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ABSTRACT 

As the population increases day by day, several cities are having trouble dealing with the 

increasing demand for a sustainable and equitable transportation system. At the same time, 

application of newer technology is also increasing . By definition, a sustainable transportation 

system indicates a method that includes the needs of each individual road user and mode of 

transportation. A sustainable transportation system also supports the compatibility of the 

system with the change in demand, regional development, and available resources. In a 

sustainable and equitable transportation system, integrating the virtual world and the physical 

world is crucial since it makes the overall system dynamic. This integration includes data 

monitoring and analysis from the virtual and the real world, developing new strategies, and 

applying simulation to evaluate the proposed methods. The goal of the sustainable and 

equitable transportation system is to generate a sustainable system that benefits all road users, 

i.e., both vehicles and pedestrians. Therefore, transportation sustainability and equitability can 

be divided into three main focuses (i) sustainable and equitable intersection design in mixed 

traffic conditions (ii) sustainable and equitable system for pedestrian detection ,and (iii) 

network performance analysis within the big data-driven environment. In this dissertation, a 

sustainable and equitable transportation system is presented in a connected vehicle and big data 

driven environment. The initial objective develops a congestion-aware heterogeneous 
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connected automated vehicle cooperative scheduling problem at intersections with the 

objective to present a method that can provide a systematic approach to the green request 

accommodations with different priorities at intersections. The Mixed Integer Linear 

Programming (MILP) formulation is developed in the context of discrete space-time and phase-

time networks whose choice variables are space-time with respect to individual vehicles and 

phase-time. An efficient search algorithm based on the “Arrival and Departure Curves (A-D 

curves)” for real-time applications is also built. Three experiments are conducted to validate 

the proposed MILP formulation and search algorithm. The simulation-based performance 

evaluation for the congestion-aware Connected and Automated Vehicles (CAV) scheduling 

reveal promising results for real-world applications in the future.    

Later, a novel dynamic flash yellow arrow (D-FYA) solution using the LIDAR-based tracking 

technique is developed. It can address the safety concerns in the FYA while recovering the 

permissive left-turn capacity after the concurrent pedestrians are cleared. Depending on the 

pedestrian volumes, the corresponding FYA with each cycle will either start as scheduled, be 

postponed, or be canceled within each cycle. The proposed D-FYA was deployed at an 

intersection next to the campus of the University of Texas at Arlington, and its real-time D-

FYA decisions in the field were verified for over 100 traffic signal cycles through simultaneous 

observation in the field. The proposed D-FYA solution is further evaluated within an “ATC-

cabinet-in-the-loop” traffic signal simulation platform to compare its mobility performance 

with another two permissive left-turn strategies: (I) “Protected + Permissive left turn (PPLT)” 

and (II) “PPLT with Minus-pedestrian-phase”. The experiment results reveal the D-FYA is 

accurate and adaptive compared to the other two permissive left-turn strategies.   

Furthermore, the dissertation also presents an innovative framework for travel demand 

forecasting. The current practice of travel demand forecasting in DFW is the classic “four-step” 

method based on household surveys and traffic counts. Like the connected vehicle trajectories, 
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the emerging new traffic data bring both opportunities and challenges. The novel data sets 

reveal much more information about the traveler than before and pave the way for enhanced 

accurate and high-fidelity travel demand forecasts. On the other hand, the traditional travel 

demand forecast cannot take advantage of the total power of such data sets. The inconsistency 

of various data sets and heterogeneous data quality impact fusing the emerging traffic data with 

the traditional ones. This task explores the innovative framework of travel demand forecasting 

based on connected vehicle data using state-of-the-art big data analytics and high-performance 

computing to address these issues. 
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CHAPTER I  

INTRODUCTION 

1.1 Overview  

With the increase in complexity in the urban transportation system, the need for a more 

diverse and sustainable alternative for network performance analysis has increased. As the 

population increases day by day, several cities are having trouble dealing with the increasing 

demand for a sustainable and equitable transportation system. At the same time, application of 

newer technology is also increasing .By definition, a sustainable transportation system 

indicates a method that includes the needs of each individual road user and mode of 

transportation. A sustainable transportation system also supports the compatibility of the 

system with the change in demand, regional development, and available resources  (1). 

On the other hand, an equitable transportation system is referred to as a system in which 

every traveler, drivers, pedestrians, and bicyclists have equitable mobility and safety. Recently, 

the concept of equitable transportation systems has been driven by the emerging artificial 

intelligence and big data analytics to deal with the surfacing equity issue in transportation 

planning and operations. In a sustainable and equitable transportation system, integrating the 

cyber space and the physical world is crucial since it makes the overall system dynamic. This 

integration includes data monitoring and analysis from the cyber space and the real world, 

developing new strategies, and applying simulation to evaluate the proposed methods. The goal 

of the sustainable and equitable transportation system is to generate a sustainable system that 
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includes benefit for all road users, i.e., both vehicles and pedestrians. Therefore, transportation 

sustainability and equitability can be divided into three main focuses: 

• Sustainable and equitable intersection design in mixed traffic conditions 

• Sustainable and equitable system for pedestrian detection 

• Network performance analysis within the big data-driven environment 

1.2 Sustainable and equitable intersection design in mixed traffic condition  

Because of this coexistence of mixed traffic in the network, ensuring the safe operation 

of the Connected Automated Vehicles (CAVs) is also becoming one of the prime factors during 

the implementation process (1). An important application of CAV technology at intersections 

is to schedule green lights for all approaching vehicles so that the intersection capacity can be 

further improved. With the increasing application of this technology, intersection design is 

becoming more challenging. The existence of CAVs has an impact on the background traffic. 

In addition, CAVs can be classified into two different groups: (i) high priority CAVs (i.e., 

emergency vehicles) and (ii) low priority CAVs (i.e., Connected transit vehicles or passenger 

cars). An equitable intersection needs to consider both these high-priority and low-priority 

CAVs present in the roadway to serve green requests in the future. In the real world, CAVs can 

notify their arriving times in advance to the downstream intersections along their paths using 

automated navigation systems and advanced wireless communication networks. These 

advantages allow expanding the CAV scheduling horizon at intersections to a few minutes and 

considering both CAVs and traditional human-driving vehicles. Long-range communications 

will become possible for CAVs soon after the emerging cellular-V2X technologies are in place. 

The expanded time horizon offers the downstream intersections with sufficient time to 

gradually adjust their control plans, cooperatively organize the background traffic and 

consequently reduce interruption to the background traffic. By contrast, the existing CAV 
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scheduling strategy for signalized intersections mostly aims at shorter horizons (e.g., 10~20 s 

before CAVs arrive at intersections). Optimizing and adjusting traffic control plans within such 

a short period will inevitably bring interruptions and delays to general vehicles. 

1.3 Sustainable and equitable system for pedestrian detection  

Pedestrian detection (PD) technology is another aspect of an equitable transportation 

system. These PD devices can collect information about the location, behavior, waiting time, 

speed, and perception reaction time of pedestrians at the intersection. Therefore, it can reduce 

the application of traditional push buttons. A large portion of pedestrian-involved crashes 

occurs at signalized intersections. Thus, providing adequate protection and mitigating measures 

for crossing pedestrians is vital. It is important to study up-to-date pedestrian behaviors to 

design safer pedestrian facilities and an equitable transportation system. In the 21st century, 

transportation developments in the United States were largely focused on making the driver’s 

experience as expedient and frictionless as possible while providing little protection or 

technological advancements for the needs of pedestrians. Guides for traffic controls at 

intersections have been developed for stewarding safety since the 1930s, but the occurrence of 

pedestrian fatalities occurring at intersections has remained relatively flat for the past two 

decades, with no strong upward or downward trends. Even it is seen that although traffic 

fatalities have generally been trending downwards, pedestrian deaths represent an increasing 

portion of overall traffic fatalities.  

The surface transportation system is experiencing rapid changes today. Not only is 

travel demand increasing, but also the travel modes are diversified. People have more choices 

for travel other than traditional vehicles, from self-driving cars to e-scooters. There are many 

initiatives toward smart infrastructure and intelligent vehicles at federal, state, and municipal 

levels to accommodate these new trends. While these efforts are modernizing the transportation 
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system, issues of “equitable safety” are surfacing. According to the National Highway Traffic 

Safety Administration (NSHTA) report, pedestrian fatalities have increased by 44% from 2010 

to 2019. In 2019, 6,590 pedestrians died of traffic crashes, the highest in 30 years (National 

Highway Traffic Safety Administration 2020). Unfortunately, these saddening facts suggest 

that walking or biking on the street is less safe today. While most of our efforts are devoted to 

improving mobility and safety for vehicles, the safety for pedestrians on roads is left far behind. 

Choosing walking or cycling over vehicles is not just a matter of choice but a matter of complex 

social-economic standings. Many underserved and low-income residents have to walk or bike 

in their lives. Technologies should not only serve those who can afford them but also those 

who need them. Smart transportation is smart only if it provides equitable safety for all road 

users. In particular, the vulnerable pedestrians should be paid the most attention to.  

Pedestrian safety is a critical prerequisite to promoting walkability in cities since their 

mobility information is minimal at intersections. We know some people are willing to cross 

the intersection through a push-button. However, we do not know how many people wish to 

cross and how long they have waited. Excessively long waiting times will make pedestrians 

lose respect for traffic lights. It was observed a lot during the experiment (e.g., Jaywalking). In 

this research, the pedestrian tracking process is divided into three zones named as:  

(i)             pedestrian waiting zone,  

(ii)           entering zone and  

(iii)         cross end zone.  

All these zones are shown in figure 1.1. 
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Ped Waiting 
Zone

Entering Zone
(during walk)

Cross Ending 
Zone

 

Figure 1.1 Pedestrian tracking process  

With a modern detection technique with perception algorithms, the pedestrian behaviors at 

intersections will be tracked to understand such as 

• Waiting time before crossing (ped-delay) 

• Perception-reaction time to the onset of WALK 

• Crossing speed distribution 

There are many aspects to pedestrian safety improvement. From the perspective of 

technologies. The efforts can be categorized into four levels, as shown in Fig. 1.2 

 

 

Figure 1.2 Four levels of pedestrian safety improvement  
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Level 1: Observe pedestrian behaviors: Pedestrian data are mostly composed of counts 

today. While the pedestrian counts reflect the needs for pedestrian facilities, they do not 

necessarily represent pedestrian safety. As such, it is necessary to collect pedestrian behavioral 

data for better-informed decision-making toward pedestrian safety improvement. 

Level 2: Revisit the design guideline for pedestrian facility design. With more 

pedestrian behavioral data, it becomes possible to inspect the effectiveness of existing 

pedestrian facilities and validate the current design guideline. Level 2 measures primarily aim 

at planning. 

Level 3: Novel control measures to improve pedestrian safety: this level involves real-

time pedestrian behavioral data collection and real-time pedestrian protection, such as reducing 

pedestrian conflicts with vehicles. Level 3 measures are primarily aimed at operations, and the 

proposed D-FYA system belongs to this level. 

Level 4: Integrate with other physical systems. At this level, multiple physical systems 

will be integrated to protect pedestrians further. For instance, the D-FYA system can be 

coupled with a lighting system to provide supplemental lights for crossing pedestrians at night. 

Level-4 solutions are rare today, but those novel solutions may be highly effective in protecting 

pedestrians. 

Dynamic Flash Yellow Arrow (D-FYA): 

This dissertation proposes a dynamic flash yellow arrow (D-FYA) mechanism based 

on a state-of-the-art LIDAR tracking system to protect concurrent crossing pedestrians fully. 

In category, it falls into the Level-3 pedestrian protection activities as defined above. The 

significant benefit of this new D-FYA method is to separate the concurrent crossing pedestrians 

from permissive left-turn vehicles while using all safe permissive left-turn capacities. This 

feature is especially beneficial when a phase duration is much longer than the required 

pedestrian crossing time. 
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1.4 Network performance analysis within the big data-driven environment  

Successful development of an Equitable system requires some primary information. For 

example, the number of unoccupied vehicles on the roadway in the future, use of energy, and 

overall impact of the existing traffic on the environment are significant concerns to address. 

The system needs to be balanced according to that. To get this information, the future travel 

demand prediction result is necessary. Nonetheless, predicting the travel demand itself is a 

challenging task since it requires a good number of available data sources to get the real-time 

traffic behavior in a roadway. With the application of big data and connected vehicles, now it 

has become much more manageable. It is now possible to get real-time traffic movement and 

behavior in a network from the connected vehicle trajectory data. Now the future travel demand 

can be predicted to develop a sustainable and equitable traffic system. 

Recent advancements in connected vehicles have increased the level of penetration and 

consistency of ping intervals of probes. Nowadays, high-fidelity vehicle trajectory data is 

readily available from commercial sources and can provide a near-real-time, cost-effective way 

to assess traditional travel time and delay characteristics on a corridor and approach-level 

performance at the intersection. Over 400 billion vehicle position records are already generated 

each month in the United States. Connected vehicle (CV) data has been made available recently 

by several transportation planning and traffic engineering companies. The data delivered by 

these companies provide important spatial-temporal characteristics of a significant sample of 

the vehicles that travel in a specific zone. Therefore, our research objective is to find potential 

uses of connected vehicles and develop an innovative framework for travel demand forecasting. 

In this dissertation, an innovative framework for travel demand forecasting is going to 

be developed. This task aims to explore an innovative framework to forecast the travel demand 

in the DFW area. The current practice of travel demand forecasting in DFW is the classic “four-
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step” method based on household surveys and traffic counts. The emerging traffic data, like 

the connected vehicle trajectories, bring opportunities and challenges. The novel data sets 

reveal much more information about the traveler than before and pave the way for enhanced 

accurate and high-fidelity travel demand forecasts. 

On the other hand, the traditional travel demand forecast cannot take advantage of the 

total horsepower of such data sets. The inconsistency of various data sets and heterogeneous 

data quality are other issues of fusing the emerging traffic data with the traditional ones. This 

task will explore the innovative framework of travel demand forecasting based on connected 

vehicle data using state-of-the-art big data analytics and high-performance computing to 

address these issues. 

1.5 Dissertation Objective  

This dissertation presents a sustainable and  Equitable Transportation System Design 

Under Connected vehicles and Big Data-Driven Environment. It focuses on the following 

specific objectives: 

• Development of a congestion-aware heterogeneous connected automated 

vehicles cooperative scheduling problem at intersections. This objective aims 

to present a method that can provide a systematic approach to the green request 

accommodations with different priorities at intersections. 

• Application of dynamic flash yellow arrow along with pedestrian detection 

technique to ensure pedestrian safety and reduce queue length and delay.  

• Application of connected vehicle trajectory data in travel demand forecasting. 
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1.6 Structure of the Dissertation  

The remaining part of the dissertation is structured as below: 

• Chapter II discusses a comprehensive literature review on all the research 

objectives. Here, initially, a review of the previous work on connected 

automated vehicle scheduling problems is discussed. Secondly, a brief review 

of the application of pedestrian detection technique is presented, and finally, a 

review of the previous work application of connected vehicle trajectory data is 

presented.  

• In chapter III presents a method that can provide a systematic approach to the 

green request accommodations with different priorities at intersections. 

• In chapter IV, A new pedestrian behavior capturing system is developed using 

Dynamic Flash Yellow Arrow. Also, pedestrian detection will be deployed to 

examine the current pedestrian-related traffic signal timing guideline and 

provide data-driven recommendations for necessary updates to the existing 

design guideline. 

• Chapter V presents an innovative framework for travel demand forecasting 

using connected vehicle trajectory data. This chapter explores an innovative 

framework to forecast the travel demand in the DFW area. 

• Finally, in chapter VI, the dissertation is concluded by discussing the overall 

findings, citing the limitations, and providing directions for future studies. 
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CHAPTER II 

LITERATURE REVIEW 

This section is going to cover the comprehensive review of the existing works of three 

individual project objective.  

2.1 Comprehensive review of the existing work on connected automated vehicles 

scheduling problem 

The traditional intersection automation systems can be classified as fixed-time, actuated 

traffic signal system and adaptive traffic signal system. The actuated traffic signal system is a 

traffic control system, which uses the current demand and operations information collected 

from the detectors within the intersection. The adaptive traffic signal system is developed to 

respond with real-time dynamic vehicle arrivals. Such a system can adjust the signal timing 

plans in real time based on current traffic conditions, road capacity, and some real-time 

performance objectives. 

Using the CAV technology, the communication between vehicle-to-vehicle (V2V) and 

vehicles to infrastructure (V2I) has become the new source of information to control the 

system[1, 2]. Autonomous vehicles use more than 10Hz connectivity for faster V2V interaction 

and V2I forecast [3]. Earlier, the traffic signal and vehicles are considered individually to 

control the network performance. Using V2I technology to share information among individual 

vehicles has made multiple vehicles coupled with traffic control [4-6].  
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The CAV green requests scheduling at intersections have also been studied. CAVs can 

report their speeds, locations, headways, steering angles, and accelerations. The real-time 

vehicle trajectories can also be predicted accordingly. Feng and his colleagues propose a real-

time adaptive phase allocation algorithm by using connected vehicle data to optimize the phase 

sequence and duration[7-10].Taking vehicle locations and speeds as inputs, the developed 

algorithms first construct an arrival table and then minimizes the total delay caused by the green 

request accommodations. The arrival table also contains the estimation of the unequipped 

vehicle information, referred to as the “Estimation of Location and Speed” or (EVLS) 

algorithm. Feng et al. also present a theoretical formulation for joint optimization of vehicle 

trajectories and traffic timing in which vehicles are assumed to communicate with each other 

along with the road-side unit [9]. 

