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ABSTRACT

INTUITIVE ROBOT INTEGRATION VIA VIRTUAL REALITY WORKSPACES

MINH TRAM, M.S.

The University of Texas at Arlington, 2022

Supervising Professor: William Beksi

As robots become increasingly prominent in diverse industrial settings, the desire for an

accessible and reliable system has correspondingly increased. Yet, the task of meaningfully as-

sessing the feasibility of introducing a new robotic component, or adding more robots into an

existing infrastructure, remains a challenge. This is due to both the logistics of acquiring a robot

and the need for expert knowledge in setting it up. In this paper, we address these concerns by

developing a purely virtual simulation of a robotic system. Our proposed framework enables nat-

ural human-robot interaction through a visually immersive representation of the workspace. The

main advantages of our approach are the following: (i) independence from a physical system, (ii)

flexibility in defining the workspace and robotic tasks, and (iii) an intuitive interaction between

the operator and the simulated environment. Not only does our method provide an enhanced un-

derstanding of 3D space to the operator, but it also encourages a hands-on way to perform robotic

programming. We evaluate the effectiveness of our system in applying novel automation assign-

ments by training a robot in virtual reality and then executing the task on a real robot.
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CHAPTER 1

Introduction

Robots have become the cornerstone of many industrial operations due to their efficiency,

productivity, and reliability. The dependency on robots is ultimately rooted in the need for an

autonomous workforce that can achieve high throughput with low downtime in order to meet in-

creasing production demands. With applications spread across large industries (e.g., agricultural

operations, automotive manufacturing, pharmaceutical packaging, etc.) robots have become irre-

placeable and serve a critical role in the supply chain workflow. This aspect is further emphasized

during times of national emergency such as the recent COVID-19 pandemic [1]. Thus, the demand

for more robust and highly-integrated robotic systems increases as the industrial sector intensifies

its growth in automation.

Fig. 1: A sample scene captured in our VR workspace from the point-of-view of the operator. The operator
can directly interact with individual robot joints simply by grabbing or pushing them as they normally would
in a real environment.

Although the deployment of robotic systems continues to rise, the task of determining the

feasibility of using a new robotic component, either in a novel work environment or adding more

robots to collaborate within an existing infrastructure, remains extremely difficult [2]. Acquiring

and implementing capable industrial robots is often undesirable for small and medium-sized enter-

prises. This is due to high initial investment costs and a nontrivial integration process that requires

expert knowledge with no guarantee of profitable returns. Meanwhile, the expanding virtual, aug-

mented, and mixed reality (VAMR) industry has yielded incredibly useful tools and techniques to
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enhance the robotic development process.

VAMR provides an intuitive understanding of 3D space while simultaneously providing

additional information to the operator. This leads to an overall enhanced operator experience and

encourages a hands-on approach to robotic programming [3]. Nonetheless, VAMR-based human-

robot interaction (HRI) research is generally focused on teleoperation for task-specific applications

[4], [5], human-in-the-loop digital twins [6], [7], or machine learning with densely overlayed infor-

mation interfaces [8]–[10]. However, these frameworks have the following disadvantages: (i) an

assumption of a pre-installed, functioning robotic system, (ii) a lack of support for high-dexterity

interaction, and (iii) a focus on single-robot use cases.

In this work, we propose a simulated robotic environment capable of representing and

integrating operator-configurable workspaces for multiple collaborative robots, Fig. 1. The primary

objective of this research is to create a virtual reality (VR) workspace that allows an operator to

immersively explore and efficiently assess the integration of a desired robotic system into a physical

environment. We also aim to make this work a foundation for future robotic programming and

operator training. In summary, our contributions are the following.

• We eliminate the dependency on a physical robotic system by moving visualization and

interaction into a purely virtual environment

• We simulate multiple collaborative robots in realistic setup and usage scenarios (e.g., direct

imitation learning, learning from demonstration)

• We provide operators with an intuitive and informative representation and control of virtual

robots

The source code and Docker image associated with this project is publicly available at [11].

