movement information to decide the correlation of all these fea-

tures with alertness, and use the sequential floating forward selection (SFFS) algorithm

for feature selection. They report a final classification rate of 82.5% on their own private

dataset, using three drowsiness classes as we do in this chapter. Their 82.5% accuracy is

noticeably larger than the 65.2% accuracy that we report in our experiments. However,

all the features in [20] are extracted using the Seeing Machines sensor [29] that uses not

only video information (with the frame rate of 60 fps) but also the speed of the car, GPS

information and head movement signals to detect drowsiness. In contrast, in our work the

data comes from a cell phone camera or a web camera.

Recent research examines the effectiveness of Deep Neural Networks for end-to-end

feature extraction and drowsiness detection, as opposed to the works that use handcrafted

features with conventional classifiers or regressors such as regression and discriminant

analysis (LDA) [23], or fitting a 2D Gaussian with thresholding [16]. The results of the

mentioned studies were not validated based on a large or public dataset.

Park et al. [17] fine-tune three CNNs and apply an SVM to the combined features of

those three networks to classify each frame into four classes of alert, yawning, nodding

and drowsy with blinking. The model is trained on the NTHU drowsiness dataset that

is based on pretended drowsiness, and tested on the evaluation portion of NTHU dataset

which includes 20 videos of only four people, resulting in 73% drowsiness detection ac-

curacy. We should note that the accuracy we report in our experiment is 65.2%, which is

10

lower that the 73% accuracy reported in [17]. However, the method of [17] was evaluated

on pretended data, where the signs of drowsiness tend to be easily visible and even exag-

gerated. The work of Park et al.does not consider the temporal information in the videos

and only classifies each frame independently, thus it can only classify based on the clear

signs of drowsiness.

Bhargava et al. [10] show how a distillated deep network can be of use for embedded

systems. This is relevant to the baseline method proposed in this chapter, which also aims

for low computational requirements. The reported accuracy in [10] is 89% using three

classes (alert, yawning, drowsy), based on training on patches of eyes and lips. Similar

to Park et al.’s work, Bhargava et al.’s network also classifies each frame independently,

thus not using temporal features. The dataset they used is private, and based on acted

drowsiness, so it is difficult to compare those results to the results reported in this work.

2.4 The Real-Life Drowsiness Dataset (RLDD)

2.4.1 Overview

The RLDD dataset was created for the task of multi-stage drowsiness detection, targeting

not only extreme and easily visible cases, but also subtle cases of drowsiness. Detection

of these subtle cases can be important for detecting drowsiness at an early stage, so as

to activate drowsiness prevention mechanisms. Our RLDD dataset is the largest to date

realistic drowsiness dataset.

The RLDD dataset consists of around 30 hours of RGB videos of 60 healthy partic-

ipants. For each participant we obtained one video for each of three different classes:

alertness, low vigilance, and drowsiness, for a total of 180 videos. Subjects were un-

dergraduate or graduate students and staff members who took part voluntarily or upon

receiving extra credit in a course. All participants were over 18 years old. There were

51 men and 9 women, from different ethnicities (10 Caucasian, 5 non-white Hispanic,

30 Indo-Aryan and Dravidian, 8 Middle Eastern, and 7 East Asian) and ages (from 20 to

59 years old with a mean of 25 and standard deviation of 6). The subjects wore glasses

in 21 of the 180 videos, and had considerable facial hair in 72 out of the 180 videos.

Videos were taken from roughly different angles in different real-life environments and

backgrounds. Each video was self-recorded by the participant, using their cell phone or

web camera. The frame rate was always less than 30 fps, which is representative of the

frame rate expected of typical cameras used by the general population.

11

1- Extremely alert
2- Very alert
3- Alert
4- Rather alert
5- Neither alert nor sleepy
6- Some signs of sleepiness
7- Sleepy, no difficulty remaining awake
8- Sleepy, some effort to keep alert
9- Extremely sleepy, fighting sleep

Table 2.1: KSS drowsiness scale

2.4.2 Data Collection

In this section we describe how we collected the videos for the RLDD dataset. Sixty

healthy participants took part in the data collection. After signing the consent form, sub-

jects were instructed to take three videos of themselves by their phone/web camera (of

any model or type) in three different drowsiness states, based on the KSS table [30] (Ta-

ble 2.1), for around ten minutes each. The subjects were asked to upload the videos as

well as their corresponding labels on an online portal provided via a link. Subjects were

given ample time (20 days) to produce the three videos. Furthermore, they were given

the freedom to record the videos at home or at the university, any time they felt alert,

low vigilant or drowsy, while keeping the camera set up (angle and distance) roughly the

same. All videos were recorded in such an angle that both eyes were visible, and the cam-

era was placed within a distance of one arm length from the subject. These instructions

were used to make the videos similar to videos that would be obtained in a car, by phone

placed in a phone holder on the dash of the car while driving (although, as we stated in

the introduction, there are other important characteristics of driving conditions that our

dataset does not capture). The proposed set up was to lay the phone against the display

of their laptop while they are watching or reading something on their computer. After a

participant uploaded the three videos, we watched the entire videos to verify their authen-

ticity and to make sure that our instructions were followed. In case of any question, we

contacted the participants and asked them to share more details about the situation under

which they recorded each video. In some cases, we asked them to redo the recordings

and if the videos were clearly not realistic (people faking drowsiness as opposed to being

drowsy) or off the standard, we simply ignored those videos for quality reasons. The three

classes were explained to the participants as follows:

1) Alert: One of the first three states highlighted in the KSS table in Table 2.1. Sub-

jects were told that being alert meant they were experiencing no signs of sleepiness.

12

2) Low Vigilant: As stated in level 6 and 7 of Table 2.1, this state corresponds to

subtle cases when some signs of sleepiness appear, or sleepiness is present but no effort

to keep alert is required.

3) Drowsy: This state means that the subject needs to actively try to not fall asleep

(level 8 and 9 in Table 2.1).

2.4.3 Content

This dataset consists of 180 RGB videos. Each video is around ten minutes long, and is

labeled as belonging to one of three classes: alert (labeled as 0), low vigilant (labeled as

5) and drowsy (labeled as 10). The labels were provided by the participants themselves,

based on their predominant state while recording each video. Clearly there is a subjective

element in deciding these labels, but we did not find a good way to remedy that problem,

given the absence of any sensor that could provide an objective measure of alertness. This

type of labeling takes into account and emphasizes the transition from alertness to drowsi-

ness. Each set of videos was recorded by a personal cell phone or web camera resulting in

various video resolutions and qualities. The 60 subjects were randomly divided into five

folds of 12 participants, for the purpose of cross validation. The dataset has a total size of

111.3 Gigabytes.

2.4.4 Human Judgment Baseline

We conducted a set of experiments to measure human judgment in multi-stage drowsiness

detection. In these experiments, we asked four volunteers per fold (20 volunteers in total)

to watch the unlabeled and muted videos in each fold and write down a real number

between 0 to 10 estimating the drowsiness degree per video (see Table 2.1). Before the

experiment, volunteers (8 female and 12 male, 3 undergraduates and 17 graduate students)

were shown some sample videos that illustrated the drowsiness scale. Then, they were left

alone in a room to watch the videos (they were allowed to rewind back or fast forward

the videos at will) and annotate them. In order to make sure that each judgment was

independent of the other videos of the same person, volunteers were instructed to annotate

one video of each subject before annotating a second video for any subject. Results of

these experiments are demonstrated in section 2.6.3 and compared with the results of our

baseline method. Observers (aged 26.1± 2.9 (mean± SD)) were from computer science,

psychology, nursing, social work and information systems majors.

13

2.5 The Proposed Baseline Method

In this section, we discuss the individual components of our proposed multi-stage drowsi-

ness detection pipeline. The blink detection and blink feature extraction are described

first. Then we discuss how we integrate a Hierarchical Multiscale LSTM module into

our model, how we formulate drowsiness detection initially as a regression problem, and

how we discretize the regression output to obtain a classification label per video segment.

Finally, we discuss the voting process that is applied on top of classification results of all

segments of a video.

2.5.1 Blink Detection and Blink Feature Extraction

The motivation behind using blink-related features such as blink duration, amplitude, and

eye opening velocity, was to capture temporal patterns that appear naturally in human

eyes and might be overlooked by spatial feature detectors like CNNs (as it is the case for

human vision shown in our experiments). We used dlib’s pre-trained face detector based

on a modification to the standard Histogram of Oriented Gradients + Linear SVM method

for object detection [31].

We improved the algorithm by Soukupová and Cech [32] to detect eye blinks, using

six facial landmarks per eye described in [33] to extract consecutive quick blinks that

were initially missed in Soukupová and Cech’s work. Kazemi and Sullivan’s [33] fa-

cial landmark detector is trained on an “in-the-wild dataset”, thus it is more robust to

varying illumination, various facial expressions, and moderate non-frontal head rotations,

compared to correlation matching with eye templates or a heuristic horizontal or vertical

image intensity projection [32]. In our experiments, we noticed that the approach of [32]

typically detected consecutive blinks as a single blink. This created a problem for sub-

sequent steps of drowsiness detection, since multiple consecutive blinks can be a sign of

drowsiness. We added a post-processing step (Blink Retrieval Algorithm), and applied on

top of the output of [32], so as to successfully identify the multiple blinks which may be

present in a single detection produced by [32]. Our post-processing step, while lengthy

to describe, relies on heuristics and does not constitute a research contribution. To al-

low our results to be duplicated, we provide the details of that post-processing step as

supplementary material.

The input to the blink detection module is the entire video (with a length of approx-
imately ten minutes in our dataset). In a real-world application of drowsiness detection,
where a decision should be made every few minutes, the input could simply consist of the
last few minutes of video. The output of the blink detection module is a sequence of blink

14

events {blink1, ...,blinkK}. Each blinki is a four-dimensional vector containing four fea-
tures describing the blink: duration, amplitude, eye opening velocity, and frequency. For
each blink event blinki, we defined starti, bottomi, and endi as the “start”, “bottom” and
“end” points (frames) in that blink (Fig.2.3a) explained in the Blink Retrieval Algorithm.
Also, for each frame k, we denoted:

EAR[k] =
||~p2− ~p6||+ ||~p3− ~p5||

||~p1− ~p4||
(2.1)

where ~pi is the 2D location of a facial landmark from the eye region (Fig.2.3b). Using this
notation, we define four main scale invariant features that we extract from blinki. These
are the features that we use for our baseline drowsiness detection method:

Durationi = endi− starti +1 (2.2)

Amplitudei =
EAR[starti]−2EAR[bottomi]+EAR[endi]

2
(2.3)

Eye Opening Velocityi =
EAR[endi]−EAR[bottomi]

endi−bottomi
(2.4)

Frequencyi = 100× Number of blinks up to blinki

Number of frames up to endi
(2.5)

2.5.2 Drowsiness Detection Pipeline

Preprocessing: A big challenge in using blink features for drowsiness detection is the
difference in blinking pattern across individuals [20, 25, 14, 34], so features should be
normalized across subjects if we are going to train the whole data together at once. In
order to tackle this challenge, we use the first third of the blinks of the alert state to
compute the mean and standard deviation of each feature for each individual, and then
use Equation 2.6 to normalize the rest of the alert state blinks as well as the blinks in the
other two states of the same person(m) and feature(n):

Featuren,m =
Featuren,m−µn,m

σn,m
(2.6)

Here, µn,m and σn,m are the mean and standard deviation of feature n in the first third of

the blinks of the alert state video for subject m.

We do this normalization for both the training and test data of all subjects and features.

A similar approach has been taken in [25, 14]. This normalization is a realistic constraint:

when a driver starts driving starts driving a new car or a worker starts working, the camera

15

(a) (b)

Figure 2.3: (a) The EAR sequence during an entire blink and the start, bottom
and end points. (b) The eye landmarks to define EAR for each frame.

can use the first few minutes (during which the person is expected to be alert) to compute

the mean and variance, and calibrate the system. This calibration can be used for all

subsequent trips or sessions. The detector decides the state of the subject relative to the

statistics collected during the calibration stage. We should clarify that, in our experiments,

the alert state blinks used for normalization are never used again either for training or

testing. After the per-individual normalization, we perform a second normalization step,

where we normalize each feature so that, across individuals, the distribution of the feature

has a mean of zero and a variance of one.

Feature Transformation Layer: Instead of defining a large number of features ini-
tially, and then selecting the most relevant ones[20], we let the network use the four main
blink features and learn to map them to a higher dimensional feature space to minimize
the loss function. The goal of the fully connected layer before the HM-LSTM module is
to take each 4D feature vector at each time step as input and transform it to an L dimen-
sional space with shared weights (W ∈ R4×L) and biases (b ∈ R1×L) across time steps.
Define T as the number of time steps used for the HM-LSTM Network and fi ∈ R1×L for
each blink at each time step i , so that:

F = ReLU(BW +b), (2.7)

where F =
[
fT
1 , fT

2 , ..., fT
T
]T , b=

[
bT ,bT , ...,bT

]T , b∈RT×L and B=
[
blinkT

1 , ...,blinkT
T
]T .

HM-LSTM Network: Our approach introduces a temporal model to detect drowsi-

ness. The work by[9], using Hidden Markov Model (HMM), suggests that drowsiness

features follow a pattern over time. Thus, we used an HM-LSTM network[19] to lever-

age the temporal pattern in blinking. It is also ambiguous how each blink is related to

the other blinks or how many blinks in succession can affect each other. To remedy this

challenge, we used HM-LSTM cells to discover the underlying hierarchical structure in a

16

blink sequence.

Chung et al.[19] introduces a parametrized boundary detector, which outputs a binary

value, in each layer of a stacked RNN. For this boundary detector, positive output for

a layer at a specific time step signifies the end of a segment corresponding to the latent

abstraction level for that layer. Each cell state is “updated”, “copied” or “flushed” based

on the values of the adjacent boundary detectors. As a result, HM-LSTM networks tend

to learn fine timescales for low-level layers and coarse timescales for high-level layers.

This dynamic hierarchical analysis allows the network to consider blinks both in short

and long segments, depending on when the boundary detector is activated for each cell.

For additional details about HM-LSTM, we refer the readers to [19].

The HM-LSTM network takes each row of F as input at each time step and outputs

a hidden state hl ∈ R1×H only at the last time step for each layer l. H is the number of

hidden states per layer.

Fully Connected Layers: We added a fully connected layer (with W1,l ∈ RH×L1 as
weights and b1,l ∈ R1×L1 as biases) to the output of each layer l with L1 units to capture
the results of the HM-LSTM network from different hierarchical perspectives separately.
Define e1l ∈ R1×L1 for each layer, so that:

e1l = ReLU(hlW1,l +b1,l) (2.8)

Then, we concatenated e1l ∀ l ∈ {i|i = 1,2, ...,L} to form e1 = [e11,e12, ...,e1L], where

e1 ∈ R1×(L1.L) and L is the number of layers.

Similarly, as shown in Fig. 3.3, e1 is fed to more fully connected layers (with ReLU

as their activation functions) in FC2,FC3 and FC4, resulting in e4 ∈ R1×(L4), where L4 is

the number of units in FC4.

Regression Unit: A single node at the end of this network determines the degree of
drowsiness by outputting a real number from 0 to 10 depending on how alert or drowsy
the input blinks are (Eq.2.9). This 0 to 10 scale helps the network to model the natural
transition from alertness to drowsiness unlike the previous works [17, 10], where inputs
were classified directly into different classes discretely.

out = 10×Sigmoid(e4Wo +bo) (2.9)

Here, Wo ∈ RL4×1 and bo ∈ R1×1 are the regression parameters, and out ∈ R1×1 is the

final regression output.

Discretization and Voting: When someone is drowsy, it does not mean that all their
blinks will necessarily represent drowsiness. As a result, it is important to classify the

17

drowsiness level of each video as the most dominant state predicted from all blink se-
quences in that video. As the first step, we used Eq.4.14 to discretize the regression
output to each of the predefined classes.

class(out) =

Alert, 0.0≤ out < 3.3

LowVigilant, 3.3≤ out ≤ 6.6
Drowsy, 6.6 < out ≤ 10

(2.10)

Suppose there are K blinks in video V. Using a sliding window of length T, each T

consecutive blinks form a blink sequence that is given as input to the network (Eq.2.7),

resulting in possibly multiple blink sequences. The most frequent predicted class from

these multiple sequences would be the final classification result of video V. The positive

effect of voting is shown later in our results.

Loss Function: Our model learns not to penalize predictions (outi) that are within
a certain distance

√
∆ of true labels (ti) for all N training sequences, and instead penal-

izes less accurate predictions quadratically by their squared error. As a result, our model
is more concerned about classifying each sequence correctly rather than perfect regres-
sion. This attribute helps us to jointly do regression and classification by minimizing the
following loss function:

loss =
∑

N
i=1 max(0, |outi− ti|2−∆)

N
(2.11)

2.6 Experiments

2.6.1 Evaluation Metrics:

We designed four metrics to fully evaluate our model from different views and at various

stages of the pipeline.

Blink Sequence Regression Error (BSRE): Using Eq.2.12, the regression results can
be interpreted across all M test blink sequences. Eq.2.12 penalizes (only) each wrongly
classified blink sequence i quadratic to the distance of the regressed output to the nearest
true state border (Si) defined in Eq.4.14.

BSRE =
∑

M′
i=1 |outi−Si|2

M
(2.12)

M′ is the number of wrongly classified sequences in all M blink sequences with BSRE

being zero for the correctly classified sequences.

18

(a) (b)

Figure 2.4: The effect of blink sequence size and ∆ to the accuracy metrics.

Video Regression Error (VRE): This metric is best interpreted alongside the Video
Accuracy (VA) metric across all Q test Videos. A low VRE and high VA means that most
of the wrongly classified videos are misclassified closely for the adjacent class.

V RE =
∑

Q′
j=1 |

1
K j

∑
K j
i=1(outi, j)−S j|2

Q
(2.13)

VRE is zero for all correctly classified videos. K j is the number of all blink sequences in

video j and Q′ is the number of wrongly classified videos.

Blink Sequence Accuracy (BSA): This metric evaluates the results before “the voting

stage” and after “discretization” across all test blink sequences.

Video Accuracy (VA): “Video Accuracy” is the main metric, that shines light to our

final test classification results at the very end of the pipeline after “voting”.

2.6.2 Implementation

We used one fold of the UTA-RLDD dataset as our test set, and the remaining four folds

for training. After repeating this process for each fold, the results were averaged across

the five folds. A sliding window of 30 consecutive blinks was used (Fig. 2.4a) as the

input sequence fed to the network (videos with less than 30 blinks were zero padded).

If the window size is too large, the long dependency on previous blinks can significantly

delay the correct output while transitioning from one state to the other during driving.

This window was shifted with the stride of two to create augmented sequences of blinks

in time for each video . Then, we annotated all sequences with the label of the video they

were taken from. Our model was trained on around 7000 blink sequences (depending

on the training fold) using Adam optimizer [35] with a learning rate of 0.000053, ∆ of

1.253 (Fig.2.4b), and batch size of 64 for 80 epochs in all five folds. We also used batch

19

Model Evaluation Metric

BSRE VRE BSA VA

HM-LSTM network 1.90 1.14 54% 65.2%
LSTM network 3.42 2.68 52.8% 61.4%
Fully connected layers 2.85 2.17 52% 57%
Human judgment — 1.80 — 58.4%

Table 2.2: This table numerically compares the performance of our model with
two simplified versions of the network and human judgment using four pre-
defined metrics. The above values are the final averaged values across all test
folds.

normalization and L2 regularization with a coefficient (λ) of 0.1. The HM-LSTM module

has four layers with 32 hidden states for each layer. More details about the architecture is

shown in Fig.3.3.

2.6.3 Experimental Results

In this section, we evaluate our baseline method with respect to the human judgment

benchmark explained in section 2.4.4, and show that our pipeline results in a higher ac-

curacy. Due to lack of a state-of-the-art method on a realistic and public dataset, we

compare our baseline method with two variations of our pipeline to show that the whole

pipeline performs best with HM-LSTM cells. The First version has the same architecture,

as our network, with typical LSTM cells [36] used instead of HM-LSTM cells. The sec-

ond version is a simpler version with the same architecture after removing the HM-LSTM

module, where the input sequence is fed to a fully connected multilayer network.

The results of our comparison with these two versions and the human judgment bench-

mark are listed in Table 2.2. This table shows the final cross validation results of drowsi-

ness detection by the predefined metrics. This comparison not only highlights the tem-

poral information in blinks, but also shows the 4% increase in accuracy we gained after

switching to HM-LSTM from typical LSTM cells. As indicated by BSRE and VRE met-

rics in Table 2.2, the margin of error for regression is also considerably lower in the

HM-LSTM network compared to the other two. The results for LSTM and HM-LSTM

networks suggest that temporal models provide better solutions for drowsiness detection

than simple fully connected layers.

As mentioned before, all blink sequences in each video were labeled the same. How-

ever, in reality, not all blinks represent the same level of drowsiness. This discrepancy is

20

(a)

(b)

Figure 2.5: Confusion matrices for: (a) our proposed model and (b) human
judgment results (video accuracy).

an important reason that BSA is not high, and “voting” makes up for that resulting in a

higher accuracy in VA.

Fig.2.5a shows that the middle class (low vigilant) is, as expected, the hardest to clas-

sify, where it is mostly misclassified for “drowsy”. On the other hand, our model classifies

alert and drowsy subjects very confidently with over 80% accuracy, and rarely misclassi-

fies alertness for drowsiness or vice versa. This means, that the results are mostly reliable

in practice.

In addition, our model detects early signs and subtle cases of drowsiness better than

humans in the UTA-RLDD dataset by just analyzing the temporal blinking behavior. The

detailed quantitative results for all folds and the final averaged values are listed in Table

2.3 and Table 2.2 respectively. We also found that, the margin of error in human judgment

for our dataset is low relative to its accuracy indicated by VRE in Table 2.2. Finally,

the above results introduced a real time drowsiness detection model with around 49,653

trainable parameters, that does not occupy much memory space to run on cell phones.

