
DISTRIBUTED ESTIMATION AND INVERSE REINFORCEMENT LEARNING FOR

MULTI-AGENT SYSTEMS

by

BOSEN LIAN, M.S.

DISSERTATION
Presented to the Graduate Faculty of
The University of Texas at Arlington

In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

COMMITTEE MEMBERS:
Frank L. Lewis, Ph.D., Chair

Ali Davoudi, Ph.D.
Yan Wan, Ph.D.

Ramtin Madani, Ph.D.
Michael A. Niestroy, Ph.D.

THE UNIVERSITY OF TEXAS AT ARLINGTON
College of Engineering

Department of Electrical Engineering
December 2021



Copyright 2021 Bosen Lian
All rights reserved.



ACKNOWLEDGEMENTS

I wish to express my deep sense of thanks to all the people that have had positive influences on

me during my doctoral studies at UTA.

I deeply thank my Ph.D. supervisor, Dr. Frank L. Lewis, for his teaching, his guidance and his

dedication on the research during all these years. He taught me how to write, how to communicate,

and how to think as a researcher. It is my great honor to work with him. He is also a friend who

has a great sense of humor and makes me feel relaxed all the times.

I also wish to thank Dr. Yan Wan and Dr. Ali Davoudi, as co-authors of my papers, for

their meaningful inputs and devotion of time to improve the works. It is nice to work with them.

Moreover, many thanks to Dr. Ramtin Madani and Dr. Michael A Niestroy, as members of my

dissertation committee, for their insightful comments to improve the dissertation. Moreover, I was

teaching assistant of Dr. Niestroy. It’s nice to work with him. His Kalman filter course is indeed

helpful.

With all my heart I shall thank all of my friends, and collaborators at UTA and universities

back in China. Wenqian Xue gives me both love and support for my work and life. I cannot write

these nice papers without her. Yusuf Kartal and Patrik Kolaric, as my colleagues at UTA, provide

their useful helps on inverse reinforcement learning and extensions to applications on quadrotor

unmanned aerial vehicles. Moreover, Xiao Zhang and Zhe Chen, as visiting scholars from China

to UTA, provide me chances to work with them on their papers. This broadens my research areas

to clusters and finite-time optimizations. Their passion and dedication always inspire me.

Last but not least I want to thank my parents and my sister for their advice and encouragements,

and the unconditional support.

The research was supported by Lockheed Martin Contract, National Science Foundation Grant

1839804, Office of Naval Research Grant N00014-18-1-2221, and Army Research Office Grant

W911NF-20-1-0132.

December 2021

iii



DISTRIBUTED ESTIMATION AND INVERSE REINFORCEMENT LEARNING FOR

MULTI-AGENT SYSTEMS

Bosen Lian, Ph.D.
The University of Texas at Arlington, 2021

Supervising Professor: Frank L. Lewis, Ph.D.

Abstract Consensus-based distributed Kalman filters for estimation with multiple targets have

attracted considerable attention. Most of the existing Kalman filters use the average consensus

approach, which tends to have a low convergence speed. They also rarely consider the impacts

of limited sensing range and target mobility on the information flow topology. The robustness

properties, i.e., gain margins and phase margins of distributed Kalman filtering algorithms are still

open problems.

In the interactions of controlled dynamical agents, it is often assumed that the agents are "ra-

tional" in the sense of attempting to act in such a way as to optimize some prescribed performance

reward functions. Optimal control and reinforcement learning solve optimal control input solu-

tions given a performance index. Inverse optimal control and inverse reinforcement learning can

reconstruct the performance index given demonstrations. However, inverse optimal control needs

to know system dynamics while inverse reinforcement learning can be model-free.

This dissertation first presents new distributed estimation methods for multi-agent systems. A

novel distributed Kalman consensus filter (DKCF) with an information-weighted and consensus-

based structure is proposed for estimation with random mobile targets in continuous-time dynam-

ics. A new moving target information-flow topology for the measurement of targets is developed

based on the sensors’ sensing ranges, targets’ random mobility, and local information-weighted

neighbors. This work also studies the robustness margins (i.e., gain margins and phase margins)

of a DKCF. It shows that the robustness results of the DKCF are improved compared to the single-

agent KF

This dissertation then studies new inverse reinforcement learning (RL) algorithms for multi-

iv



agent systems. New inverse reinforcement learning algorithms are proposed to solve two-player

zero-sum games by proposing both model-based and model-free algorithms. The games are solved

by extracting the unknown cost function of an expert by a learner using demonstrated expert’s

behaviors. Next, this work extends these results to multiplayer non-zero-sum games, where both

the expert and the learner have N -player noncooperate control input players.
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Chapter 1: INTRODUCTION

1.1 Distributed Estimation for Multi-agent Systems

Distributed consensus filtering algorithm has been widely studied in theory [11, 48, 81, 82] and

practical applications [49,106]. The work in [81] presents the distributed consensus filtering algo-

rithms to reach an average consensus for all sensor measurements. [82] proposes a Kalman con-

sensus filter (KCF) that has become an effective distributed consensus filter for target estimation,

in which each sensor receives information from its neighbors in sensor networks. Whereas, this

consensus estimation is not optimal because the cross-covariances between each sensor’s estimates

are not easy to deal with. Then, [48] proposes an information consensus filter (ICF) algorithm to

asymptotically achieve the optimal centralized performance, and it has been applied to camera net-

works [49]. It has been shown that ICF has better estimate performance in contrast to KCF and

generalized Kalman filter (GKCF) [82]. [106] studies the consensus filters in mobile networks. [11]

combines information consensus and measurement consensus to develop hybrid consensus filters.

In the existing literatures, [81, 82] and [57] focus on the average consensus for a single target,

while [11, 48, 49, 106] study the information-weighted consensus.

To the best knowledge, in realistic application areas of sensor networks, there are multiple

moving targets. For instance, sea-based sensor networks must estimate the positions of multiple

ships. [58] proposes a feature-based algorithm that uses the Kalman filter motion to track multi-

ple objects. [128] introduces an average-weighted consensus protocol for the observer design in

multi-target tracking missions. Inspired by these works, our paper develops distributed solution of

estimation in multi-target sensor networks to achieve information-weighted consensus.

In realistic scenarios, the mission performance of sensors including detection [19, 20, 80] and

measurements [107] can be deeply affected by the limited sensing range. In estimation tasks,

when targets enter into the sensing range, sensors directly observe the target states [107]. The

measurement topology studied in [48,49,81,82,92,106] fail to consider the sensors’ limited sens-

ing range. [49] proposes a concept of naive node which is not able to observe the target directly, but
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did not develop the measurement model to capture this concept. In [107], the limited sensing range

and sensor mobility are considered for mobile robots. However, the mobility was deterministic and

known. [41] develops a novel distributed information-weighted consensus filtering algorithm that

found the local optimal estimates for targets. In addition, the filter has good convergence perfor-

mance for the fixed information-flow topology. However, its information flow structure cannot

capture features such as random moving targets and limited sensing range. [48, 49, 81, 82, 92, 106]

study the fixed information-flow topology, too. As many search and rescue missions require the tar-

gets to move with rather random and unknown mobility [15, 66, 115, 117], this work uses random

variables to formulate the direct measurement topology for multi-target estimation with random

mobility in this paper. Related to this work, [127] uses one random variable to capture if a target

can be measured by sensors or not. However, as they do not use neighbors’ information, the mea-

surement of sensors can not update once targets cannot be observed, which is adaptive. Therefore,

a novel information-flow topology for multi-target measurement is developed in this paper to uti-

lize neighbors’ information as well as to reflect the effects of limited sensing range and random

target mobility.

To ensure the performance of target estimates, the convergence of the filtering algorithm should

be analyzed. The work in [48, 49] proposed Kalman filters without stability and convergence

analysis of the algorithms. The works in [32,90] study Kalman filters in multi-sensor networks but

does not provide the convergence analysis. [126] provides convergence analysis under a condition

that a bounded partial weight matrix should exists if estimation errors are bounded. In the recent

work [110], the covariance matrices converge to unique stabilizing solutions if the sensor network

is both detectable and stabilizable. In this discrete-time system, the convergence of filters require

the knowledge of global topology. The performance of various Kalman filters are also studied

for time-vary systems, stochastic systems and nonlinear systems [22, 33, 99], which need more

requirements but are not our goal here.

Robustness plays a pivotal role in the control community [124]. Robustness properties includ-

ing gain margin (GM) and phase margin (PM) characterize the robustness of the control system. It
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is well known that linear quadratic regulators (LQR) have good robustness properties, such as±60◦

phase margin (PM), infinite gain margin (GM), and 50 percent gain reduction tolerance [45,51,95].

The fundamental work shows how gain and phase margins characterize the robust stability of

classes of variations in single-input open-loop feedback systems [13]. [93] and [71] then extends

Nyquist criterion to multiloop feedback systems but they do not explore the robustness of multi-

loop feedback systems. Later, [6] uses the return difference matrix for analyzing the guaranteed

robustness margins of single-input LQR. [95] and [51] generalize the results to multivariable cases

for LQR. [100] obtains the robustness margins of the discrete time LQR. [84] analyzes robustness

margins of dynamic fuzzy control systems. [51] and [16] indicates that the guaranteed robustness

margins can be destroyed when the control input weight matrix R is nondiagonal.

It is worth noting that one basic limitation associated with the guaranteed robustness margins

for LQR is that the states in feedback loop are assumed to be fully observable and obtainable. As

a matter of fact, it is impossible to achieve exact realization for state feedback even by providing

enough sensors. Thus, one is motivated to design or use KF [46] to provide nondivergent estimation

of the plant whose state is to be estimated. The works of [51] and [25] and have investigated the

robustness margins of linear quadratic Gaussian with KF associated to provide state estimates for

feedback. [119] designs robust KF that adapts to all admissible uncertain.

With the emergence and popularity of multi-agent systems [35, 56, 111], distributed Kalman

filters have been developed to help all agents achieve consensus for estimation. The distributed

consensus-based Kalman filter proposed in [82] becomes a popular and efficient filtering for dy-

namic state estimation. Later, [91], [47], [86,88], [59,60], [70] and [30] develop various distributed

filters in different scenarios to improve the performance of filtering estimation algorithms. [29]

gives a survey on distributed event-triggered estimation problem over the sensor networks. These

algorithms need to be robust and reliable. Then, they can be integrated with feedback control to

make the best decision [23, 94, 128] for particular tasks.

The key issue in the overall robustness of integrated systems is the stability of the distributed

KF. It is known that the sensor-network based filtering systems are networked systems with the

3



feedback loop closed through communication networks. However, the communication link gain

errors and symmetry breaking [112] of communication matrices. These issues cause the divergence

of distributed KF. [112] investigates robust stability conditions with symmetric coupling weights.

Motivated by these studies, this paper investigates the robustness margins of distributed KF to

apply for these perturbations.

The distributed Kalman-consensus filter (DKCF) in recent work [59] uses information from

neighbor estimates of the target or direct target observation to estimate target states. It guarantees

that all sensors reach consensus on the estimates of target states.

1.2 Inverse Reinforcement Learning for Multi-agent Systems

To avoid manually specifying the preferences or cost functions of an agent, inverse reinforce-

ment learning (RL) [79] has been proposed to reconstruct the hidden cost functions from its demon-

strated behaviors. Inverse RL is widely used in apprentice learning [3,18,63,64,98,104,109], where

with observations of an expert’s behaviour, a learner uses inverse RL to infer the unknown expert

cost functions and obtain the same control policy, thereby performing as well as the expert. As

the expert control policy is less available than its behaviors, the learner uses inverse RL to recon-

struct the expert cost function and obtain the same policy. Before inverse RL apprentice learning,

many different approaches [8, 34, 96] try to learn the direct mapping from states to control inputs

or learn the control policy using system identification techniques. However, comparing to inverse

RL, these methods directly learn the control policy and are applicable only when the task is to

mimic the expert’s behavior. But for autonomous driving in real world, the pattern of the traffic

circumstance can be different each moment [3]. The cost function is inherently more adaptive

because even slight changes in the environment render learned policy unusable and these changes

do not affect the transferability of the cost function [7]. It is known that adversarial inputs may

affect system stability and imitation performance. However, note that [18,63,64,98,104] consider

the same adversarial disturbance for the learner and the expert or disturbance only for one agent in

inverse RL imitation learning, which are strong assumptions.
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Given the specified cost function, it is desired to achieve the optimal control and adapt the

worst adversary simultaneously, i.e., Nash equilibrium [28, 54, 65] between the control player and

the adversarial player. Two-player zero-sum games are generally formulated to solve for the Nash

equilibrium by using RL techniques [69, 73]. [69, 73] have developed model-free algorithms to

solve Nash equilibrium of two-player zero-sum games.

Optimal control theory assumes that cost functions of an agent are known. However, the

intentions or the cost functions of the expert are unknown for the learner in inverse RL prob-

lems [3, 18, 63, 64, 79, 98, 104, 109]. The learner thus needs to compute the intentions such that it

behaves the same as the expert by using observed states and controls. As such, inverse RL has the

same goal as Bayes Learning [67, 103], which computes the epistemic type, namely the cost func-

tions, of an agent using Bayes rule in probability theory. However, inverse RL uses deterministic

mathematics and so is more direct to apply than Bayes Learning. [53] studies inverse RL for the

expert that has nonlinear cost functions. [37, 64] formulate a Bayesian inverse RL algorithm and

obtained a probability distribution of cost functions to learn the right one. [38] proposes efficient

inverse RL algorithms for large-scale systems. [14] studies the confidence of the quality of learned

policy in inverse RL. Note that [3, 14, 37, 38, 53, 63, 64, 79, 104, 109] study inverse RL apprentice

learning where state dynamics is Markov decision process (MDP). [62,121,122] study inverse RL

for linear differential dynamic systems. [18, 61, 98] investigate inverse RL of the systems that are

described by nonlinear differential equations, but they need either system identification or partial

system dynamics.

Inverse optimal control [31, 45] technique enables to derive a cost function given states and

control inputs. Furthermore, it also guarantees the agent’s stability by finding a stabilizing cost to

which the control policy is optimal. [44] uses inverse optimal control to reconstruct cost function

for continuous-time nonlinear systems. [97] studies inverse optimal control to find cost functions

that guarantee the stability of discrete-time systems. Recently, [114] introduces inverse optimal

pinning control for trajectory tracking control of complex networks. Note however, these inverse

optimal control methods [44, 97, 114] require system dynamics to infer the cost functions.
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The relations between inverse RL and inverse optimal control are not fully understood. [52]

claims that the two are same, note however, research [1, 31, 45] show that they are definitely not

the same thing. Inverse optimal control requires system dynamics while inverse RL does not.

1.3 Contributions

• In Chapter 2, a novel distributed Kalman consensus filter (DKCF) with an information-

weighted consensus structure is proposed for random mobile target estimation in continuous

time. A novel information flow structure is designed for the measurement of targets that

considers the features including the random mobility of targets and limited sensing ranges of

sensors, while [41] failes to consider these features in its information flow structure for the

distributed Kalman filter. Necessary and sufficient conditions are developed for the conver-

gence of distributed Kalman consensus filters for estimation with randomly moving targets

of continuous-time dynamics. This is in contrast to [32, 48, 49, 90] which have not pro-

vide rigorous convergence analysis for their proposed filters. The new DKCF in comparison

simulation outperforms the existing distributed Kalman filtering algorithm in [82] on the

estimation associated with random mobility of targets and limited sensing ranges of sensors.

• In Chapter 3, a new measurement structure is developed that allows each sensor to combine

both direct target measurement and indirect neighbor estimates. The robustness margins of

the new DKCF based on the new measurement structure are developed for sensor networks.

To the best knowledge, the analysis of robustness margins for distributed filters has not been

performed yet. The robustness margins, i.e., gain and phase margins are thus derived for

DKCF. Both gain and phase margins of DKCF are better than that of the single-agent KF.

The distributed transfer function of each agent are derived in two cases. In the first case, the

sensor has direct measurements of the target. In the second one, the sensor cannot directly

observe the target but only has information from its neighbors. Then, the singular value

properties of the return difference matrix of each case are studied. Furthermore, the effects

of graph overall coupling strengths on gain and phase margins are analyzed in the two cases,
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since the graph overall coupling strengths may vary with the change of the communication

graphs in sensor networks. The variation of minimum singular values of return difference

matrices under different overall coupling strengths is then developed to study the robustness

margin change in the two cases.

• In Chapter 4, first, a new model-based inverse RL algorithm is proposed for Adversarial Ap-

prentice Games. Compared with inverse RL algorithms in [18, 63, 64, 104] for MDPs, the

proposed algorithm applies for systems with adversarial disturbance that are described by

affine nonlinear differential dynamical equations in continuous-time. The algorithm has two

learning stages, an optimal control learning and a second learning based on inverse optimal

control. This algorithm is further implemented via NNs. Moreover, the algorithm clarifies

that inverse optimal control is solved as a subproblem of inverse RL, which is not clarified in

existing inverse RL works [3,14,18,37,38,53,63,64,79,98,104,109]. Then, a novel model-

free integral inverse RL algorithm based on integral RL is developed to solve the Adversarial

Apprentice Games without knowing the dynamics of the expert or the learner. The model-

free algorithm is further implemented via NNs. By contrast, [17, 18, 61, 64, 83, 98] provide

solutions to infer unknown cost functions but need to know or identify system dynamics.

Different adversarial inputs are considered for the learner system and the expert system in

the apprentice learning process, while [18, 63, 64, 98, 104] solve inverse RL problems by

considering the same disturbance between two agents or disturbance only for one agent. To-

ward this end, two-player zero-sum games are formulated for both agents in our algorithms.

The two-player zero-sum game of the learner is solved as a subproblem in Adversarial Ap-

prentice Game Algorithms. It is shown that the state-penalty weights that the learner learns

are not unique. The set of all equivalent state-penalty weights is explicitly characterized,

while [3, 14, 18, 37, 38, 53, 63, 64, 98, 104, 109] fails to quantify the set of nonunique cost

functions or state-penalty weights.

• In Chapter 5, new inverse RL algorithms are proposed for multi-player non-zero-sum game

systems described by differential dynamic equations. This is in contrast to inverse RL in
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MDPs [24, 75]. Inverse RL and IOC in different roles are used to solve the multi-player

differential dynamic game problem. A new model-based inverse RL algorithm to learn the

expert’s reward functions. The algorithm has an optimal control learning stage first and a

second IOC learning stage. Then, the research develops two new inverse RL algorithms:

completely model-free for homogeneous control inputs; and partially model-free for hetero-

geneous control inputs. This is in contrast to [39, 74] which use IOC to infer the expert’s

reward functions given known dynamics and matrix design equations.
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3. Bosen Lian, Wenqian Xue, Frank L. Lewis, and Tianyou Chai, "Inverse Reinforcement

Learning for Adversarial Apprentice Games," IEEE Transactions on Neural Networks and

Learning Systems, to appear, 2021. DOI: 10.1109/TNNLS.2021.3114612
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Chapter 2: DISTRIBUTED KALMAN CONSENSUS FILTER FOR

ESTIMATION WITH MOVING TARGETS

2.1 Introduction

Consensus-based distributed Kalman filters for estimation with targets have attracted consid-

erable attention. Most of the existing Kalman filters use the average consensus approach, which

tends to have a low convergence speed. They also rarely consider the impacts of limited sens-

ing range and target mobility on the information flow topology. This work addresses these issues

by designing a novel distributed Kalman consensus filter (DKCF) with an information-weighted

consensus structure for random mobile target estimation in continuous time.

First, a moving target information-flow topology for the measurement of targets is developed

based on the sensors’ sensing ranges, targets’ random mobility, and local information-weighted

neighbors. Then, based on the proposed measurement structure, this chapter designs a DCKF

for estimation with multiple moving targets that considers information-weighted neighbors and

distributed consensus for each sensor node in continuous time. Third, necessary and sufficient

conditions about the convergence of the proposed DKCF are developed. Under these conditions,

the estimates of all sensors converge to the consensus values. Eventually, simulation and compar-

ative studies show the effectiveness and the superiority of this new DKCF compared to existing

KCF.

This organization of this chapter is as follows. Section 2.2 introduces the new distance-based

measurement structure and the new DKCF for target estimation. Section 2.3 first formulates a

random mobility model of targets to characterize the probability of sensor measurement, and then

analyzes the stability and the convergence of the consensus-based filters. Section 2.4 provides

comparative simulations to support the analysis. Finally, the conclusions and discussions of further

research directions are included in Section 2.5.
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2.2 Formulation of Distributed Consensus Filtering Problem for Multiple

Moving Targets

This section first provides basics of graph theory, and then develop a new distance-based in-

formation flow structure for measuring target and then a distributed Kalman consensus filtering

algorithm for multiple moving targets.

2.2.1 Graph Theory in Sensor Networks and Notations

Consider a graph Gr = (V , E) for a sensor network of N sensors V = {1, 2, · · ·N}. The set

of edges E ∈ V × V represents the communication channels. A = [aij] ∈ RN×N denotes the

associated weighted adjacency matrix, in which aij is the weight associated with edge (j, i) and

denotes the information flow from sensor j to i. It is graphically represented by an arrow with

head sensor node i and tail sensor node j, aij = 1 if (j, i) ∈ E , and otherwise, aij = 0. Denote the

set of local neighbors of sensor i as Ni = {j : (j, i) ∈ E ,∀j ̸= i}. Define the in-degree of sensor

i as di =
N∑
j=1

aij and the in-degree diagonal matrix D = diag {di} ∈ RN×N . The graph Laplacian

matrix is L = D−A. It is called a directed path from sensor i to sensor j when there is a sequence

of successive edges in the form {(i,m), (m, s), . . . , (l, j)}. A directed tree is a connected digraph

and every node except the root node in this digraph, has an in-degree equaling to one.

Notations: Rn and Rn×m denote the n-dimensional Euclidean space and the set of all n ×m

matrices, respectively; the superscript T represents the matrix transposition; P > 0 means that P

is a real symmetric and positive definite matrix; E[x|y] denotes the expectation of x conditionally

on y; P{x} denotes the probability of x; ∥ · ∥ denotes the Euclidean norm of a vector or a matrix;

diag{· · · } stands for a block diagonal matrix. All matrices are assumed to be compatible for

algebraic operations if their dimensions are not explicitly stated.

2.2.2 Distributed Kalman Consensus Filters for Multi-target Sensor Networks

This subsection presents a new distance-based information flow structure for the estimation of
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Figure 2.1: Multiple moving targets and field of stationary sensors

multiple moving targets and then develops a novel distributed Kalman consensus filtering algo-

rithm for these moving targets. The motivation of this work is based on the estimation problem of

multiple moving targets in field of stationary sensors as shown in Figure 2.1. It is seen that five

stationary sensors are deployed in the field to estimate the states of three targets that move around

the field.

Consider the target dynamics (2.1), extend the information-flow structure in [41], and apply the

standard continuous-time Kalman filter in [118]. In addition, assume that the dynamics of targets

are known, and the positions of all sensors in a certain area are fixed such that the adjacency matrix

A = [aij] is known to all sensors in the topology network.

Consider the target k the CT linear time invariant system as

ẋk = Akxk + F kωk, (2.1)

where xk ∈ Rn denotes the state of target k, k ∈ {1, 2, · · · , U}with the initial condition xk(0) ∼
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(xk0, P
k
0 ) ,and ωk denotes a zero-mean Gaussian process noise, which subjects to ωk ∼ (0,W k).

The main goal of this chapter is to design a distributed Kalman consensus filter for estimation

with multiple mobile targets. To address the random target mobility and limited sensing range of

sensors, a new distance-based information flow structure is designed to estimate the targets, which

has the dynamics (2.1). All nodes need to reach a consensus value about the estimation of each

target. In addition, a necessary and sufficient condition is given for the convergence of the filter.

Now build a novel distance-based information flow structure for multiple targets and the DKCF

model by using information from both the targets and the local information-weighted neighbors.

To comprehensively consider limited sensing range of sensors and random mobility of tar-

gets, the measurement of sensor i for the moving target k is given by the novel distance-based

information-flow topology structure

zki =

 λki (d
k
i , t)(G

k
i x

k + µk
i )

N∑
j=1

akij(P
k
j )

−1
(x̂kj + ωk

ij)

 , (2.2)

where Gk
i ∈ Rmi×n are distributed observation matrices. µk

i ∈ Rmi are zero-mean Gaussian obser-

vation noises, which subject to µk
i ∼ (0, Rk

i ). x̂
k
j ∈ Rn and P k

j ∈ Rn×n denote the estimated posi-

tion and the estimation error covariance of sensor j for target k, respectively. The conditionally ex-

pected estimation error covariance is defined as P k
i = E

{
(x̂ki − xk)(x̂ki − xk)

T |λk1, λk2, · · · , λkN
}

.

ωk
ij are communication channel noises with Ξk

ij = E
{
ωk
ij(ω

k
ij)

T
}

, for any i =∈ V , j ∈ Ni. The

work of [12] estimates unknown process and measurement noises in order to improve the target

estimates. However, similar to distributed estimation for target tracking in [125, 130], the research

focuses on the development of filtering algorithm to solve distributed estimation solution with

assuming the known the process and measurement noises for sensor networks.

Here, λki (d
k
i , t) is a distance-based observation index which depends on the relative distance

between sensors and true positions of targets. λki = 1 if target k enters into the sensing range of

sensor i and thus sensor i can directly observe target k, and λki = 0, otherwise. The formulation of
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λki and dki are built as

λki =


1, dki ≤ Ri

0, dki > Ri,

(2.3)

dki = ∥xki − pi∥, (2.4)

where pi and Ri are the position and the sensing range of sensor i, respectively.

This measurement structure (2.2) uses not only the estimates of the neighbors x̂kj , ∀j ∈ Ni, but

also the direct information from the target k if directly observable by sensor i. In addition, (P k
j )

−1

is known as the Fisher information matrix [118] of node j. It increases with the increasing accuracy

of accuracy of sensor j’s estimates. Then the measurement of node i for target k depends more on

the neighbor node j. The information-flow structure (2.2) is called to be information-weighted.

Here, Ak≡[akij] denotes the sensor network topology for the target k, and define Laplacians

Lk = Dk −Ak.

Assumption 2.1. The communication graph in sensor networks is strongly connected.

Assumption 2.2. Noises ωk, ωk
ij and µk

i are white. Time signals λki , ωk, ωk
ij and µk

i are independent.

Remark 2.1. Different from [41] in which the estimated target states assume fixed information

flow structure, the research here allows the targets to move randomly. It is seen from (2.1) the

sensing model for targets depend on the distance-based observation index λki which can be 0 or

1 as shown in (2.3). These values depend on the change of relative distance between sensors and

true positions of targets in (2.4). Thus, the measurement structure (2.2) is distance-based sensing

model.

The next result presents the novel DKCF for estimation with multiple moving targets based on

the distance-based information flow structure (2.2).