Priemer and Fredrich [11] develop the concept of a decentralized adaptive traffic signal 

control system for V2I communication data to minimize the total queue length. Through 

limiting the range of information exchange between the signal controllers and phase transition 

(maximal 20s), the system uses loop detectors to locate the vehicles in front of the stop line.  

To solve the traffic signal optimization problem with the CAV environment, Dresner 

and Stone [12] propose an autonomous intersection management (AIM) policy. Intersections 

are divided into grids as a type of space-time resource. The algorithm will first examine the 

availability of the required resources to reserve the resources for individual vehicles. The AIM 

algorithm grants the resource in a First-In-First-Out (FIFO) manner. The AIM policy is further 

extended with more flexibilities later for the mixed traffic environments with both CAVs and 

traditional vehicles [13] and path-based AIM policy [14]. Datesh et al. propose an algorithm 

for platooned traffic [15]. Lee et al. propose a control algorithm based on CV data in which the 

authors define the cumulative travel time responsive (CTR) data from the moments when a 

vehicle enters the approach to the present moment [16]. By monitoring the queue length at the 
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downstream and adjusting offsets and splits of the upstream, Venkatanarayana et al. propose a 

signal control algorithm to avoid the oversaturated condition [17].  

Another type of green request scheduling is based on classic nonlinear control delay 

modes as defined in Highway Capacity Manual (HCM) and the queue and shockwave profiles 

at a signalized intersection[18].This method is often used to estimate the traffic delay and bus 

delay under various traffic signal timings, such as the literature due to Li et al.[19], Liu et 

al.[20] and Han et al. [21]. To compare the transit buses with regular vehicles, the delays of 

buses and regular are often normalized into the passenger delays such as the literature [22, 23]. 

2.2 Comprehensive review of the existing work on pedestrian behavior capturing 

system  

The pedestrian detection (PD) technology is essential in the traffic control system since 

it helps to activate pedestrian crossing signals as well as to extend the crossing time if the 

pedestrian is already present in the crosswalk. A rich body of literature on the PD technologies 

is available in which multiple solutions are presented. The discussed PD technologies include 

video image processing, infrared cameras, radar, and LIDAR sensors. The back-end algorithms 

for identifying pedestrians and their behaviors are mostly based on clustering and machine 

learning techniques. Specifying the detection area is essential because it provides an adequate 

passing zone on the intersection and sidewalk and identifies the waiting zone. This literature in 

focused on the following two aspects: 

i. Pedestrian detection technique. 

ii. Application of pedestrian detection technique in existing work. 
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2.2.1 Pedestrian Detection using Camera  

In pedestrian detection techniques using a video camera, the whole crowd is identified, 

and the approximate number of the pedestrian is decided in surveillance video. The basic 

assumption of large-scale detection is that it will be considered the crowded region when any 

region is moving forward. Although several methods for this detection are available, 

background modeling and background subtraction are mostly used.  

2.2.1.1 Application of detection using camera  

Kilambi et al. used the Gaussian density method for estimating the number of people in 

a group [24]. He used both heuristic learning methods and shape models to identify the 

variation of captured data. The basic assumption of his model is there is an average statistical 

distance maintained between the members of any crowd. His projection method can find each 

blob area obtained from foreground segmentation in the world coordinate using camera 

calibration information. Although the method can lower the issues generated due to the moving 

objects of different height (i.e., vehicles) other than the human height, it cannot give the crowd's 

motion trajectory information. Besides, the blobs data is not capable of giving the actual crowd 

size. However, Chan et al.[25] and Yoshinaga et al.[26] identifies this limitation in later work. 

He use a blob descriptor to find the crowd size. He used background subtraction on the 

PETS2006 (PETS2006) dataset using the Parzen density estimation method, where the number 

of pedestrians is estimated using a neural network. Although the pixel values in his model are 

observed in the massive frames, the developed neural network cannot always give correct 

estimation. Chan et al. developed a modified formulation for surveillance video technology 

[27]. The database used to prove his concept is a one-hour video recorded by a stationary digital 

camcorder. Later he used Bayesian Poisson Regression for counting crowd size. Bhuvaneshwar 

et al. proposed a systematic approach for counting and detecting pedestrians at an intersection 
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using a video camera [28]. In this study, median filtering and thresholding were applied to 

identify the difference between the moving objects at the intersection using the height and area 

occupied by the object. He proposed a shadow removal algorithm for the detection and removal 

of the object from the frame. His system gives a general idea about the number and location of 

pedestrians at the intersection. 

Although a large-scale (macroscopic) detection technique uses a video camera to 

identify the crowd size without the information of the location of the pedestrians, the position 

of the camera, camera angles, and features can create an error in results. This the reason the 

application of large-scale (macroscopic) detection is limited[29]. 

2.2.2 Pedestrian Detection using Thermal Camera/Passive Infrared 

Another method of pedestrian detection is using thermal camera and passive infrared. 

Both Thermal cameras and passive infrared (PIR) sensors use passive detection of infrared 

light. The infrared light is capable of sensing shorter wavelength of 8-14 micrometers. 

Although when thermal images are used for pedestrian detection, the actual size and color 

information cannot be collected. Moreover, change in weather also impacts the outcome since 

the thermal sensors visualize temperature radiation from the objects in the images.  

2.2.2.1 Application of Detection using Thermal Camera/Passive Infrared 

John et al. calibrated and analyzed the image from the thermal camera (FLIR far-

infrared camera) and visible camera (IDS visible camera) to perform pedestrian detection [30]. 

In his approach, two types of cameras are initially calibrated using a heated calibration rig and 

further used PSO algorithm for estimating affine transformation. The algorithm works in three 

ways, initially by using the calibration information, primary grid points are created. In the 

second and third approaches, objects and pedestrians are detected. For pedestrian tracking, the 
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unclothed regions of the human body are captured using a thermal camera because of having a 

relatively higher heat signature. Thus, the intensity and size-based thresholds are used to 

identify the human face blob in the frame, and the centroid information is used to detect the 

trajectory. At the same time, the trajectory is identified by the visible camera using background 

subtraction. Nonetheless images are a pair only when it is available in both cameras. Baek et 

al. proposed a thermal position intensity histogram (TPIHOG) for pedestrian detection at night 

using a thermal camera [31]. He used a combined TPIHOG and additive kernel support vector 

machine (AKSVM) to perform nighttime pedestrian detection better. In his work, Kim et al. 

developed a multi-stage cascade learning device for pedestrian detection at night time or in a 

location of lower light  [32]. In his proposed approach, he estimated the distance between the 

detected pedestrian area and the infrared camera location with the information of the position 

of the pedestrian who is detected in the real-world environment in the 2D thermal image. 

2.2.3 Pedestrian Detection using Active Infrared 

Active infrared sensor is another method of pedestrian detection. Those sensors effuse 

an infrared light beam to the receiver located across a pedestrian path. If any pedestrian enters 

that path, the beam is blocked and thus one pedestrian count is added to the record. Although, 

the limitation of active infrared detection is that cannot identify pedestrians and bicyclists 

separately. Also, the range of detection location is also very small. 

2.2.3.1 Application of Detection using Active Infrared   

Because of its limitations, active infrared is generally used for pedestrian-only trails, 

where the pedestrian path is constrained and classification is not necessary (Kothuri et al. [33]). 
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2.2.4 Detecting using LIDAR Sensor   

Light Detection and Ranging (LiDAR) sensors is a remote sensing technique widely 

used in many areas, including transportation. Although the application of LiDAR in 

transportation is mostly focused on autonomous vehicles, it is also applied to other road users 

like pedestrians for detecting and tracking while implemented in the field.  

2.2.4.1 Application of Detection using LiDAR Sensor 

Zhao et al. proposed a pedestrian tracking approach using multiple single row LiDAR 

sensors [34]. In his approach, real-time pedestrian behavior data from a wide area are collected 

by scanning, then moving objects are extracted. He used the Kalman filter for developing a 

tracking algorithm to identify pedestrian trajectories. In a later work, he applied a network of 

horizontal LiDAR sensors to monitor vehicle and pedestrian movement entering a large 

crowded intersection  [35]. He used data clustering techniques in an integrated special and 

temporal data association framework to find the moving object and motion trajectory at the 

intersection. Nonetheless, the clustering was conducted manually without considering the same 

object entered the database from different sensors. Moreover, a few critical parameters were 

estimated based on experience, making the study lack generality and weak adaptability. 

 Zhao et al. presented a systematic approach for tracking and detecting pedestrians at 

an intersection using infrastructure-based LiDAR sensors [36]. The foremost step of the 

methodology is the background filtering of the collected data. After that, the objects are 

classified into pedestrian and vehicle, and object clustering and tracking are conducted with 

the speed and trajectory of each object data from the sensor. In a separate study, he used a deep 

auto encoder- artificial neural network (DA-ANN) for predicting the behavior of the 

pedestrians along the sidewalk using roadside LiDAR sensors [37]. His developed model 
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initially gathers pedestrian trajectory data from the roadside sensor and performs data 

extraction, partitioning, feature extraction, and model evaluation.  

Lv et al. developed a systematic approach to extract high-resolution traffic data from 

roadside LiDAR sensors to get and extracted the trajectory information from the speed distance 

profile (SDP) of the road user to reduce vehicle-pedestrian conflicts [38]. Wu et al. used high-

resolution micro traffic data (HRMTD) from LiDAR sensor based on the spatial distribution 

of laser points, which filters both static and moving background efficiently [39]. He used one 

background filtering method named 3Ddensity-statistic-filtering (3D-DSF) for efficiently 

separating static and dynamic backgrounds. In his study, Combs et al. identified the range for 

pedestrian sensors [40]. He estimated the maximum numbers of pedestrian fatalities that could 

be avoided if the system were converted into an automated vehicle environment. Grassi et al. 

developed a method based on data extraction and data fusion to detect the pedestrians and 

classify them depending on their movement direction using both the LiDAR sensor and video 

camera [41]. In his study, he classified the data without tracking or movement analysis. Ansari 

et al. developed a hybrid pedestrian detection technology to identify both moving and static 

pedestrians by incorporating both 3D LiDAR data and vision sensors for data clustering [42]. 

Visible image maps are generated from those that cluster for finding a common reason of 

interest. Furthermore, the pedestrians are identified using the Color-based Histogram of 

Oriented Gradients (HOG) feature along with the Local Self-similarity (LSS) feature provided 

in the Support Vector Machines (SVM) classifier. 

 By using two-dimensional LiDAR data and monocular camera image, Bu et al. 

proposed end-to-end neural network architecture for pedestrian detection where an image-

based orientation detection technology is used to get the actual orientation of pedestrian from 

the 2D image [43]. He also proposed a Regional Proposed Network (RPN) for the non-oriented 

pedestrian data and   Predictor Net for predicting oriented pedestrian.  
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Soundrapandiyan et al. [44] and Tang et al. [45] proposed an Offline Adaptive 

pedestrian detection using a neural network and collecting data from the sensor and video 

detection database. Soundrapandiyan et al. performed background modeling of the image 

collected from the thermal camera, and pedestrian detection is conducted by local adaptive 

thresholding using the parameter from the input image; on the other side Tang et al.[45] used 

controlled convolutional neural network (CCNN) architecture and modulating neural network 

(MNN) for detecting pedestrian in a location. CCNN works on adaptively generating a priority 

classifier, which is later dynamically adjusted by MNN. 

2.2.5 Detecting using Radar Sensor 

Radio detection and ranging (RADAR) is an active senor with a wide span of usable 

wavelengths (100m to 4mm). Because of the longer wavelength, it can cover more objects. 

Nevertheless, longer wavelengths produce lower resolution sensor data.  

2.2.5.1 Application of Detection using Radar Sensor  

In his works Manston et al. used Radar advanced driver assistance system (ADAS) 

features and were used in some the aforementioned PUFFIN crossings to detect pedestrians 

moving the crosswalk [46] .When necessary, a dual antenna system can provide a curbside 

detection zone and a crosswalk detection zone. Limitations of radar include susceptibility to 

error from rainfall, though a 13 GHz radar has improved upon this limitation from earlier 24 

GHz models. Radar can be used to detect pedestrians up to 30 meters away, though sensors for 

commercial application generally specify a range of 18 meters. 

In this literature review lays a comprehensive discussion on the different pedestrian 

detection technology and their application in some previous works.  
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2.3 Comprehensive review of the existing work on  travel demand forecasting using 

connected vehicle trajectory data  

In recent years, connected vehicle technology (CVT) has been considered the next big 

innovation platform for ITS. Over a wireless communication network, connected vehicles 

(CVs) will reliably share the traffic condition data with surrounding vehicles through vehicle-

to-vehicle (V2V) communication and with transportation infrastructures through the vehicle-

to-infrastructure (V2I) communication. Once the CV on-board unit compiles traffic data (e.g., 

vehicle position, number of brakes applied, etc.) in an autonomous way at predetermined 

intervals, they transmit the data to roadside units (RSUs). These data are subsequently 

processed yet again to produce the additional vehicle kinetics data (including average speed, 

acceleration, etc).[47].   The validity of this vehicle-generated data for incident detection, 

congestion identification, vehicle routing, and improving energy efficiency has already been 

investigated in prior study[48-53]. Different state departments of transportation (DOTs) have 

identified CVT as a potential tool for future congestion management and monitoring [54]. This 

application architecture demonstrates how various physical objects (i.e., entities) are connected 

to create real-time operational strategies using CV data. Once the roadside units (RSUs) have 

obtained vehicle status data from adjacent CVs, including data on traffic condition monitoring, 

they transfer the information to the traffic management center (TMC). The parameters are set 

by TMC to regulate the flow of information from the RSUs about the traffic situation. The 

maintenance and construction center, the transportation information center, and the emergency 

management center will receive the estimated traffic condition data from TMC for further 

action (e.g., traffic information dissemination to road users, emergency road maintenance, etc.). 

The most important task in real-time roadway network condition evaluation is estimating traffic 

density [55, 56]. Other traffic metrics, such as speed or path flow, can serve as stand-in signs 
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for a clogged situation. However, it has been determined that the most important factor in 

determining traffic congestion is density [57].  Traditionally embedded inductive loop 

detectors, surveillance cameras, and hybrid approaches (such as the loop detector-probe 

vehicle, loop detector-chase-car method, etc.) have been used to conduct real-time traffic 

operational analysis through density estimate [58, 59].  

 The origin and destination (O-D) of the created journey are estimated using path flow 

estimation. To determine the current traffic path flow and traffic operational state, many 

investigations have been carried out. Vehicle speed [60, 61], vehicle spacing (i.e., the distance 

between two vehicles) [62], and density have all been used to assess traffic operational 

circumstances.  Qui et al. noted that in order to create a high-performance traffic management 

system, traffic density was necessary. Meanwhile, other research discovered that the single 

most important factor in influencing traffic congestion and path flow was density [63]. Density 

estimation using (a) single devices and (b) hybrid devices are the two subcategories of wired 

density estimation technologies.  Single devices, such as loop detectors [64], video cameras, 

and microphones [65], estimate density. Inductive loop detectors are used in a vehicle re-

identification system that Hernandez et al. developed to forecast the journey periods of re-

identified vehicles in real-time [57].  The findings revealed that the mean absolute percentage 

error for both congested and non-congested condition detection was less than 4% after 

comparing with video camera data. Based on the difference between the various spectrum 

contents of the noise signals, Tyagi et al. classified the states of vehicle traffic into 

overcrowded, medium-flow, and free-flow circumstances using the cumulative auditory signal 

collected by microphones.[65].  The acoustic signal segments were classified using the Bayes 

classifier, and they discovered excellent classification accuracy (almost 95 %). Utilizing a 

discriminative support vector machine classifier improves classification accuracy. But this 

approach cannot extract microscopic traffic speed. Numerous hybrid devices have been 
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employed for density estimate in addition to these solo devices. This study used speed data 

gathered over the course of more than 37 hours and 250 freeway segments in Los Angeles by 

chase cars (a chase car is an instrumented vehicle that records the distance between the vehicle 

itself and another target vehicle representing typical driving behaviors in the study area; this 

distance is then used to determine speed and acceleration data for the target vehicle for each 

second[66, 67]) .To calculate segment density, data is aggregated for each segment once every 

15 minutes after being matched with the information gathered by a loop detector (such as speed, 

count, occupancies, etc.). 

 Anand et al. collected data on flow and journey time using digital movies and GPS-

equipped probe vehicles, respectively[66]. Here, the mean absolute percentage error of the 

prepared model is varied from 0.9 to 15.5%.  Wireless communication is used by new CVT-

equipped automobiles to gather and transmit traffic data to nearby vehicles and infrastructure 

(e.g., traffic signal, RSU). The efficacy of traffic data gathering using wireless V2V and V2I-

based communication for density estimate has been examined in a number of studies. 

Barrachina et al. used roadmap topology features and beacon signals from CVs and RSUs (i.e., 

utilizing V2V and V2I, respectively) to estimate the density in a study. This study examined 

the traffic conditions in various cities using the ns-2 simulator[68]. 