21

Case Metric-Fold

A-f1 R-f1 A-f2 R-f2 A-f3 R-f3 A-f4 R-f4 A-f5 R-f5

PM 0.64 2.42 0.61 1.04 0.70 0.58 0.64 0.85 0.67 0.81
HJ 0.62 1.6 0.56 3.05 0.65 1.61 0.53 1.35 0.56 1.41

A-f i: VA for fold i
R-f i: VRE for fold i

Table 2.3: Results of our Proposed Model (PM) and Human Judgment (HJ)
measured by VA and VRE

2.7 Conclusion

In this paper, we presented a new and publicly available real-life drowsiness dataset (UTA-

RLDD), which, to the best of our knowledge, is significantly larger than existing datasets

with almost 30 hours of video. We have also proposed an end-to-end baseline method

using the temporal relationship between blinks for multistage drowsiness detection appli-

cable for cell phones. Our results demonstrated that our method outperforms human judg-

ment in two designed metrics on the UTA-RLDD dataset. Future work includes adding a

spatial deep network to analyze other features of drowsiness besides blinks in the video.

We hope that in future more work will be built on top of our results for a more directed

research in this area.

22

2.8 Supplementary Material

2.8.1 Blink Retrieval Algorithm

In our experiments, we noticed that the approach of Soukupová and Cech [32] typically

detected consecutive quick blinks as a single blink. This created a problem for subsequent

steps of drowsiness detection, since multiple consecutive blinks can typically be a sign of

drowsiness. We added a post-processing step on top of the output of [32], that successfully

identifies the multiple blinks which may be present in a single detection produced by [32].

According to[32], define EAR, for each frame, as below:

EAR =
||~p2− ~p6||+ ||~p3− ~p5||

||~p1− ~p4||
(2.14)

In the above, each ~pi ∈ {pi|i = 1, ...,6} is the 2D location of a facial landmark from

the eye region, as illustrated by Figure 2.6. In [32], an SVM classifier detects eye blinks

as a pattern of EAR values in a short temporal window of size 13 depicted in Fig.2.7. This

fixed window size is chosen based on the rationale that each blink is about 13 frames long.

A single blink takes around 200ms to 400ms on average [34, 37], which translates to six

to twelve frames for a video recorded at 30fps. Even if 13 frames is a good estimate for

the length of a blink, this approach would not handle consecutive quick blinks.

As depicted in Figure 2.7, each value in this 13 dimensional vector corresponds to the

EAR of a frame with the frame of interest located in the middle. The SVM classifier takes

these 13D vectors as input and classifies them as “open” or “closed” (more specifically

referred to the frame of interest in each input vector). A number of consecutive “closed”

labels represent a blink with the length of M. Subsequently, the EAR values of these M

frames are stored in x in order, and fed to the “Blink Retrieval Algorithm”, explained in

Alg.2, for post-processing (Fig. 2.8a). The sequence of EAR values for one blink by [32]

will be considered as a candidate for one or more than one blinks.

This algorithm runs in Θ(M) time, where M is the number of frames in the video

segment that is used as input to the algorithm. In practice, the algorithm runs in real time.

In addition, Alg.2 sets a definite frame on when a blink starts, ends or reaches its bottom

point based on the extrema of its EAR signal. For better results, x is passed through a

median/mean filter to clear the noise and then fed to the algorithm.

At step 1, the derivative of x is taken. Then, zero derivatives are modified, at steps

2 and 3, so that those derivatives have the same sign as the derivative at their previous

23

Algorithm 1 Blink Retrieval Algorithm
Input The initial detected EAR signal x ∈ RM, where M is the size of the x time

series, as a candidate for one or more blinks and epsilon=0.01
Output N retrieved blinks, N�M

1: ẋ[n]← x[n+1]−x[n], ∀ n ∈ {i|i = 0,1, ...,M−2}
2: if ẋ[0] = 0 then ẋ[0]←−1× epsilon
3: ẋ[n]← ẋ[n−1]×epsilon, ∀ n ∈ {i|ẋ[i] = 0∧ i 6= 0} to avoid zero derivatives for steps

4 and 6
4: c[n]← ẋ[n+1]× ẋ[n], ∀ n ∈ {i|i = 0,1, ...,M−3}
5: Define e ∈ RP+2,P ≤ M− 2 to store the indices for the P extrema, the first and the

last points in x
6: e[0]← 0, e[P+1]←M−1, supposing the first and last points in x are maxima
7: e[k]← n+1, ∀ (n ∈ {i|c[i]< 0}∧ k ∈ {i|i = 1,2, ...,P}) . Indices of P+2 extrema,

including the first and last points in x are stored in order
8: Define T HR← 0.6×max(x)+0.4×min(x), as a threshold
9: Define t∈RP+2 , to store +1 or -1 for extrema above and below threshold respectively

10: t[0]←+1, t[P+1]←+1, supposing the first and last points in x are maxima
11: Append +1 in t for each n ∈ {i|x[e[i]] > T HR}, and append -1 in t for each n ∈
{i|x[e[i]]≤ T HR}, all in the order of the indices in e

12: Define z ∈ RP+1, z[n]← t[n+1]× t[n]
13: Define s, to store the indices of all negative values in z, representing the downward

and upward movements of eyes in a blink
14: N← length(s)

2 . N is the number of sub blinks, and length(s) is always an even
number

15: for i←0 to N−1 do . Define for blinki:
16: StartIndex← e[s[2× i]],
17: EndIndex← e[s[2× i+1]+1],
18: BottomIndex← e[s[2× i+1]]

return start, end and bottom points of the N retrieved blinks in x

24

Figure 2.6: Six points marking each eye.

Figure 2.7: Presenting each frame (at t=7) by 13 numbers (EARs) concatenated
from 13 frames as a feature vector.

time step. This modification helps to find local extrema, as points where the derivative

sign changes (steps 4 to 7). The threshold, defined at step 8, is used to suppress the subtle

ups and downs in x due to noise and not blinks. The extrema in x are circled in Figure

2.8b, and labeled (+1 or -1) relative to the threshold (steps 9 to 11). Each two consecutive

extrema are indicative of a downward or upward movement of eyes in a blink if those

two are connected, so that the link or links between them pass the threshold line (steps

12 and 13). Fig.2.8c highlights these links in red. Finally, each pairing of these red links

corresponds to one blink with start, end and bottom points as depicted in Figure 2.8d

(steps 14 to the end).

25

(a)

(b)

(c)

(d)

Figure 2.8: The Blink Retrieval Algorithm steps: (a) x with size M = 15 as the
input for Alg. 2. (b) The indices of circled points form e, and the set of +1 and -1
labels forms t with P = 8. (c) The red lines indicate where z values are negative.
(d) Two (N = 2) blinks are retrieved with definite start, end and bottom points.

26

Part 2:
Weakly-Supervised
Action Segmentation

27

3 Action Duration Prediction for Segment-
Level Alignment of Weakly-Labeled
Videos

3.1 Abstract

This chapter focuses on weakly-supervised action alignment, where only the ordered se-

quence of video-level actions is available for training. We propose a novel Duration Net-

work1, which captures a short temporal window of the video and learns to predict the

remaining duration of a given action at any point in time with a level of granularity based

on the type of that action. Further, we introduce a Segment-Level Beam Search to ob-

tain the best alignment, that maximizes our posterior probability. Segment-Level Beam

Search efficiently aligns actions by considering only a selected set of frames that have

more confident predictions. The experimental results show that our alignments for long

videos are more robust than existing models. Moreover, the proposed method achieves

state of the art results in certain cases on the popular Breakfast and Hollywood Extended

datasets.

3.2 Introduction

Activity analysis covers a wide range of applications from monitoring systems to smart

shopping and entertainment, and it is a topic that has been extensively studied in recent

years. While good results have been obtained in recognizing actions in single-action RGB

videos [38, 39, 40, 41, 42, 43], there are many real-life scenarios where we want to rec-

ognize a sequence of multiple actions, whose labels and start/end frames are unknown.

1 Code available at: https://github.com/rezaghoddoosian/DurNet

28

Figure 3.1: An overview of our proposed method. Based on the context of the
temporal window, pour water is selected and its duration is predicted to align
the given video-level actions

Most work done in this area is fully supervised [44, 45, 46, 47, 48, 49, 50, 51, 52], requir-

ing each frame in the training videos to be annotated. Given the need of deep learning

algorithms for ever-larger training datasets, frame-level annotation can be expensive and

unscalable. “Weak supervision” is an alternative, where each training video is only anno-

tated with the ordered sequence of actions occurring in that video, with no start/end frame

information for any action [53, 54, 55, 56, 57, 58, 59, 1].

This chapter focuses on weakly-supervised action alignment, where it is assumed

that the sequence of video-level action labels are provided as input for training and infer-

ence, and the output is the start and end time of each action.

A key challenge in weakly supervised action alignment is correctly predicting the du-

ration of actions. To achieve this goal, we propose a Duration Network (DurNet) that,

unlike previous methods, takes video features into account. Video features contain valu-

able information that existing duration models ignore. As an example, video features can

capture the pace (slow or fast) at which an action is performed. As another example,

video features can capture the fact that an ongoing “frying” action is likely to continue

for a longer time if the cook is currently away from the frying pan. Our duration model

learns to estimate the remaining duration of an ongoing action based on the current visual

29

observations. More specifically, the proposed DurNet mainly consists of a bi-directional

Long Short-Term Memory (LSTM), which takes as inputs the set of frame features in a

short temporal window at a given time, a hypothesized action class and its elapsed dura-

tion. The network outputs the probability of various durations (from a discretized set) for

the remainder of that action.

We also introduce a Segment-Level Beam Search algorithm to efficiently maximize

our factorized probability model for action alignment. This algorithm modifies the vanilla

beam search to predict the most likely sequence of action segments without looping

through all possible action-duration combination in all frames. Instead, it predicts the ac-

tion and duration of segments by selecting a small subset of the frames that are significant

enough to maximize the posterior probability. The time complexity of our Segment-Level

Beam Search is linear to the number of action segments in the video, which is theoreti-

cally better than that of other Viterbi based alignment methods [58, 48, 1, 2]. In particular

Richard et al. [1] considered visual and length models’ frame-level outputs and their com-

binations over all the frames for action alignments. More recently [2] extended Richard

et al.’s work [1] by incorporating all invalid action sequences in the loss function during

training, but follows the same frame-level inference technique as in [1].

The main contributions of this chapter can be summarized as follows: (1) We in-

troduce a Duration Network for action alignment, that is explicitly designed to exploit

information from video features and show its edge over the Poisson model used in previ-

ous work [1, 2]. (2) We propose a Segment-Level Beam Search that can efficiently align

actions to frames without exhaustively evaluating each video frame as a possible start or

end frame for an action (in contrast to [57, 58, 1, 2]). (3) In our experiments, we use two

common benchmark datasets, the Breakfast [60] and Hollywood Extended [53], and we

measure performance using three metrics from [55]. Depending on the metric and dataset,

our method leads to results that are competitive or superior to the current state-of-the-art

for action alignment.

3.3 Related Work

Weakly-Supervised Video Understanding. Existing methods for video activity under-

standing often differ in the exact version of the problem that they aim to solve. [61, 62] aim

to associate informative and diverse sentences to different temporal windows for dense

video captioning. [63, 64, 65] aim to do action detection, and are evaluated on videos

that consist of typically a single unique action with a large portion of background frames.

Weakly-supervised action segmentation and alignment have been studied under dif-

30

ferent constraints at training time. Some works utilize natural language narrations of what

is happening [66, 67, 68, 69, 70]. [71] use only unordered video-level action sets to infer

video frames. Our work is closest to [53, 54, 55, 56, 57, 58, 59, 1, 2], where an ordered

video-level sequence of actions is provided for training.

Our chapter focuses on the task of weakly-supervised action alignment, where the

video and an ordered sequence of action labels are provided as input, and frame-level

annotations are the output.

Duration Modeling. One of the key innovations of our method is in weakly super-

vised modeling and prediction of action duration. Therefore, it is instructive to review

how existing methods model duration. Some methods [54, 55, 56, 59] do not have an

explicit duration model; the duration of an action is obtained as a by-product of the frame-

by-frame action labels that the model outputs. [72, 73, 74] studied long term duration

prediction. However they are fully supervised methods whose results are highly sensitive

to ground-truth observations.

Most related to our duration model in action alignment are existing methods that

model action duration as a Poisson function [1], or as a regularizer [53, 75, 58, 48] to

penalize actions that last too long or too short. Specifically [1] and [2] integrated an ac-

tion dependent Poisson model into their system which is characterized only by the average

duration of each action based on current estimations. The key innovation of our method

is that our duration model takes the video data into account. The video itself contains in-

formation that can be used to predict the remaining duration of the current action, and our

method has the potential to improve prediction accuracy by taking this video information

into account.

3.4 Method

In this section, we explain what probabilistic models our method consists of and how they

are deployed for our Segment-Level Beam Search.

3.4.1 Problem Formulation

Our method takes two inputs. The first input is a video of T frames, represented by

xT
1 , which is the sequence of per-frame features. Feature extraction is a black box, our

method is not concerned with how those features have been extracted from each frame.

The second input is an ordered sequence τ = (τ1,τ2, ...,τM) of M action labels, that list

the sequence of all actions taking place in the video.

31

Figure 3.2: A sample segmented (N = 7) video given its video-level labels τ

(M = 4). One ground-truth action label τ can correspond to multiple consecu-
tive segments

A partitioning of the video into N consecutive segments is specified using a sequence

cN
1 of action labels (cn specifies the action label for the n-th segment) and a sequence lN1

of corresponding segment lengths (ln specifies the number of frames of the n-th segment).

Given such a partition, we use notation πn for the first frame of the n-th segment.

Given inputs xT
1 and τ , the goal of our method is to identify the most likely sequence

cN
1 of action labels cn and corresponding sequence lN1 of durations ln:

(cN
1 , l

N
1) = argmax

cN
1 ,l

N
1

p(cN
1 , l

N
1 |xT

1 ,τ) (3.1)

We note that N (the number of segments identified by our method) can be different than

M (the number of action labels in input τ). This happens because our method may output

the same action label for two or more consecutive segments, and all consecutive identical

labels correspond to a single element of τ . We use Ωn to denote the earliest segment

number such that all segments from segment Ωn up to and including segment n have the

same action label. For example, in Fig. 3.2, Ω4 = Ω3 = Ω2 = 2.

Consider a frame πn, that is the starting frame of the n-th segment. We assume that the
remaining duration of an action at frame πn depends on the type of action cn, the elapsed
duration ln−1

Ωn
of cn up to frame πn, and the visual features of a window of α frames starting

at frame πn. We denote this window as wn = xπn+α−1
πn . Also, we decompose each action

label cn into a corresponding verb vn and object on. For example the action “take cup”
can be represented by the (take,cup) pair, where take and cup are the verb and object
respectively. Working with “verbs” instead of “actions” lets us benefit from the shared
information among “actions” with the same “verb”. This specifically helps in analyzing
any weakly-labeled video where the frame-level pseudo ground-truth is inaccurate. Based
on the above, we rewrite p(cN

1 , l
N
1 |xT

1 ,τ) as:

32

Figure 3.3: Architecture of the Duration, Object and Verb Selector Networks

p(cN
1 , l

N
1 |xT

1 ,τ) =
N

∏
n=1

p(ln|wn, ln−1
Ωn

,cn) · p(cn|xT
1 ,τ) (3.2)

=
N

∏
n=1

p(ln|wn, ln−1
Ωn

,vn,on) · p(cn|xT
1 ,τ) (3.3)

=
N

∏
n=1

p(ln|wn, ln−1
Ωn

,vn) · p(cn|xT
1 ,τ) (3.4)

We should note that, in the above equations, in the boundary case where Ωn = n, we

define ln−1
Ωn

to be 0. The Duration and Action Selector Network, described next, will be

used to compute the probability terms in Eq. 3.4. Then, using our Segment-Level Beam

Search, the most likely segment alignment will be identified.

33

3.4.2 Duration Network(DurNet)

Previous work [58, 1, 2] has tried to model the duration of actions. Richard et al. [1] have

used a class-dependent Poisson distribution to model action duration, assuming that the

duration of an action only depends on the type of that action. In contrast, we propose a

richer duration model, where the length of an action segment depends not only on the type

of that action, but also on the local visual features of the video, as well as on the length

of the immediately preceding segments if they had the same action label as the current

segment (Eq. 3.4).

The proposed model allows the estimate of the remaining length of an action to change

based on video features. For example, our model can potentially predict a longer remain-

ing duration for the action “squeeze orange” if the local visual cues correspond to a person

just picking up the orange, compared to a person squeezing the orange.

In our method, the range of possible durations of a given action depends on the verb
of that action. For example, one second could be half of a short action associated with
verb “take” and only one-hundredth of a longer action associated with verb “frying”. We
model this dependency by mapping time length to progress units for each verb. We denote
by γv the median length of verb v across all training videos, and by L the number of time
duration bins. We should note that the system cannot know the true value of γv, since
frame-level annotations are not part of the ground truth. Instead, our system estimates γv

based on pseudo-ground truth that is provided using an existing weakly supervised action
alignment method, such as [55, 1]. Given this estimated γv, we discretize the elapsed and
remaining time lengths into verb-dependent bins; i.e. the bin width bv is calculated based
on the type of each verb:

bv =
γv

bL
2
c+1

(3.5)

The above equation assures that the median length of a verb falls on or around the

middle bin, which creates a more balanced distribution for learning.

In our method, p(ln|wn, ln−1
Ωn

,vn) is modeled by a Bi-LSTM network preceded by a

fully-connected layer and followed by fully connected layers and a softmax function σ as

shown in Fig. 3.3. The input to this network, for any segment n at a given time πn , is the

one-hot vector representation of the verb vn ∈ RV of a given action cn and its discretized

elapsed duration dcn ∈ RL as well as the local visual features wn ∈ RΓ×F . Here, V is the

total number of verbs, F is the input feature dimension, and Γ is the number of temporally

sampled features over α frames starting with frame πn. At the end, this network outputs

the corresponding verb-dependent future progress probability corresponding to each bin.

This probability is expressed as an L-dimensional vector kvn , whose i-th dimension is the

34

probability that the duration of action cn falls in the i-th progress unit for verb vn, given

the inputs described above.

During training, we used a Gaussian to represent the progress probability labels as

soft one-hot vectors. This representation considers the bins that are closer to the true bin

more correct than the further ones. The resulting labels are used to compute the standard

cross-entropy loss, as the DurNet loss function.

Finally, we translate this progress indicator back to time expressed as number of
frames, according to verb-dependent steps sv:

sv = b
γv

L
c (3.6)

lv,i = (i+1)∗ sv, i ∈ {0,1, ...,L−1} (3.7)

Thus, the i-th discretized duration lv,i for verb v corresponds to the i-th dimension of

vector kvn , and the value of kvn in the i-th dimension gives the probability of discretized

duration lvn,i.

3.4.3 Action Selector Network

This network selects the label of the action occurring at any time in the video. Each
action is decomposed as a (verb,ob ject) pair. The importance of objects and verbs in
action recognition has been studied before [76, 70]. For example, the verb “take” in both
“take bowl” and “take cup” is expected to visually look the same way. These two actions
only differ in their corresponding objects. This approach has the advantage that not only
the network can access more samples per class (verb/object), but also classification is done
over fewer number of classes, because several actions share the same verb/object. This is
specifically helpful in weakly-labeled data as the frame-level ground truth is not reliable.
The probability of the selected action is obtained by the factorized equation below:

p(cn|xT
1 ,τ) := η [p(on|vn,wn,τ)

ζ p(vn|wn,τ)
β p(cn|xT

1)
λ] (3.8)

η [] is a normalization function that assures :

∑
cn∈τ

[p(cn|xT
1 ,τ)] = 1 (3.9)

The Action Selector Network consists of three components: i) The verb selector net-

work. ii) The object selector network. iii) The main action recognizer (Fig. 5.1). The

35

influence of each network is adjusted by the ζ ,β and λ hyper parameters.

i) The Verb Selector Network(VSNet): It focuses only on the local temporal features

during the given time frame [πn, πn +α − 1] to select the correct verb vn for segment n.

The video-level verb labels vτ ∈ {0,1}V are also given as input to the network, where

for every i ∈ {0,1, ...,V − 1}, vτi = 1 if vτi is present in the video-level verbs, otherwise

vτi = 0.

ii) The Object Selector Network(OSNet): Similar to the VSNet, using the local

temporal features, this module selects the correct segment object on from the set of video-

level objects oτ ∈ {0,1}O, where O is the number of available objects in the dataset.

Selecting the target object is also influenced by the type of the verb for a given action

according to Eq. 3.8. In order to model this dependency, latent information from the

VSNet flows into the OSNet (Fig. 3.3).

iii) The Main Action Recognizer(MAR): Unlike the other two components, this

module produces frame-level probability distribution for the main actions. This network

is more discriminative than the other two and particularly helpful in videos with repetitive

verbs and objects. Note that the MAR module can be replaced by any baseline neural

network architecture like CNNs or RNNs.

Finally, as shown in Eq. 3.8, the probability of a segment action is defined by fusing

the output of the three above-mentioned networks. In the special case of ζ ,β = 1 and

λ = 0, the definition of Eq. 3.8 would be truly probabilistic, and there would be no

need for the normalization function η . The contribution of each network is quantitatively

shown in Sec. 3.5.2.3. It is noteworthy to mention that our method is equally applicable

without the verb-object decomposition assumption. In case there is no specific object

associated with actions, our formulation still stands by setting ζ = 0 and working with the

actions as our set of verbs.

3.4.4 Segment-Level Beam Search

We introduce a beam search algorithm with beam size B to find the most likely sequence

of segments, as specified by a sequence of labels cN
1 and a sequence of lengths lN1 . By

combining Eq. 3.1 with Eq. 3.4 we obtain:

(cN
1 , l

N
1) = argmax

cN
1 ,l

N
1

{
N

∏
n=1

p(ln|wn, ln−1
Ωn

,vn) · p(cn|xT
1 ,τ)} (3.10)

36

Figure 3.4: Our proposed Segment-Level Beam Search of beam size B during
the estimation of the third segment (n = 3). For each alignment, different pos-
sibilities of next action and its predicted duration are evaluated. At each point
in our method, all B hypothesized alignments consist of the same number of
segments

In frame-level beam search, different sequences of action classes are considered at

every single frame until the end of the video. In contrast, our Segment-Level Beam Search

allows the algorithm to consider such sequences only at the beginning of every segment.

This technique is inspired by the fact that actions do not change rapidly from one frame

to another.