Theorem 2.1. Considering the multiple targets’ dynamics (2.1), the information flow structure for

moving targets (2.2) with communication noises ωk
ij = 0, a DKCF for multiple moving targets is
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given as

˙̂xki = Akx̂ki − λkiP k
i (G

k
i )

T (Rk
i )

−1
(Gk

i (x
k − x̂ki ) + µk

i ) (2.5)

+ 2dkiP
k
i [

N∑
j=1

akij(P
k
j )

−1
(P k

i + P k
j )]

−1

N∑
j=1

akij(P
k
j )

−1
(x̂kj − x̂ki )

and the DKCF covariance propagation equation is

Ṗ k
i = Ak

iP
k
i + P k

i (A
k
i )

T − λkiP k
i (G

k
i )

T (Rk
i )

−1
Gk

iP
k
i + F kW k(F k)

T

− 4
N∑
j=1

akijP
k
i [

N∑
j=1

akij(P
k
j )

−1
(P k

i + P k
j )]

−1

N∑
j=1

akij(P
k
j )

−1
P k
i , (2.6)

where dki =
N∑
j=1

akij , A
k
i = Ak +

N∑
j=1

akijIn, and i ∈ V , j ∈ Ni, k ∈ {1, 2, · · · , U} .

Proof. The distance-based information-flow measurement structure (2.2) can be rewritten as

zki =

 λkiG
k
i x

k + λki µ
k
i

N∑
j=1

akij(P
k
j )

−1
xk +

N∑
j=1

akij(P
k
j )

−1
(x̂kj − xk + ωk

ij)


= Hk

i x
k + vki ,

(2.7)

where

Hk
i =

 λkiG
k
i

N∑
j=1

akij(P
k
j )

−1

 , vki =

 λki µ
k
i

N∑
j=1

akij(P
k
j )

−1
(x̂kj − xk + ωk

ij)

 .
Define z̄ki as the term consisting of direct target state information

z̄ki = λkiG
k
i x

k + λki µ
k
i = H̄k

i x
k + v̄ki , (2.8)

where H̄k
i = λkiG

k
i denotes the direct information in terms of the distance-based observation index

λki and v̄ki = λki v
k
i is corresponding direct noise of sensor i for the target k. Denote z̃ki as the
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indirect information due to the information-weighted estimates of the neighbors of sensor i

z̃ki =
N∑
j=1

akij(P
k
j )

−1
(x̂kj + ωk

ij)

=
N∑
j=1

akij(P
k
j )

−1
xk +

N∑
j=1

akij(P
k
j )

−1
(x̂kj − xk + ωk

ij)

= H̃k
i x

k + ṽki , (2.9)

where H̃k
i =

N∑
j=1

aki (P
k
j )

−1 is indirect information of neighbors, and ṽki =
N∑
j=1

akij(P
k
j )

−1
(x̂kj −xk +

ωk
ij) is corresponding indirect noise.

Considering the multiple targets (2.1) with direct target information (2.8) and indirect informa-

tion weighted neighbors (2.9), the distributed Kalman filter for state estimates are given as

˙̂xki = Akx̂ki +Kk
i (z

k
i −Hk

i x̂
k
i )

= Akx̂ki + K̄k
i (z̄

k
i − H̄k

i x̂
k
i ) + K̃k

i (z̃
k
i − H̃k

i x̂
k
i )

= Akx̂ki + λki K̄
k
i (G

k
i (x

k − x̂ki ) + µk
i ) + K̃k

i

N∑
j=1

akij(P
k
j )

−1
(x̂kj − x̂ki + ωk

ij), (2.10)

where Kk
i = (K̄k

i , K̃
k
i ), in addition K̄k

i and K̃k
i are gains of directed information from targets and

indirect information from neighbors, respectively.

Rewrite (2.10) as

˙̂xki = Ak
i x̂

k
i + λki K̄

k
i (G

k
i (x

k − x̂ki ) + µk
i )

+ K̃k
i

N∑
j=1

akij(P
k
j )

−1
(x̂kj − x̂ki + ωk

ij)−
N∑
j=1

akijx̂
k
i , (2.11)

where Ak
i = Ak +

N∑
j=1

akijIn.

Denote x̃ki = xk − x̂ki as sensor i’s distributed state estimation error of for the target k. Then,
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based on (2.1) and (2.11), the distributed state error dynamics are

˙̃xki = Akxk + F kωk − Ak
i x̂

k
i − λki K̄k

i (G
k
i (x

k − x̂ki ) + µk
i )

− K̄k
i

N∑
j=1

akij(P
k
j )

−1
(x̂kj − x̂ki + ωk

ij) +
N∑
j=1

akijx̂
k
i

= Ak
i x̃

k
i − λki K̄k

i G
k
i x̃

k
i − λki K̄k

i µ
k
i

+ K̃k
i

N∑
j=1

akij(P
k
j )

−1
(x̃kj − x̃ki + ωk

ij) + F kωk. (2.12)

Rewrite (2.12) with ωk
ij = 0 as the following form

˙̃xki =Mk
i x̃

k
i +Nk

i , (2.13)

where

Mk
i = Ak

i − λki K̄k
i G

k
i − K̃k

i

N∑
j=1

akij(P
k
j )

−1
(2.14)

and

Nk
i = −λki K̄k

i µ
k
i + K̃k

i

N∑
j=1

akij(P
k
j )

−1
x̃kj − dki x̃ki + F kωk. (2.15)

As Assumption 2.2 states, time signals λki , ωk and µk
i are independent, so their cross correla-

tions are zero. However, x̂kj and x̃ki are correlated. Let γki =
N∑
j=1

akij(P
k
j )

−1
x̃kj . To quantify these

connections, define the following covariances

Sk = E{ωk(ωk)
T}, (2.16)

T
k

i = E{µk
i (µ

k
i )

T} = Rk
i , (2.17)

T̃ k
i = E{γki (γki )T} =

N∑
j=1

akij(P
k
j )

−1. (2.18)
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Build a discrete-time model for (2.13) with (2.14) and (2.15) and follow Euler discretization.

Then, one has

x̃ki (h+ 1) = eM
k
i T x̃ki (h) +

∫ T

0

eM
k
i (T−τ)dτNk

i (h), (2.19)

where (h+ 1)T = t and T is the sampling period of discretization.

It is known from Taylor series that one has

eM
k
i T = I + TMk

i +
(TMk

i )
2

2!
+

(TMk
i )

3

3!
+ . . .

= I + TMk
i +O((TMk

i )
2), (2.20)

where O((TMk
i )

2) represents the terms of higher order than the 1th degree.

Similar, one writes Taylor series for
∫ T

0
eM

k
i (T−τ)dτ as

∫ T

0

eM
k
i (T−τ)dτ =

∫ T

0

(I +Mk
i (T − τ) +O{[Mk

i (T − τ)]2}dτ

= TI +O
′
((TMk

i )
2), (2.21)

where the notation O′
(T ) in integral operator represents the terms of equal and higher order than

2th degree of TMk
i .

Based on the above Taylor series (2.20) and (2.21), one can rewrite (2.19) as

x̃ki (h+ 1) = (I + TMk
i )x̃

k
i (h) + (TI +O

′
((TMk

i )
2))Nk

i (h) +O((TMk
i )

2)x̃ki (h)

= (I + TMk
i )x̃

k
i (h) + TNk

i (h) +O((TMk
i )

2)x̃ki (h) +O
′
((TMk

i )
2)Nk

i (h). (2.22)
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Substitute (2.22) into P k
i (h+ 1) = E{x̃ki (h+ 1)[x̃ki (h+ 1)]

T |λk1, · · · , λkN}. Then, one obtains

P k
i (h+ 1) = (I + TMk

i )P
k
i (h)(I + TMk

i )
T + T 2E{Nk

i (N
k
i )

T}

+ E{T (I + TMk
i )x̃

k
i (N

k
i )

T}

+ E{TNk
i (x̃

k
i )

T (I + TMT
i )}

+ (I + TMk
i )x

k
i (h)[O(·2)x̃ki (h) +O

′
(·2)Nk

i (h)]
T

+ TNk
i [O(·2)x̃ki (h) +O

′
(·2)Nk

i (h)]
T

+ [O(·2)x̃ki (h) +O
′
(·2)Nk

i (h)][(I + TMk
i )x̃

k
i (h)

+ TNk
i (h) +O(·2)x̃ki (h) +O

′
(·2)Nk

i (h)]
T , (2.23)

where O(·2) and O′
(·2) denote O((TMk

i )
2) and O′

((TMk
i )

2), respectively. The number 2 inside

of O(·2) and O′
(·2) denotes the least degree.

Based on the definition of differentiation, one obtains the Ṗ k
i (t) to be

Ṗ k
i (t) = lim

T→0

P k
i (h+ 1)− P k

i (h)

T
(2.24)

= lim
T→0

{
Mk

i (t)P
k
i (t) + P k

i (t)(M
k
i (t))

T + TE[Nk
i (t)(N

k
i (τ))

T ]

+ E[x̃ki (t)(N
k
i (t))

T ] + E[Nk
i (t)(x̃

k
i (t))

T ]

+Nk
i [O(·2)x̃ki (t) +O

′
(·2)Nk

i (t)]
T

+ [O(T (Mk
i )

2)x̃ki (t) +O
′
(T (Mk

i )
2)Nk

i (t)][(I + TMk
i )x̃

k
i (t)

+ TNk
i (t) +O(T (Mk

i )
2)x̃ki (t) +O

′
(T (Mk

i )
2)Nk

i (t)]
T
}
.

Note that as T → 0, the last three terms of right side of (2.24) tend to be zeros. Thus, one has

Ṗ k
i (t) =Mk

i (t)P
k
i (t) + P k

i (t)(M
k
i (t))

T

+ E[x̃ki (t)(N
k
i (t))

T ] + E[Nk
i (t)(x̃

k
i (t))

T ]

+ lim
T→0

{
TE[Nk

i (t)(N
k
i (τ))

T ]
}

(2.25)
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After discretization sampling and back to continuous-time domain, write

E{Nk
i (t)(N

k
i (τ))

T}

= E
{
ηki (η

k
i )

T
}
+ F k(W k/T )(F k)T δ(t− τ) + λki K̄

k
i (T̄

k
i /T )(K̄

k
i )

T δ(t− τ), (2.26)

where ηki = K̃k
i

N∑
j=1

akij(P
k
j )

−1
x̃kj − dki x̃ki . The second and third term are covariance of process and

measurement noise, respectively. They are white noise, which means δ(t− τ) = 0 when t ̸= τ .

When T → 0, one derives (2.25) as

Ṗ k
i =Mk

i P
k
i + P k

i (M
k
i )

T + λki K̄
k
i T̄

k
i (K̄

k
i )

T + F kW k(F k)T

+ E{x̃ki (Nk
i )

T}+ E{Nk
i (x̃

k
i )

T}. (2.27)

Assume K̃k
i = (K̃k

i )
T and let

E{x̃ki (Nk
i )

T}+ E{Nk
i (x̃

k
i )

T} = 0. (2.28)

Then, one obtains suboptimal form for indirect information gain K̃k
i as

K̃k
i = 2

N∑
j=1

akijP
k
i [

N∑
j=1

akij(P
k
j )

−1
(P k

i + P k
j )]

−1. (2.29)

Then, rewrite (2.27) as

Ṗ k
i = (Ak

i − λki K̄k
i H̄i − K̃k

i

N∑
j=1

akij(P
k
j )

−1
)P k

i

+ P k
i (A

k
i − λki K̄k

i H̄i − K̃k
i

N∑
j=1

akij(P
k
j )

−1
)T

+ λki K̄
k
i T̄

k
i (K̄

k
i )

T + F kW k(F k)
T
. (2.30)

In order to solve the gain K̄k
i , the value of λki should be discussed. Because of the random
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mobility of targets and limited sensing range, sensors may not be able to observe the targetsâ

dynamics all the time.

1) If λki = 0, as it is shown in (2.12), there will be no item of K̄k
i H̄i for the direct update

information from target xk. Thus, one has

K̄k
i = 0. (2.31)

2) If λki = 1, the filter updates. One then computes ∂Tr(Ṗ k
i )/∂K̄

k
i = 0 to obtain gain K̄k

i as

2K̄k
i T̄

k
i − 2P k

i (G
k
i )

T = 0 (2.32)

K̄k
i = P k

i (G
k
i
)T (Rk

i )
−1
. (2.33)

Compensively considering two situations (2.31) and (2.33), one has optimal direct gains K̄k
i as

K̄k
i = λkiP

k
i (G

k
i
)T (Rk

i )
−1
. (2.34)

Substituting (2.29) and (2.34) into (2.11) and (2.30), one derives DKCF (2.5) and (2.6).

It is seen that indirect information gain in (2.29) is not optimal while the direct target measure-

ment gain is optimal. Thus, in general, the covariance propagation (2.6) is not optimal. However,

the indirect information gain is given by removing the complicated cross correlation between x̃ki

and the estimates x̃kj , j ∈ Ni from its neighbors.

Remark 2.2. The difficulties associated with the estimation for random mobile targets are two

main aspects. The first is how to build the connection between random moving targets and the

measurement. This work designs the parameter λki to determine whether the target k is observed

by sensor i. Considering the sensing range Ri of sensor i, λki is determined. Thus, with formula-

tions from (2.1) to (2.4), sensor networks are able to measure random moving target. The second

difficulty is to derive the propagation of the estimation error covariance (2.6). The reason is that

when λki = 0, one cannot do the derivative for (2.30) to seek gain K̄k
i . Therefore, one needs to
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seek this gain in two cases as shown from (2.31) to (2.33). Then, this works combine two situations

as shown in (2.34).

Remark 2.3. The comparison of the DKCF (2.5) and (2.6) with the Kalman filter in [41] show

two differences. First, the Kalman filter in [41] is extended to multiple targets in a distributed way.

Second, (2.5) uses the information from targets directly when targets move into the sensing range

of sensors, i.e., λki = 1. When the targets move, they may be out of the range for which the sensors

can observe. λki is modulated by target location and hence is distance-based. However, [41] did

not consider the varying observations of sensors for the target.

Remark 2.4. If there exists communication noise ωk
ij between sensor i and neighbor sensor j for

the estimation of target k, the DKCF (2.5) and (2.6) can be derived to be

˙̂xki = Akx̂ki + λkiP
k
i (G

k
i )

T (Rk
i )

−1
(Gk

i (x
k − x̂ki ) + µk

i )

+ 2
N∑
j=1

akijP
k
i [

N∑
j=1

akij(P
k
j )

−1
(P k

i + P k
j )]

−1

×
N∑
j=1

akij(P
k
j )

−1
(x̂kj − x̂ki + ωk

ij), (2.35)

Ṗ k
i = Ak

iP
K
i + PK

i (Ak
i )

T − λkiP k
i (G

k
i )

T (Rk
i )

−1
Gk

iP
k
i + F kW k(F k)

T

− 4
N∑
j=1

akijP
k
i [

N∑
j=1

akij(P
k
j )

−1
(P k

i + P k
j )]

−1

N∑
j=1

akij(P
k
j )

−1
P k
i

+ 4
N∑
j=1

akijP
k
i [

N∑
j=1

akij(P
k
i + P k

j )]
−1

× Ξk
ij[

N∑
j=1

akij(P
k
i + P k

j )]
−1P k

i . (2.36)

2.3 Convergence Analysis

This section analyzes and proves the convergence of the distributed Kalman consensus filter
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estimation method.

To accomplish this, more details are needed about the statistics of λki (t) in (2.2). In order

to analyze the convergence of the proposed DKCF on random moving targets, this work simply

assumes the independent stochastic process of λki (t) at every time instant. The time domain is

decomposed into a finite set of m disjoint random intervals [ts, ts+1) for 0 ≤ s ≤ m − 1. In each

small interval, assume independent stochastic process for λki (t) with λki = 1 or 0. Then

P
{
λki (t) = 1

}
= pki , E

{
λki (t)

}
= pki (2.37)

where t ∈ [ts, ts+1). Additionally, λki (t) and λkj (t) are independent, such that Cov(λki (t), λ
k
j (t)) =

0. λki (t1) and λki (t2) are independent such that Cov(λki (t1), λ
k
i (t2)) = 0. t1 and t2 are in different

intervals.

λki (t) is time-varying and modeled by the random moving targets. To capture random mobility,

stochastic models such as random mobility models, including Random Waypoint, and Smooth

Turn are widely used. Interested readers please refer to paper [115] for detailed descriptions of

these random models. The distributions of λki (t) can be obtained by examining the stationary

node distributions of these models. For instance, as the Random Waypoint and Smooth Turn have

uniform stationary distributions, the stationary probability of λki (t) = 1 can be obtained as the ratio

between sensor i’s coverage area divided by the target k’s whole exploration area. For the Random

Waypoint, the stationary node distribution is non-uniform, and in particular bell-shaped due to

the boundary effects. The stationary probability of λki (t) = 1 in this case can be obtained from

approximated expressions developed in e.g., [36]. For each different target, because of the varying

λki (t), Laplacian matrix Lk differs for any k ∈ {1, 2, · · · , U}. Then, the following results are

needed and extended for the convergence analysis.

Due to Assumption 2.1, one has rank(Lk) = N − 1 [56, 89], i.e., the eigenvalue of Lk which

equals zero is not repeated. Therefore, under Assumption 2.1, the Lk is a singular M -matrix.

Lemma 2.1. [89] Given the singular M -matrix Lk (Laplacian matrix), there exists a positive
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vector qk =

[
qk1 qk2 · · · qkN

]T
with qki > 0, for ∀i ∈ V such that qkLk ≥ 0, where k ∈

{1, 2, · · · , U}.

Lemma 2.2. [41] Give the singular M -matrix Lk (Laplacian matrix). Define the vector qk =[
qk1 qk2 · · · qkN

]T
, where qki > 0 in Lemma 2.1. Then, qki

N∑
j=1

akij ≥
N∑
j=1

qja
k
ij > 0 for ∀i ∈ V and

k ∈ {1, 2, · · · , U}.

Based on these constructions, the result of the convergence of the DKCF for state estimates of

moving targets is obtained now.

Definition 2.1. Define the estimation error as x̃i(t) = x(t) − x̂i(t), i ∈ V . The dynamics of x̃i is

called uniformly ultimately bounded (UUB) in mean square with ultimate bound ci, if there exist

positive constants ri, T (ri, ϵi) and ci, such that for any given constant ϵi > 0, ∥x̃i(0)∥ ≥ ri implies

that E{∥x̃i∥2} ≤ ci + ϵi for all t > T (ri, ϵi).

Theorem 2.2. (Proof of convergence to consensus of DKCF for estimation of moving targets).

Under Assumption 2.1, consider the information-flow structure (2.2) and the DKCF in Theorem

2.1 for estimates of multiple moving targets. Suppose noises exist. Then, if and only if the pair

(Ak, Gk) with Gk =

[
(pk1G

k
1)

T (pk2G
k
2)

T · · · (pkNG
k
N)

T

]T
is observable, the state estimates

reach to consensus in a small bound in the mean square, i.e., the distributed state estimation errors

of each sensor defined as x̃ki (t) = xk(t)− x̂ki (t) are UUB in the mean square as t→∞, ∀ i, k.

Proof. The dynamics of targets are

ẋk = Akxk + F kωk. (2.38)

The DKCF for the state estimation of moving targets with noises is given by (2.35). Since the

graphGr is strongly connected, there exists a directed path from any sensor i to any other sensor j,

where i, j ∈ V . Then, the local estimation error dynamics and estimation covariance are obtained
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respectively, as

˙̃xki = ẋk − ˙̂xki

= (Ak − λkiP k
i (G

k
i )

T (Rk
i )

−1
Gk

i )x̃
k
i + λkiP

k
i G

k
i (R

k
i )

−1
µk
i + 2dkiP

k
i Q

k
i (x̃

k
j − x̃ki + ωk

ij) + F kωk,

(2.39)

Ṗ k
i = Ak

iP
k
i + P k

i (A
k
i )

T − λkiP k
i (G

k
i )

T (Rk
i )

−1
Gk

iP
k
i − 4

N∑
j=1

akijP
k
i Q

k
iP

k
i + F kW k(F k)

T

+ 4
N∑
j=1

akijP
k
i [

N∑
j=1

akij(P
k
i + P k

j )]
−1Ξk

ij[
N∑
j=1

akij(P
k
i + P k

j )]
−1P k

i . (2.40)

Select a Lyapunov function candidate as

V (X̃k(λki , t)) = E

[
N∑
i=1

qki (x̃
k
i )

T
(P k

i )
−1
x̃ki

]
, (2.41)

where qki is defined in Lemma 2.1. Given the observability condition that the pair (Ak, Gk) is ob-

servable when t→∞, P k
i (t) converge to positive definite constant matrices. Then, diag{(P k

i )
−1} >

0 such that V (X̃k) > 0 holds for any X̃k =

[
x̃k1 x̃k2 · · · x̃kN

]T
̸= 0.

Taking the derivative of V (X̃k) yields

V̇ (X̃k(λki , t)) = E{
N∑
i=1

qki ( ˙̃x
k
i )

T
(P k

i )
−1x̃ki +

N∑
i=1

qki (x̃
k
i )

T
(Ṗ k

i )
−1x̃ki +

N∑
i=1

qki (x̃
k
i )

T
(P k

i )
−1 ˙̃xki }.

(2.42)
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Substituting (2.39) and (2.40) into (2.42) leads to

V̇ (X̃k(λki , t)) = E{
N∑
i=1

qki [A
k
i − λkiP k

i Σ
k
i + 2dkiP

k
i Q

k
i (x̃

k
j − x̃ki )

− dki x̃ki ]T (P k
i )

−1
x̃ki } − E{

N∑
i=1

qki (x̃
k
i )

T (P k
i )

−1[Ak
iP

k
i

+ P k
i (A

k
i )

T − λkiP k
i Σ

k
iP

k
i − 4dkiP

k
i Q

k
iP

k
i + F kW k(F k)T ]

× (P k
i )

−1x̃ki }+ E{
N∑
i=1

qki (x̃
k
i )

T (P k
i )

−1[Ak
i − λkiP k

i Σ
k
i

+ 2dkiP
k
i Q

k
i (x̃

k
j − x̃ki )− dki x̃ki ]} −

N∑
i=1

qki (x̃
k
i )

TΘk
i x̃

k
i

+
N∑
i=1

qki (x̃
k
i )

Tϕk
i +

N∑
i=1

qki (ϕ
k)T x̃ki , (2.43)

where

Σk
i = pki (G

k
i )

T (Rk
i )

−1Gk
i ,

Qk
i = [

N∑
j=1

akij(P
k
j )

−1
(P k

i + P k
j )]

−1

N∑
j=1

akij(P
k
j )

−1

Θk
i = 4

N∑
j=1

akijP
k
i [

N∑
j=1

akij(P
k
i + P k

j )]
−1Ξk

ij[
N∑
j=1

akij(P
k
i + P k

j )]
−1P k

i ,

ϕk
i = λkiG

k
i (R

k
i )

−1µk
i + 2dkiQ

k
i ω

k
ij + F kW k.
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With simplification, one has

V̇ (X̃k(λki , t)) = −
N∑
i=1

qki (x̃
k
i )

T
Σk

i x̃
k
i −

N∑
i=1

qki (x̃
k
i )

T
F kW k(F k)T x̃ki

+ E{
N∑
i=1

qki (x̃
k
i )

T (P k
i )

−1[2dkiP
k
i Q

k
i (x̃

k
i − x̃kj )− dki x̃ki ]}

+ E{
N∑
i=1

qki [2d
k
iP

k
i Q

k
i (x̃

k
i − x̃kj )− dki x̃ki ]T (P k

i )
−1x̃ki }

− E{
N∑
i=1

4qki (x̃
k
i )

TQk
i x̃

k
i } −

N∑
i=1

qki (x̃
k
i )

TΘk
i x̃

k
i

+
N∑
i=1

qki (x̃
k
i )

Tϕk +
N∑
i=1

qki (ϕ
k)T x̃ki

= −
N∑
i=1

qki (x̃
k
i )

T
Σk

i x̃
k
i −

N∑
i=1

qki (x̃
k
i )

T
F kW k(F k)T x̃ki

−
N∑
i=1

2qki d
k
i (x̃

k
i )

TQk
i x̃

k
j −

N∑
i=1

qki d
k
i (x̃

k
i )

T (P k
i )

−1x̃ki

−
N∑
i=1

2qki d
k
i (x̃

k
j )

TQk
i x̃

k
i −

N∑
i=1

qki (x̃
k
i )

TΘk
i x̃

k
i

+
N∑
i=1

qki (x̃
k
i )

Tϕk +
N∑
i=1

qki (ϕ
k)T x̃ki

−
N∑
i=1

qki d
k
i (x̃

k
i )

T (P k
i )

−1x̃ki . (2.44)

According to Lemma 2.2, the last term of (2.44) becomes

−
N∑
i=1

qki

N∑
j=1

akij(x̃
k
i )

T (P k
i )

−1x̃ki (2.45)

≤ −
N∑
i=1

N∑
j=1

(qkj a
k
ji)(x̃

k
i )

T (P k
i )

−1x̃ki

=
N∑
i=1

qki

N∑
j=1

akij(x̃
k
j )

T (P k
j )

−1x̃kj .
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Because 0 < 2Qk
iP

k
i ≤ I and 0 < 2Qk

iP
k
j ≤ I , one has

−
N∑
i=1

2qki d
k
i (x̃

k
i )

TQk
i x̃

k
j −

N∑
i=1

qki d
k
i (x̃

k
i )

T (P k
i )

−1x̃ki

−
N∑
i=1

qki d
k
i (x̃

k
i )

T (P k
i )

−1x̃ki −
N∑
i=1

2qki d
k
i (x̃

k
j )

TQk
i x̃

k
i

≤ −
N∑
i=1

2qki d
k
i (x̃

k
i )

TQk
i x̃

k
j −

N∑
i=1

qki d
k
i (x̃

k
i )

T (P k
i )

−1x̃ki

−
N∑
i=1

qki d
k
i (x̃

k
j )

T (P k
j )

−1x̃kj −
N∑
i=1

2qki d
k
i (x̃

k
j )

TQk
i x̃

k
i

≤ −
N∑
i=1

2qki d
k
i (x̃

k
i )

TQk
i x̃

k
j −

N∑
i=1

2qki d
k
i (x̃

k
i )

TQk
i x̃

k
i

−
N∑
i=1

2qki d
k
i (x̃

k
j )

TQk
i x̃

k
j −

N∑
i=1

2qki d
k
i (x̃

k
j )

TQk
i x̃

k
i

≤ −
N∑

i=1,j=1

2qki a
k
ij(x̃

k
i + x̃kj )

TQk
i (x̃

k
i + x̃kj )

≤ 0. (2.46)

Finally, one has

V̇ (X̃k) ≤ −
N∑
i=1

qki (x̃
k
i )

T
(P k

i )
−1
F kW k(F k)

T
(P k

i )
−1
x̃ki

−
N∑
i=1

pki q
k
i (x̃

k
i )

T
(Gk

i )
T (Rk

i )
−1
Gk

i x̃
k
i

−
N∑

i=1,j=1

2qki a
k
ij(x̃

k
i + x̃kj )

TQk
i (x̃

k
i + x̃kj )

− λmin(Θ
k)∥X̃k∥2 + ∥Φk∥∥X̃k∥

≤ −λmin(Θ
k)∥X̃k∥2 + ∥Φk∥∥X̃k∥, (2.47)

where Θk = diag{qki Θk
i } and Φk = [qk1ϕ

k, · · · , qkNϕk]T .