 The simulated data were used to create a mathematical relationship, which produced 

an average relative error for V2V-based density estimation of 1.02 %. The average relative 

error for V2I-based density estimation was 3.04 %. To calculate the street-junction ratio, which 

was a variable in the regression analysis model the authors used to estimate density, this 

approach depended on looking at the corridor maps. According to Barrachina et al., combining 

V2V with V2I would result in greater accuracy. In a different investigation, vehicle clustering 

was discovered to be a successful method for density estimate using both V2V and V2I 

communication [69].  The authors of this study created an algorithm to assess density using 



 

22 

vehicle clusters. In a simulation environment, the suggested approach was verified. Analysis 

showed that the program correctly predicted the thickness at various speeds of roadway traffic. 

To record route flow, Caceres et al. used several cell phones as probes[70] . The authors used 

anonymous cell phone data to approximate the vehicle number moving from one area (i.e., 

service area under the coverage of a set of base stations) to another. The experimental results 

revealed an absolute relative inaccuracy of 17% when compared to loop detector data. The 

created technique can also be applied to non-real-time estimations. DOTs must gather precise 

data from all throughout the state for real-time traffic management. Loop detectors are a 

common tool used by state DOTs to gather statistics on traffic. 

Yang et al. [71] employed two alternative models in their investigation to estimate the offline 

OD using data from probe vehicles. When the distribution of probe vehicle ratios was 

homogeneous across different OD pairings, the results showed that both proposed models 

enhanced the current OD pattern to a comparable degree. The proposed models, however, have 

a limitation to get beyond this restriction to estimate the traffic assignment matrix because the 

probe OD ratios only provides an approximation of the traffic flow assignment. 

Nie et al. presented a least square technique for path flow estimation. He et al combined a 

decouple estimator for finding the O-D trip matrix [72]. In his formulation he incorporated the  

measurement errors of traffic link counts and future path flow matrix. The advantage of his 

work is that it determined the equilibrium assignment mapping by exogenously identifying the 

optimal paths conforming to a user-equilibrium state. The result obtained from the numerical 

experiment shows that, using link travel counts gives them an O-D matrix which concurs with 

UE state . 
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CHAPTER III 

CONGESTION-AWARE HETEROGENEOUS CONNECTED AUTOMATED 

VEHICLES COOPERATIVE SCHEDULING PROBLEM AT INTERSECTIONS 

LITERATURE REVIEW 

3.1 Overview 

In this section the methodology and results of the development of a congestion-aware 

heterogeneous connected automated vehicles cooperative scheduling problem at intersections 

is discussed.  

Green accommodating mechanism at intersections: two types of green accommodations 

can be used for CAVs in practice include: (a) Green Extension to hold the current green until 

the green request sender crosses; (b) Red Truncation to terminate the green on other approaches 

early and turn on the corresponding green for the request sender. Fig. 3.1 illustrates these two 

types of strategies. Fig. 3.1A illustrates a green extension so that an approaching CAV can 

cross the intersection within the current cycle whereas Fig. 3.1B illustrates a red truncation so 

that the CAV can cross the intersection without stopping. In addition, if a high-priority green 

request is granted, the current traffic control mechanism will unconditionally cancel any active 

green accommodations for low-priority requests. 
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Figure 3.1 Green extension and red truncation to serve CAVs’ green requests   

The above strategies have been practiced for decades to serve transit priority and/or 

preemption. It contains little systematic optimization given the short notice (15 to 20 s before 

they arrive at stop bars). As such, those strategies may be inflexible in tackling complicated 

situations, such as more intense and heterogeneous green requests. In addition, when the traffic 

control system over emphasizes on CAV green requests, it may harm the mobility of 

background traffic. Most related literature in the past focuses on scheduling homogeneous 

green requests while the issue of background traffic and the heterogeneous nature of CAVs are 

not addressed enough.  

Representation of heterogeneous priority of CAV green requests: in most literature, 

vehicles requesting a traffic signal priority are multiplied with a large weight in problem 

formulations to ensure that letting those vehicles cross earlier will create additional benefits. 

By contrast, we define two attributes in light of the phase-time network concept, a linear traffic 

control representation (Li et al. 2015) to describe the green requests by heterogeneous CAVs: 

the length of the time window and the “benefit” of accommodating this request. High-priority 

green requests should have strict (i.e., short) time windows, and the benefit of servicing a high-
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priority request should be high. If the benefit of serving that time window is very high to 

outnumber the resulting delays, then the high-priority request will be served with certainty.  By 

contrast, the low-priority requests have longer time windows to accommodate randomness due 

to unforeseeable congestions, and the service benefit is relatively low. The phase-time network 

is constructed as a forward, acyclic network. The outbound arcs from any node are defined 

according to the feasible next phase and valid range of split (green+ yellow+ all red clearance). 

Without loss of generality, one second is adopted as the intersection automation resolution.  

Phase-time network construction: the phase-time network is a forward acyclic graph to 

represent traffic control plan over a time period. Traffic control formulation based on the phase-

time network can keep the target problem’s linearity [73]. Without loss of generality, let us 

assume a simple fixed phasing sequence as in Fig. 2b.  The valid duration of all four phases is 

from 2 s to 4 s. at any phase-time node (𝑝, 𝑡), 3 phase-time arcs leaves: (𝑝, 𝑡, 𝑝′, 𝑡 +

2), (𝑝, 𝑡, 𝑝′, 𝑡 + 3) and (𝑝, 𝑡, 𝑝′, 𝑡 + 4) where 𝑝′ is the valid next phase (e.g Φ1 → Φ2). If the 

ending time of a phase-time arc is beyond the time horizon, then it will be directly connected 

to the super sink node Z.  

Following this logic, we construct a phase-time network with the time horizon of 7 

seconds in Fig. 3.2c. As an example, the list of outbound arcs (𝑝, 𝑡, 𝑝′, 𝜏) at the phase-time 

node (1,1) include (1,1,2,3), (1,1,2,4), (1,1,2,5), (1,1,2,6). Each outbound arc can be interpreted 

as "Phase 1 starts at t=1, after yellow and all-red clearance, it turns over the green to phase 2 

at t=min (T,τ), where τ=3,4,5 and T is the time horizon".  Both blue and read phase-time paths 

are feasible for traffic control but only the blue phase-time path can serve the CAV green 

request within the required time window. As such, only the blue phase-time path is feasible in 

this context.   
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Figure 3.2 Illustration of phase-time network construction and 

timing plan representation considering a CAV green request time window 

To further help readers understand the proposed concept, we analogize serving a CAV 

green request in the phase-time network to picking up a passenger in a road network, a green 

request can be interpreted as an additional constraint that a passenger at Φ𝑝 must be picked up 

within a time window while a "virtual vehicle" is seeking the shortest path in the phase-time 

network (i.e., optimal phasing configuration). This problem can be viewed as a traveler 

salesperson problem with time windows. Fig. 3.3 demonstrates this analogy. High-priority 

CAVs include on-duty ambulance and fire trucks should be unconditionally served and 

therefore a short time window is defined with large serving benefits whereas those low-priority 

CAV like buses have longer time windows to reflect their tolerance of slight delays.  
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Figure 3.3 Analogy between a multimodal traffic control strategy on the phase-time 

network and the vehicle routing problem with pickup time windows   

Although the traveler salesperson problem with time windows is an NP-hard problem 

in the worst case, the formulated problem in this context can be efficiently solved due to the 

optimization horizon and simplicity of phase-time network (i.e., forward and acyclic). Within 

minutes of the time horizon, the traffic signal timings could be adjusted at small steps to service 

multiple CAV green requests.  

3.2 Methodology and problem formulation  

3.2.1 Constructing a phase-time network for congestion-aware heterogeneous CAV 

scheduling at intersections.  

The heterogeneous CAV green requests can be constructed on top of the original phase-

time network. Whenever an approaching CAV sends green request to downstream 

intersections, the transmitted message contains the phase accompanied with a time window. 

The message can be interpreted as a series of nodes in the phase-time network. As shown in 

Fig. 3.4, green request one can be served under two conditions: (a) the corresponding green 

phase starts early and hold longer until the time window starts, similar with green extension 
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(blue-dash phase-time arcs); (b) green starts during the time windows (red-dash and black-solid 

phase-time arcs). All those phase-time arcs that can serve a CAV green request is referred to 

as the “admissible phase-time arcs to a CAV request”. If the time windows of two green 

requests overlap, some phase-time arcs can service multiple requests (the black-solid phase-

time arcs in Fig. 3.4).  

The arc costs for general phase-time arcs are estimated according to the incurred 

background traffic delays which will be described in detail later. For those phase-time arcs 

admissible to the green request(s), additional benefits will be added as N×(-λ). (-λ) denotes a 

negative integer representing a reward to serve a green request and N denotes the number of 

green requests which can be served by that traffic control operation. 
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Figure 3.4 Illustration of admissible phase-time arcs to CAV green requests 
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3.2.2 A MILP formulation for congestion-aware heterogeneous CAV scheduling at 

intersections.  

A MILP formulation for the congestion-aware heterogeneous CAV scheduling is 

proposed. The objective is to find a feasible traffic control plan that can serve all green requests 

while the background traffic is not severely interrupted.  

Table 3.1 Parameters and variables for the new MILP formulation  

Notations for road network and space-time network 

𝐺𝑜(𝑁𝑜, 𝐴𝑜)  Road network 

𝐺(𝑁, 𝐴)  Space-time network 

𝑁𝑜, 𝐴𝑜, 𝐴𝑠 𝑁𝑜 : set of road network nodes; 𝐴𝑜 : set of road network links; 𝐴𝑠: road links controlled by 

traffic lights (open if the corresponding phase is green (active); red (inactive) otherwise) 

𝑁, 𝐴 𝑁 : set of space-time network nodes; 𝐴 : set of space-time network arcs 

𝐴𝑘 phase-time arc set admissible to the CAV request 𝑘  

𝑖, 𝑗, (𝑖, 𝑗)  𝑖, 𝑗 ∈ 𝑁𝑜, (𝑖, 𝑗) ∈ 𝐴𝑜 

𝑡, 𝑠, 𝜏, ℎ, 𝐻 Time indices; 𝐻: time horizon 

 𝑡0
𝑣 Departure time of 𝑣 

𝐹𝐹𝑇𝑇(𝑖,𝑗) Free flow travel time on link (𝑖, 𝑗), ∀(𝑖, 𝑗) ∈ 𝐴𝑜 

𝑆𝑅(𝑖,𝑗) Saturation rate of (𝑖, 𝑗), ∀(𝑖, 𝑗) ∈ 𝐴𝑜 

𝐿(𝑖, 𝑗) The storage capacity of (𝑖, 𝑗) ∈ 𝐴𝑜 

(𝑖, 𝑡), (𝑗, 𝑠), (𝑖, 𝑡, 𝑗, 𝑠) (𝑖, 𝑡), (𝑗, 𝑠) ∈ 𝑁, ∀(𝑖, 𝑡, 𝑗, 𝑠) ∈ 𝐴; if (𝑖, 𝑗) ∈ 𝐴𝑜, 𝑠 = 𝑡 + 𝐹𝐹𝑇𝑇(𝑖,𝑗); if 𝑖 = 𝑗 (waiting arc), 𝑠 =

𝑡 + 1 

𝑣1  ,  𝑣2   𝑣1  :  Set of regular vehicles;  𝑣2: Set of CAVs. 

𝑣, 𝑉 Vehicle 𝑣 ∈ 𝑉; 𝑣 =   𝑣1 + 𝑣2 

𝑜(𝑣), 𝑑(𝑣) Origin and destination of 𝑣 

𝑐(𝑣,𝑖,𝑗), ℂ 𝑐(𝑣,𝑖,𝑗): total free-flow path travel time if (𝑖, 𝑗) is the last link of 𝑣’s path; otherwise, 0; ℂ =

{𝑐(𝑣,𝑖,𝑗)}, ∀𝑣 ∈ 𝑉  
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𝑚(𝑝, 𝑖, 𝑗) Mapping matrix from a traffic control phase p to its corresponding controlled signal link(s); 

always equal to 1 if (𝑖, 𝑗) is a regular link otherwise can be either 1 if 𝑝 is the current green 

or 0 otherwise. 

Notations for phase-time network 

𝛹(𝛲, 𝛵) Phase-time network 

𝑝, 𝑃 Set of phases, 𝑃 = {𝑝} 

(𝑝, 𝑡), (𝑝′, 𝑡′) Nodes in 𝛹, 𝑝, 𝑝′ ∈ 𝑃, 𝑡, 𝑡′ ∈ 𝑇. 

(𝑝𝑜, 0), (𝑝𝑧 , 𝐻) Origin (current phase) and destination vertex (ending phase) in 𝛹 

(𝑝, 𝑡, 𝑝′, 𝑡′) 

A phase-time edge in 𝛹, representing: "phase 𝑝 starts green at 𝑡, after yellow and all-red 

clearance, turns over green to phase 𝑝′ at 𝑡′ "; note 𝑝 ≠ 𝑝′ because there are no waiting arcs 

in the phase time networks 

𝑀, 𝜆 Large positive number 𝑀 ≫ 𝜆 ≫ 1. 

𝑁 (𝑝, 𝜏, 𝑝′, ℎ) the number of CAV requests can be serviced by (𝑝, 𝜏, 𝑝′, ℎ)  

℘(𝑘) The phase number which 𝑘 requests for a CAV service 

𝐴𝑘 phase-time arc set admissible to the CAV request 𝑘 (see Fig. 4) 

C(p) The clone phase of 𝑝 

𝐼𝑝 Set of cloned phase-time arcs from phase 𝑝 to any cloned phase 𝐶(𝑝′), 𝑝′ ∈ 𝑃  

𝑐0 The constant cost for each phase transition 

Variables  

𝑥(𝑣,𝑖,𝑡,𝑗,𝑠) ∈ 𝑋  Equal to 1 if 𝑣 enters link (𝑖, 𝑗) at t and leaves at s; otherwise, 0 

𝑦(𝑝,𝜏,𝑝′,ℎ) ∈ 𝑌  Equal to 1 if and only if the phase-time arc (𝑝, 𝜏, 𝑝′, ℎ) is selected, otherwise 0. 

When𝑦(𝑝,𝜏,𝑝′,ℎ) = 1, it can be interpreted as phase 𝑝 starts at 𝜏 and turns over green to 𝑝′ 

after yellow and all-red clearance.  

 

Please note that, even though the decision variables have 4 indices, they are two-

dimension arc-time-indexed variables. The MILP formulation in light of the phase-time 

network is described as follows.  
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑍1 =  ∑ ∑ ∑ ∑ ((𝑠 − 𝑡0
𝑣) × 𝜑(𝑣,𝑖,𝑗) × 𝑥(𝑣,𝑖,𝑡,𝑗,𝑠)) −(𝑖,𝑗)∈𝐴01≤𝑡𝑠≤𝐻 𝑣∈𝑉

∑ ∑ 𝑐(𝑣,𝑖,𝑗)(𝑖,𝑗)∈𝐴𝑜
+𝑣∈𝑉   ∑ (𝑐𝑜(𝑝,𝜏,𝑝′,ℎ) (𝑝,𝜏,𝑝′,ℎ)∈ 𝛹 −  𝑁(𝑝,𝜏,𝑝′,ℎ) × 𝜆)𝑦(𝑝,𝜏,𝑝′,ℎ)              (1) 

3.2.2.2 Constraint for Traffic Dynamics  

While constructing the constraints for traffic dynamics, to model the traffic control and 

the interaction between traffic control and traffic dynamics, the links in the network are 

considered of two types; i) Regular links whose capacity is not controlled by infrastructures 

like traffic signal system, and ii) Control links which are controlled by infrastructures like 

traffic control system. Fig 3.5 shows an example of a physical network with regular and control 

link. 
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Figure 3.5 Constructing resilient phase-time network for heterogeneous TSP scheduling 

problem 
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Regular link capacity constraints 

∑ 𝑥(𝑣,𝑖,𝑡,𝑗,𝑠)𝑣∈𝑉 ≤ 𝑆𝑅(𝑖,𝑗), 𝑡, 𝑠~[1, 𝐻], ∀(𝑖, 𝑗) ∈ {𝐴𝑜 − 𝐴𝑠}, 𝑝 ∈ 𝑃         

(2a) 

Control link capacity constraints 

∑ 𝑥(𝑣,𝑖,𝑡,𝑗,𝑠)𝑣∈𝑉 ≤ 𝑚(𝑝, 𝑖, 𝑗) × 𝑆𝑅(𝑖,𝑗) × ∑ 𝑦(𝑝,𝜏,𝑝′,ℎ)(𝑝,𝜏,𝑝′,ℎ)∈𝛹 , 𝑡, 𝑠~[1, 𝐻], ∀(𝑖, 𝑗) ∈ 𝐴𝑠 , 𝑝 ∈ 𝑃 

(2b) 

If the capacity of (𝑖, 𝑗) is controlled phase 𝑝, then 𝑚(𝑝, 𝑖, 𝑗)=1. When 𝑝 is 

green, 𝑦(𝑝,𝜏,𝑝′,ℎ) = 1. Therefore, the RHS of (2) is equal to 𝑆𝑅(𝑖,𝑗); when 𝑝 is red, then the RHS 

of (2) is equal to 0. 