We introduce the notation Ai(c, l, ti) to represent the probability of segment-level align-

ment i until frame ti for each video, where c and l are the action class and length of the

last segment. We also define maxB{a1,a2, ...,an} as the set of B greatest ai, and calculate

Ai(c, l, ti) of alignment i recursively for every action cn and length ln of segment n. Then,

the B most probable alignments with n segments are selected over all combinations of cn

and ln. Algorithm 1 summarizes the procedure for our proposed Segment-Level Beam

Search with the following constraints:

• c1 = τ1, cN = τM

• ti ≤ T, ∀i ∈ {1,2, ...,B}

37

φ(cn−1) refers to the set of possible actions for segment n. φ(cn−1) is either a repetition

of the action cn−1 of the previous segment or the start of the next action in τ . The final

segment labels cN
1 and lN1 are derived by keeping track of the maximizing arguments cn

and ln in the maximization steps.

Algorithm 2 Segment-Level Beam Search
Input: Video features xT

1 and video-level labels τ , beam size B
Output: Action label and length sequences cN

1 and lN
1 .

n←1, . first segment
for l1 ∈ {lv1,0, ..., lv1,L−1} do:

A1(τ1,l1,l1)=p(l1|xα
1 ,0,v1)·p(τ1|xT

1 ,τ)

A(n)=maxB
l1
{A1(τ1,l1,l1)}, . set of candidate alignments

while ti < T , ∀i ∈ {1,2, ...,B} do:
n←n+1,
for i←1 to B do:

for all cn ∈ φ(cn−1); ln ∈ {lvn,0 ... lvn,L−1} do:
Ai(cn,ln,ti+ln)= . Ai(cn−1,ln−1,ti)∈A(n−1)

Ai(cn−1,ln−1,ti)·p(ln|x
ti+α−1
ti

,ln−1
Ωn ,vn)·p(cn|xT

1 ,τ),

A(n)=maxB
cn ,ln{Ai(cn,ln,ti+ln),∀i∈{1,2,...,B}}

Afinal(cN ,lN ,T)=max1
cN ,lN

{Ai(cN ,lN ,ti),∀i∈{i|ti=T}}

Note that p(cn|xT
1 ,τ) in Algorithm 1 is factorized according to Eq. 3.8, and every

cn ∈ φ(cn−1) is broken down to its corresponding (vn,on) pair. This factorization approach

encourages segments that cover the whole duration of an action to avoid the penalty each

time a new segment is added. This results in faster alignments with a smaller number of

unreasonably short segments.

Time complexity of our Segment-Level Beam Search, for each video, depends on the

beam size B, number of segments N and number of length bins L. As B and L are constant

values, the time complexity for the algorithm above would be O(N), and only limited

to the number of segments per video. Based on our experiments, for the current public

action alignment datasets, Nmax ≈ 70 is two orders of magnitude less than Tmax ≈ 9700.

This makes the proposed beam search more efficient than the Viterbi algorithms used

in [1, 2] and [58], which have the complexity of O(T 2) and O(T) respectively.

38

3.5 Experiments

We show results on two popular weakly-supervised action alignment datasets based on

three different metrics. We compare our method with several existing methods under

different initialization schemes. Further, the contribution of each component of our model

is quantitatively and qualitatively justified.

Datasets. 1) The Breakfast Dataset (BD) [60] consists of around 1.7k untrimmed

instructional videos of few seconds to over ten minutes long. There are 48 action labels

demonstrating 10 breakfast recipes with a mean of 4.9 instances per video. The overall

duration of the dataset is 66.7h, and the evaluation metrics are conventionally calculated

over four splits. 2) The Hollywood Extended Dataset (HED) [53] has 937 videos of 17

actions with an average of 2.5 non-background action instances per video. There are in

total 0.8M frames of Hollywood movies and, following [53], we split the data into 10

splits for evaluation.

There are four main differences between these two datasets: i) Actions in the BD

follow an expected scenario and context in each video. However, the relation between

consecutive actions in the HED can be random. ii) Camera in the BD is fixed while

there are scene cuts in the HED, making the duration prediction more challenging. iii)

Background frames are over half of the total frames in the HED, while the percentage

of them in the BD is about 10%, and iv) The inter-class duration variability in the BD is

considerably higher than the HED.

Metrics. We use three metrics to evaluate performance: 1) acc is the frame-level

accuracy averaged over all the videos. 2) acc-bg is the frame-level accuracy without the

background frames. This is specifically useful for cases where the background frames are

dominant as in the HED. 3) IoU defined as the intersection over union averaged across

all videos. This metric is more robust to action label imbalance and is calculated over

non-background segments.

Implementation. For a fair comparison, we obtained the pre-computed 64 dimen-

sional features of previous work [54, 1, 2], computed using improved dense trajecto-

ries [77] and Fisher vectors [78], as described in [45]. A single layer bi-directional LSTM

with 64 hidden units is shared between the DurNet and VSNet, and a single layer LSTM

with 64 hidden units for the OSNet. We followed the same frame sampling as [2], [55]

or [1], depending on the method we use for initialization. We use the cross-entropy loss

function for all networks, using Adam optimization [35], learning rate of 10−5 and batch

size of 64. L in the DurNet was set to 7 and 4 for the BD and HED respectively. In our

experiments on the BD, we used an al pha of 60 frames and ζ , β , and λ were adjusted

39

Breakfast (%) Hollywood Extended (%)
Models acc acc-bg IoU acc acc-bg IoU
HTK [57]∗ 43.9 - 26.6 49.4 - 29.1
ECTC [56]∗ ∼35 - - - - -
D3TW [54] 57.0 - - 59.4 - -
TCFPN [55]† 51.7 48.2 33.0 57.6 46.1 28.2
[55]/ [1] pg∗∗ 56.4 53.4 36.2 - - -

NNViterbi [1]† 63.5 63.0 47.5 59.6 53.2 32.4
[1]/ [55] pg∗∗ 63.4 62.8 47.3 - - -

CDFL [2] 63.0 61.4 45.8 65.0† 63.7† 40.2†

Ours/ [55] pg 55.7 56.1 36.3 50.1 64.1 31.4
Ours/ [1] pg 63.7 65.0 42.5 56.0 64.3 34.3
Ours/ [2] pg 64.1 65.5 43.0 59.1 65.4 35.6

Table 3.1: Weakly-supervised action alignment results of existing methods on
two main datasets. (* from [55], † best results obtained after running the au-
thor’s source code multiple times,** after slight changes to the original source
code for the specific task.)

to 1, 30, and 5 respectively for our selector network. Beam size in our beam search was

set to 150 and other hyperparameters were picked after grid search optimization (refer to

supplementary material).

Training Strategy. During training, alignment results of a baseline weakly-supervised

method, e.g. CDFL [2], NNViterbi [1] or TCFPN [55], on the training data is used as the

initial pseudo-ground truth. We also adopt the pre-trained frame-level action classifier

(visual model) of the baseline (CDFL, NNViterbi or TCFPN) as our main action selector

component. The initial pseudo-ground truth is used to train our duration and action selec-

tor networks. Then, new alignments are generated through the proposed Segment-Level

Beam Search algorithm on the training videos. We call these new alignments the “new

pseudo-ground truth”. The adopted visual model is finally retrained based on our “new

pseudo-ground truth”, and used alongside our other components to align the test videos.

3.5.1 Comparison to State-of-the-Art Methods

Comparison Settings. In addition to evaluating existing methods, we also evaluate some

combinations of existing methods, as follows: 1,2) Ours/ [1] pg and Ours/ [2] pg: Ours

initialized with NNviterbi [1] and CDFL [2] pseudo-ground truth respectively, and a single

layer GRU as the MAR. 3) Ours/ [55] pg: Ours initialized with the training results of [55]

as our pseudo-ground truth, and the TCFPN [55] network as the MAR. 4) [55]/ [1] pg:

The ISBA+TCFPN method [55] initialized with NNViterbi [1] pseudo-ground truth. 5)

[1]/ [55] pg: The NNViterbi method [1] initialized with [55] pseudo-ground truth.

40

Action Alignment Results. Table 3.1 shows results for weakly-supervised action

alignment. Our method produces better or competitive results for most cases on both

datasets. Initialized with CDFL, our method achieves state-of-the-art in two of the three

metrics for the Breakfast dataset and in one metric on the Hollywood. We compare our

method with CDFL [2], NNViterbi [1] and TCFPN [55] more extensively, because they

are the best open source methods that follow a similar pseudo-ground approach for train-

ing. Also for better comparison, in Table 3.1 we present the results of training NNViterbi

on the pseudo ground-truth from TCFPN and vice versa.

In direct head-to-head comparisons with CDFL, NNViterbi and TCFPN, the proposed

method often outperforms the respective competitor, and in some cases the head-to-head

performance improvement by our method is quite significant. Our method improves ac-

tion alignment results of TCFPN [55] and NNViterbi [1] in 5 (Table 3.3a) and 4 (Table

3.3b) out of 6 metrics respectively. In addition, we outperform CDFL in frame-level ac-

curacy with and without background on the Breakfast dataset, and when tested on the

Hollywood dataset, CDFL accuracy without background is improved while the inference

complexity is decreased to O(N) from CDFL’s O(T 2) (Table 3.3c).

In Table 3.2, our Segment-Level Beam Search achieves consistent improved results in

frame accuracy for both datasets when the background frames are excluded. Considering

acc-bg is essential especially for the Hollywood dataset as on average around 60% of the

video frames are background, so acc values can be misleading.

There are two plausible explanations on why the performance of our method for non-

background actions is not equally repeated for the background segments. First, there is

a lack of defined structure in what background can be, which makes it harder to learn.

Second, there are cases where background depicts scenes where a person is still or no

movement is happening. It is a tough task for even humans to predict how long that

motionless scene would last, so the DurNet can easily make confident wrong predictions

resulting in inaccurate alignments of background segments.

Fig. 3.5 shows how alignment results vary with video length on the Breakfast Dataset.

The performance of our method compared to NNViterbi and TCFPN improves as video

length increases. In longer videos, the DurNet can maintain the same action longer de-

pending on the context, while in [1] any duration longer than the action average length

gets penalized.

41

Figure 3.5: Weakly-supervised action alignment accuracy for videos of differ-
ent lengths. Unlike the other two baselines, ours is more robust to longer videos.
We obtained the results on four equal intervals considering the shortest and
longest videos. The number of videos for each interval is mentioned in paren-
theses

3.5.2 Analysis and Ablation Study

All analysis and ablation study is done using the TCFPN [55] pseudo ground-truth ini-

tialization. We also ran our ablation study experiments on the Breakfast dataset mainly,

because it consists of videos with many actions and high duration variance, so the impact

of learning duration can be measured more effectively.

3.5.2.1 DurNet vs. Poisson Duration Model.

We compare our Duration Network with the Poisson length model used in [1, 2]. To

compare the two models, we replaced the DurNet in our Segment-Level Beam Search

with the Poisson model in [1, 2], while keeping all other parts of our method unchanged.

Table 3.4 quantitatively shows the advantage of using the context of the video, as it has

improved the alignment accuracy by more than 1%. One reason for the small improve-

ment, however, could be the imbalanced training set size across the four folds. Unlike

the statistical Poisson approach, the performance of DurNet, as in other Neural Networks,

depends on the training set size. As Figure 3.6 shows, the bigger the training data size,

the better the performance of the DurNet.

3.5.2.2 Duration Step Size Granularity.

As explained in Section 3.4.2, the predicted durations are discretized into a fixed number

L of bins, using different step sizes sv for different verbs. In order to analyze the advantage

42

Breakfast (%) Hollywood Extended (%)
Models acc acc-bg IoU acc acc-bg IoU
TCFPN [55]† 51.7 48.2 33.0 57.6 46.1 28.2
Ours/ [55] pg 55.7 56.1 36.3 50.1 64.1 31.4

(a)
Breakfast (%) Hollywood Extended (%)

Models acc acc-bg IoU acc acc-bg IoU
NNViterbi [1]† 63.5 63.0 47.5 59.6 53.2 32.4
Ours/ [1] pg 63.7 65.0 42.5 56.0 64.3 34.3

(b)
Breakfast (%) Hollywood Extended (%)

Models acc acc-bg IoU acc acc-bg IoU
CDFL [2] 63.0 61.4 45.8 65.0† 63.7† 40.2†

Ours/ [2] pg 64.1 65.5 43.0 59.1 65.4 35.6

(c)

Table 3.2: Head-to-head action alignment comparisons of the proposed model
with the baselines († as specified in Table 3.1).

Alignment
Models acc acc-bg
Ours+Poisson 54.56% 54.95%
Ours+Duration Net 55.70% 56.10%

Table 3.4: Comparison between our Duration Network and statistical Poisson
length model on the breakfast dataset.

43

Figure 3.6: Split-wise frame accuracy on the Breakfast dataset. The number of
training videos for each split is indicated in parentheses.

Alignment on Breakfast (%)
Models acc acc-bg IoU
Fixed steps(sv = 5 seconds) 49.9 49.6 32.3
Max-based adaptive steps 48.9 47.6 29.7
Mean-based adaptive steps 54.9 55.4 35.8
Median-based adaptive steps 55.7 56.1 36.3

Table 3.5: The result of fixed step duration modeling with different alternatives
of adaptive steps for weakly-supervised alignment.

of this duration modeling, we compare the weakly-supervised alignment results obtained

when we replace this approach with fixed step size for all classes, as well as with different

alternatives of adaptive steps (Table 3.5); i.e., the predicted duration range of each action

can depend on the maximum, mean or median length of that action calculated across

all training videos. A fixed step and a step size dependent on maximum duration, both

produce poor results. Step sizes dependent on mean and median durations of actions

produce comparable results.

3.5.2.3 Analysis of the Action Selector Components.

We evaluate the effect of the OSNet, VSNet and MAR separately. Selecting verbs without

objects fails in videos where two actions with the same verb happen consecutively in a

video, e.g. pour cereal and pour milk (Fig. 3.7). Likewise, excluding the VSNet is prob-

lematic when two consecutive actions share the same object. Our experiments show that

the VSNet and the MAR have the biggest and smallest contributions respectively(Table

3.6). We also include the results of the special case where we do not use hyperparameters

in Eq. 3.8. As we see, a weighted combination of all three components performs best.

44

Alignment on Breakfast (%)
Models acc acc-bg IoU
Special case (ζ ,β = 1, λ = 0) 53.9 54.4 35.4
Action selector w/o main action 55.5 56.1 36.0
Action selector w/o object 54.8 54.6 35.9
Action selector w/o verb 50.9 50.8 32.8
All components 55.7 56.1 36.3

Table 3.6: Contribution of each action selector component. Having all three
components gives the best results.

Figure 3.7: Two sample aligned videos, that consist of action labels with the
same verb. The object selector component improves the results by aligning the
segments with respect to the correct object.

3.5.2.4 Qualitative Segment-Level Alignment Results.

One of the benefits of our Beam Search is predicting the class and length of segments

without looping through all possible action-length combinations in all frames. Specif-

ically, by predicting the duration of a segment in advance, only a limited set of more

significant frames is processed. This leads to faster alignments with competitive accuracy

compared to the frame-level Viterbi in [1, 2] (Table 3.2).

We demonstrate some success and failure cases of our segment predictions in Fig.3.8.

It shows how a half minute video can be segmented in a small number of steps. Only

a limited window of frames at the start of each step decides the class and length of the

corresponding segment. Green and red arrows indicate valid and wrong step duration

respectively. Similarly, the correctness of the action selector prediction is shown by the

color of the square.

Finally, Fig. 3.9 depicts a case where using visual features for length prediction out-

performs the Poisson model in [2]. In this example “frying” is done slower than usual due

to the subject turning away from the stove and the flipping of the egg. This makes the

peak of the Poisson function temporally far from where “frying” actually ends resulting

45

Figure 3.8: Separate segments denote the ground-truth and the color coded
ones indicate the predicted segments. White segments are background. No-
background actions are add teabag and pour water in video (a), and pour cereal
and pour milk in video (b).

Figure 3.9: Alignment comparison between CDFL and our method for the test
video “frying egg”. Visual features in DurNet allow the predictions to adapt in
duration. The color-coded curves represent the Poisson probability functions
characterized by the expected duration of actions in CDFL.

in the premature end of the action as longer predictions have very low probabilities and

discouraged by the Poisson model. However, our DurNet takes the visual features into

account and adapts to longer than expected action durations.

3.6 Conclusion

We have proposed our Duration Network, that predicts the remaining duration of an action

taking the video frame-based features into account. We also proposed a Segment-Level

Beam Search that finds the best alignment given the inputs from the DurNet and action

selector module. Our beam search efficiently aligns actions by considering only a selected

set of frames with more confident predictions. Our experimental results show that our

method can be used to produce efficient action alignment results that are also competitive

to state of the art.

46

3.7 Supplementary Material

3.7.1 Implementation Details

In this section, we provide additional details about our experiments for both Breakfast [60]

and Hollywood Extended [53] datasets.

In all our experiments, we trained our three proposed networks (Duration, Verb and

Object Selectors) together with a dropout value of 0.89 and L2 regularization coefficient

of 0.0001 for 40 epochs when using [55] as our pseudo ground-truth, and 90 epochs

when using [1] and [2] pseudo ground-truth. Our input features were sampled every three

frames over α = 60 frames, at the start of each segment in time.

3.7.1.1 The Breakfast Dataset Experiments

We set 19 and 14 to be the number of objects and verbs (including background as a sep-

arate object/verb) in the Breakfast dataset. ζ , β , and λ were adjusted to 1, 30, and 5

respectively for our selector network using [1] and [2] as the baseline. In experiments

where TCFPN results [55] were used as the initial pseudo ground-truth, the aforemen-

tioned parameters were slightly changed to 1, 40, and 1.

3.7.1.2 The Hollywood Dataset Experiments

There are 17 actions (including the background) in the Hollywood Extended dataset, and

most of these actions do not share verbs or objects with each other. Hence, it would

be redundant to decompose the main actions into their verb and object attributes. As a

result, for this dataset, we removed the object selector component and used the 17 main

actions as our verbs. β , and λ were set to 3 and 1, and 20 and 1 for the TCFPN [55]

and NNViterbi [1] baselines respectively. In cases where CDFL [2] were used, β was

increased to 50.

Around 60% of the frames are background in this dataset. Therefore, it is worth

mentioning that a naive classifier, that outputs “background” for every single frame, can

achieve results competitive to the state-of-the-art on the acc metric. This is why we em-

phasize that, specifically for the Hollywood Extended dataset, evaluation using acc-bg is

more informative. Our method outperforms existing models on this metric while produc-

ing better or competitive results on IoU.

47

3.7.1.3 Competitors’ Results

During our observations, we realized that the provided frame-level features are miss-

ing for a significant amount of frames in four videos2 in the Breakfast dataset. While

TCFPN [55], NNViterbi [1] and CDFL [2] originally trimmed those videos, we decided

to remove them for all experiments including our method as well as all baselines [55, 1, 2].

In Tables 1 and 2 of the main content of this chapter, we denote with symbol † the best

results that we obtained after running the authors’ source code for multiple times. The

reason we ran the code multiple times is that each training process is randomly initialized

and leads to different final result.

For CDFL [2] in Table 1 and 2, the alignment acc-bg on the Hollywood dataset

is somewhat different than the one mentioned in the referenced paper. Similarly, for

TCFPN [55], in some cases, our reproduced results are not the same as the ones men-

tioned in [55]. In this case, we reported the results after contacting the authors and having

their approval. For a fair comparison in both baselines, we reported the results, that rep-

resent the initial pseudo ground-truth in our method.

Without loss of generality, our final accuracy depends on the quality of the initial

pseudo ground-truth, so we have provided the initial pseudo ground-truth and pre-trained

main action recognizer models (for TCFPN and NNViterbi on the Breakfast dataset) that

we used as supplementary material so our results can be reproduced precisely.

2 1-P34 cam01 P34 friedegg, 2-P51 webcam01 P51 coffee, 3- P52 stereo01 P52 sandwich, 4-
P54 cam01 P54 pancake

48

4 Hierarchical Modeling for Task Recog-
nition and Action Segmentation in
Weakly-Labeled Instructional Videos

4.1 Abstract

This chapter 1 focuses on task recognition and action segmentation in weakly-labeled in-

structional videos, where only the ordered sequence of video-level actions is available

during training. We propose a two-stream framework, which exploits semantic and tem-

poral hierarchies to recognize top-level tasks in instructional videos. Further, we present

a novel top-down weakly-supervised action segmentation approach, where the predicted

task is used to constrain the inference of fine-grained action sequences. Experimental re-

sults on the popular Breakfast and Cooking 2 datasets show that our two-stream hierarchi-

cal task modeling significantly outperforms existing methods in top-level task recognition

for all datasets and metrics. Additionally, using our task recognition framework in the

proposed top-down action segmentation approach consistently improves the state of the

art, while also reducing segmentation inference time by 80-90 percent.

4.2 Introduction

Millions of people watch instructional videos online every day, to learn to perform tasks

such as cooking or changing a car tire. Also, new models of assistant robots [79] can

learn from such videos how to assist humans in their daily lives. Hence, there has been

extensive research in recent years on automated understanding of the top-level tasks and

their sub-actions in such videos [80, 81, 82, 83].

1 https://github.com/rezaghoddoosian/Hierarchical-Task-Modeling

49

Figure 4.1: The proposed segmentation approach. Initially, the weak under-
standing of duration leads to the alignment of irrelevant actions with an Align-
ment Score (AS) of 98. However, a prior prediction of the task allows the align-
ment module to infer the correct sequence of actions (outlines by red) despite
the lower AS (86).

From a theoretical point of view, instructional videos can be seen as videos illustrating

hierarchical activities. Each instructional video illustrates a single top-level activity, for

which we use the term “task” throughout this paper. Examples of such video-level tasks

are “making coffee” or “cooking eggs”. Each video-level task is composed of a sequence

of lower level activities, such as “pouring milk” or “adding sugar”. Throughout the paper,

we will refer to such lower-level activities using the term “action”. Consequently, using

this terminology, each instructional video illustrates a task that consists of a sequence of

actions.

For instructional videos, and hierarchical activity videos in general, we would like to

have automated systems that both recognize the overall task and also understand what

lower-level actions take place, and when those actions start and end. Fully-supervised

training would require not only annotating the top level task, but also marking the start and

end frame of each lower-level action. With the ever-growing size of instructional video

datasets, manually annotating such start and end frames can quickly become a bottleneck.

To address this issue, weakly-supervised action segmentation methods require, as training

data, only the sequence of actions that takes place at each video, and no start/end frame

information for those actions [54, 84, 55, 2, 1].