It is seen that when t → ∞, if ∥X̃k∥ ≥ ∥Φk∥/λmin(Θ
k), one has V̇ (X̃k) ≤ 0. According to
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UUB, after a lapsed time te, estimation errors trajectory eventually reaches a bounded neighbor-

hood of its equilibrium point X̃k
e . In addition, note that the approximation errors go to zeros due to

the limit on the sampling period. Thus, it has no influence to this bound. Furthermore, as t→∞,

one has diag{(P k
i )

−1} > 0 such that V (X̃k) > 0 Therefore, (2.41) is a Lyapunov function and

estimation error dynamics of x̃ki (see (2.39)) is UUB in the mean square. It implies that the errors

between estimates and the target states reach a bounded neighborhood, i.e., x̃ki (t) = xk(t)− x̂ki (t)

is UUB.

The above proof provides the sufficiency of the condition for the convergence of estimation

errors. For necessity, it is noted that when V̇ (X̃k) ≤ 0 and (2.41) is a Lyapunov function, one

concludes that diag{(P k
i )

−1} > 0 such that the pair (Ak, Gk) with Gk =
[
(pk1G

k
1)

T (pk
2G

k
2)

T · · ·

(pkNG
k
N)

T
]T

is observable. Thus, the condition that the pair (Ak, Gk) is observable is a necessary

and sufficient condition for the convergence of estimation errors by using the DKCF.

Remark 2.5. Note that estimation errors are UUB and the bound of the errors depend on the

process, observation and communication noises (see (2.47)). When these noises are smaller, the

estimation errors will be reduced. It is seen that the estimation errors x̃ki converge to zeros when

t → ∞ if noises are zeros, which implies that the estimated states via DKCF converge to the

moving target states.

Remark 2.6. The computation complexity will not scale a lot with the increasing numbers of

targets and sensors. A slight increase is possible. First, the DKCF is first order. Second, this

work considers no coupling of targets and therefore the estimation of each sensor for each target

is distributed and independent. Third, the value of stochastic variable λki is either 0 or 1, which

brings less computational complexity.

Remark 2.7. As it is shown in Theorem 2.2, the convergence condition is under Assumption 2.1,

if only if the pair (Ak, Gk) with Gk =

[
(pk1G

k
1)

T (pk2G
k
2)

T · · · (pkNG
k
N)

T

]T
is observable. This

means that some sensor, such as sensor i for target k, is allowed to have probability 0, i.e., pki = 0

to observe the target. The convergence can still be guaranteed in this case. Note that the DKCF

(6) and (7) together not only use direct information from targets, but also estimations from all the
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sensor nodes. If target k is not in the sensing range of sensor i (i.e., not being the root node),

λki = 0, and the information all comes from its neighbors. As no direct information from targets

is used, and the estimation error in (2.6) and the uncertainties about the estimation can be large.

However, as information from neighbors is still available, at convergence one has P k
i → δ where

δ is some constant and x̂ki → x̂kj .

Theorem 2.2 is based on the strongly connected topology. Next, this work weakens the condi-

tion on the communication topology. Then the following corollaries hold.

Corollary 2.1. (Necessary and Sufficient Condition). Suppose that 1) Assumption 2.1 does not

hold, and 2) (Ak, Gk
i ) is observable for the target k where k = {1, 2, · · · , O}, and i ∈ V . Then, the

estimation of sensors by using DKCF for multiple moving targets converges to consensus if only if
N∑
i=1

pki > 0, namely, there exists at least one root node which has a nonzero observation probability.

Corollary 2.2. (Sufficient Condition). If Assumptions 2.1-2.2 are that 1) the graph is not strongly

connected and 2) r1, r2, · · · , rm are root nodes among all sensors. Then, the estimation converges

to the consensus, if the pair (Ak, Gk
r) with Gk

r =

[
(pkr1G

k
r1
)T (pkr2G

k
r2
)T · · · (pkrmG

k
rm)

T

]T
is

observable.

2.4 Simulation Studies

Now, several illustrative examples are presented to demonstrate that the new DKCF for esti-

mation with multiple moving targets in Theorem 2.1 have good performance. And comparison

simulations show DKCF has better convergence than the Kalman consensus filter (KCF) in [82].

Sensors are stationary deployed in the area and the communication topology is given in Figure

5.5.

2.4.1 Performance of the DKCF

The effectiveness of the proposed DKCF is verified in this subsection. This work assumes three

moving vehicles as targets in certain area. Consider the dynamics and sensing model be linear time
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Figure 2.2: Communication topology of the sensor network

invariant, which has x1, x2, x3, x4 ∈ R4. The standard system dynamic of two degrees-of-freedom

vehicle model of Ford Taurus [85] is

A =



ac1−bc2
Izu

a2c1+b2c2
Izu

0 0

a2c1+b2c2
mu

bc2−ac1
mu

0 0

c1+c2
mu

ac1−bc2
mu

0 0

0 0 1 0



The state is x =

[
v̇ ṙ ṡ s

]T
, where v, r, ṡ and s denote the vehicle lateral velocity along

body, the yaw rate of the vehicle body in vertical axis, the vehicle lateral position and velocity,

respectively. Several physical parameters of vehicles for system dynamics A1 A2 and A3 are pre-

sented in Table 2.1.

Table 2.1: Taurus nominal vehicle parameters

Parameters Vehicle 1 Vehicle 2 Vehicle 3

Vehicle mass m 1820kg 1500kg 2000kg

Moment of inertia Iz 2922kg-m2 2002kg-m2 1930kg-m2

Forward speed u 15.50m/s 27.08m/s 35.00m/s

Brake system time τabs 0.5s 0.5s 0.5s

CG to front wheel a 1.07m 1.07m 1.07m

CG to rear wheel b 1.62m 1.62m 1.62m

Front cornering coefficient c1 -555lb/deg -500lb/deg -492lb/deg

Rear cornering coefficient c2 -366lb/deg -330lb/deg -325lb/deg
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The other parameters such as the process, measurement and communication noises for each

target are selected as ωk ∼ (0,W ), where W =

[
2 1

]T
. Additionally Gk

i = I2, µk
i ∼ (0, 0.512),

ωk
ij ∼ (0, 0.512), F k = I2, Sk = diag{2, 1}, Rk

i = 0.25I2, Ξk
ij = 0.5I2, k = {1, 2, 3} and

i, j = {1, 2, 3, 4, 5, 6}, where 1n ∈ Rn represents a column vector with all ones. In represents a

n× n identity matrix.

To study the estimation of DKCF for random moving targets, this work can use random models

that are provided in Section 2.3, to obtain different observation probabilities of sensors for the three

targets. Any observation probability value from 0-1 is possible, based on different settings of the

sensing range and exploration area.

The diagonal element P k
(i)22 of the covariance matrix of sensor i for target k represents the

covariance matrix to show the estimation evaluation. Here, P k
i = E{(x̃ki )T x̃ki |λki }. This work sets

two observation Prob (probability) Schemes as follows.

• Prob Scheme 1. pk1 = 0, pk2 = 0.1, pk3 = 0.5, pk4 = 0.7, pk5 = 0.9, pk6 = 1 for all k.

• Prob Scheme 2. pk1 = 0.2, pk2 = 0.1, pk3 = 0.5, pk4 = 0.7, pk5 = 0.9, pk6 = 1 for all k.

The average covariance values P(i)22 = 1
Q

∑Q
k=1P

k
(i)22 of sensor i for all targets are are shown

in Figure 2.3 under Prob Scheme 1. The initials of S1 with Prob 0 denote that sensor 1 has 0 ob-

servation probability for three targets. The relevant covariance values under the Prob Scheme 2 are

presented in the Figure 2.4. Note that the distributed estimation error covariance of sensor 1 con-

verges when pk1 = 0 while this covariance value is larger than other that of other probabilities. This

is because the estimation filter in this work uses the weighted information from neighbors. In ad-

dition, the covariance value decreases with the increase of observation probabilities by comparing

Figure 2.3 and Figure 2.4.

Figure 2.5 gives the average estimated errors of center of mass lateral position for all three

targets given the Prob Scheme 1. With the zero observation probability of sensor 1, the estima-

tion errors still converge. In addition, the average estimate errors quickly reach a small bound.

With the increase of observation probabilities of the sensors, the filter updates with more precise
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information. Thus, there will be fewer errors. These results are consistent with the theoretical

analysis.
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Figure 2.3: The average covariance value P22 of different sensors for all targets under Prob Scheme
1 by DKCF

2.4.2 Comparison Between KCF in [82] and DKCF

In this subsection, the DKCF in Theorem 2.1 is compared with the KCF in [82] for multiple

targets. Two cases below are considered. The convergence rates of the DKCF and the KCF are

compared.

The parameters for the distributed KCF are selected as G1 = I2, G2 = I2, and G3 = I2

for those sensors who can observe the targets’ states. θki = α/(1 + ||P k
i ||F ) with α = 0.05 for

i = 1, 2, 3 as stated in [81]. The other parameters are selected as the same as those given in Section

2.4.1.

Case 1. Considering Prob Scheme 1 for sensors in Section 2.4.1, the convergence of KCF for

the estimation is illustrated in Figure 2.6. In this case, pk1 = 0 which means sensor 1 is a naive

node [82]. It can be seen that the estimation error of all sensors converges within a small bound

except for that of sensor 1. It has a converge for oscillation. The reasons are two aspects. First,
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Figure 2.4: The average covariance value P22 of different sensors for all targets under Prob Scheme
2 by DKCF

considering the parameters in Table I, the target states are oscillating. Second, the KCF algorithm

does not observe the targets directly, nor does it utilize the weighted information from neighbors

(P k
j )

−1 to reduce the effect of inaccurate estimates.

Case 2. To study the convergence rate between DKCF and KCF, all nodes are assumed to have

the same nonzero observation probability for three targets, e.g., pki = 0.2 for ∀i = {1, 2, · · · 6}

and k = {1, 2, 3}. Figure 2.7 and Figure 2.8 show the average estimation error of each sensor for

all targets using the two filters. As it is shown, the two filters converge within the sampling time,

whereas the proposed DKCF has a faster convergence speed and a smaller error bound compared

with KCF. In order to show the further effectiveness of the DKCF, Figure 2.9 gives a larger and

sparser sensor network configuration with 12 sensors. The convergence of estimation errors is

shown in Figure 2.10.

Another evaluation criteria is given by the Mean Square Error (MSE) of the tracking state error.

The MSE of all state estimates of each sensor for each target in time interval [0, T ] is defined as

MSEk
i = 1

T

∫ T

0
(xk(t) − x̂ki (t))

2dt. The MSE of all sensors for target k is defined as MSEk =

1
N

∑N
i=1MSEk

i . The MSE of all sensors for all targets is defined as MSE = 1
M

∑M
k=1MSEk.
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Figure 2.5: The average estimation errors of different sensors for all targets by DKCF in case 1
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Figure 2.6: The average estimation errors of different sensors for all targets by KCF in case 1
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Figure 2.7: The average estimation errors of different sensors for all targets by DKCF in case 2
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Figure 2.8: The average estimation errors of different sensors for all targets by KCF in case 2
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Figure 2.9: Larger and sparser sensor network configuration
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Figure 2.10: The average estimation errors of different sensor for all targets by DKCF for sensor
network in Figure 2.9
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Figure 2.11 illustrates the change of MSE with different probabilities for the two algorithms. It is

clear that the MSE by using DKCF is always smaller than that by using KCF. Note that when all

targets always stay in the sensing range of all sensors, i.e., pki = 1 for KCF, the MSE value is about

0.0718. This is the MSE using the DKCF algorithm with pki = 0.5.
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Figure 2.11: The variation of MSE by KCF and DKCF with different probabilities

Therefore, with the distance-based information-flow measurement structure and the weighted-

information structure, the proposed DKCF for the estimates of random moving targets has im-

proved convergence performance in contrast to the KCF in [82].

2.5 Conclusion

This chapter studies the distributed Kalman consensus filter (DKCF) for the state estimates of

moving targets in continuous-time dynamics. Considering the limited sensing range of sensors

and random mobility of targets, a novel distance-based information-flow measurement structure

is proposed for the DKCF. This structure consists of two parts including the observation with

random moving targets and information-weighted estimates of neighbors. Necessary and sufficient

conditions are given so as to guarantee the convergence of DKCF by Lyapunov method. It is
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further demonstrated in the simulation studies that the proposed DKCF has a good convergence

performance.
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Chapter 3: ROBUSTNESS MARGINS OF DISTRIBUTED KALMAN

CONSENSUS FILTER

3.1 Introduction

Motivated by the guaranteed stability margins of linear quadratic regulators (LQR) and stan-

dard Kalman filter (KF) in frequency domain, this chapter extends these results to the distributed

Kalman-consensus filter (DKCF) for distributed estimation in sensor networks. In the first part, this

chapter studies the robustness margins of DKCF in two cases, one of which is based on the direct

target observation while the other uses estimates from neighbor sensors in the network. The loop

transfer functions of the two cases are established, and gain margin (GM) and phase margin (PM)

robustness results are derived for both. The robustness margins of DKCF are improved compared

to the single-agent KF, i.e., GM of (1
2
,∞) and PM of ±60◦. In the second part, as communication

topology varies in sensor networks, graph overall coupling strengths change. This chapter also

analyzes the correlation between overall coupling strengths and the robustness margins of DKCF.

This chapter is organized as follows. Section 3.2 introduces the standard KF and outline the

GM and PM results of KF. Section 3.3 introduces the new measurement structure and DKCF with

convergence proof. Then, robustness margins of DKCF are studied in two cases. Section 3.4 gives

simulation results. The conclusion is given in Section 3.5.

Notations. Rn and Rn×m denote the sets of n and n × m dimensional real vectors and real

matrices, respectively. A−T denotes the inverse of the complex conjugate transpose of the complex

matrix A. The determinant of the matrix A is denoted by det(A). diag{· · · } stands for a block-

diagonal matrix. ∥·∥ defines the induced 2-norm of a matrix. A > 0 and A ≥ 0 means that the

matrix A is positive definite and semi-definite, respectively. σ(A) and σ̄(A) denote the minimum

and maximum singular values of a matrix A, respectively. E{} denotes the expectation operator.

The real part of the complex number a(s) is denoted by Re(a(s)). The initial CRHP denotes closed

right half plane.
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3.2 Kalman Filter Robustness Margins

Robust margins guarantee the gain margins and phase margins of a feedback control system.

They are key to demonstrate the robustness of the systems when systems have issues of gain

perturbations or inaccurate phase. Robustness has been well studied for the LQR in the works

of [26, 51, 95, 124]. This section reviews robustness margins including GM and PM for the KF.

Consider a target with dynamics

ẋ = Ax+ Fw, (3.1)

where x ∈ Rn is the state. A ∈ Rn×n and F ∈ Rn×m are constant matrices. w ∈ Rm is the zero-

mean Gaussian noise source with power spectral density matrix S. Note that A is not necessarily

stable.

To estimate the target state, consider the measurement of sensor for the target

z = Hx+ µ, (3.2)

where z ∈ Rm is the measurement. H ∈ Rm×n is the observation matrix. µ ∈ Rm is the zero-mean

Gaussian noise source with the diagonal spectral density matrix R > 0.

The continuous-time optimal Kalman filtering estimation algorithm, KF [55], is given by

˙̂x = Ax+ L(z −Hx̂), (3.3)

L = PHTR−1, (3.4)

0 = AP + PAT +Q− PHTR−1HP, (3.5)

where x̂ is the estimate of the target state and L is the KF gain. Q = FSF T ≥ 0, R > 0. (A,H)

and (A,Q1/2) are detectable.
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Define the state estimation error as x̃ = x− x̂. Then, one has

˙̃x = ẋ− ˙̂x = A(x− x̂) + L(z − ẑ) = (A− LH)x̃. (3.6)

It is seen that as long as the KF gain L is selected so that the closed-loop KF observer matrix

A− LH is asymptotically stable, the estimation error x̃ goes to zero asymptotically [54].

Compared with state variable feedback for LQR design, KF (3.3)-(3.5) is the dual by replacing

the parameters (A,B,K) with (AT , HT , LT ), where B is the control input dynamics and K is

the control gain in LQR. If the pair (AT , HT ) is reachable, then LT can be selected to make

A − LH asymptotically stable. Since the robustness results of LQR are obtained in Safonov [95]

and Lehtomaki [51], and the KF is the dual of the LQR, the robustness results of KF are obtainable.

Based on the KF (3.3)-(3.5), the loop transfer function of input v to output ẑ is

G(s) =
ẑ(s)

v(s)
= H(sI − A)−1L. (3.7)

Note that G(s) in (3.7) is the dual of the transfer function of LQR.

The next definition and results are needed to derive the main KF robustness margins in Theorem

3.2.

Definition 3.1. (A,H,L) is called a state-space realization for G(s) in (3.7) when linear systems

are given as (3.3)-(3.5).

The robustness is the extent to which the elements of the loop transfer function matrix G(s)

can vary from their nominal design values without affecting the stability of the system [51, 95].

It is characterized by GM and PM. The standard LQR has infinite GM, 50 percent gain reduction

tolerance and 60◦ of PM. Now, this work introduces the robustness GM and PM results of standard

KF (3.3)-(3.5). These results follow from the literature [16, 51].

Theorem 3.1. (Minimum singular value bound of KF). Given Kalman filter algebraic Riccati
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equation (ARE)

AP + PAT − PHTR−1HP +Q = 0, (3.8)

where Q ≥ 0 and R > 0, one has the return difference relation

[I +G(s)]R[I +G(s)]−T = R + F (s), s = αω ∈ αR. (3.9)

Furthermore, one has

σ[I + Ḡ(s)] ≥ 1, (3.10)

whereG(s) = H(sI−A)−1PHTR−1, Ḡ(s) = R−1/2G(s)R1/2 and F (s) = H(sI−A)−1Q(−sI−

AT )−1HT .

Proof. The proof is similar to that in [51] and [16].

When a perturbation B(s) is added to the KF (3.3)-(3.5), the loop transfer function becomes

G̃(s) = G(s)B(s) = H(sI − A)−1LB(s)

= H̃(sI − Ã)−1L̃, (3.11)

where B(s) is assumed as a diagonal matrix, such that the perturbations in the multiple loops do

not interact between each other. This is followed by the assumption of perturbations for robustness

margins for LQR in Safonov [95], and Lehtomaki [51]. In addition, the state-space realization

(A,H,L) becomes the realization (Ã, H̃, L̃). Thus, KF (3.3)-(3.5) becomes

˙̂x = Ãx+ L̃(z − H̃x̂), (3.12)

L̃ = PH̃TR−1, (3.13)

0 = ÃP + PÃT +Q− PH̃TR−1H̃P. (3.14)

42



Theorem 3.2. (Robustness Margins of KF). Suppose Theorem 3.1 and the following conditions

hold:

a) det(sI − A) and det(sI − Ã) have the same number of CRHP zeros, and if det(αω0I − Ã)=0,

det(αω0I − A)=0,

b) RB(s) +B−T (s)R ≥ R, s = αω ∈ αR.

Then one has:

1) The perturbed system G̃(s) is closed-loop asymptotically stable,

2) The optimal KF (3.3)-(3.5) has a guaranteed GM of (1
2
,∞), that is 50 percent gain reduction

and the infinite gain margin,

3) The optimal KF (3.3)-(3.5) has a guaranteed PM of ±60◦.

Proof. The proof is similar to that in Lehtomaki [51].

3.3 Robustness Analysis of Distributed Kalman-Consensus Filter

This section first introduces some basics of graph theory for multi-sensor networks and present

a novel distributed Kalman consensus filter (DKCF) for continuous-time systems.

A new measurement structure is developed that allows each sensor to combine both direct tar-

get measurement and indirect neighbor estimates. DKCF robustness margins are then studied.

Distributed Kalman filters are designed to achieve the stability and the consensus of the target

estimation in sensor networks. Robustness margins are key to show the robustness of the consen-

sus. They are rarely studied in distributed estimation for sensor networks. It further shows in this

section that robustness margins of DKCF improve in contrast to robustness margins of standard

KF.

3.3.1 Graph Theory

Please see graph theory knowledge in Chapter 2.2.1.
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3.3.2 Distributed Kalman Consensus Filter

Give the sensor graph G. In a sensor network, consider the novel measurement structure of

sensor i, i ∈ V for the target dynamics (3.1) as

zi =

 gi(Hix+ µi)
N∑
j=1

aijP
−1
j (x̂j + ωij)

 , i ∈ V , (3.15)

where zi ∈ Rm×n is the measurement of sensor i for the target x. The pinning gain gi ∈ {0, 1}

represents the communication link between the target and sensor i. If gi = 1, sensor i has direct

measurements of the target. Otherwise, it does not. Hi ∈ Rm×n is the distributed direct observation

matrix. µi is a zero-mean Gaussian observation noise with diagonal covariance matrix Ri > 0.

Define x̂i, x̂j ∈ Rn as the estimates of sensor i and j for the target, respectively. Define Pi =

E{(x − x̂i)T (x − x̂i)} ∈ Rn×n as the covariance value of estimation error of sensor i. ωij is the

communication channel noise between sensors i and j, j ∈ Ni. The estimate x̂j of sensor i’s

neighbors is weighted by P−1
j through the coupling strength aij .

Remark 3.1. The measurement structure in (3.15) has two parts: the direct measurement of the

target states with gain gi and the indirect measurement from neighbor estimates based on weighted

trust P−1
j . This measurement structure enables to avoid naive nodes [47] that do not have direct

or indirect measurement of the target.

Remark 3.2. A major advantage of the measurement structure (3.15) of the DKCF this work

derives based on (3.15), is that the target state does not need to be fully observable by each sensor.

Instead, a milder form of collective observability by all the sensors is required, as given in the

following Definition 3.2.

Definition 3.2. The target state x(t) in (3.1) is said to be collectively observable by all the sensors

in (3.15) when the pair (A,H) with H = (HT
1 , H

T
2 , · · ·HT

N)
T is observable.

Based on the measurement structure (3.15) and the distributed Kalman filters in chapter 2, the

DKCF is developed in Algorithm 3.1 below for target estimation in multi-sensor network.
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Algorithm 3.1 Distributed Kalman Consensus Filter Algorithm

1 Initialization: Pi(0), x̂i(0), where i ∈ V .

2 Distributed Covariance Update:

Ṗi = AiPi + PiA
T
i +Q− g2i PiH

T
i R

−1
i HiPi − Pi

N∑
j=1

aij(P
−1
j − P−1

i )Pi, ∀i ∈ V . (3.16)

3 Distributed Trust Consensus Update:

˙̂xi = Ax̂i + giPiH
T
i R

−1
i (Hi(x− x̂i) + µi) + Pi

N∑
j=1

aijP
−1
j (x̂j − x̂i), ∀i ∈ V , (3.17)

where Q = FSF T ≥ 0, S > 0 and diagonal matrix Ri > 0, i ∈ V .

The next result shows that by using DKCF (3.16)-(3.17), the state estimate x̂i, ∀i ∈ V , achieves

consensus with the target state under the condition of collective observability.

Theorem 3.3. (Consensus of DKCF in Algorithm 3.1). Consider the measurement structure

(3.15), the target (3.1) and the associated DKCF in Algorithm 3.1. Suppose that 1) the sensor

communication graph G is strongly connected and 2) the target in DKCF (3.16)-(3.17) is collec-

tively observable by all sensors. The estimation error x̃i(t) = x(t) − x̂i(t) ∈ Rn, ∀i ∈ V is UUB

in the mean square as t→∞ with observation noise µi assumed to be zero.

Proof. With (3.1) and (3.17), the dynamic of estimation error x̃i(t) is given by

˙̃xi = ẋi − ˙̂xi

= Ax̃i − giPiH
T
i R

−1
i Hix̃i + Pi

N∑
j=1

aijP
−1
j (x̃j − x̃i) + Fw. (3.18)

Define a Lyapunov function as V (x̃i) =
∑N

i=1 qix̃
T
i P

−1
i x̃i, where the positive vector q =

[q1, q2, · · · , qN ] such that qTL ≥ 0 [89]. This work gives the observability condition, i.e., the

pair (A,H) is observable when t→∞, such that Pi(t) in (3.16) converges to the positive definite

constant matrix, i ∈ V . Then, V (x̃i) ≥ 0 holds, since P−1
i > 0. Taking the derivative of V (x̃ki )
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yields

V̇ (x̃i) = E

{
N∑
i=1

qi ˙̃x
T
i P

−1
i x̃i +

N∑
i=1

qix̃
T
i Ṗ

−1
i x̃i +

N∑
i=1

qix̃
T
i P

−1
i

˙̃xi

}

= −E

{
N∑
i=1

qi(x̃
T
i P

−1
i FSF TP−1

i x̃i + gix̃
T
i H

T
i R

−1
i Hix̃i)

}

− E

{
2

N∑
i=1

qidix̃
T
i P

−1
i x̃i

}
+ E

{
N∑
i=1

qiw
TF T x̃i

}

+ E

{
N∑
i=1

qix̃
T
i

N∑
j=1

aijP
−1
j (x̃j − x̃i)

}

+ E

{
N∑
i=1

qi

N∑
j=1

aij(x̃
T
j P

−1
j − x̃Ti P−1

i )x̃i

}
. (3.19)

By using Lemma 4 of [41], one has

V̇ (x̃i) ≤ −E

{
N∑
i=1

qi(x̃
T
i P

−1
i FSF TP−1

i x̃i + gix̃
T
i H

T
i R

−1
i Hix̃i)

}

− E

{
N∑

i,j=1

qi(x̃i − x̃j)TP−1
j (x̃i − x̃j)

}

−
N∑
i=1

qiE{di∥Pi∥−1∥x̃i∥2}+
N∑
i=1

qiE{∥Fw∥∥x̃i∥}. (3.20)

It is seen that when t → ∞, for each i ∈ V , if E{∥x̃i∥} ≥ ∥Fw∥/(di∥Pi∥−1), one has

V̇ (x̃i) ≤ 0. Notice that V̇ (x̃i) = 0 only when x̃i = 0. According to the La Salle extension and

Definition 2.1, the dynamics of x̃i is UUB in the mean square. Furthermore, E{∥x̃i∥2} will stay

inside of the neighborhood of ∥Fw∥2/(di∥Pi∥−1)2.

Remark 3.3. As seen in DKCF (3.16)-(3.17), the pinning gain gi could be 0 or 1. DCKF updates

by different resources with different gi in measurement structure (3.15). When gi = 1, according

to (3.15), the measurement of sensor i includes two parts, i.e., direct information from the target

and indirect information from neighboring estimates. When gi = 0, sensor i updates the DKCF by

weighted neighbor estimates only. Due to different measurement resources, the covariance updates
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including filtering gains are different. Thus, in the following parts, this work studies the robustness

margins of the DKCF separately for gi = 1 and gi = 0.

3.3.3 Robustness Margins of DKCF with Direct Target Observation

This work studies the robustness proprieties of Algorithm 3.1 at steady state. That means

Ṗi = 0 for ∀i ∈ V . One now provides robustness margins for two cases (e.g. gi = 1 and gi = 0).

First, set gi = 1 in (3.15), which means that sensor i has direct measurement of the target. Then,

it is shown that in this case, the robustness margins of DKCF (3.16)-(3.17) are better than the

robustness margins of the single-agent KF in Section 3.2. In next section, set gi = 0, which means

sensor i has information from its neighbors only.

In this section, let gi = 1 in (3.15)-(3.17) and thus direct target measurement is obtained

by sensor i. In this case, one can consider the covariance update (3.16) to be the same as the

single-agent update (5.13), with an additional last term in (3.17) showing coupling from neighbors

through aij .