Road link storage constraint 

(∑ ∑ 𝑥(𝑣,𝑖,𝜏,𝑗,𝜏+𝐹𝐹𝑇𝑇(𝑖,𝑗))𝑣∈𝑉0≤𝜏≤𝑡 ) − (∑ ∑ ∑ 𝑥(𝑣,𝑗,𝜏,𝑖,𝜏+𝐹𝐹𝑇𝑇(𝑖,𝑗),(𝑗,𝜏,𝑖,𝜏+𝐹𝐹𝑇𝑇(𝑗,𝑖))∈𝐴𝑣∈𝑉0≤𝜏≤𝑡 ) ≤

𝐿(𝑖,𝑗),       ∀(𝑖, 𝑗), (𝑗, 𝑖) ∈ 𝐴𝑜 , 𝑡~[1, ℋ]                                                                                                    (3) 

(3) define that the number of vehicles (i.e., the difference between cumulative arrivals 

and cumulative departures at any time) on a link must less than the link’s storage capacity.  

Flow conservation constraint at space-time network 

∑ 𝑥(𝑣,𝑖,𝑡,𝑗,𝑠)(𝑖,𝑡,𝑗,𝑠)∈𝐴 − ∑ 𝑥(𝑣,𝑗,𝑠,𝑖,𝑠′)(𝑗,𝑠,𝑖,𝑠′)∈𝐴 = {
−1; (𝑗, 𝑠) = 𝑜𝑣 

   1;  (𝑗, 𝑠) = 𝑑𝑣

    0;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , ∀𝑣 ∈ 𝑉, ∀(𝑗, 𝑠) ∈ 𝑁        (4) 

Constraint (4) ensures all vehicles cross the intersections in a feasible solution.  

3.2.2.3 Constraint for traffic control modeling in phase-time network  

Flow conservation constraint at phase-time network 

∑ 𝑦(𝑝,𝜏,𝑝′,ℎ)(𝑝,𝜏,𝑝′,ℎ)∈𝛹 − ∑ 𝑦(𝑝′,ℎ,𝑝, ℎ′)(𝑝′,ℎ,𝑝,ℎ′)∈𝛹 = {
−1; (𝑝′, ℎ) = (𝑝𝑜, 0),

   1;  (𝑝′, ℎ) = (𝑝𝑧, 𝐻)

 0;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,  𝑓𝑜𝑟 ∀(𝑝′, ℎ) ∈ 𝛹      (5) 
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Multiple-service prohibition for one CAV request  

∑ (𝑦(𝑝,𝜏,𝑝′,ℎ))(𝑝,𝜏,𝑝′,ℎ)∈𝐴𝑘
= 1, ∀𝑘 ∈ 𝐾                                                                         (6) 

𝐴𝑘 is the set of all admissible phase-time arcs to the green request 𝑘. Through “pre-

building” the green request time windows, each admissible phase-time has a benefit. If a time 

window (for the low-priority green request) is long, (6) will prevent a traffic control solution 

from take the admissible arcs multiple times to maximize the solution benefit.  

3.2.3 A resilient version of MILP formulation for congestion-aware heterogeneous 

CAV scheduling at intersections.  

𝑍1 can be solved with most commercial or open-source MIP solvers. Still, the MILP 

formulation may not contain feasible solutions if multiple CAV green requests are placed. In 

that case, secondary optimal solution should be provided by declining some requests 

appropriately. A challenge is that most MIP solvers reveal little information if a problem has 

no feasible solutions. To address this issue, the MILP formulation is modified into a resilient 

version. The idea of the resilient MILP formulation is to ensure that the MILP formulation will 

always have a mathematically feasible solution and from the solution it can be told how many 

CAVS green requests cannot be served. The proposed resilient MILP formulation starts with 

expanding the original phase-time network model by introducing the "clone" nodes and arcs in 

3 steps:  

Algorithm 1: Generating a resilient phase-time network from a standard phase-time 

network.  

Step 1: For each control phase 𝑝, a "clone" phase is created. For any(𝑝, 𝑡), a clone 

phase(𝐶(𝑝), 𝑡) is generated. 
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Step 2: Duplicate all phase-time arcs inbound to a control phase 𝑝 with CAV green requests. 

The new arcs connect from the same origin node to the corresponding clone nodes. For 

example, to duplicate a phase-time arc (𝑝, 𝜏, 𝑝′, ℎ) inbound to (𝑝′, ℎ), the corresponding clone 

arc will be(𝑝, 𝜏, 𝐶(𝑝′) , ℎ). (See the green arcs and purple arcs in Fig. 3.6) 

Step 3: Duplicate all outbound phase-time arcs from a normal phase and connect to the 

corresponding clone phases. For example, to duplicate a phase-time arc (𝑝, 𝑡, 𝑝′, ℎ) outbound 

from(𝑝, 𝑡), a clone arc (𝑝, 𝑡, 𝐶(𝑝′), ℎ) is generated. (See red arcs and blue arcs in Fig.3.6) 

The arc costs of all new clone phase-time arcs are set to very large cost 𝑀. Therefore, the clone 

phase will not be visited unless there are no feasible solutions to the original MILP formulation. 
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Figure 3.6 Construction of the resilient phase-time network for this problem 

In the resilient phase-time network, Constraints (7) replace (6) to prevent multiple 

services to the same green request. If a CAV green request 𝑘 cannot be served (i.e., no arcs in 

𝐴𝑘 can be selected selected), the first term of (7) will be zero and the second term must be 1, 

meaning the corresponding clone phase must be visited once. Assume the green request 𝑘 

requests control phase 𝑝′ or  ℘(𝑘) = 𝑝′, then the constraints can be written as:  

∑ 𝑦(𝑝,𝜏,𝑝′,ℎ)(𝑝,𝜏,𝑝′,ℎ)∈𝐴𝑘
+ ∑ 𝑦(𝑝,𝜏,℘(𝑘),ℎ)(𝑝,𝜏,𝑝′,ℎ)∈𝐼℘(𝑘)

= 1; ∀𝑘 ∈ 𝐾   (7) 
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According to the definitions, if 𝑐(𝑝,𝜏,𝑝′,ℎ) = 𝑀 (clone arcs), then 𝑁(𝑝,𝜏,𝑝′,ℎ) = 0 (no real 

green request service can come from a clone phase). Constraints (7) require that if a green 

request 𝑘 cannot be served by its admissible phase-time arcs in 𝐴𝑘, then it must be served by 

one of clone phase-time arcs in 𝐼𝐶(℘(𝑘)) once and generate a large cost 𝑀. In other words, if 

any clone arc in 𝐶(℘(𝑘)) is selected in the final solution, it means the corresponding CAV 

green request is not served. The advantage of the resilient MILP is that it always generates a 

mathematically feasible solution. If any clone phase-time arc is selected, it is a sign of 

infeasible solution in the real word and can easily be identified which request is declined 

through finding out the clone phase-time arcs. 

3.2.4 An efficient approximation of traffic dynamics with cumulative vehicle counting 

curves for real-time applications.  

In this section, an efficient approximation to represent traffic dynamics for real-time 

applications is designed. For traffic control problem at individual intersections, the control 

delay on each approach can be represented by the areas between vehicle cumulative arrival and 

departure curve (the “A-D curves”). The analysis of A-D curves is a vital method to estimate 

the control delay at one approach [74]. The A-D curve method uses the queuing theory to 

calculate delays based on the number of individual vehicles approaching toward the 

intersection and crossing the stop line. Fig. 3.7 illustrates two different scenarios of an 

intersection under two timing plans. In Fig.3.7a the green times of phase 1 and phase 2 are 

appropriate. The vehicles arriving during red can be released within one cycle. By contrast, in 

Fig. 3.7b the green time of phase 1 is much shorter than the green time of phase 2. When the 

A-D curves are used to estimate the incurred delay under a given traffic control operation. As 

shown Fig. 3.7a when phase 1 is activated from 𝜏 to ℎ. The added traffic control delays on all 

approaches are the shadowed area. At individual intersections, the simple A-D curves will 
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generate the same traffic control delay for each phase-time arc as the traffic dynamics model 

in space-time networks.  

Assuming the A curves (i.e., vehicle arrival profiles) are prior known, then for each 

phase operations, its incurred delay can be estimated with the changes of D curve before and 

after this operation. In the meanwhile, the constant phase transition cost and the possible 

benefits for serving CAV green requests can also be estimated. The simple A-D curve method 

for traffic control delays allows for seeking the least-cost path algorithmically in the phase-

time network, considering both traffic delays and CAV green request accommodations. 

Although the above formulation and solution algorithm is deterministic, we can adopt the 

“Rolling Horizon” to continuously update the status of CAV green requests. Since the CAV 

green requests are based on the estimated arriving times at intersections which are highly 

dynamic. The method of Rolling Horizon is to solve a stochastic problem by continuously 

solving a series of deterministic problems. Specifically, although the time horizon of this 

optimization is for minutes, the results will be applied for only 3-4 phase transitions. After that, 

the CAV green requests and A-D curves are updated, and a new problem will be solved. 
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Figure 3.7 Construction of the resilient phase-time network for this problem 

3.3 Numerical Example 

Three experiments are conducted in this section: (I). Solving a simple example of the 

proposed MILP formulation with GAMS MIP solver. The main purpose of this experiment is 

to validate the MILP formulation; (II). Solving another example problem with the phase-time 

network and cumulative vehicle counting curves to prove the concept; (III). Evaluate the 

performance of Experiment (II) in a continuous, real-time manner within a high-fidelity 

microscopic simulation environment to bridge between the theoretical research and 

implementation in the future. 

3.3.1 Experiment I: solving a sample problem with the GAMS solver. 

As shown in Fig. 3.8A, an intersection network containing 16 nodes and 16 links, 

among those 16 links, 8 are normal links represented in solid lines with travel time 10s, and 
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the other 8 are control links in dash lines of different colors with travel time 2s. The traffic 

signal is controlled by 4 phases, the minimum green is 3 s, maximum green is 8 s, and all-red 

clearance plus yellow is set as 2 s. Within a horizon of 120 s, a total of 80 regular vehicles plan 

to cross the intersections, and they are released into the network with little competition for 

green lights when arriving at intersections. In addition, 15 approaching CAVs send green 

requests to the traffic control system within the time horizon, 9 of which are high-priority with 

a 1-second time window while the other 6 are low-priority with 10-second time window. The 

CAV green requests and their time windows are illustrated in Fig. 3.8B. 
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Figure 3.8 Example Settings for Experiment I 
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It takes the MIP solver about 16 s to find the optimal solution, and the optimal phase-

time traffic control plan is displayed in Fig. 3.9. The clone phase 3 is visited, and it means that 

at least one CAV green requests are declined. After examining the resulting CAV trajectories 

(see Fig. 3.9), three CAV green requests are declined and wait at the intersections: CAV 9, 

CAV 11, and CAV 15. This is expected because those three CAV requests are set to compete 

with other requests, and it is impossible to serve all the requests. For instance, two conflicting 

high-priority CAV green requests are placed at t=13 with a 1-s time window, and both cannot 

be served for sure. 
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Figure 3.9 Optimal congestion-aware CAV scheduling in the resilient traffic-time network 
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Figure 3.10 CAV trajectories at the intersection under the congestion-aware CAV 

scheduling 
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To find the control delay, the actual arrival time of the vehicle at any node and 

subtracted that from the free flow arrival time is measured. Therefore, the final solution reveals 

that the background 80 regular vehicles generate 263 seconds control delay (3.28 

seconds/vehicle), and the maximum control delay is 8s. Hence, it can be concluded that the 

background traffic is not interrupted due to the intensive CAV services. 

3.3.2 Experiment II: Congestion-aware CAV scheduling with vehicle cumulative 

counting curves in the phase-time network   

In Experiment II, the proposed delay calculation based on the A-D curves in phase-time 

networks is evaluated. The purpose of this experiment is to validate the proposed method 

through a simple example. At an urban four-leg signalized intersection as in Fig.3.8a, each 

approach has one lane.  Assume the traffic control plan contains 4 phases and the travel 

demands on each phase are 150 vehicles per hour for phase 1; 700 vehicles per hour for phase 

2; 200 vehicles per hour for phase 3 and 1,100 vehicles per hour for phase 4. The saturate 

capacity for each phase is 1,800 vehicles per hour.  Assuming there are 13 heterogeneous CAV 

green requests within 120 s. Seven are high-priority green requests and six are low-priority 

green requests. The requested phases and time windows are shown in Fig. 3.8b. Obviously, the 

CAV green requests are set excessive, and some are expected to be rejected. For the sake of 

argument, an arc penalty is also set for violating the fixed phase sequence (Φ1→Φ2→Φ3→Φ4) 

as 100 and the rewards for serving a high-priority green request and low-priority green request 

are 1,000 and 100 respectively. Since the benefits of serving green requests are set to be equal 

with or much higher than the penalty, the phasing sequence can be violated if the background 

traffic delay can be significantly reduced by doing so or CAV green request(s) can be served. 

The phasing sequence is barely maintained in this experiment given the intensity of the CAV 

green requests and arbitrarily set penalties and benefits. 
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Figure 3.11 Problem configuration for Experiment II 

Based on Algorithm 2, the optimal traffic signal timing in the phase-time path is 

displayed in Fig. 3.11. and Fig. 3.12. Fig. 3.12 evaluates how the CAV green requests are 

served. We can see that seven high-priority green requests are served but 3 low-priority green 

requests are declined due to their challenging time windows.  Fig. 3.13 focuses on the traffic 

mobility under the optimal traffic control plan through the A, D curves of each phase. Fig. 3.13 

reveals that there are no severe cycle failures or residual queues after 120 s while most CAV 

green requests are served. If a CAV green request is declined, that vehicle should be notified 

immediately. That CAV can either reschedule a new route to other intersections or bear with 

the possible delays at this intersection.  
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Figure 3.12 Optimal traffic control plan in phase-time network 
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Figure 3.13 A-D curves on each phase under the optimal traffic signal timing plan 

3.3.3 Experiment III: Real-time congestion-aware CAV green request scheduling at 

intersections with the microscopic traffic simulator 

Experiment III is conducted within a high-fidelity simulation environment. The purpose 

of this experiment is to prove the concept of real-time heterogeneous scheduling for real-world 

applications. Experiment III provides a bridge from the theoretical contribution in this 

dissertation with real-world deployment. Each simulation scenario is run multiple times. Li and 

Mirchandani (Li and Mirchandani 2016) propose a hardware-in-the-loop simulation concept to 

evaluate novel traffic control algorithms. They propose to host novel traffic control logics on a 

hardened signal board computer (SBC) and then override the inherent control logic for 

intersection automation in simulation. This concept will ensure any novel control logic’s 

implement ability in the field. The simulation environment is set up in PTV VISSIM 11.0 with 

a high-fidelity software-in-the-loop signal emulator. The CAV scheduler (Algorithm II) is 

hosted in a single-board computer communicating with the traffic signal emulator. The real-
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time traffic control scheduling will be performed based on the latest projected vehicle arrivals 

and all the CAV green requests within the time horizon. Without loss of generality, it is 

assumed all CAVs request either phase-time phase P3 (NEMA phase Φ2, Φ6) or P8 (NEMA 

phase Φ4, Φ8). 
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Figure 3.14 Layout of simulated intersection 

Fig. 3.14 illustrates the simulation architecture for this experiment, the proposed 

congestion aware the CAV scheduler retrieves vehicle arrivals via advance detectors (located 

about 20 s from the stop lines) and receives location reports from CAVs via VISSIM COM (to 

emulate the CAV’s on-board units) on each phase. Whenever a CAV reaches the location 30 s 

away from the stop line, it will report its requested phase and time windows to the CAV 

scheduler. Based on the received CAV green requests, the CAV scheduler will generate the set 

of admissible phase-time arcs for each request (Fig.3.3).  Heterogeneous CAVs requesting 

high-priority and low-priority crossing are set as 2% and 2% of total vehicles, respectively (i.e., 

96% are the background vehicles). 

Periodically, the CAV scheduler seeks the least-cost phase-time path in the newly 

constructed phase-time network according to the values of three terms on each arc: constant 

phase transition cost, benefit (if it is an admissible arc for CAV green requests) and incurred 

traffic delays. The optimal phasing sequence will then be sent to the signal emulator and 
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override the baseline actuated traffic signal plan. The host single board computer has powerful 

CPUs and sufficient memory and so the optimization can be finished with 2-3 seconds which 

can meet the real-time requirements. The standard NEMA traffic signal emulator in the 

simulation engine is set to a “local-free” mode and the latest optimal timing plan out of the 

proposed algorithm can be implemented through three standard commands: Force-off, Hold 

and Omit to extend, terminate, and skip those preprogrammed phases. There is no need for 

timing plan transition like in the time-based traffic signal priority. 

Although the time horizon for traffic control optimization each time is set as 90 sec, the 

number of phases on the least-cost phase-time path varies because their durations change. To 

apply the “rolling horizon” methods, the traffic control plan will be re-optimized after the first 

two phase-time control operations (i.e., the first two transitions) end. Therefore, the interval 

between two consecutive optimizations is dynamic. 

