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Abstract 
 

AFFORDABLE AUTONOMOUS VEHICLES 
FOR DEPLOYMENT AFTER 

DISASTROUS EVENTS 
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Supervising Professor: Erick C. Jones, Sr. 
 
In disastrous events such as hurricanes and tornadoes, it has been observed that people get 

stranded and helpless without a feasible way to escape during those emergency situations. This 

became very evident during hurricanes, such as Katrina and Ida affecting millions of people 

seeking immediate rescue efforts. With the use of artificial intelligence and machine learning, 

we envision an autonomous vehicle, AV, which is able to find the most optimal and safest way 

to help those who are stranded to get them to a safe location.  Electric vehicles, EV, and 

Autonomous Vehicles, AV, is becoming the future; minimizing the carbon footprint, reducing 

accidents, and revolutionizing the car industry with new car production. The challenge for the 

next generation is the affordability of these new vehicles and their intelligence. Technology has 

been advancing making these vehicles autonomous from a level 0 (no automation) to level 5 

(full driving automation), but cost is a significant factor making these vehicles very expensive.  

 

This research seeks to leverage affordable sensors, artificial intelligence, and machine learning 

to develop a smart car kit that can be retrofitted to any type of vehicle to make it smart. The 

novelty of this research is that we are utilizing less expensive technologies, such as, cameras, 
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proximity sensors, and RFID technologies and also that this kit can be used to make older 

vehicle models smart. The future of work components of this research is the autonomous 

learning to minimize human risk in disaster recovery. 
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1. Introduction 

1.1 Autonomous Vehicle  
Electric Vehicle, EV, and Autonomous Vehicles, AV, is becoming the future of the automobile 

industry; minimizing the carbon footprint, reducing accidents, and revolutionizing the car industry 

with new car production. Researchers anticipate that the Level 4 autonomous vehicles, the 

minimum requirement in order for a vehicle to be autonomous is to be adopted ranging from 25% 

to 87% by 2045 (Bansal and Kockelman 2017). Other projections indicate that autonomous 

vehicles will account for 20-40% of total vehicle fleet by 2040s (Litman 2019). The main reason 

for slower rate of adoption for autonomous vehicles has been considered the relatively high cost 

(Litman 2020). Transportation has surpassed electricity generation as the top greenhouse gas 

emitter in the US Transportation which accounts for nearly 28.5% of US emissions. (Bloomberg 

New Energy Finance, 2018). Autonomous vehicles could reduce greenhouse gas emissions by 

driving more efficiently, avoiding traffic congestion, accelerating adoption of alternative fuel 

vehicles, and charging in alignment with renewable electricity generation.  

 
The National Highway Traffic Administration defines five levels for vehicle autonomy, Level 

0 (no automation) to Level 5 (full automation). According to the National Highway Traffic 

Administration, car accidents occur every minute, which is approximately 5 million accidents 

annually in the United States, making human error the main cause of the automobile accidents. 

With an increased number of autonomous vehicles on the road, human error can be mitigated. 

Also, with the use of AVs, injuries, damage cost associated with vehicle, and fuel consumption 

and congestion will decrease in large-scale traffic (Piao et al., 2016). AVs include several 

benefits, including safety, efficiency, and increased mobility. AVs have the ability t  
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o communicate with each other, optimizing routes persistently as well as helping improve the 

traffic congestion (Andersen et. al 2014). Autonomous vehicles are beneficial to help in 

dangerous and congested areas where there is a threat to people during disastrous situations. The 

use of unmanned vehicles also has become popular in other situations as well, such as traffic 

control and disaster management.  

 

Figure  1-1: Level of Automation 

Figure 1-1 outlines the levels of automation, Level 0 being no automation to Level 1 with driver 

assistance. From Level 1 to Level 2, we have partial assistance which gives the vehicle assistance 

functions such as:  steering and acceleration. Next, we have Level 3: conditional automation in 

which the vehicle has the capabilities to monitor its surroundings in real-time, permitting the driver 

to take control only when alerted by the system. Level 4 and 5 are high automation and full 

automation; respectively. To reach these levels, there is still much advancement required.  

 

Recently, in the United States, there have been several hurricanes which have hit and affected 

several areas. In disastrous events such as hurricanes and tornadoes, it has been observed that 

people get stranded and helpless without a feasible way to escape during those emergency 

situations. This became very evident during hurricanes, such as Katrina and Ida affecting millions 

of people seeking immediate rescue efforts. Also, since 2015, the southeastern United States has 

been affected with several hurricanes, such as Joaquin in 2015, and Irma in 2017; just to name a 
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few. Although technology has been evolving for the autonomous vehicles and is becoming the 

future, there is limited information about the use of these vehicles during disastrous events.  

 1.2 Problem Statement 
With the use of artificial intelligence and machine learning, we envision an autonomous vehicle, 

AV, which is able to find the most optimal and safest way to help those who are stranded to get 

them to a safe location. The challenge for the next generation is the affordability of these new 

vehicles and their intelligence. Technology has been advancing making these vehicles autonomous 

but cost is a significant factor making these vehicles very expensive. Since cost is a major factor 

in this, it results in people being more reluctant in purchasing an autonomous vehicle. Newer 

technology usually brings a sense of being more reluctant to people who are resistant to change; 

however, even in such scenarios, when people are in emergency situations and need immediate 

help, an autonomous vehicle which will save the people stranded will be of significant help. A 

study by Wagner et al., 2018, states that human-machine interaction requires substantial time and 

effort to be able to gain full trust in autonomous vehicles. Our research seeks to leverage affordable 

sensors, artificial intelligence, and machine learning to develop a smart car kit that can be 

retrofitted to any type of vehicle to make it smart.  The future of work components of this research 

is the autonomous learning to minimize human risk in disaster recovery.  

1.3 Research Objectives 
The question that is to be addressed in this study is if a low-cost AI-based sensor be retrofitted to 

make an affordable car self-driving cost effective. Our long-term research goal is to investigate AI 

driven low-cost sensors that can facilitate automated systems effectively as well as being 

affordable. The research objective is to provide an effective demonstration of a low-cost AI-based 

sensor that can enable an affordable car system to become smart and ultimately transition into a 

self-driving car, or autonomous vehicle.  
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1.4 Purpose of this Research 
In today’s society, autonomous vehicle technology has been advancing, and as a result, people are 

more inclined in purchasing newer technology; however, with a much more affordable option, they 

would be able to have that same technology with their current vehicle. The purpose of this research 

is to not only provide people with the opportunity to get acquainted with newer technology for 

their current vehicles, but also to feel more comfortable about this change, as that is where people 

resist the most.  

1.5 Organization of this Dissertation 
This dissertation follows a five-chapter format of introduction, background, methodology, results, 

and conclusion. Chapter 2 discusses the literature review of disaster relief and evacuation, 

autonomous vehicles in disastrous events, path planning for autonomous vehicles, challenges for 

autonomous vehicles, etc. Chapter 3 defines the methodology of this research, including the 

specific objectives, hypothesis, and research methodology. This chapter also includes test setup 

and details on the location where the tests were performed. Chapter 4 discusses the results of the 

experiments performed during this research. Interpretations and analysis of the results are also 

included in this chapter. Chapter 5 is the conclusion and discussion of the research with a summary 

of the overall study, findings and recommendations, and a contribution to the body of knowledge.  

It also includes the limitations and future steps in the research.  
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2 Background 

2.1. Evacuation and Disaster Relief  
During disastrous situations, the main goal is to save those who are stranded to a safe location 

prior to the disaster as well as get the necessities for post-disaster. With the increasing 

hurricanes and the frequency of these events, large-scale evacuations are also expected to 

increase in the future (Broccoli and Manabe, 1990). For large-scale evacuations, rescue efforts 

should be optimized in order to meet the needs of the individuals seeking immediate help. In 

previous cases of hurricane evacuations, state department officials and professionals have 

worked together to initiate new strategies, some of which includes improving supply through 

intelligent transportation systems, or ITS (Urbina and Wolshon, 2003). Some states have been 

experiencing more frequent cases of disasters, an urgency for strategic and more effective 

evacuation plans are required (Wong et al., 2018). According to Murray-Truite and Wolshon, 

2013, transportation and emergency management agencies account for an average of 6-10% of 

its population to be classified as requiring assistance when needed to evacuate for hurricanes, 

in the United States (Murray-Truite and Wolshon, 2013). A study was done focusing on South 

Carolina, indicating that approximately 5% of the population will need evacuation assistance 

with category 5 storm (South Carolina Emergency Management Division, 2019).  

2.2 Autonomous vehicles in disastrous events 
Autonomous vehicles in disastrous and emergency situations will help people in various 

scenarios receive immediate rescue efforts. The knowledge and understanding about the most 

affected disaster-hit areas through images provided by the unmanned vehicle will help 

emergency evacuations by finding the safest and most optimal route to reach where is necessary. 

In order to find the most optimal route for the AVs, it is crucial to utilize the real-time images 

from 360-degree views to help assess the damage which has already been caused by the 



 6 

hurricanes, tornadoes, etc. to be able to also assist the emergency response teams. (Ullah et al 

2018).  

In regards to autonomous vehicles in an emergency setting, limited research has been done. The 

studies which have been performed mainly focuses on the operation rather than the aspect and 

acceptance of society. According to Murray-Tuite et al., 2017, the use of AVs to aid those who 

had limited access disaster situations was introduced in 2017. In cases when evacuation is 

necessary, the autonomous vehicles demonstrate less delay period (Chang and Edara, 2018).  A 

study by Yin et al. 2018 demonstrated optimization of routes during evacuations to reduce the 

traffic congestion. During post-disaster, these autonomous vehicles are required to provide 

assistance with the evaluating and assessing the damage, vehicle routing, delivery of medical 

supplies and other required supplies.  

2.3 Path planning for autonomous vehicles  
Path planning is utilized to avoid any obstacles along the way. The purpose of path planning is to 

determine the best route to be followed and to also be able to travel from point A to point B without 

risks of collision with objects along the way (Ma et al. 2018). The algorithms used for path 

planning in autonomous vehicles include the following: conventional, cell-based, model-based, 

and learning-based algorithms. The rapid exploring random trees are branch and bound algorithms 

which find a path from the source to the goal, attempting to connect the source to the goal by a 

suitable path. For this type of algorithm, the limitation is that it requires better approximations of 

the path.  

 

As stated previously, path planning is used to find a route from initial point to the destination in 

order to find the unmanned vehicle. The path should be clear of any object destruction. Latest 

research has focused on AVs during disasters (Wu et al. 2018; Shiri et al. 2019).  With autonomous 
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vehicles becoming popular, the actions required to take for disastrous situations is important for 

creating solutions to improve the path planning during these times (Qadir et al., 2021). In this 

research, we plan to leverage the simplicity of post-disaster roads, AI, and ML to solve simple path 

planning problems with low-cost sensors. Tables 2-1, 2-2, 2-3, represent the different types of 

algorithms that were taken into consideration during the preliminary stages of this research, along 

with the advantages and disadvantages of each type of algorithms. Evaluating these algorithms 

gave us the opportunity to be able to narrow down the “best fit” algorithm for conducting and to 

meet the goals of the research study.  

 
Table 2-1: Conventional Algorithms 

 
 
 
 
Table 2-2: Cell-based Algorithms 
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Table 2-3: Model-based and Learning-based Algorithms 

 
 

Tables 2-1, 2-2, and 2-3, conventional, cell-based, model-based and learning algorithms; 

respectively, as shown above represent the different path planning algorithms which were studied 

for this research. Each algorithm type, method, advantages, and disadvantages have been outlined 

meticulously in the tables. 
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2.4 Obstacle Avoidance 
As mentioned before, autonomous vehicles have become more and more popular during the past 

several years. Ultimately, autonomous vehicles will replace human drivers reducing human error 

and accidents on the road, as well as improving road efficiency and driving safety. With the 

combined advancing technologies of sensor, electronic control, and artificial intelligence, 

driverless vehicles are becoming more intelligent while making quick and efficient decisions. 

Obstacle avoidance is one of the main functions of decision-making, path planning, and path 

tracking. Studies on obstacle avoidance for autonomous vehicles are important for application 

purposes. Path planning has been used to avoid obstacles along with keeping the road safe. 

Methods and algorithm studies and research has been performed in regards to obstacle avoidance. 

Algorithms related to this research area includes, artificial potential field method, rapidly exploring 

random tree method (RRT), fuzzy logic, and neural networks. Path planning algorithms for 

autonomous vehicles should meet specific requirements, which include path safety, computation 

speed, and system robustness, simultaneously. A simple algorithm, the artificial potential field 

algorithm can satisfy the requirement of real time control.  

 

The advantage of using this algorithm is the ability for path planning for live obstacle avoidance 

and due to this; the algorithm has been used in practical projects (Fu et al. 2015). Not only have 

studies been done to improve the performance of obstacle avoidance path planning algorithms, but 

also researchers have been working towards the risk change in the obstacle avoidance process 

(Llorca et al. 2011; Stephanie et al. 2014). According to the National Highway Traffic Safety 

Administration, about 30% of accidents occur during lane changes (National Highway Traffic 

Safety Administration 2019).  
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2.5 Object Detection 
Object detection is a technique in computer vision which identifies and locates objects within an 

image and/or video. It is able to draw a boundary around each of the objects so that it locates where 

the objects are in a specified region. Object detection algorithm for autonomous vehicles should 

satisfy two conditions: high detection accuracy of road conditions and objects and a real-time 

detection speed to determine whether the detector is possible to be used in driving or not. Deep 

learning models and specifically Object detection algorithms consists of two categories, one-stage 

and two-stage algorithms. Examples of one-stage algorithms include SSD and YOLO, which 

perform regression and classification in one stage. These algorithms have a generally low 

accuracy, but high detection speed. On the contrary, the two-stage algorithms have a high accuracy 

but slow detection speed such as R-CNN and Fast R-CNN. The YOLO algorithm detects objects 

by splitting the image into several grid cells. By doing so, it detects multiple objects through a 

single stage and the speed is relatively faster. The downside of this type of algorithm is that it is 

difficult to detect small objects.  

The majority of object detection algorithms are able to detect large objects, but smaller objects are 

more difficult and often neglected by the detector. In cases of autonomous driving, it is dangerous 

to miss pedestrians, traffic lights and signs.  

2.6 Object Detection algorithms  
Several object detection algorithms were studied throughout this research in order to choose the 

best algorithm which fits the scope of the research.  The algorithms studied in detail for this 

research are as follows: Fast R-CNN, Faster R-CNN, Histogram of Oriented Gradients (HOG), 

Region-based Convolutional Neural Networks (R-CNN), Region-based Fully Convolutional 

Network(R-FCN), Single Shot Detector (SSD), Spatial Pyramid Pooling (SPP-net) and You Only 



 11 

Look Once (YOLO).  The accuracy and precision of each of these algorithms vary according to 

several studies which have been performed. For example, according to one study by Du et al. 2020, 

the mean average precision for the Faster R-CNN and R-FCN are 93.63% and 94.20%; 

respectively. It is important to note that the higher these percentages are, the better the performance 

is for object detection purposes.  

The Region-based Fully Convolutional Network, or R-FCN, an algorithm, by Dai et al. 2016 is 

based on the structure of the Faster R-CNN, maximizing the parameters in order to increase speed. 

Similarly, the Single Shot Detector, or SSD, was proposed by Liu et al. 2015 performs both small-

scale object detection and positioning in one shot.  

For the purposes of this study, the You Only Look Once (YOLO) algorithm was chosen as it is 

used for object detection and specifically self-driving vehicles.  

 

2.7 Challenges in autonomous vehicles path planning 
Challenges arise in path planning for unmanned vehicles. It becomes extremely challenging when 

there are scenarios of multiple autonomous vehicles due to several constraints, high-

dimensionality, and the timing in which the vehicle needs to have a response time; especially in 

times of disastrous situations, time is a big factor in order to be able to rescue those who are 

stranded. In order to reduce and/or avoid crashes, scientists have been working to develop 

resolutions for enhancing path planning algorithms. Research and studies have indicated that in 

2D environments, the algorithms have grown exponentially; however, in 3D environments, the 

algorithms do not provide adequate navigation due to various factors such as, physical, geometric, 

and time-related factors (Yang et al. 2017; Yang et al. 2018).   Several challenges come with path 

planning. One common challenge, evidenced by recent research studies is the optimization of the 

system achieved by path planning. Challenges were outlined in path planning for AV in regards to 
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the optimal path length, which must cover from the start to the destination (Aggarwal and Kumar, 

2019). The main barriers in path planning include optimizing the system, determining the optimum 

path length, path completeness, optimality, efficiency, energy consumption, and achieving 

robustness. In this research project, we will be starting with using simpler situation, with not as 

many vehicles and then based on accuracy and precision in our study, we will add situations that 

are more complex. 