The following development parallels that of single-agent KF in Section 3.2. Referring to the

loop transfer function of single-agent KF (3.7), when sensor i is able to obtain the direct informa-

tion from target, its loop transfer function of estimation error dynamics in DKCF in Algorithm 3.1

is given by

Ti(s) = Hi(sI − A)−1Li, i ∈ V (3.21)

with the state-space realization (A,Hi, Li) with Li = PiH
T
i R

−1
i .

Based on Theorem 3.3, one has the following results.

Lemma 3.1. Give the DKCF (3.16) and (3.17). Define Φi as follows. Then one has:

Φi = 2diPi − Pi

N∑
j=1

aij(P
−1
j − P−1

i )Pi. (3.22)

1) Φi ≥ 0 with gi = 1, i ∈ V ,
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2) ∥Pi∥ increases as the overall coupling strength di increases.

3) σ̄(Φi) increases with the increase of di with gi = 1, i ∈ V .

Proof. 1). Note that sensor i can directly observe the target. Then, it has no more expected

estimation errors than other sensors [59], i.e., E{∥x̃i∥} ≤ E{∥x̃j∥}, which implies that Pi ≤ Pj .

Since Pi > 0 and Pj > 0, one has that P−1
i ≥ P−1

j . Then, one concludes that Φi ≥ 0.

2) According to Theorem 3.3, the estimation error dynamics is UUB with certain bound. That

is E{∥x̃i∥} ≥ ∥Fw∥/(di∥Pi∥−1). Considering the definition that Pi = E{(x − x̂i)
T (x − x̂i)},

one obtains that ∥Pi∥
1
2 ≥ ∥Fw∥/(di∥Pi∥−1). Thus, one has ∥Pi∥ ≤ (di/∥Fw∥)2, which gives the

bound of ∥Pi∥. It is seen that ∥Pi∥ increases as di increases when ∥Fw∥ is fixed.

3) The static covariance ARE of (3.16) for sensor i, ∀i ∈ V is given by

0 = APi + PiA
T − PiH

T
i R

−1
i HiPi +Q+ Φi (3.23)

which gives the same constant solution Pi as that in (3.16). Thus, it is unbiased to study this static

covariance ARE. Since Φi ≥ 0 and Q > 0, it is known that in static ARE (3.16), ∥Pi∥ is increase

with the increase of ∥Q+Φi∥ [50] when A, Hi and Ri are fixed. According to 2) of Lemma 3.1, as

di increases, ∥Pi∥ increases, which implies that ∥Q + Φi∥ increases in (3.23). Since ∥Q∥ is fixed,

one concludes that ∥Φi∥ increases. Therefore, with the increase of overall coupling strength di,

σ̄(Φi) = ∥Φi∥ increases. The proof is completed.

Remark 3.4. The robustness of the DKCF (3.16)-(3.17) is defined as the extent to which the el-

ements of the loop transfer function matrix Ti(s) of sensor i can vary from their nominal design

values without affecting the stability or the convergence of DKCF (3.16)-(3.17). It is characterized

by GM and PM. The robustness is said to be improved when the systems have infinite GM, gain

reduction tolerance of more than 50 percents and PM of more than 60◦.

Remark 3.5. It is seen that when sensor i directly measures the target, the steady-state error

coveriance becomes larger with more neighboring estimates. The reason is that sensor i has no

worse estimates than its neighbors. With less accurate information entering into measurement
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structure, the sensor i has worse target estimates. However, the following results show that with

more neighboring information, the robustness margins including GM and PM improve compared

to the single-agent KF.

The next result extends Theorem 3.1 to the multi-sensor DKCF (3.16)-(3.17) with direct target

observation.

Theorem 3.4. (Minimum Singular Value of DKCF (3.16)-(3.17) with Direct Target Observation,

i.e., gi = 1). Give the DKCF in Algorithm 3.1 with gi = 1. Suppose Lemma 3.1 hold. Consider the

static covariance ARE of (3.16) for sensor i, ∀i ∈ V as

0 = APi + PiA
T +Q− PiH

T
i R

−1
i HiPi + Φi, (3.24)

where Φi = 2diPi − Pi

N∑
j=1

aij(P
−1
j − P−1

i )Pi. Then, one has the multi-agent return difference

relation

[I + Ti(s)]Ri[I + Ti(s)]
−T = Ri + Fi(s). (3.25)

Furthermore, one has

σ[I + T̄i(s)] ≥ 1 + α∗
i , s = αω ∈ αR, (3.26)

where α∗
i is some constant such that 0 < α∗

i ≤ σ[F̄i(s)]. In addition, Ti(s) = Hi(sI−A)−1PiH
T
i R

−1
i ,

T̄i(s) = R
−1/2
i Ti(s)R

1/2
i , Fi(s) = Hi(sI − A)−1(Q+ Φi)

1/2 and F̄i(s) = R
−1/2
i Fi(s).

Proof. Let gi = 1 for sensor i, where i ∈ V . Write static distributed covariance ARE with Ṗi = 0

in (3.16) as

0 = APi + PiA
T − PiH

T
i R

−1
i HiPi + 2diPi − Pi

N∑
j=1

aij(P
−1
j − P−1

i )Pi + FSF T . (3.27)
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With Φi defined in (3.22), one rewrites (3.27) as

0 = APi + PiA
T − PiH

T
i R

−1
i HiPi + Φi +Q. (3.28)

By introducing frequency domain variable s, s = αω ∈ αR, one has

0 = APi + PiA
T − PiH

T
i R

−1
i HiPi +Q+ Φi + sPi − sPi (3.29)

= −(sI − A)Pi − Pi(−sI − AT )− PiH
T
i R

−1
i HiPi +Q+ Φi.

Multiplying the left side of (3.29) by Hi(sI − A)−1 and the right side by (−sI − AT )−1HT
i

yields

Hi(sI − A)−1(Q+ Φi)(−sI − AT )−1HT
i

= HiPi(−sI − AT
i )

−1HT
i +Hi(sI − Ai)

−1PiH
T
i

+Hi(sI − Ai)
−1PiH

T
i R

−1
i HiPi(−sI − AT

i )
−1HT

i . (3.30)

Adding Ri to each side of (3.30) yields

Ri +Hi(sI − A)−1(Q+ Φi)(−sI − AT )−1HT
i (3.31)

= HiPi(−sI − AT )−1HT
i +Hi(sI − A)−1PiH

T
i

+Ri +Hi(sI − A)−1PiH
T
i R

−1
i HiPi(−sI − AT )−1HT

i

= [I +Hi(sI − A)−1PiH
T
i R

−1
i ]Ri[I +R−1

i HiPi(−sI − AT )−1HT
i ].

From Lemma 3.1, one has Φi > 0. Then, one denotes Fi(s) = Hi(sI − A)−1(Q + Φi)
1/2 and

rewrites (3.31) as

[I + Ti(s)]Ri[I + Ti(s)]
−T = Ri + Fi(s)Fi(s)

−T (3.32)
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with Ti given in (3.21).

Let T̄i(s) = R
−1/2
i Ti(s)R

1/2
i and F̄i(s) = R

−1/2
i Hi(sI − A)−1(Q+ Φi)

1/2, so that

[I + T̄i(s)][I + T̄i(s)]
−T = I + F̄i(s)F̄i(s)

−T . (3.33)

which is expressed in the form of the singular value as

σ[I + T̄i(s)] = 1 + σ[F̄i(s)]. (3.34)

In terms of the minimum singular value, one has

σ[I + T̄i(s)] = 1 + σ[F̄i(s)]. (3.35)

It is seen that σ(Φi) > 0, and thus there exists some constant α∗
i such that 0 < α∗

i ≤ σ(F̄i(s)).

Then, one concludes (3.26). The proof is completed.

Remark 3.6. The robustness margin problem is to investigate the extent to which the elements of

the loop transfer function matrix Ti(s) can vary from their nominal design values without compro-

mising the convergence of DKCF. In order to study the robustness margins, the return difference

matrices I + Ti is investigated in (3.24). Note that Pi in Ti(s) is the constant solution of the static

ARE (3.24). This steady solution must be solved by using propagation equation (3.16). Further-

more, it is seen that if there is no coupling aij for sensor i, static distributed covariance ARE (3.24)

reduces to the standard single-agent KF covariance ARE (5.13).

Remark 3.7. With the overall coupling strength di =
N∑
j=1

aij increasing, σ̄(Φi) > 0 increases, and

σ[F̄i(s)] > 0 increases so that σ[I + T̄i(s)] goes up.

When a perturbation Bi(s) is added to Ti(s) of sensor i, the loop transfer function becomes

T̃i(s) = Ti(s)Bi(s) = Hi(sI − A)−1LiBi(s)

= H̃i(sI − Ã)−1L̃i (3.36)
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with the state-space realization (A,Hi, Li) becoming the realization (Ã, H̃i, L̃i).

The next main result provides robustness margins for DKCF (3.16)-(3.17) with direct target

observation. It extends to the distributed filter case from the single-agent KF in Theorem 3.2. It is

seen that both the GM and PM are better for the multi-sensor DKCF than that for the single target

Kalman Filter in Theorem 3.2 (see Remark 3.8).

Theorem 3.5. (Robustness Margins of DKCF (3.16)-(3.17) with Direct Target Observation, gi =

1). Assume the hypothesis for DKCF in Theorem 3.3. Suppose Theorem 3.4 and the following

conditions hold for s = αω ∈ αR:

a) det(sI − A) and det(sI − Ã) have the same number of CRHP zeros, and if det(jω0I − Ã)=0,

det(jω0I − A)=0,

b) Bi(s)Ri +RiB
−T
i (s) ≥ Ri + Fi(s)F

−T
i (s),

c) Bi(s) +B−T
i (s) ≥ 0,

where Fi(s) = Hi(sI − A)−1(Q+ Φi)
1/2, i ∈ V .

Then one has:

1) The distributed perturbed system T̃i(s) is closed-loop asymptotically stable,

2) The DKCF (3.16)-(3.17) has a guaranteed GM given by ( 1
2+α∗

i
,∞) and the GM improves as the

overall coupling strength di increases,

3) The DKCF (3.16)-(3.17) has a guaranteed PM given by ±arccos(1
2
− (α∗

i+2)α∗
i

2
) and the PM

improves as the overall coupling strength di increases, where α∗
i is some constant such that 0 <

α∗
i ≤ σ[F̄i(s)] ≤

√
2− 1 with F̄i(s) defined in Theorem 3.4.

Before proving Theorem 3.5, two lemmas are introduced.

Lemma 3.2. The perturbed system G̃(s) is closed-loop asymptotically stable if the following con-

ditions hold [51]:

1) det(sI − A) and det(sI − Ã) have the same number of CRHP zeros and if det(jω0I − Ã)=0,

det(jω0I − A)=0,

2) The original system G(s) is closed-loop asymptotically stable,

3) σ[B−1(s)− I] < α = σ[I +G(s)], where α ≤ 1.
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Lemma 3.3. The perturbed system G̃(s) is closed-loop asymptotically stable if the following con-

ditions hold [51]:

1) conditions 1) and 2) of Lemma 3.2 hold,

2) σ[B−1(s)− I] < α = σ[I +G(s)],

3) B(s) +B−T (s) ≥ 0.

A proof of Theorem 3.5 is given as follows.

Proof of Theorem 3.5. 1). The determinant of the loop transfer function (3.21) can be rewritten as

det[I + Ti(s)] =
det(sI − A+ LiHi)

det(sI − A)
. (3.37)

It is proven in Lian [59] that distributed estimation error dynamic using DKCF (3.16)-(3.17) is

closed-loop asymptotically stable by Lyapunov function method. This stability ensures the condi-

tion 1) of Lemma 3.3 together with the hypothesis a) in Theorem 3.5.

When a perturbation Bi(s) is added to the system (3.21), (5.26) becomes

det[I + T̃i(s)] =
det(sI − Ã+ L̃iH̃i)

det(sI − Ã)
. (3.38)

Moreover, the hypothesis b) in Theorem 3.5 implies that

σ̄[R
−1/2
i B−1

i (s)R
1/2
i − I] ≤ 1 + σ[R

−1/2
i Fi(s)]. (3.39)

which is rewritten as

σ̄[B̄−1
i (s)− I] ≤ 1 + σ[F̄i(s)]. (3.40)

Besides, Theorem 3.4 gives us

σ[I + T̄i(s)] ≥ 1 + σ[F̄i(s)]. (3.41)
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Based on (3.40) and (3.41), one concludes that the condition 2) of Lemma 3.3 is satisfied.

In addition, with the hypothesis b) in Theorem 3.5, Bi(s) + B−T
i (s) ≥ 0, and according to

Lemma 3.3, the distributed perturbed system T̃i(s) in DKCF (3.16)-(3.17) is closed-loop asymp-

totically stable.

2). Consider closed-loop asymptotic stability of T̃i(s). It is similar to the analysis of GM in

2) of Theorem 3.2. Give the minimum singular value bound in (3.26). One obtains a following

guaranteed GM for DKCF (3.16)-(3.17) with direct target observation

1

2 + α∗
i

< GM <∞. (3.42)

As topology changes, the robustness margins may change. Define σ(Q+Φi)(di) as the minimum

singular value of Q+ Φi with di, where di ∈ {1, 2, · · · , N − 1}. Based on 2) of Lemma 3.1, with

di increasing, σ(Q+Φi)(di) increases while matrices A, Hi and Ri keep unchanged. Furthermore,

for sensor i, when di reaches the maximum, namely di = N − 1, σ(Q + Φi)(di=N−1) reaches the

maximum.

Due to F̄i(s) = R
−1/2
i Hi(sI − A)−1(Q+ Φi)

1/2, one finds

σ[F̄i(s)](di=1) < σ[F̄i(s)](di=2) < · · · < σ[F̄i(s)](di=N−1). (3.43)

It is seen that as di increases, σ[F̄i(s)] increases, so that α∗
i that satisfies α∗

i ≤ σ[F̄i(s)](di)

becomes larger. From (3.42), note that the lower bound of the GM will become smaller. However,

the interval of GM becomes larger and GM improves.

3). The hypothesis b) in Theorem 3.5 can be rewritten as

σ̄[B̄−1
i (s)− I] ≤ 1 + α∗

i . (3.44)

Consider Bi(s) as a diagonal matrix Bi(s) = diag{bi1(s), bi2(s), · · · , bik(s), · · · , bin(s)}. To
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obtain PM, let bik(s) = bik and Re[bik(s)] = bik. Then, the hypothesis c) in Theorem 3.5 gives

bik > 0 (3.45)

which implies

|PM | < 90◦. (3.46)

Let bik(s) = ejβik(s), where βik(s) is real. It is similar to the analysis of the PM of KF in 3) of

Theorem 3.2. One has a guaranteed PM

cosβik(s) > 1− (1 + α∗
i )

2

2
(3.47)

or

|PM | < arccos(1− (1 + α∗
i )

2

2
)

= arccos(
1

2
− (α∗

i + 2)α∗
i

2
). (3.48)

It is seen that as the overall coupling strengths di increases, the α∗
i increases and the |PM|

increases. According to (3.48), the |PM| is no larger than 90◦, which means 0 < α∗
i ≤
√
2 − 1,

and 60◦ < |PM| < 90◦. The proof is completed.

Remark 3.8. Compare Theorem 3.5 with Theorem 3.2 for the single-agent KF. It is seen that the

robustness of DKCF (3.16)-(3.17) with direct target measurement is better than that of the single-

agent KF. Specifically, as the overall coupling strength di =
N∑
j=1

aij increases, α∗
i in Theorem 3.4

increases, and the lower bound 1
2+α∗

i
in Theorem 3.5 item 2) decreases. This means the lower

bound of the GM becomes smaller than 1
2
. Therefore, the guaranteed GM improves. Moreover, the

guaranteed |PM| in Theorem 3.5 item 3) increases and is larger than 60◦. Therefore, the PM for

multi-sensor DKCF (3.16)-(3.17) is better than the single-agent PM in Theorem 3.2. In contrast to
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robustness performance analysis in [101,112], this chapter rigorously studies the stability margins

and shows the robustness of DKCF (3.16)-(3.17).

Remark 3.9. Note that α in Lemma 3.2 is less than 1 and α in Lemma 3.3 is larger than 1. The

reason is that, in single-agent KF case, each sensor has direct observation of the target states

without an additional neighbor estimation enlarging its estimation error covariance. This leads to

that the minimum singular value of the return difference matrix I+Ḡ(s) in (3.10) could be less than

1. On the other hand, in distributed estimation filter, namely DKCF (3.16)-(3.17), when gi = 1,

sensor i obtains measurements from both the target and neighbor estimates. Neighbor estimates

brings errors to the estimation errors of sensor i. This could enlarge the minimum singular value

of the return difference matrix I + T̄i(s) in (3.26). Detailed derivation of DKCF is seen in the

previous work [59].

3.3.4 Robustness Margins of DKCF with Neighbor Estimates Only

This section considers gi = 0 in (3.15)-(3.17), so that sensor i cannot obtain direct target

measurements, but only estimates from neighboring sensors. In this case, one can consider the

covariance update (3.16) with the last term in (3.17) showing coupling from neighbors through aij .

It is shown again that in this case, the robustness margins of DKCF (3.16)-(3.17) are better than

the robustness margins of the single-agent KF.

When gi = 0, the nominal loop transfer function of DKCF (3.16)-(3.17) of sensor i is given as

T ∗
i = H∗

i (sI − A)−1L∗
i , (3.49)

where H∗
i = (

N∑
j=1

aijP
−1
j )

1
2 , R∗

I = I2 and L∗
i = Pi(H

∗
i )

T (R∗
i )

−1. The state-space realization is

(A,H∗
i , L

∗
i ).

The next result extends Theorems 3.1 and 3.4 to the multi-sensor DKCF (3.16) and (3.17)

without direct target observation.

Theorem 3.6. (Minimum Singular Value of DKCF (3.16)-(3.17) without Target Observation,
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i.e., gi = 0). Give the DKCF in Algorithm 3.1 with gi = 0. Consider the static covariance ARE of

(3.16) for sensor i, ∀i ∈ V as

0 = AiPi + PiA
T
i +Q− Pi

N∑
j=1

aij(P
−1
j − P−1

i )Pi. (3.50)

Then, one has the multi-agent return difference relation

[I + T ∗
i (s)]R

∗
i [I + T ∗

i (s)]
−T = R∗

i + F ∗
i (s). (3.51)

Furthermore, one has

σ[I + T̄ ∗
i (s)] ≥ 1 + γ∗i , s = αω ∈ αR, (3.52)

where γ∗i is some constant such that 0 < γ∗i ≤ σ[F̄ ∗
i (s)]. R

∗
i = I2, T ∗

i (s) = (
N∑
j=1

aijP
−1
j )

1
2 (sI −

A)−1Pi, T̄i
∗
(s) = (R∗

i )
− 1

2T ∗
i (s)(R

∗
i )

1
2 , F ∗

i (s) = (
N∑
j=1

aijP
−1
j )

1
2 (sI − A)−1(3diPi + Q)

1
2 and

F̄ ∗
i (s) = (R∗

i )
− 1

2F ∗
i (s).

Proof. If sensor i does not get information from target, gi = 0. The DKCF (3.16) becomes (3.50).

(3.50) can be rewritten as

0 = AiPi + PiA
T
i +Q+ diPi − Pi(

N∑
j=1

aijP
−1
j )Pi. (3.53)

Let H∗
i = (

N∑
j=1

aijP
−1
j )

1
2 and R∗

I = I2, so that

0 = APi + PiA
T +Q+ 3diPi − Pi(H

∗
i )

T (R∗
i )

−1H∗
i Pi. (3.54)

Then, it is similar to the analysis in Theorem 3.1, and one obtains the results (3.50)-(3.52). The

proof is completed.
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When a perturbation B∗
i (s) is added to sensor i, the loop transfer function becomes

T̃ ∗
i (s) = T ∗

i (s)B
∗
i (s) = H∗

i (sI − A)−1L∗
iB

∗
i (s)

= H̃∗
i (sI − Ã)−1L̃∗

i (3.55)

with the state-space realization (A,H∗
i , L

∗
i ) becoming the realization (Ã, H̃∗

i , L̃
∗
i ).

The next main result provides robustness margins for DKCF (3.16)-(3.17) without direct target

observation. It should be compared to Theorems 3.2 and 3.5. It is seen that in this case, both

the GM and PM are better for the multi-sensor DKCF than for the single target Kalman Filter in

Theorem 3.2 (see Remark 3.6).

Theorem 3.7. (Robustness Margins of DKCF (3.16)-(3.17) without Target Observation, i.e.,

gi = 0). Assume the hypothesis for DKCF in Theorem 3.3. Suppose Theorem 3.6 and the following

conditions hold for s = αω ∈ αR:

a) det(sI − A) and det(sI − Ã) have the same number of CRHP zeros, and if det(jω0I − Ã)=0,

det(jω0I − A)=0,

b) B∗
i (s)R

∗
i +R∗

i (B
∗
i (s))

−T ≥ R∗
i + F ∗

i (s)(F
∗
i (s))

−T ,

c) B∗
i (s) + (B∗

i (s))
−T ≥ 0,

where R∗
i = I2 and F ∗

i (s) = (
N∑
j=1

aijP
−1
j )

1
2 (sI − A)−1(3diPi +Q)1/2. B∗

i (s) is defined in (3.55).

Define γ∗i as the constant real number such that 0 < γ∗i ≤ σ[F̄ ∗
i (s)] with F̄ ∗

i (s) = (R∗
i )

−1/2F ∗
i (s).

One then has:

1) The distributed perturbed system T̃ ∗
i (s) is closed-loop asymptotically stable,

2) The DKCF (3.16)-(3.17) has a guaranteed GM given by ( 1
2+γ∗

i
,∞) and the GM improves as the

overall coupling strength di increase,

3) The DKCF (3.16)-(3.17) has a guaranteed PM given by±arccos(1
2
− (γ∗

i +2)γ∗
i

2
), 0 ≤ γ∗i ≤

√
2−1

and the PM improves as the overall coupling strength di increases.

Proof. 1). It is similar to the proof of 1) in Theorem 3.5. First, as seen in 1) of Theorem 3.6,

the minimum singular value of [I + T̄ ∗
i (s)] is larger than 1. Second, given the hypothesis, B∗

i +
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(B∗
i )

−T ≥ 0 in Theorem 3.7. These two conditions ensure conditions 2) and 3) of Lemma 3.3 hold.

Third, this work proves the asymptotic stability of DKCF when gi = 0 based on Lyapunov method

in Lian [59]. In addition, combining these with the hypothesis a) in Theorem 3.7, one guarantees

that Lemma 3.3 holds so that the perturbed system T̃ ∗
i (s) is closed-loop asymptotically stable for

DCKF when gi = 0.

2). Consider closed-loop asymptotic stability of T̃ ∗
i (s). According to (3.51), one has

σ[I + T̄ ∗
i (s)] = 1 + σ[F̄ ∗

i (s)], (3.56)

where T̄i
∗
(s) = (R∗

i )
−1/2T ∗

i (s)(R
∗
i )

1/2, R∗
i = I2, T ∗

i (s) = (
N∑
j=1

aijP
−1
j )

1
2 (sI − A)−1Pi, F̄ ∗

i (s) =

(R∗
i )

−1/2F ∗
i (s) and F ∗

i (s) = (
N∑
j=1

aijP
−1
j )

1
2 (sI − A)−1(3diPi +Q)1/2.

With a fixed di, there exist some positive constant γ∗i such that 0 < γ∗i ≤ σ[F̄ ∗
i (s)], so that

σ[I + T̄ ∗
i (s)] ≥ 1 + γ∗i . (3.57)

Select B∗
i (s) as a diagonal matrix B∗

i = diag{b∗i1, b∗i2, · · · , b∗ik, · · · , b∗in} which simplifies the

hypothesis b) in Theorem 3.7 to

|(b∗ik)−1(s)− 1| ≤ 1 + γ∗i , ∀k ∈ {1, 2, · · ·n}. (3.58)

To obtain GM, let b∗ik(s) = b∗ik and Re[b∗ik(s)] = b∗ik.

In addition, the hypothesis c) in Theorem 3.7 gives

b∗ik > 0. (3.59)

Based on (3.58) and (3.59), one has a guaranteed GM

0 <
1

2 + γ∗i
< GM <∞. (3.60)
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Note that as di increases, ∥Pi∥ increases and σ(3diPi) > 0 increases so that γ∗i increases. The

lower bound of the GM becomes smaller. Thus, the GM improves.

3). It is similar to the analysis of 3) in Theorem 3.3.

In particular, (3.58) gives

|PM | < arccos(1− (1 + γ∗i )
2

2
) (3.61)

while (3.59) gives

|PM | < 90◦. (3.62)

Based on (3.61) and (3.62), the PM of DKCF without direct target estimation is given by

|PM | < arccos(
1

2
− (γ∗i + 2)γ∗i

2
), 0 ≤ γ∗i ≤

√
2− 1. (3.63)

Furthermore, as it is analyzed in 2) of Theorem 3.7, when di increases, γ∗i and (γ∗
i +2)γ∗

i

2
increase

so that PM improves. However, it should be noted that 60◦ < |PM| < 90◦. The proof is completed.

Remark 3.10. Compare Theorem 3.7 and Theorem 3.2. It is seen that the robustness of DKCF

(3.16)-(3.17) with indirect neighbor estimates improves compared to that of the single-agent KF.

Specifically, the lower bound of GM 1
2+γ∗

i
is smaller than 0.5 and the PM is larger than 60◦,

which means that gain and phase margins are better for DKCF (3.16)-(3.17) than the standard

KF. Furthermore, as overall coupling strengths increase, PM and GM improves.

Remark 3.11. It should be noted that this work analyzes the robustness margins of DKCF (3.16)-

(3.17) in two cases, where gi = 1 and gi = 0. The reason is that in these two cases, DKCF updates

by different filtering gains. Particularly, when gi = 1, the filtering gain is given as Li (see (3.21)).

When gi = 0, the filtering gain is L∗
i (see (3.49)).
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3.4 Simulation Studies

This section first verifies the effectiveness of the estimation of DKCF (3.16)-(3.17) in sensor

networks for an unstable target dynamics and a stable target dynamics, respectively. Then, the

robustness margins of DKCF in two cases (i.e., gi = 1 and gi = 0) are analyzed for the stable

target dynamics.

3.4.1 DKCF with Unstable Target Dynamics

Consider an unstable target dynamic system as

ẋ =



0.5 1 0 0

−0.5 0 0 0

0 0 0.5 −0.5

0 0 0.5 0


x+



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


ω, (3.64)

where ω is the white noise with the power spectral density S = diag{0.5, 0.5, 0.5, 0.5} and ω ∼

(0, 0.214), and 14 is four dimensional vector with all elements equaling to 1.

To verify the effectiveness of DKCF (3.16)-(3.17) given the unstable target dynamics in (3.64),

this work sets a multi-sensor network, where there are six sensors and the communication graph

is shown in Figure 3.1. It is seen that the graph is strongly connected. The initials, T , S1 to

S6 represent target, sensor 1 to sensor 6, respectively. Figure 3.1 shows that g3 = g4 = 1 and

g1 = g2 = g5 = g6 = 0. The other parameters of DKCF covariance update (3.16) in Algorithm 3.1

are selected as: Hi = I4, Ri = I4, and the initial conditions Pi(0) = I4, i ∈ {1, 2, 3, 4, 5, 6}.