The remainder of the paper is organized as follows. We provide an overview of related

research in Section 2. The details of our system are presented in Section 3. Our evaluation use

cases and results are discussed in Section 4. In Section 5, we conclude and provide directions for

future work.
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CHAPTER 2

Related Work

The practice of leveraging VAMR to enhance the experience of robotic programming, and

provide interaction and information through either head-mounted (HMD) or see-through displays,

is very popular. However, the use of augmented or mixed reality far exceeds that of VR. Surveys

have shown that for effective HRI, it is crucial to provide sufficient information not only to the

robot, but also to the operator [12]. To this extent, the following common setup is favorable for

many researchers: (i) an overlaying interface, provided by VAMR, communicating with real robot

hardware through a Robot Operating System (ROS) [13] backend; (ii) motion planning delegated

to either their own implementation of forward (FK) and inverse (IK) kinematics, or MoveIt [14], a

well-known robot motion planning framework.

Visualizing a planned robot action, before it executes, plays an important role in a collabo-

rative workspace in terms of human safety and correct execution. Quintero et al. [15] highlighted

the advantages of having additional information and visualization for robot motion planning, while

remaining relatively free from the use of any handheld devices, by facilitated on-board hand track-

ing of their HMD using the Microsoft HoloLens. They also explored the use of multiple instruction

input sources, such as speech and gesture, as an alternative means of robot control. Perez et al. [16]

demonstrated a different, more VR-oriented approach, where a warehouse was projected onto the

operator’s point-of-view by the use of 3D scanners and scene mapping through post-processing via

third-party software. Control of their robot was rudimentary in that it indirectly communicated to

the manufacturer’s interface through a VR headset rather than directly manipulating the scene.

In general, related work on this topic has one or more of the following objectives: (i)

programming or operating a robot through VAMR [15], [17]–[20], or (ii) leveraging VAMR as a

foundation for other purposes such as imitation learning [8], [10]. There has also been a significant

effort made towards the use of VAMR to analyze complex behaviors of multiple collaborative

robots (e.g., if they can accomplish a common goal with human partners rather than working
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around them). These works often target mobile rather than stationary robots [21], [22], and they

typically use augmented or mixed reality. In contrast, our work is focused solely on utilizing

VR as a simulation, training, and integration analysis framework without the need for physical

robots. Nevertheless, our system is still capable of transferring execution over to a real platform.

Moreover, we prioritize direct hands-to-object interactions rather than alternative means of control.

This allows us to emulate ultra realistic interplay between the operator and the robots.

CHAPTER 3

Virtual Reality Robotic Workspace

In this section, we present our virtual reality robotic workspace (VRRW) architecture and

how each component facilitates the proposed framework.

3.1 System Overview and Design Choices

Our VRRW is comprised of the following three major components: (i) VR HMD, (ii) VR

rendering software, and (iii) robotic simulation and planning backend. This subsection describes

each component and the functionality it provides for our proposed approach. Fig. 2 details the

communication pipeline across the hardware and software systems. For VR headset, we chose to

develop our work using the Steam Valve Index [23] headset. The choice of headset is dependent

on the display resolution and refresh rates. This is a vital point of consideration since we aim

to reduce the effects of initial real-to-sim and sim-to-real transitions such as motion sickness and

disorientation. A high-resolution display (1440×1600 pixels per eye), high refresh rate (up to 144

Hz), low pixel illumination periods (0.330ms to 0.530ms), and accurate live tracking of the headset

position all contribute to reducing these VR-related issues.

We utilize the Unity [24] game engine as our environment rendering software. In recent

years, due to an increased interest in VAMR for robotics, Unity development has branched off into

providing a software suite capable of rendering and representing robots and robotic environments.
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Fig. 2: An overview of the system components including the underlying communication and rendering
pipelines.