2.8 Sensors in autonomous vehicles and its technology 
Recently, technology in autonomous vehicles and the sensors used has grown exponentially.  The 

main goal of an AV is to be aware of its surroundings and make decisions quickly and effectively, 

requiring a precise and accurate understanding of the location of the vehicle to then be transferred 

into an algorithm. Currently, two main types of sensors are used for an AV, an exteroceptive sensor 

which is used for observing the environment and providing the distance to objects in addition to 

proprioceptive sensors which measure values from within the system.  

 

Ultrasonic, or proximity sensors are used to detect when a vehicle is close to a person or object. 

This type of sensor has the capability to identify how far the object is from the vehicle, providing 

a signal to the driver within the vicinity. Another type of sensor that has been used in the 

autonomous vehicle is the LiDAR, or Light Detection and Ranging. The system consists of a 64-

line three-dimensional radar system that sends a detection signal to a target, and then compares the 

received signal reflected from the target with the transmitted signal (Han et al 2018). The system 

is installed at the top center of the vehicle and is able to detect environmental information through 

high-speed rotational scanning of 360 degrees. LiDAR is a type of sensor technology that measures 

distance with high precision and accuracy. This is beneficial for autonomous vehicles as it gives 

accurate mapping and localization with 360-degree views. Advantages of a LiDAR consists of the 



 13 

following: detecting and tracking obstacle detection, measuring speed, navigating and positioning 

of the vehicle (Han et al 2018).  

 

Research by Azim et al. 2012 determined a method to distinguish between various moving 

obstacles. LiDAR is complex and with traffic environments changing constantly, color cameras 

and LiDAR have been utilized to detect the target and/or object on the autonomous so that 

sufficient information is taken. According to a study Asvadi et al. 2017, a convolutional neural 

network method is used for the obstacle information based on three detectors designed by 

combining the dense depth map and dense reflection map output from the 3D LiDAR and the color 

images output from the camera. The image information of color camera will be affected by the 

ambient light, and LiDAR cannot give full play to its advantages in foggy and hot weather. 

Therefore, the performance and recognition accuracy of the single sensor is low in the complex 

urban traffic environment, which cannot meet the security needs of autonomous vehicles (Han et 

al 2018).  

 

Most autonomous vehicles today use cameras as it is capable of detecting static and dynamic 

objects in their surroundings. Also, cameras are able to determine distances to a particular object, 

even though this requires complex processing algorithms (Xiaomong et al. 2010).  Cameras are 

preferable compared to other sensors because of their capability to see colors and textures. The 

benefit in this is that it increases the perception system of the AV as it allows the vehicle to identify 

road signs, traffic lights, etc., as well as the affordability and availability.  
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These sensors and technologies discussed have been used for new vehicle models. Cost becomes 

a challenge with autonomous vehicles and its technology. The goal of this research is to use these 

new technologies with artificial intelligence and machine learning to implement and integrate into 

older vehicle models to make it smart.  

 

2.9 Implementing RFID in vehicles 
Accidents occur due to carelessness and improvised technology in certain vehicles. This can be 

improved by modern technologies such as RFID. This system helps in communication of one 

vehicle to another, thus reducing the impact of road accidents. The tags readily identifies and 

receives the data and shares the data among the vehicles on road. For instance, two cars on road, 

they reach a range where they are able to communicate through the RFID tags in the form of visual 

data.  RFID is also able to indicate the driver through text messages about the fuel level, low tire 

pressure, battery life. RFID can be deployed in some parts of the road to help in reducing headlight 

glares, with the corresponding information the headlight of the approaching car can be controlled. 

This system alerts the driver about congested roads, accidents, traffic and chooses an alternative 

way.  

  

The device tracks another car by the distance and the angle at which the signal is transmitted. The 

speed of the car is tracked by the voltage in the speedometer that is applied to an electromagnet to 

produce electromagnetic field. Installing this system in emergency vehicles like ambulance, police 

cars, fire engines will help to control the traffic. The traffic lights would work according to the 

approaching emergency vehicle so that it can pass through the traffic without any hindrance. We 

can also reduce the number of accidents due to rash driving by deploying some of these systems 

on the roads and whenever a car exceeds the speed limit by tracking the RFID tag in the car the 
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fine is automatically given to the driver.   With every application, limitations follow as well. In 

this case, the device does not have the capability to read multiple tags at once in a small region. 

As a result, privacy of the user is affected since any device in that range can read the RFID tag 

without their knowledge leading to security and ethical problems.   

 

2.10 Installation 
An RFID reader fails to read an RFID tag even in static circumstances, due to collisions. In a 

mobile vehicular environment, latency becomes the key aspect because of the high speed of cars. 

In this paper, it has been discovered that the RFID study latency and as a consequence effectiveness 

of on-vehicles reader installations for a huge variety of speeds. First, we experimentally look at 

the impact of reader and tag relative positions on study mistakes and examine prices.  

 

Microcontroller is used for data collection and processing. The RFID reader reads the information 

from the tag and transmits it to the microcontroller, which then the tag carries that information for 

the car to move left, right, speed up and speed down. All of this data is processed and stored in the 

microcontroller. The RFID system consists of RFID reader, reader antenna, microcontroller and 

tag. The application of RFID here is that the car follows the instructions from the tag through the 

reader to move around.   

This system brings out the collision avoidance system that is effectively supported by the vehicle’s 

RFID reader and tags. The tags are placed in a particular sequence so if the car moves out of the 

path an alarm message is sent accordingly to the emergency contact specified. There are two types 

of collision, one being the reader collision and the second one: tag collision.  
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A car is a fast moving so the reader and tag should also be as fast as it. The average read rate for 

this system is 38.89ms. The flaw here is that this read rate is not sufficient the reader misses some 

of the tags while travelling in high speed. Hence a more advanced system should be used for shorter 

random-access time. 

RFID tag cluster models are explained in the paper too. There are 4 clusters models, which is based 

on the pitch angles varying from zero degrees to twenty degrees. When the angle is 60, 90, 120 

there is no communication hence we use 0 to 20 pitch angles. A long pause time helps prevent 

RFID tags from collision. On the other hand, it could degrade RFID performance in time-sensitive 

vehicular applications that require very short read latency. For estimation of the RFID 

performance, the paper measured the RFID read latency and read rate by using a commercial RFID 

system. In particular, the road experiments showed the feasibility of applying the RFID system to 

vehicles. Two techniques, i.e. dual RFID reader antenna and RFID tag cluster, were tested to 

discuss factors affecting performance. They also suggest directions for improvement. The results 

show that the proper setting of certain critical parameters leads to success. 
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3. Methodology 

3.1 Research Methodology 
This research started with deciding the required hardware necessary for the tasks that we needed 

to implement. We decided to go ahead with the Arduino Mega microcontroller, then we started 

with the basic connections of the Arduino Mega with the RFID sensor and began exploring the 

different tasks that can be implemented using the RFID sensor. We started testing the RFID sensor 

by implementing some rudimentary codes that can help us understand the working of the RFID 

sensor. This was done by writing a code to show us some random data in the serial monitor when 

we scan our RFID tag to the RFID sensor which reads that tag. After that, we decided to integrate 

other distance measuring sensors with RFID. We tested two different sensors i.e. Proximity sensor 

and Ultrasonic sensor.  

After testing was complete, we decided to use an ultrasonic sensor because of the accuracy that it 

provides and also the low power consumption in comparison to our proximity sensor. We 

integrated the RFID sensor and the ultrasonic sensor by controlling the working of the ultrasonic 

sensor with the RFID tags. Next, we implemented the ultrasonic sensor initiated only when we 

scan the right tag. If we try to activate the ultrasonic sensor with the help of the wrong tag then we 

do not get the output from the ultrasonic sensor. Our code is formatted in that we have specified 

that when we scan the RFID tag that has the correct UID then only the ultrasonic sensor is activated 

and we receive the output from it. We also have implemented this code in two different 

requirement levels. The first way is that we get the output from an ultrasonic sensor when we 

constantly scan the RFID tag in front of the RFID sensor. The second way of implementation is 

that we have introduced a counter in our Arduino code that allows the ultrasonic sensor to print 

the output values for a couple of seconds by scanning the RFID tag only once. Each of the 

implementations has its own advantage. In the initial implementation, the advantage is that 
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activating the ultrasonic sensor according to our need and it will give us an output only up to the 

time that we require. The advantage in the second implementation is that we will not need to keep 

scanning the RFID tag. It will give us an output for a couple of seconds regardless of the fact that 

we have only scanned the RFID tag once.  

Next, we implemented the camera module with the help of Arduino Mega microcontroller. We 

began the experiment with the OV7670 camera module. This particular module is difficult to 

connect with the microcontroller, as it requires specific type of resistors for connection in order to 

be successful and provide accurate and precise results. There are multiple pins in this module 

where we need to provide the 3.3V supply voltage. This presents the problem that not every 

required pin gets the required supply voltage of 3.3V. This hinders the working of this particular 

camera module. The solution to this might be to provide a different power source for each of the 

pins that require the supply voltage of 3.3V. Due to this issue, we decided to move on to another 

camera module, the OV2640. This camera module allows us to capture images of different 

resolutions and on various zoom sizes.  This camera module works on a 5V supply voltage and it 

requires eight pins including 5V Vcc and the ground terminal. The camera can be used in MCU, 

Raspberry Pi, ARM, DSP, and FPGA platforms. After the connections and installations of the 

appropriate required libraries, we uploaded the sample code that is provided in those libraries. This 

makes it possible to open the ArduCAM host application to capture any image. It is important to 

make changes in the library files so the correct camera module in selected before use. This helps 

us to avoid any SPI interface error.  

For the RFID tag testing, three approaches were taken. The photographs of the RFID tags are 

shown in Figure 3-1 and 3-2.  In Approach 1, several different sets of RFID tags based on thickness 

and distances was tested. Both linear and nonlinear regression analyses were conducted in the 
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following form: Y=b0+b1X1+b2X2, where Y=read rate, x1=distance, x2=thickness in mils. In 

Approach 2, a different set of RFID tags based on distance and the range of RFID was tested for 

the ranges of 12, 13, 14, and 27 feet. For each range, three experiments were conducted for 

repeatability; thus, therefore, twelve tests were conducted. Both linear and nonlinear regression 

analyses were conducted in the following form: Y=G0+G1X1+G2X2, where RSSI=read signal 

strength intensity, x1=distance, x2=RFID ranges specifications. In Approach 3, both linear and 

nonlinear regression analyses were conducted in the following form: Y=G0+G1X1+G2X2+G3X3, 

where RSSI=read signal strength intensity, x1=distance, x2=RFID ranges specifications, 

x3=thickness of tag.  

 

Figure  3-1 Tags Tested for Approach 1 

 
Figure 3-1 represents one of the tags which was tested for Approach 1.  
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Figure  3-2 Tags Tested for Approach 2 and 3 

 
Figure 3-2 represents the tags tested for Approach 2 and 3 with RFID ranges specifications and 

thickness.  

 

 

Figure  3-3 RFID Tag Experimental  
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Figure 3-3 represents the testing of RFID Tag during experiments.  
 
 

3.2 Convolutional neural networks 
First, convolutional neural network (CNN) is a type of artificial neural network utilized in image 

recognition and processing specifically designed to process pixel data. CNNs are powerful models 

in object and detection classification. Although CNNs are great in accuracy for object detection, 

their ability to analyze is known to be arduous. For example, it is always difficult to prove the 

correctness in detecting specific objects in CNN models.  In deep learning models, convolutional 

neural networks combine artificial neural networks and convolutional algorithms to identify a 

broad spectrum of targets. According to Szegedy et al. 2013; Papernot et al. 2016, to address this 

issue, the use of optimization-based techniques, it is possible to find the factors that are causing 

the model to misinterpret or classify the image. Another method available to prove the correctness 

of neural networks is by using linear programming, according to Huang et al., 2016; Katz et al., 

2017. A research study by Dreossi et al. 2017 created a framework to test CNNs by generating 

synthetic datasets with a specific focus on autonomous vehicles. The framework consisted of an 

image generator, a collection of sampling methods, and visualization tools. The purpose of the 

image generator was to extract images of road scenarios, images taken by arranging basic objects 

by background and cars; and also, by the tuning the image categorized into brightness, contrast 

and saturation. With this approach, larger amount of realistic images are obtained so that all 

configurations of the objects and images are defined in the case of road scenarios. On the other 

hand, the method of sampling purpose is to provide modification points to the image generator to 

produce images used to render information from the neural network. In the sampling methods, the 

focus is to utilize optimization methods to generate the images which are classified incorrectly, or 
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with slight variation by the CNN and lastly the visualization tools is then to display information 

taken previously.  

3.3 YOLOv4 algorithm 
 

In this research, we will be using the YOLOv4 (You Only Look Once), a target real-time detection 

algorithm, a popular convolutional neural network is an algorithm used for object detection and 

obstacle avoidance. Several studies have represented improvements and advancements to the 

previous YOLO generation models. The previous versions of the model provided low detection 

accuracy. The model provides multiple object detection in image and video for traffic surveillance 

applications using customized datasets. YOLOv4 contains 80 built-in object classes that is able to 

detect. Accurate and precise algorithms for object detection allows computers to drive vehicles 

without sensors, enable assistive devices to convey real-time scene information to human users. 

The YOLOv4 model detect targets efficiently and accurately. One of the greatest advantages that 

the algorithm is its incredible speed with its ability of process 45 frames per second. The YOLOv4 

algorithm also is capable of understanding object representation. Other advantages include that it 

is trained to perform classification and bounding box regression simultaneously. We have used the 

KITTI and BDD datasets for our research study. The KITTI and BDD are datasets used for 

autonomous driving and object detection.  

In order to get the YOLOv4 algorithm to work is by dividing the image into N grids, each having 

an equal dimensional region of SxS. The main idea is “slicing”, or splitting an image into smaller 

images.  

 

3.4 Structure of Model 
The structure of the proposed model is based on Convolutional Neural Networks (CNN). In a CNN 

model the input image is passed through layers and each of them performs of multiple operations 
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on the image. The output generated using these layers is a matrix of bounding box predictions. For 

a CNN model the operations generally follow a pattern. First, a convolutional operation which is 

followed by a non-linear activation function and a maximum pooling operation is at the end. This 

is a general pattern found in every single layer, but the functions can itself vary according to the 

task at hand. In this architecture, the prediction is a result of n such layers and a layer for applying 

convolution/non-linear for the last time followed by a dense fully connected layer. To check how 

the predictions are affected by the number of layers, a 3 layer and 5-layer model are considered.   

   

It is critical for the model to detect small details like traffic signals and distant objects from the 

input. Thus, the filter of 3x3 pixels is used for training. This is helpful in achieving a greater 

number of activations. To match the size of volume to the volume of the input, the convolution 

layers have three neurons as well. Less number of neurons in each layer means the number of 

parameters of the model also decreases. This means that the model will have less training time and 

the required computation power also decreases. 

Non-linear Activation Function: 

Rectified Linear Unit (ReLU) activations is used as the non-linear activation function, which take 
the form: ReLU(x) = max{0, x}  
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SimpleNet Architecture. Dark bracket indicates portion with repeated layers  
Rectified Linear activation function almost acts like a linear function, however, a nonlinear 

function which helps to learn complex correspondences in the data. This function also avoids 

saturation. It allows for large gradients and suppresses negative activations.  

Detection Prediction: 

The x and y coordinates of top-left corner are the first two elements in the vector b ∈ R^4 which 

represents the detection box. Similarly, the x and y coordinates of the bottom-right corner are the 

last two elements in this vector. The number of bounding boxes in the output is limited as the 

detection matrix has fixed number of rows.   

Horizontal Suppression: 

There are some objects in the input which are too far or in the sky and thus the decisions of 

autonomous vehicles should not depend on such objects. If a model detects such objects, then it is 

defined as a false positive. A model’s performance also depends on avoiding these false positives. 