3.3.3.1 Performance of CAV green request accommodation  

Performance of CAV green request accommodation  

A fully connected (i.e., fully adaptive) phase-time network for the control algorithm is 

constructed. The constructed phase-time network allows for phase transitions from one phase 

to another phase. Fig. 3.15 shows the resulting phase-time path within an hour and all the CAV 

green requests. Totally 142 CAV green requests are placed within an hour, and 134 (87%) 

CAVs have received green priority to cross the intersections. 
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Figure 3.15 CAV green request accommodation with a fully adaptive phasing sequence 

We can see that a fully adaptive phasing sequence will accommodate the CAV green 

requests with efficiency, but the service rates on approaches seems imbalanced. P1 in Fig. 3.15 

is only selected once within a simulation hour while P3 and P8 are frequently because the 

volumes of both traffic and CAV green requests on P3 and P8 are high and so the algorithm 

must go to those two phases frequently to serve the approaching CAVs and regular vehicles. 

Note that the results in Figs. 3.15 are retrieved from the microscopic traffic simulation. Random 

maneuvers of individual vehicles were observed, making the vehicle arrivals more complicated 

than the models based on the A-D curves. It is observed that some vehicles slow down to yield 

or change lanes. These phenomena change CAVs’ estimated arriving times at stop lines (i.e., 

the green request timing windows). It is also observed that vehicle startup loss varies from 

cycle to cycle. These realistic phenomena are beyond the capacity of the proposed traffic 

control algorithm. Nonetheless, we do see the proposed control algorithm proactively responds 

to arriving vehicles, and there are no residue queues most of the time. 
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3.3.3.2 Traffic queue length and delay evaluation under the proposed CAV 

scheduling   

The resulting queue length and control delay on each approach. Fig. 3.16 shows the 

radar diagram of queue length and control delay analysis based on VISSIM evaluation outputs 

is also compared. As expected, after offer priorities for intensive CAVs, the resulting control 

delays are not as good as the optimal actuated traffic control plan. Nonetheless, traffic delays 

are well considered in the proposed control algorithm. The queue length and control delay on 

each approach (North bound through, left; South bound through, left; East bound through; West 

bound through, left) is acceptable and not significantly deteriorated. 

Although the simulation design does not consider the pedestrian, it does not lose the 

generality because the pedestrian crossings can be easily satisfied by adding the following 

conditions when the traffic control plan is re-optimized. Specifically, the algorithm can check 

the following two conditions before re-optimization. If a pedestrian has been placed on a phase 

by the time of re-optimization, the minimum green on that phase should be adjusted as the 

bigger value of minimal green for vehicles and WALK plus clearance time for pedestrians. 

This setting will guarantee the green, if that phase is selected by the algorithm, will not end 

before the pedestrians have crossed the intersection. If a pedestrian phase is already active, the 

re-optimization should hold until that pedestrian phase is over. 
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Figure 3.16 Queue length and control delay analysis under three control strategies 

The proposed algorithm in this chapter assumes that the CAVs does not know the 

dynamic traffic control optimization results and maintain their driving behaviors as before. 

This assumption will certainly hold for connected vehicles but may not necessarily for 

automated vehicles, especially when the automated vehicles in the future can dynamically 

adjust their behaviors according to the newly incoming surround information, such as the traffic 

signal control. In that case, it would be necessary to conduct a joint optimization for traffic 

control scheduling and vehicle trajectories. 

3.4 Summary  

With the increase of CAV penetration rates, the competition of CAV green requests 

will become severe. Frequent CAV service at intersections also needs to consider the possible 

interruption to the background traffic. To address this issue, a new method to solve the 

congestion-aware CAV scheduling problem at intersections to balance the traffic mobility and 

CAV green requests is presented. A mixed-integer linear programming based on the phase-

time network and space-time network is formulated to provide a theoretical foundation for this 
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problem. Compared with the previous literature on phase-time network modeling, the original 

phase-time network to a so-called “resilient phase-time network” model is augmented. The 

resilient phase-time network will guarantee a mathematically feasible solution when not all 

CAV green requests can be served due to competing time windows. From the outcome of the 

resilient phase-time network, we can tell which request is declined. By contrast, the MIP solver 

will leave little information for improvement if this problem is not solvable in the original 

phase-time networks. 
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CHAPTER IV 

DEVELOPING A TRACKING-BASED DYNAMIC FLASH YELLOW ARROW (D-

FYA) STRATEGY FOR PERMISSIVE LEFT-TURN VEHICLES TO IMPROVE THE 

PEDESTRIAN SAFETY AT INTERSECTIONS  

4.1 Overview  

Flash yellow arrow (FYA) was widely adopted to indicate permissive left-turn movements after 

a related research was conducted and concluded that the FYA would improve traffic safety 

[75]. Nonetheless, the FYA mechanism does not separate permissive left-turn vehicles from 

concurrent crossing pedestrians. As a result, pedestrian crashes reportedly increased at certain 

locations after the implementation of FYA. To address this issue, agencies either turn the FYA 

off or adopt a special feature in some brands of traffic signal controllers, referred to as “minus 

pedestrian”. The concept is temporarily suppressing the FYA for a cycle if the corresponding 

pedestrian phase is called. Fig. 2 shows the concepts of FYA and the “minus pedestrian”. 
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Figure 4.1 demonstrations of FYA and “minus pedestrian” 

Although the “minus pedestrian” feature separates left-turn vehicles from concurrent 

crossing pedestrians, it also eliminates all the permissive left-turn capability for that cycle. This 

mechanism often creates excessive left-turn queues during peak hours when both pedestrian 

volumes and left-turn vehicle volumes are high. To address this issue, a new dynamic FYA or 

D-FYA based on a LIDAR-based pedestrian tracking system is designed. As shown in Figure 

4.2, concurrent crossing pedestrians have conflict with left-turn vehicles only when they are 

within the so called “hazard zone”.  

“Three-zone” pedestrian tracking with LIDAR sensors: In reality, many pedestrians 

push the pedestrian buttons and then choose to cross or “jaywalk” before the “WALK” sign 

starts. As a result, neither pedestrian phase nor FYA suppressing are needed for that cycle. In 

addition, the D-FYA can (and should) only protect those pedestrians who completely follow 

the traffic regulations because protecting both legitimate and illegitimate crossing pedestrians 

will considerably interrupt traffic signal operations. To address these issues, a “three-zone” 

method to filter and only track those legitimate crossing pedestrians is designed. As shown in 

Fig. 4.2. A pedestrian need to enter the wait zone first and push the pedestrian button in order 
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to be considered legitimate. The two waiting zones of each pedestrian phase are defined as 

“far-end” (Zone 1) and “near-end” (Zone 1') according to their relative locations to the left-

turn vehicles. During WALK, if a pedestrian in Zone 1 and/or 1' enters the boundary zones 

(Zone 2 and 3), then this pedestrian is considered a legitimate pedestrian. If the same pedestrian 

reaches the other end, then this pedestrian crossing is considered finished. In case that the 

pedestrian button is pushed but no legitimate pedestrians enter the intersection, the pedestrian 

request is then considered void and ignored. The three-zone method will filter out those 

“jaywalking” pedestrians.  
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Figure 4.2 Three-zone pedestrian detection method at intersections: a: demonstration b: 

zone settings in the field in references of WB left-turn vehicles (City of Irving, 

Tx) 

Dynamic Flash Yellow Arrow (D-FYA) based on pedestrian tracking: The D-FYA 

algorithm is elaborated as follows:  

When a traffic signal green phase starts: Reset all the FYAs as originally programmed.  

When this signal phase enters yellow and all-red: The proposed D-FYA algorithm will check 

the following items in sequence:  

STEP 1: Check if this phase has a concurrent pedestrian phase. If yes, go to Step 2. If no, STOP 



 

52 

STEP 2: Check if the pedestrian button is pushed. If yes, go to Step 3. If no, STOP 

STEP 3: Examine the existence of pedestrians in far-end and near-end waiting zones. There 

are two scenarios:  

(i) No pedestrians are detected at either waiting zones, then D-FYA algorithm will keep 

the original FYA settings. Then go to STEP 4. 

(ii) Pedestrians are detected at one or two waiting zones, then the D-FYA algorithm will 

suspend the programmed FYA temporarily. Then go to STEP 4.  

When green or WALK starts, the D-FYA algorithm will check STEP 4 through 6 to make the 

final decision on FYA for this cycle.  

STEP 4: At this step, there are four possibilities for pedestrians to enter intersection from two 

sides of waiting zones.  

(i) During the WALK time, if pedestrians in the far-end waiting zone (e.g., Zone 1 in 

Fig.1) enter the intersection (e.g., zone 2 in Fig. 1) but no pedestrians in the near-end 

waiting zone (e.g., Zone 1' in Fig. 2) enter (e.g., zone 3 in Fig. 1). The FYA is 

suspended until all pedestrians have left the “hazard zone” (See Fig. 1). Then the FYA 

is re-activated until the current phase ends.  

(ii) During the WALK time, if pedestrians in the near-end waiting zone enters the 

intersection while no pedestrians in the far-end waiting zone enters, then the FYA is 

suspended until all near-end pedestrians reach the other side of intersection (e.g., enter 

the boundary zone on the other side). Then the FYA is re-activate until the current 

phase ends. 

(iii) During the WALK time, if pedestrians enter the intersection from both sides, then the 

FYA is suspended until all pedestrians reach the other side.  

(iv)  During the WALK time, if no pedestrians enter from either side, then the FYA is 

activated until the current phase ends.  
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Step 4 is the final step of this algorithm for each phase.  

Discussion: 

1. Note that the decisions on FYA at Step 3 is temporary because it is possible that a 

detected person in the waiting zones may not mean to cross, or a pedestrian may 

mistakenly push a pedestrian button. The final decisions of keeping or suspending a 

FYA will be determined after the green/WALK starts.  

2. Note that the decision on activating FYA or not is made once and only once with each 

cycle to avoid confusing drivers and pedestrians.  

3. If a pedestrian “jaywalks” so to get out of the boundary zone when reach the other side 

of intersection LIDAR sensors lose tracking it. The missing pedestrian will be allocated 

with a longest time walk time beyond which this person is considered to have crossed. 

4. The proposed D-FYA is particularly effective when the opposing green is much longer 

than the needed pedestrian crossing time. Once all pedestrians are cleared, the FYA is 

re-activated and can provide a significant permissive capacity for left-turn vehicles. By 

contrast, the current “minus pedestrian” mechanism will unconditionally suppress the 

FYA all through the cycle even if no pedestrians cross or all pedestrians have crossed 

the intersection during a short time.  

4.2 Analysis of permissive left-turn capacity under D-FYA  

In this section, we analyze the changes to the permissive left capacity with the D-FYA 

as opposed to that with the PPLT under different scenarios. A traffic scenario in this context is 

composed of the duration of D-FYA, opposing through traffic volumes and the number of 

lanes, and the corresponding pedestrian volume. After the protected left-turn phase is over, the 

FYA will start together with the green for the opposing through traffic. The left-turn vehicles 

will begin to seek acceptable gaps to maneuver. While the queue of opposing traffic is being 
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discharged, then the left-turn vehicles cannot find the gaps due to the small headways. After 

the queuing vehicles are cleared, the left-turn vehicles will be able to find acceptable gaps to 

cross. If the permissive left-turn strategy is D-FYA, then the flash yellow arrow may start on 

time, be delayed, or even canceled, depending on the presence of pedestrians. It can be 

formulated as follows. Table 4.1 shows the notation for the formulation. 

Table 4.1 Notation for Analysis of permissive left-turn capacity under D-FYA  

Notations for Analysis of permissive left-turn capacity under  D-FYA 

𝐶   Cycle length (sec) 

𝐺  Green duration of opposing through traffic  

𝑠 Saturation rate (vehicle per hour per lane)  

𝑞 Volume of opposing through traffic (veh per hour per lane)  

𝑝 Volume of concurrent crossing pedestrian (ped per hour) 

𝑇  Time window for permissive left turn (sec) 

𝑇′ Time window for permissive left-turn under D-FYA (sec) 

 𝑡𝑐 Queue clearing time (sec) 

ℎ Headway (sec) 

ℎ𝑎 Acceptable gap for left turning (sec) 

𝑐𝑎𝑝𝑝𝑒𝑟𝑚𝐿𝑇   Capacity during the permissive protected left turn (veh per hour per lane) 

𝑐𝑎𝑝𝑝𝑒𝑟𝑚𝐿𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  Capacity during FYA (veh per hour per lane) 

 

As shown in Fig. 4.3, 𝑡𝑐 is the time for clearing the queue of opposing through traffic 

and it can be calculated as:  

Total arrivals during red and queue clearing time: 𝑞 × (𝐶 − 𝐺 + 𝑡𝑐) 

Total departures during the queue clearing time: 𝑠 × 𝑡𝑐 

Then total arrivals are equal to total departures when the queue is cleared.  

  𝑞 × (𝐶 − 𝐺 + 𝑡𝑐) = 𝑠 × 𝑡𝑐       (1) 
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Therefore,    

  𝑡𝑐 =
(𝐶−𝐺)

(
𝑠

𝑞
−1)

         (2) 

During 𝑡𝑐, left-turn vehicles cannot find acceptable gaps. The permissive time window for the 

left-turn vehicles with a cycle is:  

𝑇 = 𝐺 − 𝑡𝑐 = 𝐺 −
(𝐶−𝐺)

(
𝑠

𝑞
−1)

=
(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
      (3) 

 

Figure 4.3 Queue clearing time calculation with the cumulative counting curves  

Assume new opposing through vehicles arrive randomly, then the headway between 

arrivals can be approximated by an exponential distribution. The CDF function of the headway 

ℎ is 

𝐹(ℎ,𝑞) = {1 − 𝑒−𝑞ℎ ℎ ≥ 0
0  ℎ < 0

 (Multiple lanes)   (4) 

𝐹(ℎ,𝑞) = {
1 − 𝑒−𝑞ℎ ℎ ≥ ℎ𝑠𝑎𝑓𝑒

0  ℎ < ℎ𝑠𝑎𝑓𝑒
 (Single lane)   (4-a) 
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left-turn time window will be  
𝑇

(
3600

𝑞
)
. We can also estimate that the probability that headway is 

equal to or greater than the acceptable gap is: 

   𝐹ℎ{ℎ > ℎ𝑎} = 1 − (1 − 𝑒−𝑞ℎ𝑎) = 𝑒−𝑞ℎ𝑎      (5) 

So, the maximal left-turn capacity during the permissive time window will be  

𝑐𝑎𝑝𝑝𝑒𝑟𝑚𝐿𝑇 =
𝑇

(
3600

𝑞
)

× 𝑒−𝑞ℎ𝑎 =
(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
× 𝑞 × 𝑒−𝑞ℎ𝑎     (6) 

The average pedestrian arrivals per cycle 𝑛𝑝 can be calculated as 

   𝑛𝑝 =
𝑝

(
3600

𝐶
)
          (7) 

When pedestrians are only on the near side or on both sides (See Fig. 4.3), then they 

will use all the walk and pedestrian clearance time to cross the intersection. During that period, 

the D-FYA will indicate a red arrow for left-turn vehicles. After the pedestrian clearance timer 

expires, FYA will be displayed. As such, the remaining permissive time window 𝑇′will be 

𝑇′ = 𝑇 − 𝑡𝑊𝐴𝐿𝐾 − 𝑡𝑃𝐶 =
(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
− 𝑡𝑊𝐴𝐿𝐾 − 𝑡𝑃𝐶    (8) 

And the permissive left-turn capacity is  

𝑇′

(
1

𝑞
)

× (1 − 𝑒−𝑞ℎ𝑎) = (
(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
− 𝑡𝑊𝐴𝐿𝐾 − 𝑡𝑃𝐶) × 𝑞 × 𝑒−𝑞ℎ𝑎    (9) 

When pedestrians are only on the far side, then they will take about 50% of pedestrian 

clearance time to cross the “hazard zone”, then the D-FYA will start the flash yellow arrow for 

left-turn vehicles and so the permissive left-turn capacity in this case is  

(
(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
− −𝑡𝑊𝐴𝐿𝐾 −

𝑡𝑃𝐶

2
) × 𝑞 × 𝑒−𝑞ℎ𝑎    

 (10) 

If 𝑛𝑝 ≤ 1, then the presence probability of one crossing pedestrian with each cycle will 

be 𝑛𝑝 and the pedestrian can appear either on the near side or far side with equal (50%) 
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probabilities (See Fig. 4.3). The expected permissive left-turn capacity under D-FYA can be 

estimated as 

𝑐𝑎𝑝𝑝𝑒𝑟𝑚𝐿𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
(((

(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
−−𝑡𝑊𝐴𝐿𝐾−𝑡𝑃𝐶)×𝑞×𝑒−𝑞ℎ𝑎)+((

(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
−−𝑡𝑊𝐴𝐿𝐾−

𝑡𝑃𝐶
2

)×𝑞×𝑒−𝑞ℎ𝑎))

2
 (11) 

If 𝑛𝑝 > 1, then we can assume there are more than one pedestrian every cycle and they 

can be all on the near side, all on the far side, or both sides with equal (33%) probability.  