Figure 3.2 shows the convergence of covariance value P22 of six sensors using DKCF (3.16)-

(3.17) for the unstable target (3.64). It is seen that DKCF converges within a short period. Note

that sensors 3 and 4 has lower estimation corvariance than the other sensors since they directly

measure the target.
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Figure 3.1: Communication graph of six sensors with unstable target
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Figure 3.2: Evaluation of covariance value P22 in DKCF of 6 sensors for the unstable target (3.64)
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3.4.2 DKCF with Stable Target Dynamics

Consider a stable target dynamics system as

ẋ =

−2 1

−4 −2

x+
1 0

0 1

ω, (3.65)

where ω is the white noise with the power spectral density S = diag{2, 1} and ω ∼ (0, 0.512),

and 12 is two dimensional vector with all elements equaling to 1. The parameters are selected as:

Hi = I2, Ri = I2, and the initial conditions Pi(0) = I2, where i ∈ {1, 2, 3, 4}.

In KF, the parameters for covariance update (3.5) are H = I2, R = I2 and P (0) = I2. In

multi-sensor network, there are four, N = 4, sensors distributed in the network to estimate the

target state. The initial communication graph is shown as the case 2 in Figure 3.4. It is seen that

the graph is strongly connected. In this case, g1 = g2 = 1 and g3 = g4 = 0. Other parameters of

DKCF covariance update (3.16) in Algorithm 3.1 are selected as: Hi = I2, Ri = I2, and the initial

conditions Pi(0) = I2, where i ∈ {1, 2, 3, 4}.

Figure 3.3 shows the convergence of covariance value P22 of four sensors using DKCF (3.16)-

(3.17). It is seen that DKCF converges within a short period. Note that sensors 1 and 2 has lower

estimation corvariance than the other sensors since they directly measure the target.

3.4.3 Robustness Margin Analysis of DKCF

Section 3.3.2 and 3.3.3 study the robustness margins of DKCF (3.16)-(3.17) for different in-

formation resources, gi = 1 and gi = 0, respectively. The effects of the overall coupling strength

di =
∑4

j=1 aij on GM and PM are analyzed.

The following two examples are given to verify the analysis results of Theorems 3.2, 3.5 and 3.7

given the stable target dynamics (3.65). Example 1 studies the robustness margins of sensor 1 that

has direct observation from the target, i.e., g1 = 1. In Example 2, sensor 1 has weighted-neighbor

estimates only, i.e., g1 = 0.
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Figure 3.3: Evaluation of covariance value P22 in DKCF of 4 sensors for the stable target (3.65)

Figure 3.4: Example 1: communication graph changing with the overall coupling strength d1
increasing for g1 = 1
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Figure 3.5: Evaluation of covariance value P22 of sensor 1 in four cases.
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Figure 3.6: Evaluation of |PM| and the lower bound of the GM for 4 cases in example 1.
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Example 1 (Sensor 1 has direct target observation with g1 = 1). Figure 3.4 displays four

cases of different overall coupling strengths for sensor 1, d1 = 0, 1, 2, 3, respectively. Particularly,

in case 1, d1 = 0. It implies that sensor 1 observes the target directly and has no neighbors so

that it estimates the target state by using KF. It has a guaranteed downward GM 0.5 and |PM| 60◦

according to Theorem 3.2. In the other three cases, sensor 1 uses DKCF to estimate the target state.

Figure 3.5 shows the covariance value P22 of sensor 1 in four cases. It is seen that P22 increases

with the coupling increases. Figures 3.6 shows the GM and PM with the overall coupling strength

d1 increasing by 1 from 0 to 3. When d1 = 0, it has a guaranteed GM 0.5 and |PM| 60◦. In addition,

it is seen that the lower bound of the GM decreases so that the interval of the GM becomes larger.

Also, the PM climbs. It means that GM and PM improve as the overall coupling strength increases.

These results are consistent with the analysis in Theorems 3.2 and 3.5.

Figure 3.7: Example 2: communication graph changing with the overall coupling strength d1
increasing for g1 = 0

Example 2 (Sensor 1 has neighbor estimates only with g1 = 0). The overall coupling strength

d1 goes up from 1 to 3 in three cases as shown in Figure 3.7. Figures 3.8 shows the GM and PM

of three cases in Example 2. It is seen that when sensor 1 has neighbors’ estimates only, with

the overall coupling strength increasing, the GM and PM of DKCF improve. The results of this

example are consistent with the analysis in Theorem 3.7.
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Figure 3.8: Evaluation of |PM| and the lower bound of the GM for 3 cases in example 2.

3.5 Conclusion

This chapter studies the robustness stability margins including gain margins and phase margins

of continuous-time single-agent Kalman filter in frequency domain. The minimum singular value

of the return difference is rigorously analyzed for the robustness margins. Margin results are

then extended to DKCF in sensor networks. Particularly, two cases are studied for the robustness

margins of DKCF. One is based on the direct target observation while the other is not. In addition,

the influence of graph overall coupling strengths on the robustness margins of DKCF is rigorously

analyzed. In two cases, as the overall coupling strength increases, gain and phase margins improve.
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Chapter 4: INVERSE RL FOR ADVERSARIAL APPRENTICE GAMES

4.1 Introduction

This chapter proposes new inverse reinforcement learning (RL) algorithms to solve to be de-

fined Adversarial Apprentice Games for nonlinear learner and expert systems. The games are

solved by extracting the unknown cost function of an expert by a learner using demonstrated ex-

pert’s behaviors. This chapter first develops a model-based inverse RL algorithm that consists of

two learning stages; an optimal control learning and a second learning based on inverse optimal

control. This algorithm also clarifies the relations between inverse RL and inverse optimal con-

trol. Then, a model-free integral inverse RL algorithm is developed to reconstruct the unknown

expert cost function. The model-free algorithm only needs online demonstration of the expert

and learner’s trajectory data without knowing system dynamics of either the learner or the expert.

These two algorithms are further implemented using neural networks (NNs). In Adversarial Ap-

prentice Games, the learner and the expert are allowed to suffer from different adversarial attacks.

A two-player zero-sum game is formulated for each of these two agents and is solved as a sub-

problem for the learner in inverse RL. Furthermore, it is shown that the cost functions that the

learner learns to mimic the expert’s behavior are stabilizing and not unique. Finally, simulations

and comparisons show the effectiveness and the superiority of the proposed algorithms.

The chapter is organized as follows. Section 4.2 describes the Adversarial Apprentice Games,

the learner and the expert systems. Section 4.3 proposes a model-based inverse RL algorithm and

implements this algorithm using NNs. In Section Section 4.4, a model-free inverse RL algorithm is

developed and further implemented using NNs. Section 4.5 verifies the proposed algorithms with

simulation examples. Section 4.6 concludes the work.
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4.2 Problem Formulation

4.2.1 Adversarial Apprentice Games

Various practical applications of apprentice-learning theories [2, 3, 109] require that a learner

imitates demonstrated expert behaviors by learning unknown expert cost function. This work

further supposes that both the learner and the expert suffer from different adversarial disturbances

in their dynamics. For example, in imitation learning of autonomous helicopter [2] from human

pilots, the helicopter has disturbances including aerodynamic forces or moments [21], and human

pilots are influenced by noises and distractions. Given the cost of states, control and adversarial

inputs, each agent computes its Nash equilibrium by solving a two-player zero-sum game. The

learner then uses inverse optimal control to infer the unknown expert cost function. The apprentice

learning based on two-player zero-sum games and inverse optimal control is called Adversarial

Apprentice Games.

In the games, the expert has computed desired behaviors found by solving Nash equilibrium of

its two-player zero-sum game. Given the expert’s behaviors (states and control inputs), the learner

expects to reconstruct the unknown expert cost function based on inverse optimal control and solves

a formed two-player zero-sum game using RL, thereby imitating the demonstrated behavior. Note

that both inverse optimal control and two-player zero-sum games are solved as subproblems in

Adversarial Apprentice Games.

Specifically, an Adversarial Apprentice Game is defined as a tuple (S,A, Q), where S and A

are state and action sets, respectively, and Q : S → R denotes a quadratic function of states and is

called the state penalty of the cost function.

4.2.2 Two-Player Zero-sum Expert System

This subsection formulates an expert as a standard two-player zero-sum game. This provides

a basis for Adversarial Apprentice Games. Consider an expert with the nonlinear time-invariant
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affine dynamics

ẋe = f(xe) + g(xe)ue + h(xe)ve, (4.1)

where xe ∈ Rn, ue ∈ Rm and ve ∈ Rk denote the expert’s state, control input and adversarial

input, respectively; f ∈ Rn, g ∈ Rn×m and h ∈ Rn×k denote the drift function, the control input

function, and the adversarial input function, respectively. Assume that f , g and h are Lipschitz

functions with f(0) = 0, and that there exists a continuous control input which stabilizes (4.1).

The expert has desired behaviors found by optimizing its performance cost function and simul-

taneously attenuating the effects of the adversary. Toward this end, its performance cost function

is

Ve(xe, ue, ve) =

∫ ∞

t0

(
Qe(xe) + uTe Reue − vTe Seve

)
dτ, (4.2)

where Qe(xe) = qT (xe)Qeq(xe) ∈ R is expert’s state penalty with the state-penalty weight Qe =

QT
e ∈ Rn×n ≥ 0 and a function q(xe) = [xse1 x

s
e2
· · · xseN ] ∈ Rn with the power s; Re = RT

e ∈

Rm×m > 0 and Se = ST
e ∈ Rk×k > 0 are weights of inputs ue and ve, respectively.

Differentiating (4.2) yields the expert’s Bellman equation

He(Ve, ue, ve) ≜ Qe(xe) + uTe Reue − vTe Seve +∇V T
e (f(xe) + g(xe)ue + h(xe)ve) = 0. (4.3)

According to [54], the saddle point (u∗e, v∗e ) is found as

u∗e = −
1

2
R−1

e gT (xe)∇V ∗
e (xe), (4.4)

v∗e =
1

2
S−1
e hT (xe)∇V ∗

e (xe), (4.5)
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which are substituted into (4.3) to yield the expert’s Hamilton-Jacobi-Isaacs (HJI) equation

0 = Qe(xe)−
1

4
∇V ∗T

e (xe)g(xe)R
−1
e gT (xe)∇V ∗

e (xe) (4.6)

+
1

4
∇V ∗T

e (xe)h(xe)S
−1
e hT (xe)∇V ∗

e (xe) +∇V ∗T
e (xe)f(xe).

The expert obtains the optimal input u∗e and the worst adversary v∗e by solving the two-player

zero-sum game

V ∗
e (xe) = V ∗

e (u
∗
e, v

∗
e) = min

ue

max
ve

Ve(ue, ve), (4.7)

where V ∗
e is the optimal cost and satisfies the Nash equilibrium condition [54], i.e.,

Ve(xe(t0), u
∗
e, ve) ≤ Ve(xe(t0), u

∗
e, v

∗
e) ≤ Ve(xe(t0), ue, v

∗
e). (4.8)

4.2.3 Learner System

Consider a learner with nonlinear time-invariant affine dynamics

ẋl = f(xl) + g(xl)ul + h(xl)vl, (4.9)

where xl ∈ Rn denotes the learner state, ul ∈ Rm denotes its control input and vl ∈ Rk denotes its

adversarial input. Assume the expert and learner have identical dynamics, that is f , g and h have

the same mapping as those in (4.1).

The learner intends to optimize a performance cost function, while simultaneously attenuating

the adversarial effects. Toward this end, its performance cost function is defined as

Vl(xl, ul, vl, Ql) =

∫ ∞

t0

(Ql(xl) + uTl Rlul − vTl Slvl)dτ, (4.10)

where Ql(xl) = qT (xl)Qlq(xl) ∈ R is learner’s state penalty with a state-penalty weight Ql =
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QT
l ∈ Rn×n ≥ 0 and a function q(xl) ∈ Rn of the state xl; Rl = RT

l ∈ Rm×m > 0 and

Sl = ST
l ∈ Rk×k > 0 are arbitrarily selected weights. The function q(·) in (4.2) and (4.10) have

the same mapping.

To solve the Adversarial Apprentice Games, The next standard assumption is provided before

proposing the game goals.

Assumption 4.1. The learner knows its own cost function weights, i.e., Ql, Rl, Sl in (4.10) and the

mapping q(·), but does not know the expert’s cost function weights, i.e., Qe, Re and Se in (4.2). Rl

and Sl can be different fromRe and Se, respectively. The learner does not need to know the expert’s

Re and Se. Additionally, the learner and expert have the same initial states, i.e., x(t0) = xe(t0).

Remark 4.1. Assuming that the learner and expert have the same initial state is equivalent to

assuming that the learner knows the initial state xe(t0) of the expert. This is far milder that other

works [3, 14, 18, 37, 38, 53, 63, 64, 79, 98, 104, 109], which assume that the full state xe(t) of the

expert is measured for all time. In fact, this chapter only assumes that the learner measures the

expert’s input u∗e(t).

Adversarial Apprentice Game Goals. Consider the expert (4.1) with an adversary and the

resulting desired behavior (xe, u∗e) that satisfies the two-player zero-sum game (4.7). Then, given

the expert’s demonstrated desired control input u∗e, the learner aims to learn an equivalent weight

(to be defined in Definition 4.1 below) to Qe that satisfies (4.6) such that 1) it performs the expert’s

behavior, i.e., (xl, u∗l ) = (xe, u∗e) with actual vl = ve and 2) its dynamics (4.9) is stabilized.

4.3 Model-based Inverse RL

In order to achieve the above Adversarial Apprentice Game Goals, this section develops a

model-based inverse RL algorithm by combining optimal control learning and inverse optimal

control learning. First, given Rl > 0, Sl > 0 and current Ql ≥ 0 in (4.10), the learner uses opti-

mal control learning to solve the solutions of optimal control inputs and the worst-case adversarial

inputs. Then, with these solutions and expert’s demonstration u∗e in (4.4), the learner revises Ql
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based on inverse optimal control while keeping Rl and Sl unchanged. By iterating these two learn-

ing process, the learner learns an equivalent weight to Qe, such that the optimal control learning

obtains (xl, u∗l ) = (xe, u∗e) with actual vl = ve. The convergence and the stability of the algorithm

are further analyzed. The model-based inverse RL algorithm is implemented using NNs.

4.3.1 Optimal Control Learning

Differentiating (4.10) yields the learner’s Bellman equation

Hl(Vl, ul, vl) ≜ Ql(xl) + uTl Rlul − vTl Slvl +∇V T
l (f(xl) + g(xl)ul + h(xl)vl) = 0. (4.11)

The learner’s Nash solution (u∗l , v∗l ) is found as

u∗l = −
1

2
R−1

l gT (xl)∇V ∗
l (xl), (4.12)

v∗l =
1

2
S−1
l hT (xl)∇V ∗

l (xl), (4.13)

which yields the learner’s HJI equation

0 = Ql(xl)−
1

4
∇V ∗T

l (xl)g(xl)R
−1
l gT (xl)∇V ∗

l (xl) (4.14)

+
1

4
∇V ∗T

l (xl)h(xl)S
−1
l hT (xl)∇V ∗

l (xl) +∇V ∗T
l (xl)f(xl),

where V ∗
l is the optimal cost and (u∗l , v

∗
l ) is Nash equilibrium of the learner. They are the solutions

of a two-player zero-sum game, i.e., V ∗
l (xl) = V ∗

l (u
∗
l , v

∗
l ) = minul

maxvl Vl(ul, vl).

It is known that different cost functions can lead to the same control policy [40]. That is, to

obtain u∗l = u∗e, the learner can find the following equivalent weight to Qe while Rl, Sl in (4.10)

are different from Re, Se in (4.2).

Definition 4.1. (Equivalent weight to Qe) The expert’s Qe satisfies expert’s HJI equation (4.6).

Suppose one finds a Q∞
l in learner’s HJI equation (4.14) in which there exists a V ∞

l (xe) such that

1) u∞l in the form of (4.12) equals to u∗e (4.4) and 2) xl = xe holds with vl = ve in (4.1) and (4.9).
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Figure 4.1: Schematic diagram of inverse RL for Adversarial Apprentice Game.

Then, Q∞
l is called to be an equivalent weight to Qe.

Given a current estimate Ql and fixed Rl and Sl in (4.10), the policy iteration (PI) [43] is used

to solve (4.14), (4.12) and (4.13) for optimal control problem to the learner. The PI for optimal

control learning is seen as the inner loop of Algorithm 4.1. If the current estimate Ql is not the

equivalent weight to Qe, then Ql needs to be revised, as seen in Section 4.3.2.

4.3.2 State-penalty Weight Ql Revision Based on Inverse Optimal Control

In this subsection, given expert’s demonstration u∗e in (4.4), the current Ql is revised to be an

equivalent weight to Qe based on inverse optimal control.

Given the demonstrated u∗e and the solutions of optimal control learning, the learner’s state-

penalty weight Q̄l is revised based on inverse optimal control [31] as

qT (xl)Q̄lq(xl) = u∗Te Rlu
∗
e − 2u∗Te Rlu

∗
l + v∗Tl Slv

∗
l −∇V ∗T

l (xl)(f(xl) + g(xl)u
∗
l + h(xl)v

∗
l ).

(4.15)

Then, the learner uses this revised Q̄l in its HJI equation (4.14) to update u∗l , v
∗
l and V ∗

l (xl).

Repeat PI and inverse optimal control learning until Ql converges to an equivalent weight to Qe.

As a result, (4.14) gives the same solution ∇Ve(xe) as that by expert’s HJI (4.6). The learner thus

obtains the behavior (xe, u∗e). The iterative form of this inverse optimal control learning is seen as
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the outer iteration loop of Algorithm 4.1.

This work now presents iterative Algorithm 4.1 below to solve the Adversarial Apprentice

Game. The schematic diagram of inverse RL for the Adversarial Apprentice Game is depicted in

Figure 4.1.

Algorithm 4.1 Model-based Inverse RL Algorithm for Adversarial Apprentice Game

1: Initialization: select Q0
l ≥ 0, Rl > 0, Sl > 0, initial stabilizing u00l , v00l = 0, and small

thresholds ε1, ε2. Set j = 0.

2: Outer j iteration loop based on inverse optimal control

3: Inner i iteration loop using optimal control: given j, set i = 0, use initial stabilizing uj0l .

4: Policy evaluation for solving V ji
l

0 = qT (xl)Q
j
l q(xl) + (ujil )

TRlu
ji
l − (vjil )

TSlv
ji
l (4.16)

+
(
∇V ji

l (xl)
)T (

f(xl) + g(xl)u
ji
l + h(xl)v

ji
l

)
.

5: Policy improvement for solving uj(i+1)
l and vj(i+1)

l

u
j(i+1)
l = −1

2
R−1

l gT (xl)∇V ji
l (xl), (4.17)

v
j(i+1)
l =

1

2
S−1
l hT (xl)∇V ji

l (xl). (4.18)

6: Stop if ∥∇V ji
l −∇V

j(i−1)
l ∥ ≤ ε1, where ∥·∥ denotes 2-norm, then set∇V j

l (xl) = ∇V
ji
l (xl),

ujl = ujil and vjl = vjil . Otherwise, set i← i+ 1 and go to Step 4.

7: State-penalty weight Qj+1
l update using the expert’s demonstration u∗e

qT (xl)Q
j+1
l q(xl) = u∗Te Rlu

∗
e − 2u∗Te Rlu

j
l + (vjl )

TSlv
j
l (4.19)

− (∇V j
l (xl))

T
(
f(xl) + g(xl)u

j
l + h(xl)v

j
l

)
.

8: Stop if ∥Qj+1
l −Qj

l ∥ ≤ ε2. Otherwise, set u(j+1)0
l = ujl and j ← j + 1, then go to Step 3.

Remark 4.2. In Algorithm 4.1, the inner loop consists of two-player zero-sum games for adver-

sarial equilibrium. That is, standard two-player zero-sum games are solved as subproblems in

inverse RL for Adversarial Apprentice Game. Therefore, compared to [63,64] where inverse RL is
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dealt as the two-player zero-sum game, the defined Adversarial Apprentice Game is not a standard

two-player zero-sum game. Besides, note that the inner iteration loops at outer j loop provide

initial stabilizing control input for outer j + 1 loop, i.e., u(j+1)0
l = ujl .

Remark 4.3. It is seen that Algorithm 4.1 has less complexity than directly solving HJI equation

(13). In inner loops of Algorithm 4.1, one solves the linear equations (4.16), (4.17) and (4.18)

repetitively. In outer loops, one solves linear coefficient Ql. Moreover, compared to inverse RL

[18, 63, 64, 104] that have stochastic and complex MDPs and require large data set, one has

simpler deterministic algorithms and does not need large-scale data.

4.3.3 Convergence and Stability Analysis

In this subsection, theorem results show the convergence properties and the stability of Algo-

rithm 4.1.

Assumption 4.2. Assume that the equivalent weight to Qe in Definition 4.1 exists.

Theorem 4.1. (Convergence properties of Inverse RL Algorithm 4.1) Let Assumptions 4.1-4.2

hold. Select Rl > 0, Sl > 0, and small Q0
l ≥ 0. Consider the Algorithm 4.1 for solving the

Adversarial Apprentice Game. If Algorithm 4.1 is convergent, then the learner has (xl, u
j
l ) =

(xe, u
∗
e) for j →∞ with actual vl = ve in (4.1) and (4.9), where ujl and u∗e are given by (4.17) and

(4.4), respectively. The state-penalty weight Qj
l , j = 0, 1, · · · converges to the weight Q∞

l which is

equivalent to Qe.

Proof. First, note that if the initial state-penalty weight Q0
l is semi-positive definite, then the non-

linear Lyapunov function (4.16) has a unique and positive-definite solution at step 4. With the step

5 for policy improvement, there exists a converged solution set (u0l , v
0
l , V 0

l ). These two steps are

optimal control learning (also called PI) and are proven to be convergent [5].
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Then, at the step 7 in Algorithm 4.1, the state-penalty weight is revised as Q1
l , i.e.,

qT (xl)Q
j+1
l q(xl) = u∗Te Rlu

∗
e − 2u∗Te Rlu

j
l + (vjl )

TSlv
j
l (4.20)

−
(
∇V j

l (xl)
)T (

f(xl) + g(xl)u
j
l + h(xl)v

j
l

)
.

Given the state-penalty weight Qj
l , the optimal control learning (steps 4 and 5) gives

0 = qT (xl)Q
j
l q(xl) + (ujl )

TRlu
j
l − (vjl )

TSlv
j
l +

(
∇V j

l (xl)
)T (

f(xl) + g(xl)u
j
l + h(xl)v

j
l

)
.

(4.21)

Substituting (4.21) into (4.20) yields

qT (xl)Q
j+1
l q(xl) = u∗Te Rlu

∗
e − 2u∗Te Rlu

j
l + (ujl )

TRlu
j
l +Qj

l (xl)

= (u∗e − u
j
l )

TRl(u
∗
e − u

j
l ) + qT (xl)Q

j
l q(xl)

≥ 0. (4.22)

This shows that at any outer j loop, Qj
l is semi-positive definite, where j = 0, 1, · · · . The optimal

control learning has a convergent solution set (ujl , v
j
l , V j

l ). Furthermore, ∥Qj
l ∥ increases as j

increases.

Denote ∆j
l ≜ (u∗e − u

j
l )

TR(u∗e − u
j
l ). It is seen from Definition 4.1 that there exist different

(Q∞
l , Rl) from (Qe, Re) that result in u∞l = u∗e. Also, it is known that ujl is uniquely determined

by Qj
l . If the algorithm is convergent, given a small initial Q0

l such that Q0
l ≤ Q∞

l , Qj
l increases

to Q∞
l and ukl converges to u∗e. Then, ∥∆j

l ∥ converges to 0. This means that as j → ∞, one has

∥∆∞
i (x)∥ = 0, ujl → u∗e, Q

j
l → Q∞

l and

u∞l = u∗e. (4.23)

This should hold at the same time instant. It follows from Assumption 4.1 that two agents have

the same initial states. Then, (4.23) can obtain u∞l (t0) = u∗e(t0) if one uses the measurements
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starting from the initial state. When two systems have the same control policy and state at initial

time instant, one further concludes xl = xe for all time with vl = ve.

It is seen that the convergent behaviors (xl, u∞l ) = (xe, u
∗
e) and Qj

l → Q∞
l are achieved simul-

taneously. Then, one rewrites the learner’s HJI equation (4.14) as

0 = qT (xe)Q
∞
l q(xe)−

1

4
∇V ∞T

l (xe)g(xe)R
−1
l gT (xe)∇V ∞

l (xe)

+
1

4
∇V ∞T

l (xe)h(xe)S
−1
l hT (xe)∇V ∞

l (xe) +∇V ∞T
l (xe)f(xe), (4.24)

which gives the converged V ∞
l (xe) with Q∞

l , such that

−1

2
R−1

l gT (xe)∇V ∞
l (xe) = −

1

2
R−1

e gT (xe)∇V ∗
e (xe). (4.25)

Therefore, one has the convergence Qj
l → Q∞

l and (xl, u
j
l ) → (xe, u

∗
e). However, one cannot

guarantee Q∞
l = Qe because Rl and Sl can be different from Re and Se, respectively. Q∞

l is then

the equivalent weight to Qe as shown in Definition 4.1.

Theorem 4.2. (Non-uniqueness of Q∞
l ) Let Qj

l and ∇V j
l in Algorithm 4.1 converge to Q∞

l and

∇V ∞
l , respectively. Then, Q∞

l satisfies

qT (xe)(Q
∞
l −Qe)q(xe)

=
1

4
∇V ∞T

l (xe)g(xe)R
−1
l (Rl −Re)R

−1
l gT (xe)∇V ∞

l (xe)

+
1

4
∇V ∗T

e (xe)h(xe)S
−1
e hT (xe)∇V ∗

e (xe)−
1

4
∇V ∞T

l (xe)h(xe)S
−1
l hT (xe)∇V ∞

l (xe)

+ (∇V ∗T
e (xe)−∇V ∞T

l (xe))f(xe), (4.26)

where ∇V ∗
e is uniquely solved by (4.6), and∇V ∞

l (xe) satisfies

gT (xe)∇V ∞
l (xe) = RlR

−1
e gT (xe)∇V ∗

e (xe), (4.27)

which implies that Q∞
l may not be unique.
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Proof. As shown in Theorem 4.1, when the learner obtains the convergence (xl, u
∞
l ) = (xe, u

∗
e),

one follows from (4.25) and has

gT (xe)∇V ∞
l (xe) = RlR

−1
e gT (xe)∇V ∗

e (xe). (4.28)

Then, subtracting (4.24) from (4.6) yields

qT (xe)(Q
∞
l −Qe)q(xe)

=
1

4
∇V ∞T

l (xe)g(xe)R
−1
l (Rl −Re)R

−1
l gT (xe)∇V ∞

l (xe)

+
1

4
∇V ∗T

e (xe)h(xe)S
−1
e hT (xe)∇V ∗

e (xe)−
1

4
∇V ∞T

l (xe)h(xe)S
−1
l hT (xe)∇V ∞

l (xe)

+ (∇V ∗T
e (xe)−∇V ∞T

l (xe))f(xe). (4.29)

In (4.28), if one lets gT (xe)X = RlR
−1
e gT (xe)∇V ∗

e (xe), there will be infinite number of solutions

for X unless rank(g(xe)) = n. This means that one may find many solutions of ∇V ∞
l (xe) that

make (4.28) hold. However, one cannot guarantee rank(g(xe)) = n. Thus, one may obtain non-

unique ∇V ∞
l (xe) that is different from ∇V ∗

e (xe). Besides, as stated in Remark 4.1, Rl can be

different from Re and Sl can be different from Se. From (4.29), the equivalent weight Q∞
l − Qe

may be nonzero and Q∞
l may be different from Qe. There may be infinite number of solutions for

Ql. All possible and non-unique solutions for Q∞
l satisfy (4.29) with∇V ∞

l satisfying (4.28).