Our goal in this paper is to jointly address the problems of top-level task recognition

and lower-level action segmentation, in the weakly supervised setting (given sequences

50

of actions, not given start/end frames). The main novelty is a method for top-level task

recognition that uses, in parallel, two different hierarchical decompositions of the prob-

lem. One module models the semantic hierarchy between the top-level task and lower-

level attributes. These attributes correspond to either the set of actions, or the set of the

object/verb components of those actions, e.g., “take” and “cup” in the action “take cup”.

This module jointly learns to identify the presence of attributes in the video and to recog-

nize the top-level task based on the estimated attributes.

A parallel second stream models the temporal hierarchy between the entire video and

equal-duration subdivisions of the video. Tasks are usually performed in a relative order

of stages, and some stages are particularly useful for distinguishing tasks from each other.

For example, preparing tea typically involves three stages: taking a cup, adding a tea

bag, and pouring water from the kettle. The first and last stages are visually similar with

corresponding stages of the “preparing coffee” task. The temporal hierarchy module can

capture the importance of adding the tea bag in distinguishing the “preparing tea” task

from the “preparing coffee” task. This module learns the relation between stages and

their importance in classifying the video task.

We also propose a novel top-down approach for action segmentation (i.e., frame-

level action labeling), that combines our task recognition method with existing weakly-

supervised segmentation methods. In this approach (Fig.4.1), the video-level task is esti-

mated first, and is subsequently used to constrain the search space for action segmentation.

In summary, the contributions of this paper are these:

1) We introduce a two-stream framework that exploits both semantic and temporal

hierarchies to recognize tasks in weakly-labeled instructional videos.

2) We provide specific, non-trivial implementations of these two streams. Our ab-

lation studies demonstrate that our implementation choices have a significant impact on

performance. A highlight of such an implementation choice is using TF-IDF weights to

model the discriminative power of each attribute for each task (see Section 4.4.2.2).

3) We present a novel top-down approach for weakly-supervised action segmentation,

where the video-level task is used to constrain the segmentation output.

4) We present results on two benchmark datasets: Breakfast [60] and MPII Cooking 2

[82]. In top-level task recognition, our method significantly outperforms the state of the art

on both datasets for all metrics. For weakly supervised action segmentation (frame-level

labeling), applying the proposed top-down approach on top of existing methods [2, 1]

again leads to state of the art results, and also cuts the inference time by 80-90 percent.

51

4.3 Related Work

Instructional Video Analysis. In recent years, untrimmed instructional videos have been

studied in areas like video retrieval [80, 85, 86], quality assessment [87, 88], future action

planning [89], and key-step segmentation [81, 90, 91, 71, 82, 83, 92]. Fully-supervised

action segmentation methods [93, 60, 45, 94, 48, 49, 93] learn to identify action segments

in the presence of frame-level ground-truth. For example, [83] use a bottom-up technique

to aggregate initial action proposal scores to classify the top-level video task, before mod-

ifying its preliminary frame labels in a fully supervised way. Also, [82] analyze a host of

holistic and regional features to train shared low-level classifiers to recognize tasks and

detect fine-grained actions.

Recently, unsupervised learning of instructional videos has seen increased attention

[81, 95, 90, 96]. In [90], an unsupervised approach performs video segmentation and task

clustering through learned feature embeddings. In [81], a network is trained using only

video task labels, for unsupervised discovery of procedure steps and task recognition.

The above-mentioned methods are either fully supervised or unsupervised, and thus

they are not direct competitors for our method, which uses weak labels.

In the scope of activity recognition, most works [97, 98, 99] study short-range or

trimmed videos. Our work is closest to [100, 101, 102], where the focus is recognizing

minutes-long activities. However, unlike them, our paper is on instructional videos, and

on how recognition can aid segmentation, so it relies on hierarchical activity labels (top-

level task, lower-level attributes as targets for segmentation).

Weakly-Supervised Key-Step Localization. In the context of weakly-labeled in-

structional videos, many methods [103, 104, 68, 70] are trained under the supervision of

narration and subtitle. Directly relevant to our work are [54, 84, 55, 56, 2, 59, 1], where,

as in our method, only the sequence of actions is known for each training video. In par-

ticular [2, 1] deploy a factorized probabilistic model to tackle the segmentation problem

using dynamic programming. Also, [54] formulate a differential dynamic programming

framework for end-to-end training of their model.

Recent weakly-supervised segmentation methods [54, 84, 2, 1, 105, 106] are formu-

lated to identify the action taking place at each frame, and not the top-level video task. At

the same time, the output of these methods implicitly specifies the top-level task, because

only one task is compatible with the detected sequence of actions. We use these implicit

task predictions of [2, 1] to compare those methods to ours on task recognition accuracy.

In contrast to these bottom-up approaches (going from actions to task), our method ex-

52

plicitly learns to classify video-level tasks, and this classification is used in a top-down

fashion (from task to actions) to constrain the detected action sequence.

We should also mention the methods in [107, 108, 109, 110], which perform weakly-

supervised action detection. These methods identify and localize occurrences of, typi-

cally, a single action in the input video. For completeness, we evaluate extensions of

these methods to task classification.

4.4 Hierarchical Task Modeling Method

In this section, we present an overview of our two-stream hierarchical task modeling. Full

details of our implementation choices and architecture are provided in Sec. 4.4.2.

As our formulation uses many terms and symbols, the supplementary material pro-

vides a glossary of terms and a table of all symbols we use.

4.4.1 Method Overview

Problem Definition. The training set V = {vi}N
i=1 consists of N videos vi. From each vi

we extract a feature vector xi ∈RF×Ti , that consists of Ti frames of F-dimensional features.

We denote by C= {ci}|C|i=1 the set of all top-level task labels, and by A= {a j}|A|j=1 the set

of all lower-level attribute labels. As an implementation choice, these attributes can be

the set of actions in the dataset, or the set of verb/object components of those actions.

Each video vi is labeled by a task ci ∈C, and also by a set Ai ⊆A of Mi attributes, so that

Ai = {ai, j}Mi
j=1. At test time, given an input video, the system estimates the top-level task.

Semantic Hierarchy Stream (SHS). To recognize the task, one approach is to directly

estimate p(ci|xi). However, this approach is prone to overfitting when the number of video

samples per task is limited. As attributes can be shared among tasks, the average number

of training videos per attribute is typically greater than the average number of videos per

task. Using attribute information also helps the model learn similarities and differences

of spatio-temporal patterns in different tasks.

Thus, we model task recognition as p(ci|ψa
i).p(ψ

a
i |xi), where ψa

i is an intermediate

vector of attribute scores that is computed for each xi. The system learns a mapping

function M a
x :RF×Ti →R|A|, that maps each vector xi to attribute score vector ψa

i . It also

learns a function M c
a : R|A| → R|C|, that maps each attribute score vector ψa

i to a task

score vector ψc
i (Fig.4.2).

Temporal Hierarchy Stream (THS). Tasks in instructional videos are usually per-

formed in a relative order of steps. Understanding the task-discriminative stages of a

53

Figure 4.2: An overview of how our recognition model exploits the semantic
and temporal hierarchies of tasks. The attribute representation of videos are
formed by their discriminative attributes.

video is essential in distinguishing tasks that share similar-looking actions. Thus, we di-

vide each video into K stages of equal duration, and train a classifier Sκ : RF× Ti
K → R|C|

for each stage κ . The system also learns an aggregation function T : RK|C|→ R|C|, that

maps stage-wise predictions to classification scores ϑi,total of the entire video.

Stream Fusion Module. In the end, we fuse the predictions of the SHS and THS

streams to output the final task prediction scores f c
i of the entire model. A high-level

diagram of the overall network is shown on Fig.4.2. The network is optimized using a

loss function for the fusion module, as well as separate loss functions for the SHS and

THS streams.

4.4.2 Detailed Architecture

In this section we explain in detail the architecture of our two-stream hierarchical model

(Fig.4.3), and we derive the three proposed loss functions.

54

Figure 4.3: Our two-stream model architecture for task classification using
RGB and flow frames as input. The semantic hierarchy loss Lsh ensures task
classification after clustering videos based on their shared weighted attributes
through the TF-IDF mask Mt f id f . The THS stream learns to aggregate stage-
wise task predictions by Lth, and a third loss (L f) optimizes the fused results
of both streams.

4.4.2.1 Feature Extraction

Video task recognition is highly dependent not only on motion patterns, but also on object

appearance. Ignoring object appearance can lead to misclassifications when the motion

patterns of two tasks are very similar, e.g., making coffee and making tea. Hence, in-

stead of the mostly motion-based iDT features[77] used in [54, 2, 1], we adopt the I3D

network, pre-trained on the Kinetics dataset[111]. I3D extracts, for each frame, 1024-

dimensional feature vectors respectively from the RGB and optical flow channels. We use

PCA separately on RGB and flow features, to reduce the dimensions from 1024 to 128.

The 256-dimensional concatenated RGB and optical flow features of each frame are

stored in video-level feature vector xi ∈ R256×Ti , where Ti is the total number of frames

in video vi. In principle, any spatio-temporal network can be used instead of I3D. In the

supplementary material, we show that I3D outperforms iDT for task recognition.

4.4.2.2 Semantic Hierarchy Loss

In order to obtain a data-specific representation of video-level feature vector xi, we pass

each frame-level subvector of xi through a fully-connected layer g with bias and output

dimension of 256, then apply temporal convolution to the output of g. Using such 1D

temporal convolutions with a set of F learnable kernels kφ ∈ RL×256 of size L , xi is

eventually mapped to a F-dimensional feature encoding φ(xi) ∈ RF×Ti .

55

Let |A| be the number of unique attributes in the dataset. We pass each frame-level

subvector of φ(xi) through a fully connected layer with bias and output dimension of |A|
to obtain Ψa

i ∈R|A|×Ti , which is the sequence of attribute scores for each of the Ti frames.

Ψa
i is also known as temporal class activation map (T-CAM)[112].

Similar to [109, 113], we compute a video-level attribute score vector ψa
i by average-

pooling the highest ki = bTi
s c T-CAM scores of each attribute separately over time, where

s is a hyperparameter:

ψ
a
i [j] =

1
ki

ki−1

∑
i=0

topk{Ψa
i [j, :]} (4.1)

Intuitively, these selected ki scores highlight the most important parts of a task in video i.

To denote the setAi of attributes present in video vi, we define a multihot ground-truth

attribute vector ~ai ∈ {0,1}|A|, where for every j ∈ {0,1, ..., |A| − 1}, ~ai, j = 1 if a j ∈ Ai,

otherwise ~ai, j = 0. However, this representation fails to capture the fact that different

attributes have different levels of relevance for recognizing each task. For example, at-

tributes “take out” and “open” are present in most videos, and thus not discriminative.

As a second example, for the “preparing avocado” task, “avocado” is a more informative

attribute compared to “knife”.

Inspired by text retrieval methods [114, 115], we compute the TF-IDF weight matrix
Wt f id f ∈ R|A|×|C|, so that Wt f id f (j,τ) captures the importance of attribute j for task τ .
Initially, we formulate TF ∈ R|A|×|C| and IDF ∈ R|A| as follows:

TF(j,τ) =
∑

N−1
i=0 ~ai, j ·1(τ = ci)

∑
N−1
i=0 1(τ = ci)

(4.2)

IDF(j) = log(
|C|

|{τ ∈ C|TF(j,τ)> 0}|
) (4.3)

where 1() denotes the indicator function and TF(j,τ) and IDF(j) are, respectively, the
percentage of times attribute a j is present in videos of task τ ∈ C, and the log inverse of
percentage of all tasks that entail attribute j in at least one of their videos. We then define
the elements Wt f id f (j,τ) of the TF-IDF weight matrix as:

Wt f id f (j,τ) =
TF(j,τ) · IDF(j)

ε +∑
|A|−1
k=0 TF(k,τ) · IDF(k)

(4.4)

with ε set to a very small value to avoid division by zero.

Using these TF-IDF weights, we intorduce the TF-IDF-weighted attribute ground-
truth vector ~aw

i ∈ R|A| as:

~awi, j =
~ai, j ·Wt f id f (j,ci)

∑
|A|−1
k=0 ~ai,k ·Wt f id f (k,ci)

(4.5)

56

We also define a TF-IDF mask Mt f id f ∈ R|A|×|C|, where Mt f id f (j,τ) is 1 if the cor-
responding TF-IDF weight Wt f id f (j,τ) is nonzero, otherwise it is 0. We use the TF-
IDF mask to form a mapping from attribute score vectors ψa

i to task probability scores
ψ̂c

i ∈ R|C|, as:

ψ̂i
c = s[(wc�MT

t f id f)ReLU(ψa
i)] (4.6)

In the above, s[] and � mean the softmax and element-wise product operations respec-

tively, and wc ∈ R|C|×|A| are weights to be learned. Using the TF-IDF mask allows the

model to focus only on relevant attributes for each task.

Let~ci be the one-hot task ground-truth vector and ψ̂a = s[ψa]. The semantic hierarchy
loss Lsh is then defined as:

Lsh =−λE[~awT
i log(ψ̂a

i)]− (1−λ)E[~cT
i log(ψ̂i

c)] (4.7)

E denotes “expected value”, and λ is a design parameter that decides how fast each term

is trained comparatively.

4.4.2.3 Temporal Hierarchy Loss

We model the temporal hierarchy by dividing each video into K stages of equal duration d,
and training a classifier for each stage. Formally, given the frame-level feature encoding
φ(xi) of video i, we define hi,κ ∈RF as the feature summary of the κ-th stage and produce
unnormalized task scores (logits) ϑi,κ ∈ R|C|:

hi,κ =
∑
[(κ+1)d]−1
t=κd φ(xi)[:, t]

d
(4.8)

ϑi,κ =wκ hi,κ +bκ (4.9)

where wκ ∈ R|C|×F and bκ ∈ R|C| are parameters of each stage. During the training

process, for each stage, the loss function Lκ = E[~cT
i log(ϑ̂i,κ)] is defined on the softmax

of the stage-wise task prediction logits ϑ̂i,κ .

Stage Aggregation Function. As mentioned earlier, certain stages of a task are more
discriminative than others. We define the auxiliary function Γ([ϑ0 ϑ1 ... ϑK−1]), that
maps stage-level task score vectors to a video-level task score vector. While training, Γ()

randomly masks out one of its K input prediction vectors ϑκ entirely and multiplies the
rest of the input predictions by K

K−1 . Γ() acts similar to the spatial drop out operation by
promoting independence between predictions of each stage, to avoid overfitting to a single
stage. We form our stage aggregation function using Γ() and aggregation parameters

57

wtotal ∈ RK|C|×|C| to produce video-level task probability values ϑ̂i,total ∈ R|C|:

ϑ̂
T
i,total =Γ(ReLU([ϑ T

i,0 ϑ
T
i,1 ... ϑ

T
i,K−1])) wtotal (4.10)

Finally, we present our temporal hierarchy loss Lth to incorporate the aggregated and
stage-wise predictions:

Lth =−E[~cT
i log(ϑ̂i,total)]−

K−1

∑
κ=0

Lκ (4.11)

4.4.2.4 Stream Fusion Loss

We explore three different mechanisms for fusing the predictions of the SHS and THS

streams, to produce the final task prediction logits f c
i . We provide experimental results of

each in Section 4.6.2.

Average Fusion. Here, we treat results of semantic and temporal hierarchies equally,
and we backpropagate the same gradient to both streams at training time.

f c
i = 0.5(ϑi,total +ψ

c
i) (4.12)

Weighted Average Fusion. Here, the final prediction is a linear combination of streams,
whose predictions are weighted by learned weights w1,w2 ∈ R|C|×|C|. .

f c
i = w1ϑi,total +w2ψ

c
i (4.13)

Task-wise Switching Gates. Sometimes, wrong predictions of one stream can negatively
impact the final fused classification scores f c

i at test time. We introduce task-wise switch-
ing gates to allow the system enough freedom to learn, for each task independently, to
switch between stream predictions. We define switching gate α = σ(wα) as the sigmoid
function σ() of learnable parameters wα ∈ R|C|. The sigmoid function makes sure our
gates stay in the range of 0 to 1. Then, for training and test time, f c

i is defined as:

f c
i =

{
α�ϑi,total +(1−α)�ψc

i , training
H0.5(α)�ϑi,total +(1−H0.5(α))�ψc

i , test
(4.14)

where Hx() denotes the Heaviside step function shifted to x. At test time, given task τ ,

our final prediction is discretely chosen from the SHS stream if ατ < 0.5 or is selected

from the THS stream otherwise.

In cases of the weighted average fusion and switching gates, our fusion loss L f =

−E[~cT
i log(f̂ c

i)] is added to the previous losses to form our final loss L with the design

58

parameter β . Finally we train the whole network end-to-end but stop the gradients of L f

flowing back to the streams to isolate the fusion module from the rest.

L = L f +Lsh +βLth (4.15)

4.5 Top-Down Action Segmentation

We now present our top-down segmentation approach. In the segmentation problem, the
goal is to partition a video temporally into a sequence of S action labels δ

S
1 and their

corresponding durations lS1. The input in our approach is a video of Tv frames, represented
by xTv

1 , as the sequence of per-frame features. Let Π(τ) be the set of all action sequences
in the training set given the top-level task τ . Then, grammar π ∈ Π(τ) lists an ordered
sequence of S action labels taking place in the video of task τ . The goal is to identify the
most likely sequence of action labels δ

S
1 and their durations lS1 associated with a specific

grammar π:

(δ
S
1, l

S
1,τ) = argmax

δ
S
1,lS1,τ

p(δ S
1, l

S
1,τ|x

Tv
1) (4.16)

= argmax
δ

S
1∈Π(τ),lS1,τ

p(xTv
1 |δ

S
1)p(lS1|δ

S
1)p(δ S

1|τ)p(τ) (4.17)

where p(xTv
1 |δ

S
1) is modeled by a neural network and the Bayes rule as in [59, 1], and

p(lS1|δ
S
1) is any given duration model, e.g., Poisson[1] or DurNet[116].

Eq.5.3 is formulated similarly to the probabilistic model in [1]. However, we explic-

itly integrate the task variable τ ∈ C into this equation, which dictates the choice of the

fine-grained action sequence δ
S
1. Specifically we introduce the task model p(τ) as the

probability output of a task classification network. Without loss of generality, we used the

output of our two-stream hierarchical network f̂ c, so that p(τ) = 1 for the predicted task

τ = argmax(f̂ c) and p(τ) = 0 otherwise. In [1], the task is a by-product of the inferred

segments (δ
S
1,lS1). In contrast, our proposed approach eliminates all segmentations whose

inferred actions do not belong to Π(τ) of the predicted task τ by setting p(δ S
1|τ) to 0 for

those segmentations, and to 1 otherwise. We follow the Viterbi algorithm in [1] to solve

Eq. 5.3.

59

4.6 Experiments

We compare our method to several existing methods on two popular instructional video

datasets, both for task classification and for action segmentation using weakly-labeled

videos as training. Further, in ablation studies we evaluate the contribution of each com-

ponent of our model.

Datasets. 1) The Breakfast Dataset (BD) [60] consists of around 1.7k untrimmed

cooking videos of few seconds to over ten minutes long. There are 48 action labels

demonstrating 10 breakfast dishes with a mean of 4.9 actions per video, and the eval-

uation metrics are conventionally calculated over four splits. 2) The MPII Cooking 2

(C2) [82] has training and test subject-wise splits of 201 and 42 long and high quality

videos respectively. Particularly, these videos are 1 to 40 mins long adding to 27 hours

of data from 29 subjects who prepare 58 different dishes. This dataset offers different

challenges compared to the BD dataset for two main reasons; First, the annotated 155 ob-

jects and 67 actions (verbs) are extremely fine-grained, so that there are on average 51.8

non-background action segments per video. Second, despite the great number of frames

in the dataset, the number of samples per class is unbalanced and limited.

Metrics. We evaluate task classification performance using two metrics: 1) t-acc is

the standard mean task accuracy over all videos. 2) t-mAP denotes the mean Average

Precision of task predictions. mAP is used in [82] to assign soft class-wise scores to give

insight about how far off the wrong predictions are. Further, we use four metrics as [55]

to measure the segmentation results: acc and acc-bg are the frame-level accuracies with

and without background frames, while IoU and IoD define the average non-background

intersection over union and detection, respectively.

Implementation. We extracted I3D features on the C2 dataset using TV-L1 optical

flow [117] on a moving window of 32 frames with stride 2, and the pre-computed I3D

features of the BD dataset were obtained from [93]. We noticed that it is not necessary to

process the whole video. Instead, we followed the sampling strategy in [109] to maintain

the length of the videos in a batch to be less than a pre-defined length T ≈ 9 mins while

training. This approach speeds up training, lowers memory demands, and applies tempo-

ral augmentation. Also, we divided videos into K = 3 stages for the THS stream (analysis

in Section 4.6.2).

Our model is trained with a batch size of 10 using the Adam [35] optimizer with 10−3

learning rate and 0.005 weight decay for 20k iterations. For both datasets, we adjust λ

to 0.9, and β is set to 0.25 and 0.01 for the BD and C2 datasets, respectively. The 1D

convolutions are done with F = 64 as the number of kernels, and L = 15 as their size.

60

Table 4.1: Task classification results of state-of-the-art methods on two main
datasets. Best results reported out of I3D (†) or iDT (‡) features (more in sup-
plementary material and [118]).* results obtained using the author’s source
code. [90] results for 10 classes.

Breakfast (%) Cooking (%)
Supervision Models t-acc t-mAP t-acc t-mAP

Full Rohrbach et al.[82] - - - 57.40
Unsupervised CTE[90] 31.80‡ - - -

NNViterbi[1]∗ 70.98‡ - 23.80† -
CDFL[2]∗ 74.86‡ - 28.57† -

Weak W-TALC[109]∗ 76.19† 80.98† 33.33† 43.07†

3C-Net[107]∗ 75.23† 80.99† 30.95† 46.30†

Timeception[100]∗ 76.37† 80.80† 21.43† 25.14†

VideoGraph[101]∗ 78.70† - 23.80† -
Our Method 80.04 86.36 45.24 54.49

s = 8 and we use a drop-out keep rate of 0.3. The set of verbs and objects are used as our

attributes.

4.6.1 Comparison to State-of-the-Art Methods

We used the standard dish labels in both datasets as task labels. All experiments on the

BD dataset for all models, except the unsupervised CTE [90], were done for 9 tasks after

we combined the two dishes of frying and scrambling eggs as the top-level task of making

eggs, because both share almost the same set of actions. For CTE, we report the results

on the original 10 classes, as given by the authors. We note that CTE is unsupervised and

not a direct competitor.