The expected permissive left-turn capacity of the D-FYA can be estimated as 

𝑐𝑎𝑝𝑝𝑒𝑟𝑚𝐿𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
(2×((

(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
−−𝑡𝑊𝐴𝐿𝐾−𝑡𝑃𝐶)×𝑞×𝑒−𝑞ℎ𝑎)+((

(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
−−𝑡𝑊𝐴𝐿𝐾−

𝑡𝑃𝐶
2

)×𝑞×𝑒−𝑞ℎ𝑎))

3
 (12) 

Table 4.2 Traffic settings for the permissive left-turn capacity calculation  

 Permissive LT  D-FYA (np<1) D-FYA (np>=1) 

Cycle length 110 110 110 110 110 110 110 110 110 

opposing through green (s) 34 40 46 42 48 54 42 48 54 

saturation rate (vphpl) 1500 1500 1500 1500 1500 1500 1500 1500 1500 

the volume of opposing through traffic 

(veh per hour p) 

400 500 600 400 500 600 400 500 600 

Crossing ped volumes (ped per hour) 100 200 300 100 200 300 100 200 300 

Through queue clearing time 3 3 3 3 3 3 3 3 3 

time window for permissive LT 14 30 12 14 30 12 14 30 12 

Acceptable gaps for permissive LT 8 8 8 8 8 8 8 8 8 

pedestrian clearance time (sec) 5 5 5 5 5 5 5 5 5 

pedestrians walk time (sec) 10 10 10 10 10 10 10 10 10 

 

Table 4.3 shows the sensitivity results of capacity under different conditions.  
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Table 4.3 The sensitivity results of capacity under different conditions  

Single Lane 

Oppose Th Volume 

(v/h/l) 

Perm LT Cap in PPLT D-FYA (np<1) D-FYA (np>=1) 

400 1632 903 797 

500 1434 717 598 

600 1027 642 513 

Multiple Lane 

Oppose Th Volume 

(v/h/l) 

Cap of Perm LLT D-FYA (np<1) D-FYA (np>=1) 

400 1046 579 511 

500 823 535 466 

600 527 329 264 

 

Fig. 4.4 shows the permissive left-turn capacity under different capacities.  

Discussion:  

1. From Eq. (6), if the opposing through traffic volume q is high, the permissive left-turn 

capacity will be close to zero. In that case, the traffic signal timing should only use a 

protected left-turn strategy to discharge the left-turn vehicles.  

2. From Eq. (11) and Eq. (12), if the mainline green is much longer than the walk and 

pedestrian clearance time or even almost equal to the cycle length, then the D-FYA will 

reserve significant permissive left-turn capacities while separating the pedestrians from 

left-turn vehicles. By contrast, the PPLT with minus pedestrian phase will not reserve 

any permissive left-turn capability when pedestrians arrive with every cycle.  
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3. The above analysis is limited to isolated intersections because it assumes random 

arrivals of opposing through traffic after the queue is cleared. If an intersection is on 

coordination, then exponentially distributed headway for new arriving vehicles may be 

no longer valid because upstream vehicles will arrive in platoons. The analysis of 

acceptable gaps for coordinated intersections must be empirically performed.   

 

Figure 4.4 The sensitivity of capacity under different conditions: (a) single lane (b) 

multiple lanes  

4.3 Case Study I: Evaluation of D-FYA’s performance using the “Emulation-in-the-

field” traffic signal simulation framework 

In this experiment, we evaluated the performance of the proposed D-FYA algorithm in 

the field by verifying its real-time decisions according to the observed pedestrian behaviors in 

the field. The experiment design is referred to as the “emulation-in-the-field” framework. It 
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means all the traffic signal inputs and pedestrian behaviors are instantaneously collected in the 

real world to drive the D-FYA decision makings whereas the D-FYA decisions are not 

implemented but reported to the observers for verification. The purpose of this experiment is 

to evaluate the algorithm’s reliability and accuracy in the field. The selected intersection is 

Cooper Street at the UTA Blvd, a major intersection connecting two urban campuses of the 

University of Texas at Arlington. The daily pedestrians crossing Cooper Street (mainline) range 

from 1,000 to 1,500 in a school day. The phasing sequence and pedestrian tracking zones are 

shown in Fig.4.5. There are four flash yellow arrows on all four approaches. 

Whenever a phase starts, the D-FYA algorithm will run and report its findings (e.g., the 

presence of waiting pedestrians) and decisions (e.g., suppressing or activating an FYA) on the 

console screen. At the same time, a researcher verified the reported decisions according to their 

observations in the field based on the expected decisions according to the algorithm. The 

observation was carried out over 100 signal cycles with pedestrian crossings. Table 4.4 

demonstrates how the D-FYA decisions were recorded and verified, using 5 cycles as an 

example.  
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Figure 4.5 Phasing sequence (Fig. 4-a) and pedestrian sensing zone layout (Fig.4-b) at the 

Cooper Street at UTA Blvd, Arlington, Tx   

Table 4.4 Records of emulation-in-the-field to verify the D-FYA strategy 

Signal 

Cycle 

Corresponding 

signal phases 

near-

end ped 

presence 

far-end 

ped 

presence 

Both 

ends ped 

presence 

No ped 

presence 

FYA 

started as 

scheduled 

FYA 

delayed 

FYA 

cancelled 

Comment 

1 8 1 0 0 0 0 0 1 1* 

2 4 1 0 0 0 0 1 0 1* 

3 4 0 0 0 1 1 0 0 2* 

4 4 1 0 0 0 0 1 0 1* 

5 4 0 1 0 0 0 1 0 1* 

Note: 1*: verified by the researcher in the field; 2* verified a ped phase call but the 

pedestrian presence 

The case study was conducted for 100 cycles in the field. There were 70 cycles that at 

least one pedestrian phase was called. Among those 70 cycles, 25 cycles only had near-end 

pedestrians, 25 cases with far-end pedestrians, and 9 cases with pedestrians on both sides. 

Comparing what the D-FYA was reported on the screen and what we observed in the field, we 

concluded that the D-FYA algorithm could make correct decisions in 93 cycles out of 100 
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cycles. Table 4.4 summarizes the D-FYA’s performance under various scenarios. Table 4.5: 

Performance summary of D-FYA algorithm under different scenarios. 

Table 4.5 Performance summary of D-FYA algorithm under different scenarios 

Cycles with 

no ped calls 

Cycles only 

with near end 

peds  

Cycles only 

with far-end 

peds 

Cycles with 

both-end 

peds 

Cycles with ped 

calls but no ped 

presence 

The accuracy 

rate of the D-

FYA algorithm 

30 25 25 9 11 93% 

After finishing the experiment in the field, we further analyzed the recorded video and 

identified the possible reasons for incorrect D-FYA decisions. In those failed cases, the 

pedestrians either leaned to traffic light poles or multiple pedestrians stood too close for the 

LIDAR tracking algorithm to separate them effectively. This accuracy rate should further 

increase if the LIDAR tracking algorithm can improve in the future.  

4.4 Case Study II: Mobility Evaluation of the D-FYA strategy using the “Cabinet-In-

the-Loop” traffic signal simulation platform   

In the second case study, we evaluate the mobility performance of the D-FYA as 

opposed to the other two common permissive left-turn strategies: (I) protected + permissive 

left turn (PPLT); and (II) protected + permissive + minus-ped-phase. The first strategy is to 

show the left-turn vehicles with a green arrow followed by a flash yellow arrow whereas the 

second strategy is to show the left-turn vehicles with a green arrow first and then examine if a 

pedestrian call is placed. If so, then a red arrow is displayed until the end of opposing green. 

Otherwise, the flash yellow arrow is activated.  

The intersection of the West Walnut Hill Ln at the North Belt Line Rd in the City of Irving, 

Texas was selected to develop a simulation model. Fig. 4.6 shows the movements and phasing 

sequence. 
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Figure 4.6 Layout of intersection for the 2nd case study 

Cabinet-in-the-loop traffic signal simulation platform: the “minus-ped-phase” feature 

is not available in traffic signal controllers until very recently. So, it is not yet supported by any 

traffic signal simulation engine. To keep a high-fidelity and fair comparison, we developed a 

cabinet-in-the-loop traffic signal simulation platform for this experiment. As shown in Fig. 4.7, 

two control units (CU) are coupled with the VISSIM simulation engine. The first CU is a fully 

scaled traffic signal assembly. Through the input and out serial ports of the assembly, we 

retrieved the latest traffic signal status in the traffic signal controller, and we then sent it into 

VISSIM simulation via the provided traffic signal control API. On the other hand, the real-time 

detector status in the simulation is collected via the signal control API and then sent into traffic 

signal assembly via its input serial port. The hardware traffic signal controller will decide 

according to the detector inputs, including the FYA and minus pedestrian phase for the FYA.  

A challenge in this experiment is that pedestrian tracking is not straightforward in simulation. 

To address this issue, we developed a second virtual controller in simulation for the D-FYA 

strategy. Its logic is to issue a red arrow if there are crossing pedestrians (i.e., the blue detectors 

are occupied by pedestrians) otherwise, it will issue a green arrow. The virtual controller issues 

red light only when the pedestrian phase is activated, so pedestrians (if any) enter the 
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intersection. The simplified D-FYA algorithm will not lose its generality since pedestrians have 

no random exceptions in a simulation like jaywalking.  

As shown in Fig. 4.7, the blue detectors are configured to detect concurrent crossing 

pedestrians. Two signal heads, controlled by the hardware controller and by the virtual D-FYA 

controller, respectively, are placed in sequence for the left turn vehicles. The permissive left-

turn vehicles can seek gaps and enter only if neither traffic signal head is red. As an illustration, 

when the opposing (SB in Fig. 4.7) traffic light turns green with the concurrent pedestrian 

phase, the hardware traffic signal controller will turn the first signal head to a flash yellow 

arrow. In the meanwhile, if the virtual controller detects the presence of crossing pedestrians, 

it will turn red, preventing vehicles from entering the intersection. If the virtual controller does 

not detect the pedestrian presence, it will indicate a green arrow. A flash yellow arrow and a 

green arrow will allow left-turn vehicles to enter the intersection during the permissive left-

turn phase. This configuration can, in essence, start, delay, or cancel a programmed FYA within 

a cycle. 

 

Figure 4.7 The architecture of Cabinet-in-the-loop traffic signal simulation for the D-FYA 

evaluation 
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Without loss of generality, the mainline vehicle and concurrent crossing pedestrian 

volumes are set as low, medium, and high to evaluate the performance of three permissive left-

turn strategies (see Table 4.6).  The experiment also excluded the possibility of “starvation” by 

extending the mainline left-turn lanes to ensure the mainline traffic was not affected by 

different permissive left-turn strategies.  

Table 4.6 Vehicle and pedestrian volumes for different scenarios 

 

Volume 

Southbound Northbound Westbound Eastbound 

 

Pedestrian 

L T R L T R L T R L T R  

Low 75 200 30 75 200 30 300 500 120 300 500 130 100 

Medium 75 200 30 75 200 30 500 500 120 500 500 130 200 

High 75 200 30 75 200 30 750 500 120 750 500 130 350 

Nine simulation scenarios are generated with the combination of available vehicle and 

pedestrian volumes. They are referred to as:  

1. LVLP: low vehicle volumes and low pedestrian volumes.  

2. LVMP: low vehicle volumes and medium pedestrian volumes.  

3. LVHP: low vehicle volumes and high pedestrian volumes.  

4. MVLP: medium vehicle volumes and low pedestrian volumes.  

5. MVMP: medium vehicle volumes and medium pedestrian volumes.  

6. MVHP: medium vehicle volumes and high pedestrian volumes.  

7. HVLP: high vehicle volumes and low pedestrian volumes.  

8. HVMP: high vehicle volumes and medium pedestrian volumes. 

9. HVHP: high vehicle volumes and high pedestrian volumes. 

Fig. 4.8 shows the mainline left-turn queue length (in feet) comparison among three 

permissive left-turn strategies. It reveals that the mobility performance of D-FYA is between 
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the PPLT and “PPLT with Minus-pedestrian-phase” in most cases. In some cases, the D-FYA 

is much better than the “PPLT+Minus-Ped-phase” (e.g., the MVHP scenarios) in mobility 

while separating the left-turn vehicles and pedestrians. When the opposing through traffic and 

pedestrian volumes are both high, all three permissive left-turn strategies will degrade to the 

protected-only left-turn strategies (e.g., the HVHP scenario) because the left-turn vehicles 

cannot find the acceptable gaps.  A similar pattern also shows in the delay analysis (Fig. 4.9).   

Discussion II 

From the simulation results, it can be concluded that for both low vehicle and medium 

traffic conditions, PPLT and D-FYA has better performance over PPLT+Minus-Ped-Phase 

strategy whereas the D-FYA and PPLT with Minus-Pedestrian-Phase have the same pedestrian 

protection. Although, when both vehicle and pedestrian volumes increase to a high level, all 

three permissive left-turn strategies show similar delays and queue lengths to the protected-

only left-turn strategy. This is because the left-turn vehicles cannot find the acceptable gaps 

during FYA. It implies that we may need to prohibit any permissive left-turn strategies under 

certain scenarios.  
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Figure 4.8 The mainline left-turn queue length comparison under various scenarios 
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Figure 4.9 The mainline left-turn delay comparison under various scenarios 
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pedestrian detections. In addition, in a controlled simulation environment, we further evaluated 

all three permissive left-turn strategies: protected-permissive left turn (PPLT), D-FYA, and 

PPLT with minus-pedestrian-phase. We concluded that the proposed D-FYA-based pedestrian 

tracking would be more efficient than the PPLT with a minus-pedestrian phase. At the same 

time, it can effectively solve the issue of pedestrian safety. It was also found that when the 

opposing through traffic became highly, all three permissive left-turn strategies degraded to the 

protected-only control strategy, leading to high delays and long queues.  

In the future, we plan to introduce more features into the D-FYA strategy, considering 

the concurrent crossing of pedestrians and the opposing through traffic. As revealed in the 

experiment, it would be better to dynamically cancel and recover the FYA according to the 

volume of opposing through traffic. It may reduce the possibility of collisions between left-

turn vehicles and opposing through vehicles.  
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CHAPTER V 

APPLICATION OF CONNECTED VEHICLE TRAJECTORY DATA IN TRAVEL 

DEMAND FORECASTING   

5.1 Overview  

When it comes to the question of strategic planning of an equitable transportation 

network, a traditional four-step planning method has been used for a long time (fig 5.1). Among 

these four steps, dynamic Origin-Destination (OD) estimation conducted in trip distribution is 

vital while planning and predicting future networks. An accurate prediction of these OD 

metrics is essential to ensure the optimal use of available resources in the transportation 

network. This prediction gives the road user a brief idea about the route choice along with 

helping the transportation professionals in the implantation of technology to envisage future 

needs within the system. 

Traditionally, the four-step transportation model works, as shown in figure 5.1 where 

traffic assignment is the final step for the network design. 

However, a new approach is presented in this research objective where the OD matric 

of the vehicles in the network using the connected vehicle’s trajectory data is going to be 

predicted. In other words, by using traffic assignment results and network performance, the 

path flow distribution of the entire network will be predicted. Therefore, an innovative 

framework for travel demand forecasting is going to be developed. The goal of this chapter is 

to explore an innovative framework to forecast the travel demand in the DFW area. The current 
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practice of travel demand forecasting in DFW is the classic “four-step” method based on 

household surveys and traffic counts. The emerging new traffic data, like the connected vehicle 

trajectories, bring both opportunities and challenges. The novel data sets reveal much more 

information about the traveler than before and pave the way for enhanced accurate and high-

fidelity travel demand forecasts. 

Traditional four step model

Trip Generation 

Trip Distribution 

Modal Split

Traffic assignment

Total number of trips 

generated at each zone

Trips shorted by origin/

destination zone

Arrange the trip by 

different mode of 

transportation

Determine the route of 

transportation network 

that each trip will utilize

Input: Household survey, 

population data, 

land use, economic growth etc. 

Input: travel time,  cost,

 convenience,

 vehicle ownership etc.

Input: transportation network

 

Figure 5.1 Traditional four step transportation model 

On the other hand, the traditional travel demand forecast cannot take advantage of the total 

horsepower of such data sets. The inconsistency of various data sets and heterogeneous data 

quality are other issues of fusing the emerging traffic data with the traditional ones. This chapter 

will explore the innovative framework of travel demand forecasting based on connected vehicle 

data using state-of-the-art big data analytics and high-performance computing to address these 

issues. 
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5.2 Formulation for the path flow estimation model : 

A nonlinear optimization formulation for path flow estimation is proposed in this 

section. The objective is to find the minimum Mean Square Error value for the 100% link 

counts and estimated path flow value. Below table 5.1 shows the parameters and variables for 

the nonlinear optimization function. 

Table 5.1 Parameters and variables for the nonlinear optimization formulation   

Notations for Non- Linear Optimization Formulation  

𝐴   Set of road link nodes 

𝑃  Set of all possible path from origin to destination  

𝑐(𝑖,𝑗) 100% link count (known Link volume) 

𝑤𝑝 Observed (partial) Wejo path flow  

𝑝 Volume of concurrent crossing pedestrian (ped per hour) 

𝑡(𝑖,𝑗)  Link travel time on each link 

𝑡(𝑖,𝑗)
′  Free flow travel time on each link 

𝑚(𝑖,𝑗,𝑝) Node to path mapping (map-matching) 

𝑐𝑎𝑝(𝑖,𝑗) Capacity of each link 

 𝑥𝑝 Decision Variable-(adjustment factors for each path) 

 

Non- Linear Optimization Formulation Using Mean Square Error Method 

Objective function: 

min 𝑍 = ∑ (𝑐(𝑖,𝑗) − ∑ 𝑤𝑝𝑥𝑝𝑚(𝑖,𝑗,𝑝)𝑝є𝑃 )2
(𝑖,𝑗)є𝐴                                                                   (1) 

In eq (1) , the mean square error formulation is presented. Here, wp represents the wejo 

path flow value which varies from 3 to 5% when comparing with the actual path flow values. 

xp here is our decision variable which indicates the adjustment factor for each path. 