Theorem 4.3. (Stability of the learner dynamics using Algorithm 4.1). Give the learner dynamics

(4.9) with the cost function (4.10). Give small Q0
l ≥ 0, Rl > 0 and Sl > 0, and use Algorithm

4.1 for the Adversarial Apprentice Game. Then, at each iteration of Algorithm 4.1, the learner

dynamics (4.9) is asymptotically stable when the adversarial input vl = 0 in (4.9).

Proof. To prove the stability of (4.9) with vl = 0, one proves that V̇ j
l (xl) ≤ 0 for any j ≥ 0 with

vl = 0.

It follows from (4.14) that at outer j loop, one has
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0 = qT (xl)Q
j
l q(xl)−

1

4
(∇V j

l (xl))
Tg(xl)R

−1
l gT (xl)∇V j

l (xl)

+
1

4
(∇V j

l (xl))
Th(xl)S

−1
l hT (xl)∇V j

l (xl) + (∇V j
l (xl))

Tf(xl)

= qT (xl)Q
j−1
l q(xl) + (u∗e − u

j−1
l )TRl(u

∗
e − u

j−1
l )

+
1

4
(∇V j

l )
T (xl)g(xl)R

−1
l gT (xl)∇V j

l (xl) +
1

4
(∇V j

l (xl))
T × h(xl)S−1

l hT (xl)∇V j
l (xl)

+ (∇V j
l )

T (xl)(f(xl)−
1

2
R−1

l gT (xl)∇Vf lj(xl))

= qT (xl)Q
j−1
l q(xl) + (u∗e − u

j−1
l )TRl(u

∗
e − u

j−1
l ) + (ujl )

TRlu
j
l + (vjl )

TSlv
j
l + V̇ j

l (xl). (4.30)

With Qj−1
l ≥ 0 proven in Theorem 4.1, it follows from (4.30) that V̇ j

l (xl) ≤ 0. In addition, note

that V̇ j
l (xl) = 0 only when xl = 0. Thus, the learner is asymptotically stable with vjl = 0 during

iterations of RL Algorithm 4.1.

Remark 4.4. Note that Algorithm 4.1 only learns the equivalent weight to Qe without learning the

control input weight of the expert. As shown in Assumption 4.1, Rl > 0 is arbitrarily selected by

the learner and can be different from Re > 0. With the arbitrarily selected Rl > 0, Theorem 4.2

shows that the learner still obtains the expert control policy in (20) and Q∞
l is characterized by

(19). Also, the convergence of Algorithm 4.1 is then guaranteed by Theorem 4.1.

Remark 4.5. If the convergence (xl, u∗l ) = (xe, u∗e) is obtained, then (4.15) and the corresponding

(4.9)-(4.14) are standard inverse optimal control [31]. The learner obtains the inverse optimality.

4.3.4 Implementing Model-based Inverse RL Algorithm 4.1 via NNs

This subsection now develops a NN-based method to compute inverse RL Algorithm 4.1 online.

First, the learner approximates the performance cost function V ji
l at step 4 of Algorithm 4.1 given

the current Qj
l , u

ji
l and vjil . Then, uj(i+1)

l and vj(i+1)
l update using V ji

l at step 5. Third, the learner

updates Qj+1
l at step 7 using the expert’s control input u∗e and the converged solutions from inner

i-th iteration loop, i.e., ujl , v
j
l and V j

l .

According to Weierstrass approximation Theorem [116] using polynomial approximation, there

exists an activation vector function φ(xl) = [φ1(xl) φ2(xl) · · · φN1(xl)]
T with N1 hidden-layer
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neurons, such that the cost function V ji
l (xl) and its gradient can be uniformly approximated as

V̂ ji
l (xl) = (Cji

l )
Tφ(xl), (4.31)

∇V̂ ji
l (xl) = ∇φT (xl)C

ji
l , (4.32)

with Cji
l =

[
Cji

l1 Cji
l2 · · · C

ji
lN1

]T ∈ RN1 the weight vector and ∇φ(xl) = [∇φ1(xl) ∇φ2(xl)

· · · ∇φN1(xl)]
T the Jacobian of φ(xl). Given NNs (4.31) and (4.32), (4.16) is rewritten as

ejil (t) = qT (xl)Q̂
j
l q(xl) + (ûjil )

TRlû
ji
l − (v̂jil )

TSlv̂
ji
l

+ (Cji
l )

T∇φ(xl)
(
f(xl) + g(xl)û

ji
l + h(xl)v̂

ji
l

)
, (4.33)

where ejil (t) is the approximation error and is forced to be zero in average sense [5, 68] to find

Cji
l ; Q̂j

l , û
ji
l and v̂jil are approximation values using NN (4.31). It follows from (4.31) that the NN

weight Cji
l has N1 unknown constants. In order to solve the unique Cji

l , the batch least square

(BLS) method is used to construct N̄1 ≥ N1 equations for (4.33) from N̄1 different time points.

The continuous-time data can be well approximated by discretization with a small interval T > 0.

Define

Φji
l =



α(xl)|T

α(xl)|2T
...

α(xl)|N̄1T


,Ψji

l =



ψ(xl)|T

ψ(xl)|2T
...

ψ(xl)|N̄1T


, (4.34)

where

α(xl)|s1T = ∇φ(xl)
(
f(xl) + g(xl)û

ji
l + h(xl)v̂

ji
l

) ∣∣
s1T
,

ψ(xl)|s1T =
(
−qT (xl)Qj

l q
T (xl)− (ûjil )

TRlû
ji
l + (v̂jil )

TSlv̂
ji
l

) ∣∣
s1T
,

s1 ∈ {1, 2, · · · , N̄1}.
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Thus, Cji
l is uniquely solved by

Cji
l =

(
(Φji

l )
TΦji

l

)−1
(Φji

l )
TΨji

l . (4.35)

The optimal control input (4.17) and the worst-case adversarial input (4.18) are then respectively

approximated as

û
j(i+1)
l = −1

2
R−1

l gT (xl)∇φ(xl)Cji
l , (4.36)

v̂
j(i+1)
l =

1

2
S−1
l hT (xl)∇φ(xl)Cji

l . (4.37)

When the solution set (Cji
l û

j(i+1)
l v̂

j(i+1)
l ) converges to a set (Cj

l û
j
l v̂

j
l ), according to (4.15),

the estimated state-penalty weight Q̂j+1
l is then updated as

qT (xl)Q̂
j+1
l q(xl) = u∗Te Rlu

∗
e − 2u∗Te Rlû

j
l + (v̂jl )

TSlv̂
j
l (4.38)

− (Cj
l )

T∇φ(xl)
(
f(xl) + g(xl)û

j
l + h(xl)v̂

j
l

)
.

The matrix Q̂j+1
l can be computed by (4.38) using BLS. Q̂j+1

l has (n+1)n/2 unknown param-

eters. Q̂j+1
l is uniquely solved by constructing N̄2 ≥ (n+ 1)n/2 equations. Define

Γl =



vecv(q(xl)⊗ q(xl))T |T

vecv(q(xl)⊗ q(xl))T |2T
...

vecv(q(xl)⊗ q(xl))T |N̄2T


, ∆j

l =



δjl |T

δjl |2T
...

δjl |N̄2T


, (4.39)
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where

vecv(s⊗ s) ≜ [s21 s1s2 · · · s1sn s22 · · · sn−1sn s
2
n]

T , s ∈ Rn,

δjl =
(
− (Cj

l )
T∇φ(xl)

(
f(xl) + g(xl)û

j
l

+ h(xl)v̂
j
l

)
+ u∗Te Rlu

∗
e − 2u∗Te Rlû

j
l + (v̂jl )

TSlv̂
j
l

)
|s2T ,

s2 ∈ {1, 2, · · · , N̄2}.

Then, Q̂j+1
l is uniquely solved by

vecm(Q̂j+1
l ) =

(
ΓT
l Γl

)−1
ΓT
l ∆

j
l , (4.40)

where vecm(Q̂j+1
l ) ≜ [Q̂j+1

11 2Q̂j+1
12 · · · 2Q̂j+1

1n Q̂j+1
22 2Q̂j+1

23 · · · 2Q̂j+1
(n−1)n Q̂

j+1
nn ]T .

Now, a NN-based inverse RL Algorithm 4.2 is summed up below to implement the inverse RL

Algorithm 4.1.

Algorithm 4.2 Model-based Inverse RL Algorithm via NNs for Adversarial Apprentice Game

1: Initialization: select Q̂0
l ≥ 0, Rl > 0, Sl > 0, initial stabilizing û00l , and small thresholds ε1,

ε2. Set j = 0.

2: Outer j iteration loop based on inverse optimal control

3: Inner i iteration loop using optimal control: given j, set i = 0, use initial stabilizing ûj0l .

4: Policy evaluation for solving Cji
l by (4.35).

5: Policy improvement for solving ûj(i+1)
l by (4.36) and v̂

j(i+1)
l by (4.37).

6: Stop if ∥Cji
l − C

j(i−1)
l ∥ ≤ ε1, then set Cj

l = Cji
l , ûjl = ûjil and v̂jl = v̂jil . Otherwise, set

i← i+ 1 and go to Step 4.

7: State-penalty weight Q̂j+1
l update by (4.40) using the expert’s demonstration u∗e.

8: Stop if ∥Q̂j+1
l − Q̂j

l ∥ ≤ ε2. Otherwise, set û(j+1)0
l = ûjl and j ← j + 1, then go to Step 3.

The next result shows the same convergence between Algorithms 4.2 and 4.1.
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Theorem 4.4. (Convergence of Algorithm 4.2). Algorithm 4.2 converges to Algorithm 4.1 and

obtains a convergence (xl, û
j
l )→ (xe, u∗e) as j →∞.

Proof. In inner iteration loop, given j, Q̂j
l ≥ 0, Rl > 0, Sl > 0, the NN weight Cji

l can be uniquely

determined if rank((Φij
l )

TΦij
l )≥ Ni. This can be satisfied by letting the number of collected data in

(4.34) satisfy N̄1 ≥ N1. Thus, V̂ ji
l is solved by BLS (4.35) and converges to V ji

l solved by (4.16).

It has been proven in [5] that V̂ ji
l in (4.31) uniformly approximates to V j

l . By repeating (4.35)-

(4.37), when Cji
l converges to Cj

l , the learner has the unique inputs ûjl and v̂jl . These approximated

inputs uniformly converges to (4.17)-(4.18), i.e., ûjil → ujil and v̂jil → vjil .

In outer iteration loop, the learner can use (4.40) to uniquely solve the Q̂j+1
l with the condition

of rank(ΓT
l Γl) ≥ (n + 1)n/2. This can be satisfied by letting the number of collected data have

N̄2 ≥ (n+1)n/2 in (4.39). Due to the convergence V̂ ji
l → V ji

l , ûjil → ujil and v̂jil → vjil , one thus

has that Q̂j+1
l is uniquely solved by (4.40) and converges to Qj+1

l .

It is seen that (4.35)-(4.37) and (4.38) in Algorithm 4.2 are rigorously derived from (4.16)-

(4.19) of Algorithm 4.1 using NN (4.31). Algorithm 4.2 obtains unique solutions in (4.35)-(4.37)

and (4.38). These solutions converge to the solutions of (4.16)-(4.19) in Algorithm 4.1. One

concludes that Algorithm 4.2 converges to Algorithm 4.1. Thus, the learner obtains a convergence

(xl, û
j
l )→ (xe, u∗e) with vl = ve as j →∞.

4.4 Model-free Inverse RL

Inverse RL Algorithms 4.1 and 4.2 in Section 4.3 require the knowledge of system dynamics

f , g and h to solve Adversarial Apprentice Games. This section develops an online model-free

off-policy integral inverse RL algorithm without using f , g and h. Then, this model-free inverse

RL algorithm is implemented using NNs in Section 4.4.2.

4.4.1 Model-free Integral Inverse RL Algorithm

First, one uses the off-policy integral RL [73, 120] in inner i iteration loop of Algorithm 4.1,
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which allows to find model-free equations equivalent to (4.16)-(4.18). First, rewrite (4.9) as

ẋl = f(xl) + g(xl)u
ji
l + h(xl)v

ji
l + g(xl)(ul − ujil ) + h(xl)(vl − vjil ), (4.41)

where ujil ∈ Rm and vjil ∈ Rk are inputs updated at inner i iteration given j. Differentiating V ji
l

along with (4.41) yield

V̇ ji
l = (∇V ji

l )T (f + gujil + hvjil ) + (∇V ji
l )Tg(xl)(ul − ujil ) + (∇V ji

l )Th(xl)(vl − vjil )

= −qT (xl)Qj
l q(xl)− (ujil )

TRlu
ji
l + (vjil )

TSlv
ji
l

− 2(u
j(i+1)
l )TRl(ul − ujil ) + 2(v

j(i+1)
l )TSl(vl − vjil ). (4.42)

Then, integrating both sides of (4.42) from t to t + T yields the off-policy Bellman equation

(4.43) (to be presented in Algorithm 4.3), which solves the converged V l
l , ujl and vjl given Qj

l .

Next, the integral RL technique is used in outer j iteration loop of Algorithm 4.1 to find a

model-free equation equivalent to (4.19). To update the Qj+1
l , one integrates both sides of (4.19)

from t to t+ T to yield (4.44) (to be presented in Algorithm 4.3).

The integral inverse RL Algorithm 4.3 is summed up below.

85



Algorithm 4.3 Model-free Integral Inverse RL Algorithm for Adversarial Apprentice Game

1: Initialization: select Q0
l ≥ 0, Rl > 0, Sl > 0, initial stabilizing u00l , and small thresholds ε1,

ε2. Set j = 0. Apply stabilizing ul to the learner dynamics (4.41).

2: Outer j iteration loop based on inverse optimal control

3: Inner i iteration loop using optimal control: given j, set i = 0, use initial stabilizing uj0l .

4: Off-policy Integral RL for solving V j
l , ujl and vjl

V ji
l (xl(t+ T ))− V ji

l (xl(t)) (4.43)

−
∫ t+T

t

2
((
u
j(i+1)
l

)T
Rl

(
ul − ujil

)
−
(
v
j(i+1)
l

)T
Sl

(
vl − vjil

))
dτ

=

∫ t+T

t

(
− qT (xl)Qj

l q(xl)− (ujil )
TRlu

ji
l + (vjil )

TSlv
ji
l

)
dτ.

5: Stop if ∥V ji
l − V

j(i−1)
l ∥ ≤ ε1, then set V j

l = V ji
l , ujl = ujil and vjl = vjil . Otherwise, set

i← i+ 1 and go to Step 4.

6: State-penalty weight Qj+1
l update using the expert’s demonstration u∗e∫ t+T

t

qT (xl)Q
j+1
l q(xl)dτ (4.44)

=

∫ t+T

t

(
u∗Te Rlu

∗
e − 2u∗Te Rlu

j
l + (vjl )

TSlv
j
l

)
dτ − V j

l (xl(t+ T )) + V j
l (xl(t)).

7: Stop if ∥Qj+1
l −Qj

l ∥ ≤ ε2. Otherwise, set u(j+1)0
l = ujl and j ← j + 1, then go to Step 3.

The next theorem shows the convergence of Algorithm 4.3 to Algorithm 4.1.

Theorem 4.5. (Convergence of Algorithm 4.3) Algorithm 4.3 converges to Algorithm 4.1 such

that the learner achieves a convergence (xl, u
j
l )→ (xe, u∗e) as j →∞.

Proof. First, given j, j = 0, 1, · · · , and Qj
l , one divides both sides of (4.43) by T and takes the
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limit to be

lim
T→0

V ji
l (xl(t+ T ))− V ji

l (xl(t))

T
− lim

T→0

2
∫ t+T

t

(
u
j(i+1)
l

)T
Rl

(
ul − ujil

)
dτ

T

+ lim
T→0

2
∫ t+T

t

(
v
j(i+1)
l

)T
Sl

(
vl − vjil

)
dτ

T

+ lim
T→0

∫ t+T

t

(
qT (xl)Q

j
l q(xl) + (ujil )

TRlu
ji
l − (vjil )

TSlv
ji
l

)
dτ

T

= 0. (4.45)

By LâHopitalâs rule, (4.45) becomes

(∇V ji
l )T

(
f + gujil + hvjil + g(xl)(ul − ujil ) + h(xl)(vl − vjil )

)
−

(
u
j(i+1)
l

)T
Rl

(
ul − ujil

)
+
(
v
j(i+1)
l

)T
Sl

(
vl − vjil

)
+ qT (xl)Q

j
l q(xl) + (ujil )

TRlu
ji
l − (vjil )

TSlv
ji
l

= 0. (4.46)

Then, submitting uj(i+1)
l in (4.17) and vj(i+1)

l in (4.18) into (4.46) yields (4.16). This implies that

(4.43) gives the same solution as the Lyapunov function (4.16) with the inputs (4.17) and (4.18).

Similarly, one divides both the sides of (4.44) by T and takes the limit operation. This yields

(4.19) and shows that (4.44) gives the same solution as (4.19). Thus, the learner obtains a conver-

gence (xl, u
j
l )→ (xe, u∗e) with vl = ve as j →∞.

Remark 4.6. For the learner, Algorithm 4.3 is completely model-free in both outer j iteration loop

and inner i iteration loop, which is compared with [17, 83] that require the knowledge of system

dynamics for reconstructing cost functions. This is also in contrast to the Algorithms 4.1 and 4.2

that require the full knowledge of system dynamics in both iteration loops.

4.4.2 Implementing Model-free Integral Inverse RL Algorithm 4.3 via NNs

This subsection introduces a NN-based model-free off-policy inverse RL algorithm for imple-

menting the Algorithm 4.3 using online data without knowing any knowledge of system dynam-

87



ics. Three NN-based approximators are designed for the learner’s value function V ji
l , the updated

control input uj(i+1)
l and the updated adversarial input vj(i+1)

l in the Bellman equation (4.43) in

Algorithm 4.3. Three approximators are

V̂ ji
l = (Cji

l )
Tφ(xl), (4.47)

ū
j(i+1)
l = (W ji

l )Tϕ(xl), (4.48)

v̄
j(i+1)
l = (Hji

l )
Tρ(xl), (4.49)

where φ(xl) in (4.31), ϕ(xl) = [ϕ1(xl) ϕ2(xl) · · · ϕN2(xl)]
T and ρ(xl) =

[
ρ1(xl) ρ2(xl) · · ·

ρN3(xl)
]T are activation vector functions of three NNs, respectively. Moreover, Cji

l ∈ RN1 , W ji
l ∈

Rm×N2 and Hji
l ∈ Rk×N3 . N1 in (4.31), N2 and N3 are hidden-layer neuron numbers of three NNs,

respectively.

Define ul− ūjil ≜
[
ũjil,1 ũ

ji
l,2 · · · ũ

ji
l,m

]T
and vl− v̄jil ≜

[
ṽjil,1 ṽ

ji
l,2 · · · ṽ

ji
l,k

]T
. Assume that weights

Rl and Sl are given in the form of Rl = diag{r1, r2, · · · , rm}T and Sl = diag{s1, s2, · · · , sk}T ,

respectively. Then, together with (4.47)-(4.49), (4.43) is expressed as

(Cji
l )

T [φ(xl(t+ T )− φ(xl(t))] (4.50)

+ 2
m∑

h=1

rh(W
ji
l,h)

T

∫ t+T

t

ϕ(xl)ũ
ji
l,hdτ − 2

k∑
p=1

sp(H
ji
l,p)

T

∫ t+T

t

ρ(xl)ṽ
ji
1,pdτ

= ējil (t)−
∫ t+T

t

(
qT (xl)Q̂

j
l q(xl) + (ūjil )

TRlū
ji
l − (v̄jil )

TSlv̄
ji
l

)
dτ,

where ējil (t) is the Bellman approximation error and is forced to be zero in some average sense to

find Cji
l , W ji

l and Hji
l [5, 68]. One uses BLS method to solve the unique solution set

(
Cji

l W ji
l,1

· · · W ji
l,m Hji

l,1 · · · H
ji
l,k

)
given Qj

l . This solution set provides information for the update of Q̂j+1
l
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in (4.44). Thus, one defines

Σji
l =



∫ t+T

t
σji
l dτ∫ t+2T

t+T
σji
l dτ

...∫ t+ιT

t+(ι−1)T
σji
l dτ


,Πij

l =



π1
xl

π1
ul

π1
vl

π2
xl

π2
ul

π2
vl

...
...

...

πι
xl

πι
ul

πι
vl


, (4.51)

where

σji
l = −qT (xl)Q̂j

l q
T (xl)− (ūjil )

TRlū
ji
l + (v̄jil )

TSlv̄
ji
l ,

πι
xl
= φT (xl(t+ ιT ))− φT (xl(t+ ιT − T )),

πι
ul
= [r1

∫ t+ιT

t+ιT−T

ϕT (xl)ũ
ji
l,1dτ · · · rm

∫ t+ιT

t+ιT−T

ϕT (xl)ũ
ji
l,mdτ ],

πι
vl
= [s1

∫ t+ιT

t+ιT−T

ρT (xl)ṽ
ji
l,1dτ · · · sm

∫ t+ιT

t+ιT−T

ρT (xl)ṽ
ji
l,kdτ ].

The unknown parameters in (4.50) can be uniquely solved by using BLS when (Πji
l )

TΠji
l has

full rank. It is required to satisfy a persistent excitation (PE) condition which needs ι groups of

data collection. The positive integer ι is no less than the number of unknown parameters in (4.50),

i.e., ι ≥ N1 + m × N2 + k × N3. Then, the unknown weights Cji
l , W ji

l and Hji
l in (4.50) are

uniquely solved by

[
(Cji

l )
T (W ji

l,1)
T · · · (W ji

l,m)
T (Hji

l,1)
T · · · (Hji

l,k)
T
]T

= ((Πji
l )

TΠji
l )

−1(Πji
l )

TΣji
l . (4.52)

When
(
Cji

l W ji
l Hji

l

)
converges to

(
Cj

l W
j
l H

j
l

)
, given the expert’s control input u∗e and using

this convergent solution set, the learner solves Q̂j+1
l by

∫ t+T

t

qT (xl)Q̂
j+1
l q(xl) =

∫ t+T

t

(
u∗Te Rlu

∗
e − 2u∗Te RlW

j
l ϕ+ ρTHj

l Sl(H
j
l )

Tρ
)
dτ

− (Cj
l )

T
(
φ(xl(t+ T )− φ(xl(t))

)
, (4.53)

where the unique Q̂j+1
l is computed by constructing N̄2 ≥ (n+ 1)n/2 equations. Define
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(Y j
l )

T =

[
yjl (T ) yjl (2T ) · · · yjl (N̄2T )

]
, (4.54)

(Γ̄l)
T =

[∫ t+T

t
γldτ

∫ t+2T

t+T
γldτ · · ·

∫ t+N̄2T

t+(N̄2−1)T
γldτ

]
,

where

yjl (s2T ) =

∫ t+s2T

t+(s2−1)T

(
u∗Te Rlu

∗
e − 2u∗Te RlW

j
l ϕ+ ρTHj

l Sl(H
j
l )

Tρ
)
dτ

− (Cj
l )

T
(
φ(xl(t+ s2T ))− φ(xl(t+ (s2 − 1)T ))

)
,

γl = vecv(q(xl)⊗ q(xl))T ,

s2 ∈ {1, 2, · · · , N̄2}

Then, Q̂j+1
l is solved by

vecm(Q̂j+1
l ) =

(
Γ̄T
l Γ̄l

)−1
Γ̄T
l Y

j
l . (4.55)

Based on above derivation, an online NN-based model-free integral inverse RL Algorithm 4.4

is summed up as follows.

Algorithm 4.4 Model-free Integral Inverse RL Algorithm via NNs for Adversarial Apprentice
Game

1: Initialization: select Q̂0
l ≥ 0, stabilizing ū00l , and small thresholds ε1, ε2. Apply stabilizing ul

to (4.41). Set j = 0.

2: Outer j iteration loop based on inverse optimal control

3: Inner i iteration loop using optimal control: given j, set i = 0, use initial stabilizing ūj0l .

4: Off-policy integral RL for solving Cji
l , W ji

l and Hji
l by (4.52).

5: Stop if ∥V̂ ji
l − V̂

j(i−1)
l ∥ ≤ ε1, then set (Cj

l W
j
l H

j
l ) =(Cji

l W ji
l Hji

l ). Otherwise, set i← i+1

and go to Step 4.

6: State-penalty weight Q̂j+1
l update by (5.44) using the expert’s demonstration u∗e.

7: Stop if ∥Q̂j+1
l − Q̂j

l ∥ ≤ ε2. Otherwise, set ū(j+1)0
l = ūjl and j ← j + 1 and go to Step 3.
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Remark 4.7. The convergence of Algorithm 4.4 to Algorithm 4.1 can be obtained by proving the

convergence of Algorithm 4.4 to Algorithm 4.3. This can be referred to the Theorem 4.5. Then, it

follows from Theorem 4.5 that Algorithm 4.3 convergences to Algorithm 4.1. Thus, one concludes

that Algorithm 4.4 convergences to Algorithm 4.1.

4.5 Simulation Studies

In this section, two examples, i.e., an example of linear expert-learner system and an example

of nonlinear expert-learner system are studied to verify the effectiveness of the proposed inverse

RL methods. In addition, the proposed methods are compared with the off-policy tracking method

in [73] for the imitation performance.

4.5.1 Example 1: Linear Systems

Consider the linear learner and expert systems with identical system dynamics as

ẋl = Axl +Bul +Dvl,

ẋe = Axe +Bue +Dve,

where the system dynamics matrices A, B and D are given by

A =

−3 −2
2 −3

 , B =

0
2

 , D =

1
0

 .
Table 4.1 gives the parameters of the learner and expert systems in an Adversarial Apprentice

Game. In the table, In denotes the n-dimensional identity matrix.

Given the expert system and other parameters in Table 4.1, one refers to the optimal control

technique [54] and derives the expert’s optimal feedback control input as

u∗e ≜ −Kexe =

[
0.2258 −2.0640

]
xe,
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Table 4.1: Parameter Setting

Parameters Expert Learner

State-Penalty Weight Qe = 10I2 Q0
l = I2

Actual Adversarial input ve = 0.01sin(xe) vl = 0.01sin(xl)

Control Input Weight Re = 1 Rl = 2

Adversarial Input Weight Se = 25 Sl = 64

Initial Condition xe(0) = [3, −1]T xl(0) = [3, −1]T

where Ke ≜ R−1
e BTPe and Pe is the solution of Riccati equation

ATPe + PeA+ Se − PeBR
−1
e BTPe +

1

γ2e
PeDD

TPe = 0.