A heuristic is used for avoiding the false positives. The angle of road surfaces and the cameras is 

the same and thus they both have same horizontal line. Therefore, if the detected object is above 

the horizon line, then it is a false positive. Hence, we suppress any detection box whose bottom-

right corner appears above the estimated horizon line y = 200px according to the heuristic. By 

doing this we avoid detecting unnecessary object and detect the objects which are more important 

and closer. This process is called as Horizontal Suppression.  

Loss Function: 

Element-wise difference between the predicted values and the actual values is examined using two 

different loss function viz. L1 loss and L2 loss. Let vec (X) denote the operation reshaping the 

matrix X ∈ R n×m into a vector x ∈ R nm, let matrix A hold the prediction, and matrix B point to 

the actual values our two losses are then: 
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Note that the L2 loss penalizes large differences between the predicted and actual matrices more 

harshly than the L1 loss. L2 regularization is incorporated on the weight matrices to decrease 

overfitting; over 10 trial runs, The regularization value of 1e − 5 works best.  

Training Algorithm: 

Adam optimizer is used to accelerate training and convergence. Each parameter of the network 

updated in a kind of average of previous gradient updates. For our learning rate, we used 1e − 3. 

To make full use of each training example, one image is trained at a time. It takes 30 epochs for 

training the model. 

 

 

3.5 Hypothesis Testing 
Hypothesis 1:  

H0: There is an unacceptable lag time in the readings between the proximity sensors, RFID tag, 

and camera. 

H1: There is an acceptable lag time (can integrate into vehicle system) between the proximity 

sensor, RFID tag, and camera.  

Reject null hypothesis when p value <0.05 

Reject H0: Acceptable lag time above 85% of the time.  

Hypothesis 2:  

H0: The AI model will not give an accurate and precise direction on the path to take. 

H1: The AI model will give an accurate and precise direction on the path to take. 
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Reject H0 : The AI model gave an accurate and precise direction on the path to take at a level 

above 90% 

Hypothesis 3: 

H0: The AI model will not accurately identify and detect objects coming towards the vehicle.  

H1: The AI model will accurately identify and detect objects coming towards the vehicle. 

Reject H0: The AI model accurately identify and detect objects coming towards the vehicle at a 

level above 80% 

Hypothesis 4:  

H0: The AI model will not minimize the objects/destructions in the vicinity of the vehicle.  

H1: The AI model will minimize the objects/destructions in the vicinity of the vehicle. 

Reject H0: The AI model minimized the objects/destructions in the vicinity of the vehicle at a 

level above 90% 

3.6 Research Goal and Objectives 
The question that is to be addressed in this study is if a low-cost AI-based sensor be retrofitted to 

make an affordable car self-driving cost effective. Our long-term research goal is to investigate AI 

driven low-cost sensors that can facilitate automated systems effectively as well as being 

affordable. The research objective is to provide an effective demonstration of a low-cost AI-based 

sensor that can enable an affordable car system to become smart and ultimately transition into a 

self-driving car, or autonomous vehicle. 

The specific objectives of this research are: 

Specific Objective 1: Compare the performance of the RFID tag, proximity sensor, and camera 

readings that can simulate a LiDAR type sensor used for affordable vehicles.  

Task 1: Providing an effective demonstration of a low-cost AI-based sensor that 

can enable a used vehicle system to become smart and transition to self-driving.  
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Task 2: Understand and identify the factors that impact a used car in making it 

become a smart self-driving vehicle.  

 

Specific Objective 2: Develop and compare algorithms that use the dataset and integrate into 

older car data systems. 

Task 1: Learn---Identify what is coming towards the vehicle which is potentially 

hazardous/dangerous. In this objective, we want to minimize the objects/ 

destructions coming at the vehicle.  

Task 2: Optimize---Based on the available paths, the AI model will allow and 

give direction as to the path to take. 

Task 3: Execute---Override and give information to the vehicle to drive to 

location. 

Specific Objective 3: Perform an economic and disaster analysis.  

Task 1: Evaluate and understand what decisions will be made by industry, 

consumers and advocates to use these technologies and at what level of safety. 

Task 2: Engineering economics calculations and analysis will be performed using 

software to validate.  

Task 3: Analysis and calculations will be performed and software will be used to 

validate results 

Specific Objective 1: Compare the performance of the RFID tag, proximity sensor, and camera 

readings that can simulate a LiDAR type sensor used for affordable vehicles. 

We will perform a variance analysis for all three sensors by using regression analysis and design 

of experiments. The intent is to maximize the distance before the RFID tag, proximity sensor 



 28 

and/or camera gives a signal that is going off. Variance analysis will be used for all three 

sensors. Mean squared error formula as shown below.  

 

 

 

Specific Objective 2: Develop and compare algorithms that use the dataset and integrate into 

older car data systems. 

There are three AI components to the research: learn, optimize, and execute. For the AI 

component of learn, the machine learning algorithm will seek optimization. The model will be 

able to identify what is coming towards the vehicle that is potentially hazardous/dangerous as 

well as minimize the objects/destructions in the vicinity of the vehicle. The optimize component 

will use the data to evaluate the best available path to allow and give direction as to the path to 

be taken. Lastly, for the execution, we will integrate the algorithms for the vehicle to be able to 

drive.  
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Figure  3-4 Three-step process for algorithm 

Figure 3-4 shows the three AI components to the research.  
 
 

Specific Objective 3: Perform an economic and disaster analysis. 

We will perform calculations and analysis will be done; software will be used to validate. For 

the economic analysis, the future value formula as shown below will be used.  

 

 

 

ExecuteOptimizeLearn
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Figure  3-5: 3D Model of Vehicle. 

 
 

 
Figure  3-6: Pinout Diagram for Ultrasonic Sensor. 
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Figure  3-7: Connecting Ultrasonic Sensor with Arduino Microcontroller 

 
Figure 3-7 represents the pinout diagram of the connection of the ultrasonic sensor using 

the Arduino Microcontroller.  

 
 
 
 
 
 
 
 

 
 
 
 



 32 

 
Figure  3-8: Connecting Ultrasonic Sensor with Arduino Microcontroller with RFID Tag 

 
Figure 3-8 represents the pinout diagram of connecting the ultrasonic sensor with the Arduino 

Microcontroller with the RFID Tag.  

 

 
 
 
 
Figure  3-9: Connecting Ultrasonic Sensor with Arduino Microcontroller with RFID Tag and 
Camera Lens 
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Figure 3-9 represents the connection of the ultrasonic sensor with Arduino microcontroller with 

RFID Tag and Camera Lens.  

 

Figures 3-7, 3-8, and 3-9, represent the pinout diagram(s) of the connection of the ultrasonic sensor 

with the Arduino microcontroller with each of the elements: the RFID tag and the camera. 

 

 

Figure  3-10: Hardware connection of camera module 

 
Figure 3-10 represents the actual hardware connection of the camera module, Mini Module 

Camera Shield with OV2640. The challenge here was the setup which was tedious. 

 
 

3.7 AI Model Methodology 
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  Figure  3-11 Overview of Schematic 

 
Figure 3-11 represents the overview of the schematic for the vehicle. The road is assumed to be a 

two-lane road. The obstacle/object may be anything from another vehicle, tree, stone, and/or 

pedestrians.  
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Figure  3-12 Overview of Vehicle Scenario  

 
Figure 3-12 shows the overview of the vehicle scenario in a potential natural disaster situation. 

The vehicle will be equipped with a RFID tag, proximity sensor, and camera, so that the camera 

and proximity sensor will be synced to communicate the location of the vehicle.  
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Figure  3-13 Scenario 1 for Vehicle in Danger 

 
Figure 3-13 exhibits scenario 1 for vehicle in danger. The schematic shows the scenario that there 

is an obstacle in the vicinity to the left of the vehicle, leading the vehicle to make an efficient and 

safe right turn.   
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Figure  3-14 Scenario 2 for Vehicle in Danger 

 
Figure 3-14 illustrates scenario 2 for the vehicle in potential danger. In this case, the vehicle has 

detected an obstacle to its right, requiring the vehicle to make an efficient and quick decision to 

turn to the left.  

 
 

3.8 Equipment List 
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Table 3-1: List of equipment 

Name of 
Equipment 

Cost 

Arduino Mega 
Microcontroller 

$40.30 

DEYUE 3 Set of 
Solderless Prototype 
Breadboard 830 tie 
Points Breadboard 

$8.99 

MFRC522 RFID 
sensor and tags 

$10.00 

HC-SR04 ultrasonic 
distance sensor 

$8.29 

Jumper wires (Male to 
Male) 

$12.99 

Jumper wires (Male to 
Female) 

$13.59 

Comimark 2Pcs VGA 
OV7670 CMOS 
Camera Module Lens 
CMOS 640X480 
SCCB I2C Interface 
for Arduino 
 

$8.99 

Arducam Mini 
Module Camera 
Shield with OV2640 2 
Megapixels Lens 
Compatible with 
Arduino UNO 
Mega2560 Board and 
Raspberry Pi Pico 
 

$25.99 

4.7K ohm Resistor $5.99 

10K ohm Resistor $5.99 

Total $141.38 
 
 
Table 3-1 shown above is the list of equipment, which utilized for this research project. Before the 

equipment was finalized for the project, several factors were taken into consideration. Some of the 

factors taken into consideration included cost, feasibility, and the amount of time required for the 
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equipment to be implemented. In some cases, equipment was purchased, only to find out that it 

was not compatible with other equipment.  

3.9 Location of Experiments 
All testing and experiments were performed at the RFID, Artificial Intelligence, and Data Science 

Laboratories (RAID LABS) at the University of Texas at Arlington. Setup for testing was prepared 

one to two days prior to actual experiments. Each of the experiment setups took about an hour to 

set up. Actual experiments took about two hours, considering there were no issues during the 

testing process.  

3.10 Data Collection Phase 
The data collection for this research will be divided into three phases. The phases are the 

following:  

Phase one - Collect data from RFID, camera, and proximity sensor into a database and design an 

algorithm that takes that data and can optimize something that can be sent to a vehicle like a 

computer. 

Phase two - Optimizing the algorithm to make sure that it supports smart vehicle functions and 

objectives.  

Phase three - Testing the ability for the vehicle to be autonomous. 

 

3.11 Software Used 
The software used in this research study consists of the following: Python, MATLAB, and Arduino 

software. Python and MATLAB have been used for the coding of the artificial intelligence (AI) 

model, and the Arduino software has been used for the coding of the RFID tag, camera, and 

proximity sensor. Throughout this research study, the software caused roadblocks along the way. 

In such scenarios, it was required for the code to be debugged and/or altered so that the software 
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provided a correct and useful output. This was the case, especially with the accuracy of the 

detection for AI model and the Arduino software for the camera sensor module.  
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4. Results  

4.1 Preliminary Results for RFID Tag 
We have the output data for the ultrasonic sensor by itself with the timestamp of when the output 

was received.  

The output data from the ultrasonic sensor that is being stored in an excel database along with the 

timestamp of when that particular output was received from the ultrasonic sensor has been 

included. Table 4-1 represents the output from the code where we have implemented the counter 

to allow the ultrasonic sensor to run on its own for a couple of seconds. Table 4-2, on the other 

hand, shows us the output from the code where we receive the output until the time we keep 

scanning the RFID tag.  

Table 4-1: Sample Output Data for Ultrasonic Sensor with continuous scan of RFID tag 

TIME CH1 
12:41:28.39 UID tag: 3A 

EE 2C 3C 
12:41:28.44 Message: 

Ultrasonic 
sensor initiated 

12:41:28.45 Distance: 7 
12:41:28.47 UID tag : 

3A EE 2C 3C 
12:41:28.52 Message : 

Ultrasonic 
sensor initiated 

12:41:28.54 Distance: 8 
12:41:28.56 UID tag : 

3A EE 2C 3C 
12:41:28.59  

Ultrasonic 
sensor initiated 

12:41:28.61   
12:41:28.61 Distance: 8 
12:41:28.65 UID tag : 

3A EE 2C 3C 
12:41:28.68 Message : 

Ultrasonic 
sensor initiated 

12:41:28.69 Distance: 8 
12:41:28.72 UID tag : 

3A EE 2C 3C 



 42 

 
Table 4-2: Sample Output data with scan of RFID once and sensor readings 

12:38:22.68 Distance: 
6 

12:38:22.71 Ultrasonic 
sensor 

initiated 
12:38:22.72 Distance: 

6 
12:38:22.75 Ultrasonic 

sensor 
initiated 

12:38:22.77 Distance: 
6 

12:38:22.80 Ultrasonic 
sensor 

initiated 
12:38:22.82 Distance: 

6 
12:38:22.83 Ultrasonic 

sensor 
initiated 

12:38:22.85 Distance: 
7 

12:38:22.89 Ultrasonic 
sensor 

initiated 
12:38:22.90 Distance: 

7 
12:38:22.93 Ultrasonic 

sensor 
initiated 

12:38:22.94 Distance: 
6 

12:38:22.98 Ultrasonic 
sensor 

initiated 
12:38:23.00 Distance: 

7 
12:38:23.03 Ultrasonic 

sensor 
initiated 

12:38:23.04 Distance: 
8 

12:38:23.08 Ultrasonic 
sensor 

initiated 
12:38:23.09 Distance: 

9 
12:38:24.00 Distance: 

7 
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Figure  4-1 RFID tag scan once with continuous Ultrasonic readings 

 

Figure 4-1 represents the distance vs. time of the RFID tag scanned once while the ultrasonic 

sensor provides continuous readings for the timeframe.  
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Figure  4-2  RFID tag scanned continuous to give sensor readings. 

 
Figure 4-1 represents the distance vs. time of the RFID tag scanned once while the ultrasonic 

sensor provides continuous readings for the timeframe.  

 

Figures 4-1 and 4-2 shows the graphs that involve scanning the tag and ultrasonic sensor. In these 

graphs, we see that distance vs. time has performed differently with RFID with counter and the 

RFID without the counter. Figure 4-1 gives us the ultrasonic sensor readings when the RFID tag 

has been scanned once. On the contrary, Figure 4-2 gives us the ultrasonic readings when RFID 

tag is required to be scanned continuously.  During testing and trial run, there are outliers present 

in the graphs which can be taken as error. Figure 4-1 represents the distance vs. time of the RFID 

tag scanned once while the ultrasonic sensor provides continuous readings for the timeframe.  
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Table 4-3 Testing of RFID tag 
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Figure  4-3 Read Range vs. Distance 

 
Table 4-3 represents the output for the testing of the various RFID tag at different distances and 

locations. Figure 4-3 represents the read range vs. distance of the RFID tag tested at various 

distances. As shown in the graph, we can see that the 63 mils, or green line has performed the most 

optimal. During testing, the tags were tested at 3, 6, 9, 12, 15, 18 ft., etc., to measure the most 

optimal.  

As shown in Figure 4-3, the optimal tag was found to be the 63 mils tag. When testing to 

find the most optimal tag, the tag(s) were tested at 3, 6, … 33, with increments of 3 feet. 

Once the optimal tag was determined, the other tags were also tested starting from 1, 2, … 

33, with increments of one foot to note and compare the performance and read rate of the 

tag and the effects, so that a regression could be performed on the data. The testing for the 

optimal tag, 63 mils has been shown in Table 4-5 Optimal Tag Testing, as an example.   
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Figure  4-4 Image captured from camera module 

 

Figure 4-4 represents the real-time image captured from the camera module. This image, along 

with several other images were used to test the artificial intelligence model, the YOLOv4 algorithm 

for accuracy and precision. The results will later be discussed.  
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Table 4-4 shows the optimal tag testing (63mils) with the output results.  

Table 4-4 Optimal Tag Testing (63 mils) 

Distance Read Rate 
1 110 
2 112 
3 110 
4 116 
5 110 
6 110 
7 108 
8 110 
9 110 
10 100 
11 109 
12 95 
13 100 
14 103 
15 103 
16 110 
17 97 
18 97 
19 110 
20 110 
21 110 
22 104 
23 110 
24 110 
25 97 
26 107 
27 97 
28 90 
29 95 
30 86 
31 110 
32 110 
33 110 
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4.2 Regression Analysis  
A regression analysis is performed. The purpose of the regression analysis is to maximize distance 

before the RFID tag, proximity sensor and the camera goes off. The simulation is providing a 

visualization of the optimized regression model. The p-value will be used to determine the optimal 

distance. The RFID tag, proximity sensor, and camera were scanned into a database to see what 

timestamp will be given.  As mentioned earlier, there were three approaches analyzed for this 

research. For approach 1, the general formula for regression is stated below. 