This software suite, commonly known as the Unity Robotics Hub1, not only provides proper two-

way communication between Unity and ROS, but also contributes to how robots are represented

within Unity itself. For robotic simulation and motion planning, we make use of ROS 1 Noetic

running on Ubuntu 20.04 from a Docker image. We loosely use the term simulation since we

do not intend to run a full-scale Gazebo [25] simulation where the simulated robot is practically

indistinguishable from a real setup, nor would we be communicating with the official simulation

backend. Instead, ROS serves the following three purposes: (i) communication, (ii) joint-state

correspondence, and (iii) motion planning through MoveIt.

3.2 Unity 3D Game Engine

Unity3D (Unity) was originally a cross-platform game engine targeting developers rather

than VAMR roboticists. As VAMR usage in the gaming industry dramatically increased, Unity

1https://github.com/Unity-Technologies/Unity-Robotics-Hub
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has developed a sophisticated infrastructure to accommodate higher fidelity games. This includes

both visual and interactive support, along with the addition of more VAMR devices from different

manufacturers. Consequently, VAMR software diverges into other categories beyond just games as

it is now capable enough to render visually appealing and physically accurate environments. Most

prominently, Unity has been used for architecture model tours, automotive showrooms, cinematic

works, and more recently robotic development.

Unity provides three primary tools for robotic development. The first tool is a graphic

rendering framework capable of supporting VR devices. Not only is Unity prepackaged with

support for in demand, commercially available VR headsets, but the game engine itself is also very

capable of rendering 3D graphics. This allows us to display the high-fidelity rendering of desired

workspaces and correctly communicate and send frames to the operator’s headset display without

having the burden of low-level graphics programming and controller communication.

The second tool is the standardization of ROS communication messages. ROS is writ-

ten in C++ (or Python) and communicates through TCP via standardized serializable messages,

while Unity is written in C#. Previously, this presented difficulties as developers needed to handle

network communication with discrepancies between ROS and Unity messaging standards. This

was done using ROSBridge (aka ROS#) [26], [27]. ROS# has been further developed by Unity

into a ROS TCP Connector and a ROS TCP Endpoint, and integrated into their software suite as

additional packages.

Support for direct importation of the Unified Robot Description Format (URDF) is the third

tool. URDF is a standardized XML format that represents a robot model along with its articulation.

More specifically, Unity will correctly parse and define the geometry, visual meshes, kinetics, and

dynamics attribute of an any robot given its URDF description. Subsequent robot dynamics and

kinematics are handled by PhysX 4.0 [28], a full-featured physics engine that Unity physics is

based on.

Internally, each robot joint generated by the URDF description will spawn with an appro-

priate articulation type (i.e., fixed, prismatic, revolute, or spherical) and it will be governed by their
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respective joint-drive properties. These properties are defined as

Effect = Stiffness · (∆Position)−Damping · (∆Velocity) , (1)

where Effect is the force or torque applied to the joint in any given time frame, ∆Position is the

difference between a set joint target and current joint angle, and ∆Velocity is the difference between

the set-joint velocity and current-joint velocity. Thus, if the stiffness is zero, then the joint becomes

a velocity driven joint. Conversely, if damping is zero, then the joint will only attempt to reach a

position driven joint. The forward and inverse kinematic chain will not be affected since physical

interaction and articulation are handled as a chain defined by the URDF, and Unity respects that

definition.

3.3 Scene and Robot Description

While it is desirable to capture as many physical and visual dynamics of a workspace as

possible, such a task is often infeasible due to the infinitely complicated and chaotic nature of

real-world environments. We strive to achieve a balance between a visually attractive and intu-

itive workspace, and still retain a representative physical interaction between the robot and its

surrounding simulated environment. To do this, we present a set of novel solutions for defining

unique workspaces.