Task Classification. Table 4.1 shows quantitative results on task recognition, for

our method as well as other methods that use different types of supervision. Particularly,

[2, 1] are the state-of-the-art open-source weakly-supervised segmentation methods. They

implicitly identify the task corresponding to the inferred sequence of actions during infer-

ence. Our explicit task modeling significantly outperforms them in accuracy by around 5

to 9 percent on the BD dataset, and by 16 to 21 percent in the 58 tasks of the C2 dataset.

Originally, [107, 109] are the state-of-the-art open-source weakly-supervised methods

with specific loss functions to classify and localize sparse action instances in videos. To

compare with them, we trained both to classify tasks. Also, [100] and [101] classify tasks

in long videos by training multi-scale temporal convolutions and graph based representa-

tions respectively. Both networks make heavy use of memory and suffer from overfitting

specifically in the C2 dataset, where using low-level attributes is key. While such direct

61

Table 4.2: Consistent performance gain in weakly-supervised action segmenta-
tion following our proposed top-down approach. I3D and iDT features used for
experiments on the C2 and BD datasets, respectively. (* as specified in Table
4.1, **: no source code).

Breakfast (%) Cooking (%)
Models acc acc-bg IoU IoD acc acc-bg IoU IoD
TCFPN[55]∗ 38.4 38.4 24.2 40.6 26.9 30.3 9.5 17.0
D3TW[54]∗∗ 45.7 - - - - - - -
DP-DTW[84]∗∗ 50.8 - 35.6 45.1 - - - -
NNViterbi[1]∗ 43.6 42.5 27.8 39.2 23.5 21.2 7.7 10.9
CDFL[2]∗ 50.2 50.4 33.5 45.6 29.9 32.2 11.0 13.8
NNViterbi+Ours 46.2 46.1 30.2 42.2 26.9 25.0 9.6 12.7
CDFL+Ours 51.4 52.0 34.5 46.7 31.3 34.5 12.8 15.6
CDFL+GT 59.8 63.0 41.3 55.2 35.0 39.7 14.4 17.6

Table 4.3: Inference run time (minutes) improvement of state-of-the-art follow-
ing the proposed top-down approach for segmentation.

Models Breakfast (split 4) Cooking
NNViterbi[1] 100 840

CDFL[2] 144 1070
NNViterbi+Ours 21 64

CDFL+Ours 25 110

task modelings under weak supervision prove to be more effective than the implicit classi-

fication using fine-grained action segments [2, 1], our hierarchical approach outperforms

all competitors considerably in all metrics and datasets. Table 4.1 shows our t-mAP on the

C2 dataset comes close to the fully-supervised baseline [82], which is trained on frame-

level action ground-truth. Comparison results on 10 classes of the BD dataset are in the

supp. material.

Action Segmentation. Table 4.2 shows results for action segmentation. In our ex-

periments, we combined our two-stream task prediction framework on top of the state-of-

the-art weakly-supervised segmentation methods [2, 1] and achieved new state-of-the art

results on both datasets, manifested more vividly in acc-bg, because background frames

are independent of the task. Therefore, excluding background frames highlights the con-

tribution of the correct task label in segmentation. This consistent improvement in all met-

rics, while decreasing the inference time by 80-90% (Table 4.3), demonstrates the poten-

tial of the proposed top-down approach for weakly-supervised segmentation. Moreover,

CDFL+GT in Table 4.2 represents CDFL segmentation results constrained by ground-

truth task labels, which serves as an upper bound for our proposed top-down model.

62

4.6.2 Analysis and Ablation Study in Task Modeling

Stream-Specific Results. We evaluated the contribution of the SHS and THS streams sep-

arately in Table 4.4. The SHS stream is more effective on the C2 dataset because of two

main reasons: First, the average number of videos per task (3.4) is low compared to that

of videos per attribute (28.4), so any direct way of task modeling is prone to overfitting.

Second, the large number of attributes per task allows the learning of a discriminative

attribute-to-task mapping. Meanwhile in the THS stream, despite the weak classifica-

tion power of the stage-specific classifiers, our hierarchical modeling is able to aggregate

stage-wise predictions effectively and produce significantly superior results. This shows

that different stages provide complimentary information. Note that the THS stream alone

achieves state-of-the-art on the BD dataset with only task label supervision.

Semantic Hierarchy Ablation. As shown in Table 4.5a, removing the attributes from

the semantic hierarchy loss (Eq.4.7), and directly classifying tasks from the feature encod-

ing φ(x), leads to around 12% drop in t-acc on the C2 dataset. Simply sharing low-level

attributes among tasks is beneficial, and using the TF-IDF weights led to an additional 7%

difference in t-acc (Table 4.5b).

Temporal Hierarchy Analysis. Modeling tasks as a temporal hierarchy of multiple

stages improves the performance compared to the single-stage approach. Furthermore, as

indicated by Table 4.6, such an approach is not sensitive to the number of stages (K > 1) in

the hierarchy. This concludes that these stages provide complimentary information for the

stage-aggregation function regardless of their exact positioning or duration in the video.

Comparison of the Stream Fusion Mechanisms. Table 4.7 compares different mech-

anisms to fuse the predictions of SHS and THS streams. Specifically, the Task-wise

Switching Gates are trained to identify the stronger stream per task and perform best,

while the vanilla and weighted averaging compromise between both streams and produce

sub-optimal results. In the BD dataset these gates propagate the results of the THS stream,

Table 4.4: Stream-specific ablation study for task classification.

Breakfast (%) Cooking (%)
Stream t-acc t-mAP t-acc t-mAP

Semantic hierarchy 73.1 77.2 42.9 52.6
Temporal hierarchy-stage 1 62.7 - 16.7 -
Temporal hierarchy-stage 2 68.9 - 28.6 -
Temporal hierarchy-stage 3 64.7 - 23.8 -

Temporal hierarchy-aggregated 80.0 86.4 31.0 45.2
Two streams fused 80.0 86.4 45.2 54.5

63

Table 4.5: The effect of sharing attributes (a) and using TF-IDF weights (b) in
the SHS stream (Cooking dataset).

(a) (b)
Setting t-acc t-mAP

Without attributes 33.3 45.4
With attributes 45.2 54.5

Setting t-acc t-mAP
Without TF-IDF 38.1 49.4

With TF-IDF 45.2 54.5

Table 4.6:
Evaluation
of our model
under differ-
ent choices
of K on the
BD.

Stages t-acc t-mAP
1 74.2 82.1
2 79.6 86.4
3 80.0 86.4
4 80.0 86.4
5 79.2 85.8

Table 4.7: Compari-
son between different
fusion mechanisms on
the BD.

Fusion Type t-acc t-mAP
Average 77.2 84.2

Weighted Average 78.4 84.9
Switching Gate 80.0 86.4

whereas in the C2 dataset they switch between both for different tasks and combine pre-

dictions (see row 1, 5 and 6 of Table 4.4).

4.6.3 Qualitative Results

Fig.4.4 compares results of the THS stream with the single-stage baseline on four chal-

lenging videos from the BD dataset. Due to similar-looking actions shared between tasks,

the single stage baseline misclassifies the video task, whereas our THS stream outputs the

correct task under different stage-wise settings. Specifically, in the first and third videos,

our model classifies the task correctly although only one of the stage predictions is cor-

rect. For example, according to the stage-wise accuracy of the task making chocolate milk

in Fig.4.4, the last stage of this task is the most discriminative one. Thus, our model learns

to put more weight on the predictions of this stage, which compensates for the first two

stages outputting the wrong class of making cereal.

The two tasks of making coffee and making tea share similar-looking actions in the first

and second videos, so analyzing the entire video in one step produces wrong predictions

for both cases. The second video, in particular, provides an interesting case where similar

visuals of the action taking cup between tasks of making chocolate milk and making tea

led to confusion of the first stage. Also, the later two stages mistakenly predicted the

64

Figure 4.4: Qualitative task classification results of our THS stream on sample
challenging videos from the BD dataset. For each video, we show the ground-
truth task label, predictions from the single-stage baseline, and the stage-wise
and stage-aggregated recognition result. Also, stage-wise accuracy for each of
the four tasks is presented on the right side. In the first video, the subject
sequentially takes a cup, pours coffee and milk, adds sugar and stirs coffee. In
the second video, the subject takes a cup, adds teabag, pours hot water, spoons
sugar and stirs. In the third video, the subject takes a cup, pours milk, spoons
choc. powder, adds sugar and stirs. In the fourth video, the subject pours
cereal, spoons choc. powder, pours milk, and then stirs. Red and green boxes
denote wrong and correct predictions, respectively.

task of making coffee, because the two actions of pouring and stirring are shared between

both tasks of making coffee and making tea. Although all three stage-wise predictions

are wrong, the aggregated result of those stages is correct. This shows that the proposed

hierarchical model not only considers the predicted class of each stage, but also learns the

relationship between stages and their fine-grained prediction scores.

In a given stage, the short discriminative part may be dominated by the longer am-

biguous section. For example, the final stage of the last video depicts how stirring while

occluding the bowl dominates the shorter and more discriminative action of pouring milk.

This effectively resembles the appearance and motion of flipping a pancake by spatula,

but the complementary information of the first two stages eventually results in the correct

aggregated recognition.

4.7 Conclusion

We have introduced a two-stream framework, that exploits semantic and temporal hierar-

chies to recognize tasks in weakly-labeled instructional videos. We have also proposed

65

a novel top-down segmentation approach, where the predicted task constrains the fine-

grained action labels. We report experimental results on two public datasets. Our two-

stream task recognition method outperforms existing methods. Similarly, our top-down

segmentation approach improves the accuracy of existing state-of-the-art methods, while

simultaneously improving runtime by 80-90%.

66

4.8 Supplementary Material

4.8.1 Overview

In this supplementary material, we show comparisons of I3D [111] and iDT [77] features

in task recognition on two datasets, and present comparison results on the original 10

classes of the Breakfast dataset [60]. We also provide a glossary of terms and a table of

symbols we use in the paper.

4.8.2 I3D and iDT Feature Comparison in Task Recognition of Weakly-Labeled Videos

In this section, we compare I3D and iDT features for the purpose of task recognition in

weakly-labeled instructional videos. Specifically, we present results of existing models

using I3D (Table 4.8) and iDT (Table 4.9) features on the MPII Cooking 2 dataset [82] as

well as the first split of the Breakfast dataset [60].

We used the Fisher vectors of iDT features as in [60, 71]. The Fisher vectors for

each frame are extracted over a sliding window of 20 frames. They are first projected to

a 64-dimensional space by PCA, and then normalized along each dimension. Also, we

extracted the I3D features of the Cooking 2 dataset using TV-L1 optical flow [117] on a

moving window of 32 frames with a stride of 2, and the pre-computed I3D features of the

Breakfast dataset were obtained from [51]. Furthermore, we applied PCA to the extracted

I3D features to reduce the dimensionality of RGB and optical flow channels from 1024 to

128. We fed the same features to all competitors except [102] in Table 4.10 whose code

is not publicly available, so we compare with their reported result on ResNet101 [119]

features.

In the Cooking 2 dataset, we train the models on the training split and test on the test

split. However as [2] and [1] take a long time to train and infer the segments, in Tables

4.8 and 4.9, we only use the first split of the Breakfast dataset to evaluate the difference

in performance of all models when using I3D and iDT features as input. Note that the

reported task recognition results on the Breakfast dataset in the paper are the average of

all four splits using the best case for each method.

Explicit task classification methods, e.g., ours, W-TALC [109] and 3C-Net [107],

consistently perform better with I3D features on both datasets, whereas the bottom-up

inference of tasks in NNViterbi [1] and CDFL [2] produces mixed result. In particular, the

performance of [2] and [1] on the Breakfast dataset considerably improves upon using iDT

features. Overall, the more significant presence of object information in I3D features helps

67

Breakfast (1st split) (%) Cooking (%)
Models t-acc t-mAP t-acc t-mAP
NNViterbi[1]∗ 57.14 - 23.80 -
CDFL[2]∗ 66.26 - 28.57 -
W-TALC[109]∗ 75.79 78.96 33.33 43.07
3C-Net[107]∗ 75.39 78.50 30.95 46.30
Timeception[100]∗ 79.50 82.53 21.43 25.14
VideoGraph[101]∗ 80.06 - 23.80 -
Our Method 81.74 88.30 45.24 54.49

Table 4.8: Task classification results of state-of-the-art methods using I3D fea-
tures on the Cooking 2 dataset and the first split of the Breakfast dataset. (*
results obtained using the author’s source code).

Breakfast (1st split) (%) Cooking (%)
Models t-acc t-mAP t-acc t-mAP
NNViterbi[1]∗ 71.03 - 16.66 -
CDFL[2]∗ 77.38 - 21.42 -
W-TALC[109]∗ 53.17 54.96 19.04 25.85
3C-Net[107]∗ 56.74 60.36 14.28 27.38
Timeception[100]∗ 65.87 71.73 9.52 14.36
VideoGraph[101]∗ 58.93 - 14.28 -
Our Method 60.31 61.72 23.80 27.66

Table 4.9: Task classification results of state-of-the-art methods using iDT fea-
tures on the Cooking 2 dataset and the first split of the Breakfast dataset. (*
results obtained using the author’s source code).

to classify top-level tasks more accurately, while detecting fine-grained actions seems to

be less affected by such appearance information.

4.8.3 Task Classification Results on 10 Classes of the Breakfast Dataset

Timception [100], VideoGraph [101] and RhyRNN [102] are the latest state-of-the-art

methods to classify tasks in minutes-long videos and are the closest competitors to our

work. We compared the standard four fold cross validated results of Timeception and

VideoGraph over 9 classes of the Breakfast dataset in Table 1 of the paper, however, we

could not compare our method to RhyRNN because the source code of RhyRNN is not

publicly available to adjust that model to our evaluation settings. Hence, in Table 4.10, we

present comparison results of our method with the reported accuracy of this method and

different versions of other models over the original 10 classes of the Breakfast dataset.

68

Models t-acc Feature Test Split
Timeception[100] 71.3 3D-ResNet [120] Last 8 subjects
Timeception[100] 69.3 I3D (pre pooling) Last 8 subjects
Timeception[100]∗ 76.6 I3D (post pooling) Split 1
VideoGraph[101] 69.5 I3D (pre pooling) Last 8 subjects
VideoGraph[101]∗ 79.9 I3D (post pooling) Split 1
RhyRNN[102] 44.3 ResNet101 [119] Split 1
Our Method 81.5 I3D (post pooling) Split 1
Our Method 85.2 I3D (post pooling) Last 8 subjects

Table 4.10: Task classification results (t-acc) of state-of-the-art methods on the
Breakfast dataset for 10 classes. (* results re-implemented using the author’s
source code).

For a direct comparison with RhyRNN , we show results on the first split as reported in

RhyRNN.

Furthermore, Table 4.10 shows the original reported results of Timeception and Video-

Graph, which are lower than our re-implemented versions in both cases. Contrary to the

standard splitting rule of the Breakfast dataset, both works have used the last 0.15% of

subjects in the dataset (8 subjects) to test their performance. Our result on this split sig-

nificantly outperforms previous methods (Table 4.10). [100] and [101] also use the output

before the last average pooling layer (pre pooling) in the I3D network as features, unlike

us, where we use the features after the pooling layer (post pooling). The results in Table

4.10 suggest the superiority of the latter, because the lower dimension after pooling al-

lows each network to be given more features as input, which increases their input temporal

range.

Interestingly, the task accuracy for most models, including ours, hardly drops upon

evaluation on 10 classes and our method is still superior than different versions of state-

of-the-art.

4.8.4 Glossary of Terms and Symbols

As there are similar terms and many symbols used in the paper, here, we provide specific

definitions of terms (Table 4.12) and symbols (Table 5.5) for readers to refer to.

69

Symbol Definition
A The set of all attributes
a j Attribute j
ai, j Attribute j of video i
Ai The set of attributes in video i
~ai Muiltihot ground-truth attribute vector of video i
~aw

i TF-IDF weighted ground-truth attribute vector of video i
AT B Matrix multiplication of A transposed and B
a ·b Scalar multiplication of a and b
β Importance factor of Lth in the total loss
C The set of all tasks
ci Task label for video i
~ci One-hot task ground-truth vector of video i
d Stage duration
F Dimension of the feature encoding φ(x)
f c
i Final fused classification logits

g(x) The fully connected layer to produce encoding φ(x)
Hx() Heaviside step function shifted to x
hκ Feature summary of stage κ

K Number of stages in the THS stream
kφ Temporal convolution kernels to produce φ(x)
ki Number of selected frames of video i from the topk operation
L Kernel length of kφ

lS
1 Sequence of S action durations in a video
Lsh Loss function for the SHS stream
Lth Loss function for the THS stream
L f Loss function of the fused streams
Mi Number of attributes in video i
Mt f id f TF-IDF mask
M a

x Mapping function from features to attributes
M c

a Mapping function from attributes to tasks
N Number of videos in the training set/batch
S Number of segments in a video
s[] Softmax operation
Sκ Classifier for stage κ in the THS stream
s The parameter used in the topk operation
Ti Number of frames in video i
T Stage aggregation function in the THS stream
τ Task variable
ϑκ Task prediction logits of stage κ

ϑtotal Stage-aggregated task prediction logits
V Set/Batch of training videos
vi Video i
Wt f id f TF-IDF weights
xi Input feature vector for video i
φ(x) Learned video feature encoding
ψa

i Attribute score vector of video i in the SHS stream
ψc

i Task score vector of video i in the SHS stream
Ψa

i T-CAM of video i
δ

S
1 Sequence of S action labels in a video

λ Design parameter in Lsh
Π(τ) Set of all action sequences in the training set given task τ

σ() Sigmoid operation
Γ() Stage-wise drop out in the stage aggregation function
1() Indicator function
� Element-wise product operation

Table 4.11: Definitions of symbols used in the paper.70

Term Definition
Action Lower level actions happening in the

form of segment sequence in instruc-
tional videos.

Action align-
ment

Partitioning the video into sequence of
action segments given a sequence of ac-
tion labels.

Action detec-
tion

Classify and localize occurrences
of, typically, a single action in the
video among considerable background
frames.

Action segmen-
tation

Partitioning the video into sequence of
action segments.

Attribute Set of actions or the set of verb/object
components of actions.

Fully-
supervised
classification

Task classification using frame-level
and video-level labels.

Instructional
videos

Videos with a top-level task and a se-
quence of fine-grained actions to carry
out the underlying task.

Task The single top-level composite activity
present in the video.

Task recogni-
tion

Classifying the top-level task in long in-
structional videos.

Weakly-labeled
videos

Videos with no frame-level annotations.
In our case, only sequence of video-
level action labels is available.

Weakly-
supervised
classification

Task classification without access to
frame-level annotation. We use the
term “weak” to distinguish from fully-
supervised methods.

Table 4.12: Definitions of technical terms used in the paper.

71

5 Weakly-Supervised Online Action
Segmentation in Multi-View
Instructional Videos*

5.1 Abstract

This paper addresses a new problem of weakly-supervised online action segmentation in

instructional videos. We present a framework to segment streaming videos online at test

time using Dynamic Programming and show its advantages over greedy sliding window

approach. We improve our framework by introducing the Online-Offline Discrepancy

Loss (OODL) to encourage the segmentation results to have a higher temporal consis-

tency. Furthermore, only during training, we exploit frame-wise correspondence between

multiple views as supervision for training weakly-labeled instructional videos. In par-

ticular, we investigate three different multi-view inference techniques to generate more

accurate frame-wise pseudo ground-truth with no additional annotation cost. We present

results and ablation studies on two benchmark multi-view datasets, Breakfast and IKEA

ASM. Experimental results show efficacy of the proposed methods both qualitatively and

quantitatively in two domains of cooking and assembly.

*This work was done as part of my internship at Honda Research Institute, USA

72

Figure 5.1: Top: online segmentation, where the frame of interest at time t
is identified either greedily by the f function or through DP-based online in-
ference based on current and past predictions. Bottom: Offline segmentation
after observing the whole sequence.

5.2 Introduction

Action understanding in untrimmed instructional videos is important in many applica-

tions, where agents learn by observation of other agents performing complex tasks. Such

videos are characterized by composition of a sequence of low-level atomic actions, e.g.,

crack eggs and whisk eggs, that form a high-level task, e.g., making eggs. This contex-

tual dependency between actions as well as other attributes in instructional videos have

inspired new research [88, 82, 83, 89, 121] that has advanced the field.

A fully-supervised training of these videos would require not only the labels for each

action, but also their temporal assignment (start and end time) with ordering constraints.

However, creating fully annotated clips with action assignments and labels on the tem-

poral boundaries of individual actions is manually intensive and is therefore both time

consuming and expensive. This limits the scale and practicality at which fully-supervised

video datasets can be created. Furthermore, the subjective nature of labeling the start and

end time of each action results in ambiguities and inconsistencies. In weakly-supervised

action segmentation these limitations are addressed by using only the ordered sequence

of action labels per video during training, and forgo subjective labeling of start and end

time of each action.

Another important consideration in action understanding relates to requirements for

processing the videos online versus offline, which is not addressed in existing weakly-

supervised segmentation methods [2, 122, 105]. Online processing with low latency is

an increasingly important part of interactive applications where real-time, or near real-

time feedback is critical. For example, interactive applications such as human-robot in-

73

teraction, error correction in manufacturing assembly, and virtual rehabilitation require

immediate feedback from the intelligent system as the video streams arrive.

The work presented in this paper considers the two aforementioned aspects in ac-

tion segmentation: weak-supervision and online processing aimed at temporally parti-

tioning videos into action segments. To our knowledge, our work is the first to address

the problem of weakly supervised online action segmentation. Specifically, we present a

framework to segment streaming instructional videos online at test time using Dynamic

Programming (DP). We show the advantages of using DP as opposed to the greedy slid-

ing window approach that are frequently used in previous online action understanding

work [123, 124, 125] (Fig. 5.1).

We also introduce the Online-Offline Discrepancy Loss (OODL). Offline segmenta-

tion refers to inference after observing the video in its entirety. Offline segmentation is a

non-causal procedure that is generally expected to be more accurate than its online coun-

terpart that makes inference from partial observations. Indeed, there is a trade-off between

accuracy of the recognized actions and low-latency (Sec.5.7.2.1). The OODL loss uses

the offline segmentation result as a reference and penalizes its difference with online seg-

mentation results generated at each time step in the video. Effectively, this encourages

the segmentation results inferred at different observation end points in the video to have

higher temporal consistency with respect to each other.