𝑌 = 𝛽!+𝛽"𝑋"+𝛽#𝑋#+…. 𝛽$𝑋$ [General Form] 
 
For this regression analysis, two independent variables were used which include:  

X1 = distance 

X2= thickness 
 

Regress ŷ on X1, X2, to give the p-values and R-squared for independent variables.  

 

The result based on regression analysis of the RFID tags is as follows: 

 

𝑌 = 6.402+(−2.528)𝑋"+2.134𝑋# [Specific to this regression] 

 

Where: 

 

Y = Read Rate 

X1 = Distance 

X2 = Thickness of tag[mils] 
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𝛽0 = Intercept 

𝛽1= Regression value for Independent Variable 1[distance] 

𝛽2= Regression value for Independent Variable 2 [thickness] 

Similarly, for Approach 2, the general formula for regression has been stated below.  

𝑌 = 𝛽!+𝛽"𝑋"+𝛽#𝑋#+…. 𝛽$𝑋$ [General Form] 

The result based on regression analysis of the RFID tags is as follows: 

𝑌 = 35.695+(−1.155)𝑋"+0.498𝑋#	

Where: 
 

Y = Read Signal Strength (RSSI) 

X1 = Distance 

X2 = Range of tag 

𝛽0 = Intercept 

𝛽1= Regression value for Independent Variable 1[distance] 

𝛽2= Regression value for Independent Variable 2 [actual range] 

Since R-squared for Approach 2 of linear regression analysis was 0.472 or 47.2%, a nonlinear 

regression analysis was performed. A nonlinear regression analysis was conducted to predict the 

values of RSSI based on the experimental observations of the four RFID tags experimentally, three 

times each tested in the following form: 

𝑅𝑆𝑆𝐼 = 𝑋!"! . 𝑋#"" 
 

Where: 

RSSI = Read Signal Strength Intensity 

X1 = Distance 
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X2 = RFID Range 

G1 = Regression values for Independent Variable 1 [distance] 

G2 = Regression constant for Independent Variable 2 [range] 

In order to perform the regression analysis, the nonlinear form is first linearized by taking the 

natural logarithm of both sides of the equation: 

𝐿𝑁(𝑅𝑆𝑆𝐼) = 𝐿𝑁	(𝑋!
"! . 𝑋#"")  

 
𝐿𝑁	(𝑅𝑆𝑆𝐼) = 𝐺!	𝐿𝑁	(𝑋!) +	𝐺#	𝐿𝑁	(𝑋#)  
 
Thus, the regression analysis is now performed on the linearized form and the results is converted 

back to nonlinear form by taking the mathematical exponent of both sides of the equation: 

𝐸𝑋𝑃	[𝐿𝑁	(𝑅𝑆𝑆𝐼)] = 𝐸𝑋𝑃[𝐺"𝐿𝑁(𝑋") + 𝐺#𝐿𝑁	(𝑋#)] 
 

𝑅𝑆𝑆𝐼 = 𝐺!	?𝑋"%!@	(𝑋#%")  - General Form 
 

𝑅𝑆𝑆𝐼 = 3.288	?𝑋"&!."()@	(𝑋#!.#!*)  - Specific to this regression 
 
Where:  
 

G0=3.288 Regression constant obtained after regression analysis for non-zero intercept 

G1= -0.173 

G2 =0.208 

After the nonlinear regression analysis was performed for Approach 2, the R-squared gave a result 

of 0.585 or 58.5%.  

 

A third approach was taken for this research and the general formula for regression is stated below. 

𝑌 = 𝛽!+𝛽"𝑋"+𝛽#𝑋#+𝛽)𝑋) …. 𝛽$𝑋$ [General Form] 
 

For this regression analysis, three independent variables were used which include:  
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X1 = distance 

X2 = range 

X3 = thickness of tag 
 
The result based on regression analysis for Approach 3 is as follows:  

𝑌 = 27.257+(-1.206)𝑋"+0.235𝑋#+0.443𝑋) 

Where:  

Y= Read Signal Strength (RSSI) 

X1= distance 

X2= range of tag 

X3=thickness 

𝛽0= Intercept 

𝛽1= Regression value for Independent Variable 1[distance] 

𝛽2= Regression value for Independent Variable 2[actual range] 

	𝛽3= Regression value for Independent Variable 3 [thickness] 

With Approach 3 and a linear regression analysis, the R-squared gave a result of 0.582 or 58.2%. 

Next, a nonlinear regression approach was taken.  

𝑅𝑆𝑆𝐼 = 𝑋!"! . 𝑋#"" . 𝑋$"#  
 
Where: 
 

RSSI = Read Signal Strength Intensity 

X1 = Distance 

X2 = RFID Range 

X3= thickness 
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G1 = Regression value for Independent Variable 1 [distance] 

G2 = Regression value for Independent Variable 2 [range] 

G3=Regression value for Independent Variable 3 [thickness] 

 
To perform the regression analysis, the nonlinear form is first linearized by taking the natural 

logarithm of both sides of the equation: 

  
𝐿𝑁(𝑅𝑆𝑆𝐼) = 𝐿𝑁	(𝑋!

"! . 𝑋#"" . 𝑋$"#)  
 
𝐿𝑁	(𝑅𝑆𝑆𝐼) = 𝐺!	𝐿𝑁	(𝑋!) +	𝐺#	𝐿𝑁	(𝑋#) +𝐺$𝐿𝑁	(𝑋$)  
 
Next, the regression analysis is now performed on the linearized form and the results is converted 

back to nonlinear form by taking the mathematical exponent of both sides of the equation: 

 
𝐸𝑋𝑃	[𝐿𝑁	(𝑅𝑆𝑆𝐼)] = 𝐸𝑋𝑃[𝐺"𝐿𝑁(𝑋") + 𝐺#𝐿𝑁	(𝑋#) +𝐺)𝐿𝑁	(𝑋))] 
 

After performing the regression analysis for the case under consideration the following equation 

is obtained: 

 
𝑅𝑆𝑆𝐼 = 𝐺!	?𝑋"%!@	(𝑋#%")	(𝑋)%#)    -  General Form 
 
𝑅𝑆𝑆𝐼 = 2.569	?𝑋"&!."(*@	(𝑋#!.!()) (𝑋)!.)#*)   - Specific to this regression 
 
Where:  
 

G0=2.567 Regression constant obtained after regression analysis for non-zero intercept 

G1=-0.178 

G2 =0.073 

G3 =0.328 
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With the nonlinear regression analysis for Approach 3, the R-squared improved giving a result of 

0.706 or 70.6%.  

These results confirm that as each approach was altered, there was improvement to the results of 

the research study.  
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4.3 Read Rate vs. Distance for Tags 
 
4.3.1 Approach 1 Read Rate vs. Distance Plots 
 
 
 

 
Figure  4-5 Read Rate vs Distance for RFID Tags  

 

Figure 4-5 represents the read rate vs distance for RFID tags with 31, 41, 62, and 63 mils, tested 

at 1 ft to 33 ft with increments of 1ft. As demonstrated in the graph, the 63 mils tag performed the 

most optimal. This confirms the previous test which was experimented by testing the tags at 3ft 

increments, up to 33 ft.  
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Figure  4-6 Read Rate vs. Distance 63mils 

 
Figure 4-6 represents the read rate vs. distance for the 63 mils tag when it was tested at 1, 2, …33 

by increments of one foot up to 33 feet.  
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Figure  4-7  Read Rate vs. Distance for 31 mils Tag 

Figure 4-7 represents the read rate vs. distance for the 31mils tag when it was tested at 1, 2, … 33 

by increments of one foot up to 33 feet. The graph represents a downward trend as the distance is 

increased.  
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Figure  4-8 Read Rate vs. Distance for 41 mils Tag 

Figure 4-8 represents the read rate vs. distance for the 41mils tag when it was tested at 1, 2, … 33 

by increments of one foot up to 33 feet.  

 

 

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35

Re
ad

 R
at

e(
re

ad
s/

se
co

nd
s)

Distance (ft)

Read Rate vs. Distance for 41mils 



 59 

 

 
 

 
Figure  4-9  Read Rate vs. Distance for 62 mils Tag 

 
Figure 4-9 represents the read rate vs. distance for the 62 mils tag when it was tested at 1, 2, … 33 

by increments of one foot up to 33 feet.  

 

The tags tested at each foot interval was performed to compare the trends of the data to the data of 

the tags which were initially tested at three feet intervals up to 33 feet. It has been determined that 

overall, the trends followed the same pattern between both datasets and output.  This solidifies the 

initial findings that the optimal tag found was indeed the 63 mils RFID tag. A regression analysis 

was not only performed for the optimal tag, but also for the additional tags as well, of 31, 41, 62 

mils.  
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4.4 Normal Probability Plots for RFID Tags 

 
4.4.1 Regression Results (NPP Plots)  
 

 

Figure  4-10 NPP for Optimal RFID Tag (63mils) 

 
Figure 4-10 represents the NPP plot for the optimal RFID tag (63 mils) which was determined by 

the testing performed. From the figure, it is shown that that normality is satisfied as confirming 

that the 63 mils tag has performed optimally.  
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4.5 Residual Plots  

4.5.1 Residual Plots Results 
 

 
 
Figure  4-11 Residuals vs. Fitted for Optimal Tag(63mils) 

 
Figure 4-11 shows the residuals vs. fitted for the optimal tag (63 mils). The graph illustrates that 

there is curvature present, which means that the constant variance has been violated and a 

transformation for the data is required.  
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4.6 Predicted Y vs. Actual Y Regression Approach 1  
4.6.1 Approach 1 Results 
 

 

Figure  4-12 Predicted Y (Read Rate) vs. Actual Y (Read Rate) for 63 mils Tag 

Figure 4-12 shows the Predicted Y vs. Actual Y for the 63 mils tag, or optimal tag. From the 

representation, we can see that the data points are between +/- 20% error. The yellow and gray 

lines in the graph represent the error bands, while the blue demonstrates the 45-degrees line which 

passes through the data points, representing a one-to-one relationship between the actual and 

predicted values. It can be noticed that in this dataset, there are outliers, which can be due to human 

error during experimentation. Also, since this tag was found to be the optimal tag, it has the higher 

accuracy.  
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Figure  4-13 Predicted Y (Read Rate) vs. Actual Y (Read Rate) for 31 mils Tag 

 

Figure 4-13 illustrates the Predicted Y vs. Actual Y for the 31 mils Tag. In this figure, we can see 

several outliers which is present in the data. The majority of the data lies outside the error bands, 

although there are data points which are on the error band, as well. These outliers could be due to 

a defective RFID tag and/or human error. This error band shown is +/- 20%. It can be said that the 

readings of this tag had several errors which led to this result.  
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Figure  4-14 Predicted Y (Read Rate) vs. Actual Y (Read Rate) for 41 mils Tag 

In Figure 4-14, the Predicted Y (Read Rate) vs. Actual Y (Read Rate) for the 41 mils Tag is 

represented. The points lie within the error band, however, there are outliers due to human error.  
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Figure  4-15 Predicted Y (Read Rate) vs. Actual Y (Read Rate) for 62 mils Tag 

Figure 4-15 represents the Predicted Y (Read Rate) vs. Actual Y (Read Rate) for the 62 mils Tag. 

The majority of the points are within the bounds of the error band. 

 

Comparing Figures 4-12-4-15 it can be seen that the best representation of the tags for the predicted 

vs actual is the 63 mils tag, which has been found to be the optimal tag.  
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Figure  4-16 Repeatability Test for RSSI vs Distance for Range 12’ 

 
Figure 4-16 represents the repeatability test for RSSI vs Distance for RFID Tag with range of 12 

feet, demonstrating the three trial runs that were conducted during the experiment. As seen in the 

graph, the results, or data points of the three tests are in proximity of one another. Based on the 

given RFID tag read range of 12 feet, during the experiment, the tag was only able to detect 9 feet.  
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Figure  4-17 Repeatability Test for RSSI vs Distance for Range 13' 

 
Figure 4-17 represents the repeatability test for RSSI vs Distance for RFID Tag with range of 13 

feet. For this experiment, the range which the tag was able to detect went up to 12 feet. The actual 

read range of this tag was closer to the given read range, provided by specifications. As illustrated 

in the graph, the points are in proximity of each other, which results in a higher accuracy and 

precision 
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Figure  4-18 Repeatability Test for RSSI vs Distance for Range 14’ 

 

Figure 4-18 represents the repeatability test for RSSI vs Distance for RFID tag for range of 14 feet. 

With this specific RFID tag, the read range provided was up to 14 feet, whereas the actual read 

range, based on our experiment was no more than 12 feet. For this experiment, we see that there 

is variation between the three experiment runs.  
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Figure  4-19 Repeatability Test RSSI vs Distance for Range 27’ 

 
Figure 4-19 represents the repeatability test for RSSI vs Distance for RFID tag for range of 27 feet. 

In regards to the provided read range and capability of detection, it was given up to 27 feet, 

however, during experimental process, the maximum that the tag was able to detect up to 17 feet.  
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Figure  4-20 RSSI vs Distance for RFID Tags 

 
 
Figure 4-20 represents the RSSI vs Distance for the RFID tags which were tested for the averages 

of the RFID tags. In this graph, the averages of each RFID tag specification for the ranges of 12, 

13, 14 and 27 feet were used to show the comparative results. The average of the three experiment 

trial runs for each tag was taken, then plotted against distance to show how close the readings were 

between the various RFID tags. As seen and demonstrated in the graph, the points are close in 

proximity, exhibiting that even though, there are some slight variation and error, it is not too 

significant. The results above that the RFID tag with the range of 27 ft has the capability of reading 

longest distance of 17 ft. In addition, this tag has the capability of reading the maximum read signal 

at 1ft. which is equal to 61 and 2 ft which is equal to 58. It should be noticed that the experimental 

tests follow the expectations of different RFID tag specification ranges. For example, at 2 feet, the 

RSSI decreases for tag specifications of 27ft, 13ft, 12ft and 14ft range, with the exception of the 
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variation between the 13 feet and 14 feet which is due to closeness in their specifications. However, 

in general, as the tag range increases, the RSSI value increases. Thus, it is recommended that for 

these series of RFID tag type and specifications, the 27 feet be employed which is capable of 

reading up to 17 feet.  
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4.7 Predicted Y vs Actual Y Linear Regression Approach 2 
 

 
Figure  4-21 Predicted Y vs Actual Y for Range of 13 ft. 

 
Figure 4-21 shows the predicted values of RSSI vs the experimentally observed values(actual) of 

RSSI for RFID with Range of 13 ft. A 45-degree line is drawn which shows a one-to-one 

relationship between the predicted value vs the actual value of RSSI for RFID with a range of 13 

ft. In addition, a +/- 20% line is drawn to identify the error bands for the regression analysis for 

the predicted value of RSSI. As shown in the figure, the majority of the points are within +/-20% 

with several predicted values on the 45-degree line which means the regression analysis is capable 

of predicting the RSSI values accurately while being in the error band. It should be noted that only 

two of the predicted values are outside the -20% band, but very close to the band.  
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Figure  4-22 Predicted Y vs Actual Y for Range with 12’ 

Figure 4-22 shows the predicted values of RSSI vs the experimentally observed values(actual) of 

RSSI for RFID with Range of 12 ft. A 45-degree line is drawn which shows a one-to-one 

relationship between the predicted value vs the actual value of RSSI for RFID with a range of 12 

ft. In addition, a +/- 20% line is drawn to identify the error bands for the regression analysis for 

the predicted value of RSSI. As shown in the figure, the majority of the points are within +/-20% 

with several predicted values on the 45-degree line which means the regression analysis is capable 

of predicting the RSSI values accurately while being in the error band. It should be noted that only 

four of the predicted values are outside the +20% band, but very close to the band.  
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Figure  4-23 Predicted Y vs Actual Y for RFID with Range of 14 ft.  