Unity, as a 3D game engine, natively supports applicable 3D modeling and rendering for-

mats. Leveraging this feature, operators can define their workspace to the level of detail they

want with the help of commercial 3D modeling software. These models can then be manually

or programmatically imported into Unity for visualization. Furthermore, simulated assets can be

redefined and reused on demand to allow flexible customization of an object’s physical and visual

characteristics. Alternatively, rather than defining the entire scene as an exported 3D scene, the

user may also export individual 3D objects (e.g., objects from relevant datasets) and programmat-

ically generate them on demand into the scene. This is useful for data generation and machine
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Fig. 3: A sample virtual workspace with multiple robot variants generated from URDFs. On the left is
a Universal Robots UR3e, UR5e, and UR10e, each equipped with a different Robotiq 2-Finger (85mm or
140mm stroke) end-effector and sensor. On the right is a Fetch Robotics mobile manipulator. The gray cube
on the table is 10cm in all dimensions.

learning use cases as the base scene can remain static for many iterations, while the distribution

and orientation of the objects can be changed. These techniques can also be useful for larger scene

definitions such as room-scale or house-scale scenes targeting mobile robots.

Our preferred approach is to define robots in URDF, and then let Unity handle the 3D gen-

eration parsing (Section 3.2). Traditionally, to describe a robot to Unity, developers must manually

create and attach all the individual links and joints of the robot while keeping track of their physical

and articulation properties. Hence, two unique, but semantically identical robot descriptions, are

required for Unity to work properly with ROS. Unity now supports URDF parsing, thus allowing

robot descriptions to be directly imported into the desired simulated scene. Furthermore, ROS

supports the use of XML macros. This allows developers to define their desired robots once and

then subsequently reference that definition in other robot descriptions. As a result, large and com-

plicated robot descriptions (e.g., numerous robots with multiple end-effectors) are more achievable

as shown in Fig. 3.

Lastly, once imported into Unity, a robot model can now be saved directly as an asset. This
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(a) Free-drive mode (b) Ghost-drive mode

Fig. 4: Different modes of robot operation. (a) Direct-body interaction between the controlling operator and
the body of the virtual robot to pull it along. (b) Ghost images indicating and recording where the robot will
be without actually moving the body of the robot.

further reduces the complexity of introducing additional robots into a simulated scene. Moreover,

it decreases the load time for extensive robotic collaboration projects since Unity does not need to

sequentially parse the URDFs and reconstruct the robot kinematic chain at every launch. Instead,

it just instantiates the complete, pre-generated robot into the scene on-the-fly.

3.4 ROS Backend and Motion Planning

We utilize ROS 1 Noetic due to its wide support for a range of industrial robots from

different manufacturers (e.g., Universal Robots, Fetch Robotics, Clearpath Robotics, etc.), as well

as a number of end-effector providers (e.g., Robotiq). Although, we considered to moving to ROS

2 Humble and Rolling for this work, we ultimately decided to stay with ROS 1 due to incomplete

robot support in ROS 2. ROS 1 Noetic is modern enough to support Python 3, while still providing

proper support for the majority of the robots active in industry. Furthermore, although ROS 2 is

officially supported for Unity packages, it is still under heavy development and continues to roll

out bug fixes and updates.
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Motion planning is broken up into the following categories: planning from Unity and plan-

ning from MoveIt. These categories are separate, but they communicate in between the ROS and

Unity backends. Fig. 4 shows the point-of-view of the operator controlling the simulated robot.

From within the Unity visual scene, the operator can directly drag individual joints into position

thus performing FK or pseudo-FK, whereby they can specify if the robot should follow along

(free-drive mode). Conversely, the operator can overlay a representative semi-transparent double

to indicate the intended final pose (ghost-drive mode). The operator can also exclusively specify

the end-effector pose (position and orientation) and request IK from MoveIt.

The underlying motion planning is configurable, commonly employing the Open Motion

Planning Library [29], a collection of state-of-the-art motion planning algorithms. FK is therefore

trivial and can be actuated from within Unity itself, while more difficult motion planning can be

delegated to MoveIt. The position of the robot is constrained by the state provided by the fake

joint controller generated by MoveIt. This prevents discrepancies between ROS joint states and

Unity joint states. Moreover, it is coupled with the robot representation between Unity and ROS to

ensure synchronous behavior.