Furthermore, due to lack of frame-level annotation in weakly-labeled videos, frame-

wise correspondence between multiple synchronized views of the same recording can pro-

vide helpful cues about the temporal location of each action during training. Our work is

the first to use the supervision of frame-level correspondence between different views for

action segmentation. We compare three ways to exploit this multi-view correspondence to

generate more accurate frame-level pseudo ground-truth for weakly-labeled videos. This

is in contrast to previous segmentation methods [2, 54, 122], where different views are

treated independently, discarding important multi-view information. Note that we only

use the multi-view correspondence at training time and our method segments each video

independently at test time with no access to other views. Also, our framework utilizes no

additional annotation cost, as it is trained independent of the label and number of view

points.

In summary, our main contributions are as follows:

1) We are the first to address the problem of weakly-supervised online action segmen-

tation in instructional videos, and offer a DP-based framework.

2) We introduce the Online-Offline Discrepancy Loss (OODL). The OODL loss uti-

74

lizes the offline segmentation result as a reference to train the online model by minimizing

the difference between online and offline inference results.

3) We use frame-wise multi-view correspondence, during training only, to generate

more accurate action pseudo-ground-truth in weakly-labeled videos with no additional

annotation cost. Our work is the first to incorporate multi-view video understanding in

action segmentation.

4) We present results and a detailed ablation study on two benchmark multi-view

datasets in domains of cooking and assembly: Breakfast [60] and IKEA [126]. We show

quantitatively and qualitatively how our contributions consistently improve various sug-

gested baselines on both datasets.

5.3 Related Work

Weakly-Supervised Action Segmentation. There has been extensive research in ac-

tion segmentation of instructional videos under different forms of supervision, including

fully-supervised [127, 93, 128, 129, 130], unsupervised [131, 132, 96], and time-stamp

supervised [133] methods. Methods most similar to ours use only the sequence of action

labels as the weak supervision in training [2, 1, 55, 59, 54, 122, 106, 116]. However, all

previous methods consider offline segmentation of videos, where future frames are used

to make predictions at the current frame. Specifically, [55] encodes the entire video first

before decoding it to frame-level action scores. The work in [2, 1, 54, 122, 105] use

Dynamic Programming (DP) to infer the most likely actions and their duration given the

entire video. Our method also uses a DP-based framework, but to our knowledge, we

are the first to introduce a weakly-supervised method to segment a streaming video in an

online manner.

Online Action Understanding. Online action understanding has been studied in

various problems such as online action detection [134, 124, 125], start of action detec-

tion [135, 136] or anticipation [137, 138, 139, 140, 141]. In the context of online action

detection, [134] employs knowledge distillation to transfer information from offline to

online models and [142, 124, 125, 143] introduce new neural networks to classify cur-

rent actions in streaming videos using a sliding window approach. Others have focused

solely on detecting the start of an ongoing action immediately [135, 136] or with a short

delay [144]. However, past methods did not consider instructional videos and, more im-

portantly, required frame-level labels to train.

Most similar to our work is WOAD [123] as the only weakly-supervised online action

detection framework. WOAD [123] is different to our framework in two main ways: First,

75

as a detection model, it is formulated to identify and localize occurrences of, typically, a

single action in the input video, while we focus on instructional videos with a series of

many unique actions. Second, during test time, we utilize Dynamic Programming and

show in our experiments that it outperforms the greedy approach taken in [123].

Multi-View Action Understanding. Using video feeds from multiple view points

has improved performance for different problems such as action recognition [145, 146,

147, 148, 149], person identification [150], anomaly detection [151], and video sum-

marization [152, 153, 154]. Similar to our work, [146, 148, 155, 156] limit exploiting

multiple views to training time only. In particular, [148, 146] focus on fully-supervised

learning of trimmed videos. Meanwhile, [155] explores unsupervised video-to-video

alignment, but utilize partial frame-level labels for classification. In addition, [157, 156]

study domain adaptation across 3rd and 1st person views. However, unlike us, they rely

on view-specific labels for training. Others [158, 147, 149] use multiple data modali-

ties as view points. Specifically, [158] introduces a semi-supervised and view-agnostic

framework for trimmed video classification, where multiple modalities are fused to gen-

erate video pseudo labels. These pseudo labels are used along with a selected number of

ground-truth labels to train a video classifier. In contrast, to our knowledge, we are the

first to use multi-view for temporal segmentation in untrimmed videos without frame-level

supervision.

5.4 Background

This section describes definitions and background concepts used henceforth. For more

clarity, the supplementary material provides a table of all symbols used.

5.4.1 Problem Definition

During training, the input to our model is a video of length T represented by frame-level

features xT
1 and an ordered sequence of actions τ = (τ1,τ2, ...,τM) known as the transcript.

M is the number of actions in a given video and can vary across videos. Information about

the start and end time of each action is not known.

At test time, given the set of action labels in the dataset A, the goal is to identify the

action label at ∈ A at frame t for all 0 < t < T + 1 based on only the past and current

observations xt
1. The final result will be a sequence of N predicted segments identified

online by their action an and duration ln, where n refers to the nth segment.

76

5.4.2 Offline Inference

Given the input features xT
1 of the entire video, a common factorized formulation [1, 2]

to model the posterior probability of the sequence of actions aN
1 and their corresponding

duration lN
1 is given by:

poff(aN
1 , l

N
1 |xT

1)≈ p(xT
1 |aN

1)p(lN
1 |aN

1)p(aN
1). (5.1)

To infer the most likely sequence of actions aN
1 and their duration l

N
1 associated with the

video transcript τ , we use

(aN
1 , l

N
1) = argmax

aN
1 ,l

N
1

{
poff(aN

1 , l
N
1 |xT

1)
}
, (5.2)

= argmax
aN

1 ,l
N
1

{
T

∏
t=1

p(xt |an(t))
N

∏
n=1

p(ln|an)p(aN
1)}, (5.3)

where n(t) is the segment number at frame t. While training, aN
1 = τ and N = M, since

the sequence of action labels is already given in the transcript. p(xt |a) is modeled by a

GRU [159] and the Bayes rule as in [1]. The GRU can be optionally replaced by any other

neural network as a black box. p(l|a) is a Poisson distribution modeling the duration of

a given action and is parameterized by the mean length of action a. Finally, p(aN
1) = 1 if

the sequence of action labels aN
1 exist in the training set transcripts and 0 otherwise.

5.4.3 Offline Segmentation Energy Score

We revisit the definition of energy score E introduced in offline segmentation [2]. Specifi-

cally, based on the inferred segments (Eq.5.3), we define (aN
1 , l

N
1) as the unique valid path

π+ and (àN
1 ,l

N
1) as an invalid path π− ∈ P−, where àn ∈ A�{an} and P− is the set of

all invalid paths given the inferred durations l
N
1 . Accordingly, we define the segment-

level energy score of the valid action an with length ln at segment n as en(an, ln) =

∏
η(n)+ln−1
t∈η(n) p(an|xt), and the segment-level energy score of an invalid action àn is given

as en(àn, ln) = ∏
η(n)+ln−1
t∈η(n) p(àn|xt). Here, η(n) is a function that maps an input segment

number to the starting frame number of that segment. Note that the start of each segment

occurs immediately after the end of the previous segment and p(a|xt) is the output of the

GRU. Further, in order to exclusively focus on hard invalid actions, the segment energy

score of hard invalid actions denoted by e−n (àn, ln) is defined as follows:

e−n (àn, ln) =

{
en(àn, ln), if en(àn, ln)> en(an, ln)

1, otherwise
.

77

Finally, Eπ+ =∏
N
1 en(an, ln) is the energy score of the valid path, and Eπ− =∏

N
1 e−n (àn, ln)

is the energy score of the invalid path π−. Calculation of these energy scores is done in

the log space using DP as explained in [2].

5.5 Weakly-Supervised Online Segmentation

In this section, we introduce our framework for causal action inference and present how

the relation between online and offline inference is exploited to derive a loss function for

weakly-supervised online action segmentation.

5.5.1 Online Inference

Since online action inference is a causal process, we cannot directly use Eq. 5.3 to infer

the action label at the current frame t ′. A straightforward causal solution is to employ the

GRU in a sliding window fashion and apply argmax{p(at ′ |xt)} as the output of the GRU

with the highest probability [123]. However, as shown in Fig.5.5, this greedy approach

does not consider the context and predictions of previous time steps and is therefore sub-

optimal. In order to fully account for the past actions and their duration, we formulate

the marginal causal (or online) probability pon(at ′ |xt ′
1) of the present action at ′ = an(t ′) at

segment n′ = n(t ′) over all previous actions an′−1
1 if n′ > 1, and duration ln′

1 . The inferred

present action ât ′ is derived as follows:

ât ′ = argmax
at′∈A

{
pon(at ′ |xt ′

1)
}
, (5.4)

= argmax
an′∈A

{
∑

an′−1
1 ,ln′

1

pon(an′
1 , l

n′
1 |xt ′

1)
}
. (5.5)

To improve computational efficiency, we empirically approximated Eq. 5.5 by the maxi-

mum joint probability value:

ât ′ ≈ argmax
an′∈A

{
max

an′−1
1 ,ln′

1

pon(an′
1 , l

n′
1 |xt ′

1)
}
. (5.6)

Eq.5.6 involves two steps. The first is to find the most likely sequence of actions ãn′
1

with duration l̃n′

1 until time t ′. The second involves taking only the last segment label
ãn′ = pop(ãn′

1) to infer the label of the current frame t ′, where pop() is a function that out-
puts the last element of a list. To execute the first step, online inference of the most likely
sequence of past action segments (ãn′

1 , l̃
n′

1) is formulated as argmax
{

pon(an′
1 , l

n′
1 |xt ′

1)
}

,

78

where pon(an′
1 , l

n′
1 |xt ′

1) for n′ > 11 is derived below:

pon(an′
1 , l

n′
1 |xt ′

1) =

Γ(ln′ |an′)
t ′

∏
t=1

p(xt |an(t))
n′−1

∏
n=1

p(ln|an) · p(an′
1). (5.7)

p(an′
1) = 1 if an′

1 is a sub-sequence of any of the transcripts in the training set, and 0

otherwise, and Γ(l|a) is a half Poisson function to model the duration ln′ of the current

action an′ at the last observed segment, given by

Γ(l|a) =

{
1 if l < λa
λ l

aexp(−λa)
l! otherwise

,

where λa is the estimated mean length of action a.

Inclusion of Γ() in the online inference of the current action is essential as it accounts

for the two following cases: First, using the full Poisson distribution of Eq.5.3 to model the

duration of the current observed action leads to penalizing the current actions with a short

duration, ln′ < λan′ . However, since we do not have foresight about the duration of the

current segment, any conclusion about the current segment length would be premature.

Second, Γ() still allows us to penalize the current action if its duration is longer than

expected since this can be concluded solely based on the observed segment of the action.

At test time, the final online segmentation result in a streaming video when the cur-

rent time t ′ changes from 1 to any given time T is the sequence of frame-level actions

(â1, .., âT), where each ât ′ ← ãn′ = pop(ãn′
1) is inferred by Eq.5.7 using the Viterbi algo-

rithm.

5.5.2 Online-Offline Discrepancy Loss (OODL)

Offline action segmentation is expected to be more accurate than online segmentation be-

cause segments are inferred from information contained in the entire length of the video,

including transcripts as well as prior knowledge of the video end. Thus, offline segmenta-

tion results provide a rich source of supervision for training online segmentation models.

Ideally, the sequence of actions inferred online from the initial frame to any point in the

video is expected to be a sub-sequence of the offline inference result as shown in Fig. 5.2.

Consequently, this encourages all frame-level action sequences {ãt
1}T

t=1 to be temporally

consistent, where each sequence ãt
1 is inferred online at time t .

1 For n′ = 1, the Poisson factor p(l|a) is excluded.

79

(a) (b)

Figure 5.2: Given the video transcript τ=(τ1,τ2,τ3,τ4), the OODL loss encour-
ages the online segmentation results in (a) to become a sub-sequence of the
offline result for each time step as in (b).

We present the Online-Offline Discrepancy Loss (OODL) LOODL in Algorithm 3 to

minimize the difference between online and offline segmentation scores. Specifically,

we first use Eq.5.7 to infer the set of online paths {ãt
1}T

t=1 after n(t) pairs of segment-

level labels (ãn(t)
1 , l̃n(t)

1) are converted into t frame-level action labels ãt
1 for each time step

t. Then, we use the hinge loss function to penalize any online inference result that has a

higher energy score Eon than the energy score Eoff of the offline path at
1⊆ aT

1 inferred from

Eq. 5.3. The OODL ultimately discourages all frame-level predictions that contribute to

the discrepancy between the intermediate online inference results and the most likely

sequence of actions inferred offline at the end of the video.

LOODL is added to the baseline offline segmentation loss Lb [2] to form our final loss
function L f :

L f = Lb +LOODL. (5.8)

Minimizing the offline segmentation loss Lb effectively corresponds to maximizing
the decision margin between offline valid and hard invalid paths derived in Sec. 5.4.3.

Lb =−log(Eπ+)+ log(∑
π−∈P−

Eπ−). (5.9)

We iteratively utilize the offline and online segmentation pseudo labels inferred by Eq.

5.3, and 5.7, respectively, as well as the loss in Eq.5.8 to train the GRU until convergence.

80

Algorithm 3 Online-Offline Discrepancy Loss (OODL)

Require: Video features xT
1 of T frames and the offline inference result (aN

1 , l
N
1) of N

segments
Ensure: LT as the OODL loss LOODL

1: for t←1 to T do:
2: ãn(t)

1 , l̃n(t)
1 = argmax

{
pon(a

n(t)
1 , ln(t)

1 |xt
1)
}

. Eq.5.7

3: ãt
1= (ã1, ..., ãn(t)) = convert(ãn(t)

1 , l̃n(t)
1)

4: Eon(t) = ∏
at∈ãt

1

p(at |xt)

5: aT
1 = (a1, ...,an(T)) = convert(aN

1 , l
N
1)

6: L0 = 0
7: for t←1 to T do:
8: Eoff(t) = ∏

at∈at
1

p(at |xt)

9: d = max
(
0, log(Eon(t))− log(Eoff(t))

)
10: Lt = Lt−1 + d

t . Averaging d over time t
return LT

5.6 Multi-View Supervision

Due to lack of frame-level action labels at training time, it is imperative to maximize the

functional capacity of the training data available. We do so by leveraging the correspon-

dence between multiple unknown views to infer more accurate frame pseudo labels.

Concretely, consider a training set of K videos {vi}K
i=1 and their corresponding view

adjacency matrix V ∈RK×K , where each element vi, j in V is 1 if vi and v j are two different

views of the same recording, and 0 otherwise. During training, we pair each video vi, as

the anchor video, with an auxiliary video v j, which is randomly sampled from the anchor

view’s adjacent set Vi = {vk|Vi,k = 1∧ k 6= i}. As shown in Fig. 5.3, each video pair is

given as an input to a multiview-inference module to generate pseudo labels2, which are

used to train the GRU with respect to the anchor video i. In this section, we discuss three

different multi-view inference techniques employed during training:

Sequence Voting (SV). Given synchronized video features ixT
1 and jxT

1 of any two
given views, we define the result of voting as the sequence of actions aN

1 with durations
l
N
1 that have the highest product of sequence probability over both views:

(aN
1 , l

N
1) = argmax

aN
1 ,l

N
1

{
p(aN

1 , l
N
1 |ixT

1)p(aN
1 , l

N
1 | jxT

1)
}
. (5.10)

2 Interchangeably named as offline valid path or offline inference result

81

Multi-view training

Multi-View Inference Pseudo Ground-Truth

Different Variations of
Multi-View Inference

Anchor
Video, Vi

Auxiliary
Video, Vj

Single-view training

Offline Inference
Pseudo Ground-Truth

Vi

Testing

Online Inference
Frame-wise
PredictionsVi

Vj

Vi

SV
Pseudo
Ground-Truth

Vj

Vi
Pseudo
Ground -TruthConcatenationMultiplicationGRU argmaxLoss function Softmax

Vj

Vi

Pseudo
Ground-Truth

WPI

PI

Figure 5.3: An overview of the single-view and multi-view training schemes
can be seen on the left. More details of the three proposed multi-view inference
techniques are depicted on the right. Notice how a single view is always used to
segment the video at test time.

In this case, the inferred sequence must have high probabilities (votes) in both views, as

inconsistent probabilities (votes) diminish the overall score of any segmentation.

Probabilistic Inference (PI). Instead of combining multi-view results at the video
level as in the SV technique, here we fuse frame-level scores to infer the sequence that
maximizes the posterior probability p(aN

1 , l
N
1 |ixT

1 , jxT
1) given the two views:

p(aN
1 , l

N
1 |ixT

1 , jxT
1)≈ p(ixT

1 |aN
1)p(jxT

1 |aN
1)p(lN

1 |aN
1)p(aN

1). (5.11)

The argmax of the above equation can be solved by integrating

p(xt |an(t)) = p(ixt |an(t))p(jxt |an(t)) in Eq.5.3.

Weighted Probabilistic Inference (WPI). The Probabilistic Inference model in Eq.5.11
assumes equal contribution from each view. However, a more appropriate formulation is
to compare the two views and provide a higher confidence weight on the more reliable
view. Hence, we introduce the class agnostic confidence weight ict ∈ [0,1] for the anchor
view i at time t as follows:

ict ,1− ict =Softmax
(

Φc
(
[Φ f (ixt

t−w) Φ f (jxt
t−w)]

))
, (5.12)

where Φ f () : Rw×F1 → RF2 is a function that embeds a temporal window of the past w

frame features xt
t−w for each view independently, and Φc() : RF2 → R2 is the compare

function that takes the concatenated view embeddings [Φ f (ixt
t−w)Φ f (jxt

t−w)] and outputs

the relative confidence weight of the anchor view i with respect to the auxiliary view j at

time t. F1 and F2 are the dimensions of each frame feature and the window embedding

respectively.

Having defined the view confidence weight ict , we rewrite the likelihood p(xt |an(t)) as

82

follows and use Eq.5.3 to infer the pseudo labels (aN
1 , l

N
1):

p(xt |an(t)) = p(ixt |an(t))
ict p(jxt |an(t))

(1−ict). (5.13)

We incorporate a new loss Lvc in our final loss function L f in order to learn the param-

eters of the view confidence weight ict(θ c), where θ c is the set of all parameters in the

compare and embedding functions of Eq. 5.12. In addition, θ a denotes the set of param-

eters (i.e. GRU) required to predict frame-level action probability p(at |xt ;θ a). Given the

inferred pseudo labels (aN
1 , l

N
1), we define the weighted energy score of the pseudo labels

as :

Ẽθ c =
T

∏
t=1

p(an(t)|ixt)ict(θc)p(an(t)| jxt)
(1−ict(θc)), (5.14)

where we freeze θ a and allow Lvc(θ c) = −log(Ẽθ c) to be optimized with respect to the

view confidence weight ict(θ c), so that the weighted energy score Ẽθ c of the correct path

(aN
1 , l

N
1) is maximized:

L f (θ c,θ a) = Lb(θ a)+LOODL(θ a)+Lvc(θ c). (5.15)

Note that the embedding and compare functions, Φ f () and Φc(), are utilized only in

training. Besides, Lb and LOODL are computed using just the anchor video after tak-

ing the multi-view inference pseudo labels as their valid path and offline inference result

respectively.

5.7 Experiments

Datasets. The Breakfast Dataset (BD) [60] contains approximately 1.7k cooking videos,

recorded from multiple views, ranging from a few seconds to over ten minutes long. Both

the angle and number of views differ across recordings. The dataset consists of 48 action

labels demonstrating 10 breakfast dishes with a mean of 6.9 action segments per video.

The evaluation metrics are calculated over four splits. The IKEA ASM Dataset (IAD) [126]

has 371 recordings of assembly for four types of furniture. Each assembly is recorded

from three consistent view points, providing 1113 total videos. Videos in this dataset

contain a dense number of action segments (mean of ≈ 23) per shorter videos with a

mean duration of 1.9 min. There are 32 action classes after combining the NA and other

83

classes as background. We report results over 5 splits, where each split belongs to one of

the five recording environments as suggested by [126].

Metrics. Similar to previous work [55, 2, 122], we use four metrics to evaluate per-

formance: 1) acc is the frame-level accuracy averaged over all the videos. 2) acc-bg is

the frame-level accuracy without the background frames. 3) IoU defined as the intersec-

tion over union, which is particularly useful for imbalanced datasets such as IKEA. 4)

IoD denotes the intersection interval over the detected interval averaged across all videos.

This metric tends to overrate over-segmentation results. As in [55], both IoD and IoU are

calculated over non-background segments.

Implementation. We extracted I3D features [111] for the IAD dataset using TV-L1

optical flow [160] on a moving window of 16 frames. Final dimensions of the features

were reduced to 400 by PCA. Meanwhile, for the BD dataset, we obtained the Fisher vec-

tors [78] of iDT features [77] as in [161]. We implemented the embedding function Φ f ()

as temporal convolution and max pooling, while two fully connected layers were used as

the compare function Φc(). Also, we set F2 = 64 and ω = 21. For a fair comparison we

used the same random seed in all our experiments. The model was trained for around 70k

and 6k iterations on the BD and IAD datasets, respectively, following the training setup of

[2].

5.7.1 Comparison to the Baseline Methods

Baselines. We implemented the Greedy baseline following the strategy of [123], where a

recurrent network is trained using the pseudo labels generated by an offline segmentation

method. At test time, the network takes a greedy approach and identifies actions in a

sliding window fashion. Also, DPon represents the proposed online inference (Eq.5.7),

and DPoff denotes the offline segmentation baseline of Eq.5.3.