 
Figure 4-23 shows the predicted values of RSSI vs the experimentally observed values(actual) of 

RSSI for RFID with Range of 14 ft. A 45-degree line is drawn which shows a one-to-one 

relationship between the predicted value vs the actual value of RSSI for RFID with a range of 14 

ft. In addition, a +/- 20% line is drawn to identify the error bands for the regression analysis for 

the predicted value of RSSI. As shown in the figure, the majority of the points are within +/-20% 

with several predicted values on the 45-degree line which means the regression analysis is capable 

of predicting the RSSI values accurately while being in the error band. It should be noted that only 

two of the predicted values are outside the +20% band, but very close to the band.  
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Figure  4-24 Predicted Y vs Actual Y for RFID with Range of 27’ 

 
Figure 4-24 shows the predicted values of RSSI vs the experimentally observed values(actual) of 

RSSI for RFID with Range of 27 ft. A 45-degree line is drawn which shows a one-to-one 

relationship between the predicted value vs the actual value of RSSI for RFID with a range of 27 

ft. In addition, a +/- 20% line is drawn to identify the error bands for the regression analysis for 

the predicted value of RSSI. As shown in the figure, the majority of the points are within +/-20% 

with several predicted values on the 45-degree line which means the regression analysis is capable 

of predicting the RSSI values accurately while being in the error band. It should be noted that only 

nine of the predicted values are outside the +20% band and one point below the -20% error band, 

but very close to the line. It should be noted that for the RFID tag with the range of 27 ft, more 

data points were obtained as compared with those for ranges of 12, 13, and 14 ft. Therefore, the 

number of data points outside of 20% is more than that for tags with other ranges. However, 

interestingly, the majority of the points are on or very close to the 45-degree line representing 
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minimum error between the predicted and actual values of RSSI for RFID tag tested with the range 

of 27 ft.  
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4.8 Predicted Y vs Actual Y for Nonlinear Regression Approach 2 
 
4.8.1 Plots  
 
 

 
Figure  4-25 Predicted Y vs Actual Y for Range of 12 ft.  

 

Figure 4-25 represents the predicted Y vs Actual Y for Range of 12 ft after the nonlinear regression 

analysis was performed. A 45-degree line is drawn which shows a one-to-one relationship between 

the predicted value vs the actual value of RSSI for RFID with a range of 12 ft. In addition, +/- 20% 

line is drawn to identify the error bands for the regression analysis for the predicted value of RSSI. 

As shown in the figure, all of the predicted values fall within the +/-20%, except one point outside 

the band. The values which lie on the 45-degree line means the regression analysis is capable of 

predicting the RSSI values accurately while being in the error band, except one point being outside 
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the error band. This is an improvement when using nonlinear regression as compared to linear 

regression. 

 

 
Figure  4-26 Predicted Y vs Actual Y for Range of 13 ft 

 
Figure 4-26 represents the predicted Y vs Actual Y for Range of 13 ft after the nonlinear regression 

analysis was performed. A 45-degree line is drawn which shows a one-to-one relationship between 

the predicted value vs the actual value of RSSI for RFID with a range of 13 ft. In addition, a +/- 

20% line is drawn to identify the error bands for the regression analysis for the predicted value of 

RSSI. As shown in the figure, all of the predicted values fall within the +/-20% error band which 

is a significant improvement after performing a nonlinear regression analysis. Indeed, most 

predicted values are close to the 45-degree line which confirms a one-to-one relationship between 

the values.  
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Figure  4-27 Predicted Y vs Actual Y for Range of 14 ft. 

 

Figure 4-27 represents the predicted Y vs actual Y for range of 14 ft. All of the predicted points 

are within the error band of +/-20%, with multiple points on the 45-degree line. This again shows 

a significant improvement by using a nonlinear regression approach as compared with linear 

regression.  
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Figure  4-28 Predicted Y vs Actual Y for Range of 27 ft.  

 
Figure 4-28 represents the predicted Y vs. actual Y for range of 27 ft. When using nonlinear 

regression approach, the results for RFID tag with a range of 27 feet has significantly improved 

by having all the predicted values of RSSI to be within the bands except three points. The same 

results for linear regression showed nine points being outside the error band. Indeed, there are 

multiple predicted values which are on the 45-degree line; this was not the case when linear 

regression was performed.  
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4.9 Predicted Y vs Actual Y Linear Regression Approach 3 
 
 

 
Figure  4-29 Predicted Y vs Actual Y for RFID Tag with Range of 12ft and thickness of 1.18mm 

 
Figure 4-29 represents the predicted Y vs Actual Y for RFID Tag with range of 12ft and a thickness 

of 1.18mm. The blue line represents a 45-degree which is a one-to-one relationship between the 

predicted values and the actual values of RSSI for RFID tag with a range of 12 ft and a thickness 

of 1.18mm. Additionally, a +/-15% line is drawn to identify the error bands for the regression 

analysis for the predicted value of RSSI. As shown in the graph, all of the predicted points, except 

two points are within the +/-15% error band, resulting in an improvement, as compared to the 

previous approaches. It should be noted that the two predicted values which are outside the +15% 

band are very close to the band.  
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Figure  4-30 Predicted Y vs Actual Y for RFID Tag with Range of 13 ft and thickness of 1.27mm 

 
Figure 4-30 represents the predicted Y vs Actual Y for RFID Tag with range of 13ft and a thickness 

of 1.27mm. The blue line represents a 45-degree which is a one-to-one relationship between the 

predicted values and the actual values of RSSI for RFID tag with a range of 13 ft and a thickness 

of 1.27 mm. In addition, a +/-15% line is shown to identify the error bands for the analysis for the 

predicted value of RSSI. As shown in the graph, all of the predicted points, except three points are 

within the +/-15% error band. It should be noted that the three data points which are outside the 

+/-15% band are very close to the band.  
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Figure  4-31 Predicted Y vs Actual Y for RFID Tag with Range of 14’ and thickness of 1.55mm 

 
 
Figure 4-31 represents the predicted Y vs Actual Y for RFID Tag with range of 14ft and a thickness 

of 1.55mm. A blue is drawn to represent the 45-degree, and a one-to-one relationship between the 

predicted values and the actual values of RSSI for RFID tag with a range of 14 ft and a thickness 

of 1.55 mm. In addition, the yellow and gray lines are drawn to show +/-15% error bands for the 

analysis for the predicted value of RSSI. It should be noted that all the predicted values except two 

points lie within the +15% band. This has shown an improvement to the results, as compared to 

the previous approaches.  
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Figure  4-32 Predicted Y vs Actual Y for RFID Range of 27’ and thickness of 1.97mm 

 
Figure 4-32 represents the predicted Y vs Actual Y for RFID Tag with range of 27 ft and a 

thickness of 1.97mm. A one-to-one relationship is demonstrated by the blue line, between the 

predicted values and the actual values of RSSI for RFID tag with a range of 27 ft and a thickness 

of 1.97 mm. The +/-15% error bands for the analysis of the predicted value of RSSI are also 

represented in the figure. It can be that the majority of the predicted values fall within the error 

bands.  
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Figure  4-33 Predicted Y vs Actual Y for RFID Range of 12’ and thickness of 1.18mm 

 

Figure 4-33 represents the predicted Y vs Actual Y for RFID Tag Range of 12ft and a thickness 

of 1.18mm after performing the nonlinear regression analysis. A 45-degree line is drawn which 

shows a one-to-one relationship between the predicted value vs the actual value of RSSI for RFID 

with a range of 12 ft. In addition, a +/-15% line is drawn to identify the error bands for the 

regression analysis for the predicted value of RSSI. As demonstrated in the figure, all of the 

predicted values, except one fall within the +/-15% error band which is a significant improvement 

after performing a nonlinear regression analysis. Indeed, most predicted values are close to the 45-

degree line which confirms a one-to-one relationship between the values.  
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Figure  4-34 Predicted Y vs Actual Y for RFID Tag with Range of 13 ft and thickness of 1.27mm 

 
Figure 4-34 represents the predicted Y vs actual Y for RFID Tag with Range of 13 ft and a 

thickness of 1.27mm after performing a nonlinear regression analysis. The blue line drawn is 

illustrated to show the 45-degree, showing a one-to-one relationship between the predicted and 

actual values of the RSSI for the tag with a range of 13 ft and thickness of 1.27mm. Furthermore, 

error bands of +/-15% is drawn for the analysis for the predicted value of RSSI.  As demonstrated 

in the figure, all of the predicted values lie within the +/-15% error band which is a substantial 

improvement after performing a nonlinear regression analysis. Indeed, all of the predicted values 

are close to the 45-degree line which confirms a one-to-one relationship between the values.  
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Figure  4-35 Predicted Y vs Actual Y for RFID Tag with Range of 14 ft and thickness of 1.55mm 

 
 
Figure 4-35 represents the predicted Y vs actual Y for RFID Tag with Range of 14 ft and a 

thickness of 1.55mm after nonlinear regression analysis. The 45-degree line shows a one-to-one 

relationship between the predicted vs actual values of the RSSI for the RFID with a range of 14 ft 

and a thickness of 1.55mm. The error bands of +/-15% are drawn, represented by the yellow and 

gray lines for the predicted value of RSSI. It should be noted from the figure that all of the values 

are within the bands which shows a significant improvement, as compared Figure 4-37, showing 

two points being outside the error band. The predicted values are close to the 45-degree line, 

confirming a one-to-one relationship between the values.  
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Figure  4-36 Predicted Y vs Actual Y for RFID Tag with Range of 27 ft and thickness of 1.97mm 

 

Figure 4-36 represents the predicted Y vs actual Y for RFID Tag with Range of 27 ft and thickness 

of 1.97mm after nonlinear regression analysis. As represented in the figure, the number of 

predicted points outside of the +/-15% error bands have decreased after performing a nonlinear 

regression analysis approach. The majority of the values are very close to the 45-degree line which 

shows a one-to-one relationship. This is an improvement from the results provided in Figure 4-38.  
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4.11 Accuracy and results of AI model 
 

 
Figure  4-37 Flowchart of AI Model for Optimized Route 

 
Figure 4-37 represents the flowchart of the AI Model utilized for the vehicle when in a disastrous 

situation, the vehicle has two situations, requiring a decision to be made to maneuver the current 

scenario. For example, if there is an obstacle or object to the left of vehicle, the vehicle will turn 

right, and vice versa.  
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Figure  4-38 Object Detection of Yolov4 Model Run 1 

 
Figure 4-38 represents the object detection of Yolov4 Model Run 1. In the figure, it is shown that 

the accuracy of the model is above 70%. For the detection with accuracy of 47%, one of the 

possibilities for the lower accuracy and precision rate is the vision range of the camera.  
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 Figure  4-39 Object Detection of Yolov4 Model Run 2  

 
Figure 4-39 represents the object detection of Yolov4 Model Run 2. The object detection accuracy 

rate is at a much higher percentage, as shown in the figure. In the figure, it is shown that the model 

has detected car and trucks at a level of above 70% with most of the detection above 80%.  
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Figure  4-40 Object Detection of Yolov4 Model Run 3 

 
 
Figure 4-40 represents the object detection of Yolov4 Model Run 3. The object detection accuracy 

are at the following levels: 0.93, 0.94, 0.75, and 0.42; as shown in the figure. The car which is 

detected at 0.47, or 47% is lower as compared to the others. One possibility is the vision range of 

the camera.  
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Figure  4-41 Object Detection of Yolov4 Model Run 4 

 
 
Figure 4-41 represents the object detection of Yolov4 Model Run 4. In the figure, it is shown that 

the detection is mostly at levels above 0.75, or 75%. It should be noted there is fog and light rain, 

but the detection of the objects is accurately detecting with high precision. It is seen from the figure 

that the detection of some objects are at levels of 0.30, 0.32, and 0.67. One possibility of this is the 

vision range of the camera as well as the inclement weather conditions.  

 

4.12 Economic Analysis  
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Figure  4-42 Depreciation using Sum of Years 

 
 
Figure 4-42 represents the depreciation over time using the sum of years method for the tesla and 

the van. From the figure, the depreciation rate of the tesla is significantly higher than the 

depreciation rate of the van and this is because of the higher purchase value of the tesla as 

compared to the van.  
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Figure  4-43 Depreciation using Straight Line 

 

Figure 4-43 represents the depreciation over time using the straight-line method for both the tesla 

and the van. In the figure, it is represented that the tesla depreciates at a higher rate as compared 

to the van because of the initial value of both vehicles.  

 

The depreciation has been considered using two different methods: the sum of years and straight-

line method. For the straight-line method, it considers a constant depreciation rate over the 

service life of the asset. On the other hand, the sum of years method is used to accelerate the 

depreciation rate for the first couple of years which is more reliable and accurate. It should be 

that the sum of years method does not depreciate at a constant rate; therefore, it is significantly 

more accurate.  
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Figure  4-44 Cash Flow Diagram for Tesla  

 
Figure 4-44 represents the cash flow diagram for the Tesla showing the depreciation over a 10-

year period using the straight-line method.  

 
 

 
Figure  4-45 Cash Flow Diagram for Van 

 
Figure 4-45 represents the cash flow diagram for the van demonstrating the depreciation over a 

10-year period using the straight-line method.  
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An economic analysis was performed using future value of a Tesla and a van over a 10-year period. 

Table 4-5 represents the economic analysis comparison of the future value of Tesla and the van 

over a 10-year period. 

 
Table 4-5 Economic Analysis for Future Value 

 
 

 
 
 

 
 
  

 Tesla  Van 

Future Value Future Value after 10 years: 
$88,814.65 
Interest rate 4% 
P=$60,000 
 

Future Value after 10 years: 
$29,246.46 
Interest rate 4% 
P=$25,000 
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5. Conclusions and Discussion 
5.1 Conclusion 

This research study titled, “Affordable Autonomous Vehicles for Deployment after Disastrous 

Events” is to use artificial intelligence and machine learning so that autonomous vehicles find a 

safe and efficient way to help those who are stranded during disastrous events and emergency 

situations. With self-driving vehicles becoming more and more common every day as the 

technology has been advancing, people are still reluctant to adapt to this new technology, for some 

it may be cost while for others it may be that they are not quite ready to trust these new technologies 

as it is still in a relatively early phase. The long-term goal of this research to be addressed in this 

study is if a low-cost AI-based sensor be retrofitted to make an affordable car self-driving cost 

effective. Our long-term research goal is to investigate AI driven low-cost sensors that can 

facilitate automated systems effectively as well as being affordable. The research objective is to 

provide an effective demonstration of a low-cost AI-based sensor that can enable an affordable car 

system to become smart and ultimately transition into a self-driving car, or autonomous vehicle. 

This research seeks to leverage affordable sensors, artificial intelligence, and machine learning 

to develop a smart car kit that can be retrofitted to any type of vehicle to make it smart. 

Approach 3 (Nonlinear) with range of 27 ft and a thickness of 1.97mm performed the best. 

Nonlinear Regression showed improved results over linear regression for all cases. The 

nonlinear regression with three independent variables showed the best correlated between 

predicted and experimental results for RFID tags. In addition, the nonlinear Regression with 3 

independent variables yielded to the maximum error band of +/-15%. The AI model detects the 

object and gives the direction for the vehicle to turn left, right, or stop, according to the situation. 

Lastly, the current AI model is in detection of above 70%.  
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5.2 Findings and Recommendations 
 

The result of this study is promising. It is recommended that major car manufacturers testing and 

employing the concept developed in this research. Second, it is also recommended that additional 

sensor technology, such as LiDAR and laser are also used for multiple verification of the result of 

the proximity sensor. The current AI model accuracy is in excess of 70%; therefore, it is 

recommended that the AI model be further refined to extend the level of accuracy.  

 
 

5.3 Contributions to body of knowledge and Gantt chart 
 

Table 5-1: Contributions to body of knowledge 

Course Name Application Professor 

IE 5301: Operations 
Research/Manufacturing 

Using Operations Research 
techniques and their 
application to decision 
problems is essential for this 
project. 

Dr. Edmund Prater and Dr. 
Emma Yang 

IE IE 5318: Advanced 
Regression Analysis 
 

A regression analysis will be 
performed using statistical 
concepts and analysis. 

Dr. Emma Yang 

IE 6308: Design of 
Experiments 

Understanding the topics in 
design of experiments is vital 
for this project. Analysis of 
variance and designs will be 
used throughout the duration 
of this project. 
 

Dr. Erick C. Jones, Sr.  