Subjected to:  



 

73 

BPR function  ∑ ( 𝑡(𝑖,𝑗)
′ [1 + 𝛼 (

∑ 𝑤𝑝𝑥𝑝𝑚(𝑖,𝑗,𝑝)𝑝∈𝑃

𝑐𝑎𝑝(𝑖,𝑗)
)

𝛽

])  (𝑖,𝑗)є𝐴

 

= 𝑡((𝑖,𝑗)є𝐴 )                              (2) 

1 ≤ 𝑥𝑝 ≤ 33  𝑓𝑜𝑟 𝑝є𝑃                                                                                                                   (3) 

Eq (2) is the representation of  the standard BPR (Bureau of Public Road) function, 

BPR function is used to compute link travel time for each road link. Here, 𝑡(𝑖,𝑗)
′  indicated 

the free flow travel time for each link. The term 𝑤𝑝𝑥𝑝𝑚(𝑖,𝑗,𝑝)  indicates the estimated path 

flow value and 𝑡((𝑖,𝑗)є𝐴 ) indicates the link travel time for each road link.  

 

Figure 5.2 Node to path mapping 𝑚(𝑖,𝑗,𝑝) 

Eq (3) is used to restrict the limit if the adjustment factor 𝑥𝑝. The limit used here is 

obtained by observation. Fig 5.2 show how node to path mapping 𝑚(𝑖,𝑗,𝑝) is conducted in 

this research.  

5.3 Numerical Experiment for Model Validation 

In this section, the results collected from different sets of experiments are presented. 

The experiments are set to validate the proposed path flow estimation model. The experiment 

is designed for two different sets. In the initial set of experiments, only one O-D pair is 

considered.  
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Again, in experiment I, three different path flow condition is considered. The three 

different conditions are as follows:   

                         I.         Low path flow   

                       II.         Medium path flow 

                     III.         High path flow 

In the second experiment, two different O-D pair is selected to check the sensitivity of 

the model under multiple O-D situations. 

5.3.1 Formulation Validation Experiment I: Considering One O-D Pair  

5.3.1.1 Scenario I: Low path flow condition   

For validating the proposed path flow estimation model, the first experiment is 

conducted in a low path flow value. The below fig 5.3 (a) shows the 100% link counts for each 

connected node. And fig 5.3(b) shows the path flow under low path flow conditions for one 

selected O-D pair node 1 to node 9. To be mentioned here, or the selected O-D pair, six possible 

paths are detected. The highest expected path flow value for this experiment is 349 veh/hr. 

230

1 2 3

4

7

5 6

8 9

790

819

349

349 839

230

(a) 100% link count,c(i,j) in the formulation

770

470 540

560

490

1 2 3

4

7

5 6

8 9

1 9

1 9

(b) Expected path flow value for origin node 
1 to destination node 9 

Path 1 (1-2-3-6-9) for O-D pair        to       ,expected  path flow value 230 
Path 2 (1-2-5-8-9) for O-D pair        to       ,expected  path flow value 270
Path 3 (1-2-5-6-9) for O-D pair        to       ,expected  path flow value 290

Path 4 (1-4-5-6-9) for O-D pair        to       ,expected  path flow value 250
Path 5 (1-4-5-8-9) for O-D pair        to       ,expected  path flow value 220
Path 6 (1-4-7-8-9) for O-D pair        to       ,expected  path flow value 349

   

1 9

1 9

1 9

1 9

 

Figure 5.3 (a) Tropology of the network with 100% link counts for scenario I (b) Real O-

D matrix with expected path flow value.  
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The below table 5.2 and fig 5.5 shows the results from the scenario.  

Table 5.2 Scenario I: Low path flow condition  

Path 

ID 

Wejo 

% 

Expected 

Path Flow 

Estimated 

Path Flow 

% Difference 

Path 1 3.5 230 231 0.43% 

Path 2 4.5 270 306.0848835 13.36% 

Path 3 4.5 290 256.9150883 11.41% 

Path 4 5 250 278.0848836 11.23% 

Path 5 3 220 188.9151416 14.13% 

Path 6 4 349 341 2.29% 

 

 

Figure 5.4 Rader plot showing the expected and estimated path flow value 
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The result indicates that difference between is the expected path flow value and estimated path 

flow from the model is very satisfying . The highest difference between these two criteria is 

found 14.13% where the expected path flow is 220 veh/hr and estimated value is 189 veh/hr. 

5.3.1.2 Scenario II: Medium path flow condition  

For scenario  II, medium path flow condition is considered. Fig 5.5(a) shows 100% link 

counts for each links. In fig 5.5 (b),the expected path flow value for origin 1 to destination 9 is 

showed. The highest value of path flow in this condition is 618 veh/hr. 
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Figure 5.5 (a) Tropology of the network with 100% link counts for scenario II (b) Real O-

D matrix with expected path flow value. 

The below table 5.3 and fig 5.6 shows the results from the scenario II. 
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Table 5.3 Scenario II: Medium path flow condition  

Path ID Wejo 

% 

Expected 

Path Flow 

Estimated 

Path Flow 

% Difference 

Path 1  3.5 579 567.00 2.07% 

Path 2 4.5 582 461.00 20.79% 

Path 3 4.5 520 525.00 1.35% 

Path 4 5 618 612.00 0.97% 

Path 5 3 563 561.00 0.36% 

Path 6 4 550 550 0.00% 

 

The result indicates that difference between is the expected path flow value and 

estimated path flow from the model is very close.  

 

Figure 5.6 Rader plot showing the expected and estimated path flow value 
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The highest difference between these two criteria is found 20.79% where the expected path 

flow is 582 veh/hr and estimated value is 461 veh/hr. The lowest difference is found as small 

as 0% where estimated value of path flow matches the expected path flow value. 

5.3.1.3 Scenario III: High path flow condition  

This third experiment is conducted for high path flow value. The below fig 5.7 (a) 

shows the 100% link counts for each connected node. And fig 5.7 (b) shows the path flow in 

high path flow condition for one selected O-D pair node 1 to node 9. The highest expected path 

flow value for this scenario is 690 veh/hr. 
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Figure 5.7 (a) Tropology of the network with 100% link counts for scenario III (b) Real 

O-D matrix with expected path flow value. 

 

The below table 5.4 and fig 5.7 shows the results from the scenario.  
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Table 5.4 Scenario III: High path flow condition  

Path 

ID 

Wejo % Expected 

Path Flow 

Estimated 

Path Flow 

% Difference 

Path 1  3.0 620 627 1.13% 

Path 2 4.0 690 749.0268568 8.55% 

Path 3 5.0 650 590.9731432 9.08% 

Path 4 4.0 666 724.0268568 8.71% 

Path 5 3.0 690 625.9733822 9.28% 

Path 6 4.0 680 675 0.74% 

 

The result indicates that difference between is the expected path flow value and 

estimated path flow from the model is very satisfying . The highest difference between these 

two criteria is found 9.28% where the expected path flow is 690 veh/hr and estimated value is 

626 veh/hr. 

 

Figure 5.8 Rader plot showing the expected and estimated path flow value 
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From these three experiments it can be observed that at the higher path flow condition, the 

estimated path flow is the closer to the expected value.  

5.3.2 Formulation Validation Experiment II: Considering Multiple O-D Pair  

In this experiment, instead of using only one O-D pair, multiple O-D pair is considered. 

As show in the below figure, here two O-D pair is considered, where node 2 and 1 has 

respective destination node 9 and 8.  

1 2 3

4

7

5 6

8 9

Expected path flow value for two different origin node 

Path 1 (2-5-6-9) for O-D pair        to       ,expected  path flow value 200
Path 2 (2-3-6-9) for O-D pair        to       ,expected  path flow value 240
Path 3 (2-5-8-9) for O-D pair        to       ,expected  path flow value 260

Path 4 (1-2-5-8) for O-D pair        to       ,expected  path flow value 300
Path 5 (1-4-7-8) for O-D pair        to       ,expected  path flow value 275
Path 6 (1-4-5-8) for O-D pair        to       ,expected  path flow value 350

   

2 9
2 9

2 9

1 8

1 8
1 8

 

Figure 5.9 Numerical experiment for multiple O-D pair  

Table 5.5 Experiment II: Multiple O-D pair condition 

O-D pair Path ID Wejo 

% 

Expected 

Path Flow 

Estimated 

Path Flow 

% Difference 

 

2-9 

Path 1  3.0 200  199.99 0.00% 

Path 2 3.5 240 228.57 4.76% 

Path 3 3.0 260 266.67 2.56% 

 

1-8 

Path 4 4.0 300 300 0.00% 

Path 5 4.5 275 266.67 3.03% 

Path 6 5.0 350 360 2.86% 
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The  table 5.5 shows the outcome of the proposed path flow model. The result shows 

that with multiple O-D pair in the network, the result is still very satisfying. The maximum 

difference between expected and estimated path flow value is found for O-D pair 2-9 which 

is 4.76% and minimum value found is 0%. 

 

Figure 5.10 Rader plot showing the expected and estimated path flow value 
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is very promising. In low path flow condition, the highest difference between expected and 

estimated path flow value is 14.13%, in medium path flow condition, the highest difference is 

found 20.79% and in high path flow condition the highest difference is found 9.28%.  

These experiments are done considering one O-D pair. Another experiment is 

conducted in the chapter where multiple O-D pair is used instead of using one O-D pair. The 

result shows that the maximum difference between expected and estimated path flow values is 

found for O-D pair 2-9, which is 4.76%, and the minimum value found is 0%. Therefore, 

applying multiple O-D into the proposed model is also very satisfying. 

In the future, a computational graph for path flow estimation will be developed for 

large-scale network data. The algorithm will check the applicability of the proposed model in 

big data-driven environment to estimate traffic assignment and travel demand forecasting.   
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

6.1 Overview of the Research  

Increasing population and demand is creating need for a sustainable and equitable 

transportation system over time. To address this issue, in this research work, a sustainable and 

equitable transportation system for connected vehicle and big data driven environment. This 

research proposed a sustainability and equitable of transportation system by addressing 

intersection design in mixed traffic condition, pedestrian safety at inter section by proposing a 

tracking-based dynamic flash yellow arrow (D-FYA) strategy for permissive left-turn vehicles 

and finally analyzing the network performance within the big data driven environment. The 

summary of the findings from each of the three research goals are discussed in this section. 

6.2 Summary of Congestion-Aware Heterogeneous Connected Automated Vehicles 

Cooperative Scheduling Problems at Intersections 

The competition of CAV green request becomes more essential if the CAV penetration 

rate increases. CAV request at the intersection also needs to be overcome the possible 

interruption of background traffic in mixed traffic condition. 

6.2.1 Conclusion  

This research proposed a new method to find the solution of the congestion aware CAV 

scheduling problem at intersection. This solution also works on balancing the mobility of traffic 

when an active CAV green request is placed. A mixed-integer linear programming based on 
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the phase-time network and space-time network is formulated to provide a theoretical 

foundation for this problem. We also presented a “resilient phase-time network” based on the 

original phase time network. The resilient phase-time network will guarantee a mathematically 

feasible solution when not all CAV green requests can be served due to competing time 

windows. From the outcome of the resilient phase-time network, we can tell which request is 

declined. By contrast, the MILP solver will leave little information for improvement if this 

problem is not solvable in the original phase-time networks. 

6.2.2 Future Recommendation  

Only the isolated intersection with a limited percentage of priority requests is the 

subject of this study. In the future, the model's sensitivity can be verified by optimizing a long 

corridor with numerous connected intersections. The long corridor's results can be used in 

extensive network modeling. In summary, it is possible to investigate whether the suggested 

model can be used for actual development.  

6.3 Summary of Dynamic Flash Yellow Arrow Along with Pedestrian Detection 

Technique to Improve Pedestrian Safety 

In this study, we develop a novel dynamic flash yellow arrow (D-FYA) mechanism to 

leverage the permissive left-turn capacity and crossing pedestrians’ safety based on pedestrian 

tracking technologies.  

6.3.1 Conclusion  

The research outcome is to address the reported potential safety hazards after the flash 

yellow arrow (FYA) permissive left-turn strategy is widely deployed. Through a novel 

“emulation-in-the-field” traffic signal control framework, we verified the resilience of the 

proposed D-FYA algorithm to random pedestrian behaviors and mitigations to inaccurate 

pedestrian detections. In addition, in a controlled simulation environment, we further evaluated 
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all three permissive left-turn strategies: protected-permissive left turn (PPLT), D-FYA, and 

PPLT with minus-pedestrian-phase. We concluded that the proposed D-FYA-based pedestrian 

tracking would be more efficient than the PPLT with a minus-pedestrian phase. At the same 

time, it can effectively solve the issue of pedestrian safety. It was also found that when the 

opposing through traffic became highly, all three permissive left-turn strategies degraded to the 

protected-only control strategy, leading to high delays and long queues.  

6.3.2 Future Recommendation  

In the future, we plan to introduce more features into the D-FYA strategy, considering 

the concurrent crossing of pedestrians and the opposing through traffic. As revealed in the 

experiment, it would be better to dynamically cancel and recover the FYA according to the 

volume of opposing through traffic. It may reduce the possibility of collisions between left-

turn vehicles and opposing through vehicles. 

6.4 Summary of Application of Connected Vehicle Trajectory Data in Travel 

Demand Forecasting  

This study is focused on developing an innovative formulation for path flow estimation 

in travel demand forecasting based on connected vehicle data (Wejo data).  

6.4.1 Conclusion  

One Non-Linear Optimization Formulation Using Mean Square Error Method is 

presented in the chapter where the objective function is to find the minimum difference 

between 100% link counts and estimated path flow value. The wejo data is 3 to 5% of the actual 

path flow value. Three numerical experiments is conducted for low expected path flow value, 

medium expected path flow value, and high expected path flow value. The result obtained from 

the experiment is very promising. In low path flow condition, the highest difference between 

expected and estimated path flow value is 14.13%, in medium path flow condition, the highest 
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difference is found 20.79% and in high path flow condition the highest difference is found 

9.28%.  

These experiments are done considering one O-D pair. Another experiment is 

conducted in the chapter where multiple O-D pair is used instead of using one O-D pair. The 

result shows that the maximum difference between expected and estimated path flow values is 

found for O-D pair 2-9, which is 4.76%, and the minimum value found is 0%. Therefore, 

applying multiple O-D into the proposed model is also very satisfying. 

6.4.2 Future Recommendation  

In the future, a computational graph for path flow estimation will be developed for 

large-scale network data. The algorithm will check the applicability of the proposed model in 

big data-driven environment to estimate traffic assignment and travel demand forecasting.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

87 

 

REFERENCE  

[1] Q. Guo, L. Li, and X. J. Ban, "Urban traffic signal control with connected and 

automated vehicles: A survey," Transportation research part C: emerging 

technologies, vol. 101, pp. 313-334, 2019. 

[2] C. Yu, Y. Feng, H. X. Liu, W. Ma, and X. Yang, "Integrated optimization of traffic 

signals and vehicle trajectories at isolated urban intersections," Transportation 

Research Part B: Methodological, vol. 112, pp. 89-112, 2018. 

[3] W. Knight, "Car-to-car communication," Technology Review, vol. 118, no. 2, pp. 38-

39, 2015. 

[4] S. I. Guler, M. Menendez, and L. Meier, "Using connected vehicle technology to 

improve the efficiency of intersections," Transportation Research Part C: Emerging 

Technologies, vol. 46, pp. 121-131, 2014. 

[5] W. Sun, J. Zheng, and H. X. Liu, "A capacity maximization scheme for intersection 

management with automated vehicles," Transportation research procedia, vol. 23, 

pp. 121-136, 2017. 

[6] B. Xu et al., "Distributed conflict-free cooperation for multiple connected vehicles at 

unsignalized intersections," Transportation Research Part C: Emerging Technologies, 

vol. 93, pp. 322-334, 2018. 

[7] Y. Feng, "Intelligent traffic control in a connected vehicle environment," The 

University of Arizona, 2015.  

[8] Y. Feng, K. L. Head, S. Khoshmagham, and M. Zamanipour, "A real-time adaptive 

signal control in a connected vehicle environment," Transportation Research Part C: 

Emerging Technologies, vol. 55, pp. 460-473, 2015. 

[9] Y. Feng, C. Yu, and H. X. Liu, "Spatiotemporal intersection control in a connected 

and automated vehicle environment," Transportation Research Part C: Emerging 

Technologies, vol. 89, pp. 364-383, 2018. 

[10] X. Kong, X. Song, F. Xia, H. Guo, J. Wang, and A. Tolba, "LoTAD: Long-term 

traffic anomaly detection based on crowdsourced bus trajectory data," World Wide 

Web, vol. 21, no. 3, pp. 825-847, 2018. 