CHAPTER 4

Evaluation

In this section, we showcase the capability of our proposed VRRW to visualize and train

simple robotic tasks. To demonstrate the ability to train a robot in VR and then transfer the training

to a real robot, we utilize a physical robot setup. The simulation directly mirrors our real workspace

and consists of a Universal Robots (UR) UR5e with a Robotiq 2F-85 2-Finger gripper attached to

its tool port. This adds an additional layer of software communication between the ROS backend,

the physical robot, and Unity, which is made possible using our UR-Robotiq integrated driver [30].
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4.1 Use Cases

We present the following use cases for VRRW. In the first use case, we perform direct imi-

tation learning on a robot solely through virtual interaction for a pick-and-place task. In the second

use case, we generalize the pick-and-place behavior by learning from a virtual demonstration using

a framework called dynamic movement primitives (DMPs) [31].

4.1.1 Virtual Direct Imitation Learning

This use case targets offline, exact replay of recorded robot motion provided by an operator

directly manipulating the body of the robot. It should not be confused with other forms of learning

from demonstration, where only the initial motion is recorded and fed to a machine learning algo-

rithm to generate a different, but behaviorally similar, trajectory. These direct prerecorded robot

motions are often used as part of a larger, collaborative workflow where individual robots repeat-

edly perform their assigned task. Therefore, while the individual instructions may be simple, when

enough of them are properly orchestrated a collection of mutually dependent motions can achieve

complex results.

A standard, high-level definition of the robot instruction set for a pick-and-place task can

be enumerated as follows.

i) Move robot from current position to near-pick position

ii) Move gripper to pick position

iii) Close (or activate) gripper

iv) Return to near-pick position for clearance (optional)

v) Move to final position

vi) Open (or deactivate) gripper

11



An example of a system exercising this use case is an industrial assembly line (e.g., automotive

factory). The independent robot tasks can be as simple as moving an object from one location

to another location, i.e., picking and placing tools or parts. While the individual robot tasks are

straightforward, their end result is an intricately assembled vehicle. Thus, to demonstrate the effi-

cacy of our workspace in terms of the ability to train rudimentary robot tasks from VR, we selected

the job of programming a pick-and-place instruction. From within the VRRW, an operator will

manually set and move the simulated arm through a desired trajectory. This recorded instruction

will be replayed using our real, identical setup to pick up a similar object in the VRRW.

4.1.2 Virtual Learning from Demonstration

In this use case, we save the interactions between the VR operator and the robot as trajec-

tories in the Unity environment to facilitate learning from demonstration [32]. To do this, we make

use of motor primitives, i.e., complex sequences of muscle movements that have been theorized

by neuro-biologists to be composed of building block movements. DMPs attempt to present this

motor primitive theory within an elegant mathematical framework represented by a spring-damper

system [31], [33]. Concretely, a DMP system is parameterized by the start and goal locations,

desired velocities, and additional forcing terms that can be appended to perturb the behavior in

response to arbitrary stimuli (e.g., sensed obstacles).

Within our VRRW, we leverage DMPs to learn trajectories demonstrated by the VR oper-

ator. This is done by using the handheld controller to provide the robot with generalized virtual

skills, which can then be executed in both the virtual and real environments. Formally, a DMP is

defined as

τ v̇ = K(g− x)−Dv+(g− x0) f (s),

τ ẋ = v, (2)

where x,ν ∈R are the position and velocity, x0,g ∈R are the initial and goal positions, and K,D ∈

12



Fig. 5: The temporal execution of the robot pick-and-place task (left to right). The simulation trajectory was
captured using the VRRW (top row). The second row depicts the DMP execution of the trajectory. Note the
novel location of the object (yellow cordless drill).

R+ are constants for the spring and damping terms. In (2), D= 2
√

K to render the system critically

damped, τ is a positive speed scaling factor, and f is the s dependent forcing function to be learned.