IE 6318: Data Mining and 
Analytics 

Understanding the algorithms 
discussed in Data mining is 
important as used for the 
optimization of the path 
planning. 
 

Dr. Shouyi Wang 

IE 5304: Advanced 
Engineering Economy 

Understanding the topics in 
engineering economy is 
essential for this research. 
Benefit-cost analysis and 
improving profit and revenue 
will be vital for this project. 

Dr. Erick C. Jones, Sr.  
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Table 5-2: Gantt chart 

 
 

5.4 Limitations 
The scope of this research is at the following forefront: the multi-sensor device use are limited to 

RFID tag, camera, and proximity sensors. The measurement limitation for RFID tag was at every 

three feet increments.  The measurement for the ultrasonic sensor was at 10 centimeters. A car 

bumper was used to accurately represent the actual vehicle moving towards an adjacent object 

and/or vehicle. The measurement for the RFID tags was at the following ranges: 12, 13, 14, and 

27 feet. The artificial intelligence is developed for predictions based on the aforementioned 

limitations.  

5.5 Future Work 
 

This research study consisted of three objectives. In the future scope of this research, the artificial 

intelligence model will be improved so that it will have the capability to recognize other smaller 

objects with a higher precision and accuracy. Also, the vehicle will be at a level of autonomous so 

that during disastrous events, the vehicle will be able to rescue those who are stranded in 

emergency situations. The self-driving vehicle AI model will communicate with GPS for improved 

accuracy. A GPS system and self-driving vehicle algorithm will be synced and communicate so 
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that the vehicle will have a direction as to which path it needs to take, provided more obstacles in 

its way. This concept can not only be used for commercial vehicles, but also for emergency 

vehicles such as: police, ambulances, and firetrucks.  It is recommended that the result of this study 

be used on an actual vehicle in motion on larger research funded by major car manufacturers and/or 

National Science Foundation.  

 

 

 

 

Appendix A(Tables) 

A.1 Output Data Tables for RFID Tags Approach 1 
Output Data for 31mils 
 
 

Distance Read Rate 
1 102 
2 100 
3 100 
4 90 
5 85 
6 84 
7 80 
8 78 
9 77 
10 70 
11 59 
12 59 
13 53 
14 51 
15 49 
16 40 
17 30 
18 0 
19 0 



 102 

20 0 
21 0 
22 0 
23 0 
24 0 
25 0 
26 0 
27 0 
28 0 
29 0 
30 0 
31 0 
32 0 
33 0 

 
 

 

Output Data for 41mils 
Distance Read Rate 
1 110 
2 110 
3 108 
4 100 
5 97 
6 95 
7 91 
8 90 
9 90 
10 85 
11 81 
12 81 
13 35 
14 26 
15 26 
16 24 
17 22 
18 22 
19 19 
20 15 
21 0 
22 0 
23 0 
24 0 
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25 0 
26 0 
27 0 
28 0 
29 0 
30 0 
31 0 
32 0 
33 0 

 

 

 

 

Output Data for 62 mils 
 

Distance Read Rate 
1 108 
2 109 
3 109 
4 109 
5 102 
6 104 
7 108 
8 109 
9 109 
10 110 
11 97 
12 94 
13 94 
14 87 
15 85 
16 85 
17 104 
18 104 
19 108 
20 110 
21 109 
22 110 
23 108 



 104 

24 109 
25 109 
26 89 
27 88 
28 88 
29 60 
30 43 
31 35 
32 30 
33 0 

 

 

 

 

Output Data for 72 mils 
Distance Read Rate 
1 108 
2 108 
3 108 
4 100 
5 99 
6 99 
7 107 
8 110 
9 108 
10 108 
11 75 
12 62 
13 75 
14 78 
15 78 
16 72 
17 78 
18 70 
19 96 
20 95 
21 96 
22 70 
23 78 
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24 68 
25 74 
26 60 
27 62 
28 30 
29 0 
30 0 
31 0 
32 0 
33 0 

 

 

A.2 Output Data Tables for RFID Tags Approach 2 

 

Appendix B (AI Codes) 

B.1 Object Detection Code 
 

B.2 Route Code 
 
class AutonomousCar: 
    def __init__(self,  
                 rfi_read_left,  
                 object_detect_left,  
                 approx_sensor_left,  
                 rfi_read_right,  
                 approx_sensor_right,  
                 speed_sensor): 
       
    self.rfi_read_left = rfi_read_left 
    self.object_detect_left = object_detect_left 
    self.approx_sensor_left = approx_sensor_left 
    self.rfi_read_right = rfi_read_right 
    self.approx_sensor_right = approx_sensor_right 
    self.speed_sensor = speed_sensor 
    self.object_left_status = False 
    self.object_right_status = False 
    self.car_status = None 
 
 
    def get_rfi_read_left(self): 
        return self.rfi_read_left 
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    def get_object_detect_left(self): 
        return self.object_detect_left 
 
    def get_approx_sensor_left(self): 
        return self.approx_sensor_left 
 
    def get_rfi_read_right(self): 
        return self.rfi_read_right 
 
    def get_object_detect_right(self): 
        return self.object_detect_right 
 
    def get_approx_sensor_right(self): 
        return self.approx_sensor_right 
 
    def get_speed_sensor(self): 
        return self.__speed_sensor 
       
    def action(self): 
        if self.speed_sensor > 0: 
          if self.object_detect_left in ['car', 'truck', 'bike', 
'pedestrain']: 
            self.object_left_status = True 
          if self.object_detect_right in ['car', 'truck', 'bike', 
'pedestrain']: 
            self.object_right_status = True 
           
          if self.approx_sensor_left < 10 and self.rfi_read_left < 18 and 
self.object_left_status: 
            if self.approx_sensor_right > 10 or not 
self.object_right_status or self.rfi_read_left > 18: 
              car_status = 'autonomous car will turn right' 
              return self.car_status 
            else: 
              self.car_status = 'autonomous car will continue straight' 
              return self.car_status 
 
          elif: 
            if self.approx_sensor_right < 10 and self.rfi_read_right < 18 
and self.object_right_status: 
              self.car_status = 'autonomous car will turn left' 
              return self.car_status 
          else: 
              self.car_status = 'autonomous car will continue straight' 
              return self.car_status 
        else: 
          self.car_status = 'autonomous car is stopped' 
         
        return self.car_status 
 
def main(): 
    #API rfi sensor to get rfi data from left side of the car 
    rfi_read_left = rfi_read_left() 
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    #Object detection using Yolov5 frome left camera 
    object_detect_left = object_detect_left() 
    #API aproximately left sensor 
    approx_sensor_left = approx_sensor_left() 
    #API rfi sensor to get rfi data from right side of the car 
    rfi_read_right = rfi_read_right() 
    #Object detection using Yolov5 frome right camera 
    object_detect_right = object_detect_right() 
    #API aproximately right sensor 
    approx_sensor_right = approx_sensor_right() 
    #API autonomous car speed 
    speed_sensor = speed_sensor() 
 
    MyAuto = AutonomousCar(rfi_read_left,  
                          object_detect_left,  
                          approx_sensor_left,  
                          rfi_read_right,  
                          approx_sensor_right,  
                          speed_sensor) 
 
    #show status/action of autonomous car 
    MyAuto.action() 
 
#main function 
main() 
 

 

 

Appendix C (RFID tag, Camera, and Sensor Codes) 

C.1 RFID tag code: 
#include <SPI.h> 

#include <MFRC522.h> 

  

#define SS_PIN 53 

#define RST_PIN 5 

#define echoPin 10  

#define trigPin 9  
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long duration; // variable for the duration of sound wave travel 

long distance; // variable for the distance measurement 

 

MFRC522 mfrc522(SS_PIN, RST_PIN);   // Create MFRC522 instance. 

// White tag 3A EE 2C 3C 

//Blue tag  47 0F 5E 2D 

void setup()  

{ 

 

  pinMode(trigPin, OUTPUT); // Sets the trigPin as an OUTPUT 

  pinMode(echoPin, INPUT); // Sets the echoPin as an INPUT 

 

   

  Serial.begin(9600);   // Initiate a serial communication 

  SPI.begin();      // Initiate  SPI bus 

  mfrc522.PCD_Init();   // Initiate MFRC522 

  Serial.println("Approximate your card to the reader..."); 

  Serial.println(); 

  Serial.println("Ultrasonic Sensor HC-SR04 waiting for RFID verification."); 

 

} 

void loop()  

{ 
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  // Look for new cards 

  if ( ! mfrc522.PICC_IsNewCardPresent())  

  { 

    return; 

  } 

  // Select one of the cards 

  if ( ! mfrc522.PICC_ReadCardSerial())  

  { 

    return; 

  } 

  //Show UID on serial monitor 

  Serial.print("UID tag :"); 

  String content= ""; 

  byte letter; 

  for (byte i = 0; i < mfrc522.uid.size; i++)  

  { 

     Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " "); 

     Serial.print(mfrc522.uid.uidByte[i], HEX); 

     content.concat(String(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ")); 

     content.concat(String(mfrc522.uid.uidByte[i], HEX)); 

  } 
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  Serial.println(); 

  Serial.print("Message : "); 

  content.toUpperCase(); 

  delayMicroseconds(1000); 

   

    if (content.substring(1) == "3A EE 2C 3C"){ 

 

       

          digitalWrite(trigPin, LOW); 

          delayMicroseconds(2); 

          digitalWrite(trigPin, HIGH); 

          delayMicroseconds(10); 

 

          digitalWrite(trigPin, LOW); 

          // Reads the echoPin, returns the sound wave travel time in microseconds 

          duration = pulseIn(echoPin, HIGH); 

          // Calculating the distance 

          distance = duration * 0.034 / 2; 

          // Prints the distance on the Serial Monitor 

          Serial.println("Ultrasonic sensor initiated"); 

          Serial.println(); 

          delayMicroseconds(2000); 
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          Serial.print("Distance: "); 

          Serial.println(distance); 

          delayMicroseconds(2000); 

 

          

       

           

  } 

 

  else 

  { 

    Serial.println("RFID authentication failed....."); 

  } 

  

} 

 

#include <SPI.h> 

#include <MFRC522.h> 

  

#define SS_PIN 53 

#define RST_PIN 5 

#define echoPin 10  

#define trigPin 9  
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long duration; // variable for the duration of sound wave travel 

long distance; // variable for the distance measurement 

int i=0; 

MFRC522 mfrc522(SS_PIN, RST_PIN);   // Create MFRC522 instance. 

// White tag 3A EE 2C 3C 

//Blue tag  47 0F 5E 2D 

void setup()  

{ 

 

  pinMode(trigPin, OUTPUT); // Sets the trigPin as an OUTPUT 

  pinMode(echoPin, INPUT); // Sets the echoPin as an INPUT 

 

   

  Serial.begin(9600);   // Initiate a serial communication 

  SPI.begin();      // Initiate  SPI bus 

  mfrc522.PCD_Init();   // Initiate MFRC522 

  Serial.println("Approximate your card to the reader..."); 

  Serial.println(); 

  Serial.println("Ultrasonic Sensor HC-SR04 waiting for RFID verification."); 

 

} 

void loop()  
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{ 

     

     

  // Look for new cards 

  if ( ! mfrc522.PICC_IsNewCardPresent())  

  { 

    return; 

  } 

  // Select one of the cards 

  if ( ! mfrc522.PICC_ReadCardSerial())  

  { 

    return; 

  } 

  //Show UID on serial monitor 

  Serial.print("UID tag :"); 

  String content= ""; 

  byte letter; 

  for (byte i = 0; i < mfrc522.uid.size; i++)  

  { 

     Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " "); 

     Serial.print(mfrc522.uid.uidByte[i], HEX); 

     content.concat(String(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ")); 

     content.concat(String(mfrc522.uid.uidByte[i], HEX)); 
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  } 

  Serial.println(); 

  Serial.print("Message : "); 

  content.toUpperCase(); 

  delayMicroseconds(1000); 

   

    if (content.substring(1) == "3A EE 2C 3C"){ 

 

      for (i = 0; i<=1000; i++){ 

          digitalWrite(trigPin, LOW); 

          delayMicroseconds(2); 

          digitalWrite(trigPin, HIGH); 

          delayMicroseconds(10); 

 

          digitalWrite(trigPin, LOW); 

          // Reads the echoPin, returns the sound wave travel time in microseconds 

          duration = pulseIn(echoPin, HIGH); 

          // Calculating the distance 

          distance = duration * 0.034 / 2; 

          // Prints the distance on the Serial Monitor 

          Serial.println("Ultrasonic sensor initiated"); 

          Serial.println(); 

          delayMicroseconds(2000); 
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          Serial.print("Distance: "); 

          Serial.println(distance); 

          delayMicroseconds(2000); 

 

          i = i + 1; 

      } 

           

  } 

 

  else 

  { 

    Serial.println("RFID authentication failed....."); 

  } 

  

} 

 

 

 

C.2 Camera codes: 
// 

// Source code for application to transmit image from ov7670 to PC via USB 

// By Siarhei Charkes in 2015 

// http://privateblog.info  
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// 

 

#include <stdint.h> 

#include <avr/io.h> 

#include <util/twi.h> 

#include <util/delay.h> 

#include <avr/pgmspace.h> 

 

#define F_CPU 16000000UL 

#define vga   0 

#define qvga  1 

#define qqvga   2 

#define yuv422  0 

#define rgb565  1 

#define bayerRGB  2 

#define camAddr_WR  0x42 

#define camAddr_RD  0x43 

 

/* Registers */ 

#define REG_GAIN    0x00  /* Gain lower 8 bits (rest in vref) */ 

#define REG_BLUE    0x01  /* blue gain */ 

#define REG_RED       0x02  /* red gain */ 

#define REG_VREF    0x03  /* Pieces of GAIN, VSTART, VSTOP */ 
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#define REG_COM1    0x04  /* Control 1 */ 

#define COM1_CCIR656  0x40    /* CCIR656 enable */ 

 

#define REG_BAVE    0x05  /* U/B Average level */ 

#define REG_GbAVE   0x06  /* Y/Gb Average level */ 

#define REG_AECHH   0x07  /* AEC MS 5 bits */ 

#define REG_RAVE    0x08  /* V/R Average level */ 

#define REG_COM2    0x09  /* Control 2 */ 

#define COM2_SSLEEP         0x10  /* Soft sleep mode */ 

#define REG_PID           0x0a  /* Product ID MSB */ 

#define REG_VER           0x0b  /* Product ID LSB */ 

#define REG_COM3    0x0c  /* Control 3 */ 

#define COM3_SWAP         0x40  /* Byte swap */ 

#define COM3_SCALEEN          0x08  /* Enable scaling */ 

#define COM3_DCWEN          0x04  /* Enable downsamp/crop/window */ 

#define REG_COM4    0x0d  /* Control 4 */ 

#define REG_COM5    0x0e  /* All "reserved" */ 

#define REG_COM6    0x0f  /* Control 6 */ 

#define REG_AECH    0x10  /* More bits of AEC value */ 

#define REG_CLKRC   0x11  /* Clocl control */ 

#define CLK_EXT           0x40  /* Use external clock directly */ 

#define CLK_SCALE   0x3f  /* Mask for internal clock scale */ 

#define REG_COM7    0x12  /* Control 7 */ //REG mean address. 
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#define COM7_RESET          0x80  /* Register reset */ 

#define COM7_FMT_MASK         0x38 

#define COM7_FMT_VGA          0x00 

#define COM7_FMT_CIF          0x20  /* CIF format */ 

#define COM7_FMT_QVGA         0x10  /* QVGA format */ 

#define COM7_FMT_QCIF         0x08  /* QCIF format */ 

#define COM7_RGB          0x04  /* bits 0 and 2 - RGB format */ 

#define COM7_YUV          0x00  /* YUV */ 

#define COM7_BAYER          0x01  /* Bayer format */ 

#define COM7_PBAYER         0x05  /* "Processed bayer" */ 

#define REG_COM8    0x13  /* Control 8 */ 

#define COM8_FASTAEC          0x80  /* Enable fast AGC/AEC */ 

#define COM8_AECSTEP          0x40  /* Unlimited AEC step size */ 

#define COM8_BFILT    0x20  /* Band filter enable */ 

#define COM8_AGC    0x04  /* Auto gain enable */ 

#define COM8_AWB    0x02  /* White balance enable */ 

#define COM8_AEC    0x01  /* Auto exposure enable */ 

#define REG_COM9    0x14  /* Control 9- gain ceiling */ 

#define REG_COM10   0x15  /* Control 10 */ 

#define COM10_HSYNC         0x40  /* HSYNC instead of HREF */ 

#define COM10_PCLK_HB         0x20  /* Suppress PCLK on horiz blank */ 

#define COM10_HREF_REV          0x08  /* Reverse HREF */ 

#define COM10_VS_LEAD         0x04  /* VSYNC on clock leading edge */ 
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#define COM10_VS_NEG          0x02  /* VSYNC negative */ 