Note that the trajectories of expert optimal control input are given for the learner instead of the

policy.

For the learner, consider the performance cost function as the quadratic form Vl = xTl P
j
l xl and

the state penalty as Ql(xl) = xTl Q
j
lxl with the corresponding state-penalty weight Qj

l . The optimal

control input is ujl = −Kj
l xl with feedback gain Kj

l . One selects the activation function for the

performance cost function as φ(xl) = [x2l1 x
2
l2 2xl1xl2]

T in Algorithm 4.2.

Now, given the parameters in Table 4.1, one shows simulation results using Algorithm 4.2. The

small reinforcement interval is T = 0.005. Figure 4.2 shows that the learner learns and mimics the

expert’s behavior trajectories (xe, u∗e) within a short time. In Figure 4.2, xln and xen denotes the n-

th state of the leaner and the expert, respectively. Figure 4.3 shows the learning of the state penalty

weight Qj
l and the feedback gain Kj

l . Observe that Qj
l converges to Q∞

l which is equivalent to Qe,

and Kj
l converges to Ke. Eventually, Qj

l , K
j
l and Cj

l respectively converge to the values

Q∞
l =

 3.4739 −2.1831

−2.1831 9.9974

 , K∞
l =

[
−0.2216 2.0582

]
,

C∞
l =

[
2.5132 2.0580 −0.2216

]T
.
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Figure 4.2: Trajectories of the linear learner using Algorithm 4.2
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Figure 4.3: Convergence of the linear learner’s state-penalty weightQl and feedback gainKl using
Algorithm 4.2.

To implement Algorithm 4.4, select the activation functions for Vl, ul and vl as φ(xl) =

[x2l1 x
2
l2 2xl1xl2]

T , ϕ(xl) = [−xl1 − xl2 − xl1xl2]T and ρ(xl) = [xl1 xl2 xl1xl2]
T , respectively.
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Now, considering the same parameters in Table 4.1, one shows the simulation results using

Algorithm 4.4. Figure 4.4 shows that the learner learns and performs the expert’s behavior trajec-

tories (xe, u∗e) within a short period. Figure 4.5 shows the convergence of Qj
l and Kj

l . Note that

Qj
l converges to a weight which is equivalent to Qe according to Theorem 4.1, and Kj

l converges

to Ke. Finally, Qj
l , K

j
l , Cj

l , W j
l and Hj

l respectively converge to the values

Q∞
l =

 3.4539 −2.2134

−2.2134 9.9626

 , K∞
l =

[
−0.2744 2.0723

]
,

C∞
l =

[
2.5355 2.0635 −0.2258

]T
,W∞

l =

[
−0.2258 2.0635 0.0004

]T
,

H∞
l =

[
0.0209 −0.0021 0.0005

]T
.

It should be noted that in Figures 4.3 and 4.5, Qj
l does not converge to Qe, while Kj

l converges

to Ke. The reason is that Qj
l converges to an equivalent weight Q∞

l to Qe (see Definition 4.1).

This equivalent weight defines the learner the same optimal behavior as the expert. The existence

and the convergence of the equivalent weight are shown in Theorems 4.2 and 4.1. Furthermore, in

the linear example, when the learner has the convergence (x, u∞l ) = (x, u∗e), one has −K∞
l xe =

−Kexe. This implies K∞
l = Ke.
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Figure 4.4: Trajectories of the linear learner using Algorithm 4.4.
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Figure 4.5: Convergence of the linear learner’s state-penalty weightQl and feedback gainKl using
Algorithm 4.4.

4.5.2 Example 2: Nonlinear Systems

Consider that the draft function f(·), control input function g(·) and adversarial input function
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h(·) for two agents are given by

f(s) =

−s1 + x2

−s31

 , g(s) =
 0

s2

 , h(x) =
 0

s1

 .
where s represents xl or xe, sn denotes the n-th element of s.

Suppose in this nonlinear example, the learner has the same actual adversarial input weights as

that in Example 1, and so does the expert. The initial states are xl(0) = xe(0) = [3, −3]T .

Consider both the learner and expert with the state penalty in the form of

Q(x) =

[
x21 x22

]
Q

[
x21 x22

]T
,

where Q represents Ql or Qe. Then, select state-penalty weights Q0
l and Qe as

Q0
l =

 1 −0.0035

−0.0035 0.25

 , Qe =

 2 −0.0078

−0.0078 1


and control input weights are Rl = Re = 1. Based on the converse Hamilton-Jacobi-Bellman

approach in [78], the learner’s optimal value function is V ∗
l = 1

4
x4l1+

1
2
x2l2 and the expert’s optimal

value function is V ∗
e = 1

2
x4e1 + x2e2. Select the activation function for the learner as φ(xl) =

[x2l2 x
4
l1 x

4
l2]

T .

Given the above parameters, this work then shows simulation results using the model-based

inverse RL Algorithm 4.2 for nonlinear system example. Set T = 0.004. Figure 4.6 shows that

the learner mimics the expert’s behavior (xe, u∗e). Figure 4.7 shows the convergence of the state

penalty weight Qj
l . It is observed that Qj

l converges to Q∞
l which is equivalent to Qe. They are

Q∞
l =

 1.7625 −0.5819

−0.5819 1.0333

 , C∞
l =

[
0.8800 0.4154 0.0006

]T
.

In order to use the model-free inverse RL Algorithm 4.4, this work selects the activation func-
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Figure 4.6: Trajectories of states and control inputs of the nonlinear learner using Algorithm 4.2
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Figure 4.7: Convergence of the nonlinear learner’s state-penalty weight Ql using Algorithm 4.2.
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tions for Vl, ul and vl as φ(xl) = [x2l1 x
2
l2 x

4
l1 x

4
l2]

T , ϕ(xl) = [xl1xl2 x
2
l2 xl1x

3
l2 x

3
l1xl2 x

4
l1 x

4
l2]

T and

ρ(xl) = [xl1xl2 x
2
l2 xl1x

3
l2 x

3
l1xl2 x

4
l1 x

4
l2]

T , respectively.

Given the above parameters, this work now shows results using Algorithm 4.4. Figure 4.8

shows that the learner obtains a convergence behavior (xl, u∗l ) = (xe, u
∗
e). Figure 4.9 shows the

convergence of state-penalty weight Qj
l . One obtains the converged C∞

l , W∞
l , H∞

l and Q∞
l as

Q∞
l =

 1.7812 −0.5753

−0.5753 1.0304

 , C∞
l =

[
0.0008 0.8110 0.4157 0.0005

]T
,

W∞
l =

[
0.0002 −0.8120 0.0001 0 0.0003 −0.0011

]T
,

H∞
l =

[
0.8155 0.0001 0 0.0012 0.0001 0

]T
.

Note that Qj
l in Figures 4.7 and 4.9 does not converge to Qe because Qj

l converges to an equivalent

weight Q∞
l that is not equal to Qe as shown in Definition 4.1 and Theorem 4.2. This equivalent

weight can define the learner the same optimal behavior as the expert. The existence and the

convergence of the equivalent weight are shown in Theorems 4.2 and 4.1.
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Figure 4.8: Trajectories of states and control inputs of the nonlinear learner using Algorithm 4.4
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Figure 4.9: Convergence of the nonlinear learner’s state-penalty weight Ql using Algorithm 4.4

4.5.3 Comparison to Existing Optimal Tracking by RL Technique in [73]

This work now compares the proposed inverse RL imitation learning methods with the off-

policy optimal tracking method in [73]. [73] proposes off-policy tracking control algorithm given

manually specified cost function, whereas this work reconstructs unknown cost function from

demonstrations for the imitation. The tracking performance by [73] is then compared with the

imitation performance of the examples in Section 4.5.1 and Section 4.5.2.
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Figure 4.10: Trajectories of the linear learner using off-policy algorithm [73]
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Figure 4.11: Trajectories of the nonlinear learner using off-policy algorithm [73]

The off-policy tracking algorithm in [73] is implemented in both two examples that are given

in Section 4.5.1 and Section 4.5.2. Assume that the state-penalty weights of the learner in two

examples for [73] are manually selected as initial ones, i.e., Q0
l = I2 for the linear example in
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Section 4.5.1 and Q0
l =

 1 −0.0035

−0.0035 0.25

 for the nonlinear example in Section 4.5.2. The

other parameters are the same as those in two examples.

Figure 4.10 and Figure 4.11 show the trajectories of the linear and nonlinear learners, respec-

tively, by using the off-policy algorithm in [73]. Comparing Figure 4.4 and Figure 4.10, and Figure

4.8 and Figure 4.11, one notices that the proposed inverse RL methods have better imitation per-

formance. This shows that it is hard to manually specify a cost function for the learner such that it

has the same behavior trajectories with the expert all the time. However, the inverse RL methods

of reconstructing cost functions from demonstrations can obtain the same policy as the expert, thus

leading to better imitation performance.

4.6 Conclusion

This chapter proposes novel inverse RL control methods to solve the Adversarial Apprentice

Game by learning the objective weights of the expert, such that the learner performed the expert’s

behavior. Both model-based and model-free inverse RL algorithms are developed to solve the

game, and then implemented by using neural networks. Given the expert’s demonstrations, the

learner learns the expert’s unknown performance weights which are not unique. The convergence

and stability of the algorithms are guaranteed.
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Chapter 5: INVERSE RL FOR MULTI-PLAYER NONCOOPERATIVE

APPRENTICE GAMES

5.1 Introduction

This chapter generalizes the inverse RL algorithms to multi-player games for imitation learning,

which we call Multi-player Noncooperative Apprentice Games. In these games, both the expert and

the learner have N -player control inputs. Inverse RL algorithms are proposed to solve the games

for nonlinear continuous-time systems described by differential dynamic equations. The games are

solved by reconstructing the unknown performance reward function of each player in the expert

system by each player in the learner system. The learner observes the demonstrated expert players’

behaviors, such that the learner mimics the expert’s behaviors, i.e., states and control inputs of each

player.

First, this chapter develops a model-based inverse RL algorithm that involves two learning

stages: an optimal control learning stage and a second stage based on inverse optimal control.

Second, a completely model-free off-policy integral inverse RL algorithm is developed for the ex-

pert and the learner with homogeneous control inputs. Third, another partially model-free integral

inverse RL algorithm is proposed for heterogeneous control inputs. These two integral inverse

RL algorithms are further implemented via neural networks (NNs). Finally, simulations verify the

effectiveness of the proposed algorithms.

The rest of the chapter is organized as follows. Section 5.2 introduces multi-player non-zero-

sum game expert and learner systems, and formalizes inverse RL problems. Section 5.3 develops

model-based inverse RL algorithms for multiplayer noncooperative apprentice games. Section

5.4 proposes a completely model-free inverse RL algorithm for the case of homogeneous control

inputs. Section 5.5 proposes a partially model-free inverse RL algorithm for the case of hetero-

geneous control inputs. In Section 5.6, simulation examples are studied to verify the proposed

methods. Section 5.7 concludes the chapter.
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5.2 Problem Formulation

This section introduces Multi-player Noncooperative Apprentice Games, multi-player non-

zero-sum game expert system and N -player learner system.

5.2.1 Multi-player Noncooperative Apprentice Games

This chapter considers a noncooperative game as the setting, where both the learner and the

expert systems consist of multiple players. One calls the noncooperative games based on apprentice

learning with multiple players Multi-player Noncooperative Apprentice Games, in which the

learner aims to mimic the expert’s trajectories but does not know the performance reward functions

of expert players. First, the expert computes desired trajectories, i.e., optimal states and control

inputs of all players with desired performance weights. Then, given the expert’s trajectories, the

learner reconstructs the reward functions of expert players to mimic expert’s trajectories. In the

autonomous driving case, an expert driver solves the noncooperative game on states and players

(acceleration, braking, turning, etc) based on rewards. The expert driver shows optimal trajectories

to the learner vehicle which also has the noncooperative game to be solved and then mimics the

trajectories by learning the expert game rewards based on IOC.

Specifically, a Multi-player Noncooperative Apprentice Game is defined as a tuple (N,S,A, Q),

where N , S and A are player, state and action sets, respectively. Q : S → R denotes a quadratic

function set of system states.

5.2.2 Multi-player non-zero-sum game expert system

Consider the N -player non-zero-sum expert system as

ẋe = f(xe) +
N∑
i=1

gi(xe)uie, (5.1)

where xe ∈ Rn, uie ∈ Rmi , f(xe) and gi(xe) denote expert’s state, control inputs of player i, i ∈ N ,

state dynamics and control input dynamics, respectively. Assume that f +
∑N

i=1 giuie is Lipschitz
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continuous on a set Π ∈ Rn containing the origin such that there exist continuous controls on Π

that stabilize (5.1).

Definition 5.1. If gi ̸= gj for some i ̸= j in (5.1), where i, j ∈ N , then the control inputs in (5.1)

are said to be heterogeneous. If gi = g, ∀i ∈ N , then the control inputs in (5.1) are said to be

homogeneous.

The performance reward function of each expert player i is defined as

Vie(xe(t0), u1e, · · · , uNe)

=

∫ ∞

t0

(
qT (xe)Qieq(xe) +

N∑
j=1

uTjeRjeuje

)
dτ, (5.2)

where q(xe) = [xse1 · · ·x
s
eN
]T ∈ Rn is the state function with the power of s; Qie = QT

ie ∈ Rn×n >

0 and Rje = RT
je ∈ Rm×m > 0 for i, j ∈ N are performance weights.

Definition 5.2. Control policy profiles (u∗ie, u
∗
−ie) are said to form a Nash equilibrium set in the

N -player noncooperative game (5.2) if V ∗
ie = Vie(u

∗
ie, u

∗
−ie) ≤ Vie(uie, u

∗
−ie) holds for all, where

−i ≜ {1, · · · , i− 1, i+ 1, · · ·N}.

Given performance reward functions (5.2) and based on optimal control for multiplayer games

[10, 54], (5.1) has optimal controls u∗ie as

u∗ie = −
1

2
R−1

ie g
T
i (xe)∇Vie(xe), i ∈ N, (5.3)

associated with expert’s N -coupled HJ equations

0 = qT (xe)Qieq(xe) +
1

4

N∑
j=1

∇V T
je (xe)gj(xe)R

−1
je g

T
j (xe)∇Vje(xe) (5.4)

+∇V T
ie (xe)

(
f(xe)−

1

2

N∑
j=1

gj(xe)R
−1
je g

T
j (xe)∇Vje(xe)

)
, i ∈ N.
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5.2.3 N -player game learner system

Consider theN -player learner system that has the same dynamic functions as the expert system

(5.1)

ẋ = f(x) +
N∑
i=1

gi(x)ui, (5.5)

where the learner has the state x ∈ Rn and player control inputs ui ∈ Rmi , i ∈ N . The performance

reward function of player i is defined as

Vi(x(t0), ui, u−i) =

∫ ∞

t0

(
qT (x)Qiq(x) +

N∑
j=1

uTj Rjuj

)
dτ (5.6)

with the same state function q(·) ∈ Rn as that in (5.2), and performance weights Qi = QT
i ∈

Rn×n > 0 and Rj = diag{rj1 , rj2 , · · · , rjm} ∈ Rm×m > 0, for all i, j ∈ N .

The next assumptions and inverse RL problems are given.

Assumption 5.1. The learner (5.5) knows q(·), Qi, ∀i ∈ N , and R1, · · · , RN in (5.6). However,

it does not know the expert’s performance weights, i.e., Qie, R1e, · · · , RNe in (5.2). Moreover, Rj

can be different from Rje.

Assumption 5.2. Each learner player i can observe the expert’s control input u∗ie, where i ∈ N .

Both systems have the same initials, i.e., x(t0) = xe(t0).

Multi-player Noncooperative Apprentice Game Problem. Given Assumptions 5.1-5.2 and

Rj for all j ∈ N , the learner should infer the unknown performance weight Qie for (5.6) for all

i ∈ N to mimic expert’s trajectories, i.e., (x, u∗1, u
∗
2, · · · , u∗N ) = (xe, u∗1e, u

∗
2e, · · · , u∗Ne).

5.3 Model-based Inverse RL for Multi-player Noncooperative Apprentice

Games

To solve the above problem, this section develops a model-based inverse RL algorithm that
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combines a first optimal control learning stage and a second IOC-based learning stage. The algo-

rithm infers the unknown expert player i’s performance weight Qie in (5.2) for learner player i’s

reward function (5.6) by observing the expert player i’s control input u∗ie. Then, the learner system

aims to obtain a convergence (x, u∗1, u
∗
2, · · · , u∗N) = (xe, u

∗
1e, u

∗
2e, · · · , u∗Ne).

5.3.1 Optimal Control Learning of Learner System

The first stage of inverse RL Algorithm 5.1 is based on optimal control. Similar to (5.1)-(5.4),

the learner has optimal controls

u∗i = −
1

2
R−1

i gTi (x)∇Vi(x), i ∈ N (5.7)

and N -coupled HJ equations

0 = qT (x)Qiq(x) +
1

4

N∑
j=1

∇V T
j (x)gj(x)R

−1
j gTj (x)∇Vj(x)

+∇V T
i (x)

(
f(x)− 1

2

N∑
j=1

gj(x)R
−1
j gTj (x)∇Vj(x)

)
, i ∈ N. (5.8)

For player i, given a current estimate Qi of Qie, the learner uses optimal control learning to

solve (5.7)-(5.8) and obtains the converged optimal solution (u∗i , V ∗
i ). The iteration form of this

stage is to be seen as (5.10) and (5.11) in Algorithm 5.1.

5.3.2 IOC Learning for Performance Weight Qi

The second learning stage of inverse RL Algorithm 5.1 is based on IOC [31]. The learner

improves the estimateQi ofQie for the player i using expert player i’s u∗ie in (5.3). Repeating these

two stages for all players, the learner eventually obtains (x, u∗1 · · · , u∗N)→ (xe, u
∗
1e, · · · , u∗Ne).

Given u∗ie and (u∗i , V
∗
i ) from the first learning stage, the learner revises player i’s performance
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weight Qi by

q(x)TQiq(x) = u∗Tie Riu
∗
ie − 2u∗Tie Riu

∗
i −

∑
j∈−i

u∗Tj Rju
∗
j −∇V ∗T

i (x)
(
f(x) +

N∑
j=1

gj(x)u
∗
j

)
. (5.9)

The iteration form of (5.9) using IOC learning is given by (5.12) to be presented in Algorithm

5.1. Now give a model-based inverse RL Algorithm 5.1 based on (5.7)-(5.9).

Algorithm 5.1 Model-based Inverse RL Algorithm

1: Select Q0
i > 0, stabilizing u00i , and small thresholds εi and ei, ∀i ∈ N . Set k = 0;

2: Outer k iteration loop based on IOC

3: Inner l iteration loop using optimal control given k, set l = 0;

4: Solve the N -tuple of costs using

0 = qT (x)Qk
i q(x) +

N∑
j=1

(uklj )
TRju

kl
j +

(
∇V kl

i (x)
)T (

f(x) +
N∑
j=1

gj(x)u
kl
j

)
, i ∈ N ; (5.10)

5: Update the N -tuple of control policies using

u
k(l+1)
i = −1

2
R−1

i gTi (x)∇V kl
i (x), i ∈ N ; (5.11)

6: Stop if ∥V kl
i − V

k(l−1)
i ∥ ≤ εi, then set V k

i = V kl
i and uki = ukli , otherwise set l← l + 1 and

go to Step 4;

7: Outer k iteration loop based on IOC: update the performance weight Qk+1
i using u∗ie (5.3)

by

qT (x)Qk+1
i q(x) (5.12)

= u∗Tie Riu
∗
ie − 2u∗Tie Riu

k
i −

∑
j∈−i

(ukj )
TRju

k
j −

(
∇V k

i (x)
)T (

f(x) +
N∑
j=1

gj(x)u
k
j

)
, i ∈ N ;

8: Stop if ∥uki − u∗ie∥ ≤ ei, otherwise set u(k+1)0
i = uki , k ← k + 1, and go to Step 3.
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Remark 5.1. The importance of Algorithm 5.1 are mainly three aspects. Firstly, compared with

multiplayer inverse RL for MDPs [75,77,123], this work studies multiplayer apprentice games de-

scribed by differential dynamic equations. Secondly, based on Algorithm 5.1, this work enables to

derive model-free versions to reconstruct reward functions compared with IOC works [39,74] that

use system dynamics. Thirdly, Algorithm 5.1 applies to both systems that have either homogeneous

or heterogeneous control inputs.

5.3.3 Convergence and Stability Analysis

This subsection shows 1) the convergence of Algorithm 5.1, 2) the non-uniqueness of perfor-

mance weights, and 3) the stability of learner dynamics.

Lemma 5.1. [113] Given Qk
i > 0 and admissible uk0i , the nonlinear Lyapunov equations (5.10)

have solutions V k
i ≥ 0 for all i ∈ N and k = 0, 1, · · · .

Definition 5.3. (Equivalent weight). The matrices Qie, R1e, · · · , RNe in (5.4) define xe and u∗ie in

(5.3). One may find a different Q̃i given R1, · · · , RN in (5.8), such that x = xe and u∗i = u∗ie, with

u∗i defined in (5.7). Then, Q̃i is called to be equivalent to Qie, where i ∈ N .

Definition 5.4. The control input ui is said to be an uniformly approximate solution of u∗ie if there

exists a small threshold ei such that ∥ui − u∗ie∥ ≤ ei holds for each i ∈ N , where u∗ie is given in

(5.2).

Assumption 5.3. Suppose there exists at least one equivalent weight to Qie in Definition 5.3 given

functions q(·), f(·) and g(·) with the chosen Rj , j ∈ N in Algorithm 5.1.

Theorem 5.1. Let Assumptions 5.1-5.3 hold. Use Algorithm 5.1 to solve the multi-player appren-

tice problem. Suppose the equivalent weight in Definition 5.3 is nonunique. Then, the algorithm

will terminate at a limited iteration step. The learner obtains uniformly approximate solutions of

Q̃i and (xe, u
∗
1e, · · · , u∗Ne), where Q̃i is equivalent to Qie, ∀i ∈ N .

Proof. One will prove the convergence in both inner iteration loops and outer iteration loops.
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First, one shows the convergence of inner iteration loops at any outer k iteration loop. As

shown in [105] and given Lemma 5.1, at outer k iteration loop, if given initial stabilizing control

inputs uk0i and Qk
i > 0, Rj > 0, j ∈ N , inner iteration steps 4 and 5 give the convergent solutions

uki and V k
i as l → ∞, where V k

i is the optimal value. Note that uk0i is obtained from Step 8. The

positive definiteness of Qk
i is proved as below.

Second, one proves the convergence of outer iteration loops by finding the limited maximum

iteration steps, which is similar to that in [3].

Given the current Qk
i , inner iteration loop gives

0 = qT (x)Qk
i q(x) +

N∑
j=1

(ukj )
TRju

k
j +

(
∇V k

i (x)
)T (

f(x) +
N∑
j=1

g(x)ukj

)
, i ∈ N. (5.13)

Adding (5.13) to the right side of (5.12) yields

qT (x)Qk+1
i q(x) = u∗Tie Riu

∗
ie − 2u∗Tie Riu

k
i + (uki )

TRiu
k
i + qT (x)Qk

i q(x)

= (u∗ie − uki )TRi(u
∗
ie − uki ) + qT (x)Qk

i q(x) (5.14)

which implies that given initial Q0
i > 0, one has

0 < Q0
i ≤ · · · ≤ Qk

i ≤ Qk+1
i , ∀i, k. (5.15)

Define ∆k
i (x) ≜ (u∗ie − uki )TRi(u

∗
ie − uki ). Based on (5.14), one has

qT (x)Qk
i q(x) = ∆k−1

i (x) + ∆k−2
i (x) + · · ·+∆0

i (x) + qT (x)Q0
i q(x). (5.16)

Suppose there are infinitely many equivalent weights Q̃i. This will be proved in Theorem 5.2.

There would exist at least one Q̃i such that Q̃i ≥ Q0
i holds and Qk

i can increase to the neighbor of

it. That is, there exists a small threshold α, such that ∥Qk
i − Q̃i∥ ≤ α holds. Then, the inner loops

have the uniformly approximate solution (see Definition 5.4) of u∗ie, i.e., ∥uki −u∗ie∥ ≤ ei. Here, the
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small threshold ei is used to stop the computation at k without affecting the positive definiteness

of Qk
i . Thus, Algorithm 5.1 is stopped at k and one has

∥qT (x)Q̃iq(x)∥ = ∥∆k
i (x) + ∆k−1

i (x) + · · ·+∆0
i (x) + qT (x)Q0

i q(x)∥

≥ (k + 1)e2iλmin(Ri) + ∥q2∥∥Q0
i ∥ (5.17)

which implies

k ≤ ∥q∥
2∥Q̃i∥ − ∥q∥2∥Q0

i ∥
e2iλmin(Ri)

≡ k0. (5.18)

This shows that Algorithm 5.1 will terminate after at most outer k0 loops. Then, the learner

obtains uniformly approximate solutions of Q̃i and (xe, u
∗
1e, · · · , u∗Ne), where Q̃i is the equivalent

weight to Qie.

Given the same initial states, i.e. x(t0) = xe(t0), one uses the uniformly approximate con-

trol policy u∗ie(t0) from t0. Then, the uniformly approximate solutions of (xe, u∗1e, · · · , u∗Ne) are

obtained for all time.

However, one cannot guarantee that Q̃i = Qie holds for any i ∈ N because Q̃i is only guaran-

teed to be the equivalent weight to Qie as shown in Definition 5.3.

Remark 5.2. [40] shows that different performance functions can define the same optimal behav-

iors. This allows us to give Assumption 5.3 for nonlinear systems. Given Assumptions 5.1-5.3 and

an initial Q0
i > 0, Theorem 5.1 ensures the existence and the convergence of solutions of (5.10)

and Q̃i.

The next result shows the assumed nonuniqueness of Q̃i in Definition 5.3 and Theorem 5.1.

Theorem 5.2. Suppose the learner obtains Q̃i and ∇Ṽi(xe) with nonzero u∗ie. Then, they may be

nonunique. Besides, Q̃i can be different from Qie. Then, ∇Ṽi(xe) satisfies

gTi (xe)∇Ṽi(xe) = RiR
−1
ie g

T
i (xe)∇V ∗

ie(xe), i ∈ N (5.19)
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and Q̃i satisfies

qT (xe)(Qie − Q̃i)q(xe) (5.20)

=
1

4

N∑
j=1

∇Ṽ T
j (xe)gj(xe)R

−1
j (Rj −Rje)R

−1
j gTj (xe)∇Ṽj(xe)

+
(
∇Ṽ T

i (xe)−∇V ∗T
ie (xe)

)(
f(xe)−

1

2

N∑
j=1

gj(xe)R
−1
je g

T
j (xe)∇Ṽj(xe)

)
, i ∈ N,

with Q̃i solved with nonzero q(xe) and∇V ∗
ie(xe).

Proof. Theorem 5.1 shows that the learner obtains the uniformly approximate solutions of Q̃i and

(xe, u
∗
1e, · · · , u∗Ne). Simultaneously, let Ṽi(xe) be associated with Q̃i. Then, one has

u∗ie = −
1

2
R−1

i gTi (xe)∇Ṽi(xe), i ∈ N. (5.21)

where∇Ṽi(xe) satisfies

0 = qT (xe)Q̃iq(xe) +
1

4

N∑
j=1

∇Ṽ T
j (xe)gj(xe)R

−1
je g

T
j (xe)∇Ṽj(xe)

+∇Ṽ T
i (xe)

(
f(xe)−

1

2

N∑
j=1

gj(xe)R
−1
je g

T
j (xe)∇Ṽj(xe)

)
, (5.22)

It follows from Definition 5.3, (5.21) and (5.3) that one has (5.19). Subtracting (5.22) from

(5.4) yields (5.20).