Quantitative Results. Table 5.1 compares the Greedy and DPon methods in online

segmentation. The Greedy baseline shows poor performance specially in the BD dataset

largely due to poor video quality that makes isolated predictions error-prone. However,

Greedy shows decisively high IoD values. In general, high IoD with low IoU indicates

over-segmentation, which leads to overrating the result. The presence of the Γ function

in our online modeling is important. Its omission leads to about 1% and 3% drop in all

metrics in the BD and IAD datasets, respectively. The best result is achieved by including

the OODL loss and multi-view training. This leads to a 2.6% and 3.3% IoU improvement

of the DPon baseline in the BD and IAD datasets, respectively. Overall, improvements on

the IAD dataset are better represented by IoU since frame accuracy is dominated by the

84

Training Test Breakfast (%) IKEA ASM (%)
M LOO Inference acc acc-bg IoU IoD acc acc-bg IoU IoD
× × Greedy [123] 20.4 15.9 7.4 58.1 55.6 56.2 30.9 53.5
× × DPon w/o Γ 34.3 31.4 21.4 45.1 52.8 54.6 30.0 39.3
× × DPon 35.1 32.3 22.4 46.9 55.3 57.8 33.3 44.1
X X DP∗on 36.6 34.7 25.0 49.1 56.9 59.7 36.8 48.0
X X DP∗off 50.4 46.8 33.3 44.9 60.3 63.5 41.7 52.0

Table 5.1: Comparison of our multi-view supervised segmentation model
with various baselines in online action segmentation. M refers to multi-view
training.∗ We report the WPI and PI multi-view results for the BD and IAD
datasets respectively.

action “spin leg”, which occupies nearly 45% of the frames. We include offline results

to show the performance gap between online and offline segmentation. The smaller gap

between DPoff and the Greedy method in the IAD dataset highlights the challenge of

weakly-supervised learning in videos with a dense number of action segments.

Qualitative Results. Incorporating multi-view supervision in training makes the GRU

more robust to bad lighting, occlusion and scene variations as demonstrated in Fig. 5.4.

Particularly, the top figure shows results of coffee table assembly by two people in the IAD

dataset. This is a challenging case since nearly all tasks in both datasets are completed

by one person. Hence, the baseline DPon has missed the third instance of “spinning the

leg”, which is correctly detected by our final segmentation model trained using LOO and

multi-view inference. The bottom figure compares different segmentation methods under

dark lighting and occlusion in a sample cooking video of the BD dataset. Notice the over-

segmented results of the Greedy baseline in both cases. More examples included in the

supplementary material.

0 200 400 600 800 1000

Figure 5.4: Segmentation results of various methods on the IKEA (top) and
Breakfast (bottom) datasets. Legend is shown only for the ground-truth classes.

85

Breakfast (%) IKEA ASM (%)
Training Approach acc acc-bg IoU IoD acc acc-bg IoU IoD
DPon 35.1 32.3 22.4 46.9 55.3 57.8 33.3 44.1
DPon + LOODL 35.5 32.5 23.4 48.0 55.3 57.9 34.3 45.5

Table 5.2: Impact of the OODL loss on weakly-supervised online segmentation
results for the BD and IAD datasets.

5.7.2 Analysis and Ablation Study

All experiments in this section are reported as an average over all splits unless stated oth-

erwise. Run-time and complexity, as limitations of the proposed algorithm, are discussed

in the supplementary material.

5.7.2.1 Online-Offline Discrepancy Analysis

Impact of the OODL Loss. Addition of OODL loss leads to consistent improvement in

both datasets as shown in Table 5.2. This improvement is manifested more vividly in IoU

and IoD because IoU, in particular, is most appropriate in evaluating alignment quality

between predicted and ground-truth segments.

Fig. 5.5 further demonstrates the role of the OODL loss in decreasing the online-

offline segmentation discrepancy in the BD dataset. It shows the non-background frame

accuracy of multiple segmentation approaches at five different observation end points in

the video. Upon comparison of DPon and DPon + LOODL, it can be seen that the loss has

improved mostly the early predictions in the video, where it is hardest to identify actions.

This is mainly due to lack of past context in early stages of a task. With the passage of

time, more information regarding the past actions becomes available. Consequently, this

leads to more accurate online predictions of the current frame. On average, after observing

the first 20% of the video, the performance of the DPon is more similar to the Greedy

baseline than the Offline model. However, the DPon approach starts resembling the Offline

model more just after the 60% point. In comparison, such a behavior is highlighted much

less by the Greedy approach due to its limitation in capturing long-range past context.

Evaluation of Semi-Online Segmentation. Online segmentation offers practical ad-

vantages over offline inference in interactive applications that require immediate feed-

back. However, this comes with a 10% and 13% compromise over acc-bg and IoU, re-

spectively, as indicated in Fig. 5.6. In some applications, certain degree of latency can

be tolerated. In order to evaluate the trade-off between latency and accuracy, we imple-

mented a semi-online variation of our framework, where predictions are made after a fixed

86

Figure 5.5: Average segmentation results (acc-bg) at five observation end points
during the course of the video on the BD dataset.

Figure 5.6: Accuracy vs. delay on split 2 of the BD dataset.

time delay. Fig. 5.6 shows that accuracy improves with larger latency and converges to the

offline result. Importantly, we can achieve approximately 90% of the offline performance

with 10 seconds of delay on the BD dataset.

5.7.2.2 Multi-View Supervision

Weakly-Supervised Online Segmentation. We evaluate the online segmentation per-

formance of different multi-view inference techniques in Table 5.3. Regardless of the

approach, using multi-view correspondence to generate pseudo ground-truth improves

Breakfast (%) IKEA ASM (%)
Training Approach acc acc-bg IoU IoD acc acc-bg IoU IoD
Single-View 35.5 32.5 23.4 48.0 55.3 57.9 34.3 45.5
SV 36.4 34.7 24.8 48.6 55.7 58.3 34.6 45.9
PI 36.2 34.2 24.4 48.1 56.9 59.7 36.8 48.0
WPI 36.6 34.7 25.0 49.1 56.4 59.0 35.9 47.2
Fully-Supervised 41.6 41.2 30.4 52.9 63.5 67.36 44.5 56.9

Table 5.3: Comparison of online segmentation results under different pseudo
ground-truth generation techniques (all with LOODL).

87

Figure 5.7: Pseudo ground-truth generated by 3 multi-view inference tech-
niques during training. The red bar above each single-view inference result
(anchor/auxiliary) indicates their learned view confidence weight ct at each
frame. Each pair of frames corresponds to the time enclosed by its color-coded
dashed box.

Breakfast (%) IKEA ASM (%)
Model acc acc-bg IoU IoD acc acc-bg IoU IoD
CDFL [2] 49.2 44.2 31.0 43.7 59.9 62.0 39.5 50.4
Multi-View CDFL 50.4 46.8 33.3 44.9 60.3 63.5 41.7 52.0

Table 5.4: Offline segmentation results with and without multi-view supervi-
sion (same multi-view approaches as in Table5.1). [2] results obtained after
running the authors’ code on our machine.

performance over the single-view method in all metrics and datasets. We also provide the

Fully-Supervised baseline as the upper bound, where the pseudo ground-truth is 100%

accurate.

In the BD dataset, different views provide more complementary information as com-

pared to the IAD dataset. This is attributed to many instances of challenging lighting or

occlusion conditions in the BD dataset. Fig. 5.7 underscores this fact by showing the

pseudo ground-truth generated during training. Specifically, the bread in the anchor view

occludes the two actions of “cutting bread” and “smearing butter”. The resulting view

confidence weight (red bar) of the auxiliary view becomes high for these frames. This

allows the model to exploit the more visible view in the auxiliary video during these ac-

tions, while the anchor view is recognized as more reliable when the subject “takes an

object”. Notice how the view confidence weights dictate the selection of single-view re-

88

sults to form the multi-view WPI outcome. Meanwhile, the three views of the IAD dataset

remain fairly similar in terms of lighting and no considerable occlusion occurs in most

videos. Hence, weighing views equally in the PI approach leads to the best results in the

IAD dataset.

Weakly-Supervised Offline Segmentation. Table 5.4 shows how the advantage of

multi-view training is further generalized to weakly-supervised “offline” segmentation.

We selected the open source state-of-the-art offline segmentation method [2] as our base-

line. For this experiment, we trained [2] twice, with and without multi-view supervision,

under the same parameters and random seed.

5.8 Conclusion

We introduced a framework to address a new problem of weakly supervised online action

segmentation in multi-view instructional videos. The proposed solutions are formulated

with the insight that offline and multi-view results provide a rich source of supervision

during training which in-turn improves performance of single view online segmentation

models at test time. Extensive experiments on two benchmark datasets demonstrate effi-

cacy of our algorithms.

89

5.9 Supplementary Material

In this supplementary material we first provide the definitions of all the terms used in

the paper, explain complexity as a limitation, and then show and discuss more qualitative

segmentation results of different methods.

5.9.1 Glossary of Symbols

We provide specific definitions of symbols in Table 5.5 for readers to refer to.

5.9.2 Limitation

Here we discuss the practical run-time and computational complexity of our method, both

in test and training, and compare it with CDFL [2] as an offline baseline. The lower frame

rate compared to a greedy approach and the lengthy training-time are notable limitations

of the proposed online segmentation method. We hope further work can mitigate this

limitation.

5.9.2.1 Runtime Frame Rate Analysis

Both our method and the greedy approach[123] compute optical flow (OF) and use the

I3D network to extract features. We extracted features on 320×240 frames of the BD

dataset recorded at 15 fps. On a single GeForce GTX 1080, the OF and I3D network

process videos at 90 and 20 fps, respectively. Practically, if online inference is done every

15 frames, then our method segments videos at 10+ fps. While this is less than the 100

fps of the greedy alg., it leads to considerably more accurate results

5.9.2.2 Computation Complexity of Online vs. Offline

The complexity of the proposed online inference to fully segment a video of length T and

maximum transcript length of N is the same as the offline inference of CDFL (O(T 2N)).

In other words, online inference at each time step takes O(T N). This is due to DP as

the inference at time t depends on the optimal results of previous time steps which have

already been obtained as part of DP.

With this in mind, the training complexity of our method over K classes is the sum

of complexities for the offline inference (O(T 2N)), baseline offline segmentation loss Lb

90

(O(∆2NK)) and LOODL. ∆� T is a small window size of 10 [2]. A naive implementation

of OODL has complexity of O(T 2N). However, if the online and offline inferences are

done together outside Alg.1 and E (t) is summed over segments rather than frames, the

OODL complexity becomes O(T N). Hence, regardless of the implementation choice,

our overall training has the same complexity as CDFL (O(T 2N + ∆2NK)). Our time

complexity during test time with M training transcripts is O(T 2NM) which is also the

same as that of CDFL. In order to quantitatively support our calculations, we tested both

methods on the 4th split of the BD dataset. Our method and CDFL took 26 and 21 hrs to

train, respectively. Meanwhile at test time, ours and CDFL took 2.7 and 2.4 hrs to run,

respectively.

5.9.3 Qualitative Results

In Figure 5.8, we present two segmentation examples on the IKEA [126] (top) and Break-

fast [60] (bottom) datasets. We demonstrate how training using multiple view points has

let to more robust segmentation results against full occlusion (top) and extremely bad

lighting (bottom). Specifically, the top figure depicts a task where the subject assembles

a “side table”. This assembly consists of four instances of “spinning leg”, where the last

instance is fully occluded by the subject’s body. The baseline method DPon , that is trained

on a single viewpoint, misses most of the action, while training on multi-view correspon-

dence and the OODL loss has enabled our final model (DPon +M +LOODL) to capture

nearly the full segment.

In the second example, the dark lighting makes it even hard for a human observer to

recognize the ongoing action. Our final method is able to identify the action of “adding

tea bag”, where both the offline method DPoff and online baselines DPon fail. This is an

interesting case, where our model is able to outperform even the offline method. One

reason is the flexibility of the proposed online segmentation model in switching between

different transcripts in a series of online inferences across different time steps. This allows

the predicted sequence of actions to potentially come from a transcript not observed at

training time. In contrast, in offline segmentation the sequence of inferred action labels is

limited only to the training transcripts.

91

0 100 200 300 400 500 600

Figure 5.8: This figure shows segmentation results of various methods on the
IKEA (top) and Breakfast (bottom) datasets. Subjects in the top and bottom
figures assemble a side table and prepare tea respectively. Legend is shown
only for the ground-truth classes.

92

Symbol Definition
A The set of all actions in the dataset
an Action variable at segment n
at Action variable at frame t
ât Predicted action at time t in an online way
(aN

1 , l
N
1) Offline inference result

(ãn(t)
1 , l̃n(t)

1) Online inference result until time t
ict View confidence weight of video i (anchor) at time t
en Energy score of segment n
Eπ+ Energy score of the valid path π+

Eπ− Energy score of the invalid path π−

Eoff(t) Energy score of the offline or valid path until time t
Eon(t) Energy score of the online path until time t
Ẽ Weighted energy score of a path
F1 Input feature dimension
F2 Embedding dimension
K Total number of videos in the data set
ln Duration variable of action an
L f Final loss
Lb Baseline offline segmentation loss
Lvc View confidence loss to train WPI
M Number of action labels in the transcript
N Number of predicted segments in the video
pon() Causal probability
poff() Non-causal probability
P− The set of all invalid paths
T Total number of frames in the video
τ Video transcript
vi Video i
Vi View adjacency set of video i
V K×K view adjacency matrix
ω Feature window size for Φ f
xT

1 Sequence of T frame features
ixT

1 Features of video i
η(n) Mapping function from segment to frame number
Γ() Half Poisson function
λa Estimated mean length of action a
Φc Compare function
Φ f Feature embedding function
θc Parameters of Φ f and Φc
θa Parameters of the action classifier, i.e. GRU
π+ Valid path or offline segmentation action sequence
π− Invalid path

Table 5.5: Definitions of symbols used in the paper.

93

6 Conclusion

In this thesis, we studied long-range video understanding in two domains of Drowsiness

Detection and Weakly-Supervised Action Segmentation. In the first part (Drowsiness

Detection) we presented a new and publicly available real-life drowsiness dataset (RLDD)

with almost 30 hours of video. We have also proposed an end-to-end baseline method

using the temporal relationship between blinks for multistage drowsiness detection. The

proposed method has low computational and storage demands. The results demonstrated

that our method outperforms human judgment in two designed metrics on the RLDD

dataset.

In the second part of this thesis, we addressed weakly-supervised action segmenta-

tion in instructional videos from multiples aspects. Concretely, we proposed a duration

model to predict the remaining duration of an ongoing action to iteratively align a given

sequence of action in an input video. Furthermore, we proposed a hierarchical approach

to segmentation where the top-level task is predicted to constrain the segmentation results.

We showed both the efficiency and the efficacy of this approach. Finally, we introduced a

framework to address a new problem of weakly supervised online action segmentation in

multi-view instructional videos. The proposed solutions are formulated with the insight

that offline and multi-view results provide a rich source of supervision during training

which in turn improves performance of single view online segmentation models at test

time.

94

References

[1] A. Richard, H. Kuehne, A. Iqbal, and J. Gall, “Neuralnetwork-viterbi: A frame-

work for weakly supervised video learning,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2018, pp. 7386–7395.

[2] J. Li, P. Lei, and S. Todorovic, “Weakly supervised energy-based learning for action

segmentation,” in Proceedings of the IEEE International Conference on Computer

Vision, 2019, pp. 6243–6251.

[3] “’Facts and Stats’,” May 2018, [Online]. Available: http://drowsydriving.org/

about/facts-and-stats/. [Accessed: 20- May- 2018].

[4] C. D. F. E. C. J. Wheaton AG, Shults RA, “Drowsy driving and risk behaviors—10

states and puerto rico, 2011-2012.” MMWR Morb Mortal Wkly Rep., vol. 63, pp.

557–562, 2014.

[5] P.-C. L. C. J. R. D. Wheaton AG, Chapman DP, “Drowsy driving – 19 states and

the district of columbia, 2009-2010.” MMWR Morb Mortal Wkly Rep., vol. 63, p.

1033, 2013.

[6] E. A. Schmidt, W. E. Kincses, M. Scharuf, S. Haufe, R. Schubert, and G. Curio,

“Assessing drivers’ vigilance state during monotonous driving,” 2007.

[7] “’Sleepy and unsafe’,” May 2014, [Online]. Available: https://www.

safetyandhealthmagazine.com/articles/10412-sleepy-and-unsafe-worker-fatigue.

[Accessed: 8- Sep- 2018].

[8] K. Sadeghniiat-Haghighi and Z. Yazdi, “Fatigue management in the workplace,”

Industrial psychiatry journal, vol. 24, no. 1, p. 12, 2015.

95

[9] E. Tadesse, W. Sheng, and M. Liu, “Driver drowsiness detection through hmm

based dynamic modeling,” in Robotics and Automation (ICRA), 2014 IEEE Inter-

national Conference on. IEEE, 2014, pp. 4003–4008.

[10] B. Reddy, Y.-H. Kim, S. Yun, C. Seo, and J. Jang, “Real-time driver drowsiness de-

tection for embedded system using model compression of deep neural networks,” in

Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Con-

ference on. IEEE, 2017, pp. 438–445.

[11] M. Ngxande, J.-R. Tapamo, and M. Burke, “Driver drowsiness detection using

behavioral measures and machine learning techniques: A review of state-of-art

techniques,” in Pattern Recognition Association of South Africa and Robotics and

Mechatronics (PRASA-RobMech), 2017. IEEE, 2017, pp. 156–161.

[12] “’Attention Assist’,” 2018, [Online]. Available: https://

www.mbusa.com/mercedes/technology/videos/detail/title-safety/

videoId-710835ab8d127410VgnVCM100000ccec1e35RCRD/. [Accessed:

20- May- 2018].

[13] Q. Massoz, T. Langohr, C. François, and J. G. Verly, “The ulg multimodality

drowsiness database (called drozy) and examples of use,” in Applications of Com-

puter Vision (WACV), 2016 IEEE Winter Conference on. IEEE, 2016, pp. 1–7.

[14] U. Svensson, “Blink behaviour based drowsiness detection,” Tech. Rep., 2004.

[15] “’Ford Brazil tests drowsiness-detecting cap’,” Nov. 2017, [Online].

Available: http://www.transportengineer.org.uk/transport-engineer-news/

ford-brazil-tests-drowsiness-detecting-cap/164875/. [Accessed: 20- May-

2018].

[16] M. Johns et al., “The amplitude-velocity ratio of blinks: a new method for moni-

toring drowsiness,” Sleep, vol. 26, no. SUPPL., 2003.

[17] S. Park, F. Pan, S. Kang, and C. D. Yoo, “Driver drowsiness detection system

based on feature representation learning using various deep networks,” in Asian

Conference on Computer Vision. Springer, 2016, pp. 154–164.

96

[18] P. Smith, M. Shah, and N. da Vitoria Lobo, “Monitoring head/eye motion for driver

alertness with one camera,” in Pattern Recognition, 2000. Proceedings. 15th Inter-

national Conference on, vol. 4. IEEE, 2000, pp. 636–642.

[19] J. Chung, S. Ahn, and Y. Bengio, “Hierarchical multiscale recurrent neural net-

works,” arXiv preprint arXiv:1609.01704, 2016.

[20] F. Friedrichs and B. Yang, “Camera-based drowsiness reference for driver state

classification under real driving conditions,” in Intelligent Vehicles Symposium (IV),

2010 IEEE. IEEE, 2010, pp. 101–106.

[21] C.-H. Weng, Y.-H. Lai, and S.-H. Lai, “Driver drowsiness detection via a hierar-

chical temporal deep belief network,” in Asian Conference on Computer Vision.

Springer, 2016, pp. 117–133.

[22] L. K. McIntire, R. A. McKinley, C. Goodyear, and J. P. McIntire, “Detection of

vigilance performance using eye blinks,” Applied ergonomics, vol. 45, no. 2, pp.

354–362, 2014.

[23] M. Suzuki, N. Yamamoto, O. Yamamoto, T. Nakano, and S. Yamamoto, “Mea-

surement of driver’s consciousness by image processing-a method for presuming

driver’s drowsiness by eye-blinks coping with individual differences,” in Systems,

Man and Cybernetics, 2006. SMC’06. IEEE International Conference on, vol. 4.

IEEE, 2006, pp. 2891–2896.

[24] H. Yin, Y. Su, Y. Liu, and D. Zhao, “A driver fatigue detection method based

on multi-sensor signals,” in Applications of Computer Vision (WACV), 2016 IEEE

Winter Conference on. IEEE, 2016, pp. 1–7.

[25] J. Jo, S. J. Lee, K. R. Park, I.-J. Kim, and J. Kim, “Detecting driver drowsiness

using feature-level fusion and user-specific classification,” Expert Systems with Ap-

plications, vol. 41, no. 4, pp. 1139–1152, 2014.

[26] W.-J. Yan, Q. Wu, Y.-J. Liu, S.-J. Wang, and X. Fu, “Casme database: a dataset

of spontaneous micro-expressions collected from neutralized faces,” in Automatic

face and gesture recognition (fg), 2013 10th ieee international conference and

workshops on. IEEE, 2013, pp. 1–7.

97

[27] W.-J. Yan, X. Li, S.-J. Wang, G. Zhao, Y.-J. Liu, Y.-H. Chen, and X. Fu, “Casme ii:

An improved spontaneous micro-expression database and the baseline evaluation,”

PloS one, vol. 9, no. 1, p. e86041, 2014.

[28] X. Li, T. Pfister, X. Huang, G. Zhao, and M. Pietikäinen, “A spontaneous micro-

expression database: Inducement, collection and baseline,” in Automatic face and

gesture recognition (fg), 2013 10th ieee international conference and workshops

on. IEEE, 2013, pp. 1–6.

[29] “’Gaurdian’,” 2018, [Online]. Available: http://www.seeingmachines.com/

guardian/. [Accessed: 20- May- 2018].

[30] T. Åkerstedt and M. Gillberg, “Subjective and objective sleepiness in the active

individual,” International Journal of Neuroscience, vol. 52, no. 1-2, pp. 29–37,

1990.

[31] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”

in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer

Society Conference on, vol. 1. IEEE, 2005, pp. 886–893.

[32] T. Soukupova and J. Cech, “Real-time eye blink detection using facial landmarks,”

in 21st Computer Vision Winter Workshop (CVWW’2016), 2016, pp. 1–8.

[33] V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble of

regression trees,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2014, pp. 1867–1874.

[34] S. ROSTAMINIA, A. MAYBERRY, D. GANESAN, B. MARLIN, and

J. GUMMESON, “ilid: Low-power sensing of fatigue and drowsiness measures

on a computational eyeglass,” 2017.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

98

[37] M. Singh and G. Kaur, “Drowsy detection on eye blink duration using algorithm,”

International Journal of Emerging Technology and Advanced Engineering, vol. 2,

no. 4, pp. 363–365, 2012.

[38] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and the

kinetics dataset,” in proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017, pp. 6299–6308.