#define COM10_HS_NEG          0x01  /* HSYNC negative */ 

#define REG_HSTART    0x17  /* Horiz start high bits */ 

#define REG_HSTOP   0x18  /* Horiz stop high bits */ 

#define REG_VSTART    0x19  /* Vert start high bits */ 

#define REG_VSTOP   0x1a  /* Vert stop high bits */ 

#define REG_PSHFT   0x1b  /* Pixel delay after HREF */ 

#define REG_MIDH    0x1c  /* Manuf. ID high */ 

#define REG_MIDL    0x1d  /* Manuf. ID low */ 

#define REG_MVFP    0x1e  /* Mirror / vflip */ 

#define MVFP_MIRROR         0x20  /* Mirror image */ 

#define MVFP_FLIP   0x10  /* Vertical flip */ 

 

#define REG_AEW           0x24  /* AGC upper limit */ 

#define REG_AEB           0x25    /* AGC lower limit */ 

#define REG_VPT           0x26  /* AGC/AEC fast mode op region */ 

#define REG_HSYST   0x30  /* HSYNC rising edge delay */ 

#define REG_HSYEN   0x31  /* HSYNC falling edge delay */ 

#define REG_HREF    0x32  /* HREF pieces */ 

#define REG_TSLB    0x3a  /* lots of stuff */ 

#define TSLB_YLAST    0x04  /* UYVY or VYUY - see com13 */ 

#define REG_COM11   0x3b  /* Control 11 */ 

#define COM11_NIGHT         0x80  /* NIght mode enable */ 
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#define COM11_NMFR          0x60  /* Two bit NM frame rate */ 

#define COM11_HZAUTO          0x10  /* Auto detect 50/60 Hz */ 

#define COM11_50HZ          0x08  /* Manual 50Hz select */ 

#define COM11_EXP   0x02 

#define REG_COM12   0x3c  /* Control 12 */ 

#define COM12_HREF          0x80  /* HREF always */ 

#define REG_COM13   0x3d  /* Control 13 */ 

#define COM13_GAMMA         0x80  /* Gamma enable */ 

#define COM13_UVSAT         0x40  /* UV saturation auto adjustment */ 

#define COM13_UVSWAP          0x01  /* V before U - w/TSLB */ 

#define REG_COM14   0x3e  /* Control 14 */ 

#define COM14_DCWEN         0x10  /* DCW/PCLK-scale enable */ 

#define REG_EDGE    0x3f  /* Edge enhancement factor */ 

#define REG_COM15   0x40  /* Control 15 */ 

#define COM15_R10F0         0x00  /* Data range 10 to F0 */ 

#define COM15_R01FE         0x80  /*      01 to FE */ 

#define COM15_R00FF         0xc0  /*      00 to FF */ 

#define COM15_RGB565          0x10  /* RGB565 output */ 

#define COM15_RGB555          0x30  /* RGB555 output */ 

#define REG_COM16   0x41  /* Control 16 */ 

#define COM16_AWBGAIN         0x08  /* AWB gain enable */ 

#define REG_COM17   0x42  /* Control 17 */ 

#define COM17_AECWIN          0xc0  /* AEC window - must match COM4 */ 
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#define COM17_CBAR          0x08  /* DSP Color bar */ 

/* 

* This matrix defines how the colors are generated, must be 

* tweaked to adjust hue and saturation. 

* 

* Order: v-red, v-green, v-blue, u-red, u-green, u-blue 

* They are nine-bit signed quantities, with the sign bit 

* stored in0x58.Sign for v-red is bit 0, and up from there. 

*/ 

#define REG_CMATRIX_BASE  0x4f 

#define CMATRIX_LEN           6 

#define REG_CMATRIX_SIGN  0x58 

#define REG_BRIGHT    0x55  /* Brightness */ 

#define REG_CONTRAS         0x56  /* Contrast control */ 

#define REG_GFIX    0x69  /* Fix gain control */ 

#define REG_REG76   0x76  /* OV's name */ 

#define R76_BLKPCOR         0x80  /* Black pixel correction enable */ 

#define R76_WHTPCOR         0x40  /* White pixel correction enable */ 

#define REG_RGB444          0x8c  /* RGB 444 control */ 

#define R444_ENABLE         0x02  /* Turn on RGB444, overrides 5x5 */ 

#define R444_RGBX   0x01  /* Empty nibble at end */ 

#define REG_HAECC1    0x9f  /* Hist AEC/AGC control 1 */ 

#define REG_HAECC2    0xa0  /* Hist AEC/AGC control 2 */ 
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#define REG_BD50MAX         0xa5  /* 50hz banding step limit */ 

#define REG_HAECC3    0xa6  /* Hist AEC/AGC control 3 */ 

#define REG_HAECC4    0xa7  /* Hist AEC/AGC control 4 */ 

#define REG_HAECC5    0xa8  /* Hist AEC/AGC control 5 */ 

#define REG_HAECC6    0xa9  /* Hist AEC/AGC control 6 */ 

#define REG_HAECC7    0xaa  /* Hist AEC/AGC control 7 */ 

#define REG_BD60MAX         0xab  /* 60hz banding step limit */ 

#define REG_GAIN    0x00  /* Gain lower 8 bits (rest in vref) */ 

#define REG_BLUE    0x01  /* blue gain */ 

#define REG_RED           0x02  /* red gain */ 

#define REG_VREF    0x03  /* Pieces of GAIN, VSTART, VSTOP */ 

#define REG_COM1    0x04  /* Control 1 */ 

#define COM1_CCIR656          0x40  /* CCIR656 enable */ 

#define REG_BAVE    0x05  /* U/B Average level */ 

#define REG_GbAVE   0x06  /* Y/Gb Average level */ 

#define REG_AECHH   0x07  /* AEC MS 5 bits */ 

#define REG_RAVE    0x08  /* V/R Average level */ 

#define REG_COM2    0x09  /* Control 2 */ 

#define COM2_SSLEEP         0x10  /* Soft sleep mode */ 

#define REG_PID           0x0a  /* Product ID MSB */ 

#define REG_VER           0x0b  /* Product ID LSB */ 

#define REG_COM3    0x0c  /* Control 3 */ 

#define COM3_SWAP         0x40  /* Byte swap */ 
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#define COM3_SCALEEN          0x08  /* Enable scaling */ 

#define COM3_DCWEN          0x04  /* Enable downsamp/crop/window */ 

#define REG_COM4    0x0d  /* Control 4 */ 

#define REG_COM5    0x0e  /* All "reserved" */ 

#define REG_COM6    0x0f  /* Control 6 */ 

#define REG_AECH    0x10  /* More bits of AEC value */ 

#define REG_CLKRC   0x11  /* Clocl control */ 

#define CLK_EXT           0x40  /* Use external clock directly */ 

#define CLK_SCALE   0x3f  /* Mask for internal clock scale */ 

#define REG_COM7    0x12  /* Control 7 */ 

#define COM7_RESET          0x80  /* Register reset */ 

#define COM7_FMT_MASK         0x38 

#define COM7_FMT_VGA          0x00 

#define COM7_FMT_CIF          0x20  /* CIF format */ 

#define COM7_FMT_QVGA         0x10  /* QVGA format */ 

#define COM7_FMT_QCIF         0x08  /* QCIF format */ 

#define COM7_RGB    0x04  /* bits 0 and 2 - RGB format */ 

#define COM7_YUV    0x00  /* YUV */ 

#define COM7_BAYER          0x01  /* Bayer format */ 

#define COM7_PBAYER         0x05  /* "Processed bayer" */ 

#define REG_COM8    0x13  /* Control 8 */ 

#define COM8_FASTAEC          0x80  /* Enable fast AGC/AEC */ 

#define COM8_AECSTEP          0x40  /* Unlimited AEC step size */ 
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#define COM8_BFILT    0x20  /* Band filter enable */ 

#define COM8_AGC    0x04  /* Auto gain enable */ 

#define COM8_AWB    0x02  /* White balance enable */ 

#define COM8_AEC    0x01  /* Auto exposure enable */ 

#define REG_COM9    0x14  /* Control 9- gain ceiling */ 

#define REG_COM10   0x15  /* Control 10 */ 

#define COM10_HSYNC         0x40  /* HSYNC instead of HREF */ 

#define COM10_PCLK_HB         0x20  /* Suppress PCLK on horiz blank */ 

#define COM10_HREF_REV          0x08  /* Reverse HREF */ 

#define COM10_VS_LEAD           0x04  /* VSYNC on clock leading edge */ 

#define COM10_VS_NEG          0x02  /* VSYNC negative */ 

#define COM10_HS_NEG          0x01  /* HSYNC negative */ 

#define REG_HSTART    0x17  /* Horiz start high bits */ 

#define REG_HSTOP   0x18  /* Horiz stop high bits */ 

#define REG_VSTART    0x19  /* Vert start high bits */ 

#define REG_VSTOP   0x1a  /* Vert stop high bits */ 

#define REG_PSHFT   0x1b  /* Pixel delay after HREF */ 

#define REG_MIDH    0x1c  /* Manuf. ID high */ 

#define REG_MIDL    0x1d  /* Manuf. ID low */ 

#define REG_MVFP    0x1e  /* Mirror / vflip */ 

#define MVFP_MIRROR         0x20  /* Mirror image */ 

#define MVFP_FLIP   0x10  /* Vertical flip */ 

#define REG_AEW           0x24  /* AGC upper limit */ 
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#define REG_AEB           0x25  /* AGC lower limit */ 

#define REG_VPT           0x26  /* AGC/AEC fast mode op region */ 

#define REG_HSYST   0x30  /* HSYNC rising edge delay */ 

#define REG_HSYEN   0x31  /* HSYNC falling edge delay */ 

#define REG_HREF    0x32  /* HREF pieces */ 

#define REG_TSLB    0x3a  /* lots of stuff */ 

#define TSLB_YLAST    0x04  /* UYVY or VYUY - see com13 */ 

#define REG_COM11   0x3b  /* Control 11 */ 

#define COM11_NIGHT         0x80  /* NIght mode enable */ 

#define COM11_NMFR          0x60  /* Two bit NM frame rate */ 

#define COM11_HZAUTO          0x10  /* Auto detect 50/60 Hz */ 

#define COM11_50HZ          0x08  /* Manual 50Hz select */ 

#define COM11_EXP   0x02 

#define REG_COM12   0x3c  /* Control 12 */ 

#define COM12_HREF          0x80  /* HREF always */ 

#define REG_COM13   0x3d  /* Control 13 */ 

#define COM13_GAMMA         0x80  /* Gamma enable */ 

#define COM13_UVSAT         0x40  /* UV saturation auto adjustment */ 

#define COM13_UVSWAP          0x01  /* V before U - w/TSLB */ 

#define REG_COM14   0x3e  /* Control 14 */ 

#define COM14_DCWEN         0x10  /* DCW/PCLK-scale enable */ 

#define REG_EDGE    0x3f  /* Edge enhancement factor */ 

#define REG_COM15   0x40  /* Control 15 */ 
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#define COM15_R10F0         0x00  /* Data range 10 to F0 */ 

#define COM15_R01FE         0x80  /*      01 to FE */ 

#define COM15_R00FF         0xc0  /*      00 to FF */ 

#define COM15_RGB565          0x10  /* RGB565 output */ 

#define COM15_RGB555          0x30  /* RGB555 output */ 

#define REG_COM16   0x41  /* Control 16 */ 

#define COM16_AWBGAIN         0x08  /* AWB gain enable */ 

#define REG_COM17   0x42  /* Control 17 */ 

#define COM17_AECWIN          0xc0  /* AEC window - must match COM4 */ 

#define COM17_CBAR          0x08  /* DSP Color bar */ 

 

#define CMATRIX_LEN             6 

#define REG_BRIGHT    0x55  /* Brightness */ 

#define REG_REG76   0x76  /* OV's name */ 

#define R76_BLKPCOR         0x80  /* Black pixel correction enable */ 

#define R76_WHTPCOR         0x40  /* White pixel correction enable */ 

#define REG_RGB444          0x8c  /* RGB 444 control */ 

#define R444_ENABLE         0x02  /* Turn on RGB444, overrides 5x5 */ 

#define R444_RGBX   0x01  /* Empty nibble at end */ 

#define REG_HAECC1    0x9f  /* Hist AEC/AGC control 1 */ 

#define REG_HAECC2    0xa0  /* Hist AEC/AGC control 2 */ 

#define REG_BD50MAX         0xa5  /* 50hz banding step limit */ 

#define REG_HAECC3    0xa6  /* Hist AEC/AGC control 3 */ 
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#define REG_HAECC4    0xa7  /* Hist AEC/AGC control 4 */ 

#define REG_HAECC5    0xa8  /* Hist AEC/AGC control 5 */ 

#define REG_HAECC6    0xa9  /* Hist AEC/AGC control 6 */ 

#define REG_HAECC7    0xaa  /* Hist AEC/AGC control 7 */ 

#define REG_BD60MAX         0xab  /* 60hz banding step limit */ 

#define MTX1            0x4f  /* Matrix Coefficient 1 */ 

#define MTX2            0x50  /* Matrix Coefficient 2 */ 

#define MTX3            0x51  /* Matrix Coefficient 3 */ 

#define MTX4            0x52  /* Matrix Coefficient 4 */ 

#define MTX5            0x53  /* Matrix Coefficient 5 */ 

#define MTX6            0x54  /* Matrix Coefficient 6 */ 

#define REG_CONTRAS         0x56  /* Contrast control */ 

#define MTXS            0x58  /* Matrix Coefficient Sign */ 

#define AWBC7           0x59  /* AWB Control 7 */ 

#define AWBC8           0x5a  /* AWB Control 8 */ 

#define AWBC9           0x5b  /* AWB Control 9 */ 

#define AWBC10            0x5c  /* AWB Control 10 */ 

#define AWBC11            0x5d  /* AWB Control 11 */ 

#define AWBC12            0x5e  /* AWB Control 12 */ 

#define REG_GFI           0x69  /* Fix gain control */ 

#define GGAIN           0x6a  /* G Channel AWB Gain */ 

#define DBLV            0x6b   

#define AWBCTR3           0x6c  /* AWB Control 3 */ 
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#define AWBCTR2           0x6d  /* AWB Control 2 */ 

#define AWBCTR1           0x6e  /* AWB Control 1 */ 

#define AWBCTR0           0x6f  /* AWB Control 0 */ 

 

struct regval_list{ 

  uint8_t reg_num; 

  uint16_t value; 

}; 

 

const struct regval_list qvga_ov7670[] PROGMEM = { 

  { REG_COM14, 0x19 }, 

  { 0x72, 0x11 }, 

  { 0x73, 0xf1 }, 

 

  { REG_HSTART, 0x16 }, 

  { REG_HSTOP, 0x04 }, 

  { REG_HREF, 0xa4 }, 

  { REG_VSTART, 0x02 }, 

  { REG_VSTOP, 0x7a }, 

  { REG_VREF, 0x0a }, 

 

 

/*  { REG_HSTART, 0x16 }, 
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  { REG_HSTOP, 0x04 }, 

  { REG_HREF, 0x24 }, 

  { REG_VSTART, 0x02 }, 

  { REG_VSTOP, 0x7a }, 

  { REG_VREF, 0x0a },*/ 

  { 0xff, 0xff }, /* END MARKER */ 

}; 

 

const struct regval_list yuv422_ov7670[] PROGMEM = { 

  { REG_COM7, 0x0 },  /* Selects YUV mode */ 

  { REG_RGB444, 0 },  /* No RGB444 please */ 

  { REG_COM1, 0 }, 

  { REG_COM15, COM15_R00FF }, 

  { REG_COM9, 0x6A }, /* 128x gain ceiling; 0x8 is reserved bit */ 

  { 0x4f, 0x80 },   /* "matrix coefficient 1" */ 

  { 0x50, 0x80 },   /* "matrix coefficient 2" */ 

  { 0x51, 0 },    /* vb */ 

  { 0x52, 0x22 },   /* "matrix coefficient 4" */ 

  { 0x53, 0x5e },   /* "matrix coefficient 5" */ 

  { 0x54, 0x80 },   /* "matrix coefficient 6" */ 

  { REG_COM13, COM13_UVSAT }, 

  { 0xff, 0xff },   /* END MARKER */ 

}; 
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const struct regval_list ov7670_default_regs[] PROGMEM = {//from the linux driver 

  { REG_COM7, COM7_RESET }, 

  { REG_TSLB, 0x04 }, /* OV */ 

  { REG_COM7, 0 },  /* VGA */ 

  /* 

  * Set the hardware window.  These values from OV don't entirely 

  * make sense - hstop is less than hstart.  But they work... 