It is seen from (5.19) that if one lets gT (xe)Xi = Yi, where Yi = RiR
−1
ie g

T (xe)∇V ∗
ie(xe) and

xe ̸= 0, then there will be infinitely many solutions of Xi when rank(g(xe)) ̸= n. In fact, one

cannot guarantee that rank(g(xe)) = n holds. Therefore, the value∇Ṽi(xe) that makes (5.22) hold

is not unique. Then, it follows from (5.20) that Q̃i is not unique, where q(xe) is nonzero in (5.20).

Otherwise, Q̃i is unique if rank(g(xe)) = n. As a result, the equivalent weight Q̃i may not be

unique but are all bounded. Note that as shown in Theorem 5.1, Algorithm 5.1 does not learn all

the equivalent weights but converge and stop as long as one of them is learned.
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Lemma 5.2. Consider the learner system (5.5) with performance reward functions (5.6). Use

Algorithm 5.1. Then, (5.5) is asymptotically stable with the equilibrium ukli in (5.11) and uki in

(5.12) at each outer k and inner l loop, where k = 0, 1, · · · , l = 0, 1, · · · and i ∈ N .

Proof. The stability of the learner (5.5) are proved at both inner and outer loops of Algorithm 5.1.

The learner should learn stabilizing control inputs and weights Qk
i > 0 in inner loops and outer

loops, respectively.

Select (5.6) as the learner player i’s Lyapunov candidate for (5.5). First, given k, according

to (5.10), one has V̇ kl
i = −qT (x)Qk

i q(x) −
∑N

j=1(u
kl
j )

TRju
kl
j , which implies that V̇ kl

i ≤ 0, ∀l =

0, 1, · · · . Then, one deduces that V kl
i ≥ 0. Also, note that V̇ kl

i = V kl
i = 0 holds only when x = 0.

Thus, the learner system is asymptotically stable in inner iteration loops.

Second, it follows from Theorem 5.1 that (5.13) holds. Then, for outer k, k = 0, 1, · · · , iteration

loop, one has V̇ k
i = −qT (x)Qk

i q(x)−
∑N

j=1(u
k
j )

TRju
k
j . It follows from (5.14) that Qk

i > 0. Then,

V̇ k
i ≤ 0 holds. Also, (5.6) indicates V k

i ≥ 0. Thus, the learner system is asymptotically stable in

outer iteration loops.

Therefore, the learner system (5.5) is asymptotically stable at both inner and outer loops in

Algorithm 5.1.

Remark 5.3. This work learns the state-penalty weights and selects the control penalty weights.

This is a partial inverse RL problem. Yet Theorems 5.1-5.2 show that it is equivalent to a full

inverse RL problem because it reconstructs equivalent weights (Q̃i, Rj), i, j ∈ N , that generate

the same expert behaviors (xe, u∗1e, · · · , u∗Ne) in apprentice learning problems.

5.4 Completely Model-free Inverse RL for Homogeneous Control Inputs

Inverse RL Algorithm 5.1 needs the system dynamics f , g1, · · · , gN to be known. In contrast,

this section develops a completely model-free inverse RL algorithm for the case of homogeneous

control inputs, i.e., gj = g, ∀j ∈ N . The algorithm is then implemented via NNs.
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5.4.1 Off-policy Inverse RL for Homogeneous Control Inputs

To develop a completely model-free inverse RL algorithm for (5.1) and (5.5) with homogeneous

control inputs, integral RL techniques [72] are used in inner l iteration loop of Algorithm 5.1 with

gj = g for all j ∈ N . This finds model-free equations that are equivalent to (5.10)-(5.11) with

gj = g. Towards this end, one first rewrites (5.5) with homogeneous control inputs as

ẋ = f(x) +
N∑
j=1

g(x)uklj +
N∑
j=1

g(x)(uj − uklj ), (5.23)

where uklj ∈ Rm is the update of learner player j at inner l loop and outer k loop given the

performance weight Qk
i in Algorithm 5.1.

One refers to the off-policy integral RL for multi-player systems [105] and obtains the off-

policy integral RL Bellman equations for (5.10) and (5.11) as

V kl
i (x(t+ T ))− V kl

i (x(t)) (5.24)

=

∫ t+T

t

(
− qT (x)Qk

i q(x)−
N∑
j=1

(uklj )
TRju

kl
j

)
dτ −

∫ t+T

t

(
2(u

k(l+1)
i )TRi

N∑
j=1

(uj − uklj
)
dτ

which solves the converged solution set (V kl
i , ukli ) → (V k

i , u
k
i ) for all i ∈ N given the current

estimate Qk
i .

Next, one uses integral RL in outer k loop of Algorithm 5.1 again to find a model-free equation

equivalent to (5.12). Given u∗ie and the converged (V k
i , u

k
i ) from (5.24), one updates Qk+1

i by

∫ t+T

t

qT (x)Qk+1
i q(x)dτ

=

∫ t+T

t

(
u∗Tie Riu

∗
ie − 2u∗Tie Riu

k
i −

∑
j∈−i

(ukj )
TRju

k
j

)
dτ − V k

i (x(t+ T )) + V k
i (x(t)). (5.25)

The completely model-free off-policy integral inverse RL algorithm is given in Algorithm 5.2.
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Algorithm 5.2 Completely Model-free Integral Inverse RL Algorithm for Homogeneous Control
Inputs

1: Select Q0
i > 0, stabilizing u00i , and small thresholds εi, ei, ∀i ∈ N . Set k = 0. Use stabilizing

uj in (5.23);

2: Outer k iteration loop based on IOC

3: Inner l iteration loop using optimal control: given k, set l = 0;

4: Solve the N -tuple of costs and control inputs using (5.24);

5: Stop if ∥V kl
i − V

k(l−1)
i ∥ ≤ εi, then set uki = ukli and V k

i = V kl
i , otherwise set l← l + 1 and

go to Step 4;

6: Outer k iteration loop based on IOC: update the performance weight Qk+1
i using u∗ie by

(5.25);

7: Stop if ∥uki − u∗ie∥ ≤ ei, otherwise set u(k+1)0
i = uki , k ← k + 1 and go to Step 3.

The next theorem shows the same convergence properties between Algorithm 5.2 and Algo-

rithm 5.1.

Theorem 5.3. Algorithm 5.2 converges to Algorithm 5.1 and obtains the same convergence.

Proof. First, given j, j = 0, 1, · · · , and Qj
l , one divides both the sides of (5.24) by T and takes the

limit to be

lim
T→0

V kl
i (x(t+ T ))− V kl

i (x(t))

T
(5.26)

+ lim
T→0

2
∫ t+T

t

(
qT (x)Qk

i q(x) +
∑N

j=1(u
kl
j )

TRju
kl
j

)
dτ

T

+ lim
T→0

∫ t+T

t

(
2(u

k(l+1)
i )TRi

∑N
j=1(uj − uklj

)
dτ

T
= 0.
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By LâHopitalâs rule, (5.26) becomes

(∇V kl
i )T

(
f(x) +

N∑
j=1

g(x)uklj +
N∑
j=1

g(x)(uj − uklj ))
)

+ qT (x)Qk
i q(x) +

N∑
j=1

(uklj )
TRju

kl
j

+ 2(u
k(l+1)
i )TRi

N∑
j=1

(uj − uklj ) = 0. (5.27)

Then, submitting uk(l+1)
i (5.11) into (5.27) yields (5.10). This implies that (5.9) gives the same

solution as the Lyapunov function (5.10) with the inputs (5.11).

Similarly, one divides both the sides of (5.25) by T and takes the limit. This yields (5.12) and

shows that (5.25) gives the same solution as (5.12). Thus, Algorithm 5.2 converges to Algorithm

5.1. Algorithm 5.2 obtains a convergence (x, uk1, · · · , ukN)→ (x, u∗1e, · · · , u∗Ne).

5.4.2 Implementation of Inverse RL Algorithm 5.2 via NNs

Now, one implements the model-free Algorithm 5.2 based on NNs. Two NN-based approxi-

mators are designed for V kl
i and uk(l+1)

i in (5.24). According to approximation method in [116],

two NNs are given by

V̂ kl
i = (W kl

i )Tϕi(x), (5.28)

û
k(l+1)
i = (Hkl

i )Tφi(x), (5.29)

where W kl
i ∈ RMi and Hkl

i ∈ Rm×Ji are unknown NN weights of (5.28) and (5.29), respectively,

ϕi(x) = [ϕi1(x) ϕi2(x) · · · ϕiMi
(x)]T and φi(x) = [φi1(x) φi2(x) · · · φiJi

(x)]T are two activation

functions with hidden-layer neuron numbers Mi and Ji, respectively.
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Let ui − ûkli ≜
[
ũkli1 , ũ

kl
i2
, · · · , ũklim

]T . Then, one rewrites (5.24) with residual errors ϵ̂kli as

(W kl
i )T

(
ϕi(x(t+ T )− ϕi(x(t))

)
(5.30)

=−
∫ t+T

t

(
qT (x)Qk

i q(x) +
N∑
j=1

(ûklj )
TRjû

kl
j

)
dτ − 2

m∑
h=1

(Hkl
ih
)T rih

∫ t+T

t

φi(x)
N∑
j=1

ũkljhdτ + ϵ̂kli

which is used to solve the unknown NN weight set Ŵ kl
i ≜

(
W kl

i , Hkl
i1

, · · · , Hkl
im

)
for all i ∈ N

given Qk
i by batch least squares (BLSs) method. Based on the method of weighted residuals [27],

Ŵ kl
i is determined by projecting ϵ̂kli onto dϵ̂kli /dŴ kl

i and setting the inner product to zero, i.e.,

⟨ dϵ̂kli
dŴkl

i

, ϵ̂kli ⟩ ≡ 0. That is, solve Ŵ kl
i by letting ϵ̂kli ≡ 0 in (5.30) (also see [68]). To use BLSs for

(5.30), one defines

Ψkl
i =



γi1

γi2
...

γiιi


,Πkl

i =



π
(x)
i1 π

(û1)
i1 . . . π

(ûm)
i1

π
(x)
i2 π

(û1)
i2 . . . π

(ûm)
i2

...
... . . . ...

π
(x)
iιi

π
(û1)
iιi

. . . π
(ûm)
iιi


, (5.31)

where

γiιi =

∫ t+ιiT

t+(ιi−1)T

(
qT (x)Qk

i q(x) +
N∑
j=1

(ûklj )
TRjû

kl
j

)
dτ,

π
(x)
iιi

= ϕT
i (x(t+ ιiT − T ))− ϕT

i (x(t+ ιiT )),

πû1
iιi

= −ri1
∫ t+ιiT

t+ιT−T

φT
i (x)ũ

kl
i1
dτ,

πûm
iιi

= −rim
∫ t+ιiT

t+ιiT−T

φT
i (x)ũ

kl
imdτ.

Based on (5.30)-(5.31), one uses

[
(W kl

i )T (Hkl
i1
)T · · · (Hkl

im)
T
]T

=
(
(Πkl

i )
TΠkl

i

)−1

(Πkl
i )

TΨkl
i (5.32)
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to uniquely solve Ŵ kl
i → Ŵ k

i . The uniqueness of Ŵ k
i is guaranteed by collecting enough data

in (5.31), such that (Πkl
i )

TΠkl
i in (5.32) has full rank, ∀i ∈ N . This is guaranteed by having

ιi ≥Mi +mi × Ji hold, where Mi +mi × Ji is the number of unknown parameters in (5.30).

With the demonstration u∗ie and the converged solution set Ŵ k
i from (5.32), the learner updates

Qk+1
i by

∫ t+T

t

qT (x)Qk+1
i q(x) + (W k

i )
Tπx

i1 (5.33)

=

∫ t+T

t

(
u∗Tie Riu

∗
ie − 2u∗Tie RiW

k
i φi(x)−

∑
j∈−i

φ̄k
j (x)

)
dτ

with πx
i1 defined in (5.31) and φ̄k

j (x) = φT
j H

k
jRj(H

k
j )

Tφj .

Using Kronecker product, one rewrites (5.33) as

∫ t+T

t

vecv(q(x))Tdτ vecs(Qk+1
i ) = δki1 (5.34)

and defines

Γi =



∫ t+T

t
vecv(q(x))Tdτ∫ t+2T

t+T
vecv(q(x))Tdτ

...∫ t+µiT

t+(µi−1)T
vecv(q(x))Tdτ


, ηki =



δki1

δki2
...

δkiµi


, (5.35)

where δki1 =
∫ t+µiT

t+(µi−1)T
(u∗Tie Riu

∗
ie − 2u∗Tie RiW

k
i φi(x)−

∑
j∈i φ̄

k
j (x))dτ − (W k

i )
Tπx

i1.

Let µi ≥ n+ 1 hold, such that rank(ΓT
i Γi) = n+ 1. One thus uniquely solves Qk+1

i by

vecs(Qk+1
i ) =

(
ΓT
i Γi

)−1
ΓT
i η

k
i . (5.36)

Remark 5.4. Referring to the convergence of NN approximation in [42, 68], one can infer that

V̂ kl
i → V k

i and ûk(l+1)
i → uki as Mi →∞ and Ni →∞ in (5.30). Then, Qk+1

i in (5.36) uniformly
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converges to that in (5.12). Thus, the solutions of implementations (5.30) and (5.36) converge to

that of Algorithm 5.2 and Algorithm 5.1 based on Theorem 5.3. This also implies that the NN

solutions are stabilizing [68]. Similarly, for the cases of heterogeneous control inputs in next

section, this work can also obtain the uniformly convergence of the implementations.

5.5 Partially Model-free Inverse RL for Heterogeneous Control Inputs

This section proposes a partially model-free inverse RL algorithm using NNs for the case of

heterogeneous control inputs, that is, gi can be different for different i ∈ N . The algorithm needs

the control input dynamics g1, g2, · · · , gN to be known but without knowing f .

5.5.1 Inverse RL for Heterogeneous Control Inputs

One rewrites the learner system (5.23) with heterogeneous control input dynamics gj for all

j ∈ N as

ẋ = f(x) +
N∑
j=1

gj(x)u
kl
j +

N∑
j=1

gj(x)(uj − uklj ). (5.37)

Then, one refers to the off-policy integral RL for multi-player games in [105] and thus obtains

V kl
i (x(t+ T ))− V kl

i (x(t)) (5.38)

=

∫ t+T

t

(
− qT (x)Qk

i q(x)−
N∑
j=1

(uklj )
TRju

kl
j

)
dτ −

∫ t+T

t

(
(∇V kl

i )T
N∑
j=1

gj(x)(uj − uklj )
)
dτ

which is combined with (5.11) to obtain the converged (V k
i , u

k
i ) using PI given Qk

i and gj . Then,

the learner updates Qk+1
i using IOC by

∫ t+T

t

qT (x)Qk+1
i q(x)dτ + V k

i

(
x(t+ T )

)
− V k

i

(
x(t)

)
(5.39)

=

∫ t+T

t

(
u∗Tie Riu

∗
ie − 2u∗Tie Riu

k
i −

∑
j∈−i

(ukj )
TRju

k
j

)
dτ.
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The partially model-free integral inverse RL algorithm is given in Algorithm 5.3.

Algorithm 5.3 Partially Model-free Integral Inverse RL Algorithm for Heterogeneous Control
Inputs

1: Select Q0
i > 0, stabilizing u00i , and small thresholds εi, ei, ∀i ∈ N . Set k = 0. Use stabilizing

uj in (5.37);

2: Outer k iteration loop based on IOC

3: Inner l iteration loop using optimal control: given k, set l = 0;

4: Solve N -tuple of costs by (5.38) and update N -tuple of control inputs by (5.11);

5: Stop if ∥V kl
i − V

k(l−1)
i ∥ ≤ εi, then set uki = ukli and V k

i = V kl
i , otherwise set l← l + 1 and

go to Step 4;

6: Outer k iteration loop based on IOC: update the performance weight Qk+1
i using u∗ie by

(5.39);

7: Stop if ∥uki − u∗ie∥ ≤ ei, otherwise set u(k+1)0
i = uki , k ← k + 1 and go to Step 3.

5.5.2 Implementation of Inverse RL Algorithm 5.3 via NNs

To implement Algorithm 5.3, the NN approximator (5.28) is used for the value function V kl
i .

Then, ūk(l+1)
i denotes the estimate of uk(l+1)

i and is uniformly approximated as

ū
k(l+1)
i = −1

2
R−1

i gTi (x)∇ϕT
i (x)W

kl
i . (5.40)

Next, (5.38) is approximated as

(W kl
i )T

(
ϕi(x(t+ T )− ϕi(x(t))

)
(5.41)

=

∫ t+T

t

(
− qT (x)Qk

i q(x)−
N∑
j=1

(ūklj )
TRjū

kl
j

)
dτ + ϵ̄kli

+ (W kl
i )T

∫ t+T

t

(
∇ϕi(x(τ))

N∑
j=1

gj(x)(uj − ūklj )
)
dτ.

Again, use the weighted residual method in (5.41), e.g., solve W kl
i by letting ϵ̄kli ≡ 0 and using
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BLSs. One has

W kl
i =

(
(Φkl

i )
TΦkl

i

)−1

(Φkl
i )

TΩkl
i , (5.42)

where

Ωkl
i =

[
ωi1 , ωi2 , · · · , ωici

]T
,

Φkl
i =

[
(ϕ̄i1 + κi1)

T , (ϕ̄i2 + κi2)
T , · · · , (ϕ̄ici

+ κici )
T
]T
,

ωici
=

∫ t+ciT

t+(ci−1)T

(
qT (x)Qk

i q(x) +
N∑
j=1

(ūklj )
TRjū

kl
j

)
dτ,

ϕ̄ici
= −ϕT

i (x(t+ ciT )) + ϕT
i (x(t+ (ci − 1)T )),

κici = −
∫ t+ciT

t+(ci−1)T

∇ϕi

N∑
j=1

gj(x)(uj − ūklj )dτ.

To find unique solution of (5.42), one requires that ci ≥ Mi such that rank((Φkl
i )

TΦkl
i ) = Mi.

When W kl
i converges to W k

i , one defines φ̂k
j = (W k

j )
T∇φj ḡj∇φT

j W
k
j and refers to (5.39) so as to

update Qk+1
i by

∫ t+T

t

qT (x)Qk+1
i q(x) + (W k

i )
T
(
ϕi(x(t+ T ))− ϕi(x(t))

)
=

∫ t+T

t

(
u∗Tie Riu

∗
ie + u∗Tie g

T
i ∇φi(x)W

k
i −

1

4

∑
j∈−i

φ̂k
j

)
dτ. (5.43)

Let µi ≥ n + 1 hold, such that rank(ΓT
i Γi) = n + 1 with Γi defined in (5.35). One uniquely

solves Qk+1
i by

vecs(Qk+1
i ) =

(
ΓT
i Γi

)−1
ΓT
i θ

k
i , (5.44)
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where

θki = [hki1 hki2 · · · hkiµi
]T ,

hkiµi =

∫ t+µiT

t+(µi−1)T

(
u∗Tie Riu

∗
ie + u∗Tie g

T
i (x)∇φi(x)W

k
i −

∑
j∈−i

φ̂k
j

)
dτ

− (W k
i )

T
(
ϕi(x(t+ T ))− ϕi(x(t))

)
.

5.6 Simulation Studies

This section presents two examples to verify the proposed algorithms: Example 1 with ho-

mogeneous control inputs using Algorithm 5.2, and Example 2 with heterogeneous control inputs

using Algorithm 5.3.

Consider both the learner and the expert to be the four-player nonlinear system:

ṡ = f(s) + g1(s)v1 + g2(s)v2 + g3(s)v3 + g4(s)v4, (5.45)

where s denotes x or xe, vi denotes ui or uie, i ∈ {1, 2, 3, 4}.

Example 1: Consider the system (5.45) with homogeneous control inputs as

f(s) =

−s1
−s32

 , gj(s) =
 0

s1

 , ∀i ∈ {1, 2, 3, 4},
where sn denotes the nth element of the state x or xe.
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Consider the function q(s) in both (5.2) and (5.6) as q(s) =
[
s21 s22

]T
. Select

Q1e =

 2 0.56

0.56 2

 , Q2e =

1.6 0.1

0.1 1

 , (5.46)

Q3e =

 2.4 0.73

0.73 2

 , Q4e =

1.2 0.1

0.1 1

 , (5.47)

R1e = 2, R2e = 1, R3e = 3 and R4e = 1.5 for (5.2). According to the converse Hamilton-

Jacobi-Bellman approach [78], one obtains the reward functions of the expert players to be V1e =

0.4x4e1 + x2e2 , V2e = 0.6x4e1 + 0.5x2e2 , V3e = 0.5x4e1 + x2e2 and V4e = 0.3x4e1 + 0.5x2e2 .

For the learner rewards (5.6), select R1 = 3, R2 = 2, R3 = 1.5, R4 = 1 and the initial

Q0
1 = Q0

2 = Q0
3 = Q0

4 = 0.5 ∗ I2. Select the activation functions as ϕi(x) = [x41 x
2
1x

2
2 x

4
2 x

2
1 x

2
2]

T

and φi(x) = [x41 x
4
2 x

3
1x2 x1x

3
2 x1x2]

T for the learner. Set initial states x(0) = xe(0) = [3 − 3] and

small thresholds εi = ei = 0.001.

0 0.05 0.1 0.15 0.2 0.25 0.3

Time (s)

-3

-2

-1

0

1

2

3

Figure 5.1: Trajectories of the learner and the expert.

Figure 5.1 shows that the learner’s trajectories gradually converge to that of expert’s by imple-
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Figure 5.2: (a) Iteration of performance weights Qk
i ; (b) Iteration of NN weights Hk

i5
for all

i ∈ {1, 2, 3, 4} using Algorithm 5.2.

menting Algorithm 5.2. Here, the learner’s trajectories are plotted using the learning NN weights

instead of converged weights. Figure 5.2 (a) shows the norm of ∥Qk
i−Qie∥ for each i ∈ {1, 2, 3, 4}.

Note that Qk
i of each i converges. This is consistent with the convergence analysis in Theorem 5.1.

The converged value Q̃i is not equal to Qie because, as shown in Definition 5.3, multiple different

expert’s reward functions can yield the same behaviour. Figure 5.2 (b) shows the corresponding

convergence of the NN weights Hk
i5

, which leads to uki → u∗ie, i = {1, 2, 3, 4}. Here, Hk
i5

is used

to represent the results of all NN weights because x1x2 is the only term to determine uki .

Example 2: Consider the system (5.45) with heterogeneous control inputs as

g1(s) =

 0

s1

 , g2(s) =
 0

s2

 , g3(s) =
0
1

 , g4(s) =
 0

−1
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and f(s) =

 −6s1

−s32 + s2

. Then, select the weights

Q1e =

 3.6 −0.18

−0.18 1.42

 , Q2e =

 7.2 −0.42

−0.42 1.38

 ,
Q3e =

 4 −0.25

−0.25 0.5

 , Q4e =

 8 −0.12

−0.12 0.3

 ,
andR1e = R2e = 1, R3e = R4e = 0.5. Based on [78], the reward functions of expert’s four players

are V1e = 0.225x4e1+0.65x2e2 , V2e = 0.45x4e1+0.65x2e2 , V3e = 0.25x4e1+x
2
e2

and V4e = 0.5x4e1+x
2
e2

.

In the performance (5.6), select R1 = 0.5, R2 = 0.25, R3 = 1, R4 = 1.5, and initial Q0
1 =

Q0
2 =

0.5 0

0 1

 and Q0
3 = Q0

4 = I2.

Implement the Algorithm 5.3 by selecting the activation function for V k
i as ϕi(x) =

[
x41 x

2
1x

2
2 x

4
2

x21 x1x2 x
2
2

]T . Set initial s(0) = [6 − 6] and thresholds εi = ei = 0.001.

0 0.1 0.2 0.3 0.4 0.5

Time (s)
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15

20
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Figure 5.3: Trajectories of the learner and the expert.
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Figure 5.4: (a) Iteration of performance weights Qk
i ; (b) Iteration of NN weights W k

i5
for all

i ∈ {1, 2, 3, 4} using Algorithm 5.3.

Figure 5.3 plots the learner’s trajectories by using the converged NN weights. They are the

same as that of the expert. Figure 5.4 (a) shows the norm of ∥Qk
i − Qie∥. Again, note that Qk

i

converges but does not equal to Qie for all i ∈ {1, 2, 3, 4} because of the degeneracy of the optimal

reward function. Figure 5.4 (b) shows the convergence of the NN weights W k
i5

, which leads to

uki → u∗ie. Here, W k
i5

is used to represent the results of NN weights W k
i because Wi5 is the key

element to determine uki .

Now one compares the imitation performance between RL [105] and the proposed inverse RL

methods for two examples above. For RL, set the reward weights as the same as that of the learner.

Other parameters are kept the same. Figure 5.5 (a) and Figure 5.5 (b) show the imitation tracking

performance using RL for examples 1 and 2, respectively. Note that they have slower imitation

speed compared with Figure 5.1 and Figure 5.3.

This work concludes that because the proposed inverse RL methods reconstructs experts’ re-

ward weights and control policies, this yields a better imitation performance than RL that manually

specify rewards. Thus, inverse RL is a useful tool for the applications of tracking and imitation

learning compared with RL [2, 3]. However, as the computational cost is the main problem in

inverse RL problems [1], the computational efficiency is encouraged while designing new inverse

RL methods in the future.
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Figure 5.5: Trajectories of the learner and the expert using RL for (a) example 1 and (b) example
2.

5.7 Conclusion

This chapter studies inverse RL for nonlinear continuous-time systems described by multi-

player differential dynamic equations. This chapter fills in the gap that inverse RL has not been

studied for multiplayer apprentice games described by nonlinear differential equations. The games

are solved by the learner using the expert’s trajectories to find the expert’s performance reward

functions. Based on a rigorously developed model-based inverse RL algorithm, this work pro-

poses a completely model-free inverse RL algorithm for homogeneous control inputs and a par-

tially model-free inverse RL algorithm for heterogeneous control inputs. The proposed framework

may be potentially extended to multi-agent graphical games where there are more than one expert

and more than one follower learner.
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Chapter 6: FUTURE DIRECTIONS

We envision a few research directions that can further improve on our work.

1. In the studies of distributed Kalman filtering for consensus problems, the future work could

focus on the finite-time stability or state constraints [87, 108] or the effects of impaired

communication channel [102].

2. In the studies of robustness margins for distributed estimation problems, the future might be

potentially extended to some moving-horizon estimation schemes as in [131, 132].

3. In the studies of inverse RL for two-player zero-sum games, the future work could focus on

the design of online tuning algorithms where the cost functions, control polices, and state-

reward weights update simultaneously.

4. In the studies of inverse RL for multiplayer non-zero-sum games, it would be more inter-

esting to discuss the one-loop inverse RL algorithms that are more computationally efficient

because the inverse RL in this work is two-loop and scales poor with the increased dimension

of states and players.
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