[39] C. R. De Souza, A. Gaidon, E. Vig, and A. M. López, “Sympathy for the details:

Dense trajectories and hybrid classification architectures for action recognition,” in

European Conference on Computer Vision. Springer, 2016, pp. 697–716.

[40] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Temporal residual networks for dy-

namic scene recognition,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 4728–4737.

[41] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell, “Actionvlad: Learning

spatio-temporal aggregation for action classification,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp. 971–980.

[42] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action

recognition in videos,” in Advances in neural information processing systems,

2014, pp. 568–576.

[43] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool, “Tem-

poral segment networks: Towards good practices for deep action recognition,” in

European conference on computer vision. Springer, 2016, pp. 20–36.

[44] H. Kuehne, A. Arslan, and T. Serre, “The language of actions: Recovering the syn-

tax and semantics of goal-directed human activities,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2014, pp. 780–787.

[45] H. Kuehne, J. Gall, and T. Serre, “An end-to-end generative framework for video

segmentation and recognition,” in 2016 IEEE Winter Conference on Applications

of Computer Vision (WACV). IEEE, 2016, pp. 1–8.

[46] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolu-

tional networks for action segmentation and detection,” in proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp. 156–165.

99

[47] D. Oneata, J. Verbeek, and C. Schmid, “The lear submission at thumos 2014,”

2014.

[48] A. Richard and J. Gall, “Temporal action detection using a statistical language

model,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 3131–3140.

[49] M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele, “A database for fine grained

activity detection of cooking activities,” in 2012 IEEE Conference on Computer

Vision and Pattern Recognition. IEEE, 2012, pp. 1194–1201.

[50] G. A. Sigurdsson, S. Divvala, A. Farhadi, and A. Gupta, “Asynchronous temporal

fields for action recognition,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 585–594.

[51] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao, “A multi-stream bi-

directional recurrent neural network for fine-grained action detection,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,

pp. 1961–1970.

[52] N. N. Vo and A. F. Bobick, “From stochastic grammar to bayes network: Prob-

abilistic parsing of complex activity,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2014, pp. 2641–2648.

[53] P. Bojanowski, R. Lajugie, F. Bach, I. Laptev, J. Ponce, C. Schmid, and J. Sivic,

“Weakly supervised action labeling in videos under ordering constraints,” in Euro-

pean Conference on Computer Vision. Springer, 2014, pp. 628–643.

[54] C.-Y. Chang, D.-A. Huang, Y. Sui, L. Fei-Fei, and J. C. Niebles, “D3tw: Discrimi-

native differentiable dynamic time warping for weakly supervised action alignment

and segmentation,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2019, pp. 3546–3555.

[55] L. Ding and C. Xu, “Weakly-supervised action segmentation with iterative soft

boundary assignment,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2018, pp. 6508–6516.

100

[56] D.-A. Huang, L. Fei-Fei, and J. C. Niebles, “Connectionist temporal modeling for

weakly supervised action labeling,” in European Conference on Computer Vision.

Springer, 2016, pp. 137–153.

[57] H. Kuehne, A. Richard, and J. Gall, “Weakly supervised learning of actions from

transcripts,” Computer Vision and Image Understanding, vol. 163, pp. 78–89, 2017.

[58] ——, “A hybrid rnn-hmm approach for weakly supervised temporal action seg-

mentation,” IEEE transactions on pattern analysis and machine intelligence, 2018.

[59] A. Richard, H. Kuehne, and J. Gall, “Weakly supervised action learning with rnn

based fine-to-coarse modeling,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2017, pp. 754–763.

[60] H. Kuehne, A. Arslan, and T. Serre, “The language of actions: Recovering the syn-

tax and semantics of goal-directed human activities,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2014, pp. 780–787.

[61] X. Duan, W. Huang, C. Gan, J. Wang, W. Zhu, and J. Huang, “Weakly supervised

dense event captioning in videos,” in Advances in Neural Information Processing

Systems, 2018, pp. 3059–3069.

[62] Z. Shen, J. Li, Z. Su, M. Li, Y. Chen, Y.-G. Jiang, and X. Xue, “Weakly supervised

dense video captioning,” in Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2017, pp. 1916–1924.

[63] P. Nguyen, T. Liu, G. Prasad, and B. Han, “Weakly supervised action localization

by sparse temporal pooling network,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018, pp. 6752–6761.

[64] K. K. Singh and Y. J. Lee, “Hide-and-seek: Forcing a network to be meticulous

for weakly-supervised object and action localization,” in 2017 IEEE International

Conference on Computer Vision (ICCV). IEEE, 2017, pp. 3544–3553.

[65] L. Wang, Y. Xiong, D. Lin, and L. Van Gool, “Untrimmednets for weakly super-

vised action recognition and detection,” in Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition, 2017, pp. 4325–4334.

101

[66] J.-B. Alayrac, P. Bojanowski, N. Agrawal, J. Sivic, I. Laptev, and S. Lacoste-Julien,

“Unsupervised learning from narrated instruction videos,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4575–

4583.

[67] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld, “Learning realistic human

actions from movies,” 2008.

[68] J. Malmaud, J. Huang, V. Rathod, N. Johnston, A. Rabinovich, and K. Murphy,

“What’s cookin’? interpreting cooking videos using text, speech and vision,” arXiv

preprint arXiv:1503.01558, 2015.

[69] O. Sener, A. R. Zamir, S. Savarese, and A. Saxena, “Unsupervised semantic pars-

ing of video collections,” in Proceedings of the IEEE International Conference on

Computer Vision, 2015, pp. 4480–4488.

[70] D. Zhukov, J.-B. Alayrac, R. G. Cinbis, D. Fouhey, I. Laptev, and J. Sivic, “Cross-

task weakly supervised learning from instructional videos,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3537–

3545.

[71] A. Richard, H. Kuehne, and J. Gall, “Action sets: Weakly supervised action seg-

mentation without ordering constraints,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2018, pp. 5987–5996.

[72] T. Mahmud, M. Hasan, and A. K. Roy-Chowdhury, “Joint prediction of activity

labels and starting times in untrimmed videos,” in Proceedings of the IEEE Inter-

national Conference on Computer Vision, 2017, pp. 5773–5782.

[73] Y. Abu Farha, A. Richard, and J. Gall, “When will you do what?-anticipating tem-

poral occurrences of activities,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2018, pp. 5343–5352.

[74] Q. Ke, M. Fritz, and B. Schiele, “Time-conditioned action anticipation in one shot,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2019, pp. 9925–9934.

102

[75] P. Bojanowski, R. Lajugie, E. Grave, F. Bach, I. Laptev, J. Ponce, and C. Schmid,

“Weakly-supervised alignment of video with text,” in Proceedings of the IEEE

international conference on computer vision, 2015, pp. 4462–4470.

[76] G. A. Sigurdsson, S. Divvala, A. Farhadi, and A. Gupta, “Asynchronous temporal

fields for action recognition,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 585–594.

[77] H. Wang and C. Schmid, “Action recognition with improved trajectories,” in Pro-

ceedings of the IEEE international conference on computer vision, 2013, pp. 3551–

3558.

[78] F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies for image cate-

gorization,” in 2007 IEEE conference on computer vision and pattern recognition.

IEEE, 2007, pp. 1–8.

[79] “’Robotic kitchen assistant on a rail’,” May 2020, [Online]. Available:

https://www.roboticsresear.ch/articles/19606/robotic-kitchen-assistant-on-a-rail.

[Accessed: 15- November- 2020].

[80] H. Doughty, I. Laptev, W. Mayol-Cuevas, and D. Damen, “Action modifiers:

Learning from adverbs in instructional videos,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2020, pp. 868–878.

[81] E. Elhamifar and D. Huynh, “Self-supervised multi-task procedure learning from

instructional videos,” European Conference on Computer Vision, 2020.

[82] M. Rohrbach, A. Rohrbach, M. Regneri, S. Amin, M. Andriluka, M. Pinkal, and

B. Schiele, “Recognizing fine-grained and composite activities using hand-centric

features and script data,” International Journal of Computer Vision, vol. 119, no. 3,

pp. 346–373, 2016.

[83] Y. Tang, D. Ding, Y. Rao, Y. Zheng, D. Zhang, L. Zhao, J. Lu, and J. Zhou, “Coin:

A large-scale dataset for comprehensive instructional video analysis,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019,

pp. 1207–1216.

103

[84] X. Chang, F. Tung, and G. Mori, “Learning discriminative prototypes with dynamic

time warping,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2021, pp. 8395–8404.

[85] A. Miech, J.-B. Alayrac, L. Smaira, I. Laptev, J. Sivic, and A. Zisserman, “End-

to-end learning of visual representations from uncurated instructional videos,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, 2020, pp. 9879–9889.

[86] A. Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, I. Laptev, and J. Sivic,

“Howto100m: Learning a text-video embedding by watching hundred million nar-

rated video clips,” in Proceedings of the IEEE international conference on com-

puter vision, 2019, pp. 2630–2640.

[87] H. Doughty, W. Mayol-Cuevas, and D. Damen, “The pros and cons: Rank-aware

temporal attention for skill determination in long videos,” in proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 7862–

7871.

[88] P. Parmar and B. T. Morris, “What and how well you performed? a multitask learn-

ing approach to action quality assessment,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2019, pp. 304–313.

[89] C.-Y. Chang, D.-A. Huang, D. Xu, E. Adeli, L. Fei-Fei, and J. C. Niebles, “Proce-

dure planning in instructional videos,” arXiv preprint arXiv:1907.01172, 2019.

[90] A. Kukleva, H. Kuehne, F. Sener, and J. Gall, “Unsupervised learning of action

classes with continuous temporal embedding,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2019, pp. 12 066–12 074.

[91] J. Li and S. Todorovic, “Set-constrained viterbi for set-supervised action segmenta-

tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020, pp. 10 820–10 829.

[92] L. Zhou, C. Xu, and J. J. Corso, “Towards automatic learning of procedures from

web instructional videos,” arXiv preprint arXiv:1703.09788, 2017.

104

[93] Y. A. Farha and J. Gall, “Ms-tcn: Multi-stage temporal convolutional network for

action segmentation,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2019, pp. 3575–3584.

[94] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolu-

tional networks for action segmentation and detection,” in proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp. 156–165.

[95] E. Elhamifar and Z. Naing, “Unsupervised procedure learning via joint dynamic

summarization,” in Proceedings of the IEEE International Conference on Com-

puter Vision, 2019, pp. 6341–6350.

[96] F. Sener and A. Yao, “Unsupervised learning and segmentation of complex activi-

ties from video,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2018, pp. 8368–8376.

[97] C. Feichtenhofer, “X3d: Expanding architectures for efficient video recognition,”

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020, pp. 203–213.

[98] B. Jiang, M. Wang, W. Gan, W. Wu, and J. Yan, “Stm: Spatiotemporal and motion

encoding for action recognition,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2019, pp. 2000–2009.

[99] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, 2018,

pp. 7794–7803.

[100] N. Hussein, E. Gavves, and A. W. Smeulders, “Timeception for complex action

recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019, pp. 254–263.

[101] ——, “Videograph: Recognizing minutes-long human activities in videos,” arXiv

preprint arXiv:1905.05143, 2019.

[102] T. Yu, Y. Li, and B. Li, “Rhyrnn: Rhythmic rnn for recognizing events in long and

complex videos,” in European Conference on Computer Vision. Springer, 2020,

pp. 127–144.

105

[103] J.-B. Alayrac, P. Bojanowski, N. Agrawal, J. Sivic, I. Laptev, and S. Lacoste-Julien,

“Unsupervised learning from narrated instruction videos,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4575–

4583.

[104] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld, “Learning realistic human

actions from movies,” 2008.

[105] Y. Souri, M. Fayyaz, L. Minciullo, G. Francesca, and J. Gall, “Fast weakly super-

vised action segmentation using mutual consistency,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 2021.

[106] Y. Souri, Y. A. Farha, F. Despinoy, G. Francesca, and J. Gall, “Fifa: Fast inference

approximation for action segmentation,” arXiv preprint arXiv:2108.03894, 2021.

[107] S. Narayan, H. Cholakkal, F. S. Khan, and L. Shao, “3c-net: Category count and

center loss for weakly-supervised action localization,” in Proceedings of the IEEE

International Conference on Computer Vision, 2019, pp. 8679–8687.

[108] P. X. Nguyen, D. Ramanan, and C. C. Fowlkes, “Weakly-supervised action lo-

calization with background modeling,” in Proceedings of the IEEE International

Conference on Computer Vision, 2019, pp. 5502–5511.

[109] S. Paul, S. Roy, and A. K. Roy-Chowdhury, “W-talc: Weakly-supervised temporal

activity localization and classification,” in Proceedings of the European Conference

on Computer Vision (ECCV), 2018, pp. 563–579.

[110] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool, “Tem-

poral segment networks: Towards good practices for deep action recognition,” in

European conference on computer vision. Springer, 2016, pp. 20–36.

[111] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and the

kinetics dataset,” in proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017, pp. 6299–6308.

[112] P. Nguyen, T. Liu, G. Prasad, and B. Han, “Weakly supervised action localization

by sparse temporal pooling network,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018, pp. 6752–6761.

106

[113] M. Rashid, H. Kjellstrom, and Y. J. Lee, “Action graphs: Weakly-supervised action

localization with graph convolution networks,” in The IEEE Winter Conference on

Applications of Computer Vision, 2020, pp. 615–624.

[114] K. S. Jones, “A statistical interpretation of term specificity and its application in

retrieval,” Journal of documentation, 1972.

[115] H. P. Luhn, “The automatic creation of literature abstracts,” IBM Journal of re-

search and development, vol. 2, no. 2, pp. 159–165, 1958.

[116] R. Ghoddoosian, S. Sayed, and V. Athitsos, “Action duration prediction for

segment-level alignment of weakly-labeled videos,” in Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp.

2053–2062.

[117] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime tv-l 1

optical flow,” in Joint pattern recognition symposium. Springer, 2007, pp. 214–

223.

[118] Y. Souri, A. Richard, L. Minciullo, and J. Gall, “On evaluating weakly supervised

action segmentation methods,” arXiv preprint arXiv:2005.09743, 2020.

[119] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[120] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns retrace the history

of 2d cnns and imagenet?” in Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, 2018, pp. 6546–6555.

[121] R. Ghoddoosian, S. Sayed, and V. Athitsos, “Hierarchical modeling for task recog-

nition and action segmentation in weakly-labeled instructional videos,” in Pro-

ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision

(WACV), January 2022, pp. 1922–1932.

[122] X. Chang, F. Tung, and G. Mori, “Learning discriminative prototypes with dynamic

time warping,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2021, pp. 8395–8404.

107

[123] M. Gao, Y. Zhou, R. Xu, R. Socher, and C. Xiong, “Woad: Weakly supervised

online action detection in untrimmed videos,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2021, pp. 1915–1923.

[124] H. Eun, J. Moon, J. Park, C. Jung, and C. Kim, “Learning to discriminate informa-

tion for online action detection,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020, pp. 809–818.

[125] M. Xu, M. Gao, Y.-T. Chen, L. S. Davis, and D. J. Crandall, “Temporal recurrent

networks for online action detection,” in Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, 2019, pp. 5532–5541.

[126] Y. Ben-Shabat, X. Yu, F. Saleh, D. Campbell, C. Rodriguez-Opazo, H. Li, and

S. Gould, “The ikea asm dataset: Understanding people assembling furniture

through actions, objects and pose,” in Proceedings of the IEEE/CVF Winter Con-

ference on Applications of Computer Vision, 2021, pp. 847–859.

[127] S.-H. Gao, Q. Han, Z.-Y. Li, P. Peng, L. Wang, and M.-M. Cheng, “Global2local:

Efficient structure search for video action segmentation,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp.

16 805–16 814.

[128] Y. Ishikawa, S. Kasai, Y. Aoki, and H. Kataoka, “Alleviating over-segmentation

errors by detecting action boundaries,” in Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision, 2021, pp. 2322–2331.

[129] Z. Wang, Z. Gao, L. Wang, Z. Li, and G. Wu, “Boundary-aware cascade networks

for temporal action segmentation,” in European Conference on Computer Vision.

Springer, 2020, pp. 34–51.

[130] F. Sener, D. Singhania, and A. Yao, “Temporal aggregate representations for

long-range video understanding,” in European Conference on Computer Vision.

Springer, 2020, pp. 154–171.

[131] S. Sarfraz, N. Murray, V. Sharma, A. Diba, L. Van Gool, and R. Stiefelhagen,

“Temporally-weighted hierarchical clustering for unsupervised action segmenta-

tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2021, pp. 11 225–11 234.

108

[132] S. Kumar, S. Haresh, A. Ahmed, A. Konin, M. Z. Zia, and Q.-H. Tran, “Unsuper-

vised activity segmentation by joint representation learning and online clustering,”

arXiv preprint arXiv:2105.13353, 2021.

[133] Z. Li, Y. Abu Farha, and J. Gall, “Temporal action segmentation from timestamp

supervision,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2021, pp. 8365–8374.

[134] P. Zhao, L. Xie, Y. Zhang, Y. Wang, and Q. Tian, “Privileged knowledge distillation

for online action detection,” arXiv preprint arXiv:2011.09158, 2020.

[135] M. Gao, M. Xu, L. S. Davis, R. Socher, and C. Xiong, “Startnet: Online detection

of action start in untrimmed videos,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2019, pp. 5542–5551.

[136] Z. Shou, J. Pan, J. Chan, K. Miyazawa, H. Mansour, A. Vetro, X. Giro-i Nieto, and

S.-F. Chang, “Online detection of action start in untrimmed, streaming videos,” in

Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp.

534–551.

[137] J. Gao, Z. Yang, and R. Nevatia, “Red: Reinforced encoder-decoder networks for

action anticipation,” arXiv preprint arXiv:1707.04818, 2017.

[138] T. Mahmud, M. Hasan, and A. K. Roy-Chowdhury, “Joint prediction of activity

labels and starting times in untrimmed videos,” in Proceedings of the IEEE Inter-

national conference on Computer Vision, 2017, pp. 5773–5782.

[139] Y. Abu Farha and J. Gall, “Uncertainty-aware anticipation of activities,” in Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision Work-

shops, 2019, pp. 0–0.

[140] Q. Ke, M. Fritz, and B. Schiele, “Time-conditioned action anticipation in one

shot,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, 2019, pp. 9925–9934.

[141] A. Furnari and G. M. Farinella, “What would you expect? anticipating egocentric

actions with rolling-unrolling lstms and modality attention,” in Proceedings of the

IEEE/CVF International Conference on Computer Vision, 2019, pp. 6252–6261.

109

[142] S. Qu, G. Chen, D. Xu, J. Dong, F. Lu, and A. Knoll, “Lap-net: Adaptive fea-

tures sampling via learning action progression for online action detection,” arXiv

preprint arXiv:2011.07915, 2020.

[143] M. Xu, Y. Xiong, H. Chen, X. Li, W. Xia, Z. Tu, and S. Soatto, “Long short-term

transformer for online action detection,” Advances in Neural Information Process-

ing Systems, vol. 34, 2021.

[144] B. Zhang, H. Chen, M. Wang, and Y. Xiong, “Online action detection in streaming

videos with time buffers,” arXiv preprint arXiv:2010.03016, 2020.

[145] D. Wang, W. Ouyang, W. Li, and D. Xu, “Dividing and aggregating network for

multi-view action recognition,” in ECCV, 2018, pp. 451–467.

[146] S. Vyas, Y. S. Rawat, and M. Shah, “Multi-view action recognition using cross-

view video prediction,” in ECCV. Springer, 2020, pp. 427–444.

[147] Y. Liu, L. Wang, Y. Bai, C. Qin, Z. Ding, and Y. Fu, “Generative view-correlation

adaptation for semi-supervised multi-view learning,” in European Conference on

Computer Vision. Springer, 2020, pp. 318–334.

[148] A. Piergiovanni and M. S. Ryoo, “Recognizing actions in videos from unseen view-

points,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, 2021, pp. 4124–4132.

[149] L. Wang, Z. Ding, Z. Tao, Y. Liu, and Y. Fu, “Generative multi-view human ac-

tion recognition,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2019, pp. 6212–6221.

[150] C. Fan, J. Lee, M. Xu, K. Kumar Singh, Y. Jae Lee, D. J. Crandall, and M. S. Ryoo,

“Identifying first-person camera wearers in third-person videos,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.

5125–5133.

[151] K. Deepak, G. Srivathsan, S. Roshan, and S. Chandrakala, “Deep multi-view repre-

sentation learning for video anomaly detection using spatiotemporal autoencoders,”

Circuits, Systems, and Signal Processing, vol. 40, no. 3, pp. 1333–1349, 2021.

110

[152] H.-I. Ho, W.-C. Chiu, and Y.-C. F. Wang, “Summarizing first-person videos from

third persons’ points of view,” in Proceedings of the European Conference on Com-

puter Vision (ECCV), 2018, pp. 70–85.

[153] J. Meng, S. Wang, H. Wang, J. Yuan, and Y.-P. Tan, “Video summarization via

multi-view representative selection,” in Proceedings of the IEEE International

Conference on Computer Vision Workshops, 2017, pp. 1189–1198.

[154] R. Panda and A. K. Roy-Chowdhury, “Multi-view surveillance video summariza-

tion via joint embedding and sparse optimization,” IEEE Transactions on Multime-

dia, vol. 19, no. 9, pp. 2010–2021, 2017.

[155] S. Haresh, S. Kumar, H. Coskun, S. N. Syed, A. Konin, Z. Zia, and Q.-H. Tran,

“Learning by aligning videos in time,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2021, pp. 5548–5558.

[156] G. A. Sigurdsson, A. Gupta, C. Schmid, A. Farhadi, and K. Alahari, “Actor and

observer: Joint modeling of first and third-person videos,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7396–

7404.

[157] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and

G. Brain, “Time-contrastive networks: Self-supervised learning from video,” in

2018 IEEE international conference on robotics and automation (ICRA). IEEE,

2018, pp. 1134–1141.

[158] B. Xiong, H. Fan, K. Grauman, and C. Feichtenhofer, “Multiview pseudo-labeling

for semi-supervised learning from video,” in Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, 2021, pp. 7209–7219.

[159] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated

recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,

2014.

[160] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime tv-l 1

optical flow,” in Joint pattern recognition symposium. Springer, 2007, pp. 214–

223.

111

[161] H. Kuehne, A. Arslan, and T. Serre, “The language of actions: Recovering the syn-

tax and semantics of goal-directed human activities,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2014, pp. 780–787.

112