  */ 

  { REG_HSTART, 0x13 }, { REG_HSTOP, 0x01 }, 

  { REG_HREF, 0xb6 }, { REG_VSTART, 0x02 }, 

  { REG_VSTOP, 0x7a }, { REG_VREF, 0x0a }, 

 

  { REG_COM3, 0 }, { REG_COM14, 0 }, 

  /* Mystery scaling numbers */ 

  { 0x70, 0x3a }, { 0x71, 0x35 }, 

  { 0x72, 0x11 }, { 0x73, 0xf0 }, 

  { 0xa2,/* 0x02 changed to 1*/1 }, { REG_COM10, 0x0 }, 

  /* Gamma curve values */ 

  { 0x7a, 0x20 }, { 0x7b, 0x10 }, 

  { 0x7c, 0x1e }, { 0x7d, 0x35 }, 

  { 0x7e, 0x5a }, { 0x7f, 0x69 }, 

  { 0x80, 0x76 }, { 0x81, 0x80 }, 
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  { 0x82, 0x88 }, { 0x83, 0x8f }, 

  { 0x84, 0x96 }, { 0x85, 0xa3 }, 

  { 0x86, 0xaf }, { 0x87, 0xc4 }, 

  { 0x88, 0xd7 }, { 0x89, 0xe8 }, 

  /* AGC and AEC parameters.  Note we start by disabling those features, 

  then turn them only after tweaking the values. */ 

  { REG_COM8, COM8_FASTAEC | COM8_AECSTEP }, 

  { REG_GAIN, 0 }, { REG_AECH, 0 }, 

  { REG_COM4, 0x40 }, /* magic reserved bit */ 

  { REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */ 

  { REG_BD50MAX, 0x05 }, { REG_BD60MAX, 0x07 }, 

  { REG_AEW, 0x95 }, { REG_AEB, 0x33 }, 

  { REG_VPT, 0xe3 }, { REG_HAECC1, 0x78 }, 

  { REG_HAECC2, 0x68 }, { 0xa1, 0x03 }, /* magic */ 

  { REG_HAECC3, 0xd8 }, { REG_HAECC4, 0xd8 }, 

  { REG_HAECC5, 0xf0 }, { REG_HAECC6, 0x90 }, 

  { REG_HAECC7, 0x94 }, 

  { REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_AGC | COM8_AEC }, 

  { 0x30, 0 }, { 0x31, 0 },//disable some delays 

  /* Almost all of these are magic "reserved" values.  */ 

  { REG_COM5, 0x61 }, { REG_COM6, 0x4b }, 

  { 0x16, 0x02 }, { REG_MVFP, 0x07 }, 

  { 0x21, 0x02 }, { 0x22, 0x91 }, 
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  { 0x29, 0x07 }, { 0x33, 0x0b }, 

  { 0x35, 0x0b }, { 0x37, 0x1d }, 

  { 0x38, 0x71 }, { 0x39, 0x2a }, 

  { REG_COM12, 0x78 }, { 0x4d, 0x40 }, 

  { 0x4e, 0x20 }, { REG_GFIX, 0 }, 

  /*{0x6b, 0x4a},*/{ 0x74, 0x10 }, 

  { 0x8d, 0x4f }, { 0x8e, 0 }, 

  { 0x8f, 0 }, { 0x90, 0 }, 

  { 0x91, 0 }, { 0x96, 0 }, 

  { 0x9a, 0 }, { 0xb0, 0x84 }, 

  { 0xb1, 0x0c }, { 0xb2, 0x0e }, 

  { 0xb3, 0x82 }, { 0xb8, 0x0a }, 

 

  /* More reserved magic, some of which tweaks white balance */ 

  { 0x43, 0x0a }, { 0x44, 0xf0 }, 

  { 0x45, 0x34 }, { 0x46, 0x58 }, 

  { 0x47, 0x28 }, { 0x48, 0x3a }, 

  { 0x59, 0x88 }, { 0x5a, 0x88 }, 

  { 0x5b, 0x44 }, { 0x5c, 0x67 }, 

  { 0x5d, 0x49 }, { 0x5e, 0x0e }, 

  { 0x6c, 0x0a }, { 0x6d, 0x55 }, 

  { 0x6e, 0x11 }, { 0x6f, 0x9e }, /* it was 0x9F "9e for advance AWB" */ 

  { 0x6a, 0x40 }, { REG_BLUE, 0x40 }, 
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  { REG_RED, 0x60 }, 

  { REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_AGC | COM8_AEC | 

COM8_AWB }, 

 

  /* Matrix coefficients */ 

  { 0x4f, 0x80 }, { 0x50, 0x80 }, 

  { 0x51, 0 },    { 0x52, 0x22 }, 

  { 0x53, 0x5e }, { 0x54, 0x80 }, 

  { 0x58, 0x9e }, 

 

  { REG_COM16, COM16_AWBGAIN }, { REG_EDGE, 0 }, 

  { 0x75, 0x05 }, { REG_REG76, 0xe1 }, 

  { 0x4c, 0 },     { 0x77, 0x01 }, 

  { REG_COM13, /*0xc3*/0x48 }, { 0x4b, 0x09 }, 

  { 0xc9, 0x60 },   /*{REG_COM16, 0x38},*/ 

  { 0x56, 0x40 }, 

 

  { 0x34, 0x11 }, { REG_COM11, COM11_EXP | COM11_HZAUTO }, 

  { 0xa4, 0x82/*Was 0x88*/ }, { 0x96, 0 }, 

  { 0x97, 0x30 }, { 0x98, 0x20 }, 

  { 0x99, 0x30 }, { 0x9a, 0x84 }, 

  { 0x9b, 0x29 }, { 0x9c, 0x03 }, 

  { 0x9d, 0x4c }, { 0x9e, 0x3f }, 
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  { 0x78, 0x04 }, 

 

  /* Extra-weird stuff.  Some sort of multiplexor register */ 

  { 0x79, 0x01 }, { 0xc8, 0xf0 }, 

  { 0x79, 0x0f }, { 0xc8, 0x00 }, 

  { 0x79, 0x10 }, { 0xc8, 0x7e }, 

  { 0x79, 0x0a }, { 0xc8, 0x80 }, 

  { 0x79, 0x0b }, { 0xc8, 0x01 }, 

  { 0x79, 0x0c }, { 0xc8, 0x0f }, 

  { 0x79, 0x0d }, { 0xc8, 0x20 }, 

  { 0x79, 0x09 }, { 0xc8, 0x80 }, 

  { 0x79, 0x02 }, { 0xc8, 0xc0 }, 

  { 0x79, 0x03 }, { 0xc8, 0x40 }, 

  { 0x79, 0x05 }, { 0xc8, 0x30 }, 

  { 0x79, 0x26 }, 

  { 0xff, 0xff }, /* END MARKER */ 

}; 

 

 

void error_led(void){ 

  DDRB |= 32;//make sure led is output 

  while (1){//wait for reset 

    PORTB ^= 32;// toggle led 
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    _delay_ms(100); 

  } 

} 

 

void twiStart(void){ 

  TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN);//send start 

  while (!(TWCR & (1 << TWINT)));//wait for start to be transmitted 

  if ((TWSR & 0xF8) != TW_START) 

    error_led(); 

} 

 

void twiWriteByte(uint8_t DATA, uint8_t type){ 

  TWDR = DATA; 

  TWCR = _BV(TWINT) | _BV(TWEN); 

  while (!(TWCR & (1 << TWINT))) {} 

  if ((TWSR & 0xF8) != type) 

    error_led(); 

} 

 

void twiAddr(uint8_t addr, uint8_t typeTWI){ 

  TWDR = addr;//send address 

  TWCR = _BV(TWINT) | _BV(TWEN);    /* clear interrupt to start transmission */ 

  while ((TWCR & _BV(TWINT)) == 0); /* wait for transmission */ 
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  if ((TWSR & 0xF8) != typeTWI) 

    error_led(); 

} 

 

void wrReg(uint8_t reg, uint8_t dat){ 

  //send start condition 

  twiStart(); 

  twiAddr(camAddr_WR, TW_MT_SLA_ACK); 

  twiWriteByte(reg, TW_MT_DATA_ACK); 

  twiWriteByte(dat, TW_MT_DATA_ACK); 

  TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO);//send stop 

  _delay_ms(1); 

} 

 

static uint8_t twiRd(uint8_t nack){ 

  if (nack){ 

    TWCR = _BV(TWINT) | _BV(TWEN); 

    while ((TWCR & _BV(TWINT)) == 0); /* wait for transmission */ 

    if ((TWSR & 0xF8) != TW_MR_DATA_NACK) 

      error_led(); 

    return TWDR; 

  } 

  else{ 
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    TWCR = _BV(TWINT) | _BV(TWEN) | _BV(TWEA); 

    while ((TWCR & _BV(TWINT)) == 0); /* wait for transmission */ 

    if ((TWSR & 0xF8) != TW_MR_DATA_ACK) 

      error_led(); 

    return TWDR; 

  } 

} 

 

uint8_t rdReg(uint8_t reg){ 

  uint8_t dat; 

  twiStart(); 

  twiAddr(camAddr_WR, TW_MT_SLA_ACK); 

  twiWriteByte(reg, TW_MT_DATA_ACK); 

  TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO);//send stop 

  _delay_ms(1); 

  twiStart(); 

  twiAddr(camAddr_RD, TW_MR_SLA_ACK); 

  dat = twiRd(1); 

  TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO);//send stop 

  _delay_ms(1); 

  return dat; 

} 
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void wrSensorRegs8_8(const struct regval_list reglist[]){ 

  uint8_t reg_addr, reg_val; 

  const struct regval_list *next = reglist; 

  while ((reg_addr != 0xff) | (reg_val != 0xff)){ 

    reg_addr = pgm_read_byte(&next->reg_num); 

    reg_val = pgm_read_byte(&next->value); 

    wrReg(reg_addr, reg_val); 

    next++; 

  } 

} 

 

void setColor(void){ 

  wrSensorRegs8_8(yuv422_ov7670); 

} 

 

void setRes(void){ 

  wrReg(REG_COM3, 4); // REG_COM3 enable scaling 

  wrSensorRegs8_8(qvga_ov7670); 

} 

 

void camInit(void){ 

  wrReg(0x12, 0x80); 

  _delay_ms(100); 
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  wrSensorRegs8_8(ov7670_default_regs); 

  wrReg(REG_COM10, 32);//PCLK does not toggle on HBLANK. 

} 

 

void arduinoUnoInut(void) { 

  cli();//disable interrupts 

   

    /* Setup the 8mhz PWM clock 

  * This will be on pin 11*/ 

  DDRB |= (1 << 3);//pin 11 

  ASSR &= ~(_BV(EXCLK) | _BV(AS2)); 

  TCCR2A = (1 << COM2A0) | (1 << WGM21) | (1 << WGM20); 

  TCCR2B = (1 << WGM22) | (1 << CS20); 

  OCR2A = 0;//(F_CPU)/(2*(X+1)) 

  DDRC &= ~15;//low d0-d3 camera 

  DDRD &= ~252;//d7-d4 and interrupt pins 

  _delay_ms(3000); 

   

    //set up twi for 100khz 

  TWSR &= ~3;//disable prescaler for TWI 

  TWBR = 72;//set to 100khz 

   

    //enable serial 
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  UBRR0H = 0; 

  UBRR0L = 1;//0 = 2M baud rate. 1 = 1M baud. 3 = 0.5M. 7 = 250k 207 is 9600 baud rate. 

  UCSR0A |= 2;//double speed aysnc 

  UCSR0B = (1 << RXEN0) | (1 << TXEN0);//Enable receiver and transmitter 

  UCSR0C = 6;//async 1 stop bit 8bit char no parity bits 

} 

 

 

void StringPgm(const char * str){ 

  do{ 

      while (!(UCSR0A & (1 << UDRE0)));//wait for byte to transmit 

      UDR0 = pgm_read_byte_near(str); 

      while (!(UCSR0A & (1 << UDRE0)));//wait for byte to transmit 

  } while (pgm_read_byte_near(++str)); 

} 

 

static void captureImg(uint16_t wg, uint16_t hg){ 

  uint16_t y, x; 

 

  StringPgm(PSTR("*RDY*")); 

 

  while (!(PIND & 8));//wait for high 

  while ((PIND & 8));//wait for low 
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    y = hg; 

  while (y--){ 

        x = wg; 

      //while (!(PIND & 256));//wait for high 

    while (x--){ 

      while ((PIND & 4));//wait for low 

            UDR0 = (PINC & 15) | (PIND & 240); 

          while (!(UCSR0A & (1 << UDRE0)));//wait for byte to transmit 

      while (!(PIND & 4));//wait for high 

      while ((PIND & 4));//wait for low 

      while (!(PIND & 4));//wait for high 

    } 

    //  while ((PIND & 256));//wait for low 

  } 

    _delay_ms(100); 

} 

 

void setup(){ 

  arduinoUnoInut(); 

  camInit(); 

  setRes(); 

  setColor(); 
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  wrReg(0x11, 10); //Earlier it had the value: wrReg(0x11, 12); New version works better for me 

:) !!!! 

} 

 

 

void loop(){ 

  captureImg(320, 240); 

} 

 

C.3 Ultrasonic Sensor Code 
 
#define echoPin 2 

#define trigPin 3 

#define echoPin1 4 

#define trigPin1 5 

// defines variables 

long duration; // variable for the duration of sound wave travel 

long distance; // variable for the distance measurement 

long duration1; 

long distance1; 

 

void setup() { 

  pinMode(trigPin, OUTPUT); // Sets the trigPin as an OUTPUT 

  pinMode(echoPin, INPUT); // Sets the echoPin as an INPUT 
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  pinMode(trigPin1, OUTPUT); // Sets the trigPin as an OUTPUT 

  pinMode(echoPin1, INPUT); // Sets the echoPin as an INPUT 

  

  Serial.begin(9600); // // Serial Communication is starting with 9600 of baudrate speed 

  Serial.println("Ultrasonic Sensor HC-SR04 Test"); // print some text in Serial Monitor 

  Serial.println("with Arduino Mega "); 

} 

void loop() { 

  // Clears the trigPin condition 

  digitalWrite(trigPin, LOW); 

  delayMicroseconds(2); 

  digitalWrite(trigPin, HIGH); 

  delayMicroseconds(10); 

  digitalWrite(trigPin, LOW); 

  duration = pulseIn(echoPin, HIGH); 

  distance = duration * 0.034 / 2; // Speed of sound wave divided by 2 (go and back) 

  Serial.print("Distance from 1st sensor: "); 

  Serial.print(distance); 

  Serial.println(" cm"); 

  delay(250); 

 

  digitalWrite(trigPin1, LOW); 

  delayMicroseconds(2); 



 144 

  digitalWrite(trigPin1, HIGH); 

  delayMicroseconds(10); 

  digitalWrite(trigPin1, LOW); 

  duration1 = pulseIn(echoPin1, HIGH); 

  distance1 = duration1 * 0.034 / 2; // Speed of sound wave divided by 2 (go and back) 

  Serial.print("Distance from 2nd sensor: "); 

  Serial.print(distance1); 

  Serial.println(" cm"); 

  delay(250); 

 

  if(distance < 10){ 

    Serial.println("Distance from sensor 1 too low"); 

  } 

   delay(100); 

 

   if(distance1 < 10){ 

    Serial.println("Distance from sensor 2 too low"); 

   } 

   delay(100); 

} 
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