[11]  C. Priemer and B. Friedrich, "A decentralized adaptive traffic signal control using 

V2I communication data," in 2009 12th International IEEE Conference on Intelligent 

Transportation Systems, 2009: IEEE, pp. 1-6.  

[12] K. Dresner and P. Stone, "A multiagent approach to autonomous intersection 

management," Journal of artificial intelligence research, vol. 31, pp. 591-656, 2008. 



 

88 

[13]  T.-C. Au, S. Zhang, and P. Stone, "Semi-autonomous intersection management," in 

AAMAS, 2014, pp. 1451-1452.  

[14]  M. Hausknecht, T.-C. Au, and P. Stone, "Autonomous intersection management: 

Multi-intersection optimization," in 2011 IEEE/RSJ International Conference on 

Intelligent Robots and Systems, 2011: IEEE, pp. 4581-4586.  

[15]  J. Datesh, W. T. Scherer, and B. L. Smith, "Using k-means clustering to improve 

traffic signal efficacy in an IntelliDrive SM environment," in 2011 IEEE Forum on 

Integrated and Sustainable Transportation Systems, 2011: IEEE, pp. 122-127.  

[16] J. Lee, B. Park, and I. Yun, "Cumulative travel-time responsive real-time intersection 

control algorithm in the connected vehicle environment," Journal of Transportation 

Engineering, vol. 139, no. 10, pp. 1020-1029, 2013. 

[17] R. Venkatanarayana, H. Park, B. L. Smith, C. Skerrit Jr, and N. W. Ruhter, 

"Application of IntelliDrive℠ to address oversaturated conditions on arterials," 2011.  

[18] P. G. Michalopoulos and G. Stephanopoulos, "Oversaturated signal systems with 

queue length constraints—I: Single intersection," Transportation Research, vol. 11, 

no. 6, pp. 413-421, 1977. 

[19] M. Li, Y. Yin, W. B. Zhang, K. Zhou, and H. Nakamura, "Modeling and 

implementation of adaptive transit signal priority on actuated control systems," 

Computer‐Aided Civil and Infrastructure Engineering, vol. 26, no. 4, pp. 270-284, 

2011. 

[20] H. Liu, A. Skabardonis, W.-b. Zhang, and M. Li, "Optimal detector location for bus 

signal priority," Transportation Research Record, vol. 1867, no. 1, pp. 144-150, 2004. 

[21] X. Han, P. Li, R. Sikder, Z. Qiu, and A. Kim, "Development and evaluation of 

adaptive transit signal priority control with updated transit delay model," 

Transportation Research Record, vol. 2438, no. 1, pp. 45-54, 2014. 

[22] E. Christofa, K. Ampountolas, and A. Skabardonis, "Arterial traffic signal 

optimization: A person-based approach," Transportation Research Part C: Emerging 

Technologies, vol. 66, pp. 27-47, 2016. 

[23] W. Ma, W. Ni, L. Head, and J. Zhao, "Effective coordinated optimization model for 

transit priority control under arterial progression," Transportation Research Record, 

vol. 2366, no. 1, pp. 71-83, 2013. 

[24] P. Kilambi, E. Ribnick, A. J. Joshi, O. Masoud, and N. Papanikolopoulos, "Estimating 

pedestrian counts in groups," Computer Vision and Image Understanding, vol. 110, 

no. 1, pp. 43-59, 2008. 

[25]  A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos, "Privacy preserving crowd 

monitoring: Counting people without people models or tracking," in 2008 IEEE 

Conference on Computer Vision and Pattern Recognition, 2008: IEEE, pp. 1-7.  



 

89 

[26] S. Yoshinaga, A. Shimada, and R.-i. Taniguchi, "Real-time people counting using 

blob descriptor," Procedia-Social and Behavioral Sciences, vol. 2, no. 1, pp. 143-152, 

2010. 

[27]  A. B. Chan and N. Vasconcelos, "Bayesian poisson regression for crowd counting," 

in 2009 IEEE 12th international conference on computer vision, 2009: IEEE, pp. 545-

551.  

[28]  V. Bhuvaneshwar and P. B. Mirchandani, "Real-time detection of crossing 

pedestrians for traffic-adaptive signal control," in Proceedings. The 7th International 

IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No. 04TH8749), 

2004: IEEE, pp. 309-313.  

[29]  B. Li, Q. Yao, and K. Wang, "A review on vision-based pedestrian detection in 

intelligent transportation systems," in Proceedings of 2012 9th IEEE international 

conference on networking, sensing and control, 2012: IEEE, pp. 393-398.  

[30] V. John, S. Tsuchizawa, Z. Liu, and S. Mita, "Fusion of thermal and visible cameras 

for the application of pedestrian detection," Signal, Image and Video Processing, vol. 

11, no. 3, pp. 517-524, 2017. 

[31] J. Baek, S. Hong, J. Kim, and E. Kim, "Efficient pedestrian detection at nighttime 

using a thermal camera," Sensors, vol. 17, no. 8, p. 1850, 2017. 

[32]  J. Kim, "Pedestrian Detection and Distance Estimation Using Thermal Camera in 

Night Time," in 2019 International Conference on Artificial Intelligence in 

Information and Communication (ICAIIC), 2019: IEEE, pp. 463-466.  

[33] S. Kothuri, K. Nordback, A. Schrope, T. Phillips, and M. Figliozzi, "Bicycle and 

pedestrian counts at signalized intersections using existing infrastructure: 

opportunities and challenges," Transportation research record, vol. 2644, no. 1, pp. 

11-18, 2017. 

[34] H. Zhao and R. Shibasaki, "A novel system for tracking pedestrians using multiple 

single-row laser-range scanners," IEEE Transactions on systems, man, and 

cybernetics-Part A: systems and humans, vol. 35, no. 2, pp. 283-291, 2005. 

[35] H. Zhao et al., "Detection and tracking of moving objects at intersections using a 

network of laser scanners," IEEE transactions on intelligent transportation systems, 

vol. 13, no. 2, pp. 655-670, 2011. 

[36] J. Zhao, Y. Li, H. Xu, and H. Liu, "Probabilistic prediction of pedestrian crossing 

intention using roadside LiDAR data," IEEE Access, vol. 7, pp. 93781-93790, 2019. 

[37] J. Zhao, H. Xu, J. Wu, Y. Zheng, and H. Liu, "Trajectory tracking and prediction of 

pedestrian's crossing intention using roadside LiDAR," IET Intelligent Transport 

Systems, vol. 13, no. 5, pp. 789-795, 2019. 



 

90 

[38] B. Lv, R. Sun, H. Zhang, H. Xu, and R. Yue, "Automatic Vehicle-Pedestrian Conflict 

Identification With Trajectories of Road Users Extracted From Roadside LiDAR 

Sensors Using a Rule-Based Method," IEEE Access, vol. 7, pp. 161594-161606, 

2019. 

[39] J. Wu, H. Xu, Y. Sun, J. Zheng, and R. Yue, "Automatic background filtering method 

for roadside LiDAR data," Transportation Research Record, vol. 2672, no. 45, pp. 

106-114, 2018. 

[40] T. S. Combs, L. S. Sandt, M. P. Clamann, and N. C. McDonald, "Automated vehicles 

and pedestrian safety: exploring the promise and limits of pedestrian detection," 

American journal of preventive medicine, vol. 56, no. 1, pp. 1-7, 2019. 

[41] A. P. Grassi, V. Frolov, and F. P. León, "Information fusion to detect and classify 

pedestrians using invariant features," Information fusion, vol. 12, no. 4, pp. 284-292, 

2011. 

[42]  M. El Ansari, R. Lahmyed, and A. Trémeau, "A Hybrid Pedestrian Detection System 

based on Visible Images and LIDAR Data," in VISIGRAPP (5: VISAPP), 2018, pp. 

325-334.  

[43] F. Bu, T. Le, X. Du, R. Vasudevan, and M. Johnson-Roberson, "Pedestrian Planar 

LiDAR Pose (PPLP) Network for Oriented Pedestrian Detection Based on Planar 

LiDAR and Monocular Images," IEEE Robotics and Automation Letters, vol. 5, no. 2, 

pp. 1626-1633, 2019. 

[44] R. Soundrapandiyan and P. C. Mouli, "Adaptive pedestrian detection in infrared 

images using background subtraction and local thresholding," Procedia Computer 

Science, vol. 58, no. 1, pp. 706-713, 2015. 

[45] S. Tang, M. Ye, C. Zhu, and Y. Liu, "Adaptive pedestrian detection using 

convolutional neural network with dynamically adjusted classifier," Journal of 

Electronic Imaging, vol. 26, no. 1, p. 013012, 2017. 

[46] K. Manston, "The challenges of using radar for pedestrian detection," Traffic 

Engineering & Control, vol. 52, no. 7, 2011. 

[47] Y. Ma, M. Chowdhury, M. Jeihani, and R. Fries, "Accelerated incident detection 

across transportation networks using vehicle kinetics and support vector machine in 

cooperation with infrastructure agents," IET intelligent transport systems, vol. 4, no. 

4, pp. 328-337, 2010. 

[48] R. Claes, T. Holvoet, and D. Weyns, "A decentralized approach for anticipatory 

vehicle routing using delegate multiagent systems," IEEE Transactions on Intelligent 

Transportation Systems, vol. 12, no. 2, pp. 364-373, 2011. 

[49] J. D. Crabtree and N. Stamatiadis, "Dedicated short-range communications 

technology for freeway incident detection: Performance assessment based on traffic 

simulation data," Transportation research record, vol. 2000, no. 1, pp. 59-69, 2007. 



 

91 

[50] Y. He, M. Chowdhury, Y. Ma, and P. Pisu, "Merging mobility and energy vision with 

hybrid electric vehicles and vehicle infrastructure integration," Energy Policy, vol. 41, 

pp. 599-609, 2012. 

[51] R. Long Cheu, H. Qi, and D.-H. Lee, "Mobile sensor and sample-based algorithm for 

freeway incident detection," Transportation research record, vol. 1811, no. 1, pp. 12-

20, 2002. 

[52] Y. Ma, M. Chowdhury, A. Sadek, and M. Jeihani, "Real-time highway traffic 

condition assessment framework using vehicle–infrastructure integration (VII) with 

artificial intelligence (AI)," IEEE Transactions on Intelligent Transportation Systems, 

vol. 10, no. 4, pp. 615-627, 2009. 

[53]  H. Qi, R. Cheu, and D. Lee, "Freeway incident detection using kinematic data from 

probe vehicles," in 9th World Congress on Intelligent Transport SystemsITS America, 

ITS Japan, ERTICO (Intelligent Transport Systems and Services-Europe), 2002.  

[54] S. M. Khan, K. C. Dey, and M. Chowdhury, "Real-time traffic state estimation with 

connected vehicles," IEEE Transactions on Intelligent Transportation Systems, vol. 

18, no. 7, pp. 1687-1699, 2017. 

[55] H. C. Manual, "HCM2010," Transportation Research Board, National Research 

Council, Washington, DC, vol. 1207, 2010. 

[56] T. Z. Qiu, X.-Y. Lu, A. H. Chow, and S. E. Shladover, "Estimation of freeway traffic 

density with loop detector and probe vehicle data," Transportation Research Record, 

vol. 2178, no. 1, pp. 21-29, 2010. 

[57] S. Hernandez, A. Tok, and S. G. Ritchie, "Density Estimation Using Inductive Loop 

Signature Based Vehicle Re-Identification and Classification," 2013.  

[58] T. Choe, A. Skabardonis, and P. Varaiya, "Freeway performance measurement 

system: operational analysis tool," Transportation research record, vol. 1811, no. 1, 

pp. 67-75, 2002. 

[59]  R. Mao and G. Mao, "Road traffic density estimation in vehicular networks," in 2013 

IEEE Wireless Communications and Networking Conference (WCNC), 2013: IEEE, 

pp. 4653-4658.  

[60] W. Shi and Y. Liu, "Real-time urban traffic monitoring with global positioning 

system-equipped vehicles," IET intelligent transport systems, vol. 4, no. 2, pp. 113-

120, 2010. 

[61] S. Tao, V. Manolopoulos, S. Rodriguez Duenas, and A. Rusu, "Real-time urban 

traffic state estimation with A-GPS mobile phones as probes," Journal of 

Transportation Technologies, vol. 2, no. 1, pp. 22-31, 2012. 

[62]  T. Seo, T. Kusakabe, and Y. Asakura, "Traffic state estimation method using probe 

vehicles equipped with spacing measurement system," in International Symposium on 

Recent Advances in Transport Modelling, 2013.  



 

92 

[63] D. Ni, "Determining traffic-flow characteristics by definition for application in ITS," 

IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 2, pp. 181-187, 

2007. 

[64] A. Ramezani, B. Moshiri, B. Abdulhai, and A. Kian, "Estimation of free flow speed 

and critical density in a segmented freeway using missing data and Monte Carlo-

based expectation maximisation algorithm," IET control theory & applications, vol. 5, 

no. 1, pp. 123-130, 2011. 

[65] V. Tyagi, S. Kalyanaraman, and R. Krishnapuram, "Vehicular traffic density state 

estimation based on cumulative road acoustics," IEEE Transactions on Intelligent 

Transportation Systems, vol. 13, no. 3, pp. 1156-1166, 2012. 

[66] A. Anand, G. Ramadurai, and L. Vanajakshi, "Data fusion-based traffic density 

estimation and prediction," Journal of Intelligent Transportation Systems, vol. 18, no. 

4, pp. 367-378, 2014. 

[67] L. Yu, Z. Wang, and Q. Shi, "PEMS-based approach to developing and evaluating 

driving cycles for air quality assessment," Center for Transportation Training and 

Research, Texas Southern University, 2010.  

[68]  J. Barrachina et al., "V2X-d: A vehicular density estimation system that combines 

V2V and V2I communications," in 2013 IFIP Wireless Days (WD), 2013: IEEE, pp. 

1-6.  

[69]  M. D. Venkata, M. M. Pai, R. M. Pai, and J. Mouzna, "Traffic monitoring and 

routing in VANETs—A cluster based approach," in 2011 11th international 

conference on ITS telecommunications, 2011: IEEE, pp. 27-32.  

[70] N. Caceres, L. M. Romero, F. G. Benitez, and J. M. del Castillo, "Traffic flow 

estimation models using cellular phone data," IEEE Transactions on Intelligent 

Transportation Systems, vol. 13, no. 3, pp. 1430-1441, 2012. 

[71] X. Yang, Y. Lu, and W. Hao, "Origin-destination estimation using probe vehicle 

trajectory and link counts," Journal of Advanced Transportation, vol. 2017, 2017. 

[72] Y. Nie, H.-M. Zhang, and W. Recker, "Inferring origin–destination trip matrices with 

a decoupled GLS path flow estimator," Transportation Research Part B: 

Methodological, vol. 39, no. 6, pp. 497-518, 2005. 

[73] P. Li, P. Mirchandani, and X. Zhou, "Solving simultaneous route guidance and traffic 

signal optimization problem using space-phase-time hypernetwork," Transportation 

Research Part B: Methodological, vol. 81, Part 1, pp. 103-130, 11// 2015, doi: 

https://doi.org/10.1016/j.trb.2015.08.011. 

[74] M. E. Pitstick, "Measuring delay and simulating performance at isolated signalised 

intersections using cumulative curves," presented at the Trasnsportation Research 

Board, 1989. 

[75] D. A. Noyce, A. R. Bill, and M. A. Knodler Jr, "Evaluation of the Flashing Yellow 

Arrow (FYA) Permissive Left-Turn in Shared Yellow Signal Sections," 2014.  

https://doi.org/10.1016/j.trb.2015.08.011


 

93 

 

APPLING PROPORTION MATRICES OF LINK COUNT FOR PATH FLOW 

ESTIMATION 

In Appendix A the path link proportion matrix used by Nie et al. (72) is applied in the proposed 

model for path flow estimation in section 5.2. For this experiment, we used the same network 

in section 5.3.1.1 (Scenario I: Low path flow condition). The below figure show shows the 

original network. To apply the proportion matrix method, we calculated the link flow 

proportion of each link. At the same time, the path flow proportion is also calculated. The 

below figure shows the original network before calculating the link flow and path flow 

proportion.  
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Figure 6.1 Path flow model using link proportion matrix 

Table 6.1 shows the results of the path flow estimation model using the link and path 

proportion matrix. 
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Table 6.1 Path flow estimation using link and path proportion matrix  

Path ID Wejo 

% 

Expected 

Path Flow 

Estimated 

Path Flow 

% Difference 

Path 1  3.0 0.143  0.167 14.45% 

Path 2 3.5 0.168 0.182 6.90% 

Path 3 3.0 0.180 0.319 43.52% 

Path 4 4.0 0.155 0.137 13.64% 

Path 5 4.5 0.138 0.185 25.99% 

Path 6 5.0 0.217 0.381 43.12% 

 

The result of the experiment is represented in figure 6.2. From the result, it can be identified 

that when using the link and path flow proportion matrix instead of using the actual counts, the 

results are not as good as earlier.  

 

Figure 6.2 Rader plot showing the expected and estimated path flow value 
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We show the maximum difference between the estimated and expected path flow is as big as 

43.52%. Such a big difference doesn’t contribute to estimating the path flow value of the 

network using the wejo data. Therefore, we can conclude that when we try to estimate path 

flow value, using 100% link count is a more efficient way rather than using link proportion 

matrix. 

 

 

 

 