Exponentially decaying from 1 to 0, s abstracts away time using the canonical system, i.e.,

τ ṡ =−αs. (3)

The forcing term is written as

f (s) =
∑

N
i=0 ωi ψi(s)

∑
N
i=0 ψi(s)

s, (4)

where N Gaussian basis functions, represented by ψi, are sum weighted against the learned weights

ω . With this, (2) can be rewritten to calculate the target forces. Then, the weights can be computed

using locally-weighted regression. Once the weights have been learned, we can then execute the

primitive in novel contexts. We demonstrate this capability on a pick-and-place task as displayed

in Fig. 5.

4.2 Discussion

In the pick-and-place task, we focused on the motion of the robot itself rather than the

actuation of the gripper. We were able to manipulate the simulated robot directly using natural hand

motions (e.g., holding or pushing) on specific parts of the robot. The trajectory of the robot was
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Fig. 6: The UR5e joint trajectories for the virtually trained DMP.

recorded as a function of time for each subtask. We then directly executed the recorded trajectories

on a physically identical robot. Fig. 6 shows the correspondence and dynamic adjustments between

the virtually recorded and DMP-generated trajectories.

Being able to record robot trajectories and other relevant joint state information naturally

allows us to capture training data for machine learning purposes. Using the joint state information

collected exclusively from our VRRW, we were able to provide sufficient training information for

a DMP framework to adapt a model capable of recreating characteristically similar motions with

a variable goal state. The DMP was able to learn from our VR demonstration and produce an

appropriate new trajectory. The general form of the motion was retained while being executed

from different start and end joint states. Moreover, the execution of the generated trajectory on the

real robot exhibited similar motion and velocity behavior.

To summarize, the results of the physical execution indicates that there was a proper tran-

sition between the simulation recorded joint states and the physical joint states, even though there

was a slight amount of jitter due to the discrete time step recording of the simulated trajectory.

Overall, the motion characteristics of the pick-and-place demonstration were preserved and the

task was successfully executed without any deviations from the learned trajectory or object colli-
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sions in the workspace. This shows the ability of our system to provide meaningful robot access

and evaluation. Furthermore, it allows operators to properly interact with and assess robotic inte-

gration and programming without the constraints of obtaining or being in proximity of the physical

robot.

CHAPTER 5

Conclusion and Future Work

In this paper, we introduced a novel VR environment for easing the burden of robotic

integration. Our VRRW is capable of simulating multiple robots in a visually captivating and

intuitively interactable workspace. We described the architecture of our approach and evaluated its

effectiveness against various robotic programming scenarios. Moreover, we showed the ability of

VRRW to simulate desired workspaces and their accompanying robots, as well as its consistency

in simulation to reality transference. For future work, we have additional use cases where VRRW

can act as a foundation for providing access to a robotic workspace. In particular, we aim to further

increase the quality of the visualization and interaction capabilities of our current approach thus

allowing for more natural and dexterous interactions between operators and virtual environments.
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framework using microsoft hololens,” in Proceedings of the IEEE/RSJ International

16

https://doi.org/10.1109/ACCESS.2020.3045792
https://doi.org/10.1145/3371382.3378240
https://doi.org/10.1145/3371382.3378240
https://doi.org/10.23919/OCEANS40490.2019.8962616
https://doi.org/10.1109/JAS.2020.1003518
https://doi.org/10.1109/GLOBECOM38437.2019.9013428


Conference on Intelligent Robots and Systems, 2019, pp. 5185–5190. DOI:

10.1109/IROS40897.2019.8967649.

[8] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel, “Deep

imitation learning for complex manipulation tasks from virtual reality teleoperation,” in

Proceedings of the IEEE International Conference on Robotics and Automation, 2018,

pp. 5628–5635. DOI: 10.1109/ICRA.2018.8461249.

[9] H. Liu, Y. Zhang, W. Si, X. Xie, Y. Zhu, and S.-C. Zhu, “Interactive robot knowledge

patching using augmented reality,” in Proceedings of the IEEE International Conference

on Robotics and Automation, 2018, pp. 1947–1954. DOI: 10.1109/ICRA.2018.8462837.

[10] J. S. Dyrstad, E. Ruud Øye, A. Stahl, and J. Reidar Mathiassen, “Teaching a robot to grasp

real fish by imitation learning from a human supervisor in virtual reality,” in Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018,

pp. 7185–7192. DOI: 10.1109/IROS.2018.8593954.

[11] http://will_be_available_if_accepted_for_publication.

[12] D. Mukherjee, K. Gupta, L. H. Chang, and H. Najjaran, “A survey of robot learning

strategies for human-robot collaboration in industrial settings,” Robotics and

Computer-Integrated Manufacturing, vol. 73, p. 102 231, 2022, ISSN: 0736-5845. DOI:

https://doi.org/10.1016/j.rcim.2021.102231. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0736584521001137.

[13] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and

A. Ng, “Ros: An open-source robot operating system,” in Proceedings of the International

Conference on Robotics and Automation Workshop on Open Source Software, vol. 3, 2009,

p. 5.

[14] D. Coleman, I. A. Sucan, S. Chitta, and N. Correll, “Reducing the barrier to entry of

complex robotic software: A moveit! case study,” Computing Research Repository,

17

https://doi.org/10.1109/IROS40897.2019.8967649
https://doi.org/10.1109/ICRA.2018.8461249
https://doi.org/10.1109/ICRA.2018.8462837
https://doi.org/10.1109/IROS.2018.8593954
http://will_be_available_if_accepted_for_publication
https://doi.org/https://doi.org/10.1016/j.rcim.2021.102231
https://www.sciencedirect.com/science/article/pii/S0736584521001137


vol. abs/1404.3785, 2014. arXiv: 1404.3785. [Online]. Available:

http://arxiv.org/abs/1404.3785.

[15] C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. Machiel Van der Loos, and E. Croft,

“Robot programming through augmented trajectories in augmented reality,” in

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,

2018, pp. 1838–1844. DOI: 10.1109/IROS.2018.8593700.
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[29] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning library,” IEEE

Robotics & Automation Magazine, vol. 19, no. 4, pp. 72–82, Dec. 2012. DOI:

10.1109/MRA.2012.2205651. [Online]. Available: https://ompl.kavrakilab.org.

[30] M. Q. Tram, Ur-robotiq integrated driver, version 0.0.1-alpha, 2022. [Online]. Available:

https://github.com/robotic-vision-lab/UR-Robotiq-Integrated-Driver.

19

https://doi.org/10.1109/IROS.2014.6942709
https://doi.org/10.1109/ROBOT.2009.5152325
https://www.valvesoftware.com/en/index/headset
https://unity.com/
https://doi.org/10.1109/IROS.2018.8594043
https://doi.org/10.1109/RO-MAN46459.2019.8956315
https://developer.nvidia.com/physx-sdk
https://doi.org/10.1109/MRA.2012.2205651
https://ompl.kavrakilab.org
https://github.com/robotic-vision-lab/UR-Robotiq-Integrated-Driver


[31] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical movement

primitives: Learning attractor models for motor behaviors,” Neural Computation, vol. 25,

no. 2, pp. 328–373, 2013.

[32] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning from

demonstration,” Robotics and Autonomous Systems, vol. 57, no. 5, pp. 469–483, 2009.

[33] A. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes for learning motor

primitives,” Proceedings of the Advances in Neural Information Processing Systems,

vol. 15, 2002.

20


	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF ILLUSTRATIONS
	Introduction
	Related Work
	Virtual Reality Robotic Workspace
	System Overview and Design Choices
	Unity 3D Game Engine
	Scene and Robot Description
	ROS Backend and Motion Planning

	Evaluation
	Use Cases
	Virtual Direct Imitation Learning
	Virtual Learning from Demonstration

	Discussion


	Conclusion and Future Work
	REFERENCES

